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OPTIMAL CONTROL OF ELECTRORHEOLOGICAL CLUTCH
DESCRIBED BY NONLINEAR PARABOLIC EQUATION WITH

NONLOCAL BOUNDARY CONDITIONS.

W. G. LITVINOV

INSTITUTE OF MATHEMATICS,
UNIVERSITY OF AUGSBURG,

UNIVERSITÄTSSTR. 14,
D-86159 AUGSBURG, GERMANY

Abstract. The operation of the electrorheological clutch is simulated by a nonlinear par-
abolic equation which describes the motion of electrorheological fluid in the gap between
the driving and driven rotors. In this case, the velocity of the driving rotor is prescribed
on one part of the boundary. Nonlocal nonlinear boundary condition is given on a part of
the boundary, which corresponds to the driven rotor [25]. A problem on optimal control of
acceleration or braking of the driven rotor is formulated and studied. Functions of time of
the angular velocity of the driving rotor and of the voltages are considered to be controls. In
the case that the clutch acts as an accelerator, the energy consumed in the acceleration of
the driven rotor is minimized under the restriction that at some instant, the angular velocity
and the acceleration of the driven rotor are localized within given regions. In the case of
braking, the energy production is maximized. The existence of a solution of optimal control
problem is proved and necessary optimality conditions are established.

Key words. Electrorheological fluid, parabolic equation, nonlocal boundary condition,
existence, optimality condition.

1. Introduction

Electrorheological fluids are smart materials that are composed of small polarizable parti-
cles dispersed in nonconducting dielectric liquids. With an applied electric field, the dielectric
mismatch creates polarization forces that cause the particles to form chains aligned with the
electric field. Because of this, the fluid becomes anisotropic. The apparent viscosity (the
resistance to flow) in the direction orthogonal to the direction of electric field abruptly in-
creases. It can increase by several orders of magnitude for electric fields of the order of 1
kV mm−1 [27]. The apparent viscosity in the direction of the electric field changes not so
drastically [30]. These effects are both rapid and reversible. Due to their remarkable prop-
erties, electrorheological fluids have various applications in electromechanical devices such as
clutches, shock absorber, valves and others [6]. Electrorheological clutches are used in auto-
motive industry, in robotic devices, industrial forklifts, medicine, etc. They provide smooth
controlled acceleration or braking, create needed angular velocity and needed resistance to
rotation, and so on.

A constitutive equation of electrorheological fluids which describes the main peculiarities
and among them the anisotropy of these fluids was developed in [11]. Different problems
on flow of electrorheological fluids and close to them were studied in [7], [8], [11], [12], [20],
[23], [24]. Some models of cylindrical and radial electrorheological clutches were developed
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2 W. G. LITVINOV

and considered in [9], [33], [34]. In [25] a problem on dynamics of electrorheological clutch is
formulated and studied.

Below we formulate and study a problem on optimal control of electrorheological clutch
by using the model of clutch developed in [25].

In Section 2, we present governing equations and the model of electrorheological clutch.
The direct problem for the clutch reduces to finding the velocity function of the electrorheo-
logical fluid, which is the solution of the nonlinear parabolic equation that satisfies nonlocal
nonlinear boundary condition on the surface of the driven rotor and the Dirichlet condition
on the other part of the boundary.

The nonlocal boundary condition contains an integral over the surface of the driven rotor
and time of the tangential component of the surface force that acts on the driven rotor. The
surface force is a nonlinear function of the derivatives of the velocity function. In order for
the function of surface force to be integrable, the velocity function should be smooth, and
hence, only a smooth velocity function can be the solution of the direct problem.

In Section 3, we present special functional spaces that are used in the paper. The theorem
on the existence and the uniqueness of the solution of the direct problem is contained in
Section 4.

In Section 5, we formulate optimal control problem for the clutch. The functions of time
of the voltages applied to electrodes and of the angular velocity of the driving rotor are
considered to be controls. In this case, the coefficients of the parabolic equation and the
nonlocal operator of boundary condition depend on the control. The energy consumed in
the acceleration (braking) of the driven rotor is minimized (maximized) under the restriction
that at an instant T the angular velocity and the acceleration of the driven rotor to be in
given regions. In addition, restrictions on values of the controls at all instants of time and
on norms of the controls are given.

We assume that the admissible controls are smooth, the functions of voltages and angular
velocity of the driven rotor are elements of the spaces H1(0, T ) and H2(0, T ), respectively.
The reason is that, on the one hand, the control should be sufficiently smooth for the solvabil-
ity of the direct problem, on the other hand, smooth controls produce smooth acceleration
and braking without pushes and strokes. This is in general agreement with the purpose of
the electrorheological clutch, and, in general, only smooth controls are employed in actual
practice.

In Sections 6 and 7, we prove that the solution of the direct problem and the goal functional
and the functional of entry into the given region at the instant T are continuously Fréchet
differentiable with respect to the controls. The derivatives of the functional are calculated
by the use of the conjugate state which is the solution of the conjugate problem.

The conjugate state is defined by the method of transposition. Since the solution of the
direct problem is smooth, the conjugate state belongs to the space of product of negative
Banach spaces. The Petrov-Galerkin method is considered for numerical solution of the
conjugate problem. We prove that approximate solutions obtained by the Petrov-Galerkin
method converge to the exact solution of the conjugate problem.

Existence result for optimal control problem and necessary optimality conditions are es-
tablished in Section 8. In Section 9, we consider optimal control problem with point-finite
restrictions on the values of the controls. The special case that the clutch is cylindrical is
briefly reviewed in Section 10.

2. Model of the electrorheological clutch.

2.1. Outline of the clutch and governing equations for the fluid. A scheme of the
electrorheological clutch of the firm Bayer[4] is presented in Figure 1. The clutch consists of
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the input and output rotors which are the driving and the driven rotors. The driving rotor
is a shaft with disks, and the driven rotor is a shell with disks. An electrorheological fluids
is sandwiched between the driving and the driven rotors.

Figure 1. Schematic representation of the electrorheological clutch of the
firm Bayer.
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Figure 2. Domain of flow of the electrorheological fluid in cylindrical coor-
dinate system.

A voltage is applied to the surfaces of the disks of the driving rotor which serve as electrodes,
whereas the surfaces of the disks of the driven rotor act as counter electrodes. By varying
the voltage, one varies the viscosity of the electrorheological fluid and the torque acting on
the driven rotor.

We use the cylindrical coordinates system r, α, z. It is assumed that the flow of the fluid
is axially symmetric, and in line with the scheme of the electrorheological clutch presented
in Figure 1, we consider a domain of flow Ω of the form shown in Figure 2 in the cylindrical
coordinates r, z. Here the boundary S of the domain Ω consists of four parts: the part S1

corresponds to the surface of the driving rotor, the part S2 corresponds to the surface of the
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driven rotor, the parts S3 and S4 unite the boundaries S1 and S2. The points A and B are
the ends of S1 and also the points C and D are the ends of S2.

Since the gap between the driving and driven rotors is small, it is assumed that in the
mobile orthonormal basis er, eα, ez of the cylindrical coordinate system r, α, z, the velocity
vector of the fluid u has the following form u(r, z, t) = (0, uα(r, z, t), 0) (t is a time variable),
i.e. only peripheral component of the velocity is nonvanishing. We denote u = uα.

The viscosity function is defined by (see [25])

ϕ(I(u), |E|2) = b0(|E|2)(λ+ I(u))−
1
2 + ψ0(I(u), |E|2). (2.1)

Here b0 and ψ0 are functions of corresponding arguments, |E| is the module of the vector of
electric field strength, λ a small positive parameter, I(u) the second invariant of the rate of
strain tensor

I(u) =
1
2

(∂u
∂r

− u

r

)2
+

1
2

(∂u
∂z

)2
. (2.2)

The motion equation have the following form (see [25])

∂

∂r

(
ϕ
(∂u
∂r

− u

r

))
+

∂

∂z

(
ϕ
∂u

∂z

)
+

2
r
ϕ
(∂u
∂r

− u

r

)
= ρ

∂u

∂t
in Q = Ω× (O, T ),

(2.3)

where ρ is the density a positive constant and T <∞.
We denote by R1(s), R2(s) the first components of the coordinates (r, z) of the points s of

S1 and S2, i.e. R1(s) = r(s), s ∈ S1, R2(s) = r(s), s ∈ S2.
We use the notations: SiT = Si × (0, T ), i = 1, 2, 3, 4, ST = S × (0, T ), ω and ω1 are the

angular velocities of the driving and the driven rotors, respectively. The angular velocity of
the driving rotor ω is assumed to be assigned, that is, the velocity of the fluid on S1T is given
by

u
∣∣
S1T

= ωR1. (2.4)

The tangential α component of the surface force acting on the driven rotor creates the
torque (the rotation moment), that, in its turn, induces the angular acceleration of the
driven rotor. The angular velocity is defined by the integration of the angular acceleration
over time.

In that way, there arises the following nonlocal boundary condition on the surface of the
driven rotor, see [25]:

u(s, t) = ω1(t)R2(s) = R2(s){ω1(0)− (ρ0I0)−1

∫ t

0

[ ∫

S2

ϕ
((∂u

∂r
− u

r

)
ν1 +

∂u

∂z
ν3

)
R2 ds

+Mex

]
dτ}, (s, t) ∈ S2T . (2.5)

Here the parameter t in the integrand is denoted by τ , ν1 and ν3 are radial and axial compo-
nents of the unit outward normal ν to the boundary S of Ω, I0 and ρ0 the axial moment of
inertia and the density of the driven rotor, and Mex is the moment of an external load. The
integrand in (2.5) is the α component of the surface force that acts on the driven rotor.

The boundary conditions on S3T and S4T are defined as follows:

u(s, t) = P (ω(t)R1, ω1(t)R2)(s), s ∈ S3

⋃
S4, t ∈ (0, T ), (2.6)

where P is an operator of extension from S1
⋃
S2 to S.
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The initial condition is given by

u(r, z, 0) = u0(r, z), r, z ∈ Ω. (2.7)

In this case the following conditions of concordance are assumed to be satisfied

u0

∣∣
S1

= ω(0)R1, u0

∣∣
S2

= ω1(0)R2.

u0

∣∣∣
S3
S
S4

= P (ω(0)R1, ω1(0)R2)
∣∣∣
S3
S
S4

. (2.8)

By virtue of (2.8), the value ω(0) and ω1(0) are considered to be given.

2.2. Problem for electric field. We consider Maxwell’s equations in the following form
(see e.g. [18]):

curlE +
1
c

∂B

∂t
= 0, divB = 0,

curlH − 1
c

∂D

∂t
= 0, divD = 0. (2.9)

Here E is the electric field, B the magnetic induction, D the electric displacement, H the
magnetic field, c the speed of light. One can assume that

D = εE, B = µH, (2.10)

where ε is the dielectric permittivity, µ the magnetic permeability.
Since electrorheological fluids are dielectrics the magnetic field H can be neglected. Then

(2.9), (2.10) give the following relations:

curlE = 0, (2.11)

div(εE) = 0. (2.12)

It follows from (2.11) that there exists a function of potential θ such that

E = − grad θ, (2.13)

and (2.12) implies

div(ε grad θ) = 0 in Ω. (2.14)

In our case grad θ =
(
∂θ
∂r ,

∂θ
∂z

)
and equation (2.14) takes the form

∂

∂r

(
ε
∂θ

∂r

)
+
ε

r

∂θ

∂r
+

∂

∂z

(
ε
∂θ

∂z

)
= 0 in Ω. (2.15)

We consider θ as a function of r, z and t, t is a parameter in the equation (2.15). Put the
following boundary conditions.

θ(s, t) =





l(t), s ∈ S1, t ∈ (0, T ),
0, s ∈ S2, t ∈ (0, T ),
P (l(t), 0)(s), s ∈ S3

⋃
S4, t ∈ (0, T ).

(2.16)

Here l(t) is the voltage applied to the electrode that is housed on the surface of the driving
rotor S1, and P is the operator of extension from S1

⋃
S2 to S that is used in (2.6).

The dielectric permittivity ε is assumed to be a positive constant. Thus, the problem for
electric field reduces to the solution of the elliptic problem (2.15), (2.16) at each instant of
time t.
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3. Some functional spaces.

We assume that the domain of flow Ω satisfies the following condition:

(A0): Ω is a bounded simply connected domain in the plane (r, z) with a boundary S
of the class C2, in addition, S =

⋃4
i=1 Si, where Si are open nonempty subsets of S

such that Si
⋂
Sj = ∅ at i 6= j. Moreover, the intersection of Ω and the axis z is an

empty set.

For m ∈ N and q ≥ 1, we denote by Hm
q (Ω) the Sobolev space for the cylindrical coordinate

r, z with the following norm:

‖h‖Hm
q (Ω) =

(∫

Ω

∑

k1+k2≤m

∣∣∣ ∂k1+k2

∂rk1∂zk2
h
∣∣∣
q
drdz

) 1
q
. (3.1)

Let Λ be the transformation of Ω with the change of coordinates r, α, z for the Cartesian
coordinates x1, x2, x3.

Since the set Ω and the axis z are separated, the norm (3.1) is equivalent to the norm of
Sobolev space Wm

q (Λ)2 for axially symmetric in Λ functions, see [22], [25].

The notation H
2− 1

q
q (S) denotes the space of traces of functions from H2

q (Ω) on S. The

space H
2− 1

q
q (S) consists of all functions from Lq(S), whose derivatives of nonintegral order

2− 1
q belong to Lq(S), see e.g. [1]; H

2− 1
q

q (Si) is the space of traces of functions from H2
q (Ω)

on Si, i = 1, 2, 3, 4.

We define the norm in H
2− 1

q
q (S) as follows:

‖w‖
H

2− 1
q

q (S)
= inf

h∈H2
q (Ω)

h|S=w

‖h‖H2
q (Ω). (3.2)

The norm in H
2− 1

q
q (Si) is defined similarly.

Once r, z, t→ h(r, z, t) is a function given in Q, we consider h as a function of t with values
in a space of functions of r, z. We denote the space of linear continuous operators mapping a
normed space Y into a normed space Z by L(Y, Z). The dual of Y space is denoted by Y ∗,
and by (f, h) the duality between Y ∗ and Y , where f ∈ Y ∗ and h ∈ Y .

We will use the anisotropic Sobolev space H2,1
q (Q) with the following norm:

‖v‖
H2,1

q (Q)
=

(∫ T

0
(‖v(t)‖q

H2
q (Ω)

dt+
∫

Q

∣∣∣dv
dt

∣∣∣
q
dr dz dt

) 1
q
. (3.3)

The next lemma on traces follows from the known results, see e.g. [17], Lemma 3.4, Chapter
2 and [32].

Lemma 3.1. Suppose that the condition (A0) is satisfied. Then the following inequalities
hold:

‖v(t)‖
H

2− 2
q

q (Ω)
≤ c1‖v‖H2,1

q (Q)
, v ∈ H2,1

q (Q), t ∈ [0, T ], (3.4)

‖∂v
∂r

∣∣∣
ST

‖
H

1− 1
q , 12−

1
2q

q (ST )
≤ c2‖v‖H2,1

q (Q)
, ‖∂v

∂z

∣∣∣
ST

‖
H

1− 1
q , 12−

1
2q

q (ST )
≤ c3‖v‖H2,1

q (Q)
,

(3.5)

‖v∣∣
ST
‖
H

2− 1
q ,1− 1

2q
q (ST )

≤ c4‖v‖H2,1
q (Q)

, v ∈ H2,1
q (Q). (3.6)
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Notice that the norms presented in the left-hand side of (3.4)–(3.6) are defined by analogy
with the norm of (3.2).

We assume that the operator of extension P being used in (2.6) and (2.8) satisfies the
conditions

P ∈ L(H
2− 1

q
q (S1)×H

2− 1
q

q (S2),H
2− 1

q
q (S)),

P (w1, w2)
∣∣∣
Si

= wi, i = 1, 2; q > 4. (3.7)

One can define the operator P so that the functions P (w1, w2)
∣∣∣
Si

, i = 3, 4, are polynomials

of s of the third degree and the function P (w1, w2) and its derivatives at points A,C,B,D
(see Figure 2) are continuous. One can also define the operator P such that the functions
P (w1, w2)

∣∣∣
Si

, i = 3, 4 are close to affine functions and the conditions (3.7) are satisfied.

We introduce the following vector space

U ={u|u ∈ H2,1
q (Q), q > 4, u(s, t) = µ1(t)R1(s), (s, t) ∈ S1T ,

u(s, t) = µ2(t)R2(s), (s, t) ∈ S2T , u(s, t) = P (µ1(t)R1, µ2(t)R2)(s),

s ∈ (S3

⋃
S4), t ∈ (0, T ), µ1 ∈ H

1− 1
2q

q (0, T ), µ2 ∈ H
3
2
− 1

2q
q (0, T )}. (3.8)

The space U is equipped with the norm

‖u‖U = ‖u‖
H2,1

q (Q)
+ ‖R−1

1 u
∣∣∣
S1T

‖
H

1− 1
2q

q (0,T )
+ ‖R−1

2 u
∣∣∣
S2T

‖
H

3
2−

1
2q

q (0,T )
. (3.9)

It follows from (A0) that there exists positive constants k1 − k4 such that

k1 ≤ R1(s) ≤ k2, s ∈ S1, k3 ≤ R2(s) ≤ k4, s ∈ S2, k2 < k3. (3.10)

Therefore, the norm (3.9) is correctly defined.

Theorem 3.1. Suppose that the conditions (A0) and (3.7) are satisfied. Then the space U
being equipped with the norm (3.9) is a Banach space.

Proof. Let {un} be a Cauchy sequence in U , i.e. for an arbitrary ε > 0, there exists Nε

whereby

‖um − un‖U < ε at m,n > Nε. (3.11)

Taking into account that H2,1
q (Q) is a Banach space, we obtain from (3.6), (3.9) and (3.11)

that there exists a function u ∈ H2,1
q (Q) such that

un → u in H2,1
q (Q), (3.12)

un

∣∣∣
ST

→ u
∣∣∣
ST

in H2− 1
q
,1− 1

2q (ST ). (3.13)

Since H
1− 1

2q
q (0, T ) and H

3
2
− 1

2q
q (0, T ) are Banach spaces, (3.9) and (3.11) yield

R−1
1 un

∣∣∣
S1T

→ α1 in H
1− 1

2q
q (0, T ),

R−1
2 un

∣∣∣
S2T

→ α2 in H
3
2
− 1

2q
q (0, T ). (3.14)
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Considering that S ∈ C2, we obtain by (3.10) and (3.14) that

un

∣∣∣
S1T

→ α1R1 in H
1− 1

2q
q (0, T ;C2(S1)),

un

∣∣∣
S2T

→ α2R2 in H
3
2
− 1

2q
q (0, T ;C2(S2)). (3.15)

Relations (3.13) and (3.15) imply

u
∣∣∣
S1T

= α1R1, u
∣∣∣
S2T

= α2R2. (3.16)

It follows from (3.8) that

un

∣∣∣
S1T

= µn1R1, un

∣∣∣
S2T

= µn2R2, µn1 ∈ H
1− 1

2q
q (0, T ), µn2 ∈ H

3
2
− 1

2q
q (0, T ).

(3.17)

Because of this (3.15) gives

µn1 → α1 in H
1− 1

2q
q (0, T ), µn2 → α2 in H

3
2
− 1

2q
q (0, T ). (3.18)

(3.8) and (3.17) yield

un(s, t) = P (µn1 (t)R1, µ
n
2 (t)R2)(s), s ∈ (S3

⋃
S4), t ∈ (0, T ).

(3.19)

By (3.13), (3.18) and (3.19), we receive

u(s, t) = P (α1(t)R1, α2(t)R2)(s), s ∈ (S3

⋃
S4), t ∈ (0, T ). (3.20)

From (3.12), (3.16) and (3.20) it is apparent that u ∈ U , and our lemma is proved.

We set the following space

V = {(f, y, e)|(f, y, e) ∈ Lq(Q)×H
2− 1

q
,1− 1

2q
q (ST )×H

2− 2
q

q (Ω),

y
∣∣∣
S1T

= µ1R1, y
∣∣∣
S2T

= µ2R2, y
∣∣∣
(S3

S
S4)×(0,T )

= P (µ1R1, µ2R2),

µ1 ∈ H
1− 1

2q
q (0, T ), µ2 ∈ H

3
2
− 1

2q
q (0, T ), y

∣∣∣
t=0

= e
∣∣∣
S
}. (3.21)

The space V is provided with the norm

‖(f, y, e)‖V = ‖f‖Lq(Q) + ‖R−1
1 y

∣∣∣
S1T

‖
H

1− 1
2q

q (0,T )

+‖R−1
2 y

∣∣∣
S2T

‖
H

3
2−

1
2q

q (0,T )
+ ‖e‖

H
2− 2

q
q (Ω)

. (3.22)

Theorem 3.2. Suppose that the conditions (AO) and (3.7) are fulfilled. Then V is a Banach
space.

Proof. Let {qn = (fn, yn, en)} be a Cauchy sequence in V , i.e.

‖(fn − fk, yn − yk, en − ek)‖V → 0 as n, k →∞.
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Since Lq(Q), H
1− 1

2q
q (0, T ), H

3
2
− 1

2q
q (0, T ), and H

2− 2
q

q (Ω) are Banach spaces, relations (3.21)
and (3.22) yield

fn → f in Lq(Q), (3.23)

R−1
1 yn

∣∣∣
S1T

= µ1n → µ1 in H
1− 1

2q
q (0, T ), (3.24)

R−1
2 yn

∣∣∣
S2T

= µ2n → µ2 in H
3
2
− 1

2q
q (0, T ), (3.25)

yn

∣∣∣
(S3

S
S4)×(0,T )

= P (µ1nR1, µ2nR2), (3.26)

en → e in H
2− 2

q
q (Ω), (3.27)

in addition

R1µ1n(0) = en

∣∣∣
S1

, R2µ2n(0) = en

∣∣∣
S2

, (3.28)

P (µ1n(0)R1, µ2n(0)R2) = en

∣∣∣
(S3

S
S4)
. (3.29)

(3.27) and the embedding results (see e.g. [5], Chapter 5, Section 24) yield

en

∣∣∣
S
→ e

∣∣∣
S

in H
2− 3

q
q (S). (3.30)

Taking into account (3.24)–(3.26) and (3.28)–(3.30), we obtain

e
∣∣∣
S

=





R1µ1(0) on S1,

R2µ2(0) on S2,

P (µ1(0)R, µ2(0)R2) on S3
⋃
S4.

(3.31)

Define a function y on the set ST as follows:

y =





µ1R1 on S1T ,

µ2R2 on S2T ,

P (µ1R1, µ2R2) on (S3
⋃
S4)× (0, T ).

(3.32)

(3.31) and (3.32) yield y|t=0 = e|S , and by (3.7), we have y ∈ H2− 1
q
,1− 1

2q
q (ST ). Therefore,

the function q = (f, y, e), that is defined by (3.23), (3.32) and (3.27), belongs to the space V
and qn = (fn, yn, en) converges to q = (f, y, e) in V . ¥

4. Existence results and second formulation of the direct problem.

The next theorem follows from known results, see e.g. [29], Section 4.1.

Theorem 4.1. Suppose that the conditions (A0) and (3.7) are satisfied. Let also ε be a posi-
tive constant and l ∈ C([0, T ]). Then for an arbitrary t ∈ [0, T ] there exists a unique solution
θ(t) of the problem (2.15), (2.16) such that θ(t) ∈ H2

q (Ω), moreover, θ ∈ C([0, T ];H2
q (Ω)) and

E = − grad θ = −
(∂θ
∂r
,
∂θ

∂z

)
∈ C([0, T ];H1

q (Ω)2), q > 4. (4.1)

Remark. By virtue of the Theorem 4.1, an operator F ∈ L(C([0, T ]), C([0, T ];H1
q (Ω)2))

is defined such that

C([0, T ]) 3 l→ Fl = E ∈ C([0, T ];H1
q (Ω)2), q > 4. (4.2)
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We assume that the viscosity function ϕ is defined by (2.1), where b0 and ψ0 satisfy the
following conditions:

(A1): b0 is a function twice continuously differentiable in R+ and, in addition,

0 ≤ b0(y) ≤ a0, y ∈ R+, (4.3)

where a0 is a positive constant, R+ = {y|y ∈ R, y ≥ 0}.
(A2): ψ is a function twice continuously differentiable in R2

+ and the following inequal-
ities hold:

a2 ≥ ψ0(y1, y2) ≥ a1, (4.4)

ψ0(y1, y2) + 2
∂ψ0

∂y1
(y1, y2)y1 ≥ a3, (4.5)

∣∣∣∂ψ0

∂y1
(y1, y2)

∣∣∣y1 ≤ a4, (y1, y2) ∈ R2
+, (4.6)

where a1 − a4 are positive constants.
Let us dwell on the physical sense of the inequalities (4.3)-(4.6). Relations (4.3) and (4.4)
indicates that the viscosity function is bounded from below and above by positive constants.
In this case, the viscosity at small values of I(u) is large, because λ is a small positive constant
in (2.2). The inequality (4.5) implies that for fixed value of |E|, the derivative of the function
I(u) → D(I(u)) is positive, where D(I(u)) is the second invariant of the stress deviator

D(I(u)) = 4[ϕ(I(u), |E|2)]2I(u).
This means that in the case of simple shear flow, the stress increases with increasing shear
rate. The inequality (4.6) is a restriction on |∂ψ0

∂y1
| for large values of y1.

The inequalities (4.3)–(4.6) as well as the assumption that λ is a small positive constant are
natural from the physical point of view. The viscosity function is identified by approximation
of a set of flow curves which are obtained experimentally by viscometric testing for different
electric fields. The inequalities (4.3)–(4.6) and the assumption that λ > 0 and small are
consisted with the shapes of the flow curves and enable one to approximate a set of flow
curves over a wide range of shear rates with a high degree of accuracy, (see [11], [12], [20]).

We also suppose that

ω ∈ H1− 1
2q

q (0, T ), (4.7)

u0 ∈ H
2− 2

q
q (Ω), q > 4, (4.8)

Mex ∈ C([0, T ]). (4.9)

Theorem 4.2. Assume that the conditions (A0), (A1) and (A2) are satisfied. Let also the
terms (2.8), (3.7), (4.7)–(4.9) hold, and a function E ∈ C([0, T ];H1

q (Ω)2) is given. Then there
exists a unique function u ∈ U which is the solution of the problem (2.3), (2.1), (2.4)–(2.7).

A result that is very close to Theorem 4.2 is proved in [25]. Theorem 4.2 is argued just as
it is done in [25]. Because of this, we only adduce the main steps and concepts of the proof.
1. The problem under consideration is approximated by a problem with a delay (in this
connection see also proof of Lemma 6.2 below). This enables to treat nonlocal boundary
conditions as inhomogeneous Dirichlet boundary conditions.
2. By using the implicit function theorem, the results on smoothness of solutions of linear
parabolic problems, and the method of extension by parameter, the existence and the unique-
ness of the solution of our nonlinear problem with the Dirichlet boundary conditions, that is
the problem with a delay, is proved. By virtue of (2.5), (3.5) and (3.7), the solution of this
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problem belongs to the space U .
3. Applying the results of compact embedding for anisotropic Besov spaces, a priory estimates
for solutions of the problem with a delay are obtained. These estimates are independent of
the parameter of delay and permit to apply the contraction mapping principle with parameter
on each small subinterval of time. By passing to the limit as the parameter of delay tends to
zero, we obtain that there exists a unique function u ∈ U which is the solution of the problem
(2.3), (2.1), (2.4)–(2.7).

Below the problem (2.3), (2.1), (2.4)–(2.7) in which E = Fl will be called the direct
problem.

It follows from the Remark and Theorem 4.2 that at given function of voltages l ∈
Hβ(0, T ),

β ∈ (1/2, 1) and angular velocity of the driving rotor ω ∈ H1− 1
2q

q (0, T ), ω(0) = R−1
1 u0|S1 (see

(2.8)), there exists a unique solution of the direct problem.
We consider the functions l and ω as controls. Define a set of controls as follows:

G = {g|g = (l, ω), l ∈ Hβ(0, T ), β ∈ (1/2, 1), ω ∈ H1− 1
2q

q (0, T ), ω(0) = R−1
1 u0|S1}.

(4.10)

Here and below, the space Hp
ξ (0, T ) is denoted by Hp(0, T ) at ξ = 2 and p ∈ R. The set G

is equipped with the topology generated by the topology of Hβ(0, T )×H
1− 1

2q
q (0, T ).

By virtue of the Remark and Theorem 4.2, it is defined an operator N : G→ U such that

G 3 g = (l, ω) → N(g) = u ∈ U, (4.11)

where u is the solution of the direct problem.
We set an operator L : Hβ(0, T )× U → Lq(Q) as follows:

L(l, u) = ρ
∂u

∂t
− 2

∂

∂r
[ϕ(I(u), |Fl|2)ε1(u)]

−2
∂

∂z
[ϕ(I(u), |Fl|2)ε2(u)]− 4

r
ϕ(I(u), |Fl|2)ε1(u) in Q. (4.12)

Here ε1(u) and ε2(u) are the components of the rate of strain tensor

ε1(u) =
1
2

(∂u
∂r

− u

r

)
, ε2(u) =

1
2
∂u

∂z
, I(u) = 2(ε1(u))2 + 2 (ε2(u))2.

(4.13)

Define also an operator B1 : G× U → H
2− 1

q
,1− 1

2q
q (ST ) in the form

B1(g, u)(s, t) =





u(s, t)− ω(t)R1(s), (s, t) ∈ S1T ,

u(s, t)−X(g, u)(t)R2(s), (s, t) ∈ S2T ,

u(s, t)− P (ω(t)R1, X(g, u)(t)R2)(s),
(s, t) ∈ (S3

⋃
S4)× (0, T ),

(4.14)

where

X(g, u)(t) = [ω1(0)− (ρ0I0)−1

∫ t

0
[Mex + 2

∫

S2

ϕ(I(u), |Fl|2)(ε1(u)ν1 + ε2(u)ν3)R2 ds]dτ,
(4.15)

and ω1(0) = R−1
2 u0

∣∣∣
S2

, see (2.8). The parameter t in the integrand in (4.15) is denoted by τ .
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We assign an operator B2 : U → H
2− 2

q
q (Ω) by

B2(u) = u(0)− u0. (4.16)

We introduce a mapping J : G× U → V as follows:

(G× U) 3 (g, u) → J(g, u) = {L(l, u), B1(g, u), B2(u)}. (4.17)

We consider the problem: For given g in G, find a function u ∈ U such that

J(g, u) = 0. (4.18)

It is easy to check that the function u that meets the condition (4.18) is the solution of the
direct problem. By virtue of Theorem 4.2, there exists a unique solution of the problem
(4.18) and u = N(g), see (4.11).

Therefore, N is an implicit function defined by equation (4.18), i. e.

J(g,N(g)) = 0, g ∈ G. (4.19)

The next result follows from Theorem 4.2.
Corollary. Suppose that the conditions (A0), (A1) and (A2) are satisfied. Let also the

terms (2.8), (3.7), (4.7)–(4.9) are fulfilled. Then for an arbitrary g ∈ G, there exists a unique
function N(g) ∈ U such that (4.19) is met.

5. Optimal control problem.

For given g ∈ G, the energy that is expended in the acceleration or in the braking of the
driven rotor is defined as follows:

Ψ0(g) =
∫ T

0

∫

S1

ϕ(I(N(g)), |Fl|2)
[(∂N(g)

∂r
− N(g)

r

)
ν1 +

∂N(g)
∂z

ν3

]
R1ω ds dt.

(5.1)

The right-hand side of (5.1) is the integral over S1T of the scalar product of the surface forces
acting of the fluid and the velocity of the fluid.

In the case that the clutch works as an accelerator Ψ0(g) > 0, i.e. clutch consumes energy.
Once the clutch functions as a brake Ψ0(g) < 0; in this case the clutch gives out energy.
Therefore, the functional Ψ0 should be minimized in both cases.

The angular velocity of the driven rotor ω1 as a function of g is defined by

ω1(t) = (R−1
2 N(g)

∣∣∣
S2T

)(t), t ∈ [0, T ]. (5.2)

Define a functional

Ψ1(g) =
[
(R−1

2 N(g)
∣∣∣
S2T

)(T )− k0

]2
+ k1

[( d
dt

(
R−1

2 N(g)
∣∣∣
S2T

))
(T )− k2

]2
,

(5.3)

where k0, k1, k2 are constants, k1 > 0.
We assign the following set of admissible control:

Ga = {g|g = (l, ω) ∈ H1(0, T )×H2(0, T ), ‖l‖2
H1(0,T ) ≤ e1,

0 ≤ l(t) ≤ e2, t ∈ [0, T ], ‖ω‖2
H2(0,T ) ≤ e3, e4 ≤ ω(t) ≤ e5, t ∈ [0, T ],

ω(0) = R−1
1 u0

∣∣∣
S1

, Ψ1(g) ≤ e6}. (5.4)

Here e1 − e6 are constants. Under a reasonable (from the engineering point of view) choice
of the constants e1 − e6, the set Ga is nonempty.

Since the viscosity function ϕ depends on the module of the vector of electric field E, we
reckon that l(t) ≥ 0 for all t ∈ [0, T ].
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We consider the following optimal control problem: Find g0 satisfying

g0 = (l0, ω0) ∈ Ga, Ψ0(g0) = inf Ψ0(g), g ∈ Ga. (5.5)

In the case that the clutch acts as an accelerator Ψ0(g) > 0, and (5.5) denotes that the
energy, consumed in the acceleration of the driven rotor, is minimized under the restriction
that an instant T , the angular velocity and the acceleration of the driven rotor are localized
within given regions.

In the case that Φ0(g) < 0, the energy production is maximized under the above restriction.

For the integrand in (5.5) to be integrable and the direct problem to be solvable, the

functions u, l and ω must be sufficiently smooth. The restriction ω ∈ H
1− 1

2q
q (0, T ) in the

set of controls G in (4.10) is necessary for the solvability of the direct problem in the space
H2,1
q (Q) and for the integrability of the integrand in (2.5); the restriction l ∈ Hβ(0, T ) in

(4.10) is very close to necessary one, see [25].
However, we suppose that (l, ω) ∈ H1(0, T ) × H2(0, T ) and impose restrictions on the

values of the norms of l and ω in H1(0, T ) and in H2(0, T ) in the set of admissible controls
Ga. The optimal control problem can certainly be considered under a somewhat weaker
restrictions on the smoothness of the functions l and ω. But our restrictions are the weakest,
which concur with the requirement for the clutch to provide smooth acceleration or braking
without pushes and shocks.

It is well-known that nonsmooth and especially discontinuous controls result in shocks,
vibrations, and sometimes in destructions. Because of this, only smooth controls are used in
actual practice.

6. auxiliary results.

Lemma 6.1. Suppose that the conditions (A0), (A1), (A2), (3.7) and (4.8) are satisfied.
Then the function J defined by (4.17), (4.12)–(4.16) is a continuously Fréchet differentiable
mapping of G×U into V , and at any point (g, u) ∈ G×U , g = (l, ω), the Fréchet derivative
J ′(g, u) of the mapping J is defined as follows:

J ′(g, u)((h, e), v) = (L′(l, u)(h, v), B′1(g, u)((h, e), v), B
′
2(u)v). (6.1)

Here v ∈ U , (h, e) ∈ G1, where G1 is vector space joined to the affine space G,

G1 = {(h, e)|h ∈ Hβ(0, T ), e ∈ H1− 1
2q

q (0, T ), e(0) = 0}, (6.2)

and

L′(l, u)(h, v) =
∂L

∂l
(l, u)h+

∂L

∂u
(l, u)v, (6.3)

B′1(g, u)((h, e), v) =
∂B1

∂l
(g, u)h+

∂B1

∂ω
(g, u)e+

∂B1

∂u
(g, u)v, (6.4)

B′2(u)v = v(0). (6.5)

The partial derivatives of the operators L and B1 have the following forms:

∂L

∂l
(l, u)h = −4

∂

∂r

[ ∂ϕ
∂y2

(I(u), |Fl|2)(Fl, Fh)ε1(u)
]

−4
∂

∂z

[ ∂ϕ
∂y2

(I(u), |Fl|2)(Fl, Fh)ε2(u)
]
− 8
r

∂ϕ

∂y2
(I(u), |Fl|2)(Fl, Fh)ε1(u) in Q,

(6.6)
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where (Fl, Fh) is the scalar product in R2 of the vectors (Fl)(r, z, t) and (Fh)(r, z, t), and

∂L

∂u
(l, u)v = ρ

∂v

∂t
−

−2
∂

∂r

[
ϕ(I(u), |Fl|2)ε1(v) + 4

∂ϕ

∂y1
(I(u), |Fl|2)(ε1(u)ε1(v) + ε2(u)ε2(v))ε1(u)

]

−2
∂

∂z

[
ϕ(I(u), |Fl|2)ε2(v) + 4

∂ϕ

∂y1
(I(u), |Fl|2)(ε1(u)ε1(v) + ε2(u)ε2(v))ε2(u)

]

−4
r

[
ϕ(I(u), |Fl|2)ε1(v) + 4

∂ϕ

∂y1
(I(u), |Fl|2)(ε1(u)ε1(v) + ε2(u)ε2(v))ε1(u)

]
in Q,

(6.7)

where (see (2.1))

∂ϕ

∂y1
(I(u), |Fl|2) = −1

2
b0 (|Fl|2)(λ+ I(u))−

3
2 +

∂ψ0

∂y1
(I(u), |Fl|2),

∂ϕ

∂y2
(I(u), |Fl|2) =

∂b0
∂y

(|Fl|2)(λ+ I(u))−
1
2 +

∂ψ0

∂y2
(I(u), |Fl|2), (6.8)

(∂B1

∂l
(g, u)h

)
(s, t) =





0 on S1T ,

−
(
∂X
∂l (g, u)h

)
(t)R2(s), (s, t) ∈ S2T ,

−
(
∂X
∂l (g, u)h

)
(t)P (0, R2)(s),

(s, t) ∈ (S3
⋃
S4)× (0, T ),

(6.9)

(∂B1

∂ω
(g, u)e

)
(s, t) =





−e(t)R1(s), (s, t) ∈ S1T ,

0 on S2T ,

−e(t)P (R1, 0)(s), (s, t) ∈ (S3
⋃
S4)× (0, T ), (6.10)

(∂B1

∂u
(g, u)v

)
(s, t) =





v(s, t), (s, t) ∈ S1T ,

v(s, t)−
(
∂X
∂u (g, u)v

)
(t)R2(s), (s, t) ∈ S2T ,

v(s, t)−
(
∂X
∂u (g, u)v

)
(t)P (0, R2)(s),

(s, t) ∈ (S3
⋃
S4)× (0, T ).

(6.11)

Here
(∂X
∂u

(g, u)v
)
(t) = −2 (ρ0I0)−1

∫ t

0

∫

S2

[ϕ(I(u), |Fl|2)(ε1(v)ν1 + ε2(v)ν3)

+4
∂ϕ

∂y1
(I(u), |Fl|2)(ε1(u)ε1(v) + ε2(u)ε2(v))(ε1(u)ν1 + ε2(u)ν3)]R2 ds dτ,

(6.12)
(∂X
∂l

(g, u)h
)
(t) = −4 (ρ0I0)−1

∫ t

0

∫

S2

[ ∂ϕ
∂y2

(I(u), |Fl|2)(Fl, Fh)(ε1(u)ν1

+ε2(u)ν3)
]
R2 ds dτ. (6.13)

In this case

J ′(g, u)) ∈ L(G1 × U, V ), (g, u) ∈ G× U. (6.14)
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Lemma 6.1 is proved by analogy with Lemma 5.1 from [25]. At first it is proved that at
any point (g, u) ∈ G×U the operator J is Gâteaux differentiable and its Gâteaux derivative
is defined by (6.1) and subsequent relations. The partial derivatives of the operator B1, that
are defined by (6.9), (6.10) and (6.11), are obtained using the following relations:

P (ω(t)R1, X(g, u)(t)R2)(s) = P ((ω(t)R1, 0) + (0, X(g, u)(t)R2))(s) =

ω(t)P (R1, 0)(s) +X(g, u)(t)P (0, R2)(s), (6.15)

which follows from (3.7).
It is next proved that the function (g, u) → J ′(g, u) is a continuous mapping of G × U

into L(G1 × U, V ); in this case we take into account that the embedding of H2,1
q (Q) into

C([0, T ];C1(Ω)) is continuous at q > 4 (see [5], Theorem 10.4, Chapter 3). Therefore, the
Gâteaux derivative of J is the Fréchet derivative.

Lemma 6.2. Suppose that the conditions (A0), (A1), (A2), (3.7), (4.8), and (4.9) are sat-
isfied. Then for an arbitrary pair (g, u) ∈ G × U , g = (l, ω), the operator ∂J

∂u (g, u) =(
∂L
∂u (l, u), ∂B1

∂u (g, u), B′2(u)
)

is an isomorphism of U onto V , that is the inverse operator
(
∂J
∂u (g, u)

)−1
of ∂J

∂u (g, u) is a linear continuous mapping of V onto U .

Proof. We consider the problem: Given (g, u) ∈ G×U and (f, y, e) ∈ V , find v ∈ U such
that

∂J

∂u
(g, u)v = (f, y, e), (6.16)

that is
∂L

∂u
(l, u)v = f in Q, (6.17)

∂B1

∂u
(g, u)v = y on ST , (6.18)

v(0) = e in Ω. (6.19)

The problem (6.17)–(6.19) is approximated by a problem with a delay δ, where δ is a
small positive constant. In this case, the operator ∂B1

∂u (g, u) is approximated by the operator
Zδ(g, u) that is defined as follows:

(
Zδ(g, u)v

)
(s, t) =





v(s, t), (s, t) ∈ S1T ,

v(s, t)−
(
Yδ(g, u)v

)
(t)R2(s), (s, t) ∈ S2T ,

v(s, t)−
(
Yδ(g, u)v

)
(t)P (0, R2)(s),

(s, t) ∈ (S3
⋃
S4)× (0, T ),

(6.20)

where
(
Yδ(g, u)v

)
(t) = −2 (ρ0I0)−1

∫ t−δ

−δ

∫

S2

[ϕ(I(u), |Fl|2)(ε1(v)ν1 + ε2(v)ν3)

+4
∂ϕ

∂y1
(I(u), |Fl|2)(ε1(u)ε1(v) + ε2(u)ε2(v))(ε1(u)ν1 + ε2(u)ν3)]R2 ds dτ.

(6.21)

Here we take

v(t) = e, u(t) = u(0) = u0, l(t) = l(0) at t ∈ [−δ, 0]. (6.22)
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We consider the following problem with a delay: Find vδ ∈ U such that
∂L

∂u
(l, u)vδ = f in Q, (6.23)

Zδ(g, u)vδ = y on ST , (6.24)

vδ(t) = e at t ∈ [−δ, 0] in Ω. (6.25)

By virtue of (6.22) and (6.25), the value of the function t → (Yδ(g, u)vδ)(t) are known on
the segment [0, δ]. Because of this, the relation (6.24) is reduced to the following Dirichlet
boundary condition at t ∈ (0, δ].

vδ(s, t) =





y(s, t), (s, t) ∈ S1 × (0, δ],(
Yδ(g, u)vδ

)
(t)R2(s) + y(s, t), (s, t) ∈ S2 × (0, δ],(

Yδ(g, u)vδ
)
(t)P (0, R2)(s) + y(s, t),

(s, t) ∈ (S3
⋃
S4)× (0, δ].

(6.26)

The results of [25] and [17], Theorem 9.1, Chapter 4, imply that there exists a unique
solution of the problem (6.23)–(6.25) on the time segment [0, δ]. Analogously to the above,
using the solution on [0, δ], we reduce the condition (6.24) to the Dirichlet boundary condition
at t ∈ (δ, 2 δ] and prolong the solution of our problem on the segment [0, 2δ]. Since H2,1

q (Q) ∈
C([0, T ];C1(Ω)), we obtain by (6.21), (6.26), and (3.6) that vδ ∈ H2,1

q (Ω × (0, 2δ)). In this
way, we prove that there exists the unique solution of the problem (6.23)–(6.25) on the whole
interval (0, T ).

By repeating the arguments of the proof of Theorem 4.2 from [25], we establish that there
exists the unique solution v of the problem (6.16) and vδ → v in U as δ tends to zero. Since the
right-hand side (f, y, e) in (6.16) is an arbitrary triple from V , the Banach theorem on inverse

operator (see e.g. [15], Chapter II, section 5) implies that the inverse operator
(
∂J
∂u (g, u)

)−1

of ∂J
∂u (g, u) is a linear continuous mapping of V onto U , and the Lemma is proved.

The Corollary of Theorem 4.2, Lemmas 6.1, and 6.2, and the results on implicit function
(see [31], Chapter 3, Section 8) lead to the following theorem:

Theorem 6.1. Suppose that the conditions (A0), (A1) and (A2) are satisfied. Let also
(2.8), (3.7), (4.8), and (4.9) hold. Then the function N : g → N(g) defined by (4.19) is
a continuously Fréchet differentiable mapping of G into U and its derivative is defined as
follows:

N ′(g) = −
(∂J
∂u

(g,N(g))
)−1

◦ ∂J
∂g

(g,N(g)) (6.27)

where ∂J
∂g (g,N(g)) ∈ L(G1, V ),

∂J

∂g
(g,N(g)) =

{∂L
∂l

(l, N(g)),
(∂B1

∂l
(g,N(g)),

∂B1

∂ω
(g,N(g))

)
, 0

}
. (6.28)

7. Differentiation of the functionals Ψ0 and Ψ1.

7.1. Calculation of derivatives. . We introduce the following functional:

Φ0(u, g) =
∫ T

0

∫

S1

ϕ(I(u), |Fl|2)
[(∂u
∂r

− u

r

)
ν1 +

∂u

∂z
ν3

]
R1ω ds dt,

u ∈ U, g = (l, ω) ∈ G. (7.1)
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Then

Ψ0(g) = Φ0(N(g), g), g ∈ G, (7.2)

and the Fréchet derivative of Ψ0 is defined as follows:

Ψ′
0(g)(h, e) =

(∂Φ0

∂u
(N(g), g) ◦N ′(g)

)
(h, e) +

∂Φ0

∂g
(N(g), g)(h, e), (h, e) ∈ G1.

(7.3)

Taking (6.27) into account, we obtain
(∂Φ0

∂u
(N(g), g) ◦N ′(g)

)
(h, e)

= −
(∂Φ0

∂u
(N(g), g) ◦

(∂J
∂u

(g,N(g))
)−1

◦ ∂J
∂g

(g,N(g))
)
(h, e)

= −
(∂Φ0

∂u
(N(g), g),

(∂J
∂u

(g,N(g))
)−1(∂J

∂g
(g,N(g))

)
(h, e)

)

= −
((∂J

∂u
(g,N(g))

)∗−1
◦ ∂Φ0

∂u
(N(g), g),

(∂J
∂g

(g,N(g))
)
(h, e)

)
.

(7.4)

Here in the second equality, we denote by (., .) the scalar product of the elements of U∗ and
U , in the third inequality (., .) denotes the scalar product of the elements of V ∗ and V , where
U∗ and V ∗ are dual spaces to U and V . The third inequality is obtained by using the equality

((∂J
∂u

(g,N(g))
)−1)∗

=
(∂J
∂u

(g,N(g))
)∗−1

,

that follows from known results, see e.g. [16], Section 2, Chapter 12 or [13] Theorem 6.5.11.
Let

p0 = −
(∂J
∂u

(g,N(g))
)∗−1

◦ ∂Φ0

∂u
(N(g), g). (7.5)

Since ∂Φ0
∂u (N(g), g) ∈ U∗ and

(
∂J
∂u (g,N(g))

)∗−1
∈ L(U∗, V ∗), we have p0 ∈ V ∗, in addition,

(7.5) implies
(∂J
∂u

(g,N(g))
)∗
p0 = −∂Φ0

∂u
(N(g), g) ∈ U∗,

that is
((∂J

∂u
(g,N(g))

)∗
p0, v

)
= −

(∂Φ0

∂u
(N(g), g), v

)
, v ∈ U. (7.6)

Taking Lemma 6.2 and the relation (7.6) into account, we obtain that p0 is the unique solution
of the following problem:

p0 ∈ V ∗,
(
p0,

∂J

∂u
(g,N(g))v

)
= −

(∂Φ0

∂u
(N(g), g), v

)
, v ∈ U. (7.7)

It follows from (7.3)–(7.5) that the Fréchet derivative of the functional Ψ0 in G is defined as
follows:

Ψ′
0(g)(h, e) =

(
p0,

(∂J
∂g

(g,N(g))
)
(h, e)

)
+
∂Φ0

∂g
(N(g), g)(h, e),

g = (l, ω) ∈ G, (h, e) ∈ G1. (7.8)
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Here ∂J
∂g (g,N(g)) is given by (6.28) and

∂Φ0

∂g
(N(g), g)(h, e) =

∫ T

0

∫

S1

[
2
∂ϕ

∂y2
(I(N(g)), |Fl|2)(Fl, Fh)

×
((∂N(g)

∂r
− N(g)

r

)
ν1 +

∂N(g)
∂z

ν3

)
R1ω

+ϕ(I(N(g)), |Fl|2)
((∂N(g)

∂r
− N(g)

r

)
ν1 +

∂N(g)
∂z

ν3

)
R1e

]
ds dt. (7.9)

The Fréchet derivative of the functional Ψ1 is calculated by analogy with above.
We consider the following functional on the space U .

Φ1(u) =
[(
R−1

2 u
∣∣∣
S2T

)
(T )− k0

]2
+ k1

[( d
dt

(
R−1

2 u
∣∣∣
S2T

))
(T )− k2

]2
. (7.10)

(5.3) yields

Ψ1(g) = Φ1(N(g)). (7.11)

There exists a unique function p1 such that

p1 ∈ V ∗,
(
p1,

∂J

∂u
(g,N(g))v

)
= −

(∂Φ1

∂u
(N(g)), v

)
, v ∈ U. (7.12)

The Fréchet derivative of Ψ1 is defined by the following formula:

Ψ′
1(g)(h, e) =

(
p1,

(∂J
∂g

(g,N(g))
)
(h, e)

)
, (h, e) ∈ G1. (7.13)

The solution of the problem (7.7) depends on g ∈ G. Because of this, we denote it by
p0(g). Taking into account (7.5), Lemma 6.2, and Theorem 6.1, we obtain that

g → p0(g) is a continuous mapping of G into V ∗. (7.14)

By analogy, denoting the solution of the problem (7.12) by p1(g), we get

g → p1(g) is a continuous mapping of G into V ∗. (7.15)

Lemma 6.1, Theorem 6.1, and (7.8), (7.13), (7.14), (7.15) lead to the following result:

Theorem 7.1. Suppose that the conditions (A0), (A1), and (A2) are satisfied. Let also (2.8),
(3.7), (4.8), and (4.9) hold, and the functionals Ψi, i = 1, 2 be defined by (5.1) and (5.3).
Then the functionals Ψi are continuously Fréchet differentiable in G, and their derivatives
are defined by (7.8) and (7.13), where p0 and p1 are the solutions of the problems (7.7) and
(7.12), respectively.

7.2. Approximate solution of problems (7.7) and (7.12). We consider the Petrov-
Galerkin method for numerical solution of the problems (7.7) and (7.12). Let {V ∗k }∞k=1 and
{Uk}∞k=1 be sequences of finite dimensional subspaces in V ∗ and U , respectively, such that

lim
k→∞

inf
h∈V ∗k

‖p− h‖V ∗ = 0, p ∈ V ∗, (7.16)

lim
k→∞

inf
q∈Uk

‖w − q‖U = 0, w ∈ U, (7.17)

and the dimensions of the spaces V ∗k and Uk are equal for each k.
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We seek an approximate solution of the problem (7.7) in the form

pk ∈ V ∗k ,(
pk,

∂J

∂u
(g,N(g)) q

)
= −

(∂Φ0

∂u
(N(g), g), q

)
, q ∈ Uk. (7.18)

Denote the operator of restriction of U∗ onto U∗k by sk, if γ ∈ U∗ then

‖ skγ‖U∗ = sup |(γ, q)|, q ∈ Uk, ‖ q‖U = 1. (7.19)

We assume that there exists a constant b such that

‖ p ‖V ∗≤ b ‖ sk
((∂J

∂u
(g,N(g))

)∗
p
)
‖U∗ , p ∈ V ∗k , k ∈ N. (7.20)

By Lemma 6.2 there exists a constant b1 such that

‖ p ‖V ∗≤ b1 ‖
(∂J
∂u

(g,N(g))
)∗
p ‖U∗ , p ∈ V ∗. (7.21)

Because of this, the assumption (7.20) is quite natural.

Theorem 7.2. Suppose that the conditions (A0), (A1), and (A2) are satisfied. Let (2.8),
(3.7), (4.8), and (4.9) hold, and g ∈ G. Assume also that the terms (7.16), (7.17), and (7.20)
are fulfilled and the dimensions of the spaces V ∗k and Uk are equal for each k. Then for any
k there exists a unique solution of the problem (7.18) and pk → p0 in V ∗, where p0 is the
solution of problem (7.7).

Proof. Since the dimensions of the spaces V ∗k and Uk are equal and ∂J
∂u (g,N(g)) is an

isomorphism of U onto V , there exists a unique solution of the problem (7.18) for any k.
It follows from (7.18) and (7.6) that

sk

((∂J
∂u

(g,N(g))
)∗
pk

)
= −sk ∂Φ0

∂u
(N(g), g) = sk

((∂J
∂u

(g,N(g))
)∗
p0

)
.

(7.22)

By (7.16) there exists a sequence {p̃k}∞k=1 satisfying

p̃k ∈ Vk∗, p̃k → p0 in V ∗. (7.23)

Taking (7.20) and (7.22) into account, we obtain

‖ pk − p̃k ‖V ∗≤ b ‖ sk
((∂J

∂u
(g,N(g))

)∗
(pk − p̃k)

)
‖U∗

= b ‖ sk
((∂J

∂u
(g,N(g))

)∗
(p0 − p̃k)

)
‖U∗≤ c ‖ p0 − p̃k ‖V ∗ . (7.24)

(7.23) and (7.24) imply that pk → p0 in V ∗. ¥
Approximate solutions of the problem (7.12) are also defined as solutions of the problem

(7.18), where ∂Φ0
∂u (N(g), g) is replaced by ∂Φ1

∂u (N(g)).

For solving the problem (7.18) it is convenient to transform the domain Ω onto a domain
Ω0 which is a rectangle with rounded of angles. To accomplish this, the domain Ω is slightly
extended near the points A and B (see Figure 2) to a domain Ω1 such that Ω is inscribed
into Ω1, and Ω1 is transformed by a C2 diffeomorphism F onto a rectangular domain Ω2, i.
e. Ω2 = F (Ω1).

We take Ω0 = F (Ω), then Ω0 is inscribed into Ω2. Finite dimensional spaces Ǔk in the form
of tensor product of splines are constructed in Ω2 × [0, T ]. The restrictions of the functions
from Ǔk to Ω0 × [0, T ] are used for numerical solution of the transformed problem (7.18) in
the domain Ω0 × (0, T ). In this case, Uk are the restrictions of the functions from F−1(Ǔk)
to Ω× [0, T ], where F−1 is the inverse diffeomorphism of F .
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An information relative to such approach may be found in [21], Sections 1.14, 6.7, 6.8, [26]
Chapter 2, Sections 7, 8.

Consider the issue of construction of the subspaces V ∗k or F (V ∗k ). The dual space to Lq(Q)
for the function f , see (3.21), is Ll(Q) with 1/l + 1/q = 1. The function µ1 belongs to the

space H
1− 1

2q
q (0, T ). It follows from the embedding theorems that H2(0, T ) ⊂ H

1− 1
2q

q (0, T ) ⊂
L2(0, T ). Therefore, L2(0, T ) ⊂ (H

1− 1
2q

q (0, T ))∗ ⊂ (H2(0, T ))∗. Since the space L2(0, T ) is

dense in (H2(0, T ))∗, it is also dense in (H
1− 1

2q
q (0, T ))∗.

By analogy it is established that L2(0, T ) is dense in (H
3
2
− 1

2q
q (0, T ))∗ and L2(Ω) is dense

in (H
2− 2

q
q (Ω))∗.

It follows from the above, that the subspaces V ∗k can be constructed in the form of step
functions given in Q, (0, T ) and Ω. The conditions (7.16), (7.17) and (7.20) are fulfilled for
the spaces that are constructed by the above plan.

It should be mentioned that the commonly used finite elements methods, which are based
on the Galerkin and Faedo-Galerkin schemes, do not ensure the converges of approximate
solutions to the exact one with respect to the norms of H2,1

q (Q) and H2
q (Ω) for the direct

problem and the problem (2.15), (2.16) respectively. The Petrov-Galerkin method with the
above approximation of the spaces U , V ∗, and H2

q (Ω) can be used for numerical solution of
the direct problem and the problem (2.15), (2.16).

For the cylindrical clutch, R1 and R2 are positive constants, and Ω is a one-dimensional
domain Ω = (R1, R2) (see Section 10). In that case, the problem for electric field, the direct
and optimal control problems are significantly simplified.

8. Existence result for problem (5.5) and necessary optimality conditions.

Theorem 8.1. Suppose that the conditions (A0), (A1) and (A2) are satisfied. Let also (2.8),
(3.7), (4.8), (4.9) hold and the set Ga be nonempty. Then there exists a solution of the optimal
control problem (5.5).

Proof. Let {gn = (ln, ωn)} be a minimizing sequence, i.e.

{gn} ⊂ Ga, limΨ0(gn) = inf Ψ0(g), g ∈ Ga. (8.1)

It follows from (8.1) and (5.4) that a subsequence {gm = (lm, ωm)} can be extracted from
the sequence {gn} such that

lm ⇀ l0 in H1(0, T ), ωm ⇀ ω0 in H2(0, T ). (8.2)

The embedding theorem and (8.2) imply

lm → l0 in Hβ(0, T ) and in C([0, T ]), ωm → ω0 in H
1− 1

2q
q (0, T ) and in C1([0, T ]).

(8.3)

Theorem 7.1 and (8.3) yield

Ψ1(g0) ≤ e6, g0 = (l0, ω0). (8.4)

(5.4), (8.2), and (8.3) imply

‖l0‖2
H1(0,T ) ≤ e1, 0 ≤ l0(t) ≤ e2 at t ∈ [0, T ],

‖ω0‖2
H2(0,T ) ≤ e3, e4 ≤ ω0(t) ≤ e5 at t ∈ [0, T ]. (8.5)
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By (5.4) and (8.3), we get

ω0(0) = R−1
1 u0

∣∣∣
S1

. (8.6)

The relations (5.4), (8.4)–(8.6) mean that

g0 = (l0, ω0) ∈ Ga. (8.7)

By Theorem 7.1, the functional Ψ0 is continuous in G. Thus relations (8.1), (8.3), and
(8.7) imply that g0 = (l0, ω0) is a solution of the problem (5.5). ¥

Let

G0 = {g|g = (l, ω) ∈ H1(0, T )×H2(0, T ), 0 ≤ l(t) ≤ e2, e4 ≤ ω(t) ≤ e5, t ∈ [0, T ],

ω(0) = R−1
1 u0

∣∣∣
S1

}. (8.8)

The set G0 is convex and the functionals

l→ ‖l‖2
H1(0,T ) − e1, ω → ‖ω‖2

H2(0,T ) − e3

are continuously Fréchet differentiable inH1(0, T ) andH2(0, T ), respectively. The functionals
Ψ0 and Ψ1 are also continuously Fréchet differentiable in G. Thus, by applying the known
results (see e.g. [10], Chapter 2, Section 1, [28], Theorem 4.1, [31], Chapter 3, Section 10),
we obtain that the optimal control g0 = (l0, ω0) satisfies the following necessary optimality
conditions:

Theorem 8.2. Suppose that the conditions (A0), (A1), and (A2) are satisfied. Let (2.8),
(3.7), (4.8), (4.9) hold and assume that the set Ga is nonempty. Then the following conditions
are fulfilled:

There exist Lagrange multipliers λ0 ≥ 0, λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 such that

λ = (λ0, λ1, λ2, λ3) 6= 0, (8.9)

λ0Ψ
′
0(g0)(g − g0) + λ1Ψ

′
1(g0)(g − g0) + λ2(l0, l − l0)H1(0,T )

+λ3(ω0, ω − ω0)H2(0,T ) ≥ 0, g = (λ, ω) ∈ G0, (8.10)

λ1(Ψ1(g0)− e6) = 0, λ2(‖ l0 ‖2
H1(0,T ) −e1) = 0,

λ3(‖ ω0 ‖2
H2(0,T ) −e3) = 0, (8.11)

where (., .)H1(0,T ) and (., .)H2(0,T ) are scalar products in H1(0, T ) and H2(0, T ).
If the functionals Ψ

′
1(g0), (l0, .)H1(0,T ), and (ω0, .)H2(0,T ) are linearly independent, then

λ0 6= 0 and one can take λ0 = 1.

It is easy to see that the condition of the linear independence of the functionals Ψ
′
1(g0),

(l0, .)H1(0,T ), and (ω0, .)H2(0,T ) is practically always satisfied

9. Optimal control problem with point-finite restrictions.

The continuum of restrictions that is contained in G0 is inconvenient for numerical solution
of the problem (5.5). Because of this, we consider optimal control problem with restrictions
on values of l and ω at discrete points.
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Let m be a positive integer, and let k denotes the corresponding time-step: k = T/m, and
tn be the subdivisions of [0, T ], tn = nk, n = 0, 1, 2, ...,m. Let

Gm = {g|g = (l, ω) ∈ H1(0, T )×H2(0, T ),

0 ≤ l(tn) ≤ e2, e4 ≤ ω(tn) ≤ e5, n = 0, 1, 2, ...,m, ω(0) = R−1
1 u0

∣∣∣
S1

}, (9.1)

Gam = {g|g = (l, ω) ∈ Gm, ‖l‖2
H1(0,T ) ≤ e1, ‖ω‖2

H2(0,T ) ≤ e3, Ψ1(g) ≤ e6}. (9.2)

We consider the following optimal control problem: Find gm satisfying

gm = (lm, ωm) ∈ Gam, Ψ0(gm) = inf Ψ0(g), g ∈ Gam. (9.3)

Theorem 9.1. Suppose that the conditions (A0), (A1), and (A2) are satisfied. Let (2.8),
(3.7), (4.8), (4.9) hold, and assume that the set Ga is nonempty. Then for any m there exists
a solution of the problem (9.3), and the function gm satisfies the conditions (8.9), (8.10),
(8.11) in which g0 and G0 are replaced by gm and Gm. A subsequence {gi} can be extracted
from the sequence {gm} such that

gi = (li, ωi) → g0 = (l0, ω0) in C([0, T ])× C1([0, T ]), (9.4)

N(gi) → N(g0) in H2,1
q (Q), (9.5)

where g0 = (l0, ω0) is a solution of the problem (5.5).

Proof. It follows from the proof of theorems 8.1 and 8.2 that there exists a solution of
the problem (9.3) for any m, and the function gm satisfies the conditions (8.9), (8.10), (8.11),
wherein g0 and G0 are replaced by gm and Gm

By (9.2) the sequence {gm = (lm, ωm)} is bounded in H1(0, T ) × H2(0, T ). Therefore, a
subsequence {gi = (li, ωi)} can be extracted such that

li ⇀ l̂ in H1(0, T ), ωi ⇀ ω̂ in H2(0, T ), (9.6)

gi = (li, ωi) → ĝ = (l̂, ω̂) in Hβ(0, T )×H
1− 1

2q
q (0, T )

and in Cα([0, T ])× C1+α([0, T ]), α ∈ (0, 1/2]. (9.7)

(9.2), (9.3), and (9.7) yield

limΨ0(gi) = Ψ0(ĝ) ≤ inf Ψ0(g), g ∈ Ga. (9.8)

By analogy with the proof of Theorem 8.1, we obtain with the use of (9.6) and (9.7) that
ĝ ∈ Ga. Because of this, (9.8) implies

Ψ0(ĝ) = inf Ψ0(g), g ∈ Ga. (9.9)

Therefore, the function g0 = ĝ is a solution of the problem (5.5). ¥
We emphasize that in practice, the restrictions on the values of the functions l and ω are

non strictly (not exactly) specified. Because of this, for practical purposes, one can solve the
problem (9.3) at moderate values of m.

10. Cylindrical clutch

In the case of cylindrical clutch, R1 and R2 are positive constants, R2 > R1 and δ = R2−R1

is small as compared to R1 and the length of the clutch. Because of this, one can consider
that Ω = (R1, R2). Then the motion equation (2.3) takes the following form:

∂

∂r

(
ϕ
(∂u
∂r

− u

r

))
+

2
r
ϕ
(∂u
∂r

− u

r

)
= ρ

∂u

∂t
in Q = (R1, R2)× (O, T ).

(10.1)
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The viscosity function ϕ is defined by (2.2) with I(u) = 1
2

(
∂u
∂r− u

r

)2
. The boundary conditions

take the form

u(R1, t) = ω(t)R1. (10.2)

u(R2, t) = R2{ω1(0)− (ρ0I0)−1

∫ t

0

[(
ϕ
(∂u
∂r

− u

r

))∣∣∣
R2

R2l1 +Mex

]
dτ} t ∈ (0, T ),

(10.3)

where l1 is the length of the clutch. The initial condition is given by

u(r, 0) = u0(r), r ∈ (R1, R2). (10.4)

We suppose that the following conditions of concordance are satisfied:

u0(R1) = ω(0)R1, u0(R2) = ω1(0)R2. (10.5)

By analogy with the above, it is proved the following result:

Theorem 10.1. Let the conditions (A1) and (A2) be satisfied. Suppose that the terms (10.5)
hold and

ω ∈ H1− 1
2q

q (0, T ), (10.6)

u0 ∈ H
2− 2

q
q (R1, R2), q > 3, (10.7)

Mex ∈ C([0, T ]). (10.8)

Let also a function E ∈ C([0, T ];H1
q (R1, R2)) is given. Then there exists a unique function

u ∈ H2,1
q ((R1, R2)× (0, T )) which is the solution of the problem (10.1)-(10.4)

All the above results with relevant simplifications remain valid for the cylindrical clutch.
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[31] Schwartz L., Analyse Mathématique 1, Hermann, Paris, 1967.
[32] Solonnikov V.A., A priori estimates for parabolic equations of the second order, Trudy Mat. Inst. Steklov

70, 133–212, 1964 (In Russian).
[33] Whittle M., Atkin R.J. Bullough W.A., Dynamic of a radial electrorheological clutch, Int. J. Mod. Phys.,

B, 13, 2119–2126, 1999.
[34] Whittle M., Atkin R.J. Bullough W.A., Fluid dynamic limitations on the performance of an electrorheo-

logical clutch, J. Non-Newtonian Fluid Mech., 57, 61–81, 1995.

E-mail: litvinov@math.uni-Augsburg.de


