A Posteriori Estimators for Obstacle Problems by the Hypercircle Method
- A posteriori error estimates for the obstacle problem are established in the framework of the hypercircle method. To this end, we provide a general theorem of Prager-Synge type. There is now no generic constant in the main term of the estimate. Moreover, the role of edge terms is elucidated, and the analysis also applies to other types of a posteriori error estimators for obstacle problems.
Author: | Dietrich BraessGND, Ronald H. W. HoppeORCiDGND, Joachim Schöberl |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-4891 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/613 |
Series (Serial Number): | Preprints des Instituts für Mathematik der Universität Augsburg (2008-02) |
Type: | Preprint |
Language: | English |
Publishing Institution: | Universität Augsburg |
Contributing Corporation: | Universitaet Bochum, University of Houston, RWTH Aachen |
Release Date: | 2008/01/24 |
Tag: | a posteriori error estimates; obstacle problems; hypercircle method; Prager-Synge theorem |
GND-Keyword: | Finite-Elemente-Methode; A-posteriori-Abschätzung; Fehleranalyse; Hindernisproblem |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |