Convergence analysis of adaptive finite element approximations of the Laplace eigenvalue problem
- We consider an adaptive finite element method (AFEM) for the Laplace eigenvalue problem in bounded polygonal or polyhedral domains. We provide a convergence analysis based on a residual type a posteriori error estimator which consists of element and face residuals. The a posteriori error analysis further involves an oscillation term. We prove a reduction in the energy norm of the discretization error and the oscillation term. The proof of the reduction property uses the reliability and the discrete local efficiency of the estimator as well as a perturbed Galerkin orthogonality. Numerical results are given illustrating the performance of the AFEM.
Author: | Ronald H. W. HoppeORCiDGND, Haijun Wu, Zhimin Zhang |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-5055 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/637 |
Series (Serial Number): | Preprints des Instituts für Mathematik der Universität Augsburg (2008-12) |
Type: | Preprint |
Language: | English |
Publishing Institution: | Universität Augsburg |
Contributing Corporation: | University of Houston, Nanjing University, Wayne State University |
Release Date: | 2008/03/13 |
Tag: | adaptive finite element methods; convergence analysis; Laplace eigenvalue problem |
GND-Keyword: | Finite-Elemente-Methode; Konvergenz; Eigenwertproblem; A-posteriori-Abschätzung; Fehleranalyse |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |