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Abstract

Knowledge space theory is part of psychometrics and provides a theoretical framework
for the modeling, assessment, and training of knowledge. It utilizes the idea that some
pieces of knowledge may imply others, and is based on order and set theory. We introduce
the R package DAKS for performing basic and complex operations in knowledge space
theory. This package implements three inductive item tree analysis algorithms for deriving
quasi orders from binary data, the original, corrected, and minimized corrected algorithms.
It provides functions for computing population and estimated asymptotic variances of the
diff fit measures, and for switching between test item and knowledge state representations.
Other features are a Hasse diagram drawing device, a data simulation tool based on a
finite mixture latent variable model, and a function for computing response pattern and
knowledge state frequencies. We describe the functions of the package and demonstrate
their usage by real and simulated data examples.

Keywords: knowledge space theory, psychometrics, exploratory data analysis, R.

1. Introduction

Knowledge space theory (KST) was introduced by Doignon and Falmagne (1985). Most of
the theory is presented in a monograph by Doignon and Falmagne (1999); for applications see
Albert and Lukas (1999), and for survey articles see Doignon and Falmagne (1987), Falmagne
(1989), and Falmagne, Koppen, Villano, Doignon, and Johannesen (1990). KST provides a
theoretical framework for the modeling, assessment, and training of knowledge. This theory
utilizes the idea that some pieces of knowledge may imply others. For instance, the mastery
of a test question may imply the mastery of other test questions. Implications between
pieces of knowledge are modeled in KST by order and set theoretic structures. Based on
such a framework, KST has been successfully applied for computerized adaptive assessment
and training; for example, see the ALEKS system (http://www.aleks.com/), a Web-based,

http://www.aleks.com/
http://www.jstatsoft.org/
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artificially intelligent assessment and learning system.
Deriving implications from data plays an important role in KST. Three inductive item tree
analysis (IITA) algorithms have been proposed for deriving implications from dichotomous
data: the original IITA algorithm (Schrepp 2003), and the corrected and minimized corrected
IITA algorithms (Sargin and Ünlü 2009; Ünlü and Sargin 2008a). These methods constitute
the main part of the package DAKS. Currently available software implementing the original
IITA algorithm is ITA 2.0 by Schrepp (2006). Compared to this stand-alone software that
runs only on Windows, the package DAKS is embedded in the comprehensive R comput-
ing environment and provides much more functionalities such as more flexible input/output
features.
R (R Development Core Team 2006, http://www.r-project.org/) is a language and envi-
ronment for statistical computing and graphics. It gives users the possibility to include own
software packages for handling specific tasks. Besides the three IITA algorithms, the package
DAKS implements functions for computing population and estimated asymptotic variances
of the fit measures, and for switching between test item and knowledge state representations.
Other features are a Hasse diagram drawing device, a data simulation tool, and a function
for computing response pattern and knowledge state frequencies.
In Section 2, the basic deterministic and probabilistic concepts of KST and the three IITA
algorithms are reviewed. In Section 3, the package DAKS is presented and its functions are
explained. In Section 4, the package DAKS is demonstrated using real and simulated data.

2. Knowledge space theory and data analysis methods

We briefly recapitulate the basic concepts of KST relevant for this work and the three IITA
algorithms. Details can be found in the respective references afore mentioned.

2.1. Basic concepts of knowledge space theory

Assume a set Q of m dichotomous items. Mastering an item j ∈ Q may imply mastering
another item i ∈ Q. If no response errors are made, these implications, j → i, entail that only
certain response patterns (represented by subsets of Q) are possible. Those response patterns
are called knowledge states, and the set of all knowledge states (including ∅ and Q) is called
a knowledge structure, and denoted by K. The knowledge structure K is a subset of 2Q, the
power set of Q. Implications are assumed to form a quasi order, that is, a reflexive, transitive
binary relation, $ on the item set Q. In other words, an implication j → i stands for the pair
(i, j) ∈ $, also denoted by i $ j. Quasi orders are referred to as surmise relations in KST.
A possible application is an aptitude test, where participants can solve (coded 1) or fail to
solve (coded 0) a question. In this paper, the latter interpretation is used to illustrate the
IITA algorithms.
Implications are latent and not directly observable, due to random response errors. A person
who is actually unable to solve an item, but does so, makes a lucky guess. On the other hand,
a person makes a careless error, if he fails to solve an item which he masters. A probabilistic
extension of the knowledge structure model covering random response errors is the basic local
independence model. In Section 4.2, we use that probability model for simulating the data.
A quadruple (Q,K, p, r) is called a basic local independence model (BLIM) if and only if

http://www.r-project.org/
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1. (Q,K) is a knowledge structure,

2. p is a probability distribution on K, that is, p : K → ]0, 1[ , K %→ p(K), with p(K) > 0
for any K ∈ K, and

∑
K∈K p(K) = 1,

3. r is a response function for (Q,K, p), that is, r : 2Q × K → [0, 1], (R,K) %→ r(R,K),
with r(R,K) ≥ 0 for any R ∈ 2Q and K ∈ K, and

∑
R∈2Q r(R,K) = 1 for any K ∈ K,

4. r satisfies local independence, that is,

r(R,K) =
∏

q∈K\R
βq ·

∏

q∈K∩R

(1− βq) ·
∏

q∈R\K
ηq ·

∏

q∈Q\(R∪K)

(1− ηq),

with two constants βq, ηq ∈ [0, 1[ for each q ∈ Q, respectively called careless error and
lucky guess probabilities at q.

Here, K \ R := {q ∈ Q : q ∈ K and q )∈ R}, K ∩ R := {q ∈ Q : q ∈ K and q ∈ R},
R \ K := {q ∈ Q : q ∈ R and q )∈ K}, and Q \ (R ∪ K) := {q ∈ Q : q )∈ R and q )∈ K}.
The items in K \ R, K ∩ R, R \ K, and Q \ (R ∪K) are mastered but not solved (careless
error), mastered and solved (no careless error), solved but not mastered (lucky guess), and
not solved and not mastered (no lucky guess), respectively.
Let n be the sample size. The data are the observed absolute counts of response patterns
R ⊂ Q. Let D denote the corresponding n ×m data matrix of 0/1 item scores. The data
are assumed to be multinomially distributed over 2Q. Let ρ(R) denote the (unknown) true
probability of occurrence of a response pattern R. The BLIM is based on the following
assumptions. To each knowledge state K ∈ K is attached a probability p(K) measuring the
likelihood that a respondent is in state K. For a manifest response pattern R ⊂ Q and
a latent knowledge state K ∈ K, r(R,K) specifies the conditional probability of response
pattern R for a respondent in state K. The item responses of a respondent are assumed to be
independent given the knowledge state of the respondent (local independence). The response
error, that is, careless error and lucky guess, probabilities βq and ηq are attached to the items
and do not vary with the knowledge states.
The BLIM allows expressing the occurrence probabilities ρ(R) of response patterns R by
means of the model parameters p(K) and βq, ηq:

ρ(R) =
∑

K∈K









∏

q∈K\R
βq



 ·




∏

q∈K∩R

(1− βq)





·




∏

q∈R\K
ηq



 ·




∏

q∈Q\(R∪K)

(1− ηq)








 p(K).

The BLIM is a restricted latent class model (see, e.g., Ünlü 2006). The number of independent
model parameters is 2|Q| + (|K| − 1), where |K| denotes the size of K. Since |K| generally
tends to be prohibitively large in practice, parameter estimation and model testing based on
classical maximum likelihood methodology are not feasible in general. This is why exploratory
methods such as the IITA algorithms are important in KST.
A knowledge structure closed under union and intersection is called a quasi ordinal knowledge
space. Quasi ordinal knowledge spaces and surmise relations are equivalent formulations.
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According to the Birkhoff (1937) theorem, there exists a one-to-one correspondence between
the collection of all quasi ordinal knowledge spaces K on a domain Q, and the collection of
all surmise relations $ on Q. Such a correspondence is defined through the two equivalences:

p $ q :⇐⇒ [∀K ∈ K : {q ∈ K =⇒ p ∈ K}] ,
K ∈ K :⇐⇒ [∀(p $ q) : {q ∈ K =⇒ p ∈ K}] .

This theorem is important from a practical point of view. Though the quasi ordinal knowledge
space and surmise relation models are empirically interpreted at the different levels of persons
and items, they are connected with each other mathematically, through Birkhoff’s theorem.
This theorem is realized in the package DAKS using two functions for switching between test
item and knowledge state representations (see Section 3.2).

2.2. Inductive item tree analysis algorithms

The three IITA algorithms are exploratory methods for extracting surmise relations from data.
In each algorithm, competing binary relations are generated, and a fit measure is computed
for every relation in order to find the quasi order that fits the data best. In the following, the
algorithms are briefly reviewed.
For the original IITA version (Schrepp 2003) the algorithm is:

1. For two items i, j, the value bij := |{R ∈ D|i )∈ R ∧ j ∈ R}| is the number of coun-
terexamples, that is, the number of observed response patterns in the data matrix D
contradicting j → i. Based on these values, binary relations $L for L = 0, ..., n are
defined. Let i $0 j :⇔ bij = 0. The relation $0 is a quasi order. Construct inductively:
Assume $L is transitive. Define S(0)

L+1 := {(i, j)|bij ≤ L + 1 ∧ i )$L j}. From S(0)
L+1, ex-

clude those item pairs that cause an intransitivity in $L∪S(0)
L+1; the remaining pairs are

referred to as S(1)
L+1. This process continues iteratively, k times, until no intransitivity

is caused. The generated relation $L+1 :=$L∪S(k)
L+1 is a quasi order by construction.

2. The coefficient diffo($L , D) is used to assess the fit of each quasi order $L to the binary
data matrix D (see below).

3. Choose the quasi order with minimum diffo($L , D) value.

For the corrected and minimized corrected IITA versions (Sargin and Ünlü 2009) the algo-
rithms are:

1. The generation of the selection set of quasi orders is the same as in the original IITA
version.

2. The coefficients diffc($L , D) and diffmc($L , D) are used to assess the fit of each quasi
order $L to the binary data matrix D (see below), respectively.

3. Choose the quasi orders with minimum diffc($L , D) and diffmc($L , D) values, respec-
tively.
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The diff fit measures diffo , diffc , and diffmc are defined by

diff ($, D) =
1

m(m− 1)
∑

i$=j

(bij − b∗ij)
2,

where corresponding estimates b∗ij are used. These estimates are computed based on a single
error probability.
In the original IITA version this single error rate is computed by

γ! =
1

|$ |−m

∑

i&j,i$=j

bij

pjn
.

If (i, j) ∈ $, the expected number of counterexamples is estimated by b∗ij = γ!pjn. If (i, j) )∈
$, the estimate b∗ij = (1− pi)pjn(1− γ!) is used.
Better estimators than those used in the original algorithm are proposed by Sargin and
Ünlü (2009). In the corrected IITA version the same γ! and b∗ij = γ!pjn for (i, j) ∈ $
are used. The choice for b∗ij in the case of (i, j) )∈ $ now depends on whether (j, i) )∈ $ or
(j, i) ∈ $. If (i, j) )∈ $ and (j, i) )∈ $, set b∗ij = (1 − pi)pjn. If (i, j) )∈ $ and (j, i) ∈ $, set
b∗ij = (pj − pi + γ!pi)n.

In the minimized corrected IITA version the corrected estimators b∗ij as in the diffc coeffi-
cient are used. Minimizing the diff expression as a function of the error probability γ! gives
γ! = −x1+x2

x3+x4
, where

x1 =
∑

i$&j ∧ j&i

−2bijpin + 2pipjn
2 − 2p2

i n
2,

x2 =
∑

i&j

−2bijpjn,

x3 =
∑

i$&j ∧ j&i

2p2
i n

2,

x4 =
∑

i&j

2p2
jn

2.

The idea is to use the corrected estimators and to optimize the fit criterion. The fit measure
then favors quasi orders that lead to smallest minimum discrepancies, or equivalently, largest
maximum matches, between the observed and expected numbers of counterexamples.
In Ünlü and Sargin (2008a), we introduce the population analogs of the diff fit measures,
interpret the coefficients as maximum likelihood estimators (MLEs) for the corresponding
population values, and show for these estimators the quality properties asymptotic efficiency,
asymptotic normality, asymptotic unbiasedness, and consistency. This is briefly reviewed.
Consider the transformed sample diff coefficients diff := diff /n2. The division is necessary
to cancel out sample size n in replacements of sample quantities with population quantities.
Given the multinomial probability distribution on the set of all response patterns, make the
following replacements in the arguments, bij and pi, of the sample diff coefficients:

bij

n
→ P (i = 0, j = 1) =

∑

R∈2Q,i$∈R ∧ j∈R

ρ(R),
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pi → P (i = 1) =
∑

R∈2Q,i∈R

ρ(R).

This gives three population diff coefficients corresponding to the sample diff coefficients.
The sample diff coefficients are the obvious sample analogs of these population fit measures.
They are reobtained by replacing the arguments ρ(R) of the population diff measures with
the MLEs n(R)/n of the multinomial distribution, where n(R) are the absolute counts of
response patterns R ∈ 2Q. According to the invariance property of MLEs (e.g., Casella and
Berger 2002), the sample diff coefficients are the MLEs for the corresponding population diff
coefficients.
The MLE for the multinomial distribution fulfills required regularity conditions and hence is
asymptotically efficient (e.g., Casella and Berger 2002). The population diff coefficients are
continuous functions of the multinomial cell probabilities ρ(R). Therefore the sample diff
coefficients are asymptotically efficient, asymptotically normal, asymptotically unbiased, and
consistent estimators for the population values.
The functions of the package DAKS realizing the IITA algorithms in sample and population
quantities are described in Section 3.2, and their usage by real and simulated data examples
is demonstrated in Section 4.

3. Implementation in the package DAKS

In this section, we describe how surmise relations and knowledge structures are implemented,
and discuss the functions of this package.

3.1. Surmise relations and knowledge structures in DAKS

A quasi order is a set of tuples, where each tuple is a pair (i, j) representing the implication
j → i. This is implemented in DAKS using the package sets (developed by David Meyer
and Kurt Hornik). The latter, in combination with the package relations (developed by Kurt
Hornik and David Meyer), are utilized in DAKS, because they provide useful functions for
operating with surmise relations and knowledge structures. The following R output shows an
example quasi order:

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

or

{(1L, 2L), (1L, 3L), (1L, 4L), (2L, 3L), (2L, 4L), (3L, 4L)}

This code is to be read: item 1 is implied by items 2, 3, and 4, item 2 is implied by items 3
and 4, and item 3 is implied by item 4. This gives the chain 4→ 3 → 2 → 1. Note that in the
second code line an item i is represented by iL. This transformation takes place internally in
the packages sets or relations, but it does not have any influence. Both representations are
equal:

R> 1 == 1L
[1] TRUE
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Note that reflexive pairs are not shown in order to reveal implications between different items
only, and to save computing time. Surmise relations always contain all reflexive pairs, and
these are included whenever required by the package DAKS.
A knowledge structure is implemented as a binary matrix, where rows and columns stand
for knowledge states and items, respectively. Each entry of the matrix, 1 or 0, represents
mastering or not mastering an item in a corresponding state. The following R output shows
the knowledge structure corresponding to the above quasi order:

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 1 0 0 0
[3,] 1 1 0 0
[4,] 1 1 1 0
[5,] 1 1 1 1

3.2. Functions of the package DAKS

The two functions for switching between test item and knowledge state representations (cf.
Birkhoff’s theorem in Section 2.1) are:

state2imp(P)
imp2state(imp, items)

The first function transforms a set of knowledge states (ought to be a quasi ordinal knowledge
space) P to the corresponding set of implications (the surmise relation). Note that for any set
of knowledge states the returned binary relation is a surmise relation. The number of items
of the domain taken as basis for P is determined from the number of columns of the matrix P.
The second function transforms a set of implications (ought to be a surmise relation) imp to
the corresponding set of knowledge states (the quasi ordinal knowledge space). Note that for
any set of implications the returned knowledge structure is a quasi ordinal knowledge space.
The number of items of the domain taken as basis for imp, the argument items, must be
specified explicitly; because some of the items may not be comparable with any other.
A function to compute the absolute frequencies of the occurring response patterns, and op-
tionally, the absolute frequencies of a collection of knowledge states in a dataset is:

pattern(dataset, n = 5, P = NULL)

Argument n refers to response patterns. If n is specified, the response patterns with the n
highest frequencies are returned (along with their frequencies). If pattern is called without
specifying n explicitly, by default n = 5 is used. If n is larger than the number of different
response patterns in the dataset, n is set the number of different response patterns. The
optional matrix P gives the knowledge states to be used; pattern then additionally returns in-
formation about how often the knowledge states occur in the dataset. The default P = NULL
corresponds to no knowledge states being specified; pattern then only returns information
about response patterns (as described previously).
A data simulation tool based on the BLIM (Section 2.1) is included in the package:
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simu(items, size, ce, lg, imp = NULL, delta)

The number of response patterns to be simulated (the sample size) is specified by size, the
careless error and lucky guess noise parameters are given by ce and lg, respectively. The
single careless error ce and lucky guess lg probabilities are assumed to be constant over
all items. (The general form of the BLIM allows for varying careless error and lucky guess
rates from item to item, which is not identifiable in general, however.) The argument items
gives the number of items of the domain taken as basis for the quasi order underlying the
simulation. A specific underlying quasi order can be passed manually via imp, or it can be
generated randomly. If a quasi order is specified manually, Birkhoff’s theorem (Section 2.1)
is used to derive the corresponding quasi ordinal knowledge space. The latter is equipped
with the error probabilities ce and lg to give the BLIM that is used for simulating the data.
If imp = NULL, the underlying quasi order is generated randomly as follows. All reflexive
pairs are added to the relation. The constant delta is utilized as the probability for adding
each of the remaining non-reflexive item pairs to the relation. The transitive closure of this
relation is computed, and the resulting quasi order then is the surmise relation underlying
the simulation.
This simulation tool returns the simulated binary dataset, and the surmise relation and its
corresponding quasi ordinal knowledge space used for simulating the data. The probability
specified by delta does not necessarily correspond to the portion of implications added to
the randomly generated quasi order, because the transitive closure is formed. In Sargin and
Ünlü (2009), a normal sampling scheme for drawing delta values is proposed. This sampling
scheme provides far better representative samples of quasi orders than simply drawing delta
values uniformly from the unit interval. (Surmise relations or knowledge structures, and the
representativeness of samples of these, are very important in simulation studies investigating
IITA type data analysis methods. The IITA algorithms are sensitive to the underlying surmise
relation that is used, and to test their performances objectively a representative sample of
the collection of all quasi orders is needed.)
Another basic function of the package DAKS is a Hasse diagram drawing device:

hasse(imp, items)

This function plots the Hasse diagram of a surmise relation imp (more precisely, of the
corresponding quotient set) using the package Rgraphviz from Bioconductor (http://www.
bioconductor.org/), which is an interface between R and Graphviz (Graph Visualization
Software, http://graphviz.org/). Users must install Graphviz on their computers to plot
such a diagram. The argument items gives the number of items of the domain taken as
basis for imp. The function hasse cannot plot equally informative items. (Two items i and
j are called equally informative if and only if j → i and i → j.) Only one, the one with
the smallest index, of the equally informative items is drawn, and the equally informative
items are returned (as tuples) in a list. The plotted Hasse diagram uses as item labels iL, a
transformation that takes place internally in the packages sets or relations (cf. Section 3.1).
This may look somewhat unesthetic.
Two auxiliary functions for implementing the IITA algorithms are:

ob_counter(dataset)
ind_gen(b)

http://www.bioconductor.org/
http://www.bioconductor.org/
http://graphviz.org/
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The first function computes from a dataset for all item pairs the corresponding numbers of
observed counterexamples. These values are crucial in the formulations of the IITA algorithms
(Section 2.2). This function returns a matrix of the numbers of observed counterexamples for
all pairs of items. The second function can be used to generate inductively from a matrix b
of the numbers of observed counterexamples a set of quasi orders. The inductive generation
of the selection set of competing quasi orders is a prime component of the IITA algorithms
(Section 2.2). This function returns a list of the inductively generated surmise relations.
The main function iita (see below) calls ob_counter for computation of the numbers of
counterexamples, and ind_gen for the inductive generation procedure.
Three complex functions of the package DAKS realizing the original, corrected, and minimized
corrected IITA algorithms (Section 2.2) are, in respective order:

orig_iita(dataset, A)
corr_iita(dataset, A)
mini_iita(dataset, A)

These functions perform the respective IITA procedures using the dataset and the list A of
prespecified competing quasi orders. The set of competing quasi orders must be passed via
the argument A manually, so any selection set of surmise relations can be used. The function
iita (see below) automatically generates a selection set from the data using the inductive
generation procedure implemented in ind_gen (see above). The latter approach (using iita)
is common so far, in KST, where the inductive data analysis methods have been utilized for
exploratory derivations of quasi orders from the data. The functions orig_iita, corr_iita,
and mini_iita, on the other hand, can be used to select among surmise relations for instance
obtained from querying experts or from competing psychological theories. All three functions
return a vector of the diff values corresponding to the competing quasi orders in A.
The function that can be used to perform one of the three IITA procedures selectively is:

iita(dataset, v)

Whereas for the above three functions selection sets of competing quasi orders have to be
passed via an argument manually, this function automatically generates a selection set from
the dataset using the inductive generation procedure implemented in ind_gen (see above).
The parameter v specifies the IITA algorithm to be performed; v = 1 (minimized corrected),
v = 2 (corrected), and v = 3 (original). Compared to the above three functions, this function
returns, besides the diff values corresponding to the inductively generated quasi orders, the
derived solution quasi order (with minimum diff value) under the selected algorithm and its
index in the selection set. (In case of ties in minimum diff value, a quasi order with smallest
size is returned.)
The package DAKS also contains functions which provide the basis for statistical inference
methodology (cf. Section 5). The population analog of the previous function that can be used
to perform one of the three IITA algorithms in population quantities (in a known population)
selectively is:

pop_iita(imp, ce, lg, items, dataset = NULL, v)

Compared to iita, this function implements the three IITA algorithms in population, not
sample, quantities; v = 1 (minimized corrected), v = 2 (corrected), and v = 3 (original).
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The argument imp specifies a surmise relation, and items gives the number of items of the
domain taken as basis for imp. The knowledge structure corresponding to imp is equipped
with the careless error ce and lucky guess lg probabilities and the uniform distribution on the
knowledge states, and is the known BLIM underlying the population. If dataset = NULL, a
set of competing quasi orders is constructed based on a population analog of the inductive
generation procedure implemented in sample quantities in ind_gen. If the dataset is specified
explicitly, that data are used to generate the set of competing quasi orders based on the sample
version of the inductive generation procedure. This function returns the population diff values
corresponding to the inductively generated quasi orders, all possible response patterns with
their population probabilities of occurrence, the population γ! rates corresponding to the
inductively generated quasi orders, and the inductively generated selection set (cf. Section 2).
The function for computing population (exact) asymptotic variances of the MLEs diff (Section
2.2) is:

pop_variance(pop_matrix, imp, error_pop, v)

Subject to the selected version to be performed in population quantities, v = 1 (minimized
corrected) and v = 2 (corrected), this function computes the population asymptotic variance
of the MLE diff , which here is formulated for the relation and error rate specified in imp
and error_pop, respectively. This population variance is obtained using the delta method
(e.g., Casella and Berger 2002), which requires calculating the Jacobian matrix of the diff
coefficient and the inverse of the expected Fisher information matrix for the multinomial
distribution. The cell probabilities of that distribution are specified in pop_matrix, a matrix
of all possible response patterns and their population occurrence probabilities. Note that the
arguments pop_matrix and error_pop can be obtained from a call to the function pop_iita
(see above), and that the current version of the package DAKS does not support computing
population asymptotic variances for the original IITA algorithm. This function returns a
single value, the population asymptotic variance of the MLE diff .
The function for computing estimated asymptotic variances of the MLEs diff is:

variance(dataset, imp, v)

Subject to the selected version to be performed in sample quantities, v = 1 (minimized cor-
rected) and v = 2 (corrected), this function computes a consistent estimator for the popu-
lation asymptotic variance of the MLE diff , which here is formulated for the relation and
the data specified in imp and dataset, respectively. This estimated asymptotic variance is
obtained using the delta method (cf. pop_variance). In the expression for the exact asymp-
totic variance (expressed in Jacobian matrix and inverse expected Fisher information), the
true parameter vector of the multinomial probabilities is estimated by its MLE of the relative
frequencies of the response patterns. Note that the two types of estimators for the population
asymptotic variances of the diff coefficients obtained using the expected Fisher information
matrix and the observed Fisher information matrix yield the same result, in the case of the
multinomial distribution. Since computation based on the expected Fisher information matrix
is faster, this is implemented in variance. Note that the current version of the package DAKS
does not support computing estimated asymptotic variances for the original IITA algorithm.
This function returns the estimated asymptotic variance of the MLE diff .
Table 1 summarizes all functions of the package DAKS.
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Table 1: Summary of the DAKS functions

Function Short description
corr_iita Computing diff values for the corrected IITA algorithm
hasse Plotting a Hasse diagram
iita Computing sample diff values and the best fitting quasi order

for one of the three IITA algorithms selectively
imp2state Transforming from implications to knowledge states
ind_gen Inductively generating a selection set
mini_iita Computing diff values for the minimized corrected IITA algorithm
ob_counter Computing numbers of observed counterexamples
orig_iita Computing diff values for the original IITA algorithm
pattern Computing frequencies of response patterns and knowledge states
pop_iita Computing population diff values and the selection set

for one of the three IITA algorithms selectively
pop_variance Computing population asymptotic variances
simu Data simulation tool
state2imp Transforming from knowledge states to implications
variance Computing estimated asymptotic variances

4. Demonstrating the package DAKS

4.1. An example with real data

We exemplify usage of the package DAKS with part of the 2003 Programme for International
Student Assessment (PISA; http://www.pisa.oecd.org/) data. The dataset consists of
the item responses by 340 German students on a 5-item dichotomously scored mathematical
literacy test. This is the pisa dataset accompanying the package DAKS. This dataset resulted
from dichotomizing the original multiple-choice or open format test data. The scores are 1
or 0 for a correct or incorrect response, respectively; there are no missing values in the data.
Wordings of the test items used in the assessment are not known (not publicly available).
We first get a general idea of the data.

R> head(pisa)

a b c d e
1 1 0 0 0 0
2 0 0 0 0 0
3 1 0 0 0 0
4 1 0 0 0 0
5 0 1 0 0 0
6 1 1 0 0 0

http://www.pisa.oecd.org/


12 DAKS: An R Package for Data Analysis Methods in Knowledge Space Theory

R> pat <- pattern(pisa)

R> pat

$response.patterns

11100 11000 10000 11110 00000
67 61 41 40 20

$states
NULL

R> sum(pat$response.patterns)

[1] 229

We see that the five most frequent response patterns make up for 229 out of the 340 patterns.
These are the Guttman patterns of the chain d → c → b → a that can likely be assumed to
underlie the data. This is also indicated by the following code.

R> apply(pisa, 2, table)

a b c d e
0 51 91 167 261 293
1 289 249 173 79 47

From items a to e, the sample item popularities (proportions-correct) are well-differentiated
and strictly decreasing. For instance, item a is most popular (most frequently solved), item e
is least popular (least frequently solved). Since we do not know whether the underlying quasi
order may or may not be a chain, we next perform IITA analyses of the PISA data.
We start with running the three IITA algorithms on these data. The results are assigned to
variables for later analyses.

R> mini <- iita(pisa, v = 1)

R> corr <- iita(pisa, v = 2)

R> orig <- iita(pisa, v = 3)

R> orig

$diff
[1] 82.15616 80.59994 78.63000 74.66784 134.34482 122.66421
[7] 150.88919 141.51590 133.26889 384.96981 822.49495 1853.68245
[13] 3192.94612

$implications
{(1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L)}

$selection.set.index
[1] 4
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R> corr

$diff
[1] 143.53305 137.40759 132.21403 115.38470 121.09900 113.42260
[7] 86.06609 40.93807 33.31853 179.64510 361.25716 1161.38396
[13] 3192.94612

$implications
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L), (2L, 4L), (2L, 5L),
(3L, 4L), (3L, 5L)}

$selection.set.index
[1] 9

R> mini

$diff
[1] 143.53305 137.39922 132.13348 115.37663 120.16808 110.48656
[7] 82.54234 38.97623 27.56613 107.39041 242.37313 1079.05432
[13] 2887.72089

$implications
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L), (2L, 4L), (2L, 5L),
(3L, 4L), (3L, 5L)}

$selection.set.index
[1] 9

We additionally present the inductively generated selection set of competing quasi orders,
because that helps investigating the results obtained from applying the IITA algorithms.
(Note that this is practicable when the selection set or the number of items are not too large.)

R> ind_gen(ob_counter(pisa))

[[1]]
{(1L, 5L)}

[[2]]
{(1L, 4L), (1L, 5L)}

[[3]]
{(1L, 4L), (1L, 5L), (2L, 5L)}

[[4]]
{(1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L)}

[[5]]
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{(1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L), (3L, 5L)}

[[6]]
{(1L, 3L), (1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L), (3L, 5L)}

[[7]]
{(1L, 3L), (1L, 4L), (1L, 5L), (2L, 4L), (2L, 5L), (3L, 4L), (3L, 5L)}

[[8]]
{(1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L), (2L, 4L), (2L, 5L), (3L, 4L),
(3L, 5L)}

[[9]]
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L), (2L, 4L), (2L, 5L),
(3L, 4L), (3L, 5L)}

[[10]]
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L), (2L, 4L), (2L, 5L),
(3L, 4L), (3L, 5L), (4L, 5L)}

[[11]]
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 1L), (2L, 3L), (2L, 4L),
(2L, 5L), (3L, 4L), (3L, 5L), (4L, 5L), (5L, 4L)}

[[12]]
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 1L), (2L, 3L), (2L, 4L),
(2L, 5L), (3L, 4L), (3L, 5L), (4L, 3L), (4L, 5L), (5L, 3L), (5L, 4L)}

[[13]]
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 1L), (2L, 3L), (2L, 4L),
(2L, 5L), (3L, 1L), (3L, 2L), (3L, 4L), (3L, 5L), (4L, 1L), (4L, 2L),
(4L, 3L), (4L, 5L), (5L, 1L), (5L, 2L), (5L, 3L), (5L, 4L)}

The quasi order with tenth index in the selection set is a chain. The neighboring quasi
orders with indices eight, nine, and eleven are very close to a chain. Therefore we expect the
underlying quasi order to be one of these four, most likely. (Note that inspecting the selection
set for specific quasi orders can be useful in general, because the selection set only contains a
small fraction of all possible quasi orders.)
The corrected and minimized corrected IITA algorithms yield the same solution quasi order,
which is close to a chain. The original IITA algorithm selects a quasi order which is clearly
different from that returned by the other two algorithms, and which is far from being a chain.
This is also reflected by the corresponding diff values. They are similar for the corrected and
minimized corrected IITA algorithms, and considerably smaller than the diff value obtained
for the original algorithm. There is evidence that the original IITA algorithm fails in revealing
underlying“close-to-chain”quasi orders. Furthermore, fitting the classical Rasch model to this
dataset corroborates the chain hierarchy among the five mathematical literacy test items.
For details on comparing the different data analysis methods and psychometric approaches,



Journal of Statistical Software 15

see Sargin and Ünlü (2009) and Ünlü and Sargin (2008a). The present paper rather is on
introducing the R package DAKS.
One can use functions of the package sets, for example when comparing the solution quasi
orders obtained from different IITA algorithms. The symmetric set difference between the
solutions of the original and minimized corrected IITA algorithms can be computed by:

R> set_symdiff(orig$implications, mini$implications)

{(1L, 2L), (1L, 3L), (2L, 3L), (3L, 4L), (3L, 5L)}

The symmetric set difference gives the implications in which the two relations differ. In the
example here we see that all implications of the original IITA algorithm solution are contained
in the quasi order derived using the minimized corrected IITA algorithm. This is seen by:

R> set_is_proper_subset(orig$implications, mini$implications)

[1] TRUE

Of course, other functions of the package sets can be helpful and used as well.
Graphics are convenient to use and they can present information effectively. The graphic that
is used throughout KST is the Hasse diagram. It is utilized for presenting information, not
for exploring data. For approaches to graphically exploring KST data based on mosaic plots,
see Ünlü and Sargin (2008b). A Hasse diagram can be plotted by:

R> hasse(mini$implications, 5)

list()

This gives the Hasse diagram of the solution quasi order of the minimized corrected algorithm
shown in Figure 1. Note that the returned list of equally informative items is empty; therefore
the diagram faithfully presents the quasi order. The plotted Hasse diagram uses as item labels
iL, a transformation that takes place internally in the packages sets or relations (cf. Section
3.2).

4.2. An example with simulated data

To illustrate the other functions of the package DAKS, we start with simulating a dataset.
Note that every simulation is individual, in the sense that different results are obtained from
simulation to simulation.

R> ex_data <- simu(9, 1500, 0.1, 0.1, delta = 0.15)

The randomly generated quasi order underlying the simulated data is:
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1L

2L

3L

4L 5L

Figure 1: Hasse diagram of the quasi order obtained for the PISA dataset under the minimized
corrected IITA algorithm.

R> ex_data$implications

{(1L, 6L), (3L, 1L), (3L, 2L), (3L, 6L), (3L, 7L), (5L, 1L), (5L, 2L),
(5L, 3L), (5L, 6L), (5L, 7L), (7L, 2L), (7L, 6L), (9L, 2L), (9L, 6L),
(9L, 7L)}

In the following, analyses are performed under the corrected IITA algorithm only; under the
other two algorithms the analyses are analogous. We run the corrected IITA procedure on
the simulated dataset.

R> ex_corr <- iita(ex_data$dataset, v = 2)

R> ex_corr

$diff
[1] 3479.674 3450.734 3355.514 3258.804 3157.678 3148.529 3142.437
[8] 2680.915 2581.564 2177.801 1742.127 1333.645 1244.936 1203.878
[15] 1006.985 1027.378 1046.564 1446.673 1393.974 1736.810 2297.276
[22] 2725.820 2740.723 3519.965 4149.371 4212.690 4278.585 4361.433
[29] 4470.793 4603.257 5193.763 4645.001 4868.617 6187.025 7571.689
[36] 7287.076 8081.097 8215.758 9854.952 26521.740

$implications
{(1L, 6L), (3L, 1L), (3L, 2L), (3L, 6L), (3L, 7L), (5L, 1L), (5L, 2L),
(5L, 3L), (5L, 6L), (5L, 7L), (7L, 2L), (7L, 6L), (9L, 2L), (9L, 6L),
(9L, 7L)}
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$selection.set.index
[1] 12

The quasi order obtained by data analysis is the true quasi order underlying the data. (This
of course may not always be the case.)

R> ex_corr$implications == ex_data$implications

[1] TRUE

Next we discuss the functions which provide the basis for statistical inference methodology.
The corrected IITA algorithm can be performed in population quantities, yielding information
about the population diff values, population occurrence probabilities of response patterns,
population error rates, and the inductively generated selection set, by:

R> pop <- pop_iita(ex_data$implications, 0.1, 0.1, 9,

R+ dataset = ex_data$dataset, v = 2)

R> attributes(pop)

$names
[1] "pop.diff" "pop.matrix" "error.pop" "selection.set"

To compare sample with population diff values, the sample diff coefficient is transformed to
become the MLE for the corresponding population diff coefficient (see Section 2.2):

R> ex_corr$diff / 1500^2

[1] 0.0015465217 0.0015336597 0.0014913396 0.0014483572 0.0014034125
[6] 0.0013993461 0.0013966387 0.0011915178 0.0011473617 0.0009679115
[11] 0.0007742786 0.0005927310 0.0005533049 0.0005350570 0.0004475487
[16] 0.0004566123 0.0004651397 0.0006429659 0.0006195440 0.0007719157
[21] 0.0010210118 0.0012114755 0.0012180989 0.0015644287 0.0018441648
[26] 0.0018723067 0.0019015935 0.0019384148 0.0019870190 0.0020458919
[31] 0.0023083390 0.0020644449 0.0021638297 0.0027497888 0.0033651952
[36] 0.0032387004 0.0035915989 0.0036514480 0.0043799785 0.0117874400

R> pop$pop.diff

[1] 0.0014216299 0.0014110724 0.0013702314 0.0013284010 0.0012920097
[6] 0.0012777244 0.0012626287 0.0010928491 0.0010563888 0.0008856327
[11] 0.0007148498 0.0005739715 0.0005368436 0.0004987572 0.0004313205
[16] 0.0004421496 0.0004514529 0.0006341078 0.0006279407 0.0007549621
[21] 0.0009297940 0.0011541921 0.0011667470 0.0014536691 0.0016738781
[26] 0.0017241115 0.0017698818 0.0018117440 0.0018501661 0.0018690699
[31] 0.0021182519 0.0018807877 0.0019219018 0.0024877391 0.0029851230
[36] 0.0028642365 0.0031317869 0.0031681007 0.0037913672 0.0099925625
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The respective sample and population values are quite similar, already for a sample size of
1500. This is obvious given the fact that the sample diff values converge in probability (and
expectation) to the population diff values (Section 2.2).
The quasi order with minimum population diff value can be queried:

R> pop$selection.set[[which(min(pop$pop.diff) == pop$pop.diff)]]

{(1L, 6L), (3L, 1L), (3L, 2L), (3L, 6L), (3L, 7L), (5L, 1L), (5L, 2L),
(5L, 3L), (5L, 6L), (5L, 7L), (7L, 2L), (7L, 6L), (9L, 2L), (9L, 6L),
(9L, 7L)}

This quasi order is the true quasi order underlying the simulated dataset. Of course this may
not always be the case, especially for smaller sample sizes or higher response error rates. The
population analogs are useful for comparing the IITA algorithms (Ünlü and Sargin 2008a).
As mentioned in Section 2.2, the MLEs diff are asymptotically normal. Large sample nor-
mality with associated standard errors can be used to construct confidence intervals for the
population values of and to test hypotheses about the diff coefficients. For instance, one could
test whether one of two quasi orders has a significantly smaller diff value in the population.
The quasi orders could, for example, be derived from querying experts. In order to do such
a test, the asymptotic variances need to be estimated. Population asymptotic variances and
consistent estimators of the latter can be computed using the delta method (cf. Section 3.2).
The estimated asymptotic variance can be computed by:

R> var_sample <- variance(ex_data$dataset, ex_data$implications, v = 2)

R> var_sample

[1] 5.866841e-06

R> sqrt(var_sample)

[1] 0.002422156

The corresponding population asymptotic variance is:

R> pop_variance <- pop_variance(pop$pop.matrix, pop$selection.set

R+ [[which(min(pop$pop.diff) == pop$pop.diff)]], pop$error.pop

R+ [which(min(pop$pop.diff) == pop$pop.diff)], v = 2)

R> pop_variance

[1] 4.176084e-06

R> sqrt(pop_variance)

[1] 0.002043547
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The sample and population values are quite similar. The sample variance is a consistent
estimator for the population variance (convergence in probability).

5. Conclusion

This paper has introduced the R package DAKS. This package contains several basic functions
for KST, and it primarily implements the IITA methods for data analysis in KST. Functions
for computing various population values and for estimating asymptotic variances are also
contained. These tools provide the basis for statistical inference methodology and for further
analyses in KST. We have described the functions of the package DAKS and demonstrated
their usage by real and simulated data examples.
In future research, we plan to implement other fit measures such as the di (discrepancy)
index (Kambouri, Koppen, Villano, and Falmagne 1994) or the CA (correlational agreement)
coefficient (van Leeuwe 1974). Functions for computing confidence intervals and for perform-
ing hypotheses tests for the diff (and other) fit measures will also be implemented. The
present functions of the package are to be extended; for example, the function hasse should
incorporate drawing diagrams for knowledge structures, or the simulation tool could allow for
individual response error probabilities for each item.
By contributing the R package DAKS we hope to have established a basis for computational
work in the so far combinatorial theory of knowledge spaces. Implementing KST procedures in
R can help to bring together KST and such other psychometric approaches as item response
theory (IRT). A number of R packages are available for IRT; for instance, eRm, ltm, or
mokken. KST and IRT are split directions of psychological test theories and are currently
compared at a theoretical level (Stefanutti 2006; Stefanutti and Robusto 2009; Ünlü 2007).
Using R as an interface between these theories may prove valuable in comparing them at a
computational level.
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