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OPTIMALITY OF LOCAL MULTILEVEL METHODS ON ADAPTIVELY
REFINED MESHES FOR ELLIPTIC BOUNDARY VALUE PROBLEMS

XUEJUN XU∗ , HUANGXIN CHEN∗, AND R.H.W. HOPPE†

Abstract. A local multilevel product algorithm and its additive version are analyzed for linear systems arising
from the application of adaptive finite element methods to second order elliptic boundary value problems. The
abstract Schwarz theory is applied to verify uniform convergence of local multilevel methods featuring Jacobi and
Gauss-Seidel smoothing only on local nodes. By this abstract theory, convergence estimates can be further derived
for the hierarchical basis multigrid method and the hierarchical basis preconditioning method on locally refined
meshes, where local smoothing is performed only on new nodes. Numerical experiments confirm the optimality of
the suggested algorithms.

1. Introduction. Multigrid or multilevel methods belong to the most efficient methods to
solve large linear systems arising from the discretization of elliptic boundary value problems by
finite element methods. The convergence properties of multigrid methods for conforming finite
elements have been studied by many authors (cf., e.g., [9], [10], [11], [8], [14], [19], [24], [32]). The
hierarchical basis multilevel method ([34], [35]) and the hierarchical basis multigrid method [6]
have been developed by H. Yserentant et al. for finite element methods on quasi-uniform meshes.
In particular, using the notions of space decomposition and subspace correction, a unified theory
has been established in [32] for a general class of iterative algorithms such as multigrid methods,
overlapping domain decomposition methods, and hierarchical basis methods.

In this paper, we study local multilevel methods for adaptive finite element methods (AFEM)
applied to second order elliptic boundary value problems. Mesh adaptivity based on a posteriori
error estimators has become a powerful tool for solving partial differential equations. It is known
that the convergence property of AFEM with the newest vertex bisection algorithm is optimal in
the sense that the finite element discretization error is proportional to N−1/2 in the energy norm,
where N is the number of degrees of freedom on the underlying mesh (cf., e.g., [7], [16], [22], [28]).
Since the number of nodes per level may not grow exponentially with the mesh levels, as has been
pointed out in [23], the number of operations used for multigrid methods with smoothers performed
on all nodes can be as large as O(N2). Therefore, it is interesting to study efficient iterative
algorithms to solve the linear systems arising from AFEM procedures. Numerical experiments
in [23] indicate the optimality of local multigrid methods performing smoothing only on newly
created nodes and their neighbors.

In recent years, some techniques have been developed to handle problems on locally refined
meshes. One approach in [20], [21] and [31] is the fast adaptive composite grid (FAC) method,
using global and local uniform grids both to define the composite grid problem and to interact
for fast solution, which is very suitable for parallel computation. Other approaches have been
developed as well such as multilevel adaptive techniques (MLAT) studied in [3], [12], [13], [24],
and multigrid methods for locally refined finite element meshes [1], [2], [18], [25], [26]. We emphasize
that these locally refined meshes obey restrictive conditions which are not satisfied by the newest
vertex bisection algorithm which will be used for adaptivity in this work. As far as AFEM
procedures featuring the newest vertex bisection algorithm are concerned, Wu and Chen [30] have
been the first to show that the multigrid V-cycle algorithm performng Gauss-Seidel smoothing
on new nodes and those old nodes where the support of the associated nodal basis function has
changed can guarantee uniform convergence of the algorithm.

The objective of this paper is to utilize the well-known Schwarz theory [29] to study local
multilevel methods with local Jacobi or local Gauss-Seidel smoothing. Within this framework
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we can also derive convergence estimates for the hierarchical basis multigrid method and the
hierarchical basis preconditioning method on locally refined meshes, where the local smoothers
are performed only on new nodes. In this paper, the main difficulty is how to obtain a global
strengthened Cauchy-Schwarz inequality which is a key assumption in the Schwarz theory. We will
prove that the global strengthened Cauchy-Schwarz inequality holds true not only for the local
Gauss-Seidel iteration, but also for the local Jacobi iteration. Moreover, we point out that the Xu
and Zikatanov identity [33], on which the proof in [30] depends, can not be directly used in this
paper. The convergence estimate in [30] can only be deduced for multiplicative smoothers and thus
is not available for additive smoothers such as the Jacobi iteration. Finally, for the hierarchical basis
multigrid method, a nontrivial stability splitting property on locally refined meshes is obtained.

The remainder of this paper is organized as follows: In section 2, we introduce basic notations
and briefly review the conforming P1 finite element method on locally refined meshes. In section
3, we propose a local multilevel product algorithm (or a local multigrid method) and its additive
version. In section 4, we present the abstract theory based on three assumptions whose verification
is carried out for local Jacobi and local Gauss-Seidel smoothers, respectively. We further derive and
analyze the hierarchical basis multigrid method and the hierarchical basis preconditioning method
on locally refined meshes in section 5. Finally, in the last section we present numerical results for
some representative test examples that confirm our theoretical analysis.

2. Notations and Preliminaries. Throughout this paper, we adopt standard notations
from Lebesgue and Sobolev space theory (cf. e.g. [17]). In particular, we refer to (·, ·) as the inner
product and to ‖·‖1,Ω as the norm on the Sobolev space H1(Ω). We further use A . B, if A ≤ CB
with a positive constant C depending only on the shape regularity of the meshes. A ≈ B stands
for A . B . A. For simplicity, we restrict ourselves to the 2D case.

Given a bounded, polygonal domain Ω ⊂ R2, we consider the following second order elliptic
boundary value problem

Lu := −div(a(x)∇u) = f in Ω, (2.1)
u = 0 on ∂Ω. (2.2)

The choice of a homogeneous Dirichlet boundary condition is made for ease of presentation
only. Similar results are valid for other types of boundary conditions and equation (2.1) with a
lower order term as well. We further assume that the coefficient function a and the right-hand side
f in (2.1) satisfy the following properties:
(a) a is a measurable function and there exist constants β1 ≥ β0 > 0 such that

β0 ≤ a(x) ≤ β1 for almost all x ∈ Ω, (2.3)

(b) f ∈ L2(Ω).

The weak formulation of (2.1) and (2.2) is to find u ∈ V := H1
0 (Ω) such that

a(u, v) = (f, v) , v ∈ V, (2.4)

where the bilinear form a : V × V → R is given by

a(u, v) = (a∇u,∇v) , u, v ∈ V. (2.5)

Since the bilinear form (2.5) is bounded and V -elliptic, the existence and uniqueness of the solution
of (2.4) follows from the Lax-Milgram theorem.

Throughout this paper, we work with families of shape regular meshes {Ti, i = 0, 1, ..., J},
where T0 is an intentionally chosen coarse initial triangulation, the others are obtained by the
adaptive procedures using the newest vertex bisection algorithm. It has been proved in [4] that
there exists a constant θ > 0 such that

θT ≥ θ , T ∈ Ti , i = 1, 2, ..., (2.6)
2



where θT is the minimum angle of the element T . The set of edges on Ti is denoted by Ei, and
the set of interior and boundary edges by E0

i and E∂Ω
i , respectively. We refer to Ni as the set of

interior nodes of Ti. The domain Ωz
i is the union of elements containing z ∈ Ni and hz

i refers to
the shortest edge of Ei(Ωz

i ). For any T ∈ Ti, hi,T stands for the diameter of T .
We refer to VJ as the conforming P1 finite element space

VJ = {vJ ∈ V | vJ |T ∈ P1(T ), T ∈ TJ}.
The conforming finite element approximation of (2.4) is to find uJ ∈ VJ such that

a(uJ , vJ) = (f, vJ ) , vJ ∈ VJ . (2.7)

The existence and uniqueness of the solution uJ follows again from the Lax-Milgram theorem.
The computation of the solution uJ of (2.7) always requires a constructive approach involving

the conversion of the variational equation into a matrix equation using a particular basis for VJ .
Suppose that {φi, i = 1, ..., N} is a given basis for VJ , where N is the dimension of VJ , and define
the matrix A and the vector F via

Aij := a(φi, φj) and Fi := (f, φi) , i, j = 1, ..., N.

Then equation (2.7) is equivalent to

AX = F, (2.8)

where uJ =
∑N

i=1 uiφi and X = (ui).
Bank and Scott [5] have shown that the `2-condition number of the linear system (2.8) does

not necessarily degrade as the mesh is refined locally and can be bounded by

K2(A) . N(1 + |log(Nh2
min(TJ))|), (2.9)

where hmin(TJ) = min{hJ,T : T ∈ TJ}. Moreover, the upper bound is sharp.
Based on the estimate (2.9), we know that standard iterative methods for solving the large

linear system (2.8) will converge very slowly. The objective of this paper is to design efficient
multilevel solvers of optimal computational complexity.

3. Local multilevel methods. In this section, we develop local multilevel methods for
solving linear systems arising from AFEM procedures. For any 0 ≤ i ≤ J , define Ai : Vi → Vi,
the discretization operator on level i, by

(Aiv, w) = a(v, w) , v, w ∈ Vi.

Then the finite element discretization of (2.4) is to find ui ∈ Vi such that

Aiui = fi, (3.1)

where fi ∈ Vi satisfies (fi, v) = (f, v), v ∈ Vi. We also define projections Pi, Qi : VJ → Vi,

a(Piv, w) = a(v, w) , (Qiv, w) = (v, w) , v ∈ VJ , w ∈ Vi.

For any node z ∈ Ni, we use the notation ϕz
i to represent the associated nodal conforming

finite element basis function of Vi. Let Ñi be the set of new nodes and those old nodes where the
support of the associated basis function has changed (see Figure 3.1), i.e.,

Ñi = {z ∈ Ni : z ∈ Ni \ Ni−1 or z ∈ Ni−1 but ϕz
i 6= ϕz

i−1}.

For convenience, we set Ñi = {xk
i , k = 1, ..., ñi}, where ñi is the cardinality of Ñi, and we denote

by φk
i = φ

xk
i

i the conforming P1 finite element basis function associated with xk
i . We define local

projections P k
i , Qk

i : VJ → V k
i := span{φk

i } by

a(P k
i v, φk

i ) = a(v, φk
i ) , (Qk

i v, φk
i ) = (v, φk

i ) , v ∈ VJ ,

3



The coarse level Ti−1 The fine level Ti

FIG 3.1. Illustration of Ñi: the big dots in the right figure refer to Ñi.

and Ak
i : V k

i → V k
i by

(Ak
i v, φk

i ) = a(v, φk
i ) , v ∈ V k

i .

We further refer to Ri : Vi → Vi as a local smoothing operator which is assumed to be nonnegative,
symmetric or nonsymmetric with respect to the inner product (·, ·). For i = 1, ..., J , Ri is only
performed on local nodes Ñi. The linear system on the coarsest mesh is solved directly, i.e.,
R0 = A−1

0 .
We now state the local multilevel algorithms for AFEM as follows.

Algorithm 3.1. Local Multigrid algorithm(LMG)
The standard Multigrid V-cycle algorithm solves (3.1) by the following iterative method:

un+1
i = un

i + Bi(fi −Aiu
n
i ).

The operators Bi : Vi → Vi, 0 ≤ i ≤ J are recursively defined as follows:
(V-cycle algorithm). Let B0 = A−1

0 . For i ≥ 1 and g ∈ Vi, we define Big = x3.
(i). Pre-smoothing: x1 = Rt

if ,
(ii). Correction: x2 = x1 + Bi−1Qi−1(g −Aix1),
(iii). Post-smoothing: x3 = x2 + Ri(g −Aix2).

Algorithm 3.2. Local multilevel additive algorithm(LMAA)
For BJ =

∑J
i=0 RiQi, find uJ ∈ VJ such that

BJAJuJ = BJfJ . (3.2)

Remark 3.1. The CG method can be used to solve the new problem (3.2), if BJAJ is sym-
metric with respect to the inner product a(·, ·).

4. The abstract theory. In this section, we present the abstract theory concerned with the
convergence of local multilevel methods for linear systems arising from AFEM procedures. We
will use the well-known Schwarz theory developed in [29], [32] and [36] to analyze the algorithms
LMG and LMAA. To this end, we set

Ti := RiAiPi, i = 0, 1, ..., J, and T :=
J∑

i=0

Ti.

The abstract theory provides an estimate for the norm of the error operator

E = (I − TJ) · · · (I − T1)(I − T0) =
J∏

i=0

(I − Ti),
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where I is the identity operator in VJ . Convergence estimates for algorithm 3.1 are obtained by
upper bounds for E in the energy norm ‖ · ‖a := a(·, ·) 1

2 . To this end, we impose the following
assumptions:

(A1). Each operator Ti is nonnegative with respect to the inner product a(·, ·), and there exists a
positive constant ωi < 2 such that

a(Tiv, Tiv) ≤ ωi a(Tiv, v) , v ∈ VJ , i = 0, 1, ..., J.

(A2). Stability: There exists a constant K0 such that

a(v, v) ≤ K0 a(Tv, v) , v ∈ VJ .

(A3). Global strengthened Cauchy-Schwarz inequality: There exists a constant K1 such
that

J∑

i=0

i−1∑

j=0

a(Tiv, Tju) ≤ K1 (
J∑

i=0

a(Tiv, v))1/2(
J∑

j=0

a(Tju, u))1/2 , v, u ∈ VJ .

We remark that the following inequality should also be verified for local Jacobi and local Gauss-
Seidel smoothers, which can not be deduced by the Cauchy-Schwarz inequality for Ti directly.

J∑

i=0

a(Tiv, u) ≤ K2 (
J∑

i=0

a(Tiv, v))1/2(
J∑

i=0

a(Tiu, u))1/2 , v, u ∈ VJ . (4.1)

Theorem 4.1. If assumptions A1-A3 are satisfied, then the norm of the error operator E
can be bounded as follows (cf. [29], [32], [36]):

a(Ev, Ev) ≤ δ a(v, v) , v ∈ VJ ,

where δ = 1− (2− ω)/(K0(K1 + K2)2), ω = maxi{ωi}. Hence, for algorithm 3.1 there holds

‖I −BJAJ‖a = ‖EE∗‖a ≤ δ.

For the additive multilevel algorithm 3.2, the following theorem provides a spectral estimate
for the operator T =

∑J
i=0 Ti when T is symmetric with respect to a(·, ·).

Theorem 4.2. If T is symmetric with respect to a(·, ·) and assumptions A1-A3 hold true,
then we have (cf. [29], [32], [36])

1
K0

a(v, v) ≤ a(Tv, v) ≤ (2K1 + ω) a(v, v) , v ∈ VJ .

We begin to apply the abstract theory to algorithm 3.1 and algorithm 3.2 by verifying as-
sumptions A1-A3 for adaptive finite element methods. There are two classes of smoothers for Ri,
Jacobi and Gauss-Seidel iterations, which will be investigated separately.

4.1. Local Jacobi smoother. First, we consider the decomposition of v ∈ VJ according to

v =
J∑

i=0

vi , v0 = Π0v , vi = (Πi −Πi−1)v , i = 1, ..., J, (4.2)

where Πi : VJ → Vi is the Scott-Zhang interpolation operator [27].
The local Jacobi smoother is defined as an additive smoother (cf. [9]):

Ri := γ

ñi∑

k=1

(Ak
i )−1Qk

i , (4.3)
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where γ is an appropriately chosen positive scaling factor. Due to the definition of Ri, we have

T0 = P0 , Ti = RiAiPi = γ

ñi∑

k=1

P k
i , i = 1, ..., J. (4.4)

It is easy to deduce that K2 = 1 in (4.1) in the Jacobi case. Therefore, we only need to verify
assumptions A1-A3. Actually,

a(Tv, u) = a(P0v, P0u) + γ

J∑

i=1

ñi∑

k=1

a(P k
i v, P k

i u)

≤ a(P0v, v)1/2a(P0u, u)1/2 + γ

J∑

i=1

ñi∑

k=1

a(P k
i v, v)1/2a(P k

i u, u)1/2

≤ (a(P0v, v) + γ

J∑

i=1

ñi∑

k=1

a(P k
i v, v))1/2(a(P0u, u) + γ

J∑

i=1

ñi∑

k=1

a(P k
i u, u))1/2

= (
J∑

i=0

a(Tiv, v))1/2(
J∑

i=0

a(Tiu, u))1/2.

4.1.1. Verification of assumption A1. Assumption A1 is easily obtained for T0. We
analyze the case i ≥ 1.

Lemma 4.1. Let Ti, i ≥ 1, be defined by (4.4). Then, there holds

a(Tiv, Tiv) ≤ ωi a(Tiv, v) , v ∈ VJ , ωi < 2.

Moreover, Ti is symmetric and nonnegative on VJ . Therefore, assumption A1 is satisfied.
Proof. Following (4.4), for v, w ∈ VJ we deduce

a(Tiv, w) = a(RiAiPiv, w) = a(RiAiPiv, Piw) = (RiAiPiv, AiPiw).

In view of the definition of Ri by (4.3), it follows that Ri is symmetric and nonnegative in Vi.
Hence, Ti is symmetric and nonnegative in VJ . We set

Kk
i = {Pm

i : supp(P k
i v) ∩ supp(Pm

i v) 6= ∅, v ∈ Vi,m = 1, . . . , ñi}. (4.5)

Then, the cardinality of Kk
i is bounded by a constant depending only on the minimum angle θ in

(2.6). Based on this fact and Hölder’s inequality, there exists a constant Ci such that

ñi∑

k,m=1

|a(P k
i v, Pm

i v)| ≤ Ci

ñi∑

k=1

a(P k
i v, P k

i v) , v ∈ Vi. (4.6)

By the definition of Ti in (4.4) and observing (4.6), for v ∈ VJ we obtain

a(Tiv, Tiv) = γ2a(
ñi∑

k=1

P k
i v,

ñi∑

k=1

P k
i v) ≤ γ2

ñi∑

k,m=1

|a(P k
i v, Pm

i v)|

≤ γ2Ci

ñi∑

k=1

a(P k
i v, P k

i v) = γ2Ci

ñi∑

k=1

a(P k
i v, v) = γCia(Tiv, v).

The proof is completed by setting ωi = γCi and choosing 0 < γ < 1 such that ωi < 2.
6



4.1.2. Verification of assumption A2. We will rely on the decomposition (4.2).

Lemma 4.2. Let {Ti, i = 0, 1, ..., J} be defined by (4.4). Then, there exists a constant K0 such
that

a(v, v) ≤ K0a(Tv, v) , v ∈ VJ .

Proof. Due to (4.2), we have

a(v, v) =
J∑

i=0

a(vi, v), (4.7)

and for i = 1, ..., J , we obtain

a(vi, v) =
ñi∑

k=1

a(vi(xk
i )φk

i , v) ≤
ñi∑

k=1

a1/2(vi(xk
i )φk

i , vi(xk
i )φk

i v)a1/2(P k
i v, P k

i v)

≤ (
ñi∑

k=1

a(vi(xk
i )φk

i , vi(xk
i )φk

i v))1/2(
ñi∑

k=1

a(P k
i v, v))1/2. (4.8)

Combining (4.7) and (4.8) yields

a(v, v) =
J∑

i=0

a(vi, v) (4.9)

≤
(
a(v0, v0) +

J∑

i=1

ñi∑

k=1

a(vi(xk
i )φk

i , vi(xk
i )φk

i )
)1/2 (

a(P0v, v) +
J∑

i=1

ñi∑

k=1

a(P k
i v, v)

)1/2

.

Since a(φk
i , φk

i ) ≈ 1, there holds

a(vi(xk
i )φk

i , vi(xk
i )φk

i ) ≈ v2
i (xk

i ).

The following inequality has been proved in Lemma 3.3 of [30],

J∑

i=1

ñi∑

k=1

v2
i (xk

i ) . a(v, v).

For the initial level, we have

a(v0, v0) = a(Π0v, Π0v) . a(v, v).

Thus, we obtain

a(v0, v0) +
J∑

i=1

ñi∑

k=1

v2
i (xk

i ) . a(v, v). (4.10)

Combining the above inequalities, we conclude that there exists a constant K̃0 independent of
mesh sizes and mesh levels such that

a(v, v) ≤ K̃0

(
a(P0v, v) +

J∑

i=1

ñi∑

k=1

a(P k
i v, v)

)
≤ K̃0

γ

J∑

i=0

a(Tiv, v) =
K̃0

γ
a(Tv, v).

We obtain the desired result by setting K0 = K̃0/γ.
7



4.1.3. Verification of assumption A3. As a prerequisite to verify assumption A3, we need
the following key lemma which has been derived in [30].

Lemma 4.3. For i = 1, ..., J let Ti be a refinement of Ti−1 by the newest vertex bisection
algorithm and let Ωk

j be the support of φk
j . Then, for xk

j ∈ Ñj we have

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ek

j

(
hl

i

hk
j

)3/2 . 1 ,

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ωk

j

(
hl

i

hk
j

)3 . 1, (4.11)

where Ek
j = Ej(Ωk

j ). Moreover, for xl
i ∈ Ñi there holds

i−1∑

j=1

∑

xk
j∈Ñj ,

xl
i∈Ek

j

(
hl

i

hk
j

)1/2 . 1 ,

i−1∑

j=1

∑

xk
j∈Ñj ,

xl
i∈Ωk

j

(
hl

i

hk
j

)1/2 . 1. (4.12)

Now we are in a position to verify assumption A3.

Lemma 4.4. There exists a constant K1 independent of mesh sizes and mesh levels such that
assumption A3 holds true.

Proof. In view of (4.4), we have

J∑

i=1

i−1∑

j=1

a(Tiv, Tju) = γ2
J∑

j=1

J∑

i=j+1

ñj∑

k=1

a(P k
j u,

ñi∑

l=1

P l
i v)

= γ2
J∑

j=1

ñj∑

k=1

a(P k
j u,

J∑

i=j+1

ñi∑

l=1

P l
i v).

Setting ω =
∑J

i=j+1

∑ñi

l=1 P l
i v, there holds

a(P k
j u, ω) = a(P k

j u, P k
j ω) ≤ a1/2(P k

j u, P k
j u) a1/2(P k

j ω, P k
j ω),

whence

J∑

i=1

i−1∑

j=1

a(Tiv, Tju) ≤ γ2
( J∑

j=1

ñj∑

k=1

a(P k
j u, P k

j u)
)1/2( J∑

j=1

ñj∑

k=1

a(P k
j ω, P k

j ω)
)1/2

. (4.13)

It is obvious that

γ

J∑

j=1

ñj∑

k=1

a(P k
j u, P k

j u) = γ

J∑

j=1

ñj∑

k=1

a(P k
j u, u) =

J∑

j=1

a(Tju, u). (4.14)

We also have

γ

J∑

j=1

ñj∑

k=1

a(P k
j ω, P k

j ω) .
J∑

i=2

a(Tiv, v). (4.15)

We note that

a(φk
j , φk

j ) ≈ 1 and P k
j P l

i v =
a(P l

i v, φk
j )

a(φk
j , φk

j )
φk

j ≈ a(P l
i v, φk

j )φk
j ,

and hence,

a(P k
j ω, P k

j ω) ≈ (
J∑

i=j+1

ñi∑

l=1

a(P l
i v, φk

j ))2.
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Furthermore, due to

P l
i v =

a(v, φl
i)

a(φl
i, φ

l
i)

φl
i ≈ a(v, φl

i)φ
l
i,

it follows that

a(P l
i v, φk

j ) ≈ a(a(v, φl
i)φ

l
i, φ

k
j ) = a(φl

i, φ
k
j )a(v, φl

i).

Since φk
j is conforming and piecewise linear on Tj |Ωk

j
, we obtain

a(φl
i, φ

k
j ) =

∑

T⊂Ωk
j ,

T∈Tj

∫

T

a(x)∇φl
i · ∇φk

j =
∑

T⊂Ωk
j ,

T∈Tj

∫

∂T

a(x)
∂φk

j

∂n
φl

i −
∑

T⊂Ωk
j ,

T∈Tj

∫

T

(∇a(x) · ∇φk
j )φl

i.

Note that

a(v, φl
i) = a(P l

i v, φl
i) ≤ a1/2(P l

i v, P l
i v)a1/2(φl

i, φ
l
i) . a1/2(P l

i v, v).

Moreover, observing |∂φk
j

∂n | . (hk
j )−1 and (2.3), it follows that

∑

xl
i∈Ñi,

xl
i∈Ωk

j

a(φl
i, φ

k
j )a(v, φl

i) .
∑

xl
i∈Ñi,

xl
i∈Ek

j

hl
i

hk
j

a1/2(P l
i v, v) +

∑

xl
i∈Ñi,

xl
i∈Ωk

j

(hl
i)

2

hk
j

a1/2(P l
i v, v).

Consequently, in view of (4.11) we get

a(P k
j ω, P k

j ω) . (
J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ωk

j

a(φl
i, φ

k
j )a(v, φl

i))
2

. (
J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ek

j

hl
i

hk
j

a1/2(P l
i v, v))2 + (

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ωk

j

(hl
i)

2

hk
j

a1/2(P l
i v, v))2

. (
J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ek

j

(
hl

i

hk
j

)1/2a(P l
i v, v)) · (

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ek

j

(
hl

i

hk
j

)3/2)

+(
J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ωk

j

hl
i√
hk

j

a(P l
i v, v)) · (

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ωk

j

(
hl

i√
hk

j

)3)

. (
J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ek

j

(
hl

i

hk
j

)1/2a(P l
i v, v) +

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ωk

j

hl
i√
hk

j

a(P l
i v, v))(1 + (hk

j )3/2)

.
J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ek

j

(
hl

i

hk
j

)1/2a(P l
i v, v) +

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ωk

j

hl
i√
hk

j

a(P l
i v, v).

We set δ(xl
i, x

k
j ) = 1, if xl

i ∈ Ek
j , and δ(xl

i, x
k
j ) = 0, otherwise, as well as δ̃(xl

i, x
k
j ) = 1, if xl

i ∈ Ωk
j ,

9



and δ̃(xl
i, x

k
j ) = 0, otherwise. In view of (4.12), we obtain

J∑

j=1

ñj∑

k=1

a(P k
j ω, P k

j ω) .
J∑

j=1

ñj∑

k=1

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ek

j

(
hl

i

hk
j

)1/2a(P l
i v, v) +

J∑

j=1

ñj∑

k=1

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ωk

j

hl
i√
hk

j

a(P l
i v, v)

=
J∑

i=2

∑

xl
i∈Ñi

(
i−1∑

j=1

∑

xk
j∈Ñj

(
hl

i

hk
j

)1/2δ(xl
i, x

k
j ))a(P l

i v, v) +
J∑

i=2

∑

xl
i∈Ñi

(
i−1∑

j=1

∑

xk
j∈Ñj

hl
i√
hk

j

δ̃(xl
i, x

k
j ))a(P l

i v, v)

.
J∑

i=2

∑

xl
i∈Ñi

a(P l
i v, v)(1 +

√
hl

i) .
J∑

i=2

∑

xl
i∈Ñi

a(P l
i v, v).

This completes the proof of (4.15). Combining (4.13)-(4.15), we deduce

J∑

i=1

i−1∑

j=1

a(Tiv, Tju) . (
J∑

i=2

a(Tiv, v))1/2(
J∑

j=1

a(Tju, u))1/2. (4.16)

A similar analysis can be done to derive

J∑

i=1

a(Tiv, T0u) . (
J∑

i=1

a(Tiv, v))1/2a(T0u, u)1/2. (4.17)

Together with (4.16), this inequality provides the assertion.

4.2. Local Gauss-Seidel smoother. We will now apply the abstract theory to the local
Gauss-Seidel smoother Ri which is defined by

Ri := (I − Eñi
i )A−1

i ,

where Eñi
i = (I − P ñi

i ) · · · (I − P 1
i ) =

∏ñi

k=1(I − P k
i ). For simplicity, we set Ei := Eñi

i , since no
confusion is possible. It is easy to see that

T0 = P0 , Ti = RiAiPi = (I − Ei)Pi = I − Ei , i = 1, ..., J. (4.18)

The decomposition of v is the same as in (4.2). The following identity plays a key role in the
subsequent analysis.

Lemma 4.5. For i = 1, ..., J , there holds

a(v, u)− a(Eiv, Eiu) =
ñi∑

k=1

a(P k
i Ek−1

i v, Ek−1
i u) , v, u ∈ VJ , (4.19)

where E0
i = I and Ek−1

i is defined by

Ek−1
i := (I − P k−1

i ) · · · (I − P 1
i ) , k = 2, . . . , ñi.

Proof. Obviously, there holds

Ek−1
i − Ek

i = P k
i Ek−1

i ,

and hence,

I − Ei =
ñi∑

k=1

P k
i Ek−1

i . (4.20)

10



Note that

a(Ek−1
i v,Ek−1

i u) = a(Ek
i v, Ek

i u) + a(P k
i Ek−1

i v, P k
i Ek−1

i u),

which implies

a(v, u)− a(Eiv,Eiu) =
ñi∑

k=1

a(P k
i Ek−1

i v,Ek−1
i u).

Hence, (4.19) is verified.

4.2.1. Verification of assumption A1. We consider the case i ≥ 1, since assumption A1
is obviously true for T0.

Lemma 4.6. Let Ti, i ≥ 1, be defined by (4.18). Then, Ti is nonnegative on VJ and there
holds

a(Tiv, Tiv) ≤ ωia(Tiv, v) , v ∈ VJ , ωi < 2.

Proof. Recalling Ti = I − Ei, i ≥ 1 and (4.20), we obtain

a(Tiv, Tiv) = a((I − Ei)v, (I − Ei)v) =
ñi∑

k,m=1

a(P k
i Ek−1

i v, Pm
i Em−1

i v).

Using Lemma 4.5 and the same techniques as in (4.6), we deduce

a(Tiv, Tiv) ≤ Ci

ñi∑

k=1

a(P k
i Ek−1

i v, Ek−1
i v)

= Ci(a(v, v)− a(Eiv, Eiv)) = Ci(2a(Tiv, v)− a(Tiv, Tiv)), (4.21)

whence

a(Tiv, Tiv) ≤ 2Ci

Ci + 1
a(Tiv, v).

This implies nonnegativeness of Ti. Setting ωi = (2Ci)/(Ci + 1) < 2 completes the proof.

4.2.2. Verification of assumption A2.
Lemma 4.7. Let {Ti, i = 0, 1, ..., J} be given as in (4.18). Then, there exists a constant K0

such that

a(v, v) ≤ K0a(Tv, v) , v ∈ VJ .

Proof. From the decomposition of v in (4.2), it follows that a(v, v) =
∑J

i=0 a(vi, v). Similar to
(4.8), for i = 1, ..., J we also have

a(vi, v) ≤ (
ñi∑

k=1

a(vi(xk
i )φk

i , vi(xk
i )φk

i ))1/2(
ñi∑

k=1

a(P k
i v, P k

i v))1/2,

Due to the identity I − Ek−1
i =

∑k−1
m=1 Pm

i Em−1
i , we deduce

ñi∑

k=1

a(P k
i v, P k

i v) =
ñi∑

k=1

a(P k
i v, P k

i Ek−1
i v) +

ñi∑

k=1

k−1∑
m=1

a(P k
i v, P k

i Pm
i Em−1

i v)

≤
( ñi∑

k=1

a(P k
i v, P k

i v)
)1/2 ( ñi∑

k=1

a(P k
i Ek−1

i v,Ek−1
i v)

)1/2

+
ñi∑

k,m=1

|a(P k
i v, Pm

i Em−1
i v)|.

11



Furthermore, by Hölder’s inequality and (4.6)

ñi∑

k,m=1

|a(P k
i v, Pm

i Em−1
i v)| .

( ñi∑

k=1

a(P k
i v, P k

i v)
)1/2 ( ñi∑

k=1

a(P k
i Ek−1

i v,Ek−1
i v)

)1/2

.

Then, it follows from (4.21) that

ñi∑

k=1

a(P k
i v, P k

i v) .
ñi∑

k=1

a(P k
i Ek−1

i v, Ek−1
i v) . a(Tiv, v), (4.22)

whence

a(P0v, P0v) +
ñi∑

k=1

a(P k
i v, P k

i v) .
J∑

i=0

a(Tiv, v).

Similar to the analysis of (4.9) and (4.10), we deduce that assumption A2 holds true.

4.2.3. Verification of assumption A3.
Lemma 4.8. There exists a constant K1 independent of mesh sizes and mesh levels such that

assumption A3 holds true for {Ti, i = 0, 1, ..., J} defined by (4.18).
Proof. For ξi = Tiv, it follows from (4.18) that

J∑

i=1

i−1∑

j=1

a(Tiv, Tju) =
J∑

j=1

J∑

i=j+1

a(ξi, (I − Ej)u)

=
J∑

j=1

J∑

i=j+1

ñj∑

k=1

a(P k
j ξi, P

k
j Ek−1

j u) =
J∑

j=1

ñj∑

k=1

a(P k
j

J∑

i=j+1

ξi, P
k
j Ek−1

j u).

By Hölder’s inequality there holds

J∑

i=1

i−1∑

j=1

a(Tiv, Tju) (4.23)

≤
( J∑

j=1

ñj∑

k=1

a(P k
j Ek−1

j u,Ek−1
j u)

)1/2 ( J∑

j=1

ñj∑

k=1

a(
J∑

i=j+1

P k
j ξi,

J∑

i=j+1

P k
j ξi)

)1/2

.

Next, we show that

J∑

j=1

ñj∑

k=1

a(
J∑

i=j+1

P k
j ξi,

J∑

i=j+1

P k
j ξi) .

J∑

i=2

a(Tiv, v). (4.24)

Due to

P k
j ξi =

a(ξi, φ
k
j )

a(φk
j , φk

j )
φk

j ≈ a(ξi, φ
k
j )φk

j , P l
i E

l−1
i v =

a(El−1
i v, φl

i)
a(φl

i, φ
l
i)

φl
i ≈ a(El−1

i v, φl
i)φ

l
i,

we have

a(
J∑

i=j+1

P k
j ξi,

J∑

i=j+1

P k
j ξi) ≈ (

J∑

i=j+1

a(ξi, φ
k
j ))2,

and

a(ξi, φ
k
j ) = a((I − Ei)v, φk

j ) =
ñi∑

l=1

a(P l
i E

l−1
i v, φk

j ) ≈
ñi∑

l=1

a(φl
i, φ

k
j )a(El−1

i v, φl
i).
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By Lemma 4.3 and a similar technique as in the previous subsection, we obtain

J∑

j=1

ñj∑

k=1

(
J∑

i=j+1

a(ξi, φ
k
j ))2

.
J∑

j=1

ñj∑

k=1

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ek

j

(
hl

i

hk
j

)1/2a(P l
i E

l−1
i v, El−1

i v)

+
J∑

j=1

ñj∑

k=1

J∑

i=j+1

∑

xl
i∈Ñi,

xl
i∈Ωk

j

hl
i√
hk

j

a(P l
i E

l−1
i v, El−1

i v)

.
J∑

i=2

∑

xl
i∈Ñi

a(P l
i E

l−1
i v, El−1

i v)
i−1∑

j=1

∑

xk
j∈Ñj

(
hl

i

hk
j

)1/2δ(xl
i, x

k
j )

+
J∑

i=2

∑

xl
i∈Ñi

a(P l
i E

l−1
i v, El−1

i v)
i−1∑

j=1

∑

xk
j∈Ñj

hl
i√
hk

j

δ̃(xl
i, x

k
j )

.
J∑

i=2

∑

xl
i∈Ñi

a(P l
i E

l−1
i v, El−1

i v)(1 +
√

hl
i) .

J∑

i=2

a(Tiv, v).

Hence, (4.24) is verified. In view of (4.19), (4.21), (4.23) and (4.24), it follows that

J∑

i=1

i−1∑

j=1

a(Tiv, Tju) . (
J∑

i=2

a(Tiv, v))1/2(
J∑

j=1

a(Tju, u))1/2. (4.25)

Moreover, we deduce

J∑

i=1

a(Tiv, T0u) . (
J∑

i=1

a(Tiv, v))1/2a(T0u, u)1/2,

which, together with (4.25), allows to conclude.

Next, we show that (4.1) holds true for the Gauss-Seidel case. Actually, similar to the Jacobi
case, by (4.22) we have

a(Tv, u) = a(P0v, P0u) +
J∑

i=1

ñi∑

k=1

a(P k
i Ek−1

i v, P k
i u)

≤ a(P0v, v)1/2a(P0u, u)1/2 +
J∑

i=1

ñi∑

k=1

a(P k
i Ek−1

i v, Ek−1
i v)1/2a(P k

i u, P k
i u)1/2

≤ (a(P0v, v) +
J∑

i=1

ñi∑

k=1

a(P k
i Ek−1

i v, Ek−1
i v))1/2(a(P0u, u) +

J∑

i=1

ñi∑

k=1

a(P k
i u, P k

i u))1/2

. (
J∑

i=0

a(Tiv, v))1/2(
J∑

i=0

a(Tiu, u))1/2.

5. Hierarchical basis multilevel method. In this section, we will discuss the hierarchical
basis multigrid method (HBMG) and the hierarchical basis preconditioning method (HBP) on
locally refined meshes. The hierarchical basis method is based on the decomposition of VJ into
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subspaces given by

VJ =
J∑

i=0

V̄i, V̄0 = I0VJ , V̄i = (Ii − Ii−1)VJ , i = 1, ..., J. (5.1)

Here, Ii : VJ → Vi is the nodal value interpolation.
By means of the above decomposition, we can derive the convergence result for HBMG by

verifying assumptions A1-A3 as in section 4. Compared with the above local multigrid method,
the smoothing operator Ri(1 ≤ i ≤ J) in HBMG is carried out only on the set of new nodes, e.g.,
N̄i = Ni \ Ni−1. We set n̄i = #N̄i. The operators Ai, Pi, Qi are all well defined by the subspaces
{V̄i : i = 0, 1, ..., J}.

The coarse level Ti−1 The fine level Ti

FIG 5.1. Illustration of N̄i: the big dots in the right figure refer to N̄i.

For brevity, we only provide the convergence analysis of HBMG for local Jacobi smoothing.
A similar analysis can be carried out for HBMG in case of local Gauss-Seidel smoothing. We
note that the assumptions A1 and A3 can be verified as in Lemma 4.1 and Lemma 4.4. For the
stability assumption A2, we have the following result.

Lemma 5.1. There exists a constant K0 such that

a(v, v) ≤ K0(1 + |loghmin|)2a(Tv, v) , v ∈ VJ , (5.2)

where hmin = min{hT , T ∈ TJ}.
Proof. In view of the decomposition (5.1), it follows that

vi = (Ii − Ii−1)v =
n̄i∑

k=1

v(xk
i )φk

i , i = 1, ..., J.

Similar to (4.9), we deduce

a(v, v) =
J∑

i=0

a(vi, v) (5.3)

≤
(
a(v0, v0) +

J∑

i=1

n̄i∑

k=1

a(v(xk
i )φk

i , v(xk
i )φk

i )
)1/2 (

a(P0v, v) +
J∑

i=1

n̄i∑

k=1

a(P k
i v, v)

)1/2

.

Since a(v0, v0) = a(I0v, I0v) . a(v, v), (5.2) is proved, if we can show that

J∑

i=1

n̄i∑

k=1

a(v(xk
i )φk

i , v(xk
i )φk

i ) . (1 + |loghmin|)2a(v, v). (5.4)
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For any triangle K ⊂ Ωk
i ∩ Ti, let C be a constant representing the L2 projection of v onto K. We

recall the following inequality [34]

‖v − C‖0,∞,K . (log
hk

i

hmin
+ 1)1/2|v|1,K . (5.5)

Then, we have

|(Ii − Ii−1)v|1,K = |(Ii − Ii−1)(v − C)|1,K = |(I − Ii−1)Ii(v − C)|1,K

. |Ii(v − C)|1,K . ‖v − C‖0,∞,K . (log
hk

i

hmin
+ 1)1/2|v|1,K .

Hence, it follows from (5.5) that

J∑

i=1

n̄i∑

k=1

a(v(xk
i )φk

i , v(xk
i )φk

i ) .
J∑

i=1

n̄i∑

k=1

|(Ii − Ii−1)v|21,Ωk
i

.
J∑

i=1

n̄i∑

k=1

(log
hk

i

hmin
+ 1)|v|21,Ωk

i
. (5.6)

For the sequence {T̂i, i = 0, 1, 2, ...}, obtained by uniform bisection from the initial mesh T̂0 = T0,
we denote by N̂i the set of interior nodes of T̂i, and we set ĥi = ( 1

2 )ih0. It has been shown in [30]
that

hi(z) ≈ ĥρi(z) , z ∈ N̂ρi(z), (5.7)

where

ρi(z) = [
log(hi(z)/h0)

log(1/2)
].

We define

σ(m, z) = {i : z ∈ N̄i, ρi(z) = m, 0 ≤ i ≤ J}.

It has been shown in [30] that #σ(m, z) . 1. Let B(z, cĥm) = {x ∈ Ω : |x − z| < cĥm} and
M := maxz∈NJ

ρJ(z). Then, hmin ≈ ĥM . Combining (5.6) and (5.7), we have

J∑

i=1

n̄i∑

k=1

a(v(xk
i )φk

i , v(xk
i )φk

i ) .
J∑

i=1

n̄i∑

k=1

(log
ĥρi(xk

i )

hmin
+ 1)|v|21,Ωk

i

.
M∑

m=0

∑

z∈Ñi,ρi(z)=m
1≤i≤J

(log
ĥm

hmin
+ 1)|v|2

1,B(z,cĥm)
=

M∑
m=0

(log
ĥm

hmin
+ 1)

∑

z∈N̂m∩NJ

i∈σ(m,z)

|v|2
1,B(z,cĥm)

.
M∑

m=0

(logĥm − loghmin + 1)|v|21,Ω . (1 + |loghmin|)2|v|21,Ω,

which completes the proof of the lemma.

Finally, we have the following convergence result for the algorithm HBMG.

Theorem 5.1. For the algorithm HBMG with local Jacobi or local Gauss-Seidel smoothing,
the norm of the error operator E can be bounded as follows

a(Ev, Ev) ≤ δ a(v, v) , v ∈ VJ ,

where

δ = 1− 2− ω

K0(1 + |loghmin|)2(1 + K1)2
, ω = max

i
{ωi}.
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Hence,

‖I −BJAJ‖a = ‖EE∗‖a ≤ δ.

Next, we provide a condition number estimate for the hierarchical basis preconditioning method.
Let

|||v|||2∗ =
∑

z∈N0

(I0v)2(z) +
J∑

i=1

∑

z∈Ni\Ni−1

|(Ii − Ii−1)v(z)|2.

Similar to (5.4), the following upper bound holds true

|||v|||2∗ . (1 + |loghmin|)2|v|21,Ω.

A lower bound can be derived as in the verification of assumption A3:

|v|21,Ω . |||v|||2∗.

Theorem 5.2. Let ÂJ be the stiffness matrix based on the hierarchical basis on locally refined
meshes TJ . Then, there holds

cond(ÂJ) ≤ C(1 + |loghmin|)2,

where the constant C is independent of mesh sizes and mesh levels.

Let S be the matrix which transforms the representations of the finite element functions of
VJ with respect to the hierarchical basis into the representations with respect to the usual nodal
basis. We then have the representation ÂJ = ST AJS. Since

cond(ST AJS) = cond(SST AJ),

the hierarchical basis method can be interpreted as a preconditioning method for AJ with the
preconditioner SST .

6. Numerical results. In this section, we present several examples to illustrate the optimal-
ity of algorithm 3.1 and algorithm 3.2. For algorithm 3.2, we test the PCG method for LMAA
with local Jabobi smoothing. Furthermore, in order to compare the two methods, we present ex-
amples for HBMG and HBP on locally refined meshes. We remark that LMG and HBMG are
implemented with O(N) operations each iteration, where N is the number of degrees of freedom
(DOFs, i.e., interior nodes or free nodes). As has been pointed out in [6] and [34], the overall com-
plexity of HBMG (the symmetric case, e.g., with local Jacobi smoothing) and the hierarchical
basis method used as a preconditioner for CG is O(N log(hmin)|logε|) operations, required to reduce
the initial error by a given factor ε. On the other hand, for LMAA with local Jacobi smoothing
as a preconditioner for CG, O(N |logε|) operations are required. The following implementation is
based on the FFW toolbox from [15].

The local error estimator for each element is defined as in [22]. The stopping rule for algorithm
3.1 is as follows: At the i-th level, let u0

i = ui−1, r
n
i = fi − Aiu

n
i . Then, the multigrid iteration

stops when the following relation is satisfied

‖rn
i ‖0,Ω

‖r0
i ‖0,Ω

≤ 10−8.

For the PCG method, the stopping criterion is as follows

‖r0
i −Air

n
i ‖0,Ω ≤ tol ‖r0

i ‖0,Ω , tol = 10−8,

where {rk
i : k = 1, 2, ...} denotes the set of iterative solutions of the residual equation Aix = r0

i .
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Example 6.1. Consider the following elliptic boundary value problem with Dirichlet boundary
conditions on the L-shaped domain Ω = [−1, 1]× [−1, 1]\(0, 1]× [−1, 0).

−∆u + 0.5u = f(x, y) in Ω,

u = g(x, y) on ∂Ω,

where f and g are chosen such that the exact solution in polar coordinates is given by u(r, θ) =
r

2
3 sin(2

3θ).
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FIG 6.1. The locally refined mesh after 15 refinement steps (Example 6.1)

Level DOFs LMG-Jacobi LMG-GS HBMG-GS
15 2718 25 13 51
17 5255 23 11 59
21 18242 22 11 75
25 58758 23 12 88
27 102397 22 11 88
29 173698 20 10 90
31 290479 20 10 101
33 487869 19 10 113
35 799086 17 9 118

Table 6.1. Iteration steps on each level for the algorithms under comparison

We first present the numerical results for algorithm 3.1 and HBMG. We refer to LMG-
Jacobi as algorithm 3.1 with local Jacobi smoothing (γ = 0.8), to LMG-GS as algorithm 3.1
with local Gauss-Seidel smoothing and to HBMG-GS as the hierarchical basis multigrid method
with local Gauss-Seidel smoothing. Table 6.1, Figure 6.2, and Figure 6.3 show that the number
of iterations and the convergence rate, i.e., the reduction factor ‖I − BJAJ‖a, of algorithm 3.1
with local Jacobi or local Gauss-Seidel smoothing, per level are all bounded independently of mesh
sizes and mesh levels, which confirms our theoretical results. For HBMG-GS, we observe that
the number of iterations depends on the mesh levels. Figures 6.2-6.4 also show that the CPU time
(in seconds) of each iteration of LMG and HBMG is linear with respect to the DOFs.

Next, we study the performance of algorithm 3.2 and the hierarchical basis preconditioning
method (HBP). As can be seen from Table 6.2, the number of iterations by CG without pre-
conditioning increases fast with the mesh levels. However, for PCG by LMAA with local Jacobi
smoothing (LMAA-Jacobi), the iteration steps per level are both independent of mesh sizes and
mesh levels. Similar to HBMG-GS, for PCG by HBP, the iteration steps depend on the mesh
levels. Figures 6.5 and 6.6 show that for these two algorithms the CPU time (in seconds) of each
iteration also is in accordance with the theoretical analysis.
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FIG 6.2. Reduction factor (left) and CPU time (right) per level for LMG-Jacobi.
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FIG 6.3. Reduction factor (left) and CPU time (right) per level for LMG-GS.
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FIG 6.4. Reduction factor ‖I − BJAJ‖a (left) and CPU time (right) per level for HBMG with local

Gauss-Seidel smoothing. Here, BJ and AJ are derived based on the hierarchical basis.

Example 6.2. Consider Poisson’s equation

−∆u = 1 in Ω,

with Dirichlet boundary conditions on the slit domain Ω = {(x, y) : |x|+ |y| ≤ 1}\{(x, y) : 0 ≤ x ≤
1, y = 0}. The exact solution (in polar coordinates) is r1/2 sin(θ/2)− 1

4r2.

Figure 6.7 displays the locally refined mesh with 1635 nodes after 15 refinement steps. Table
6.3 and Figures 6.8, 6.9 show that the linear increase in CPU time and the convergence rate, i.e.,

18



Level DOFs CG LMAA-Jacobi HBP
16 3819 185 38 61
18 7285 257 39 66
20 13524 337 40 71
22 24765 446 41 78
24 44284 576 42 79
26 77431 691 40 85
28 134344 965 41 90
30 224771 1220 41 94
32 376628 1415 41 95
34 625557 1739 41 98

Table 6.2. Iteration steps on each level for the algorithms under comparison
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FIG 6.5. CPU time for LMAA-Jacobi
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FIG 6.6. CPU time for HBP
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FIG 6.7. The locally refined mesh after 15 refinement steps (Example 6.2)

the reduction factor ‖I−BJAJ‖a, are bounded independently of mesh sizes and mesh levels, which
indicates the optimality of algorithm LMG-Jacobi (γ = 0.8) and LMG-GS.
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Level DOFs LMG-Jacobi LMG-GS HBMG-GS
19 6115 40 20 57
21 11713 39 20 63
25 41460 38 19 76
27 74727 36 18 84
29 144648 36 17 93
31 250576 35 17 99
34 619187 34 17 107
35 795755 34 17 107
36 1075195 32 16 115

Table 6.3. Iteration steps on each level for the algorithms under comparison
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FIG 6.8. Reduction factor and CPU time per level for LMG-Jacobi.
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FIG 6.9. Reduction factor and CPU time per level for LMG-GS.

For algorithm 3.2, Table 6.4 and Figure 6.11 show the optimality of algorithm LMAA-Jacobi
(γ = 0.8), whereas Table 6.3, Figure 6.10 and Table 6.4, Figure 6.12 show that the convergence of
HBMG-GS and PCG by HBP also depends on the mesh levels. For these two algorithms, the
CPU time (in seconds) of each iteration is almost linear with respect to the DOFs.
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FIG 6.10. Reduction factor and CPU time per level for HBMG-GS.

Level DOFs CG LMAA-Jacobi HBP
16 2240 117 39 55
18 4338 195 43 61
20 8936 269 45 67
22 16500 325 47 72
24 32733 483 49 76
26 56161 618 50 82
28 101565 827 51 85
30 184049 1068 50 90
32 327094 1333 52 95
34 619187 1689 53 98

Table 6.4. Iteration steps on each level for the algorithms under comparison
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FIG 6.11. CPU time for LMAA-Jacobi
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FIG 6.12. CPU time for HBP
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