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Abstract

Despite their misleading label, rare events in stochastic systems are central to
many applied phenomena. In this paper, we concentrate on one such situation —
phase separation through homogeneous nucleation in binary alloys as described
by the stochastic partial differential equation model due to Cahn, Hilliard, and
Cook. We show that in the limit of small noise intensity, nucleation can be
explained by the stochastically driven exit from the domain of attraction of an
asymptotically stable homogeneous equilibrium state for the associated deter-
ministic model. Furthermore, we provide insight into the subsequent nucleation
dynamics via the structure of the attractor of the model in the absence of noise.
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1 Introduction

In the study of phase separation in metal alloys one can distinguish between two distinct
mechanisms — spinodal decomposition and nucleation [22, 35]. In both cases, one is
interested in how the components of an alloy separate immediately after the quenching
of a homogeneous high-temperature mixture of the alloy components. Deep quenches
lead to spinodal decomposition, which results in sudden phase separation throughout
the material and often leads to complicated snake-like microstructures with a charac-
teristic wave length [8, 10, 19, 32, 33, 37, 38, 44]. On the other hand, shallow quenches
lead to the somewhat time-delayed formation of droplets throughout the material. In
order to describe these two mechanisms, Cahn and Hilliard [12, 13, 14] proposed a
fourth-order parabolic partial differential equation model in which the onset of either
mechanism is determined by the stability properties of spatially constant equilibrium
solutions, which model the homogeneous component mixture at high temperature for
various concentration ratios of the involved components. If such an equilibrium is
unstable, small initial imperfections in the homogeneous state are quickly amplified,
leading to complicated microstructures throughout the material, i.e., to spinodal de-
composition. In contrast, nucleation corresponds to the case that the homogeneous
state is stable — and at first glance, this stability seems to preclude the occurrence of
any type of phase separation.

The first mathematical explanation of nucleation in the Cahn-Hilliard model was
obtained by Bates and Fife [5]. In their paper, they consider the one-dimensional
Cahn-Hilliard model, which is given by the parabolic partial differential equation

∂tu+
1

λ2
· ∂4

xu = ∂2
xf(m+ u) for x ∈ [0, 1] and t ≥ 0 ,∫ 1

0

u(t, x) dx = 0 for t ≥ 0 ,

∂xu = ∂3
xu = 0 for x ∈ {0, 1} and t ≥ 0 .

(1)

In this model, the nonlinearity f is the derivative of a double-well potential, the stan-
dard example being f(u) = u3 − u, and the large parameter λ is a measure for the
inverse interaction length in the alloy. The constant m describes the total mass of the
system, which is automatically conserved by the evolution equation. Notice that our
form of the Cahn-Hilliard equation slightly deviates from the one of [5]. In order to
simplify our presentation, the solution u of (1) measures the deviation from the mean
mass m, and therefore the above-mentioned homogeneous initial state can be taken as
the constant function h0 ≡ 0 without loss of generality.

One can easily see that the stability of the vanishing initial state h0 is determined
by the value of the derivative f ′(m). If the derivative is negative this state is unstable,
i.e., one is in the spinodal decomposition regime. On the other hand, for f ′(m) > 0 the
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Figure 1: The set of equilibrium solutions of the Cahn-Hilliard model with f ′(m) > 0
consists of the stable state h0 ≡ 0, as well as spike solutions sk±,λ for k ∈ N, and

transition layer solutions ik±,λ for k ∈ N0, which have index k. The figure shows the
solutions s1

±,λ and i0±,λ, the ones for larger k are obtained from these via even reflections
and rescaling.

state h0 is asymptotically stable, and in the following we will always assume this to
be the case. This asymptotic stability implies that any solution which originates in a
small neighborhood of the homogeneous state will be attracted exponentially towards
it, thereby — as mentioned above — seemingly ruling out the possibility of phase
separation.

To overcome this problem, Bates and Fife [5] proposed that nucleation is triggered
by considering initial states which are sufficiently far away from the homogeneous state.
In order to quantify the size of this perturbation, they prove the existence of two spike-
like unstable equilibria solutions s1

±,λ called canonical nuclei, which are close to the
homogeneous state h0 for large values of λ, and which have a one-dimensional unstable
manifold. It is then conjectured in [5] that one branch of each unstable manifold
converges to the homogeneous stable state, while the other branch converges to a
globally stable transition layer solution i0±,λ, which would correspond to the droplets
appearing during nucleation. The general shape of these equilibrium solutions is shown
in Figure 1.

While the results by Bates and Fife identify the threshold that has to be overcome
to observe nucleation, their results cannot provide a dynamical description of the initial
stage of nucleation starting from initial conditions which are close to the homogeneous
state. At least heuristically, this can be achieved if one assumes the effects of external
noise. In this case it is reasonable to assume that the cumulative effects of the noise
might drive the solution out of the domain of attraction of the homogeneous state,
thereby leading to the onset of nucleation. See for example the discussion in [9], as
well as the applied literature on transition state theory [36].
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As a deterministic model, the classical Cahn-Hilliard equation (1) ignores thermal
fluctuations which are present in any material, and we therefore turn our attention to
a stochastic extension of the model to address the deficiencies of [5]. Such an extension
was proposed by Cook [15], see also [20, 28, 29, 30, 34]. In the physics literature, this
model is also known as Model B in the classification of Hohenberg and Halperin [27].
We consider the Cahn-Hilliard-Cook model in the form

∂tu+
1

λ2
· ∂4

xu = ∂2
xf(m+ u) + σ · ξ for x ∈ [0, 1] and t ≥ 0 ,∫ 1

0

u(t, x) dx = 0 for t ≥ 0 ,

∂xu = ∂3
xu = 0 for x ∈ {0, 1} and t ≥ 0 .

(2)

This stochastic partial differential equation differs from (1) by the additive noise
term σ · ξ, where ξ denotes the distributional derivative of a Hilbert space valued
Wiener process, and σ ≥ 0 denotes the intensity of the noise. Specifically, we focus on
the noise process ξ = ∂xη which is the spatial derivative of space-time white noise with

Eη(t, x) = 0 and Eη(t, x)η(s, y) = δ(t− s)δ(x− y) .

This is one of the standard models in the physics literature for mass-conservative noise.
In this paper, we present rigorous mathematical results which explain nucleation

in the stochastic Cahn-Hilliard-Cook model (2). This is accomplished by combining
stochastic large deviations type results for the Cahn-Hilliard-Cook model with results
on the attractor structure of the deterministic model (1) from [24]. In the latter work it
is shown that the boundary spikes are in fact the minimizers of the energy associated
with the Cahn-Hilliard model on the boundary of the domain of attraction of the
homogeneous state. Then, using the theory of Freidlin and Wentzell [17, 23] we verify
that for sufficiently small noise, the solution of (2) will in fact develop a boundary spike.
While the detailed formulation of our main result will be given later in Theorem 4.2,
it can be roughly summarized as follows.

Theorem 1.1 Consider the stochastic Cahn-Hilliard-Cook model (2) and denote its
solution originating at an initial condition u0 ≈ h0 by uu0

σ (t). Let

τ = inf {t > 0 : uu0
σ (t) 6∈ D} ,

where D denotes the domain of attraction of h0 under the deterministic evolution (1).
Under some conditions that will be made precise later, one then has for any small δ > 0
the identity

lim
σ→0

P
(
‖uu0

σ (τ)− s1
+,λ‖ < δ or ‖uu0

σ (τ)− s1
−,λ‖ < δ

)
= 1 ,

i.e., for small noise intensity σ > 0, most solutions exit the basin of attraction of h0

close to the spikes s1
±,λ.
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This result is the stochastic extension of the deterministic result of Bates and Fife [5].
Related results on the Allen-Cahn equation can be found in [11, 43]. Notice, however,
that in the Allen-Cahn case the result is much easier, since it is known a priori that the
constants ±1 are the global minimizers of the energy, and the heteroclinic connection
between these homogeneous states is well-understood.

The remainder of this paper is organized as follows. In Section 2 we recall the
basic functional analytic framework for the deterministic Cahn-Hilliard equation (1),
including its energy functional and gradient structure. Furthermore, we have to extend
these results to allow for the phase space of continuous functions, rather than the
usually considered Hilbert space setting. The deeper reason for this is the delicate
interplay between the regularity of the stochastic convolution associated with our noise
process, the fact that the Cahn-Hilliard system is a gradient system with respect to the
H−1-norm, and the goal of being able to use the standard energy functional as the quasi-
potential in the Freidlin-Wentzell theory. Finally, Section 2 presents results from [24]
concerning the attractor structure of the deterministic Cahn-Hilliard model. Section 3
is devoted to the stochastic Cahn-Hilliard-Cook model and addresses basic functional
analytic questions such as existence of solutions in our various phase spaces, spatial
regularity of the stochastic convolution, as well as a discussion of the law of the mild
solution and the basic Freidlin-Wentzell estimates. Finally, Section 4 establishes the
standard Cahn-Hilliard energy as the quasi-potential associated with the deterministic
domain of attraction of the homogeneous state, and states and proves our main result
on the boundary spike creation.

In order to make the presentation of this paper as accessible as possible, we restrict
our attention exclusively to the case of binary alloys as described by (2). We would
like to point out, however, that the stochastic parts of our arguments equally apply
to the case of multi-component alloys as studied in [18] in the context of Cahn-Morral
systems. In other words, as soon as one can describe the deterministic attractor of
Cahn-Morral systems, or at least the boundary of the domain of attraction of the
homogeneous state, then our main result applies to this situation as well. From a
numerical point of view, this description of the attractor is the subject of [18].

2 The Deterministic Equation and its Attractor

In this section we present the basic functional analytic setting as well as important
auxiliary results that are necessary for our study of the stochastic Cahn-Hilliard-Cook
model, all in the deterministic setting. More precisely, Section 2.1 collects well-known
definitions and results from the Hilbert space theory for (1), including the associated
energy, and then introduces the phase space of continuous functions which will be cru-
cial for our large deviation results. Section 2.2 establishes existence and uniqueness of
solutions to a non-autonomous generalization of (1) in the space of continuous func-
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tions, and derives some basic properties of an extended energy functional in this space.
Finally, Section 2.3 presents results from [24] on the attractor structure of (1) which
will be needed for our main result.

2.1 Functional-Analytic Framework and Phase Spaces

Let L̇2(0, 1) denote the Hilbert space of all square integrable functions u : (0, 1) → R
with zero average and standard inner product (·, ·)0. Then the functions

ek(x) =
√

2 · cos(kπx) for k ∈ N (3)

form a complete orthonormal set in L̇2(0, 1), and for every u ∈ L̇2(0, 1) its Fourier
coefficients are given by uk = (u, ek)0 for k ∈ N. Consider the operator

A = ∂4
x : L̇2(0, 1)→ L̇2(0, 1)

subject to homogeneous Neumann boundary conditions. Then A is a positive selfad-
joint operator with compact resolvent and spectrum

σ(A) =
{
µk = k4π4 : k ∈ N

}
,

with corresponding normalized eigenfunctions ek as defined above. The domain of A
is given by D(A) = H4, where we define the scale of Hilbert spaces

Hα =

{
u =

∞∑
k=1

ukek : |u|2α =
∞∑
k=1

µ
α/2
k u2

k <∞

}
, α ∈ R .

Notice that for α ≥ 0 we have L̇2(0, 1) = H0 ⊂ Hα, and that for α < 0 the space Hα

is the topological dual of H−α. Since A is positive and sectorial, one can define its
fractional powers via

Aβu =
∞∑
k=1

µβkukek for all u ∈ D(Aβ) = H4β , and β ≥ 0 .

The operator Aβ : Hα+4β → Hα is an isometry for arbitrary α ∈ R and β ≥ 0, i.e., we
have (Aβu,Aβv)α = (u, v)α+4β. Furthermore, the identity (Aβu,Aβv)α = (A2βu, v)α
holds for all u ∈ Hα+8β and v ∈ Hα+4β. For integer exponents α ∈ N0 the spaces Hα

are closely related to the standard Sobolev spaces Hα(0, 1) = Wα,2(0, 1). Indeed, Hα

is a closed subspace of Hα(0, 1) and its norm is equivalent to the standard norm. This
relation can be extended to arbitrary exponents and leads to Besov spaces, see [1, 2].
Furthermore, for real α1 < α2 one has the compact embedding Hα2 ↪→ Hα1 . Moreover,
we remark that on the space Hα we have

A1/2 = −∂2
x , with D(A1/2) = Hα+2 . (4)
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Finally, we introduce the projection operator P0 : Hα(0, 1) → Hα which projects a
function of the form u =

∑∞
k=0 ukek to its mass free part P0u =

∑∞
k=1 ukek.

In the above Hilbert space setting one can easily rewrite the Cahn-Hilliard model (1)
as an abstract evolution equation in Hα for any α ∈ N. For this, define

Aλu =
1

λ2
· Au and G(u) = −A1/2P0f(m+ u) ,

and consider the evolution equation

∂tu+ Aλu = G(u) , with initial condition u0 ∈ Hα . (5)

Assuming that f is either a polynomial or linearly bounded at infinity, one can then
easily show that G is a continuously differentiable and Lipschitz continuous function
from Hα into Hα−2, and standard results imply that for any α ∈ N the evolution
equation (5) has a unique mild solution u : [0,∞)→ Hα, i.e., a solution which satisfies
the variation of constants formula. Furthermore, this solution satisfies u(t) ∈ Hα+2 for
all t > 0 and is automatically a strong solution, i.e., it satisfies the differential equation
in (5) for almost all t in Hα−2.

While the local unique existence is automatic, global existence follows from the fact
that (1) is a gradient system. For any u ∈ H1 we define the energy functional

Eλ(u) =

∫ 1

0

(
1

2λ2
· |∂xu|2 + F (m+ u)

)
dx , (6)

where F is an antiderivative of the nonlinearity f . For the nonlinearity f(u) = u3− u,
the function F is the double well potential F (u) = (u2 − 1)2/4. It will at times be
convenient to rewrite Eλ(u) in the form

Eλ(u) =
1

2λ2
· |u|21 + V (u) , where V (u) =

∫ 1

0

F (m+ u) dx . (7)

One can easily show that Eλ : H1 → R is continuously differentiable and Lipschitz
continuous with

DEλ(u)h =
1

λ2
· (u, h)1 + (f(m+ u), h)0 ,

as well as

1

λ2
· (u, h)1 = (Aλu, h)−1 and DV (u)h = (f(m+ u), h)0 = (−G(u), h)−1 .

These identities finally furnish

−Aλu+G(u) = −∇H−1Eλ(u) , (8)
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i.e., the Cahn-Hilliard model (5) is the H−1-gradient system associated with Eλ. From
this observation it can readily be shown that the mild solution u of (5) satisfies

Eλ(u(t)) = Eλ(u0)−
∫ t

0

|∂tu(s)|2−1 ds (9)

for all α ∈ N. In other words, the energy decreases along solutions of the Cahn-Hilliard
model.

While the above-described Hilbert space setting is well-known, it does not suffice
for our applications to the Cahn-Hilliard-Cook model. One of the main problems of
the stochastic equation (2) is its lack of spatial regularity. Under the considered noise
process ξ, we simply do not have a solution in the space C([0, T ],H1), for any T > 0.
The deeper reason for this will be described in Section 3 and is due to the lack of
regularity of the stochastic convolution. Thus, we have to introduce a second phase
space, and our results will be obtained by combining the Hilbert space approach with
this new phase space. Specifically, we consider the Banach space

C =

{
u ∈ C[0, 1] :

∫ 1

0

u(x) dx = 0

}
,

equipped with the maximum norm | · |∞, where C[0, 1] denotes the space of all contin-
uous functions on [0, 1]. This space will be our default phase space.

Remark 2.1 In the following, solutions of evolution equations are generally under-
stood as taking values in the phase space C, unless explicitly stated otherwise. In addi-
tion, we generally use the topology of C to describe δ-neighborhoods of subsets A ⊂ C
and we write

Bδ(A) = {u ∈ C : |u− a|∞ < δ , for some a ∈ A} .

The boundary ∂A, the closure cl A, and the complement Ac are taken with respect to
the space C and its topology.

In order to study evolution equations on the phase space C, we need to state some
basic properties of the Laplacian on this space. For this, let B = −∂2

x on C subject to
homogeneous Neumann boundary conditions and with domain

D(B) =

{
u ∈

⋂
p≥1

W 2,p(0, 1) :

∫ 1

0

u(x) dx = 0 , ∂2
xu ∈ C , ∂xu(0) = ∂xu(1) = 0

}
. (10)

Then the operator B is positive and sectorial in C, see for example [31, Section 7.3.4].
Consequently, the extrapolated fractional power scale of order m ∈ N generated
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by (C, B) according to [4, Chapter 5] is well-defined. For our applications it suffices
to consider the case m = 1 and the scale of spaces [Cα, α ∈ [−1,∞)]. In particular,
one has C0 = C and C1 = D(B) with norm |u|C1 = |Bu|C0 = |Bu|∞. More generally,
the fractional powers Bβ, β ∈ R, are well-defined. For β > 0 they are isometric iso-
morphisms from Cα+β to Cα. Moreover, B considered as an operator on C−1 is positive
and sectorial, see for example [4, Chapter 5, Lemma 1.3.7]. Finally, by slightly abusing
notation we write Aλ = λ−2 · B2 for the linear part in (5), and will make clear in the
following whether we consider this operator in the Hilbert space setting or on C.

2.2 Deterministic Flow in the New Phase Space

In this section we will collect basic results for a generalized deterministic Cahn-Hilliard
equation, which can then later be used for the stochastic Cahn-Hilliard-Cook equation
as well, see Section 3.1. For the main results of this paper we are only interested in
deterministic and stochastic solutions as long as they stay in a certain bounded neigh-
borhood of the stable equilibrium h0 ≡ 0 mentioned in the introduction. Therefore,
in order to simplify our presentation for the stochastic model, we replace the standard
nonlinearity f(u) in (2) by a sufficiently smooth function f̂ which satisfies

f̂(m+ u) = f(m+ u) for |u| < R , f̂(m+ u) = 0 for |u| > 2R , (11)

for sufficiently large R > 0. The specific choice of R > 0 will be presented in Section 2.3
below. Using this new nonlinearity, consider the nonautonomous evolution equation

∂tu+ Aλu = Hw(u, t) , t ∈ [0, T ] , u(0) = u0 , (12)

where the right-hand side Hw depends on a given w ∈ C([0, T ], C) and is defined by

Hw(u, t) = −BP0f̂(m+ u− w(t)) . (13)

The nonlinearity f̂ was defined in (11) and the projection P0 was introduced after (4).
We are interested in the existence of mild solutions of (12), i.e., solutions u satisfying

u(t) = e−Aλtu0 +

∫ t

0

e−Aλ(t−s)Hw(u(s), s) ds .

Their existence is established in the following result.

Theorem 2.2 Consider the abstract evolution equation (12) in the phase space C.
Then for every u0 ∈ C and w ∈ C([0, T ], C) this problem has a unique mild solution u
in C which satisfies

u ∈ C([0, T ], C) ∩ C0,θ1
loc ([0, T ), Cα1) ∩ C0,θ2

loc ((0, T ), Cα2)

for all α1, α2 ∈ R with −1 ≤ α1 < 0 and −1 ≤ α2 < 1, where θ1 > 0, and θ2 > 0.
Furthermore, the solution map C × C([0, T ], C)× [0, T ]→ C given by (u0, w, t) 7→ u(t)
is continuous.
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Proof: This theorem is a direct consequence of [39, Lemma 47.1, Theorem 47.5,
Theorem 47.7]. One can easily verify that supt∈[0,T ] |Hw(u, t)−Hw(v, t)|C−1 ≤ C|u−v|∞.
Moreover, the nonlinearity is globally bounded, and thus there exists a constant c > 0
such that |Hw(u, t)|C−1 ≤ c for all (u, t) ∈ C × R+. Note also that |B · |C−1 = | · |∞. 3

Remark 2.3 For the autonomous special case w(t) ≡ 0 this theorem provides the
semiflow Sλ(t) on C for the truncated Cahn-Hilliard model. Using a standard bootstrap
argument one can show that in this case the inclusions u(t) = Sλ(t)u0 ∈ Cα are valid
for all α > −1 and t > 0. Due to the embeddings C1 ↪→ H2 ↪→ H1 one can therefore
see that the trajectories {u(t) : t > 0} coincide with those constructed in the Hilbert
space setting, as long as they stay in BR(0).

Remark 2.4 It will be shown in Section 3.1 that choosing w as the stochastic convolu-
tion associated with Aλ naturally leads to an existence result for solutions of (2) in C,
if the standard nonlinearity f is replaced by the truncated nonlinearity f̂ .

We close this section with a few comments concerning the energy functional Eλ(u)
defined in Section 2.1. Since, in general, continuous functions are not contained in H1,
we extend the definition of Eλ(u) given in (6) via

Eλ(u) =


1

2λ2
· |u|21 +

∫ 1

0

F (m+ u) dx , for u ∈ H1 ,

+∞ , otherwise ,

(14)

where F is again an antiderivative of f . Note that on BR(0), this energy functional
coincides with the one obtained by using the truncated nonlinearity f̂ . The following
lemma collects some basic properties of the extended energy functional.

Lemma 2.5 The functional Eλ defined in (14) and considered as a mapping E : C → R̄
is lower semicontinuous, i.e., for any sequence (un) ∈ C converging to u ∈ C one has

Eλ(u) ≤ lim inf
n→∞

Eλ(un) .

In particular, the functional Eλ attains its minimum on closed subsets of C. Moreover,
for w(t) ≡ 0 and u0 ∈ C the mapping t 7→ Eλ(Sλ(t)u0) is continuous in t > 0,
where Sλ(t) was introduced in Remark 2.3. If in addition one has u0 ∈ BR(0), then the
function Eλ(Sλ(·)u0) is monotone decreasing as long as Sλ(t)u0 stays in BR(0).

Proof: Lower semicontinuity follows from [23, Chapter 3, Lemma 2.1]. Due to the
compact embedding H1 ↪→ C, combined with the estimate

1

2λ2
· |u|21 − c1 ≤ Eλ(u) , (15)
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it is clear that Eλ attains its minimum on closed sets. The remaining statement fol-
lows from the fact that for t > 0 the solution Sλ(t)u0 coincides with the solution
constructed in the Hilbert space setting, at least as long as it stays in BR(0), where
the modified nonlinearity has no effect. Recall also that in the Hilbert space setting,
the functional Eλ is a Lyapunov function for the semiflow Sλ(t) due to (9). 3

Remark 2.6 Since the energy Eλ is a Lyapunov functional for the flow generated
by (1) in H1, one can readily see that for u0 6∈ H1 ∩BR(0) we have E(Sλ(t)u0)→ +∞
as t→ 0+.

2.3 Some Results on the Deterministic Attractor Structure

In this section we recall results on the attractor structure of the deterministic Cahn-
Hilliard model (1) for the case f ′(m) > 0, which is assumed throughout this paper. It is
well-known that the semiflow generated by (1) inH1 has a compact global attractorAλ,
see for example [42]. As we mentioned in Section 2.1, the deterministic Cahn-Hilliard
model is a gradient system with respect to the energy functional Eλ, and thus the
attractor Aλ consists of equilibrium solutions and heteroclinic connections between
them.

The set of equilibrium solutions for the deterministic Cahn-Hilliard model has been
determined completely by Grinfeld and Novick-Cohen in [25]. They showed that in the
nucleation regime, for fixed λ > 0 there exists an integer Nλ, such that all equilibria of
the Cahn-Hilliard model (1) are given by the spike solutions sk±,λ, for k = 1, . . . , Nλ, the

transition layer solutions ik±,λ, for k = 0, . . . , Nλ−1, and the homogeneous state h0 ≡ 0,
see also Figure 1. The integer Nλ converges to infinity as λ→∞. In the following, we
use the abbreviation

Eλ =
{
h0 , sk±,λ , ik−1

±,λ : k = 1, . . . , Nλ

}
for the set of equilibria of (1). A sketch of the complete equilibrium bifurcation diagram
is shown in Figure 2. The specific shape of the solutions s1

±,λ and i0±,λ has already been
shown in Figure 1. Notice that s1

+,λ and s1
−,λ are related via s1

+,λ(x) = s1
−,λ(1− x), and

similarly for i0±,λ. The solutions sk±,λ and ik±,λ for larger k are obtained from these via
even reflections, extensions, and rescaling.

Unfortunately, while the stationary states are completely known, a complete de-
scription of the attractor structure does not exist. Partial results can be found in [26].
For the purpose of this paper, we are mainly interested in a deeper understanding of the
domain of attraction of the homogeneous state h0, particularly, its boundary. Such a
description has been recently obtained by one of the authors in [24]. Before presenting
the precise result, we need to introduce the following assumption.

Assumption 2.7 Consider the energy-based bifurcation diagram for the Cahn-Hilliard
model (1) shown in Figure 2. Suppose that there exists an interval Λ ⊂ R+ of parameter
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Figure 2: Sketch of the equilibrium bifurcation diagram for the deterministic Cahn-
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;¸§
k M

¸E ;¸§
1s

;¸§
0i

;¸§
1i

;¸§
{2ki

;¸§
{1ki

0h

Figure 3: Sketch of the attractor structure result in Theorem 2.8. The boundary
spikes s1

±,λ are saddle solutions on the boundary of attraction of the homogeneous

state h0, while the equilibria in Mk
±,λ are contained in a different attracting set.
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values λ such that on Λ, the s1
±,λ-branch intersects the im−1

±,λ -branch for m ≥ 1 in a
unique point, i.e., there exist unique νm ∈ Λ such that

Eνm
(
s1
±,νm

)
= Eνm

(
im−1
±,νm

)
.

While we conjecture that this assumption holds with Λ = R+, no proof exists at the
present time. However, Assumption 2.7 has been verified numerically for Λ = (0, 100).

Theorem 2.8 Suppose that Assumption 2.7 holds, let λ ∈ (νk, νk+1] ∩ Λ be fixed, and
let Mk

±,λ denote the Morse set containing the equilibrium solutions i0±,λ, . . . , i
k−1
±,λ . Then

one branch of the unstable manifold of s1
±,λ converges to the homogeneous state h0, while

the other branch converges to the Morse set Mk
±,λ. Moreover, there are no connecting

orbits between Mk
±,λ and h0.

This theorem, whose proof can be found in [24], establishes all the attractor information
that is necessary for our application. Its statement is illustrated in Figure 3.

As mentioned before, understanding the boundary ∂D of the open domain of attrac-
tion D ⊂ H1 of the homogeneous state h0 lies at the heart of our stochastic nucleation
result. Yet, the above result is for the original Cahn-Hilliard model (1) with nonlin-
earity f(u) = u3 − u, and for our stochastic application it is more convenient to work
with the truncated system (12) with w ≡ 0. Moreover, while the classical model is
usually studied in the Hilbert space setting, we have to consider the phase space C. The
remainder of this section describes the framework that will be used to bring together
these different points of view.

Due to the compactness of the attractor Aλ in H1 and Sobolev’s embedding theo-
rem, there exists a constant ρ > 0 such that Aλ ⊂ Bρ(0) ⊂ C. Recall from Remark 2.1
that balls are implicitly understood to be defined with respect to the maximum norm
in C. Furthermore, choose the constant R in the definition of f̂ in (11) in such a way
that R > 2ρ. Now consider the truncated semiflow Sλ on C which was introduced in
Remark 2.3. Let B denote the open basin of attraction of the homogeneous state h0

with respect to this semiflow Sλ. Since B will significantly differ from the D introduced
above, we define a set D(ρ) ⊂ C via

D(ρ) = {u ∈ B : Sλ(t)u ∈ Bρ(0) for all t ≥ 0} , (16)

see also Figure 4.
It is clear that D(ρ) is a bounded open set in C, and that each point u ∈ D(ρ)

is attracted by h0 in both semiflows. According to our choice of ρ > 0, the attrac-
tor Aλ of the non-truncated semiflow is contained in Bρ(0). In other words, the set Eλ
of equilibria together with their connecting orbits are contained in Bρ(0). Due to
Lemma 2.5 and (15), and after possibly increasing ρ further, one can assume that all
points on ∂Bρ(0) have larger energy Eλ than any of the equilibria in Eλ, i.e., one has

Ēλ = min
u∈∂Bρ(0)

{Eλ(u)} > max
e∈Eλ
{Eλ(e)} . (17)

13
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Figure 4: The special attracting set D(ρ) as a subset of the domain of attraction B.

Then the following holds.

Lemma 2.9 Suppose that Assumption 2.7 holds, let λ ∈ Λ, and consider the set D(ρ)
defined in (16). Then the first spikes s1

±,λ are the unique minimizers of the problem

Eλ(u)→ min for u ∈ ∂D(ρ) ,

where Eλ denotes the extended energy introduced in (14).

Proof: Since s1
±,λ ∈ ∂D(ρ), it is clear that the minimum can be at most Eλ(s

1
±,λ).

Assume that there exists an element u ∈ ∂D(ρ) \ {s1
±,λ} with Eλ(u) < Eλ(s

1
±,λ). Then

one has u ∈ H1 and the solution Sλ(t)u stays in ∂B for all t ≥ 0. Since Sλ is a
gradient semiflow, in combination with the fact that the Cahn-Hilliard model (1) has
only finitely many equilibrium solutions for fixed λ, see again [25], one obtains that for
some e ∈ E0

λ with Eλ(e) ≤ Eλ(s
1
±,λ), where E0

λ = Eλ ∩ ∂B, we have Sλ(t)u → e. Due
to the positive invariance of the boundary ∂B this finally furnishes e ∈ ∂D(ρ), which
contradicts Theorem 2.8. 3

Essential information on the set D(ρ) is shown in Figure 4. Note that the orbits
starting from the first spikes s1

±,λ which are not attracted by the homogeneous state h0

necessarily are attracted by some equilibria e±, respectively. These equilibrium solu-
tions satisfy both e± 6∈ cl B and Eλ(e±) < Eλ(s

1
±,λ). We close this section with an

auxiliary result which will be needed later.
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Lemma 2.10 Suppose that Assumption 2.7 holds and let λ ∈ Λ. Fix an arbitrary δ > 0
and let Bδ(E0

λ∪{h0}) denote the open δ-neighborhood of the boundary equilibria and h0.
Then the first hitting time of the deterministic trajectories {Sλ(t)u0 : t ≥ 0} with this
neighborhood is bounded uniformly in u0 ∈ cl D(ρ), i.e., there exists 0 < T0 < +∞
such that

sup
u0∈cl D(ρ)

inf
{
t ≥ 0 : Sλ(t)u0 ∈ Bδ

(
E0
λ ∪ {h0}

)}
≤ T0 .

Proof: Suppose that T0 does not exist. Then there exists a sequence (un)n∈N in cl D(ρ)
such that Sλ(t)un /∈ Bδ(E0

λ ∪ {h0}) for all 0 ≤ t ≤ n. Due to the regularization of the
truncated semigroup Sλ and the compact embedding C1 ↪→ C, there exists a point
u ∈ cl D(ρ) with un → u in C as n → ∞, possibly after passing to a subsequence.
Then Sλ(t)u /∈ Bδ(E0

λ ∪ {h0}) for all t ≥ 0. On the other hand, cl D(ρ) is positively
invariant, which contradicts the fact that in a gradient system every point is attracted
by an equilibrium. 3

3 The Stochastic Equation and Large Deviations

In this section we present the precise mathematical framework for the stochastic Cahn-
Hilliard equation (2). In Section 3.1 we present the probabilistic framework for our
noise process ξ, introduce the associated stochastic convolution, determine its regular-
ity properties, and then use this to establish the existence of a mild solution of the
stochastic Cahn-Hilliard-Cook equation in the phase space C. The law of the mild solu-
tion is the subject of Section 3.2, where we derive the Freidlin-Wentzell large deviation
estimates.

3.1 The Stochastic Convolution and Mild Solutions

It was mentioned earlier that in studying the stochastic Cahn-Hilliard-Cook model, one
has to be careful about the various topologies that are involved. While the deterministic
equation is usually studied in the spaces Hα with α ∈ N, it is a gradient system with
respect to Eλ only in the H−1-topology. Furthermore, for our stochastic application we
need to consider the phase space C. In this section, we have to introduce yet another
topology, namely that of H−2, which is necessary for obtaining the appropriate large
deviations estimates. Furthermore, this topology will be important for relating the
quasi-potential in Section 4.1 to the energy Eλ.

We specify the noise process in (2) in terms of an H−2-valued Wiener process W .
For this, let ek, for k ∈ N, be defined as in (3), and let µk = k4π4. Then the ek form an
orthonormal basis in H0, and they are exactly the eigenfunctions of the operators Aλ
and B defined in Section 2.1, with

Bek =
√
µk · ek and Aλek =

µk
λ2
· ek , where µk = k4π4 .
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We define the stochastic process W as the derivative of space-time white noise, i.e.,

W (t) =
∞∑
k=1

µ
1/4
k · βk(t) · ek , (18)

where {βk : k ∈ N} denotes a family of independent real Brownian motions over a
common probability space (Ω,F ,P). Thus, the process W is an H−2-valued Q-Wiener
process, where the covariance operator Q = A−1/2 is of trace-class, see also (4). For
details on Q-Wiener processes we refer the reader to [17, Chapter 4]. The stochastic
convolution process associated with W and Aλ is defined by

WAλ(t) =

∫ t

0

e−Aλ(t−s) dW (s) , (19)

where e−Aλt denotes the analytic semigroup generated by −Aλ on H−2. One can easily
see that the stochastic convolution is the mild solution of the linear stochastic equation
in H−2 which is given by

dv = −Aλvdt+ dW (t) , v(0) = 0 . (20)

Furthermore, using the system of eigenfunctions one can readily see that

WAλ(t, x) =
∞∑
k=1

µ
1/4
k ·

∫ t

0

e−µk·(t−s)/λ
2

dβk(s) · ek(x) .

The following theorem, which is essentially taken from [16, Proposition 1.1] and relies on
the celebrated Kolmogorov test, addresses the regularity of the stochastic convolution.
Similar results can be found in [6, Section 2.2.2] and [7, Lemma 5.1].

Theorem 3.1 Let W be the process defined in (18), and let Aλ be defined as in Sec-
tion 2.1. Then the stochastic convolution WAλ has a version which is α-Hölder contin-
uous with respect to (t, x), for t ≥ 0 and x ∈ [0, 1], for any α ∈ [0, 1/8).

Using the above regularity of the stochastic convolution, one can now address the
existence of solutions for the stochastic Cahn-Hilliard-Cook model. In contrast to the
linear equation (20), the nonlinear Cahn-Hilliard-Cook equation (2) is not well-posed
as an abstract evolution equation in H−2, and we therefore have to use the new phase
space C. The abstract stochastic evolution equation is given by

du = (−Aλu+H0(u)) dt+ σdW (t) , u(0) = u0 ∈ C , (21)

where the truncated nonlinearity H0 was defined in (13). A C-valued process u = uu0
σ

is called mild solution of (21), if for arbitrary t ≥ 0 we have

uu0
σ (t) = e−Aλtu0 +

∫ t

0

e−Aλ(t−s)H0 (uu0
σ (s)) ds+ σWAλ(t) , P− a.s. . (22)

It can readily be shown that problem (21) is well-posed in this Banach space setting.
In fact, we have the following result.
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Theorem 3.2 The stochastic Cahn-Hilliard-Cook model, using the formulation (21)
and (22), and with initial condition u0 ∈ C, has a unique mild solution u = uu0

σ

in C([0,∞), C). Moreover, there exists a constant M > 0 such that for all u0, u1 ∈ C
and all t ≥ 0 we have

|uu0
σ (t)− uu1

σ (t)|∞ ≤ eMt · |u0 − u1|∞ . (23)

The proof of this result is straightforward using pathwise fixed-point arguments and
the regularity of the stochastic convolution WAλ established in Theorem 3.1. One just
has to employ Theorem 2.2 with w = σWAλ . Recall that the nonlinearity H0 is globally
Lipschitz, and that for the analytic semigroup one has the estimates∥∥e−Aλt∥∥L(C) ≤ C as well as

∥∥∥A1/2
λ e−Aλt

∥∥∥
L(C)
≤ C ·

(
1 + t−1/2

)
.

