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Abstract

In this paper we rigorously derive stochastic amplitude equation for
a rather general class of SPDEs with quadratic nonlinearities forced by
small additive noise. Near a change of stability we show that the solution
of the original SPDE is approximated by the solution of the amplitude
equation. Our results significantly improve older results

We focus on equations with quadratic nonlinearity and give applica-
tions to the one-dimensional Burgers equation and a model from surface
growth.

1 Introduction

Stochastic partial differentail equations (SPDE) with quadratic nonlinearities
arise in various applications in physics. One example is the stochastic Burgers
equation in the study of closure models for hydrodynamic turbulence [6]. Other
examples are the growth of rough amorphous surfaces in the study of the growth
of amorphous surfaces [24, 19], and the Kuramoto-Sivashinsky model, which
originally models a fire front, but it is also used for surface erosion [7, 17]. All
these models fit in the abstract framework of this paper.

Consider the following SPDE in Hilbert space H with scalar product 〈·, ·〉
and norm ‖·‖:

du =
[
Au+ ε2Lu+B(u, u)

]
dt+ ε2dW. (1)

We consider (1) near a change of stability, where ε2ν measures the distance
from bifurcation. The operator A is assumed to be non-positive, and we call the
kernel of A the dominant modes. We allow for noise given by a fairly general
Q-Wiener process.

Near the bifurcation the equation exhibit two widely separated characteristic
time-scales and it is desirable to obtain a simplified equation which governs the
evolution of the dominant modes. This is well known on a formal level in
many examples in physics (see e.g. [8]). Moreover, for deterministic PDEs on
unbounded domains, this method [16, 20, 23, 12] successfully overcomes the gap
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of a lacking centre manifold theory. This is also usefull for SPDEs on bounded
domains [3], where also no centre manifold theory is available.

Moreover, there are numerous variants of this method. However, most of
these results are non-rigorous approximations using this type of formal multi-
scale analysis. A noteable example is [9].

Another interesting question, which can be tackled with similar methods, is
the stabilization effect due to degenerate noise. Here noise is transported via
nonlinear interaction to the dominant modes. Examples are [21, 4, 13, 14, 15, 22]

The purpose of this paper is to derive rigorously an amplitude equation for a
quite general class of SPDEs (cf. (1)) with quadratic nonlinearities. This work
is based on [4], where degenerate noise in a different scaling was considered,
and it improves significantly previously know results of [1], where in a similar
situation much more regular noise was considered. A related result can be found
in [2], where a simple multiplicative noise was considered, but again with much
weaker results.

In this paper we focus on quadratic nonlinearities only. The case of cubic
equations is much simpler, as one can rely on nonlinear stability. This case was
already considered in [5], for instance.

As an application of our approximation result of Theorem 13, we discuss the
stochastic Burgers equation and surface growth model. To illustrate our results
consider the Burgers equation

∂tu =
(
∂2
x + 1

)
u+ ε2νu+ u∂xu+ ε2∂tW, (2)

on [0, π] subject to Dirichlet boundary conditions.
We show in our main result that near a change of stability on a time-scale

of order ε−2 the solution of (2) is of the type

u(t, x) = εb(ε2t) sin(x) +O(ε2),

where b is the solution of the amplitude equation on the slow time-scale

∂T b(T ) = νb(T )− 1
12
b3(T ) + ∂Tβ(T ),

with β(T ) = εα1β1(ε−2T ) being a rescaled noise in N .
This approximating equation is called amplitude equation, as it can by

rewritten to an SDE for the amplitudes of an expansion of a with respect to a
basis in N .

For the proofs we rely on a cut-off technique, as in general we cannot control
moments of solution and exclude the possibility of a blow up. Therefore all
estimates are established only with high probability and not in moments. To be
more precise, we use a stopping time, in order to look only at solutions that are
not too large. Then we can use moments for time uniformly up to the stopping
time. Later we use the amplitude equation itself to verify that the stopping is
not small.

As the general strategy we first show that all non-dominant modes are given
by an Ornstein-Uhlenbeck process and a quadratic term in the dominant modes.
Then we rely on Itô -Formula and some averaging argument, in order to trans-
form the equation for the dominant modes to an amplitude equation with an
additional small remainder.
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The rest of this paper is organised as follows. In Section 2 we state the
assumptions that we make. In Section 3 we give a formal derivation of the
amplitude equation and state the main results. In Section 4 we give the main
results. Finally, in Section 5 we apply our theory to the stochastic Burgers
equation and surface growth model.

2 Main Assumptions and Definitions

This section summarises all assumptions necessary for our results. For the linear
operator A in (1) we assume the following:

Assumption 1 (Linear Operator A) Suppose A is a non-positive operator
on H with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ .... ≤ λk ≤ .... and λk ≥ Ckm for all large
k. the corresponding complete orthonormal system of eigenvectors is {ek}∞k=1

with Aek = −λkek.
We use the notation N := kerA, S = N⊥ the orthogonal complement of N

in H, and Pc for the projection Pc : H → N . Define, Ps := I −Pc, and suppose
that Pc and Ps commute with A. Suppose that N has finite dimension n with
basis (e1, ...., en) .

As the dimension of N is finite, it is well known that both Pc and Ps are
bounded linear operators on H (cf. Weidmann [25]).

Definition 2 For α ∈ R, we define the space Hα as

Hα =

{ ∞∑
k=1

γkek :
∞∑
k=1

γ2
k k

2α <∞

}
with norm

∥∥∥∥∥
∞∑
k=1

γkek

∥∥∥∥∥
2

α

=
∞∑
k=1

γ2
k k

2α,

where (ek)k∈N is the complete orthonormal basis in H defined by Assumption 1.
We define the operator Dα by Dαek = kαek, so that ‖u‖α = ‖Dαu‖.

Definition 3 The operator A given by Assumption 1 generates an analytic
semigroup

{
etA
}
t≥0

defined by

eAt

( ∞∑
k=1

γkek

)
=
∞∑
k=1

e−λktγkek, ∀ t ≥ 0.

The analytic semigroup has the following well known properties:

Lemma 4 Under Assumption 1 there are constants M > 0 and ω > 0 such
that for all t > 0, β ≤ α, and all u ∈ Hβ∥∥etAu∥∥

α
≤Mt−

α−β
m ‖u‖β , (3)

and ∥∥etAPsu∥∥α ≤Mt−
α−β
m e−ωt ‖Psu‖β . (4)

Assumption 5 (Operator L) Let L : Hα → Hα−β for some β ∈ [0,m) be a
continuous linear mapping that in general does not commute with Pc and Ps.
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Assumption 6 (Bilinear Operator B) Let B be a bilinear mapping on Hα×
Hα which is symmetric, i.e. B(u, v) = B(v, u). Assume there is a constant
C > 0 such that with β defined above

(B1) PcB(u, u) = 0 ∀u ∈ N ,
(B2) ‖B(u, v)‖α−β ≤ C‖u‖α‖v‖α ∀u, v ∈ Hα.

Denote for shorthand notation Bs = PsB and Bc = PcB.
For the nonlinearity appearing later in the amplitude equation we define the

following.

Definition 7 Define F : N → N , for u, v, w ∈ N , as

F(u, v, w) := Bc(u,A−1
s Bs(v, w)). (5)

By Assumption 6 the operator F is continuous, trilinear, and symmetric.
One standard example being a cubic like u3. Moreover, we assume the following:

Assumption 8 (Stability) Assume that the nonlinearity F satisfies the fol-
lowing conditions, for C ∈ R and c > 0.

〈u,F(u)〉 ≥ c ‖u‖4 − C ∀ u ∈ N , (6)

and

〈F(u+ v − w)−F(u), w〉 ≤ c
[
‖v‖4 + ‖u‖2‖v‖2 + ‖u‖4‖v‖2 + ‖w‖2

]
, (7)

where we define F(u) = F(u, u, u) for short.

For the noise we suppose:

Assumption 9 (Wiener Process W ) Let W be a cylindrical Wiener process
on H with a bounded covariance operator Q defined by Qfk = α2

kfk where (αk)k
is a bounded sequence of real numbers and (fk)k∈N is an orthonormal basis in
H. For the orthonormal basis ek from Assumption 1 we assume

∞∑
l=n+1

l2αλ2γ−1
l ‖Q 1

2 el‖2 <∞ for some γ ∈ (0, 1
2 ) . (8)

We note that W (t) and εW (ε−2t) are in law the same process due to scaling
properties.

Let us discuss two different representations of W . One with the basis ek and
the other one with fk. For t ≥ 0, we can write W (t) (cf. Da Prato and Zabczyk
[10]) as

W (t) :=
∞∑
k=1

αkβk(t)fk =
∞∑
l=1

ßl(t)el, (9)

where (βk)k are independent, standard Brownian motions in R. Furthermore,
the ßl :=

∑∞
k=1αk〈fk, el〉βk are real valued Brownian motions, which are in

general not independent.
Moreover, it follows easily from the definition of Pc, Ps and W (t) that

PcW (t) =
∞∑
k=1

αkβk(t)Pcfk =
n∑
l=1

ßl(t)el, (10)
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and

PsW (t) =
∞∑
k=1

αkβk(t)Psfk =
∞∑

l=n+1

ßl(t)el, (11)

Definition 10 The stochastic convolution of eAt and W (t) is defined by

WA(t) =
∫ t

0

e(t−s)AdW (s) =
∞∑
l=1

∫ t

0

e−(t−s)λldßl(s)el . (12)

For our result we rely on a cut off argument. We consider only solutions
(a, ψ) that are not too large. To be more precise we introduce a cut-off time,
after which the solution is too big. Later we will show that this time is large
with high probability.

Definition 11 (Stopping Time) For the N × S-valued stochastic process
(a, ψ) defined later in (15) we define, for some small 0 < κ < 1

6 and some
time T0 > 0, the stopping time τ∗ as

τ∗ := T0 ∧ inf
{
T > 0 : ‖a(T )‖α > ε−κ or ‖ψ(T )‖α > ε−3κ

}
. (13)

Definition 12 For a real-valued family of processes {Xε(t)}t≥0 we say Xε =
O(fε), if for every p ≥ 1 there exists a constant Cp such that

E sup
t∈[0,τ∗]

|Xε(t)|p ≤ Cpfpε . (14)

We use also the analogous notation for time-independent random variables.

Finally note, that we use the letter C for all constants that depend only on
other constants like T0, κ, or α and the data of the equation given by B, W , L,
and A.

3 Formal Derivation and the Main Result

Let us first discuss a formal derivation of the Amplitude equation corresponding
to Equation (1). We split the solution u into

u(t) = εa(ε2t) + ε2ψ(ε2t) , (15)

with a ∈ N and ψ ∈ S, and rescale to the slow time scale T = ε2t, in order to
obtain for the dominant modes

da = [Lca+ εLcψ + 2Bc(a, ψ) + εBc(ψ,ψ)] dT + d
∼
Wc. (16)

For the fast modes we derive

dψ = [ε−2Asψ + ε−1Lsa+ Lsψ + ε−2Bs(a, a) + 2ε−1Bs(a, ψ) (17)

+Bs(ψ,ψ)]dT + ε−1d
∼
W s ,

where
∼
W (T ) := εW (ε−2T ) is a rescaled version of the Wiener process. Now we

use (17) in order to remove ψ from Equation (16).
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From (17) we obtain in lowest order of ε that

Asψ ≈ −Bs(a, a).

As As is invertible on S, we derive

ψ ≈ −A−1
s Bs(a, a),

which we substitute into (16). Neglecting all small terms in ε yields

da ≈ [Lca− 2F(a)] dT + d
∼
Wc.

Thus we consider solutions b : [0, T0]→ N of

db = [Lcb− 2F(b)] dT + d
∼
Wc. (18)

This approximating equation is the amplitude equation that approximates the
dynamics of the original SPDE. The main aim of this paper to show that the
solution of (1) is

u(t) = εb(ε2t) +O(ε2) .

In the following, let us be more precise. Applying Itô’s formula to Bc(a,A−1
s ψ)

we obtain the amplitude equation with remainder

a(T ) = a(0) +
∫ T

0

Lca(τ)dτ − 2
∫ T

0

F(a(τ))dτ +
∼
Wc(T ) +R(T ), (19)

where the remainder R is given by

R(T ) = ε2Bc(a(T ), A−1
s ψ(T ))− 2ε2

∫ T

0

Bc(Bc(a(τ), ψ(τ)), A−1
s ψ(τ))dτ

− ε3
∫ T

0

Bc(Bc(ψ(τ), ψ(τ)), A−1
s ψ(τ))dτ − ε2

∫ T

0

Bc(Lca,A−1
s ψ)dτ

− 2ε
∫ T

0

Bc(a(τ), A−1
s Bs(a(τ), ψ(τ)))dτ − ε3

∫ T

0

Bc(Lcψ,A−1
s ψ)dτ

− ε
∫ T

0

Bc(a,A−1
s Lsa)dτ − ε2

∫ T

0

Bc(a,A−1
s Lsψ)dτ + ε

∫ T

0

Lcψ(τ)dτ

− ε2
∫ T

0

Bc(a(τ), A−1
s Bs(ψ(τ), ψ(τ)))dτ + ε

∫ T

0

Bc(ψ(τ), ψ(τ))dτ

− ε2
∫ T

0

Bc(d
∼
Wc(τ), A−1

s ψ(τ))− ε
∫ T

0

Bc(a(τ), A−1
s d

∼
W s(τ)). (20)

For our main aim we need to show that the remainder R is of order ε. This
involves carefull analysis of all terms using moments of uniform bounds up to
the stopping time like E sup[0,τ∗] ‖R‖pα. Later, we need an explicit error estimate
to actually remove R from the equation. Finally, we use the nonlinear stability
of the amplitude equation to show that τ∗ = T0 with high probability.

To be more precise, the main result is:

6



Theorem 13 ( Approximation) Under Assumptions 1, 5, 6 and 9, let u be
a solution of (1) defined in (15) with the initial condition u(0) = εa(0) + ε2ψ(0)
where a(0) and ψ(0) are of order one. Suppose that b is a solution of the
amplitude equation (18). Then for all p > 1 and T0 > 0 there exists C > 0 such
that

P
(

sup
t∈[0,ε−2T0]

‖u(t)− εb(ε2t)‖α > ε2−7κ
)
≤ Cεp . (21)

Moreover,
P (τ∗ = T0) ≥ 1− Cεp . (22)

The result (22) on the stopping time from Definition 11 essentially tells us
that with high probability the solution u for t ∈ [0, T0ε

−2] is given by (15) with
a = O(1) and ψ = O(1). Later in the proof (cf. Lemma 15) we will see that ψ
is an Ornstein-Uhlenbeck process plus a quadratic function in a. The quadratic
term introduces the cubic in the amplitude equation, while the stochastic part
disappears due to averaging effects.

Remark 14 Let us finally remark without proof, that the scaling assumption on
the initial conditions is not very restrictive. Using linear stability the following
is easy to show: If u(0) = O(ε), then after some time tε = O(ln(1/ε)) the
following attractivity result holds true

u(tε) = εaε + ε2ψε with aε, ψε = O(1) .

4 Proof of the Main result

As a first step of the approximation result, we show that in (15) the modes
ψ ∈ S are essentially an OU-process plus a quadratic term in the modes a ∈ N .
Later we will use this to replace the ψ in (16). After this, we will proceed to
show that ψ is with high probability not too large.

Lemma 15 Under Assumption 1, 5, 6 and 9 let z(T ), T > 0 be the S-valued
process solving the SDE

dz = ε−2AszdT + ε−1d
∼
W s, z(0) = ψ(0). (23)

Then for ε ∈ (0, 1) and T ≤ τ∗∥∥∥∥∥ψ(T )− z(T )− ε−2

∫ T

0

eε
−2As(T−τ)Bs(a(τ), a(τ))dτ

∥∥∥∥∥
α

≤ Cε1−5κ. (24)

Proof. The mild formulation of (17) is

ψ(T ) = z(T ) +
∫ T

0

eε
−2As(T−τ)

[
Lsψ + ε−1Lsa+ ε−2Bs(a+ εψ)

]
dτ.
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Thus we derive∥∥∥ψ(T )− z(T )− ε−2

∫ T

0

eε
−2As(T−τ)Bs(a, a)dτ

∥∥∥
α

≤
∥∥∥∫ T

0

eε
−2As(T−τ)Lsψ(τ)dτ

∥∥∥
α

+ ε−1
∥∥∥∫ T

0

eε
−2As(T−τ)Lsa(τ)dτ

∥∥∥
α

+2ε−1
∥∥∥∫ T

0

eε
−2As(T−τ)Bs(a(τ), ψ(τ))dτ

∥∥∥
α

+
∥∥∥ ∫ T

0

eε
−2As(T−τ)Bs(ψ(τ), ψ(τ))dτ

∥∥∥
α

=: I1 + I2 + I3 + I4.

We now bound all four terms separately. Using Lemma 4 with 0 ≤ β < m we
obtain for the first term for all T ≤ τ∗

I1 =
∥∥∥∫ T

0

eε
−2As(T−τ)Lsψ(τ)dτ

∥∥∥
α

≤ Cε
2β
m

∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m ‖ψ(τ)‖α dτ

≤ Cε2−3κ ,

where we used the definition of τ∗ and Assumption 5. Analogously, for the
second term, we obtain for all T ≤ τ∗

I2 ≤ Cε
2β
m −1

∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m ‖Lsa(τ)‖α−β dτ ≤ Cε

1−κ .

For the third term, we obtain

I3 ≤ Cε
2β
m −1

∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m ‖Bs(a(τ), ψ(τ))‖α−βdτ

≤ Cε
2β
m −1 sup

τ∈[0,τ∗]

‖Bs(a(τ), ψ(τ))‖α−β ·
∫ T

0

e−ε
−2ωττ−

β
m dτ.

Using (B2) yields for T ≤ τ∗,

I3 ≤ Cε sup
τ∈[0,τ∗]

{‖a(τ)‖α‖ψ(τ)‖α} ·
∫ ε−2ωT

0

e−ηη−
β
m dη ≤ Cε1−4κ.

Analogously, we derive for the fourth term

I4 ≤ ε
2β
m

∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m ‖Bs(ψ(τ), ψ(τ))‖α−β dτ

≤ Cε
2β
m sup
τ∈[0,τ∗]

‖Bs(ψ(τ), ψ(τ))‖α−β ·
∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m dτ

≤ Cε2 sup
τ∈[0,τ∗]

‖ψ(τ)‖2α ·
∫ ε−2ωT

0

e−ηη−
β
m dη ≤ Cε2−6κ .
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Combining all four results yields (24). �
In the following we will show that ψ � O(ε−3κ). First, the next Lemma pro-

vides bounds for the stochastic convolution based on the well know factorisation
method. This also implies bounds for the process z defined in (23).

Lemma 16 Under Assumption 1, 5 and 9, let ‖z(0)‖α = O(1). Now for every
κ0 > 0, p > 1 and T > 0, there exists a constant C > 0 such that

E
(

sup
t∈[0,T ]

‖z(t)‖2pα
)
≤ Cε−κ0 . (25)

Proof. The mild solution of equation (23) is given by

z(t) = eε
−2Astz(0) + ε−1

∼
W ε−2As(t). (26)

The main part in the proof of a bound on z(t) is the bound on
∼
W ε−2As . For

this, we use the celebrated factorisation method introduced in [11]. Here, for γ
from Assumption 9

∼
W ε−2As(t) = Cγ

∫ t

0

eε
−2As(t−s)(t− s)γ−1y(s)ds, (27)

with y(s) :=
∫ s
0
eε

−2As(s−σ)(s− σ)−γd
∼
W s(σ). Hence, by Gaussianity

E ‖y(s)‖2pα ≤ Cp
(
E ‖y(s)‖2α

)p
Using the series expansion (cf. (11)) yields

y(s) =
∞∑

l=n+1

∫ s

0

e−ε
−2(s−σ)λl(s− σ)−γd

∼
ßl(σ)el.

From Itô-Isometry

E ‖y(s)‖2pα ≤ Cp

( ∞∑
l=n+1

l2αE
(∫ s

0

e−ε
−2(s−σ)λl(s− σ)−γd

∼
ßl(σ)

)2
)p

= Cpε
2p−4pγ

( ∞∑
l=n+1

l2α (λl)
2γ−1

∥∥∥Q 1
2 el

∥∥∥2
∫ ε2s

2λl

0

e−ττ−2γdτ

)p
,

where we used

(d
∼
ßl(σ))2 =

∞∑
k=1

α2
k〈fk, el〉2dσ = ‖Q 1

2 el‖2dσ. (28)

Integrating from 0 to T we obtain

E
∫ T

0

‖y(s)‖2pα ds ≤ Const · ε2p−4γp. (29)

Taking the Hα norm in (27) yields

‖
∼
W ε−2As(t)‖

2p
α ≤ C

(∫ t

0

e(−ε
−2ω)(t−s)(t− s)γ−1‖y(s)‖αds

)2p

.
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Hölder inequality with 1
2p + 1

2q = 1 for sufficiently large p implies

‖
∼
W ε−2As(t)‖

2p
α ≤ Const · ε4pγ−2

∫ t

0

‖y(s)‖2pα ds.

Hence, using (29) we obtain

E sup
t∈[0,T ]

‖
∼
W ε−2As(t)‖

2p
α ≤ Cε4pγ−2

∫ T

0

E‖y(s)‖2pα ds ≤ Cε2p−2.

For the bound on z take the norm in equation (26) to obtain for sufficiently
large p

E sup
t∈[0,T ]

‖z(t)‖2pα ≤ C

[
E sup
t∈[0,T ]

‖eε
−2Asz(0)‖2pα + ε−2pE sup

t∈[0,T ]

‖
∼
W ε−2As(t)‖

2p
α

]
≤ CE sup

t∈[0,T ]

e−2pε−2ωt‖z(0)‖2pα + C · ε−2p · ε2p−2

≤ Cε−2.

Using Hölder inequality we derive for all p > 1 and sufficiently large q > 2
κ0

E sup
t∈[0,T ]

‖z(t)‖2pα ≤ E
(

sup
t∈[0,T ]

‖z(t)‖2pqα

) 1
q ≤ Cε−κ0 ,

where the constant C depends among other things on T , p, and κ0. �
We now need the following simple estimate.

Lemma 17 Under Assumption 1 and 6, using τ∗ defined in Definition 11,

E

 sup
T∈[0,τ∗]

∥∥∥∥∥
∫ T

0

eε
−2As(T−τ)Bs(a (τ) , a (τ))dτ

∥∥∥∥∥
2p

α

 ≤ Cε4p−4pκ, (30)

for all ε ∈ (0, 1) .

Proof. Using Lemma 4 and (B2) from Assumption 6 we obtain for T < τ∗∥∥∥∫ T

0

eε
−2As(T−τ)Bs(a, a)dτ

∥∥∥
α
≤ Cε

2β
m

∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m ‖Bs(a, a)‖α−βdτ

≤ Cε2 sup
τ∈[0,τ∗]

‖a(τ)‖2α ·
∫ ε−2ωT

0

e−ηη−
β
m dη

≤ Cε2−2κ.

�
Now we can proceed to bound ψ. The following lemma states that ψ(T ) is

with high probability much smaller than ε−3κ, as asserted by the Definition 11
for T ≤ τ∗. Here a key fact is that in the Definition of τ∗ that a = O(ε−κ), while
ψ = O(ε−3κ), but we already proved that ψ is essentially a quadratic term in a.
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Lemma 18 Let the assumptions of Lemmas 15, 16, and 17 be true. Then for
all p ≥ 1 there is a constant C > 0 such that

E sup
T∈[0,τ∗]

‖ψ(T )‖2pα ≤ Cε−4pκ. (31)

Proof. From (24), by triangle inequality and Lemma 15, we obtain

E sup
[0,τ∗]

‖ψ‖2pα ≤ Cε2p−10pκ + CE sup
[0,τ∗]

‖z‖2pα

+ Cε−4pE sup
[0,τ∗]

∥∥∥∫ T

0

eε
−2As(T−τ)Bs(a, a)dτ

∥∥∥2p

α
.

Using Lemma 16 and 17 we finish the proof. �

Corollary 19 Under the assumptions of Lemma 18, there is for every every
p > 1 a constant C > 0 such that

P
(

sup
T∈[0,τ∗]

‖ψ(T )‖α < ε−3κ
)
≥ 1− Cε2pκ. (32)

Proof. From Chebychev inequality

P
(

sup
[0,τ∗]

‖ψ‖α < ε−3κ
)
≥ 1− ε6κp · E sup

[0,τ∗]

‖ψ‖2pα .

We finish the proof by using (31). �
Now the next step is to bound the remainder R defined in (20), and use it

in order to show the approximation result later.

Lemma 20 We assume that Assumptions 1, 5, 6, and 9 hold. Then for all
p > 1 there exists a constant C > 0 such that

E sup
T∈[0,τ∗]

‖R(T )‖pα ≤ Cεp−6pκ. (33)

Proof. For the bound on R we bound all terms in (20) separately. The
estimates rely on Condition (B2) and the inequality ‖ψ‖γ ≤ C‖ψ‖γ+δ for all γ ∈
R and δ ≥ 0. Moreover, we use that Bc(a(τ), A−1

s ψ(τ)) ∈ N (finite dimensional)
and A−1

s being a bounded linear operator on S ⊂ Hα to obtain for all times up
to the stopping time τ∗ that∥∥ε2Bc(a,A−1

s ψ)
∥∥
α
≤ Cε2

∥∥Bc(a,A−1
s ψ)

∥∥
α−β ≤ Cε

2 ‖a‖α
∥∥A−1

s ψ
∥∥
α

≤ Cε2 ‖a‖α ‖ψ‖α .

Using the definition of τ∗, we obtain

E sup
[0,τ∗]

‖ε2Bc(a,A−1
s ψ)‖pα ≤ Cε2p−4pκ. (34)

For the second term in (20) with T ≤ τ∗ ≤ T0∥∥∥2ε2
∫ T

0

Bc(Bc(a, ψ), A−1
s ψ)dτ

∥∥∥
α
≤ Cε2

∫ T

0

‖Bc(Bc(a, ψ), A−1
s ψ)‖α−βdτ

≤ Cε2T · sup
[0,τ∗]

‖Bc(a, ψ)‖α‖A−1
s ψ‖α

≤ Cε2T · sup
[0,τ∗]

‖a‖α‖ψ‖2α

≤ Cε2−7κ. (35)
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Analogously, for the third term in (20)∥∥∥ε3 ∫ T

0

Bc(Bc(ψ,ψ), A−1
s ψ)dτ

∥∥∥
α
≤ Cε3

∫ T

0

‖Bc(Bc(ψ,ψ), A−1
s ψ)‖α−βdτ

≤ Cε3T · sup
[0,τ∗]

‖ψ‖3α ≤ Cε
3−9κ. (36)

The 4th term in (20) is bounded by∥∥∥ε2 ∫ T

0

Bc(Lca,A−1
s ψ)dτ

∥∥∥
α
≤ Cε2

∫ T

0

‖Bc(Lca,A−1
s ψ)‖α−βdτ

≤ Cε2 · sup
[0,τ∗]

‖Lca‖α‖A−1
s ψ‖α

≤ Cε2 · sup
[0,τ∗]

‖a‖α‖ψ‖α

≤ Cε2−4κ, (37)

where we used ‖Lca‖α ≤ C‖Lca‖α−β , as N is finite dimensional.
For the 5th term in (20)∥∥∥2ε

∫ T

0

Bc(a,A−1
s Bs(a, ψ))dτ

∥∥∥
α
≤ Cε

∫ T

0

‖Bc(a,A−1
s Bs(a, ψ))‖α−βdτ

≤ Cε · sup
[0,τ∗]

‖a‖α‖A−1
s Bs(a, ψ)‖α

≤ Cε · sup
[0,τ∗]

‖a‖2α‖ψ‖α

≤ Cε1−5κ. (38)

The 6th term in (20) is bounded by∥∥∥ε3 ∫ T

0

Bc(Lcψ,A−1
s ψ)dτ

∥∥∥
α
≤ Cε3

∫ T

0

‖Bc(Lcψ(τ), A−1
s ψ(τ))‖α−βdτ

≤ Cε3 · sup
[0,τ∗]

‖Lcψ‖α‖A−1
s ψ)‖α

≤ Cε3 · sup
[0,τ∗]

‖ψ‖2α

≤ Cε3−6κ. (39)

The 7th term in (20) is bounded by∥∥∥ε∫ T

0

Bc(a,A−1
s Lsa)dτ

∥∥∥
α
≤ Cε

∫ T

0

‖Bc(a,A−1
s Lsa)‖α−βdτ

≤ Cε · sup
[0,τ∗]

‖a‖α‖A−1
s Lsa‖α

≤ Cε · sup
[0,τ∗]

‖a‖α‖Lsa‖α−m

≤ Cε · sup
[0,τ∗]

‖a‖2α

≤ Cε1−2κ. (40)
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The 8th term in (20) is completely analogous. We have∥∥∥ε2 ∫ T

0

Bc(a,A−1
s Lsψ)dτ

∥∥∥
α
≤ Cε2−4κ. (41)

Moreover for the 9th term in (20):∥∥∥ε∫ T

0

Bc(ψ,ψ)dτ
∥∥∥
α
≤ Cε

∫ T

0

‖Bc(ψ,ψ)‖α−βdτ ≤ Cε1−6κ . (42)

For the 10th term in (20)∥∥∥ε∫ T

0

Lcψdτ
∥∥∥
α
≤ Cε

∫ T

0

‖Lcψ‖αdτ ≤ Cε
∫ T

0

‖Lcψ‖α−βdτ

≤ Cε · sup
[0,τ∗]

‖ψ(τ)‖α ≤ Cε1−3κ. (43)

The 11th term in (20) is bounded by∥∥∥ε2 ∫ T

0

Bc(a,A−1
s Bs(ψ,ψ))dτ

∥∥∥
α
≤ Cε2

∫ T

0

‖Bc(a,A−1
s Bs(ψ,ψ))‖α−βdτ

≤ Cε2 · sup
[0,τ∗]

‖a‖α‖A−1
s Bs(ψ,ψ)‖α

≤ Cε2 sup
[0,τ∗]

‖a‖α‖ψ‖2α

≤ Cε2−7κ. (44)

For the stochastic integral ε2
∫ T
0
Bc(d

∼
Wc, A

−1
s ψ) in (20) note that the covariance

operator of Wc is Qc = PcQPc. Define

£(τ)u := Bc(u(τ), A−1
s ψ(τ)),

to obtain

E sup
T∈[0,τ∗]

∥∥∥∫ T

0

Bc(d
∼
Wc(τ), A−1

s ψ(τ))
∥∥∥p
α

= E sup
T∈[0,τ∗]

∥∥∥∫ T

0

£(τ)d
∼
Wc(τ)

∥∥∥p
α
.

By Burkholder-Davis-Gundy (cf. Theorem 1.2.4 in [18]) we derive

E sup
T∈[0,τ∗]

∥∥∥∫ T

0

£d
∼
Wc

∥∥∥p
α

= E sup
T∈[0,τ∗]

∥∥∥∫ T

0

Dα£d
∼
Wc

∥∥∥p
≤ C · E

(∫ τ∗

0

‖Dα£Q
1
2
c ‖2HSdτ

) p
2

= C · E
(∫ τ∗

0

∞∑
k=1

‖Dα£Q
1
2
c gk‖2dτ

) p
2
,

where (gk)k∈N is any orthonormal basis in H and Dα was defined in Definition
2. The space HS is the space of Hilbert-Schmidt operators on H, equipped with

13



the norm ‖Ψ‖HS = Trace[ΨΨ∗]. Hence,

E sup
T∈[0,τ∗]

∥∥∥∫ T

0

£d
∼
Wc

∥∥∥p
α
≤ C · E

(∫ τ∗

0

∞∑
k=1

‖DαBc(Q
1
2
c gk, A

−1
s ψ)‖2dτ

) p
2

= C · E
(∫ τ∗

0

∞∑
k=1

‖Bc(Q
1
2
c gk, A

−1
s ψ)︸ ︷︷ ︸

∈N

‖2αdτ
) p

2

≤ CE
( ∞∑
k=1

sup
[0,τ∗]

‖Bc(Q
1
2
c gk, A

−1
s ψ)‖2α−β

) p
2

≤ C
( ∞∑
k=1

‖Q
1
2
c gk‖2α

) p
2 · E sup

[0,τ∗]

‖A−1
s ψ(τ)‖pα

≤ Cε−3pκ, (45)

where we used the fact that the norm in HS is invariant under taking the
adjoint, and independent of the choice of the basis, in order to obtain

∞∑
k=1

‖Q
1
2
c gk‖2α = ‖DαQ

1
2
c ‖2HS = ‖Q

1
2
c D

α‖2HS =
∞∑
k=1

‖Q
1
2
c D

αek‖2

=
∞∑
k=1

〈Q
1
2
c D

αek, Q
1
2
c D

αek〉 =
∞∑
k=1

k2α〈PcQPcek, ek〉

=
n∑
k=1

k2α〈Qek, ek〉 =
n∑
k=1

k2α‖Q 1
2 ek‖2 ≤ C .

For ε
∫ T
0
Bc(a,A−1

s d
∼
W s), the last stochastic integral in (20), note that the co-

variance operator of
∼
W s is Qs = PsQPs. Similar to the previous estimate we

define
£1(τ)u := Bc(a(τ), A−1

s u).

Now by Burkholder-Davis-Gundy (cf. Theorem 1.2.4 in [18]) we obtain

E sup
T∈[0,τ∗]

∥∥∥ε ∫ T

0

Bc(a,A−1
s d

∼
W s)

∥∥∥p
α

= E sup
T∈[0,τ∗]

∥∥∥ε∫ T

0

Dα£1d
∼
W s

∥∥∥p
= C · E

(
ε2
∫ τ∗

0

‖Dα£1Q
1
2
s ‖2HSdτ

) p
2

= C · E
(
ε2
∫ τ∗

0

∞∑
k=1

‖Dα£1Q
1
2
s ek‖2dτ

) p
2

= Cεp · E
(∫ τ∗

0

∞∑
k=1

‖DαBc(a,A−1
s Q

1
2
s ek)‖2dτ

) p
2

≤ Cεp · E
( ∞∑
k=1

sup
[0,τ∗]

‖Bc(a,A−1
s Q

1
2
s ek)‖2α−β

) p
2

≤ Cεp−pκ
( ∞∑
k=1

‖A−1
s Q

1
2
s ek‖2α

) p
2

≤ Cεp−pκ, (46)
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where we used
∞∑
k=1

‖A−1
s Q

1
2
s ek‖2α = ‖DαA−1

s Q
1
2
s ‖2HS = ‖Q

1
2
s A
−1
s Dα‖2HS =

∞∑
k=1

‖Q
1
2
s A
−1
s Dαek‖2

=
∞∑
k=1

k2α

λ2
k

‖Q
1
2
s ek‖2 =

∞∑
k=1

k2α

λ2
k

〈PsQPsek, ek〉

=
∞∑

k=n+1

k2α

λ2
k

‖Q 1
2 ek‖2 ≤ C .

The last step follows from Assumption 9, as λk →∞.
As we supposed κ < 1

6 in the definition of τ∗, we can collect all term in the
equations from (34) until (46). This implies the result. �

In order to prove now the approximation result, we first need the following
a-priori estimate for solutions of the amplitude equation.

Lemma 21 Let Assumptions 1, 5, 8 and 9 hold. Define the stochastic process
b(T ) in N as the solution of

b(T ) = b(0) +
∫ T

0

Lcb(τ)dτ − 2
∫ T

0

F(b(τ))dτ +
∼
Wc(T ). (47)

If, for some p > 1
2 , the initial condition satisfies E‖b(0)‖4p−2 ≤ C and E‖b(0)‖2p ≤

C, then for all T0 > 0 there exists another constant C > 0 such that

E sup
T∈[0,T0]

‖b(T )‖pα ≤ C . (48)

We note that all norms in a finite dimensional space are equivalent. Thus
for simplicity of notation in the proof we use only the standard Eucledian norm
and suppose that b ∈ Rn.

Proof. The existence and uniqueness of solutions for equation (47) is stan-
dard. To verify the bound in (48) we will first show that there is a T -independent
constant such that

E ‖b(T )‖2p ≤ Const ∀ T > 0 . (49)

Apply Itô’s formula to ‖b(T )‖2p to derive

‖b(T )‖2p = ‖b(0)‖2p + 2p
∫ T

0

‖b(s)‖2(p−1) 〈b(s), db(s)〉

+ p

∫ T

0

‖b(s)‖2(p−1) 〈db(s), db(s)〉+ 2p(p− 1)
∫ T

0

‖b(s)‖2(p−2) 〈b(s), db(s)〉2 .

From (47), we obtain

‖b(T )‖2p = ‖b(0)‖2p + 2p
∫ T

0

‖b(s)‖2(p−1) 〈b(s), Lcb(s)〉 ds

− 4p
∫ T

0

‖b(s)‖2(p−1)〈b(s),F(b(s))〉ds+ 2p
∫ T

0

‖b(s)‖2(p−1)〈b(s), d
∼
Wc〉

+ p

∫ T

0

‖b(s)‖2(p−1)〈d
∼
Wc, d

∼
Wc〉+ 2p(p− 1)

∫ T

0

‖b(s)‖2(p−2)〈b(s), d
∼
Wc〉2.

15



Thus

‖b(T )‖2p ≤ ‖b(0)‖2p + C

∫ T

0

‖b(s)‖2(p−1)ds+ c

∫ T

0

‖b(s)‖2pds

− 4p
∫ T

0

‖b(s)‖2(p−1)〈b(s),F(b(s))〉ds

+ 2p
∫ T

0

‖b(s)‖2(p−1)〈b(s), d
∼
Wc〉, (50)

where we used

〈b(s), Lcb(s)〉
C.S
≤ ‖b(s)‖ ‖Lcb(s)‖ ≤ C ‖b(s)‖2 ,

and

〈d
∼
Wc, d

∼
Wc〉 =

n∑
k=1

n∑
l=1

dßkdßl 〈ek, el〉︸ ︷︷ ︸
=0 if k 6=l

=
n∑
k=1

n∑
l=1

α2
l 〈fl, ek〉2dt

=
n∑
l=1

‖Q 1
2 el‖2dt

Q is

≤
bdd

Cdt,

together with

〈b, d
∼
Wc〉〈b, d

∼
Wc〉 =

∞∑
k=1

∞∑
l=1

αkαl dβkdβl︸ ︷︷ ︸
=0 if k 6=l

〈b, fk〉〈b, fl〉 =
∞∑
k=1

α2
k〈b, fk〉2dt

=
∞∑
k=1

〈Q 1
2 b, fk〉2dt =

∥∥∥Q 1
2 b
∥∥∥2

dt
Q is

≤
bdd

C‖b‖2dt.

Using (6), we simplify (50) to

‖b(T )‖2p ≤ ‖b(0)‖2p + C

∫ T

0

‖b(s)‖2p−2
ds+ c

∫ T

0

‖b(s)‖2p ds

− c
∫ T

0

‖b(s)‖2p+2
ds+ 2p

∫ T

0

‖b(s)‖2(p−1) 〈b(s), d
∼
Wc〉.

If we use for any δ > 0 the inequality ‖b(T )‖q ≤ δ‖b(T )‖2p+2 + Cδ,q,p for
q ∈ (0, 2p+ 2), then we obtain

‖b(T )‖2p ≤ ‖b(0)‖2p + Cδ,q,pT − C
∫ T

0

‖b(s)‖2p+2
ds

+ 2p
∫ T

0

‖b(s)‖2(p−1)〈b(s), d
∼
Wc〉. (51)

Taking expectations on both sides yields

E ‖b(T )‖2p ≤ E ‖b(0)‖2p + Cδ,q,p − CE
∫ T

0

‖b(s)‖2p+2
ds

≤ E ‖b(0)‖2p + Cδ,q,p,
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where we used E
∫ T
0
‖b(s)‖2(p−1) 〈b(s), d

∼
Wc〉 = 0. This finishes, the proof of the

first part.
For the second part, we take first supremum and then expectation in Equa-

tion (51), and end up with

E sup
T∈[0,T0]

‖b(T )‖2p ≤ E‖b(0)‖2p + Cδ,q,pT0

+ 2pE sup
T∈[0,T0]

∫ T

0

‖b(s)‖2(p−1)〈b(s), d
∼
Wc〉.

From Burkholder-Davis-Gundy inequality

E sup
T∈[0,T0]

‖b(T )‖2p ≤ E‖b(0)‖2p + Cδ,q,pT0 + 2pE
(∫ T0

0

‖b(s)‖4(p−1)〈b(s), d
∼
Wc〉2

) 1
2

≤ C + 2pE
(∫ T0

0

‖b(s)‖4p−2ds
) 1

2 ≤ C ,

where we used Cauchy-Schwarz inequality and our first bound (cf. (49)) on b
with 2p− 1 instead of p. This finishes the proof. �

Together with the apriori bounds on solutions of the amplitude equation
and the bounds on the remainder R, we are now ready to prove the main
approximation result together with an a-priori bound on a.

Theorem 22 We assume that Assumption 1, 5, 8, 6 and 9 hold. Let b be
a solution of (47) and a as defined in (19). If the initial conditions satisfies
a(0) = b(0) and E‖a(0)‖p ≤ Cp, for all p > 1, then

E sup
T∈[0,τ∗]

‖a(T )− b(T )‖pα ≤ Cεp−6pκ, (52)

and
E sup
T∈[0,τ∗]

‖a(T )‖pα ≤ C. (53)

Proof. Define ϕ(T ) as

ϕ(T ) := a(T )−R(T ).

From (19) we obtain

ϕ(T ) = a(0)+
∫ T

0

Lc [ϕ(τ) +R(τ)] dτ−2
∫ T

0

F(ϕ(τ)+R(τ))dτ+
∼
Wc(T ). (54)

Define now h(T ) by
h(T ) := b(T )− ϕ(T ).

Subtracting (54) from (47), we obtain

h(T ) =
∫ T

0

Lch(τ)dτ −
∫ T

0

LcR(τ)dτ + 2
∫ T

0

[F(b− h+R)−F(b)](τ)dτ.

Thus
∂Th = Lch− LcR+ 2[F(b− h+R)−F(b)] . (55)
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Taking the scalar product 〈·, h〉 on both sides of (55) yields

1
2∂T ‖h‖

2 = 〈∂Th, h〉 = 〈Lch, h〉 − 〈LcR, h〉+ 2〈F(b− h+R)−F(b), h〉 .

Using Cauchy-Schwarz inequality and (7) , we obtain the following linear ordi-
nary differential inequality

∂T ‖h‖2 ≤ c ‖h‖2 + c
[
‖R‖4 + ‖b‖2 ‖R‖2 + ‖b‖4 ‖R‖2

]
.

We apply now a comparison argument to deduce

‖h(T )‖2 ≤ c
∫ T

0

ec(T−τ)
[
‖R‖4 + ‖b‖2 ‖R‖2 + ‖b‖4 ‖R‖2

]
dτ.

Thus for T ≤ τ∗

‖h(T )‖2 ≤ c
(
ecT − 1

)
sup
[0,τ∗]

[
‖R‖4 + ‖b‖2 ‖R‖2 + ‖b‖4 ‖R‖2

]
≤ cecT sup

[0,τ∗]

‖R‖2
[
‖R‖2 + ‖b‖2 + ‖b‖4

]
.

Using Young inequality, we obtain ‖b‖2 ≤ 1
2 ‖b‖

4 + 1
2 , and hence

‖h(T )‖2 ≤ cecT0 sup
[0,τ∗]

‖R‖2
[

1
2 + sup

[0,τ∗]

‖R‖2 + 3
2 sup

[0,τ∗]

‖b‖4
]
.

Now from Lemmas 20 and 21, we obtain

E sup
[0,τ∗]

‖h‖2p ≤ C
(
E sup

[0,τ∗]

‖R‖4p
) 1

2 ·
[
E
(

1
2 + sup

[0,τ∗]

‖R‖2 + 3
2 sup

[0,τ∗]

‖b‖4
)2p] 1

2

≤ Cε2p(1−6κ) ·
[
C1 + C2ε

2p(1−6κ)
] 1

2
.

Thus
E sup

[0,τ∗]

‖h‖2p ≤ Cε2p−12pκ, (56)

where we used
[
C1 + C2ε

2p(1−6κ)
] 1

2 ≤ C for ε ∈ (0, 1) in case κ < 1
6 . Thus

E sup
[0,τ∗]

‖a− b‖2p = E sup
[0,τ∗]

‖h−R‖2p

≤ 2p
[
E sup

[0,τ∗]

‖h‖2p + E sup
[0,τ∗]

‖R‖2p
]
.

Using Lemma 20 and (56), this immediately finishes the first part.
For the second part of the theorem we consider

E sup
[0,τ∗]

‖a‖2p ≤ 2pE sup
[0,τ∗]

‖a− b‖2p + 2pE sup
[0,τ∗]

‖b‖2p .

Using the first part and (48), we obtain (53) for ε ∈ (0, 1) and κ < 1
6 . �
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Corollary 23 Under the assumptions of Theorem 22, we obtain, for every p ≥
1,

P
(

sup
T∈[0,τ∗]

‖a(T )‖α < ε−κ
)
≥ 1− Cε2κp. (57)

Proof. Chebychev inequality implies

P
(

sup
[0,τ∗]

‖a‖α < ε−κ
)
≥ 1− ε2κpE

(
sup
[0,τ∗]

‖a‖2pα
)
.

Using (52), this immediately yields the result. �
Finally, we use the results previously obtained to prove the main result of

Theorem 13 for the approximation of the solution of the SPDE (1).
Proof of Theorem 13. First we verify the result for the stopping time.

For this note that

P
(
τ∗ = T0

)
≥ P

(
sup

T∈[0,τ∗]

‖a(T )‖α < ε−κ, sup
T∈[0,τ∗]

‖ψ(T )‖α < ε−3κ
)

≥ 1− P
(

sup
T∈[0,τ∗]

‖a(T )‖α ≥ ε−κ
)
− P

(
sup

T∈[0,τ∗]

‖ψ(T )‖α ≥ ε−3κ
)

Using Lemma 18 and Theorem 22 we obtain (22).
Now let us turn to the approximation result. Using (15) and triangle in-

equality, we obtain

E sup
T∈[0,τ∗]

‖u(ε−2T )− εb(T )‖pα ≤ C
[
εpE sup

[0,τ∗]

‖a− b‖pα + ε2pE sup
[0,τ∗]

‖ψ‖pα
]
.

From (31) and (52), we obtain for all q > 0

E sup
t∈[0,ε−2τ∗]

‖u(t)− εb(ε2t)‖qα ≤ Cε2q−6qκ . (58)

As

P
(

sup
t∈[0,ε−2T0]

‖u(t)− εb(ε2t)‖α > ε2−7κ
)

=P
(

sup
T∈[0,T0]

‖u(ε−2T )− εb(T )‖α > ε2−7κ, τ∗ = T0

)
+ P

(
sup

T∈[0,T0]

‖u(ε−2T )− εb(T )‖α > ε2−7κ, τ∗ < T0

)
≤P
(

sup
T∈[0,τ∗]

‖u(ε−2T )− εb(T )‖α > ε2−7κ
)

+ P(τ∗ < T0)

Using Chebychev inequality and (22), yields for all q > 0

P
(

sup
t∈[0,ε−2T0]

‖u(t)−εb(ε2t)‖α > ε2−7κ
)
≤ Cεp+ 1

ε2q−7qκ
E sup
t∈[0,ε−2τ∗]

‖u(t)−εb(ε2t)‖qα ,

and we finish the proof by using (58) and putting q = p
κ . �
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5 Application

There are numerous examples in the physics literature of equations with quadratic
nonlinearities where our theory does apply. Before we give examples, we suppose
in our applications for simplicity that W is a cylindrical Wiener process on H
with a covariance operator Q defined by Qek = α2

kek where (αk)k is a bounded
sequence of real numbers and ek are the eigenfunctions of the dominant linear
operator.

5.1 Burgers equation

One example is the Burgers equation (cf. (2)) on the interval [0, π], with Dirichlet
boundary conditions. We take

H = L2([0, π]), ek(x) =
√

2
π sin(kx) and N = span{sin}.

We note that the Assumption 1 is true, where the eigenvalues of −A = −∂2
x− 1

are λk = k2 − 1 with m = 2 and limk→∞ λk = ∞. If we fix Pc to be the
H-orthogonal projection onto N , then both Pc and Ps commute with A.

Moreover, all conditions of Assumption 6 are satisfied with

B(u, v) = 1
2∂x(uv).

Condition (B1) is true, as for u = γ sin ∈ N

PcB(u, u) = Pc
[
γ2 sin(x) cos(x)

]
= 0.

For Condition (B2) with α = 1
4 and β = 5

4 < m, we verify using Sobolev
embedding from H1/4 into L4

2‖B(u, v)‖H−1 = ‖∂x(uv)‖H−1 ≤ ‖uv‖L2

≤ C‖u‖L4‖v‖L4 ≤ C‖u‖
H

1
4
‖v‖
H

1
4
.

We derive after a straightforward calculation that

F(γ sin) =
1
12
γ3 sin .

This function is trilinear, continuous and satisfies the conditions (6) and (7),
where

〈γ1 sin,F(γ1 sin)〉 = cγ4
1 ,

and

〈F(γ1 sin +γ2 sin−γ3 sin)−F(γ1 sin), γ3 sin〉
= c{γ3

2γ3 + 3γ2γ
3
3︸ ︷︷ ︸

:=I1

+ 3γ1γ
2
2γ3 − 3γ2

2γ
2
3︸ ︷︷ ︸

:=I2

+ 3γ2
1γ2γ3︸ ︷︷ ︸
:=I3

+ 3γ1γ
3
3 − γ4

3 − 3γ2
1γ

2
3 − 6γ1γ2γ

2
3︸ ︷︷ ︸

:=I4

By Young’s inequality, we obtain

I1 ≤ 1
4γ

4
3 + cγ4

2 , I2 ≤ 1
4γ

2
1γ

2
2 , I3 ≤ γ2

3 + cγ4
1γ

2
2 and I4 ≤ − 1

4γ
4
3 + cγ2

1γ
2
2 .
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Combining all together, yields

〈F(γ1 sin +γ2 sin−γ3 sin)−F(γ1 sin), γ3 sin〉 ≤ C[γ4
2 + γ2

1γ
2
2 + γ4

1γ
2
2 + γ2

3 ].

Now our main theorem states that

u(t) = εγ(ε2t) sin +O(ε2)

where
γ′ = νγ − 1

12γ
3 + α1β̃

′

with a rescaled standard Brownian motion β̃.

5.2 Surface growth model

The second example that falls into the scope of our work is the growth of rough
amorphous surfaces. The equation is of the type

∂th = −42h− µ4h−4|∇h|2 + σ∂tW (t). (59)

Here 4 is Laplacian with respect to periodic boundary conditions on [0, 2π].
Suppose initial condition h(0) = 0 corresponding to an initially flat surface.

For this model we consider µ = 1 + ε2ν and σ = ε2. Hence

A = −42 −4, L = −ν4 and B(u, v) = −4(∂xu · ∂xv).

We take

ek(x) =


1√
π

sin(kx) if k > 0,
1√
π

cos(kx) if k < 0,
1√
2π

if k = 0

and

H = {u ∈ L2([0, 2π]) :
∫ 2π

0

udx = 0} and N = span{sin, cos}.

The eigenvalues of −A = 42+4 are λk = k4−k2 with m = 4 and limk→∞ λk =
∞. So, the Assumption 1 is true.

If we define u(t) := h(t)− h0(t)e0, then we obtain

∂tu = −42u− µ4u−4|∇u|2 + σ
∑
k 6=0

αk∂tβk(t)ek, (60)

and
h0 = σα0β0(t). (61)

If u = γ1 sin +γ−1 cos ∈ N , then

B(u, u) = 2
[
γ2
1 − γ2

−1

]
cos(2x)− 4γ1γ−1 sin(2x),

and
PcB(u, u) = 0,

21



and for α = 5
4 and β = 13

4 < m, we obtain

‖B(u, v)‖H−2 = ‖4(∂xu · ∂xv)‖H−2 ≤ c‖∂xu · ∂xv‖L2

≤ c‖u‖
H

5
4
‖v‖
H

5
4
.

Hence all conditions of Assumption 6 are satisfied. Moreover, the Assumption
8 is true, where

F(γ1 sin +γ−1 cos) = 1
6 [(γ3

1 + γ1γ
2
−1) sin +(γ3

−1 + γ−1γ
2
1) cos],

and
〈F(u), u〉 ≥ 1

6π‖u‖
4.

The amplitude equation for (60) is a system of stochastic ordinary differential
equations:

dγi = [νγi − 1
3γi(γ

2
1 + γ2

−1)]dt+ αidβi for i = ±1.
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