Nonparametric item response theory axioms and properties under nonlinearity and their exemplification with knowledge space theory

  • This paper investigates the dichotomous Mokken nonparametric item response theory (IRT) axioms and properties under incomparabilities among latent trait values and items. Generalized equivalents of the unidimensional nonparametric IRT axioms and properties are formulated for nonlinear (quasi-ordered) person and indicator spaces. It is shown that monotone likelihood ratio (MLR) for the total score variable and nonlinear latent trait implies stochastic ordering (SO) of the total score variable, but may fail to imply SO of the nonlinear latent trait. The reason for this and conditions under which the implication holds are specified, based on a new, simpler proof of the fact that in the unidimensional case MLR implies SO. The approach is applied in knowledge space theory (KST), a combinatorial test theory. This leads to a (tentative) Mokken-type nonparametric axiomatization in the currently parametric theory of knowledge spaces. The nonparametric axiomatization is compared with theThis paper investigates the dichotomous Mokken nonparametric item response theory (IRT) axioms and properties under incomparabilities among latent trait values and items. Generalized equivalents of the unidimensional nonparametric IRT axioms and properties are formulated for nonlinear (quasi-ordered) person and indicator spaces. It is shown that monotone likelihood ratio (MLR) for the total score variable and nonlinear latent trait implies stochastic ordering (SO) of the total score variable, but may fail to imply SO of the nonlinear latent trait. The reason for this and conditions under which the implication holds are specified, based on a new, simpler proof of the fact that in the unidimensional case MLR implies SO. The approach is applied in knowledge space theory (KST), a combinatorial test theory. This leads to a (tentative) Mokken-type nonparametric axiomatization in the currently parametric theory of knowledge spaces. The nonparametric axiomatization is compared with the assumptions of the parametric basic local independence model which is fundamental in KST. It is concluded that this paper may provide a first step toward a basis for a possible fusion of the two split directions of psychological test theories IRT and KST.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ali ÜnlüGND
URN:urn:nbn:de:bvb:384-opus4-4562
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/563
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2007-32)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2007/07/24
Tag:Nichtparametrische Item-Response-Theorie; Monotone-Likelihood-Verhältnis; Parametrische und Nichtparametrische Wissensraumtheorie
nonparametric item response theory; monotone likelihood ratio; parametric and nonparametric knowledge space theory
GND-Keyword:Probabilistische Testtheorie; Nichtparametrisches Verfahren; Likelihood-Quotient; Wissensrepräsentation
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik