Characterizing Geometric Designs

  • We conjecture that the classical geometric 2-designs formed by the points and d-dimensional subspaces of the projective space of dimension n over the field with q elements, where 2 <= d <= n-1, are characterized among all designs with the same parameters as those having line size q+1. The conjecture is known to hold for the case d=n-1 (the Dembowski-Wagner theorem) and also for d=2 (a recent result established by Tonchev and the present author). Here we extend this result to the cases d=3 and d=4. The general case remains open and appears to be difficult.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dieter JungnickelORCiDGND
URN:urn:nbn:de:bvb:384-opus4-11243
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1341
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2009-35)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2009/12/23
Tag:block design; finite projective space
GND-Keyword:Geometrische Figur; Blockplan; Endlicher projektiver Raum
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Diskrete Mathematik, Optimierung und Operations Research
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):Deutsches Urheberrecht