3.2 The Law of the Mild Solution

In this section we study the law of the mild solution. Particularly, we derive Freidlin-
Wentzell type large deviation estimates in the phase space of continuous functions.
Our results are aimed at providing the appropriate framework for studying the domain
exit problem in the next section. Similar results, but in a different setting, have been
obtained in [21, 40].

As in Section 3.1, we consider the Cahn-Hilliard-Cook equation in the abstract
form (21), and denote its unique mild solution by uu0

σ (t). According to Theorem 3.2,
this mild solution induces a law L (uu0

σ (·)) on the Banach space

CT = C([0, T ], C) with norm |u|CT = max
t∈[0,T ]

|u(t)|∞ . (24)

In order to derive the large deviation estimates of Freidlin and Wentzell for the
law L (uu0

σ (·)), we follow the lines of [17] and proceed in three steps. First of all,
the estimates are established for the linear problem on the Hilbert space

HT = L2
(
(0, T ),H−2

)
with norm |u|HT

=

(∫ T

0

|u(s)|2−2 ds

)1/2

. (25)

Secondly, and using the fact that the linear solutions already live in the smaller
space CT , these results can be readily lifted to the new space CT . Finally, the es-
timates are lifted to the full nonlinear situation via a transformation argument.

We begin by considering the linearized Cahn-Hilliard-Cook model in a Hilbert space
setting. More precisely, consider the phase spaceH−2 and the linear stochastic equation

dv = −Aλvdt+ σdW (t) , v(0) = v0 , (26)
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where W was defined in (18). If we let WAλ denote the stochastic convolution intro-
duced in (19), which solves the linear evolution equation (20), then for any v0 ∈ H−2

the mild solution vv0σ of (26) is given by

vv0σ (t) = e−Aλtv0 + σWAλ(t) , (27)

and the law of this solution is a symmetric Gaussian measure on the Hilbert space HT

defined in (25). In fact, it follows from [17, Section 5.1.2] that

M v0
σ = L (vv0σ (·)) = N (e−Aλtv0 , σ2K ) , (28)

where K denotes the covariance operator of the stochastic convolution WAλ , which is
explicitly given by

(K ϕ)(t) =

∫ T

0

g(t, s)ϕ(s) ds , with g(t, s) =

∫ t∧s

0

A−1/2e−Aλ(t+s−2r) dr . (29)

For more details we refer the reader to [17, Section 5.1.2]. The family of measures M v0
σ

satisfies the large deviation principle. We begin by considering the case v0 = 0.

Lemma 3.3 The family {M 0
σ }σ>0 defined in (28) satisfies the large deviation principle

with rate function I0
T : HT → [0,∞] defined by

I0
T (h) =


1

2
·
∣∣K −1/2h

∣∣2
HT

, for h ∈ Im(K 1/2) ,

∞ , otherwise .

(30)

Furthermore, let K0
T (r) = {h ∈ HT : I0

T (h) ≤ r} and let Bδ(·) denote the open
δ-neighborhood with respect to the norm | · |HT

. Then for all r0 > 0, δ > 0, and γ > 0
there exists a σ0 > 0 such that for arbitrary σ ∈ (0, σ0) and r ∈ (0, r0) one has

M 0
σ

(
Bδ

(
K0
T (r)

))
≥ 1− e−(r−γ)/σ2

.

In addition, for all r0 > 0, δ > 0, and γ > 0 there exists a σ0 > 0 such that for
arbitrary σ ∈ (0, σ0) and all h ∈ K0

T (r0) one has

M 0
σ (Bδ (h)) ≥ e−(I0T (h)+γ)/σ2

.

In other words, the estimates of Freidlin and Wentzell hold.

For the proof of this lemma, as well as for the precise definition of the large deviation
principle, we refer the reader to [17, Proposition 12.8, Chapter 12].
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In view of our further applications of Lemma 3.3, it is convenient to establish a
control-theoretic representation of the rate function I0

T (h) defined in (30). For this,
consider the control system associated with equation (26), which is given by

∂tv = −Aλv +Q1/2c , v(0) = v0 , (31)

where the control function c satisfies c ∈ HT . Recall from Section 3.1 that for our
specific noise process we have Q = A−1/2, see also (4). One can readily verify that for
initial conditions v0 ∈ H−2 the mild solution vv0c ∈ C([0, T ],H−2) of (31) exists and is
given by

vv0c (t) = e−Aλtv0 +

∫ t

0

e−Aλ(t−s)A−1/4c(s) ds . (32)

Specifically for v0 = 0 we denote the corresponding solution operator S by

S : HT →HT , S c = v0
c .

One can show that the covariance operator K defined in (29) satisfies K = S S ∗,
where S ∗ denotes the adjoint of S . Furthermore, the operator S is one-to-one, and
one has

Im(S ) = Im(K 1/2) = W 1,2
(
(0, T ),H−1

)
∩ L2

(
(0, T ),H3

)
∩ {v(0) = 0} ,

as well as ∣∣K −1/2h
∣∣
HT

= |c|HT
, where S c = h and h ∈ Im(S ) ,

see [17, Appendix B]. This immediately furnishes the following lemma.

Lemma 3.4 Consider the rate function I0
T defined in (30), as well as the control prob-

lem (31) with v0 = 0 and corresponding mild solution v0
c . Then we have

I0
T (v) =


1

2
· |c|2HT

, for v = v0
c ,

+∞ , for v /∈ Im(S ) .

We are now in a position to formulate the large deviation principle for general v0 ∈ H−2.
For this, define

Iv0T (v) = I0
T (v − e−Aλtv0) , v ∈HT and Kv0

T (r) = {v ∈HT : Iv0T (v) ≤ r} .

Due to the identity v0
c(t) = vv0c (t) − e−Aλtv0, the function v is contained in Kv0

T (r) if
and only if v− e−Aλtv0 ∈ K0

T (r). Thus, Lemmas 3.3 and 3.4 furnish the following large
deviation result in the space HT .
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Theorem 3.5 The family {M v0
σ }σ>0 defined in (28) satisfies the large deviation prin-

ciple with rate function Iv0T : HT → [0,∞]. Furthermore, let Bδ(·) denote the open
δ-neighborhood with respect to the norm | · |HT

. Then for all r0 > 0, δ > 0, and γ > 0
there exists a σ0 > 0 such that for all σ ∈ (0, σ0) and r ∈ (0, r0) we have

M v0
σ (Bδ (Kv0

T (r))) ≥ 1− e−(r−γ)/σ2

,

and for all r0 > 0, δ > 0, and γ > 0 there exists a σ0 > 0 such that for all σ ∈ (0, σ0)
and v ∈ Kv0

T (r0) one has

M v0
σ (Bδ(v)) ≥ e−(Iv0T (v)+γ)/σ2

.

We now turn our attention to the second step mentioned above, i.e., we establish the
Freidlin-Wentzell estimates in the space of continuous functions. One can readily see
that for initial conditions v0 ∈ C the solutions vv0σ of (26) and the solutions vv0c of (31)
are already contained in the smaller space CT ⊂HT . Due to the embedding C ↪→ H−2

it follows easily that the space CT is continuously embedded in HT . Furthermore, a
nontrivial result in [3, Theorem 10.28] or [41, Theorem 4.5.4] then implies that CT is in
fact a Borel set in HT . Thus, one can combine Theorem 3.5 with [17, Theorem 12.14]
to establish the following result.

Theorem 3.6 Let v0 ∈ C and let vv0c denote the mild solution (32) of the associated
control problem (31). As before, define

Kv0
T (r) = {v ∈HT : Iv0T (v) ≤ r} =

{
vv0c ∈ CT : |c|2HT

≤ 2r
}
.

Then the mild solution vv0σ of (26), as defined in (27), satisfies the following Freidlin-
Wentzell estimates. For all r0 > 0, δ > 0, and γ > 0 there exists a σ0 > 0 such that
for all v0 ∈ C, σ ∈ (0, σ0), and r ∈ (0, r0) one has

P (distCT (vv0σ , K
v0
T (r)) < δ) ≥ 1− e−(r−γ)/σ2

.

In addition, for all r0 > 0, δ > 0, and γ > 0 there exists a σ0 > 0 such that for
arbitrary v0 ∈ C, σ ∈ (0, σ0), and all v ∈ CT satisfying Iv0T (v) ≤ r0 one has

P
(
|vv0σ − v|CT < δ

)
≥ e−(Iv0T (v)+γ)/σ2

.

In the final step we now consider solutions uu0
σ of the nonlinear problem (21) with

initial conditions u0 ∈ C. The associated control system is given by

∂tu = −Aλu +H0(u) +Q1/2c , u(0) = u0 , (33)

with control function c ∈HT and mild solution uu0
c ∈ CT satisfying

uu0
c (t) =

∫ t

0

e−Aλ(t−s)H0(uu0
c (s)) ds+ vu0

c (t) , (34)
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where vu0
c (t) denotes the solution of (31) — which due to u0 ∈ C is contained in CT .

Analogous to Theorem 3.2, one can show that for any u0 ∈ C and c ∈HT the integral
equation (34) has a unique solution, and that in addition one has

|uu0
σ − uu0

c |CT ≤ L · |vu0
σ − vu0

c |CT . (35)

Together with Theorem 3.6 and the definition

Iu0
T (u) =


1

2
· |c|2HT

, if there exists a c ∈HT with u = uu0
c ,

+∞ , otherwise ,

(36)

we finally obtain the main result of this section.

Theorem 3.7 Let u0 ∈ C, let uu0
c denote the mild solution (34) of the associated

control problem (33), and let

Ku0
T (r) = {u ∈HT : Iu0

T (u) ≤ r} =
{
uu0
c ∈ CT : |c|2HT

≤ 2r
}
.

Then the mild solution uu0
σ of (21) as defined in (22) satisfies the Freidlin-Wentzell

estimates in the following form. For all r0 > 0, δ > 0, and γ > 0 there exists a σ0 > 0
such that for all u0 ∈ C, σ ∈ (0, σ0), and r ∈ (0, r0) one has

P (distCT (uu0
σ , K

u0
T (r)) < δ) ≥ 1− e−(r−γ)/σ2

.

In addition, for all r0 > 0, δ > 0, and γ > 0 there exists a σ0 > 0 such that for
arbitrary u0 ∈ C, σ ∈ (0, σ0), and for all u ∈ CT satisfying Iu0

T (u) ≤ r0 one has

P
(
|uu0
σ − u|CT < δ

)
≥ e−(Iu0

T (u)+γ)/σ2

.

4 Stochastic Domain Exit

In this final section of the paper we return to the nucleation phenomenon as described
by the stochastic Cahn-Hilliard-Cook model. It will be shown that trajectories of this
stochastic equation which originate at the homogeneous state h0 can overcome the
attracting influence of the underlying deterministic system, in which h0 is an attract-
ing equilibrium. In fact, a trajectory of the stochastic equation leaves any bounded
neighborhood U of h0 almost surely, see for instance [17, Proposition 12.17]. Thus,
one can ask whether there is an exit set E which occupies only a small portion of the
boundary ∂U where the stochastic trajectories leave U with high probability. In this
section, we determine this exit set for the canonical candidate for U , i.e., the open
basin of attraction of the stable equilibrium h0 in the non-truncated semiflow. This is
accomplished in two steps. In Section 4.1 we establish a link between the Cahn-Hilliard
energy defined in (6) and the quasi-potential for (21). After that, Section 4.2 addresses
the domain exit problem.
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4.1 The Energy as Quasi-Potential

In this first section it will be shown that the peculiar functional-analytic setup used
in this paper allows us to relate the classical Cahn-Hilliard energy as described by (6)
or (7) to the quasi-potential for the stochastic Cahn-Hilliard-Cook model (21) which
describes the likelihood of certain stochastic orbits in the small-noise limit. As we
mentioned several times before, this connection is not obvious due to the fact that the
Cahn-Hilliard model is the H−1-gradient of the energy. To begin with, let u0, u1 ∈ C
be arbitrary. Then the quasi-potential I(u0, u1) for the problem (21) is defined by

I(u0, u1) = inf

{
1

2
·
∫ T

0

|c(s)|2−2 ds : uu0
c (T ) = u1 , for some T > 0

}
,

where uu0
c denotes the solution of the associated nonlinear control problem (33). Note

that in this definition the time T is not fixed. Using (36) one can see that

I(u0, u1) = inf {Iu0
T (u) : u(T ) = u1 , for some T > 0} .

Interpreting the value
∫ T

0
|c(s)|2−2 ds/2 as the energy dissipated by the control c, one can

say that I(u0, u1) is the minimal energy required by the nonlinear control system (33)
to transfer the point u0 to the point u1.

For our application to nucleation, we need to understand the quasi-potential cen-
tered at the homogeneous state h0, i.e., we need to be able to compute I(h0, u1), for
any point u1 ∈ D(ρ) with Eλ(u1) < Ēλ, see also (16) and (17). This is accomplished
in the following lemma.

Lemma 4.1 For u1 ∈ D(ρ) with Eλ(u1) ≤ Ēλ the quasi-potential can be determined
from the Ginzburg-Landau free energy (6) via the identity

I
(
h0, u1

)
= 2 ·

(
Eλ (u1)− Eλ

(
h0
))

.

Proof: We begin by establishing the inequality I(h0, u1) ≤ 2(Eλ(u1) − Eλ(h0)). For
this, let c(t) be an arbitrary control function and define c̃(t) = A−1/4c(t). Using the
setup of Section 2.3, as well as Remark 2.1, and recalling that the energy functional (6)
satisfies (8), one obtains for all u ∈ B2ρ(0) ∩H1 the identity

H0(u) = G(u) = −∇H−1V (u) ,

where V was defined in (7). Due to the regularity of the initial condition h0 the
solution uh

0

c is in fact a strong solution in C([0, T ],H1), and on the set B2ρ(0) the
control system (33) is equivalent to the H−1-gradient system

∂tu = −Aλu−∇H−1V (u) + c̃ , u(0) = h0 . (37)
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Now let u = uh
0

c denote the solution of (37) and let T > 0 be such that u stays in B2ρ(0)
on [0, T ]. Then one can rewrite the action Ih

0

T (u) without reference to the control as

Ih
0

T (u) = Ih
0

T

(
uh

0

c

)
=

1

2
·
∫ T

0

|c(s)|2−2 ds =
1

2
·
∫ T

0

|c̃(s)|2−1 ds

=
1

2
·
∫ T

0

|u̇(s) + Aλu(s) +∇H−1V (u(s))|2−1 ds

=
1

2
·
∫ T

0

|u̇(s)− Aλu(s)−∇H−1V (u(s))|2−1 ds

+2 ·
(
Eλ (u(T ))− Eλ

(
h0
))

.

We now construct a path u = uh
0

c from h0 to u1 which stays in the set Bρ(0), and
for which the integral term in the last line above can be made arbitrarily small. More
precisely, we construct the path u : [0, T ]→ C by concatenating paths u1 : [0, T1]→ C
and u2 : [0, T2] → C, where T = T1 + T2 and u1(T1) = u2(0). The second path is
obtained from the deterministic flow Sλ defined in Remark 2.3 via u2(t) = Sλ(T2−t)u1,
i.e., one considers the time-reversed orbit {Sλ(t)u1 : 0 ≤ t ≤ T2}. The time T2 is
chosen sufficiently large, see below. Now define u1(t) = t · Sλ(T2)u1/T1, i.e., the first
path is the linear interpolation between the homogeneous state h0 and the point u2(0).
For T2 →∞ we have |Sλ(T2)u1|3 → 0, and the action of the first path, which is given
by Ih

0

T1
(u1), converges to 0. In the action of the second path the integral term in the

last line above vanishes, and one obtains Ih
0

T2
(u2) = 2 · (Eλ(u1) − Eλ(u2)). Since this

term converges to 2 · (Eλ(u1)− Eλ(h0)) as T2 →∞ one finally obtains

Ih
0

T (u) = Ih
0

T1
(u1) + Ih

0

T2
(u2) → 2 ·

(
Eλ (u1)− Eλ

(
h0
))

for T2 →∞ .

It remains to prove I(h0, u1) ≥ 2 · (Eλ(u1)− Eλ(h0)). Note that a path u : [0, T ]→ C
from h0 to u1 either stays in Bρ(0) on all of [0, T ], or there exists a time T0 ∈ (0, T )
with u(T0) ∈ ∂Bρ(0) and u(t) ∈ Bρ(0) on [0, T0). In the first case, the action can
be estimated similar to the previous paragraph by Ih

0

T (u) ≥ 2 · (Eλ(u1) − Eλ(h0)). In
the second case, notice that Ih

0

T (u) ≥ Ih
0

T0
(u) ≥ 2 · (Eλ(u(T0)) − Eλ(h0)). Due to (17)

and Eλ(u1) ≤ Ēλ we then obtain Ih
0

T (u) ≥ 2 · (Ēλ − Eλ(h0)) ≥ 2 · (Eλ(u1) − Eλ(h0)).
This completes the proof of the lemma. 3

4.2 Exit from the Deterministic Attracting Set

In this final section we address the domain exit problem which lies at the heart of
our approach to nucleation. We begin by a slight change of setting. For fixed σ > 0
the solutions {uu0

σ (t)}t≥0, u0∈C of the Cahn-Hilliard-Cook model form a strong Markov
family, see for example [17, Chapter 9], and it turns out to be more convenient to
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work within this framework. Thus, we consider in the following the strong Markov
process (uσ(t),Pu0) which is defined by

Pu0 (uσ(t) ∈ Γ) = P (uu0
σ (t) ∈ Γ) ,

see [23, Chapter 1, Paragraph 2] for more details. For arbitrary T > 0, we can then
reformulate the large deviations estimates of Theorem 3.7. For all r0 > 0, δ > 0, and
all γ > 0 there exists a σ0 > 0 such that for all u0 ∈ C, σ ∈ (0, σ0), and r ∈ (0, r0) the
estimate

Pu0 (distCT (uσ, K
u0
T (r)) < δ) ≥ 1− e−(r−γ)/σ2

(38)

holds. In addition, for all r0 > 0, δ > 0, and γ > 0 there exists a σ0 > 0 such that for
all u0 ∈ C, σ ∈ (0, σ0), and for arbitrary u ∈ CT satisfying Iu0

T (u) ≤ r0 one has

Pu0 (|uσ − u|CT < δ) ≥ e−(Iu0
T (u)+γ)/σ2

. (39)

In Section 2.3 we constructed a special subset D(ρ) of the deterministic basin of attrac-
tion B of the homogeneous state h0, see (16). In this section, we are interested in the
points where the stochastic trajectories {uu0

σ (t) : t ≥ 0} originating at u0 ∈ D(ρ) leave
the set D(ρ). To keep our presentation and the resulting proofs as simple as possible,
it is convenient to consider a slightly smaller set than D(ρ). For this, let κ > 0 be a
small constant, let ρ > 0 denote the generally large constant introduced in Section 2.3,
and define

D(κ, ρ) = D(ρ) \Bκ

(
s1
±,λ
)
. (40)

This definition is illustrated in Figure 5. The exit points from the set D(κ, ρ) can be
defined in terms of the stopping time

τ = τ (σ, D(κ, ρ)c) , (41)

where in general we define for Borel sets G and the given Markov process (uσ(t),Pu0)
the corresponding hitting time as τ(σ,G) = inf{t ≥ 0 : uσ(t) ∈ G}. Using this nota-
tion, the exit points are then given by uσ(τ). In Lemma 2.9 we observed that the first
spikes s1

±,λ are the unique minimizers of the energy Eλ on the boundary ∂D(ρ). Recall-
ing that in D(ρ) the energy Eλ(u) essentially coincides with the quasi-potential I(h0, u),
as shown in Lemma 4.1, we can then formulate the following main result of this paper.

Theorem 4.2 Suppose that Assumption 2.7 holds, let λ ∈ Λ, let D(κ, ρ) be defined as
in (40), and consider the exit time τ defined in (41). Then for any δ > κ we have

Pu0

(
uσ(τ) /∈ Bδ

(
s1
±,λ
))
→ 0 as σ → 0 ,

uniformly in the initial condition u0 ∈ Bc(h
0), where c > 0 is sufficiently small to

ensure that Bc(h
0) ⊂ D(κ, ρ), and that the deterministic orbits {Sλ(t)u0 : t ≥ 0}

remain bounded away from the boundary ∂D(κ, ρ) for all u0 ∈ Bc(h
0).
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Figure 5: Construction of the Markov chain for the exit from D(κ, ρ).

For the proof of this result we follow the lines of [11], where a similar result was
derived for the stochastic Allen-Cahn model subject to Dirichlet boundary conditions.
The basic idea of this proof is illustrated in Figure 5 and dates back to Freidlin and
Wentzell [23] in the finite-dimensional setting.

The remainder of this section is devoted to the proof of Theorem 4.2. We begin by
briefly outlining this proof and introducing some notation. For each r > 0 define the
sphere

Γ(r) = ∂Br(h
0) = {u ∈ C : |u|∞ = r} ,

and for positive numbers a and b with a < b/2, which will be chosen sufficiently small
later on, consider the increasing sequence of Markov times given recursively by

ζ0 = 0 , η0 = inf {t > ζ0 : uσ(t) ∈ Γ(b)} , (42)

and

ζn = inf {t > ηn−1 : uσ(t) ∈ Γ(a) ∪ ∂D(κ, ρ)} , ηn = inf {t > ζn : uσ(t) ∈ Γ(b)} ,

for n ∈ N. Using these Markov times we define both the Markov chain

Zn = uσ(ζn) , and the random variable N = inf {n ≥ 0 : Zn ∈ ∂D(κ, ρ)} .

We are only interested in the process until it hits the set ∂D(κ, ρ) at time τ , hence
we do not need to take care of the possibility of Zn not being well-defined. Since the
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family (uσ(t),Pu0) is a strong Markov process, one can argue as in [23, Chapter 4,
Paragraph 2] to show that for u0 ∈ Γ(a) we have

Pu0

(
uσ(τ) /∈ Bδ(s

1
±,λ)
)
≤ sup

u0∈Γ(a)

Pu0

(
Z1 ∈ ∂D(κ, ρ) \Bδ

(
s1
±,λ
))

Pu0 (Z1 ∈ ∂D(κ, ρ))
. (43)

To complete the proof in the case u0 ∈ Γ(a), it suffices to establish a lower bound
for the denominator and an upper bound for the numerator such that the quotient
converges to zero as σ → 0.

To begin with, we address the lower bound for the denominator. It is clear that
the deterministic connecting orbit between s1

+,λ and h0 hits the boundary ∂Bκ/2(s1
+,λ)

in a point u3 with energy smaller than Eλ(s
1
+,λ). Define

∆Eλ = Eλ
(
s1
±,λ
)
− Eλ

(
h0
)

and ∆̃Eλ = Eλ (u3)− Eλ
(
h0
)
< ∆Eλ .

The following lemma provides the lower bound for the denominator in (43).

Lemma 4.3 In the situation of Theorem 4.2, let b > 0 be such that Bb(h
0) ⊂ D(κ, ρ).

Furthermore, let a ∈ (0, b/2) be such that if u0 belongs to Γ(a), then the deterministic
orbit {Sλ(t)u0 : t ≥ 0} does not intersect Γ(b/2). Then there exists a σ0 > 0 such
that for any u0 ∈ Γ(a) and σ < σ0 one has

Pu0 (Z1 ∈ ∂D(κ, ρ)) ≥ e−(2∆̃Eλ+kb)/σ2

,

where k > 0 is a constant that does not depend on b.

Proof: The idea of the proof is to construct a path u : [0, T ] → D(ρ) from the
point u0 ∈ Γ(a) to the point u3 ∈ ∂Bκ/2(s1

+,λ), which hits the set Γ(b) in a single
point u2 ∈ Γ(b). Then we can choose δ < min{κ/4, b/2} and any sample path uσ
which satisfies distCT (uσ,u) < δ enforces Z1 ∈ ∂D(κ, ρ). The action of the path u
can be estimated by Iu0

T (u) ≤ 2∆̃Eλ + kb/2, and the lemma then follows from (39) by
choosing δ as above and γ = kb/2.

We construct u as the union of three paths u1, u2, and u3, see also Figure 6.
Let u1 denote the deterministic solution Sλ(t)u0, for t ∈ [0, T1] = [0, 1], between u0

and u1 = Sλ(1)u0, and let u2 denote the linear interpolation between u1 and u2 in
time T2 = |u1 − u2|∞, where u2 = Sλ(T3)u3 ∈ Γ(b) is the first hitting point with the
sphere Γ(b) of the deterministic orbit starting at u3. Finally the last path is exactly
this deterministic orbit with reversed time, i.e., u3(t) = Sλ(T3 − t)u3. The estimate of
the action Iu0

T (u) follows using similar arguments as in the proof of Lemma 4.1. 3

In the next step one has to derive an estimate for the numerator in (43). Due to
the strong Markov property, one obtains for arbitrary u0 ∈ Γ(a) the identity

Pu0

(
Z1 ∈ ∂D(κ, ρ) \Bδ

(
s1
±,λ
))

= Eu0

(
Puσ(η0)

(
uσ(τ̃) ∈ ∂D(κ, ρ) \Bδ

(
s1
±,λ
)))

,
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Figure 6: The path u = u1 ∪ u2 ∪ u3 for the lower bound on the exit probability

where η0 was introduced in (42) and we define

τ̃ = τ (σ, Γ(a) ∪ ∂D(κ, ρ)) .

Hence it suffices to bound the probability

Pu0

(
uσ(τ̃) ∈ ∂D(κ, ρ) \Bδ

(
s1
±,λ
))

, (44)

uniformly in u0 ∈ Γ(b). To this end, consider Figure 7 which introduces the set

Bd = Bd

(
∂D(κ, ρ) \Bδ

(
s1
±,λ
))

,

where the constant d > 0 is chosen sufficiently small to ensure that

clBd ∩ cl
{
Bκ

(
s1
±,λ
)
∪Bb

(
h0
)
∪B2d

(
h0
)}

= ∅ , (45)

as well as
inf

u∈B2d(∂D(κ,ρ)\Bδ(s1±,λ))
Eλ(u) > Eλ

(
s1
±,λ
)
. (46)

Moreover, define the hitting time of the set Bd via

τd = τ (σ, Bd) .
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Figure 7: The set Bd

For fixed time T > 0 the event in (44) can now be decomposed into two disjoint sets.
More precisely, one has{

uσ(τ̃) ∈ ∂D(κ, ρ) \Bδ

(
s1
±,λ
)}︸ ︷︷ ︸

A

= (A ∩ {τd > T})︸ ︷︷ ︸
A0

∪ (A ∩ {τd ≤ T})︸ ︷︷ ︸
A1

. (47)

In order to derive estimates for the probabilities of the events A0 and A1 we need the
following two lemmas.

Lemma 4.4 In the situation of Theorem 4.2, let F denote a closed and bounded subset
of C such that the deterministic orbits starting in F leave the neighborhood Bµ(F), for
some µ > 0, in time less than or equal to T0 > 0. Then there exist constants K > 0
and σ0 > 0 such that

Pu0 (τ(σ, F c) > T0) ≤ e−K/σ
2

, (48)

for all u0 ∈ F and 0 < σ < σ0. Moreover, for arbitrary M > 0 there exist T > 0
and σ0 > 0 such that

Pu0 (τ(σ, F c) > T ) ≤ e−M/σ2

, (49)

for all u0 ∈ F and 0 < σ < σ0.
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Proof: Denote the set of paths u which originate in F and stay in Bµ/2(F) during
the time interval [0, T0] by U(T0) = {u : [0, T0]→ Bµ/2(F) : u(0) ∈ F}. We begin by
establishing the existence of a constant K such that

I
u(0)
T0

(u) ≥ 3K > 0 , for all u ∈ U(T0) . (50)

Assume that this were false. Then there exist paths un with un = un(0) ∈ F and associ-
ated control functions cn via (33), which remain in Bµ/2(F) and such that IunT0

(un)→ 0
as n→∞. Together with (34) and (35) this furnishes

sup
t∈[0,T0]

|Sλ(t)un − un(t)|∞ ≤ L · sup
t∈[0,T0]

∣∣v0
cn(t)

∣∣
∞ .

Due to 2 · IunT0
(un) =

∫ T0

0
|cn(s)|2−2 ds → 0 one further has supt∈[0,T0] |v0

cn(t)|∞ → 0,
see for example [39, Theorem 42.12]. On the other hand, the deterministic orbits
leave Bµ(F) during [0, T0], i.e., one has supt∈[0,T0] |Sλ(t)un − un(t)|∞ ≥ µ/2, which is a
contradiction.

In order to complete the proof of the lemma, notice that due to (50) a path
in Ku0

T0
(2K) leaves the set Bµ/2(F) during the time interval [0, T0], and we have the

estimate
Pu0 (τ (σ, F c) > T0) ≤ Pu0

(
distCT

(
uσ, K

u0
T0

(2K)
)
≥ µ

2

)
.

Now (48) follows from (38) with δ = µ/2 and γ = K. Furthermore, for (49) we use (48)
and the strong Markov property to obtain

Pu0 (τ (σ, F c) > NT0) ≤
(
e−K/σ

2
)N

,

and by choosing N > M/K and T = NT0 the desired estimate follows. 3

Lemma 4.5 If, in the situation of Theorem 4.2, one has F ⊂ B2ρ(0), and if for a
certain point u1 ∈ B2ρ(0) one has

inf
u∈B2µ(F)

Eλ(u) > K > Eλ(u1)

for some µ > 0 such that dist(u1,F) > 3µ, then for sufficiently large R > 2ρ and
arbitrary T > 0 there exists a σ0 > 0 such that

Pu1

(
τ
(
σ, B4µ/3(F)

)
≤ T

)
≤ e−(2K−2Eλ(u1))/σ2

, (51)

for all σ < σ0. Moreover, for sufficiently small ν > 0 one has

Pu0 (τ (σ, Bµ(F)) ≤ T ) ≤ e−(2K−2Eλ(u1))/σ2

, (52)

for all u0 ∈ Bν(u1) and 0 < σ < σ0.
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Proof: To begin with, choose R > 2ρ sufficiently large such that infu∈Γ(R) Eλ(u) > K,
and that B2µ(F) ⊂ BR. Then as in the proof of Lemma 4.1 one can estimate the action
of a path u starting in u1 and hitting the neighborhood B5µ/3(F) before time T by

Iu1
T (u) > 2K − 2Eλ (u1) + γ ,

for some γ > 0. Now (51) follows from (38) with δ = µ/3 and r = 2K − 2Eλ(u1) + γ.
From (23) we deduce that for ν < e−MTµ/3 one has

sup
t∈[0,T ]

|uu0
σ (t)− uu1

σ (t)|∞ <
µ

3
,

and consequently (52) follows from (51). 3

Proof of Theorem 4.2: Now we have all the necessary tools for the proof of our
main result. To begin with, choose b > 0 small enough such that

2∆̃Eλ + kb ≤ 2∆Eλ − ξ ,

for some ξ > 0. Then Lemma 4.3 implies

Pu0 (Z1 ∈ ∂D(κ, ρ)) ≥ e−(2∆Eλ−ξ)/σ2

.

For the second step we provide the missing estimates for the probabilities of the
events A0 and A1 defined in (47). First of all, consider A0 and define

F = D(κ, ρ) \
(
Bd ∪Ba

(
h0
))

.

Without loss of generality one can assume that δ > 0 is sufficiently small such that

dist
(
s1
±,λ, E0

λ ∪
{
h0
})

> δ , with E0
λ = Eλ ∩ ∂B

as in the proof of Lemma 2.9. Then Bµ(F)∩ (E0
λ ∪{h0}) = ∅ for 0 < µ < min{a, d, κ}.

Under these conditions, Lemma 2.10 furnishes the existence of a time T0 > 0 such that
all deterministic orbits starting in F leave the set Bµ(F) in time less than or equal
to T0, and we can apply Lemma 4.4. This implies that for arbitrary M > 0 there exist
constants T > 0 and σ0 > 0 such that

Pu0 (τ (σ, F c) > T ) ≤ e−M/σ2

,

for all u0 ∈ F and 0 < σ < σ0. In particular, the choice M = 2∆Eλ leads to

Pu0 (A0) ≤ Pu0 (τ (σ, F c) > T ) ≤ e−2∆Eλ/σ
2

,

for all u0 ∈ Γ(b) and 0 < σ < σ0.
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It remains to determine an estimate for the probability of A1. Due to (45) and (46)
one can apply Lemma 4.5 with F = ∂D(κ, ρ) \ Bδ(s

1
±,λ), u1 = h0, K = Eλ(s

1
±,λ), as

well as µ = d. Therefore, there exists a σ0 > 0 such that for sufficiently small ν > 0
one has

Pu0 (A1) ≤ Pu0 (τd ≤ T ) ≤ e−2∆Eλ/σ
2

,

for all u0 ∈ Bν(h
0) and 0 < σ < σ0. If necessary, one can reduce b > 0 such that this

estimate holds for all u0 ∈ Γ(b).
After these preparations, and recalling that one only has to bound the probability

in (44), the estimates for Pu0(A0) and Pu0(A1) finally yield

Pu0

(
Z1 ∈ ∂D(κ, ρ) \Bδ

(
s1
±,λ
))
≤ 2e−2∆Eλ/σ

2

,

uniformly in u0 ∈ Γ(a) for all sufficiently small σ > 0, and (43) can be estimated by

Pu0

(
uσ(τ) /∈ Bδ

(
s1
±,λ
))
≤ 2e−ξ/σ

2

.

Since ξ is positive this probability converges to zero as σ → 0, which completes the
proof for the case u0 ∈ Γ(a). For general u0 ∈ Bc(h0) note that

Pu0

(
uσ(τ) /∈ Bδ

(
s1
±,λ
))
≤ Pu0 (uσ(τ̃) ∈ ∂D(κ, ρ))

+ Pu0

(
uσ(τ̃) ∈ Γ(a) and uσ(τ) /∈ Bδ

(
s1
±,λ
))

.

Using Lemmas 4.4 and 4.5 as above, it is then easy to see that the first probability
converges to zero for σ → 0. As for the second probability, one can employ the strong
Markov property to obtain

Pu0

(
uσ(τ̃) ∈ Γ(a) and uσ(τ) /∈ Bδ

(
s1
±,λ
))

= Eu0

(
uσ(τ̃) ∈ Γ(a) ; Puσ(τ̃)

(
uσ(τ) /∈ Bδ

(
s1
±,λ
)))

,

and the probability inside the expectation can be estimated as above. This completes
the proof of the theorem. 3

Acknowledgments

T.W. was partially supported by NSF grants DMS-0406231 and DMS-0639300, and
the U.S. Department of Energy under Contract DE-FG02-05ER25712.

References

[1] R. A. Adams. Sobolev Spaces. Academic Press, San Diego – London, 1978.

31



[2] R. A. Adams and J. J. F. Fournier. Sobolev Spaces. Elsevier/Academic Press,
Amsterdam, second edition, 2003.

[3] C. D. Aliprantis and K. C. Border. Infinite-Dimensional Analysis. Springer-Verlag,
Berlin, second edition, 1999.

[4] H. Amann. Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear
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