A Posteriori Estimators for Obstacle Problems by the Hypercircle Method

  • A posteriori error estimates for the obstacle problem are established in the framework of the hypercircle method. To this end, we provide a general theorem of Prager-Synge type. There is now no generic constant in the main term of the estimate. Moreover, the role of edge terms is elucidated, and the analysis also applies to other types of a posteriori error estimators for obstacle problems.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dietrich BraessGND, Ronald H. W. HoppeORCiDGND, Joachim Schöberl
URN:urn:nbn:de:bvb:384-opus4-4891
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/613
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2008-02)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Contributing Corporation:Universitaet Bochum, University of Houston, RWTH Aachen
Release Date:2008/01/24
Tag:a posteriori error estimates; obstacle problems; hypercircle method; Prager-Synge theorem
GND-Keyword:Finite-Elemente-Methode; A-posteriori-Abschätzung; Fehleranalyse; Hindernisproblem
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik