Bifurcations of Asymptotically Autonomous Differential Equations

  • This article deals with bifurcation phenomena of asymptotically autonomous differential equations. Under the assumption that the underlying autonomous system admits a bifurcation of pitchfork, saddle node, transcritical or Hopf type, nonautonomous bifurcation results are obtained for both the bifurcation of attraction and repulsion areas and transitions of attractors and repellers.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Martin RasmussenORCiDGND
URN:urn:nbn:de:bvb:384-opus4-5033
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/635
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2008-10)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2008/02/28
Tag:Asymptotisch autonome Differenzialgleichung; Transition
asymptotically autonomous differential equation; transition
GND-Keyword:Nichtautonomes System; Attraktor; Repellor; Dynamische Verzweigung; Autonome Differentialgleichung
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik