Optimal design of stationary flow problems by path-following interior-point methods

  • We consider the numerical solution of structural optimization problems in CFD where the state variables are supposed to satisfy a linear or nonlinear Stokes system and the design variables are subject to bilateral pointwise constraints. Within a primal-dual setting, we suggest an all-at-once approach based on interior-point methods. The discretization is taken care of by Taylor-Hood elements with respect to a simplicial triangulation of the computational domain. The efficient numerical solution of the discretized problem relies on path-following techniques, namely a continuation method with an adaptive choice of the continuation step size and a long-step path-following algorithm. The performance of the suggested methods is documented by several illustrative numerical examples.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Harbir AntilGND, Ronald H. W. HoppeORCiDGND, Christopher Linsenmann
URN:urn:nbn:de:bvb:384-opus4-4075
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/505
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2007-02)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Contributing Corporation:Department of Mathematics, University of Houston
Release Date:2007/05/25
Tag:optimal design; primal-dual interior-point methods; adaptive continuation methods
GND-Keyword:Deterministische Optimierung; Innere-Punkte-Methode; Gestaltoptimierung; Numerische Strömungssimulation
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik