Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain

  • The Ginzburg-Landau-type complex equations are simplified mathematical models for various pattern formation systems in mechanics, physics, and chemistry. In this paper, we show that the complex Ginzburg-Landau equations on the whole real line perturbed by an additive space-time white noise generates an asymptotically compact stochastic or random dynamical system in weighted L2-spaces.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dirk BlömkerORCiDGND, Yongqian Han
URN:urn:nbn:de:bvb:384-opus4-11212
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1338
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2009-33)
Type:Preprint
Language:English
Year of first Publication:2009
Publishing Institution:Universität Augsburg
Contributing Corporation:Bosch Stiftung, IACPM Beijing
Release Date:2010/01/15
Tag:Nichtlineare partielle Differentialgleichung; Stochastische partielle Differentialgleichung
complex Ginzburg-Landau equation; unbounded domain; stochastic attractor; asymptotic compactness; translation-invariant noise
GND-Keyword:Ginzburg-Landau-Gleichung; Stochastisches dynamisches System; Zufälliges dynamisches System; Musterbildung
Note:
Erschienen in Stochastics and Dynamics, 10, 4, S. 613-636, https://doi.org/10.1142/s0219493710003121
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):Deutsches Urheberrecht