Divisor methods for proportional representation systems: An optimization approach to vector and matrix apportionment problems

  • When the seats in a parliamentary body are to be allocated proportionally to some given weights, such as vote counts or population data, divisor methods form a prime class to carry out the apportionment. We present a new characterization of divisor methods, via primal and dual optimization problems. The primal goal function is a cumulative product of the discontinuity points of the rounding rule. The variables of the dual problem are the multipliers used to scale the weights before they get rounded. Our approach embraces pervious and impervious divisor methods, and vector and matrix problems.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Norbert GaffkeGND, Friedrich PukelsheimGND
URN:urn:nbn:de:bvb:384-opus4-4164
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/515
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2007-05)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2007/05/30
Tag:apportionment method; optimization problem; divisor method; proportional representation system
GND-Keyword:Wahlverfahren; Verhältniswahl; Optimierungsproblem; Divisionsalgebra; Verteilungsfunktion
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik