Lipschitz Conjugacy of Linear Flows

  • We characterize Lipschitz conjugacy of linear flows on |R^d algebraically. We show that two hyperbolic linear flows are Lipschitz conjugate if and only if the Jordan forms of the system matrices are the same except for the simple Jordan blocks where the imaginary parts of the eigenvalues may differ. Using a well-known result of Kuiper we obtain a characterization of Lipschitz conjugacy for arbitrary linear flows.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christoph KawanGND, Torben Stender
URN:urn:nbn:de:bvb:384-opus4-5105
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/642
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2008-14)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2008/03/31
Tag:Lipschitz; Conjugacy; autonomous differential equation
GND-Keyword:Lipschitz-Stetigkeit; Autonome Differentialgleichung; Konjugation
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik