Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain
- The Ginzburg-Landau-type complex equations are simplified mathematical models for various pattern formation systems in mechanics, physics, and chemistry. In this paper, we show that the complex Ginzburg-Landau equations on the whole real line perturbed by an additive space-time white noise generates an asymptotically compact stochastic or random dynamical system in weighted L2-spaces.
Author: | Dirk BlömkerORCiDGND, Yongqian Han |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-11212 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/1338 |
Series (Serial Number): | Preprints des Instituts für Mathematik der Universität Augsburg (2009-33) |
Type: | Preprint |
Language: | English |
Year of first Publication: | 2009 |
Publishing Institution: | Universität Augsburg |
Contributing Corporation: | Bosch Stiftung, IACPM Beijing |
Release Date: | 2010/01/15 |
Tag: | Nichtlineare partielle Differentialgleichung; Stochastische partielle Differentialgleichung complex Ginzburg-Landau equation; unbounded domain; stochastic attractor; asymptotic compactness; translation-invariant noise |
GND-Keyword: | Ginzburg-Landau-Gleichung; Stochastisches dynamisches System; Zufälliges dynamisches System; Musterbildung |
Note: | Erschienen in Stochastics and Dynamics, 10, 4, S. 613-636, https://doi.org/10.1142/s0219493710003121 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | Deutsches Urheberrecht |