Inductive item tree analysis: Corrections, improvements, and comparisons

  • There are various methods in knowledge space theory for building knowledge structures or surmise relations from data. Few of them have been thoroughly analyzed, making difficult to decide which of these methods provide good results and when to apply each of the methods. In this paper, we investigate the method inductive item tree analysis and discuss the advantages and disadvantages of this algorithm. In particular, we introduce some corrections and improvements to it, resulting in two newly proposed algorithms. These algorithms and the original inductive item tree analysis procedure are compared in a simulation study and with empirical data.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Anatol SarginGND, Ali ÜnlüGND
URN:urn:nbn:de:bvb:384-opus4-5869
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/730
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2008-24)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2008/06/09
Tag:Knowledge Space Theory; Inductive Item Tree Analysis
GND-Keyword:Psychometrie; Wissensrepräsentation; Datenanalyse; Itemanalyse; Diskrete Struktur
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik