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Abstract

We review some results on stabilization of solutions to semilinear parabolic
PDEs near a change of stability due to additive degenerate noise. Our
analysis is based on the rigorous derivation of a stochastic amplitude equa-
tion for the dominant mode and on careful estimates on its solution. Fur-
thermore, a few numerical examples which corroborate our theoretical
findings are presented.

1 Introduction

Stabilization of solutions to (ordinary) stochastic differential equations (SDEs)
due to multiplicative noise is a well know phenomenon that has been studied
extensively in several different contexts. For example, Stratonovich multiplica-
tive noise leads to an averaging of the noise over stable and unstable directions,
as was noted by Arnold, Crauel, and Wihstutz [1] and Pardoux and Wihstutz
[20, 21]. Furthermore, it has been shown that when the SDE is driven by Itô mul-
tiplicative noise the stabilization of the solution is due to the Itô-Stratonovich
correction, e.g., Kwiecinska [15, 16]. For stochstic partial differential equations
(SPDEs) there are several works by Caraballo, Liu, and Mao [9], Cerrai [10],
Caraballo, Kloeden, Schmallfuß [8] and many others. Stabilization due to rota-
tion has been studied by Baxendale, Hennig [2] or Crauel et.al. [11]. Results
related to stabilization by multiplicative noise also presented in [17], [13].

Amplitude equations for finite dimensional truncations for SPDEs of Burgers
type have been derived by Majda, Timofeyev, Vanden Eijnden [18, 19]. The am-
plitude equations derived by these authors have additive and/or multiplicative
noise and it was observed by the authors that the noise can have a stabilizing
effect. In principle, their formal calculations can be justified by using Kurtz’s
theorem [14]. However, this approach does not enable us to obtain error esti-
mates, nor does it seem to be possible to generalize it to arbitrary dimensions.

The aim of this paper is to review some recent rigorous error estimates for
amplitude equations and to present some analysis of the interplay between noise
and nonlinearity. This is based on recent results obtained by the authors on the
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stabilizing effects of additive noise on solutions to semilinear parabolic stochas-
tic PDEs with quadratic nonlinearities [6]. This improves results of [22], where
numerical experiments and formal calculations based on center manifold theory
indicated that additive noise has the potential of stabilizing dominant behav-
ior. Our proof is based on the rigorous derivation of an amplitude SDE for
the dominant mode and on a careful analysis of this equation. This enables
us to justify rigorously formal asymptotic expansions, and the approach is very
well adapted to the infinite dimensional problem (i.e. there is no need to con-
sider finite dimensional truncations) and leads to the derivation of sharp error
estimates.

We consider two cases. First SPDEs in a scaling where the noise acts directly
as additive noise on the dominant behavior. Secondly, we show in a different
scaling that degenerate additive noise is transported to the dominant mode by
the nonlinearity. As a result, the evolution of the dominant mode is governed by
an SDE with multiplicative noise which can, potentially, stabilize the solution
of this SDE.

For simplicity of presentation in this article we focus on SPDEs of Burgers-
type near a change of stability. There it is well-known [4, 7, 6] that, for SPDEs
of this form, the dominant modes evolve on a slow time-scale, and stable modes
decay on a fast time-scale. Moreover, the evolution of the dominant modes
is given by a finite dimensional SDE, the so called amplitude equation. The
reduction to an amplitude equation is well-known in physics [12].

2 Numerical Example

As an example consider the following Burgers-type SPDE

∂tu = (∂2
x + 1)u+ ε2u+ u∂xu+ σεξ (1)

where u(t, x) ∈ R for t > 0, x ∈ [0, π] subject to Dirichlet boundary conditions
(u(t, 0) = u(t, π) = 0)) and ε� 1. Notice the different scaling of the linear term
ε2u and the noise σεξ. For the numerical experiment we set ε = 0.1 and we use
the highly degenerate noise ξ(t, x) = ∂tβ(t) sin(2x) acting only on the second
Fourier mode, where β(t) is a standard one-dimensional, real-valued Brownian
motion.

We solve equation (1) using a spectral Galerkin method. We keep only
the first four Fourier-modes. This is sufficient to provide us with an accurate
solution of (1), since higher order modes are negligible [6]. Figures 1, 2, and 3
show snapshots of solutions an their first and second Fourier-modes for σ = 2
and σ = 10. The 3rd and 4th mode are not shown, as they are small.

3 Multiscale Analysis for the Stochastic Burgers
Equation

The theory presented in [6] enables us to prove rigorously the stabilization effect
that was observed in the numerical experiment. For simplicity of presentation
in this article we will consider only a modified scalar Burgers SPDE.
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Figure 1: Snapshot of the solution of the 4-mode truncation of (1) for σ = 2
(left) and for σ = 10 (right).

Figure 2: First Fourier mode of the solution of the 4-mode truncation of (1) for
σ = 2 (left) and for σ = 10 (right) for a single typical realization. It is clearly
seen that 0 is stabilized (i.e., sin destabilized) by large noise.

Figure 3: Second Fourier mode of the solution of the 4-mode truncation of (1)
for σ = 2 (left) and for σ = 10 (right) for a single typical realization. For ε→ 0
one can show that it converges to white noise acting on sin(2x).
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Remark 1. However, our theory is applicable a much larger class of stochastic
PDEs with quadratic nonlinearities. All of the following examples can be studied
with the same methodology, if we consider them at onset of instability with the
right scaling of ν and σ w.r.t. ε.

Burgers equation: ∂tu = ∂2
xu+ νu+ u∂xu+ σξ.

Surface Growth Model: ∂th = −∂4
xh− ν∂2

xh− ∂2
x|∂xh|2 + σξ.

See [5] and the references therein. The final example is Rayleigh Bénard Con-
vection given by a 3D-Navier-Stokes coupled to a heat equation.

In this section we will consider the Burgers SPDE under the following scaling,
where the noise scales like ε2.

∂tu = (∂2
x + 1)u+ νε2u+ 1

2∂xu
2 + ε2ξ (B)

where u(t, x) ∈ R for t > 0 and x ∈ [0, π] is subject to Dirichlet boundary
conditions (i.e., u(t, 0) = u(t, π) = 0)). The term νε2u is a linear (in)stability
and the small parameter |νε2| � 1 measures the distance from bifurcation. The
noise process ξ(t, x) is Gaussian, white in time and colored in space. The detailed
description of ξ(t, x) is given below. Consider the linear operator L := −∂2

x − 1
subject to Dirichlet boundary conditions on [0, π]. It is a standard result that

the eigenfunctions of this operator, {ek =
√

2
π sin(kx)}+∞k=1, form an orthonormal

basis for L2(0, π), with corresponding eigenvalues λk = k2 − 1, k ∈ N.
We will refer to the first eigenfunction e1 = sin(x), which corresponds to

the zero eigenvalue λ1 = 0, as the dominant mode. We will use the notation
N = span{sin} for the kernel of L. The n-th mode is given by en.

Assumptions 2. The noise ξ(t, x) = ∂tW (t, x) is given formally as the time
derivative of an infinite dimensional Wiener process W such that

W (t, x) =
∞∑
k=1

σkβk(t) sin(kx)

where σk ∈ R with |σk| ≤ C and {βk}k∈N are independent and identically dis-
tributed standard 1-dimensional Brownian motions.

We will consider two cases of noise

• White noise acting directly on N , i.e. σ1 6= 0.

• Degenerate noise not acting directly on N , i.e. σ1 = 0.

Remark 3. Space-time white noise is given by σk = 1 ∀k.

Our goal is to understand how the noise affects the dynamics of the dominant
modes in N .
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4 Amplitude Equation

We rewrite Equation (B) in the form

∂tu = −Lu+ νε2u+B(u, u) + ε2∂tW (B1)

with B(u, v) = 1
2∂x(uv). Observe that the Burgers nonlinearity does not map

N to N . Higher order modes are involved.
We will use the ansatz u(t, x) = εa(ε2t) sin(x) + O(ε2) to derive (formally)

the amplitude equation

∂Ta = νa− 1
12a

3 + ∂Tβ, (A)

where β(T ) = εσ1β1(ε−2T ) is the rescaled noise in N .
More precisely, for the formal calculation we use the ansatz

u(t, x) = εA(ε2t)︸ ︷︷ ︸
∈N

+ε2 ψ(ε2t)︸ ︷︷ ︸
⊥N

+...

We use the slow time T = ε2t, the projection Pc onto N and Ps = I − Pc. As
PcB(A,A) = 0, we derive

∂TA = νA+ 2PcB(A,ψ) + ∂TPcW̃ +O(ε),

and with W̃ (T ) = εW (ε−2T )

ε2∂Tψ = −Lψ + PsB(A,A) + ε∂TPsW̃ +O(ε) .

Neglecting higher order terms leads to ψ = L−1PsB(A,A) and

∂TA = νA+ 2PcB(A,ψ) + ∂TPcW̃ .

For the real-valued amplitude a of the dominant mode sin(·) (i.e. A(T, ·) =
a(T ) sin(·)) we obtain Equation (A), with

− 1
12 = 2PcB(sin(·), L−1PsB(sin(·), sin(·))).

