Computation of integral manifolds for Carathéodory differential equations

  • We derive two numerical approximation schemes for local invariant manifolds of nonautonomous ordinary differential equations which can be measurable in time and Lipschitzian in the spatial variable. Our approach is inspired by previous work of Jolly, Rosa (2005), "Computation of non-smooth local center manifolds", IMA Journal of Numerical Analysis 25, 698-725, on autonomous ODEs and based on truncated Lyapunov-Perron operators. Both of our methods are applicable to the full hierarchy of strongly stable, stable, center-stable and the corresponding unstable manifolds, and exponential refinement strategies yield exponential convergence. Several examples illustrate our approach.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christian PötzscheGND, Martin RasmussenORCiDGND
URN:urn:nbn:de:bvb:384-opus4-9016
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1052
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2008-26)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2008/07/01
Tag:Lyapunov-Perron-Operator
Invariant manifolds; Integral manifolds; Lyapunov-Perron operator; Carathéodory condition
GND-Keyword:Invariante Mannigfaltigkeit; Carathéodory-Differentialgleichung; Integralmannigfaltigkeit
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik