On the convergence of right transforming iterations for the numerical solution of PDE constrained optimization problems

  • We present an iterative solver, called right transforming iterations (or right transformations), for linear systems with a certain structure in the system matrix, such as they typically arise in the framework of KKT conditions for optimization problems under PDE constraints. The construction of the right transforming scheme depends on an inner approximate solver for the underlying PDE subproblems. We give a rigorous convergence proof for the right transforming iterative scheme in dependence on the convergence properties of the inner solver. Provided that a fast subsolver is available, this iterative scheme represents an efficient way of solving first order optimality conditions. Numerical examples endorse the theoretically predicted contraction rates.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christopher Linsenmann
URN:urn:nbn:de:bvb:384-opus4-11225
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1339
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2009-34)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2009/12/21
Tag:right transforming iterations; iterative KKT solver; optimization problems with PDE constraints; perturbed splitting methods
GND-Keyword:Numerische Mathematik; Optimierung; Partielle Differentialgleichung; Karush-Kuhn-Tucker-Bedingungen; Iteration
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):Deutsches Urheberrecht mit Print on Demand