This formal calculation can be made rigorous. In fact, we can prove the following
theorem (see also [4, 7]).

Theorem 4. Let u be a solution of (B1) and a is solution of (A). Suppose
u(0, ·) = εa(0) sin(·) + ε2ψ0(·) with ψ0(·) ⊥ sin(·) and a(0), ψ0 = O(1).

Then for κ, T0, p > 0 there is C > 0 such that

P
(

sup
t∈[0,T0ε−2]

‖u(t, ·)− εa(tε2) sin(·)‖∞ > ε2−κ
)
< Cεp.

Thus u(t) = εa(ε2t) +O(ε2−).

Remark 5. Only the projection of the noise onto the dominant mode enters
into the amplitude equation. The noise which appears in the higher modes, and
under the scaling of the noise considered in Equation (B), is too weak to affect
the dynamics of the dominant mode.
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5 Stabilization by Additive Noise

In this section we investigate whether additive degenerate noise (i.e. noise that
does not act directly to the dominant mode) can lead to stabilization of the
solution of the SPDE (B). In particular, we will assume that no noise acts
directly onto the dominant mode (i.e., σ1 = 0):

W (t) =
∞∑
k=2

σkβk(t) sin(k·) , ξ(t) = ∂tW (t)

Our aim is to understand how the noise interacts with the nonlinearity to pro-
duce a stabilization effect for the solution of the amplitude equation. We will
consider two examples.

• Highly degenerate noise only on the second mode, i.e. σk = 0 for k 6= 2

• Near white noise, i.e. σk = 1 for k ≥ 2

Consider first the case of highly degenerate noise:

∂tW (t, x) = Φ(t, x) = ∂tβ2(t) sin(2x) .

Theorem 4 applied to this case shows that, for noise-strength of order ε2, that
the amplitude equation (A) becomes a deterministic equation:

∂Ta = νa− 1
12a

3 .

Hence, there is no impact of the noise on the dominant behaviour. In order to
see the effect of degenerate noise, we have to consider stronger noise. To this
end, we set σε = σε and consider the SPDE

∂tu = −Lu+ νε2u+B(u, u) + σεΦ (B2)

A formal calculation [6] yields the amplitude equation

da = (ν − σ2

88 )adT − 1
12a

3dT + σ
6 a ◦ dβ̃2, (A2)

where the noise is interpreted in the Stratonovich sense, with β̃2(T ) = εβ2(ε−2T ).

Remark 6. It is not hard to show that, for ν ∈ (0, σ2/88), the solution of (A2)
converges to 0 almost surely. Hence, in this parameter regime we get stabilization
due to additive noise in a very strong sense.

Let us see in more detail, where the stabilizing term in (A2) comes from.
The Itô to Stratonovich correction is −σ

2

72 a, but this does not explain −σ
2

88 a that
appears in the amplitude equation (A2).

Let us recall the formal calculation. We consider the SPDE at the slow time
scale. Substituting u(t) = εψ(ε2t) we derive from (B2)

∂Tψ = −ε−2Lψ + νψ + ε−1B(ψ,ψ) + ε−1∂T Φ̃, (B2’)

where Φ̃(T ) = ε−1Φ(Tε−2) is the rescaled noise. Let Bk(u, v) denote the pro-
jection of B(u, v) onto span(sin(kx)). Note that Φ̃ = Φ̃2. We use the following
ansatz with ψk ∈ span(sin(kx))

ψ(T ) = ψ1(T ) + ψ2(T ) + εψ3(T ) +O(ε)
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We obtain, using Bn(ψk, ψl) = 0 for n 6∈ {|k − l|, k + l},
1st mode: ∂Tψ1 = νψ1 + 2ε−1B1(ψ2, ψ1) + 2B1(ψ2, ψ3) +O(ε).
2nd mode: Lψ2 = εB2(ψ1, ψ1) + ε∂T Φ̃2 +O(ε2).
3rd mode: Lψ3 = 2B3(ψ2, ψ1) +O(ε).
There is a new contribution to the 1st mode given by

4ε2B1(L−1∂T Φ̃2, L
−1B3(∂T Φ̃2, ψ1)) = c(ε∂T β̃2)2A

We need now to define the term (noise)2 that appears on the righthand side of
the equation above. Instead of ε∂T β̃2 we use Zε(T ) = ε−1

∫ T
0
e−3(T−s)ε−2

dβ̃2(s)
in the proofs and the following averaging with error bounds (see [6]):

Lemma 7. Suppose A is a stochastic process, such that for all γ ∈ (0, 1
2 ),

κ, p, T0 > 0 there is a constant C > 0 such that

E sup
t,s∈[0,T0]

|A(t)−A(s)|p

|t− s|pγ
≤ Cε−pκ

then ∫ T

0

A(s)Zε(s)2ds = 1
6

∫ T

0

A(s)ds+ rε(T )

where E sup[0,T0] |rε|
p ≤ CT0,κ,pε

p
2−κ.

Proof. We only give a sketch. If A is the solution of (A2) then Itô’s gives the
result, with rε = O(ε). In our case A is Hölder continuous, and we have bounds
on moments of Hölder quotients up to Hölder exponents less then 1

2 . Thus it
is enough to prove the lemma first for A ≡ const, and then carry over using
Hölder continuity of A, where we split the integral into many small parts.

Theorem 8 ([6]). Let u be a continuous H1
0 ([0, π])-valued solution of (B2) with

u(0) = εa(0) sin(·) + εψ0, where ψ0 ⊥ sin and a(0), ψ0 = O(1). Let a be a
solution of (A2) and define

R(t) = e−Ltψ0 + σ

(∫ t

0

e−3(t−s)dβ2(s)
)

sin(2 ·),

then for all κ, p, T0 > 0 there is a constant C such that

P
(

sup
t∈[0,T0ε−2]

‖u(t)− εa(ε2t) sin−εR(t)‖H1 > ε3/2−κ
)
≤ Cεp.

Consider finally the case of white noise on N⊥, i.e.

W (t, x) =
∞∑
k=2

βk(t) sin(kx) .

Equation (B2) becomes

∂tu = −Lu+ νε2u+ 1
2∂xu

2 + ε∂tW . (B3)

The results of [6] applied to this problems show that there exists a Brownian
motion B and constants (ν0, σa, σb) such that the amplitude equation for (B3)
is

da = ν0a dT − 1
12a

3dT +
√
σaa2 + σb dB . (A3)
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There are explicit formulas for all the constants that appear in this amplitude
equation. We emphasize the fact that this equation has both multiplicative and
additive noise. We already saw where the multiplicative noise term comes from.
The additive noise arises from (noise)2 times an independent noise.

This result relies on a martingale approximation result of a (one-dimensional)
stochastic integral driven by an infinite-dimensional Brownian motion by a
stochastic integral driven by the one-dimensional Brownian motion B that ap-
pears in the amplitude equation (A3). Sharp error estimates are also obtained
depending on estimates for quadratic variations of the stochastic integrals.

Lemma 9. Let M(t) be a continuous martingale with quadratic variation f
and let g be an arbitrary adapted increasing process with g(0) = 0. Then, with
respect to an enlarged filtration, there exists a continuous martingale M̃(t) with
quadratic variation g such that, for every γ < 1/2 there exists a constant C with

E sup
t∈[0,T ]

|M(t)− M̃(t)|p ≤ C
(
Eg(T )2p

)1/4(E sup
t∈[0,T ]

|f(t)− g(t)|p
)γ

+CE sup
t∈[0,T ]

|f(t)− g(t)|p/2 .

Theorem 10 ([6]). Suppose N is one-dimensional. For α ∈ [0, 1
2 ) let u be a

continuous Hα
0 ([0, π])-valued solution of (B3) with u(0) = εa(0) sin +εψ0, where

ψ0 ⊥ sin and a(0), ψ0 = O(1). Let a be a solution of (A3) and define

R(t) = e−tLψ0 +
∫ t

0

e−(t−s)LdW (s) .

Then for all κ, p, T0 > 0 there is a constant C > 0 such that

P

(
sup

t∈[0,T0ε−2]

‖u(t)− εa(ε2t) sin−εR(t)‖Hα > ε
5
4−κ

)
≤ Cεp.

6 Conclusions and Open Problems

Some recent results on stabilization of solutions to SPDEs of Burgers type due
to additive noise were presented in this paper. It was shown that the reason for
stabilization is because the noise from the stable modes, is being transported,
due to the nonlinearity and the scale separation, to the amplitude equation
where it acts as both additive and multiplicative noise. Our theory applies to
wide class of SPDEs with quadratic nonlinearities.

There are still many open questions in the theory of amplitude equations for
SPDEs. As examples we mention the proof of attractivity, the approximation
of moments and the approximation of the invariant measure(s) of the SPDE by
the invariant measure(s) of the amplitude equation. The difficulty in obtaining
these results is mainly due to the lack of nonlinear stability for our SPDE, which
makes estimates on solutions for arbitrary initial conditions not easy.
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