Linear convergence of an adaptive finite element method for the p-Laplacian equation

  • We study an adaptive finite element method for the p-Laplacian like PDE's using piecewise linear, continuous functions. The error is measured by means of the quasi-norm of Barrett and Liu. We provide residual based error estimators without a gap between the upper and lower bound. We show linear convergence of the algorithm which is similar to the one of Morin, Nochetto, and Siebert. All results are obtained without extra marking for the oscillation.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Lars Diening, Christian Kreuzer
URN:urn:nbn:de:bvb:384-opus4-4439
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/549
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2007-24)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Contributing Corporation:Landesstiftung Baden-Württemberg, Project C.1 of the DFG-Research-Unit "Nonlinear Partial Differential Equations" Generalized Newtonian fluid
Release Date:2007/07/04
Tag:Nichtlineare partielle Differentialgleichung
Linear Convergence
GND-Keyword:A-posteriori-Abschätzung; Adaptives Verfahren; Finite-Elemente-Methode; Elliptische Differentialgleichung
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik