Lipschitz Conjugacy of Linear Flows
- We characterize Lipschitz conjugacy of linear flows on |R^d algebraically. We show that two hyperbolic linear flows are Lipschitz conjugate if and only if the Jordan forms of the system matrices are the same except for the simple Jordan blocks where the imaginary parts of the eigenvalues may differ. Using a well-known result of Kuiper we obtain a characterization of Lipschitz conjugacy for arbitrary linear flows.
Author: | Christoph KawanGND, Torben Stender |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-5105 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/642 |
Series (Serial Number): | Preprints des Instituts für Mathematik der Universität Augsburg (2008-14) |
Type: | Preprint |
Language: | English |
Publishing Institution: | Universität Augsburg |
Release Date: | 2008/03/31 |
Tag: | Lipschitz; Conjugacy; autonomous differential equation |
GND-Keyword: | Lipschitz-Stetigkeit; Autonome Differentialgleichung; Konjugation |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |