Characterizing Geometric Designs II

  • We provide a characterization of the classical geometric designs formed by the points and lines of the projective space PG(n,q) of dimension n over the field with q elements, where n >= 3, among all non-symmetric (v,k,1)-designs as those with the maximal number of hyperplanes. As an application of this result, we also characterize the classical quasi-symmetric designs formed by the points and (n-2)-dimensional subspaces of PG(n,q), where n >= 4, among all (not necessarily quasi-symmetric) designs with the same parameters as those having line size q+1 and sufficiently large intersection numbers. Finally, we also give an explicit lower bound for the number of non-isomorphic designs having the same parameters as the classical point-line designs; in particular, we obtain a new proof for the known fact that this number grows exponentially for any fixed value of q.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dieter JungnickelORCiDGND
URN:urn:nbn:de:bvb:384-opus4-11257
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1342
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2009-36)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2009/12/23
Tag:block design; finite projective space
GND-Keyword:Geometrische Figur; Blockplan; Endlicher projektiver Raum
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Diskrete Mathematik, Optimierung und Operations Research
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):Deutsches Urheberrecht