Morse spectrum for nonautonomous differential equations

  • The concept of a Morse decomposition consisting of nonautonomous sets is reviewed for linear cocycle mappings w.r.t. past, future and all-time convergences. In each case, the set of accumulation points of the finite-time Lyapunov exponents corresponding to points in a nonautonomous set is shown to be an interval. For a finest Morse decomposition, the Morse spectrum is defined as the union of all of the above accumulation point intervals over the different nonautonomous sets in such a finest Morse decomposition. In addition, Morse spectrum is shown to be independent of which finest Morse decomposition is used, when more than one exists.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Fritz ColoniusORCiDGND, Peter Kloeden, Martin RasmussenORCiDGND
URN:urn:nbn:de:bvb:384-opus4-8938
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1044
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2008-25)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2008/06/30
Tag:Morse-Zerlegung
Ljapunov exponent; Morse decomposition; nonautonomous system
GND-Keyword:Ljapunov-Exponent; Nichtautonomes System; Ljapunov-Spektrum; Morse-Theorie
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehr- und Forschungseinheit Angewandte Analysis
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik