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GALERKIN APPROXIMATIONS FOR THE STOCHASTIC
BURGERS EQUATION

DIRK BLOMKER* AND ARNULF JENTZENT

Abstract. Existence and uniqueness for semilinear stochastic evolution equations with additive
noise by means of finite dimensional Galerkin approximations is established and the convergence rate
of the Galerkin approximations to the solution of the stochastic evolution equation is estimated.

These abstract results are applied to several examples of stochastic partial differential equations
(SPDEs) of evolutionary type including the stochastic heat equation, stochastic reaction diffusion
equations and the stochastic Burgers equation. The estimated convergence rates are illustrated by
numerical simulations.

The main novelty in this article is to estimate the difference of the finite dimensional Galerkin
approximations and of the infinite dimensional SPDE uniformly in space, i.e. in the L°°-topology,
instead of the usual Hilbert-space estimates in the L2-topology, that were shown before.

Key words. Galerkin approximations, stochastic partial differential equation, stochastic heat
equation, stochastic reaction diffusion equation, stochastic Burgers equation, strong error criteria.

AMS subject classifications. 60H15, 35K90

1. Introduction. In this work we present a very general result for the spa-
tial approximation of stochastic evolution equations with additive noise via Galerkin
methods. This abstract result is applied to several examples of stochastic partial dif-
ferential equations (SPDEs) of evolutionary type including the stochastic heat equa-
tion, stochastic reaction diffusion equations and the stochastic Burgers equation. In
all examples we need to verify the following conditions. First we need the rate of
approximation of the linear equation obtained by omitting the nonlinear term in the
stochastic evolution equation. Then one needs a quite weak local Lipschitz conditions
for the nonlinearity, and finally a uniform bound on the sequence of approximations.
These results are the key for the main theorem (see Theorem 3.1). The main nov-
elty in this article is to estimate the difference of the finite dimensional Galerkin
approximations and of the infinite dimensional SPDE uniformly in space, i.e. in the
L>-topology, instead of the usual Hilbert-space estimates in the L2-topology, that
were shown before.

Although there are several different methods using finite dimensional approxima-
tions like, for instance, spectral Galerkin, finite elements, or wavelets, we focus here
on the spectral Galerkin method in all our examples. Thus the finite dimensional ap-
proximations are given by an expansion in terms of the eigenfunctions of a dominant
linear operator. This spectral Galerkin approximation is one of the key tools in the
analysis of stochastic or deterministic PDEs. For SPDEs see for example [8, 4, 9, 2],
where the Galerkin method was used to establish the existence of solutions. More-
over, spectral methods are an effective tool for numerical simulations, especially on
domains, like the interval, where fast Fourier-transforms are available. Nevertheless,
it is limited on domains, where the eigenfunctions of the dominant linear operator
are not explicitly known. In recent years there has also been a significant interest in
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2 D. BLOMKER AND A. JENTZEN

analytic results for the rate of approximation using a spectral Galerkin method as a
numerical method. Some examples are [10, 20, 21, 17, 22, 23, 24, 25, 15, 19], where
in some cases also the full discretization is treated including the time discretization.

In order to illustrate the main result of this article we limit ourself in this in-
troductory section to the stochastic Burgers equation with Dirichlet boundary con-
ditions and refer to Section 3 for the general result and to Section 4 for further
examples. To this end let T > 0, let (©, F,P) be a given probability space, and let
X :[0,7] x 2 — C(]0,1],R) be the up to indistinguishability unique solution of the
SPDE

0? 0

= @Xt - Xt%Xt dt + dWy, Xt(()) = Xt(l) =0, Xo=0 (1-1)

dX;
for t € [0,T] and = € (0,1), where W;, t € [0,T], is a cylindrical Wiener process,
which models space-time white noise on (0,1). The initial value Xo = 0 is here
zero for simplicity of presentation. The existence and uniqueness of solutions of the
stochastic Burgers equation was studied by Nualart & Gyongy [12] on the whole real
line, and by Da Prato, Debussche & Temam [5] with Dirichlet boundary conditions
on the interval (see also [7]).

Recently, Gyongy & Alabert showed the following error estimate for spatial dis-
cretizations in the L2-topology (see Theorem 2.2 in [1]):

1 1
P[ sup (/ | X, () thN(:E)|2dz)2 <c.-NG=)| =1 (1.2)
o<t<T \Jo
for every N € N := {1,2,...} and every arbitrarily small ¢ € (0, ) with random
variables C. : © — [0,00), € € (0, %), where the X, N € N, are given by finite

differences approximations.
The main result in this article (Theorem 3.1) applied to equation (1.1) (see Section
4.3) yields the following estimate:

P| sup sup ‘Xt(z)thN(z)| §C’E~N(%7E) =1 (1.3)
0<t<T 0<a<1

for every N € N and every arbitrarily small ¢ € (0, %) with random variables C. :
Q2 — [0,00), € € (0, %), where XV, N € N, are spectral Galerkin approximations.
Thus, although the spatial error criteria is estimated in the bigger L*°-norm instead
of the L2-norm, the convergence rate remains %f. This convergence rate with respect
to the strong L>°-norm is also corroborated by numerical examples (see Section 4).
(For a real number a > 0, we write a— for the convergence order, if the convergence
order is better than a — € for every arbitrarily small € € (0,a).)

Another related result is given by Liu [21]. He treats stochastic reaction diffu-
sion equations of the Ginzburg-Landau type which fit in our abstract setting. For
such equations he obtained estimates in the H"-topology with the rate (% — 7“) — for
every r € (0, %) This also yields estimates in the LP-topology. Nevertheless, such
estimates do not yield convergence in the L*-topology, since in one dimension H" is
embedded into L* for r > % only. Moreover, in contrast to (1.3) this would not give
a convergence rate %— in any LP-topology, p € (2, o0].

Having indicated the results of this article we now illustrate how the improvement
concerning the L*°-topology could be achieved. To this end we write equation (1.1)
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in the mild solution form
t t
X, = / At P(X,) ds +/ eA=aw,  P-—as.
0 0

for all t € [0, T, where A is the Laplacian with Dirichlet boundary conditions on (0, 1)
and where F(v) = —10,(v?) for every v € C([0,1],R) (see Section 4.3 for a detailed
description of the nonlinearity, in particular for the vector spaces involved in order to
define the nonlinearity of the stochastic Burgers equation). The key estimate in order
to establish (1.3) is to show

sup  sup |Xi(z) — Py Xy(2)] < C.- NG9 P — a.s.
0<t<T 0<z<1

for every N € N and every ¢ € (0, ) with appropriate random variables C; : Q) —
[0,00), € € (0, %), and where Py : C ([0, 1],R) — C (][0, 1], R) is the standard Galerkin
projection given by

1
(Pyo)( Z 2sin(nmx / sin(nmy) v(y) dy
0

for every x € [0,1], v € C ([0,1],R) and N € N. For clarity of exposition we omit in
the following the supremum in time and illustrate the estimate

| Xr — PyXrlly <C.- NG9 P_as.

for every N € N and every ¢ € (0,1), where [[v|lv := supgc,<; [v(z)]. for v €

C ([0, 1], R).
The spatial discretization error is often measured via estimates of the following
form (see e.g. [10, 20, 21]):

X7 = PnXrllo = (I = Pn)Xrlla
<N=A)TT = Pa)lloen - I(=A) Xrllg < N7 [(-A) Xrlla (14)
for every 7 € (0, 1) and every N € N, where |[v|| g := fo lu(y)|2dy)? is the norm in

H := L*((0,1),R). In this way the convergence order 3— for the spatial discretization
error in the L2-topology can be achieved. Since the Sobolev embedding

lv]lv < Dp|[(—A) v||g for every v € D((—A)")

with appropriate constants D, > 0 nevertheless holds for r > i only (see e.g. Section 4
in [14]), estimates of the form (1.4) seem not to be an adequate instrument for deriving
estimates for the spatial discretization error in the finer L°°-topology. Instead of (1.4)
we therefore use the following estimates here:

X1 — Py Xrllv = (I = Pn)Xrllv

T T
< H(I - PN)/ ATIP(X,)ds| + H(I - PN)/ A=) dWSHV (1.5)
0 0
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for every N € N. Then, the first summand on the right hand side of (1.5) can be
estimated by classical Sobolev embeddings, i.e. (cf. (1.4))

T T
H(I - PN)/ AT=9) p(X,) dsH < D,|[(~A)y (- PN)/ AT (X)) dsH
0 1% H

0

< D ||(=4)""(I - Py

T
e (D /0 AT F(X,) ds

H

T
gDTN_2PH(—A)P+T/ eA(T_s)F(XS)dsH
O H

for every N € N and every r > i, p > 0 with r+ p < 1. Indeed, this is possible, since

fOT eAMT=5) F(X,)ds is spatially much smoother than the original solution Xr.
For the second term on the right hand side of (1.5) we strongly exploit the fact
that the discrete stochastic process (Zn)nen in C([0,1], R) defined by

T N T
Iy = PN/ AT, = Z\@Sin(n”')/ e TdEr P~ as,
0 n=1 0

with appropriate independent standard Brownian motions 8", n € N, has independent
normal distributed increments and is in particular a Gaussian martingale in the space
of continuous functions. Moreover, the stochastic convolution fOT eAT=5)dW, is the
limit of the discrete martingale (Zx)ycy as N — oo. These observations enable us
to obtain sharp estimates for

T T
H(I - PN)/ eA(T’S)dWSH - H / AT gy, — ZNH (1.6)
0 4 0 v

for every N € N by exploiting the independence of the increments of (Zn) .y and
bounds on the eigenfunctions of the Laplacian (see Proposition 4.2 below).

While in other contexts such as regularity analysis of the stochastic convolution
fot eAt=9) dW,, t € [0,T], related estimates are often used (see e.g. Theorem 5.20 in
[6] or Proposition 1.1 and Proposition 1.2 in [4]), this approach seems to be new for
the estimation of the spatial discretization error.

To sum up the key idea to obtain estimates for the spatial discretization error
in the L*-topology is to divide the SPDE into a random PDE part and a Gaussian
martingale part (a Gaussian martingale with respect to the projections (Py)nyen !)
and then to apply classical Sobolev embeddings to the random PDE part and Gaussian
martingale methods to the martingale part (see Theorem 3.1).

Finally, we would like to comment on the importance of estimates in the L°°-
topology. On the one hand (1.3) is simply a stronger assertion then (1.2) since the
convergence rate is %— in both cases. On the other hand to show convergence of full
discretizations of SPDEs with non-globally Lipschitz coefficients such as the stochas-
tic Burgers equation it is roughly speaking necessary to have estimates in the L°°-
topology which can be seen in the instructive results of Gyongy (see Theorem 4.2 in
[11]) and Petterson & Signahl (see Theorem 3.1 in [26]).

The rest of the paper is organized as follows. Section 2 gives the setting and the
assumptions for the main result, which is then presented in Section 3. In Section 4
we discuss our examples, while in the final Section, we state most of the proofs.
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2. Setting and assumptions. Throughout this article suppose that the fol-
lowing setting and the following assumptions are fulfilled. The first assumption is a
regularity and approximation condition on the semigroup of the linear operator. The
second is a local Lipschitz condition on the nonlinearity. The third is an assumption
on the approximation of the stochastic convolution, while the final one is a uniform
bound (in the approximation rate N) on the finite dimensional approximations.

Fixnow T > 0, let (£, F,P) be a probability space and let (V, ||-[|v) and (W, ||-||w)
be two R-Banach spaces. Moreover, let Py : V' — V| N € N| be a sequence of bounded
linear operators from V to V.

ASSUMPTION 1 (Semigroup S). Let S: (0,T] — L(W,V) be a continuous map-
ping satisfying

sup (ta ||St||L(W,V)) < 00, sup sup (t“NV IS — PNSt”L(W,V)) < 00,
0<t<T NENO<t<T

where a € [0,1) and v € (0,00) are given constants.
AssuMPTION 2 (Nonlinearity F'). Let F : V. — W be a mapping, which satisfies

wp  VE@) POy

lollv flwlv<r,  llv—wly
VAW

for every r > 0.

ASSUMPTION 3 (Stochastic process O). Let O : [0,T]xQ — V be a stochastic pro-
cess with continuous sample paths and sup ey Supg<i<r N7 ||Ot(w) — Py (O (w))|ly, <
oo for every w € ), where v € (0,00) is given in Assumption 1.

AssuMPTION 4 (Existence of solutions). Let XV : [0,T]x Q2 —V, N €N, be a
sequence of stochastic processes with continuous sample paths and with

t
X @) = [ Py Sy PO @)ds+ Py (Ow)). sup sup [XM )]y < oc
0 MEeN0<s<T
(2.1)
for every t € [0,T], w € Q and every N € N.

We call here a mapping Y : [0,T] x Q@ — V a stochastic process, if the mappings
Y;: Q—V, wr— Y (w) =Y (tw), w €N

are F/B(V)-measurable for every ¢t € [0,7]. Additionally, we say that a stochastic
process Y : [0,T] x © — V has continuous sample paths, if the mappings

[0, 7] —V, t— Yi(w), te[0,7T)

are continuous for every w € . Moreover, note that if ¥ : [0,7] x Q@ — V is a
stochastic process with continuous sample paths, then the V-valued Bochner integral

t
/ Py S(4—s) F(Ys(w)) ds
0

in Assumption 4 is well defined for every w € , ¢ € [0,T] and every N € N due to
Assumption 1 and Assumption 2.
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3. Main result. In this section we state and prove the main approximation
result, which is based on the assumptions of the previous section.

THEOREM 3.1. Let Assumptions 1-4 be fulfilled. Then, there exists a unique
stochastic process X : [0,T] x Q — V with continuous sample paths, which fulfills

Xil) = [ Sma PX(e)) ds + O1(0) (3.1)

for everyt € [0,T] and every w € Q. Moreover, there exists a F /B([0, 00))-measurable
mapping C : Q — [0,00) such that

sup || X¢(w) — XtN(w)HV <C(w)-N77
0<t<T

holds for every N € N and every w € Q, where v € (0,00) is given in Assumption 1.

Proof. [Proof of Theorem 3.1] Consider the F/B(]0,00))-measurable mapping
R :Q — [0,00) given by

R(w) := sup sup HF ))HW + T+ sup sup (N7 [|Oi(w) — Pn (Og(w))|ly,)
NENO<t<T NENO0<t<T

+ + sup sup ( ||PNSt||L(Wv))+SuP sup (taN’YHSt*PNSt”L(W,v))

l—a nNeno<i<T NENO<t<T

for every w € €, which is finite due to Assumptions 1-4. Note that R is indeed
F/B([0,0))-measurable, although V is not assumed to be separable! Additionally,
we consider the B([0,00))/B([0, c0))-measurable mapping L : [0,00) — [0,00) given
by

Flv)—F
L) =  sup | F(v) — F(w)lly,
lolv wlver v =l

for every r € [0,00) and the F/B(]0, c0))-measurable mapping Z : Q — [0, 00) given
by

2) = (s s |57l )

NeNO0<t<T
for every w € ). Furthermore, we obtain

1Y = X3l
t

t
PNS(t_S)F(Xé\])dS*/ PMS(t_S)F(X;\/I>dS

y + 1PN (Or) = Pu (O)lly

H/ PNS(t S)F )dS—/ PNS(t,S)F(X;W)dS

14

—i—H/ PNS(t,S)F(XSM)dS—/ PMS(t,S)F(XSM)dS
0 0

+R- NY4+R-M
v
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and therefore

12 = x4
< [ 1w S gy 1FOE) = FOE) s
+ /Ot | Pn Si—s) — Pur S(t_s)HL(W,V) Py ds+R-N"+R- M7
g/OtR-(t—s)_o‘-HF(X?’)—F(X;W)Hst
+ /Ot | Pn Si—s) — Pur S(t_s)HL(W,V) Rds+R-NY+R-M~"
for every N, M € N and every ¢ € [0,T]. Hence, we have
1x = XM,
< R/Ot(t —s) |\F(xXN) - F(XM)|,, ds+R- N+ R-M"
#1280 = ool * 1510~ PrSocsll sy @
gRZ/Ot(t—s)—aHXgV—X;”HV ds+R-N"+R-M"
+R/OtR(NV+MV) (t—s)"*ds
and
XY —xM|, < RZ/Ot(t s)" | XY = XM||, ds+ R(N™+M~7)
+ R*(N™Y +M—V)/OT s %ds

t
< RZ/ (t—s) XY = XM, ds+ RN+ M)
0

T(1-0)
(1-a)

t
< RZ/ (t—s) | XY = XM, ds+ (R+RHN+ M)
0

+ RN+ M)

for every N, M € N and every t € [0, T]. Therefore, Lemma 5.10 yields
XN = XMl < Baow (HRZT(1 - a) ™D ) (R+RY) (N7 + M)
<Eg_a) (T (RZT(1— a))ﬁ) 2RY) (N + M77)  (3.2)

for every N, M € N and every t € [0,T]. This shows that (XN(w))NeN is a Cauchy-
sequence in C ([0,T],V) for every w € €. Since C ([0,T],V) is complete, we can
define the stochastic process X : [0,T] x 2 — V with continuous sample paths by



8 D. BLOMKER AND A. JENTZEN

Xi(w) = limy_0o XY (w) for every t € [0,7] and every w € Q. Hence, we obtain

N —o0 N—oo

Xi(w) = Jim_ () = gim ([ P S PO @) ds + Py 01
= /OtPNsa_s)F(X?(w»ds)+ot< )= / St F(X,(w)) ds + Oy(w)

N —o0

for every t € [0,T] and every w € Q. If Y : [0,T] x  — V is a further stochastic
process with continuous sample paths, which fulfills

/st G F(Ys(w))ds + Or(w)

for every t € [0,T] and every w € Q, then we obtain

t
X, —Villy = H [ S (F 0 - s
\%

< [ 1S0-g F(X) = PR, ds
0

t
< / 1St—sllzowyy - IF(Xa) = F(Y)|lw ds

for every t € [0,T]. Hence, we have
t
1X: — Yilly < / (t— 8)~*  |F(X.) — F(Y)|lw ds

t
< [e=sn (s X1y + sw ¥lv) -1 - Vil ds
0

0<r<

t
=1 ( s X+ s ||Y|v)-/<t—s>-a|xs—ys||vds
0

0<r<

for every ¢ € [0, T]. Due to Lemma 5.10, we obtain X;(w) = Y;(w) for every t € [0,T7],
w € Q, which shows that X : [0,T] x Q — V is the pathwise unique stochastic process
with continuous sample paths satisfying equation (3.1). Moreover, inequality (3.2)
yields

1XY = Xillv <E(—a ( (RZT(1 — ))T- a)) ORY. N7V
for every ¢t € [0,T], N € N and therefore

Sup 1X: — XNy <C-N7
0<t<

for every N € N, where the F/B[0, c0))-measurable mapping C : Q — [0, 00) is given
by

Cw) =2 (RW))" Ea-a) (T (R(w)Z(w)T(1 - a))ﬁ)

for every w € Q. O
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4. Examples. In this section some examples of the setting in Section 2 are
presented.

4.1. Stochastic heat equation. In this subsection an important example of
Assumption 3 is presented. We consider a linear equation with F = 0 and thus
consider only the approximation of the Ornstein-Uhlenbeck process O.

To this end let d € {1,2,3} and let V = W = C([0,1]%,R) be the R-Banach space
of continuous functions from [0, 1] to R equipped with the norm

[vllv = lvllw = llvllcqoer) == sup |v(z)|
z€[0,1]4
for every v € V.= W, where | - | is the absolute value of a real number. Moreover,

consider the continuous functions
e [0,1]7 — R, ei(x) = 25 sin(iymzy) .. .sin(igmzq), x € [0,1]? (4.1)
and the real numbers
No=72(34...+i3) €R (4.2)

for every i = (i1,...,iq4) € N¢. Additionally, suppose that the bounded linear opera-
tors Py : C([0,1]¢4,R) — C([0,1]4,R) are given by

CYOIEEND S RO O (13)

for every = € [0,1]¢, v € C([0,1]¢,R) and every N € N. Before we present the stochas-
tic process satisfying Assumption 3, we consider the following example of Assumption
1.

LEMMA 4.1. Let d € {1,2,3}. Then, the mapping S : (0,T] — L (C ([0,1]%,R))
given by

(Stv)(z) = Z e_’\“f/ ei(s)v(s)ds - e;(x)

ieNd (Ovl)d

for every t € (0,T], x € [0,1]% and every v € C ([0, l]d,R) satisfies Assumption 1
for every v € (0,2 — g) Here, the functions e; € C ([O, 1]d,R), i € N¢, and the real
numbers \; € R, i € N4, are given in (4.1) and (4.2).

Of course this is simply the semigroup generated by the Laplacian with Dirichlet
boundary conditions (see e.g. Section 3.8.1 in [30]). Other boundary conditions such
as Neumann or periodic boundary conditions could also be considered here. We now
present the promised example of Assumption 3. We consider a stochastic convolution
of the semigroup S constructed in Lemma 4.1 and a cylindrical Wiener process. The
following result provides an appropriate version of such a process, in which the initial
value of the stochastic evolution equation (3.1) is additionally incorporated.

PROPOSITION 4.2. Let d € {1,2,3}, let V = C ([0,1]4,R), let p > 0, let B :
[0,T] x Q@ — R, i € N be a family of independent standard Brownian motions
with continuous sample paths and let b : N® — R be a given function such that
> iena (i +...+i3)(p71) |b(i)|?> < oo. Furthermore, suppose that & : Q — V is a
F /B(V)-measurable mapping with sup yey (N? [|£(w) — Py (§(w))]]y,) < oo for every
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w € Q. Then, there exists a stochastic process O : [0,T] x Q — V with continuous
sample paths, which satisfies

t
P lim sup Ot — St€ — Z b(l) (_)\z/ e_ki(t_s)ﬁ;‘ ds + ﬁz) €; =0 =1
0

N —o0
0<t<T ie{l,..,N}* v
(4.4)
and

sup sup (N7 [|Oy(w) — Py (Or(w))]ly) < o0
NEN0<t<T

for every w € Q and every v € (0, p). In particular O satisfies Assumption & for every
v € (0,p). Here, the functionse; €V, i € N?, the real numbers \;, i € N¢, and the
linear operators Py : V. — V, N € N, are given in (4.1), (4.2) and (4.3).

We remark that the stochastic process constructed in Proposition 4.2 is unique
up to indistinguishability. More precisely, if O : [0,T] x Q — C’([O, l]d,R) and
O0:0,T]xQ—C ([O, l]d,R) are two stochastic processes with continuous sample
paths that satisfy (4.4), then P {Ot =0, Vtelo, T]} = 1. Moreover, in the sense of

Proposition 4.2 we have

t
Or =S &+ ) b(i)/ e NE=)gpi e, P —as.

i€Nd 0

for every ¢t € (0,7]. In that sense O includes the initial value and a stochastic
convolution of the semigroup generated by the Laplacian with Dirichlet boundary
conditions and a cylindrical Wiener process as it is usually considered in the literature
(see e.g. Section 5 in [6]). Note that O : [0,7] x @ — € ([0,1]%,R) is nothing else
than the solution of the linear SPDE

dOy = [AO,|dt 4+ B dW,, Otla,1y2 = 0, Oy =¢

fort € [0,T] in C ([O, l]d,]R), where Wy, ¢t € [0,T], is a cylindrical I-Wiener process
on L? ((0,1)%,R) and where B : L*((0,1)%,R) — L?((0,1)% R) is given by

Bv = b(q e;(s)v(s)ds - e; 4.5
%iol@w<><> (45)

for every v € L? ((0, 1)4, R). Here, b : NY — R is the function used in Proposition 4.2
and L? ((0,1)%,R) is the R-Hilbert space of equivalence classes of B ((0,1))/B(R)-
measurable and square integral functions from (0,1)? to R.

Numerical example. To illustrate Proposition 4.2 we consider the following
simple example. Let d = 2, T = 1, ({(w)) (z) = 0 for all x € [0,1]2, w € Q and
let b : N> — R be given by b((i1,i2)) = for all i = (i1,i2) € N%. In view of
Proposition 4.2 we obtain

(i1412)

sup  sup|Oy(w, ) — Py (Oylw, ) | < Cy(w) - N7
0<t<1z€[0,1]2

for all w € Q and all N € N with F/B([0, 00))-measurable mappings C, : Q@ — [0, c0)
for every v € (0,1). Hence, Py (O¢(w, x)) converges to O (w, z) uniformly in ¢ € [0, 1]
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and z € [0, 1]? with the rate 1— as N goes to infinity for all w € Q. This is illustrated
in Figure 4.1, where the expression

sup sup |Oi(w,z) — Py (Ot(w,x)) (4.6)
0<t<1ae[0,1]2

versus N for N =4,8,16,...,256 and two w € § is plotted. Moreover, in Figure 4.2
we plot Oy(w, z), = € [0,1]?, for t € {ﬁ, 1} and one random w € €.

Finally, note that Proposition 4.2 immediately follows from the following lemma,
which is also of independent interest.

LEMMA 4.3. Letd e N, let V =C ([0, 1]d,R), let p>0,let 3°:[0,T] x Q — R,
i € N?, be a family of independent standard Brownian motions with continuous sample
paths and let b : N* — R be a given function such that Y, cna (i3 + ... +43) (e=1) Ib(i)|? <
0o. Then, there exists a stochastic process O : [0,T] x Q — V, which satisfies

O -0
sup 190 («) tle(w)HV < 00, sup sup (||O¢(w) — PnO¢(w)|y N7) < o0
0<t) <ta<T (ta — 1) NENO<t<T

for every w € Q, every 0 € (0,min (3, 5)), every v € (0, p) and which satisfies

t
P| lim sup ||O; — b(i) (=N [ et gl gs 4 )e =0| =1,
Jim s 0 - Y d()( / 6 ds + i
i€{1,..., N} v
(4.7)

B =

E[||Os, — O, ¥
e (E[||Ox, tlellv])
0<t1<t2<T (ta —t1)

1
sup l<E{ sup |O; PNOt||"’,]> N7
NEN 0<t<T

for every p € [1,00), every 6 € (0,%), 6 < 1 and every v € (0, p). Here, the functions
e; €V, i € N, the real numbers \;, i € N%, and the linear operators Py : V — V,
N €N, are given in (4.1), (4.2) and (4.3).

4.2. Stochastic evolution equations with a globally Lipschitz nonlin-
earity. If the nonlinearity F' : V. — W given in Assumption 2 is globally Lipschitz
continuous from V to W, then Assumption 4 is naturally met, which can be seen in
the following proposition.

PROPOSITION 4.4. Suppose that Assumptions 1-8 are fulfilled. If the nonlinearity
F:V — W given in Assumption 2 additionally satisfies Sup,, ,cv,vzw W <
o0, then Assumption 4 is fulfilled.

In the remainder of this section we illustrate Theorem 3.1 with a stochastic reac-
tion diffusion equation with a globally Lipschitz nonlinearity. Again we suppose that
V=W =C([0,1]%,R) with d € {1,2,3} fixed.

LEMMA 4.5. Let f:[0,1]¢ x R — R be a continuous function, which satisfies

L:= sup sup f(@.y) = F(@,y2)

2€[0,1]4 y1,y2€R ly1 — 2l
Y17£Y2

< 0
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Stochastic heat equation

10 ¢
N 107
5 E
@
c
RS
<
£E
x —
S 107t
o ¥
[oR
B
()
2
2
S "
© .
o o,
10 'f .,
/O,/
= Pathwise approximation error .
@ Orderlines 0.5, 1.0, 1.5 (o]
1074 N N P N P | " " P |
10° 10" 10 10°
N
Stochastic heat equation
0
10" ¢
a 10
o
5]
c
RS
©
=
x —
S 107t
(o}
[oR
©
()
2
2
S .
© ‘
o - (o]
107}
/Q,
m— Pathwise approximation error ’ .
@ Orderlines 0.5, 1.0, 1.5 (]
1074 N N P N P | " " P |
10° 10" 10 10°
N
Fic. 4.1. Pathwise approzimation error (4.6) versus N for N = 4,8,16,...,256 and two

random w € .



O1/1000 (w l>(1' XZ)

GALERKIN APPROXIMATIONS FOR SPDES

Stochastic heat equation t=1/1000

e STEORON
R o.“})‘v“x‘“{v
QS l ,0‘0‘ \ N
Tvm ,u..’ l,,,”,‘q, ,/, II/,.&A\\\ ‘ ‘\
\

% 4.\»»

‘./ I//mum « ‘\‘“‘\\ R
AN, 7 l R \

(
it
% lnmfﬁf‘

i n\
.4M¢\\
‘ i e \ AR
y oy ‘: X "" \"\\\\\
‘f‘\u \““ s A% 22X Ny n\" ?«\\\‘
A “w\; N
i “\““:‘\“‘:‘\H‘ e

Stochastic heat equation t=1

\ X
X "Illl."“
"b\ R }"‘0‘ "‘«“‘
X «,l.v,"m;»»\
AN ol

W"‘
0\‘\
m \ O ?5{7';? '”""0“‘\
‘u‘ W Wi ‘MM“ \
; ‘} m Wi j;

A
Gty
N

FIG. 4.2. Ot(w, ), = (v1,x2) € [0,1]?, fort € {ﬁ, 1} and one random w € Q.

13



14 D. BLOMKER AND A. JENTZEN

Then, the corresponding Nemytskii operator F : C(0,1]%,R) — C([0,1]%,R) given
by (F(v))(z) = f(x,v(z)) for every z € [0,1]¢ and every v € C([0,1]4,R) satisfies
su ||F(U)_F(w)”c([o,1]

Py, weV,vtw To=wllc(o.14.5)

Proof. [Proof of Lemma 4.5] We obtain

d
B < 0.

1F(v) = Fw)lleor = s, [f (2, 0(2)) = f(2,w(z))]

< sup (Ljv(z) —w(z)]) = Lllv — wlle(o,14,r)
z€[0,1]4

for every v,w € C([0,1]¢,R) O

Let Py : V>V, NeN, S:(0,T]| - L(V),F:V—-Vand 0:[0,T|xQ—V
be given by (4.3), by Lemma 4.1, Lemma 4.5 and Proposition 4.2. Then, Assumption
4 is fulfilled due to Proposition 4.4 and therefore the assumptions in Theorem 3.1 are
fulfilled. The stochastic evolution equation (3.1) reduces in that case to

dXt = [AXt + f(SC,Xt)] dt + Bth, Xt|6(071)d = 0, XO = 5 (48)

for t € [0,7] and = € [0,1]¢, where W;, t € [0,T], is a cylindrical I-Wiener pro-
cess on L? ((0,1)d,R), where £ : 2 — V is used in Proposition 4.2 and where
B:L?((0,1),R) — L?((0,1),R) is given by (4.5) with b : N¢ — R used in Proposition
4.2. Moreover, the finite dimensional SODEs (2.1) reduces to

dX = [AX}) + Py f(zx, X)) dt + PnBdWy,  X{"|p01e =0,  X§ = Pn(£)

for t € [0,T] and x € [0, 1]¢.

Numerical Example. In order to do numerical computations we consider the

following simple example. Let T = o5, d = 1, (£(w)) (z) = Esin(nz) for all z € [0,1],

welet f:]0,1] x R — R be given by f(z,y) = 300((11;;’4)) for all z € [0,1], y € R

and let b : N — R be given by b(i) = % for all i € N. The corresponding SPDE (4.8)
then reduces to

dX; = 82X 300(1*)@ dt + Ldw,, Xo(z) = Esi 4.9
¢ [ 0| e M) =gt (49

with X;(0) = X;(1) = 0 for ¢ € [0, 55] and = € [0,1] on C([0,1],R). In view of Lemma

4.1 and Proposition 4.2, Theorem 3.1 yields the existence of F/B([0, c0))-measurable
mappings C : Q@ — [0, 00) such that

sup  sup | X¢(w,z) — XN (w,z)| <O, (w) - N7 (4.10)

1
0<t< L 0<z<1

holds for every w € Q, N € N and every v € (0, %) Hence, XY (w,z) converges to

X¢(w,z) uniformly in ¢ € [0, 55] and « € [0, 1] with the rate — as N goes to infinity
for all w € Q, which is also illustrated in Figure 4.3. Furthermore, X;(w, x), 2 € [0, 1],

is plotted in Figure 4.5 for t € {0, 4—é0, Wlo’ 2%, 2L0 and one w € .
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Stochastic reaction diffusion equation
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4.3. Stochastic Burgers equation. In order to formulate the stochastic Burg-
ers equation we denote by (L?((0,1),R),|-||;=) the R-Hilbert space of equivalence
classes of B(0,1)/B(R)-measurable and square integrable functions from (0,1) to R.
The norm and the scalar product in L? ((0,1),R) are given by

follee = | @dr, (g = / (@) w(z) da

for every v,w € L?((0,1),R). We also denote by

L%((0,1),R) := {v € L?((0,1),R) ‘ /01 v(z)dz = 0}

equipped with the norm ||-|| ;. and the scalar product (-,-);. the R-Hilbert subspace
of L?((0,1),R) of equivalence classes of functions with zero mean. Moreover, let

D((0,1),R) = Cg5; ((0,1),R) be the R-vector space of infinitely often differentiable

functions with compact support in (0,1) and let D’ ((0,1),R) be the R-vector space
of real valued distributions on (0,1). Furthermore, let

H* ((0,1),R) := {v € L*((0,1),R) ‘8"1) € L?((0,1),R) Vn € {0,1,.. .,k}}

with the norm and the scalar product given by

k 2 % k
ol e o= (Z (1ol ) ) L b =Y (@ 0.0m),s
n=0

n=0

for every v,w € H* ((0,1),R) be the R-Hilbert space of k-times weakly differentiable
functions in L2 ((0,1),R) for every k € N. Additionally, we denote by

HE((0,1),R) = D(0, 1, R)

the closure of D ((0,1),R) in the R-Hilbert space (H" ((0,1),R),(-,") ) for every
k € N. We use the norm and the scalar product

HUHH()f = HakUHLZa <'U,’UJ>H()§ = <5kv,8kw>L2

for every v,w € HE ((0,1),R) in H} ((0,1),R) for every k € N. Due to Poincaré’s in-
equality HHH{; is equivalent to ||-|| ;;» on HE ((0,1),R) for every k € N (see Proposition
5.8 in [28]). Finally, we denote by

H((0,1),R) := (HE ((0,1).R), [ ) € D' (0,1),R)
the topological Dual space of HY ((0,1),R) for every k € N. Due to the embedding
L2((0,1),R) = D" ((0,1),R), v (v,")pa
for every v € L? ((0,1),R), we obtain

H*((0,1),R) c H" ((0,1),R) ¢ L*((0,1),R) ¢ H~"((0,1),R) ¢ H~*((0,1),R)
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for every n,k € N with n < k. We also refer to Chapter 5 in [28] for a more detailed
consideration of these and many more Sobolev spaces.

In view of this scaling of spaces let W = H~1((0,1),R) and let V = C ([0, 1], R)
be the R-Banach space of continuous functions from [O, 1] to R. As in Section 4.1 and
Section 4.2 we use the projection operators Py : C ([0,1],R) — C(]0, 1],R) given by

ij: (/ sin(nms) v(s) dS) sin(nmz) (4.11)

for every x € [0,1], v € C'([0,1],R) and every N € N. The semigroup is constructed
in the following lemma here.
LEMMA 4.6. The mapping S : (0,T] — L(H~'((0,1),R),C ([0,1],R)) given by

(St(w)) (x) = i (2 LenT w(sin(nm(+))) - sin(mrx))

n=1

for every x € [0,1], w € H1((0,1),R) and every t € (0,T] is well defined and
satisfies Assumption 1 for every v € (0, %)

In order to describe the nonlinearity of the stochastic Burgers equation, we use
the following fact concerning distributional derivatives in L? ((0,1),R).

LEMMA 4.7. The mapping 0 : L* ((0,1),R) — H~1(0,1),R) given by

(00) () = (v)) () = — (0.} = — / o(2) ¢ (z) da

for every ¢ € HE ((0,1),R) and every v € L?((0,1),R) is a surjective bounded lin-
ear mapping from L*((0,1),R) to H=((0,1),R) with ||0v| -1 < |[v]l 2 for every

v € L2((0,1),R). Additionally, we have 8(L2((0,1),R)) = H71((0,1),R) and
00| -1 = ||[v]|z2 for every v € L?((0,1),R). Finally, it holds

2
wll 172‘10 \/_sm (nm( )‘

n2m?

for every w € H=1((0,1),R).
The nonlinearity is then given in the following lemma.
LEMMA 4.8. Let c € R be a fized real number. Then, the mapping

F:C([0,1],R) — H~1((0,1),R), F(v) =cd (v?)

for every v € C ([0,1],R) satisfies Assumption 2.
Proof. [Proof of Lemma 4.8] We have

I1F(v) = F(w)llg- = cd(v®) = cO(w?)|[g-1 < e - [[v* —w?| 2
and therefore

[F(v) = F(w)lg- < e - [[(v+w) - (v —w)lcqonr
<lel- (lvlleqoayr) + lwlleqor)) - v = wlleo,1,r)
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for every v,w € C([0,1],R). This yields

1F(0) = Fw)ll g1 < @rlel) [lv = wll 0,11 r)

for every v,w € C([0,1],R) with [[v||¢(0,11,r), l|lw|lc(0,1),r) < 7 and every r > 0. 0

With this type of nonlinearities Assumption 4 is fulfilled, which can be seen in
the following lemma.

LEMMA 4.9. Let V. = C([0,1],R), W = H~1((0,1),R) and let S : (0,T] —
LW, V), F:V —-W and Py :V —V, N €N, be given by Lemma 4.6, Lemma 4.8
and (4.11). Moreover, let O : [0,T] x Q@ — V be a stochastic process with continuous
sample paths and with sup ycysuPg<,<7 || PN (Ot(w))||, < oo for every w € Q. Then,
Assumption 4 is fulfilled. -

Numerical Example. Finally, we consider the stochastic evolution equation
(3.1) with S : (0,7] - L(W,V), F : V — W and O : [OT]XQHVgivenby
Lemma 4.6, Lemma 4.8 and Proposition 4.2 with the parameters ¢ = —30, T' = 20,
(w) = §sm(wx) for every w € Q and b(i) = % for every i € N. The stochastic

5
evolution equation (3.1) then reduces to

82 0 1 6 .
Oz 2 — 60 - Xta Xt dt+ §th, Xo(l'> = gSlIl(ﬂ'Z') (412)

ixi= |5
with X;(0) = X;(1) = 0 for ¢t € [0, 55] and x € [0,1], while the finite dimensional
SODEs (2.1) reduce to

82

dxy = [@XN

—60- Py (XNaa tN>} dt + %PN dWs, XN (x) = gsin(ﬁz)
(4.13)

with XN (0) = XN(1) = 0 for t € [0,55], z € [0,1] and all N € N. Here, W;,
t € [0, 5], is a cylindrical I-Wiener process on L2 ((0, 1),R). Theorem 3.1 yields then
the existence of a unique solution X : [0, 35] x Q — C([0, 1] R) of the SPDE (4.12)

and also the estimate

sup  sup
0<t< 0<a<1

Xi(w,z) — XtN(w,x)

<Oy (w) N~ (4.14)

for every N € N and every w € Q with appropriate F/B([0, c0))-measurable mappings
Cy : Q — [0,00) for every v € (0,4%). Hence, the solutions X}¥(w,z) of the finite
dimensional SODEs (4.13) converge uniformly in ¢ € [0, 4] and = € [0, 1] to the
solution X;(w,z) of the stochastic Burgers equation (4.12) with the rate 5— as N
goes to infinity for all w € Q (see (4.14)). This convergence rate seems to be sharp,
which can be seen in Figure 4.4. Finally, in Figure 4.5, X;(w, ), x € [0, 1], is plotted

1
for t € {0, 1500 300 200, 20 and one w € ().

5. Proofs. In this section we collect all technical proofs of the previous sections.
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Stochastic Burgers equation
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Stochastic reaction diffusion equation
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5.1. Proof of Proposition 4.4. Proof. [Proof of Proposition 4.4] Throughout
this proof we use the F/B([0, 00))-measurable mapping C : Q — [0, 00) given by

NeNO0<t<T ev v —wllv
VAW

F(v) — F(w
C(w) =14 sup sup (tO‘HPNStHL(Wy)) + sup I (v) (w)llw

+sup sup |[|[Pn (Or(w))lly
NENO0<t<T

for every w € ), which is finite due to Assumptions 1-3 and since we assumed F' to
be globally Lipschitz continuous. Moreover, let C ([0,T], V') be the R-vector space of
continuous functions from [0,7] to V and let

S := {Y 0, T xQ—V ‘ Y stochastic process with continuous sample paths}

be the R-vector space of stochastic processes with continuous sample paths. Of course,
we have Y(w) € C([0,T],V) for every w € Q and every Y € S. We equip the
space C ([0, 77, V) with the norms [ly||, := supg<;<r (" [ly(t)|l,) for p € R. Hence,

(C ([0,T],V), ||||#) is a R-Banach space for every p € R. Moreover, we define the
mappings ®Y : C ([0,T],V) — C ([0,T],V) by
t
@0 = [ Py S P (1) + PvOw) ) i
0
for every t € [0,T],y € C([0,T],V), w € Q and every N € N. Note that
(@ y)(t2) — (@) (t0) v
to
< / 1PN S(ta—s)llLewvy - [1F'(y(s) + PnOs(w))llw ds
t1

ty
+/O 1PN (S(ty—s) = Sti—s)) lLowyvy - 1F (y(s) + PnOs(w))]lw ds

to
= / C(tz —s)"%ds- sup [[F(y(s) + PnOs(w))llw
t 0<s<T

ty
+/ PN (S(ta—s) = Stti—s)) loew,vyds - sup [|F(y(s) + PnOs(w))|lw
0 0<s<T
and therefore
(@5 ) (t2) — (@5 ) (t1) v
to—t1 ty1
<o [T s ds s [ PN Samiro — Sl ds) - sup [F(u(s) + PO (@)l
0 0 0<s<T

(- t
= C(F 5+ [ IP (St = Sl ds) - sup [[F(y(s) + PyOs(w)llw
( ) 0 0<s<T

for every t € [0,T],y € C([0,7],V), w € Q and every N € N. This shows that ®2 (y)
is indeed in C ([0,7],V) due to Lebesgue’s theorem, and hence ®Y : V — V is well



22 D. BLOMKER AND A. JENTZEN

defined for every N € N and every w € Q). Furthermore, we have
(@5 y)(8) — (@52)(t) v
< /Ot 1PN S—s)llew,vy - [1F(y(s) + PnOs(w)) = F(z(s) + PyOs(w))[lw ds
< oo 0l - v
<c =9 ds sup (@ y(s) = =(s)v)
0 0<s<T

and

t wus
(&
@0 - @S0l <2 [ Zds- -2l

0

which implies

N N 2 Tems
@) - 8@l <€ [ sy~ 2l
0

for every t € [0,T], y,2 € C([0,T],V), w € Q, N € N and every u € R.

By letting i — —o0, we see that ®Y : C([0,T],V) — C([0,T],V) is a contraction
for every N € N and every w € Q. Since (C([0,T],V),] - ||,) is complete for every
u € R, we obtain the existence of unique stochastic processes Y : [0,T] x Q — V,
N € N, with continuous sample paths, which satisfies (®) YV (w)) (t) = YV (w) for
every t € [0,7T], w € Q and every N € N. This means that

YN (w) = / Py S(t—s) F(Ys(w) + PnOs(w)) ds
0

for every t € [0,T], w € Q and every N € N. Therefore, XV : [0,T] xQ — V, N € N,
defined by X (w) := YN (w)+ Py (O (w)) for every t € [0,T],w € Q and every N € N
are unique stochastic processes with continuous sample paths satisfying

t
XN (w) = / Py 81—y F(XN (@) ds + Py Oy(w)
0
for every t € [0,T], w € Q and every N € N. Additionally, we obtain
t
XNl < [ 1Py S PO v ds -+ POy
0
t
< [ 1P Stm oy, - IFCEDlhw ds +C
0
t
< [ tt-sy e 1P fwds+ €
0

t
gCQ/ (tfs)*a(1+||XjV||V)ds+C
0
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and therefore
T ¢
XN ([ smds [ s e ds) + €
0 0
2 (10— —a N
<C((1 a)—f—/(t—s) e Hvds—"l)
t
< CHT+2)gty )+02/( —8) "X |v ds
0

for every ¢t € [0,T] and every N € N. Hence, Lemma 5.10 implies

X2y < B (T (€210 - eo) SED

for every t € [0,T] and every N € N, which finally shows

sup sup || XY (w)|lv < oo
NeNo<t<T

for every w € Q. O

5.2. Proof of Lemma 4.1. Proof. [Proof of Lemma 4.1] Clearly, S : (0,7] —
L (C ([0,1]%,R)) given by Lemma 4.1 is well defined. Moreover, S : (0,7] — L (C ([0,1]%,R))
is a locally Lipschitz continuous mapping with ||S¢|[ (o ((0,1j4,r)) < 1 (see Lemma 6 in
[16]). Hence, it is sufficient to show

144
sup sup ( 3+ N [1S¢ — PNSt”L(W,V)) < 00
NENO<t<T

1
for every v € (0,00). To this end we use the notation ||z||, = (23 + ...+ 23)? for
every = (z1,...,24) € R% Then, we obtain

[Stv = PnSevll 0,120y = 1 = Pn) Sevllojo,1)4 r)
-\t
Z e (ei,v) 261“0([0 1)4,R)

iEN\{1,..., N}

E e*Ait

iEN\{1,..., N}

<2#( 3 —W) (D ltesv)pal? )

ieNI\{1,...,N}¢ ieNd

IN

(ei,0) 2|28

IN

and therefore

d [, Y- JT TP 3
HStU_PNSt'UHC(Ol]d R) <22(/ € 277 Hthl‘)2H’U||L2
{zeR:||z]l2 2N}

( / 727r2r2t7,(d71)d7,)5”v||L2
N~™

I/\
MIQ-

N\R

I /\

1
T e )

d 2 % (”22”
2 N~ ’Y(/WN\[ 77|T|d+2771d7ﬂ) (le\/f) H'U”LQ

|
o
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for every v € L? ((0,1)4,R), t € (0,T], N € N and every v € [0,00) due to Lemma 8
in [16]. Hence, we obtain

o0

_ _r2 - 3 di2y
||St’U—PNSt’U||0([011]d1R) SN V(/ e 2 |7“|d+2’y 1d7‘)2ﬁ 4 ||’U||L2

—00
and thus, since ||v]|pz < |\U||C([011]d7R),

o0

r2 % _(d o
||St *PNStHL(C([O,l]d,]R)) < (/ 677|T|d+2771d7’) N ¢ (4+2)

for every ¢t € (0,7], N € N and every « € [0,00). O

5.3. Proof of Lemma 4.3. Throughout this subsection we use the notation
1
2|, = (23 + ... +22)2 forevery & = (z1,...,24) € R?. We first present some simple
estimates, which we need in the proof of Lemma 4.3. The first one is elementary and
proved as Lemma 9 in [16].
LEMMA 5.1. Let d € N be arbitrary. Then, we have

o (3d)*
r—y drdy <
/W /() (e - yl,) i

for every a € (0,d).
The next one is well known and for example proved as Lemma 10 in [16].
LEMMA 5.2. Let Y : Q — R be a F/B(R)-measurable mapping, that is centered
and normal distributed. Then, E|Y|? < plo® for every p € N where o := \/E|Y|*.
LEMMA 5.3. Let d € N and let e; € C’([O, l]d,R), i € N9, be given by (4.1).

Then, we obtain

d .
lei(z) —ei(y)] < 22mljill2 |z — vl

for every x,y € [0,1]% and every i = (iy,...,iq) € N
Proof. [Proof of Lemma 5.3] Firstly, by the celebrated mean value theorem we
have

lei(z) —ei(y)] < sup |[[Vei(2)l2llz — yll2
z€[0,1]4

for every x,y € [0,1]%. Since

9
8zk

0
’a—zlc@i(z) =

(2% sin(iymzy) - - -sin(idﬂ'zd)) ’

= 2% |sin(iymzq) - - - sin(ig—1m2g—1)| -

% sin(ikﬂzk)‘ | sin(igr1m2E41) - - sin(igmzq)|

<28 % sin(ikﬂ'zk)‘ = 2% [cos(ipmzi)| < 281
for every k = 1,...,d, every z € [0,1]¢ and every i = (i1, ...,i4) € N, we obtain

1
4. 4. 2 a .
es@) —esw)l < sup_(12Fir2 4.+ 2Fiam]?) o — yllo = 237l 1z —
z€[0,1]4
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for every z,y € [0,1]¢ and every i = (iy,...,iq) € N%. O
LEMMA 5.4. Let §:[0,T] x Q — R be a standard Brownian motion. Then, we
obtain

to t1 2
B [ ee0ds, - [T e an [ <A D - v
0 0

for every t1,ta € [0, T) with t; < ta, every r € [0,1] and every A € (0,00).
Proof. [Proof of Lemma 5.4] First of all, we have

E‘/ —A(ta— s)dﬁ / —k(t1 s)dﬁ‘
to t1 2
- | / e N, 4 () 1) / N,
t1 0
to 2 t1 2
:E‘/ e_’\(tz_s)dﬁs} —HE‘ (e_’\(tz_tl) - 1)/ e_’\(tl_s)dﬁs‘
t1 0
to 2 t
:/ o2 (t2=9) gg 4 (67/\(@7&) _ 1) / oMt —9) g
t 0

1

and therefore

to t1 2
E’ / e—k(tg—s)dﬁs _ / e—k(h—s)dﬁs‘
0 0

(t2—t1)
_ / 672AS ds + (1 - 67/\(t27t1))2%(1 - 672)\15)
0

S 1)\(1_ 72A(t2 tl)) ﬁ(1_ 7A(t2 tl))2 — %(1 7A(t2 tl))

for every t1,ts € [0, T] with t; < t3 and every A > 0 due to It6’s isometry. This shows

E‘/ —>\(t2 s)dﬁ / —>\(t1 s)dﬁ’

1 —€ A2 tl)) T r—1 r r—1 r
L ze P (Sup (1—e" )) Nty — 1) = Nt — 1)
A x>0
for every t1,t5 € [0,T] with t; < o, every r € [0,1] and every A > 0, which is the
assertion. O
After these four very simple lemmata, we present now two lemmata, which are the
essential constituents of the proof of Lemma 4.2. The first one ensures the temporal
regularity of the constructed process in Lemma 4.2.
LEMMA 5.5. Letd € N, let 3 : [0,T] xQ — R, i € N%, be a family of independent
standard Brownian motions and let b: N¢ — R be a given function. Then, we obtain

(E[ sup \0£<w>—0if<x>\p]>ps0( S ORI -

d
z€[0,1] ie{1,...N}4

for every ti,ts € [0,T], N € N, p € [1,00) and every o, § € (0,1], where C =
C(d,p,,0) > 0 is a constant only depending on d,p,a and 0 and where the stochastic
process ON [0,T] x @ — C ([0,1]4,R) is given by

t
oY= Y b(z’)~/ e M=l e, P —a.s.
i€{1,...,N}d 0
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for every t € [0,T] and every N € N. Here, e; € C ([O, 1]d,R), i € N, and \; € R,

i € N4, are given in (4.1) and (4.2).

Proof. [Proof of Lemma 5.5] Throughout the proof, let ., § € (0, 3], p, N € N with
p> L and t1,t € [0,7] with ¢; < ¢ be fixed. In addition, let C' = C(d,p,a,0) >0
be a constant, which changes from line to line but only depends on d, p, a and 6.
We show now Lemma 5.5 for these parameters and the case with a general p € [1, c0)
follows then from Jensen’s inequality. By definition of OV, we have

(05 (x) = 07 () = (O (y) — OF ()

- ¥ o/ S entmogg - [ N5, (0 (0) - i)

0 0

P — a.s. for every x,y € [0,1]¢. Hence, Lemma 5.3 and Lemma 5.4 yield

E|(ON(z) — ON(x)) — (ON(y) — Oif(y))’2

to ) t1 )
= Y BOPE[ [ eneag - [Tentaag
v 0 0

ie{l,...,.N

lei(@) — ex(w)?

2a
< Y ORI - t)® - (2Nl e~ l3) T (es(@)] + i)

o . 2N 20—1 g
<Clta—t)lle—yls*- Y PGP (= )6l5)7 llill3

ie{1,..,N}¢

and therefore

E |(ON(z) — O (2)) — (OX (v) - OF () |*
< C(ta —t1)* ||z — y|3* - Z

ie{1,...N}¢

for every z,y € [0,1]%. In addition, we also have

to ) t
BOX(@) - OX@P = 3 pPE| [Ceeagi-

ie{l,...,N}4
<C Y Pl e - 0)*
ie{l,...,N}4

(@) lills" 2 (5.1)

! —Ai(t1— 1 2
e 7Idg | ei(2)]

(5.2)

for every x,y € [0,1]¢ due to Lemma 5.4. Hence, the Sobolev embedding given in
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Theorem 1 in Section 2.2.4 in [29] (see also Section 2.4.4 there) and Lemma 5.2 yield

E[uoN—oﬁr\zWRJ
N N N N p
< C’/ / E‘ Ot2 Otl( )) (d(—‘rotz)( y) — Ot1 (y))’ dz dy
0,14 J(0,1)4 lz —yly

+C’/ E|Ot1\2[(z)70t]\1[(z)| dz
(0,1)¢

<C/ / (E’(Oﬁ Of\f( )) (ON( )_Oi\lf(y))lz)
(0,1)4 J(0,1)4

(SIS}

PR o
N N 5
e (E’Otz(x)—Otl(x)‘) dw
(0,1)¢
and therefore
N
E [HO - Oy ”C([O 1] R)}
t2—t1 )|l — y[|3*)®  12)(5([40+4a—2) 2
<c / . Al gy (X P
(0,1)4 J(0,1) *y||2 i€{1,...,N}d
o[ (X BRI - 0)*) e
(0,1)4 ief{1,..., N}d

=Cf1 —ylP Yz dy) (to — t,)*? b(i) 2|14 (26 +4a—2) 3
( +/(071)d/(071)d|$ yll5" “dx y)(z 1) ( DGR )

due to (5.1) and (5.2). Due to Lemma 5.1 this shows

1

(ENOY = O [tomemy) " <C( > BOPIIS ) (02— 1),

ie{1,...,N}¢

which is the assertion. O

The following lemma ensures the spatial regularity of the constructed process
from Lemma 4.2.

LEMMA 5.6. Letd € N, let 37 : [0,T] xQ — R, i € N%, be a family of independent
standard Brownian motions and let b: N — R be a given function. Then, we obtain

<E
for every NNM € N with N > M, every p € [1,0), a € (0, %), where C' =

C(d,p,a,T) > 0 is a constant depending only on d, p, a and T and where the stochas-
tic process ON : [0,T] x Q — C ([0,1]%,R) is given by

sup sup |O£V(SC) — Og\/f(z)|p‘|> <C Z |b(Z)|2H’L”§8a_2)

0<t<T ze[0,1)
st=Tz€0.1] ie{1,.. . NY\{1,.. . M}<

ofw) = 3 (- N i) s+ L))o

i€{1,...,N}4

=
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for every t € [0,T], w € Q and every N € N. Here, e; € C ([0, 1]d,R), i € N¢, and
X\ €R, i € N9, are given in (4.1) and (4.2).

Proof. [Proof of Lemma 5.6] Throughout the proof, let & € (0, ) and p, N, M € N
with p > é and with N > M be fixed. In addition, let C = C’(d p,a,T) > 0 be a
constant, which changes from line to line but only depends on d, p, « and T. As
in the proof of Lemma 5.5, we show now the assertion for these parameters and
the case with a general p € [1,00) follows then from Jensen’s inequality. Then, let
YNM 0, T x Q — C ([O, l]d,R) be a stochastic processes with continuous sample
paths given by

t
YoM = Z b(z)/ (t—s) % e NE=3)4pl ¢, P—as.
ie{l,...,.N}* 0
V{100, M}

for every t € [0,T]. One immediately checks, that the processes
t
/ (t—s)~ Mg tel0,T], ieN
0
are mean square Holder continuous and indeed have a modification with continuous

sample paths due to Kolmogorov’s theorem (see e.g. Theorem 3.3 in [6]). Then, the
factorization method (see e.g. Section 5.3 in [6] or also Section 5 in [3]) yields

. t
p
E su ON OM =E su ‘sm(wa)/ t—8)2 1S Y,N’MdsH
ogthH HC ([0.1)%.R) — 0<t<T ™ 0 ( ) (t==)"s C([0,1]4,R)
t
p
<E su H/ t—s)* s s YSN’MdsH
octor (1= 9" S C((0,1]4,R)

¢ 1 N,M P
SE sup (/O ||(t*5)0‘_ S(t—s)Ys ’ ||C([0,1]d7]R) dS)

0<t<T
and therefore

E su ON OM
o | T

p t p
. - (a—l) N,M
< (0;1%||st||L(c<[o,1]d,R») E sup ( / (t = )Y oo 1y ds

0<t<T

=l {10 ]
su —8) p-1 (ds . il g
ogth 0 0 C([0,1]¢,R)
T T
pla—1) (p—1)
(/ s ds) / “/SN’M”%([O,M,H@CZS}
0 0

T
N,M
<C- [ BN g s

due to Hélder’s inequality and since supg<i<7 |5t ((0,17¢,r)) < 1. This shows

IN

=K

]EoiltlgTHOiV*OVHZ([O,H(L,R) SCog‘ngE||YSN’MHZ([0,1MR>

and hence

E su ON _ oM P )E<C su (E YNM ) . 53
( OStET || t t HC([Ovl]dvR) - Ogtg H ||C([O 1 d ]R) ( )

=
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Hence, it remains to estimate the expression on the right hand side of (5.3). For this,
we denote Zy := {1,2,...,N}? and Zps := {1,2,..., M}? and then, we have

ElY VM (z) - vV M (y)?

B 360 [ =o)L (o) - i)

1€IN\Tm

2

lei(e) — exty)?

2E‘/ t_s —a, .L(tfs)dﬁz

1€IN\IM
= 3 e / SN0 s - ey(a) — ei(y)|*eaa) — ea(y) P2
1€IN\T M 0
<C Y PP [ sTeds e ap @il - i)™
1€IN\Tm 0
and therefore
N,M NM (2a—=1) .1 4a da
EY, M) -y My <o Y 272|313) i1z — yll3
1€IN\Tm
8a—2 4o
<c S @RI e -yl (5.4)
1€IN\Tm

for every t € [0,T] and every z,y € [0,1]%. In addition, we have

t ) 2
BY M@ =B 3 b0 [ (- s) e Mg o)
i€TN\T s 0
t 12
= X BOP-E [ e N e
I€TN\Tm 0
t
= 3 )P / 202N s oy (o)
i€IN\TMm 0
and therefore
2 2t\;
B V@ = 3 R [ s e s A o)
i€IN\TMm 0
<O X BOF [ e s il (o)
zGIN\IM
8a 2
<0 S |bG)P$e? (5.5)
zGIN\IM

for every t € [0, T] and every x,y € [0,1]%. Hence, again due to the Sobolev embedding
given in Theorem 1 in Section 2.2.4 in [29] (see also Section 2.4.4 there) and Lemma
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5.2, we obtain

N,M
- (@) =Y ()P
Sup 2y, sup / / dasdy)
0<t< | o, 2 O<t<T 0,1)4 J(0,1) e —ylz™
+ C sup (/ E|YtN’M(£E)|pd:I:)
0<t<T N J(0,1)¢
<C / / E|Y e >|2) v
< sup « S
0<t<T 0,1)¢ J(0,1)¢ [l — y”der

+C sup/ (EDQNM(:E)F) dx
(0,1)¢

0<t<T

and therefore

N,M %
sup (BN o0

0<t<

of (Siema POPIE o —lf)”
; vdy)
0,1)¢ J(0,1)? ||5E —yl[4+p

o Y pappge?)’

i€IN\TMm

sc(oe [ [ temuptana) (X worng- )’
o X )’

1€IN\Tm

due to (5.4) and (5.5) and Lemma 5.1. Therefore, (5.3) yields

(2,500 08 = 0M o) <C( X BRIIE)"

<t<T i
0sts 1€IN\TIm

=

IN

which is the assertion. O

Finally, we present the missing proof of Lemma 4.2.

Proof. [Proof of Lemma 4.2] In this proof we use the stochastic processes O :
[0,T] x @ — C([0,1]4,R) given by

for every w € Q, every t € [0,T] and every N € N. Note that by definition of OV, we
have

¢
oY = Z b(i)/o e Nt=s)gpi e, P —a.s.

for every ¢ € [0,T] and every N € N. Note also that the space of continuous functions
from [0, T toC(O 1dR)

C ([O,T],C([O, 1. R)) = C ([0,7] x [0,1]4, R),
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equipped with the norm

||f||oo=tsup If (Ol = sup sup [f(t)(x)]

€[0,7] te[0,T] z€[0,1]4

for every f:[0,7] — C ([0,1]%,R) € C ([0,7],C ([0,1]¢,R)) is a separable R-Banach
space. In this proof we also use the R-Banach spaces

Vp =[P ((ij:a P) ’ (C ([OvT]’ ¢ ([0’ 1]d’R)) ’ ”H‘X’))

of equivalence classes of /B (C ([0, T], C ([0,1]%,R)))-measurable and p-Bochner in-
tegrable functions from Q to C([0, 7], C([0,1]¢,R)) for every p € [1,00) (see Section
A in the appendix in [27]). In the following we do as usual not distinguish between

stochastic processes and their corresponding equivalence class in V,, p € [1,00). Note
1

that the norm in V), is given by (IE SUPg<i<T |\Yt||€,([011]dﬁR)) " for every Y € V, and
every p € [1, 00).

Hence, note that O € V), for every N € N and every p € [1,00). Then, due to
Lemma 5.6, we have

=

> porge-?)’

(E sup ||ON OA/IHC(O 1]d, R)) < C d Py & T
0<t<T €N\ {1,...,M}d

C(d,p,a,T) ( > Ib(i)|2|\z‘||§“2) - MAp

1ENI\{1,..., M}

1

Cd,p,o, T) (D @) Pil1372) " - s

i€Nd
for every N, M € N with N > M, every p € [1,00), every « € (0, mln(é, £)) and with
appropriate constants C(d,p,«,T) > 0 given in Lemma 5.6. In particular, OV is a
Cauchy sequence in V,, and hence there exists a stochastic process O : [0,T] x  —

C ([0,1)4,R) with O € V, and

=

< Cp.da. 1) 3 BORIIE ) Vs

E sup ||O oM )
( ogthH £~ O g e

for every N € N, every p € [1,00) and every « € (O,min(%, £)). This shows

sup {NV (E sup |0y — O;’V|\g([071]d7R))%} < 00

NeN 0<t<T

for every v € (0, p) and every p € [1,00). Hence, we obtain

P [ sup {NV sup ||0t iVHC([o,l]d,R)} < 00] =1
NeN 0<

for every 7 € (0, p) (see for instance Lemma 1 in [18]). This yields

P [ sup sup {N'VHOt — OiVHC([Ql]d,]R)} <oo V ve (O,p)} =1.
NeN 0<t<T
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In particular, we have

P i s 10: - O llqonem =0 =1 (5.6)
—0 0<¢<T
and
P [ sup sup {N"HOt - PNétHC([OJ]dR)} < oo V y€(0,p) } =1 (5.7)
NeN 0<t<T

Due to Lemma 5.5, we also have

1 1
» 464+4(8—0)—2\ 2 0
(BIOK = OX I o ayezy)” < Cldmp0)( 32 bGP il )" I — 1l
ie{l,...,N}4
6
C(d.pp.0)( X BOPIIZ?) 2 -
i€Nd

for every t1,t3 € [0,T], every N € N, every 6 € (0,5), 0 < 1 and where C(d,p, p,0) >
0 are appropriate constants (see Lemma 5.5). This shows

1
(E||O~t2 - O~t1||€‘([071]d7R)) < C d p pa ( Z |b | || ||2p 2) |t2 - tlle

i€Nd

for every t1,t; € [0,7] and every 6 € (0,5), 6 < 3. Hence, Kolmogorov’s theorem

2
(see e.g. Theorem 3.3 in [6]) yields

O, — O
Pl sup [0r, t1||C([60,1}d,]R) N
0<t1<to<T (t2 —t1)
for every 6 € (0, min (%, g)) Therefore, we obtain
O, — O
P sup H to t1||C([60,1]d1]R) <oV fe (O,min{%, g}) -1 (5.8)
0<t;<to<T (t2 —t1)

Hence, equation (5.8) and equation (5.7) show the existence of a stochastic process
0:10,T] x @ — C ([0,1]%,R), which satisfies

10t, (@) = O, (w ||c( 0ULR) _
sup

0<ty <t2<T (ta — tl)

and

sup sup (HOt(w) — PNOy(w)ll ¢ (jo,174,R) N"’) < oo
NEN0<t<T

for every w € €, every 0 € (0,min (1, %)) and every v € (0, p) and which is indistin-
guishable from 0, i.e.

P[ot:a VtE[O,T]}:l.

This completes the proof of Lemma 4.2. 00



GALERKIN APPROXIMATIONS FOR SPDES 33

5.4. Proof of Lemma 4.6. Proof. [Proof of Lemma 4.6] First of all, we have
Z n2+2’y e—2n27r2t < /OO (.’L‘ + 1)2+2’Y e—2z2ﬂ'2t dr
- 0

</008( 2+2w+1) —mertdx

22+27 z2
1) e 2 dx,
sl @)

and hence
=) 4 0 242 .2
Zn2+27 g2 < —/ <_x1 + 1) e zdx
n=1 ™t 0 ey
- 4 © fgty1  THY —2,
~ vt Jo 1+ ti+y € v
427 /‘>Ogc4—|—1—|—T1‘M _ﬁd
= e 2dx
t(%JF’Y)W 0 V2T
and finally

> Y4T?242 e 4 (T?
Zn2+27 o2t o (g\/_gT / (z* + 7% + )e_;dx < (72 +5)
n=1

V2 B

for every t € (0,7 and every v € [0, 3). Therefore, we obtain

0<z<1

sup { Z: 2. e~ Tt |w(sin(nm(-)))| - |sin(n7rz)|}

oo

<2 67"2”2t|w(sin(n7r(~)))| =2 Z ne "t [ (v2sin(nm ()|

nm
n=N

va( i i)t (Z i Bsininat )

o0 1 o]
- m/§( 3 nQe*Wﬁ) wl| g1 < m/ﬁzvﬂ( 3 n2+2ve*2"27f2t) ] g
n=N n=N

<mvaNT (412 45) 1)l

and thus
- 2 . . 10(T +3
sup {37 2.7 fu(sinur()] - sin(rz)|} < 2D oy,
0<a<1 = t(z+§)]\f

for every w € H7'((0,1),R), N € N, v € [0, 3) and every ¢ € (0,7] due to Lemma
4.7. This implies

10(T + 3)

ol

HSt(w)HC([O,l],R) < Oiup1 { Z 2-efn27r2t,|’w(Sin(nTr(-)))|.|sin(nﬂ'$)| } <

_‘/E_
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and

i) = Py Sy)lleqonz < sup {30 27 w(sin(nr(-))|-| sin(nra)]| |

0<z<1

n=N+1
10(7T + 3 10(7T + 3

< 0TED) < TS
+E(N+1)’Y titz N7

for every t € (0,T], w € H-*((0,1),R), v € [0,3) and every N € N. Finally, we
obtain

ooror (t4 1Sl (11 (0,118, 10,11 >)) <0

and

sup sup (t%+%N7HSt—PNSt||L(

NeNO0<t<T H*I((OJ),R),C([OJ],R)) ) <0

for every v € [0, 1), which is the assertion. O

5.5. Proof of Lemma 4.7. Proof. [Proof of Lemma 4.7] First of all, we have

[(0v) | = ( x) dw

/ 0@ - ¢/ @)] do < ol e - el g

for every v € L2 ((0,1),R) and every p € H} ((0,1),R) and thereforeis d : L? ((0,1),R) —

H} ((0,1),R) a well defined bounded linear mapping from L? ((0,1),R) to H ((0,1),R)
with ||0v]| -1 < ||v]|z2 for allv € L2 ((0, 1), R). Additionally, consider the linear map-
pings ¥ : H ((0,1),R) — L?((0,1),R) and ® : H}((0,1),R) — H~1((0,1),R) given
by ¥(v) :=v" and (®(v)) (¢) = <’U,(p>Hé for every v, € Hg ((0,1),R). By definition
U and ® are linear bijective isometries. Moreover, we have

for every ¢ € H} ((0,1),R) and every w € H~1 ((0,1),R). This implies
O(—2(2~H(w)) =w

for every w € H=1((0,1),R) and hence we obtain that Ai2(0,1)R) L2((0,1),R) —
~1((0,1),R) is a linear bijective isometry from L2((0,1),R) to H~'((0,1), ) In
particular @ : L*((0,1),R) — H~'((0,1),R) is surjective with A(L2((0,1),R))
H=((0,1),R) and [|0v] z-. = ||v||Lz for every v € L?((0,1),R). Finally y, we want
to compute ||w|g-1 for w € H=1((0,1),R). To this end let w € H~1((0,1),R)
be arbitrary and let v € L?((0,1),R) be the unique element in L2 ((0,1),R), which
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satisfies 0v = w. Then, we obtain

2

|lwl[g-1 = [|Ov||g—1 = ||[v][z2 = Z ’/o V2 - cos(nmz) - v(z) dx
= ! - (Z sin(nmx 2
- zr/ . % D ey
B Z |f0 (£ sin(nrx)) - v(z)dz|?

n2m?

2

(v, (v/2sin(nm(-) Z |(Ov)(v/2sin(nn(+)))[?

n2m2

E'qg

n2m2

| 2

> wﬂsinnﬂ'-
_ 5 lu/Bsinun()

n2m2 ’

which shows the assertion. O

5.6. Proof of Lemma 4.9. In this subsection we use the finite dimensional
R-Banach spaces

PN(C([O,l],R)) - {v € C([0,1],R) ‘ Juy,...,on €R:

Vae[0,1]: ZU" smmrx}

equipped with the supremum norm |[[v|[¢(jo,11,r) = SUPg<.<1 [v(2)| for every v €
C([0,1],R) and every N € N. Due to a similar fixpoint argument as in the proof
of Proposition 4.4, Lemma 4.9 follows from the following lemma.

LEMMA 5.7. Let 7 € (0,T],N € N and let ¥ : [0,7] — Pn(C([0,1],R)) and
N [0,7] — Pn(C([0,1],R)) be two continuous functions, which satisfy

t
20 = [ P Sy F@N $)ds + 0¥ (1)
0
for every t € [0,7]. Then, we obtain

sup [ ()]l o1y < exp (16 (c*+1)(T + 1)( sup [lo™ ()12 o,11,») + 1))7

0<t<r 0<t<r

where ¢ € R is used in Lemma 4.8.
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Proof. [Proof of Lemma 5.7] Firstly, we have

I
WE

(St — v 2(67’”2”2)5 —1)- /0 sin(nmu) v(u) du - sin(nw-)
= Z 2/0 (—n?7?) e ™ 0ds ./0 sin(nmu) v(u) du - sin(nm-)

t 22, (1 02
:/0 226 / (Wsm(nﬂ'u))v(u)du-sm(nﬂ'-)ds

for every ¢ € (0,7] and every v € Py(C([0,1],R)), which yields
¢
(St — I)’U = / SS(’U”)dS and H(St - I)’””C([O,I],R) S t- ||UHHC([O,1],]R) . (59)
0
In the next step we define the continuous function y : [0,7] — Py (C([0,1],R)) by
¢ ¢
N () = 2N (1) — oV () = / Py Sty F(z™ (s))ds = Py / Ste—s) F(a™ (s)) ds
0 0
for every t € [0,7]. We also use wy : [0,7] — [0,00) given by

wy (h) :=

sup {HPNF (@ (t2)) = Pn F («™ (1) || ¢ o.11.) € 10500)

t1,ta €10, 7], [t1 — ta] < h}

€ [0,00)

t1,te € [0,7], [t1 —t2] < h}
c([0,1],R)

+ Sup{ Haa—; (™ (t2) =y (1))

for every h € [0,7]. Note that wyn : [0,7] — [0,00) is monoton increasing with
wn(0) =0 and Al{x}) wn (h) = 0. Moreover, we have

yN (t2) — v (1)
to — 1
1 tz 1
/ Stta—s)PnF(zN (s))ds +
t1

to — 11

t1
/ (S(ta—s) — S(tr—s)) PN F (& (5))ds
ty — 1 .

1 tz

1
= S NP N d (S, -7 Nt
to — 11 /t1 (ta—s) PN E (27 (8)) S+t2—t1( (ta—t1) YN (t1)
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and therefore

N N 2
y () -yt () 97
H ty — 11 axQ‘U (tj) - P F( ())HC([Ol]R)

1
< H / Sity—syPnF(a (s))ds — Py F(a™
to —1t1 Jy,

))HC([OJ],R)
1 92

S, — Dyt Nit. H
+Ht2 (Steatn) = D (0) = vV )|

o P / Stams) (PNF("()) = PNF(7 (1)) s

HC([O,l],]R)

1 t2
Sy — Py F (N (t; dH
+Ht2—t1 /t (Sta=s) = DENFZ E)ds| 1 ey

1 0?
————(S(ty—tyy) — DYN (¢ Nt H
=g S = D000 = 55V 0o

for every 0 < t; <ty <7 and every j € {1,2}. Hence, we obtain
N 2
yN —y (1) 0° N N H
A A S St A t:) — Py F ts
| e 55 0" () = Py (1))
1
< / |PxF(@ (s)) — PyF(a™ (1)
to — 11
1

to—t1
+ / 1S, — ) Py F(a™ (1))
to — 11
i St — Dy ) -
2

1 t?
< / wn(|s —t;|) ds +
to —1t1 J¢

C([0,1,R)

)HC([O,I],]R) ds

HC([O,l],]R) ds
2

Gl L)

to — 11 /

1
+Ht = (Stta—t) = D) y™ (t1) =
2 U

C([0,1],R)

PNF( N J))HC([O s

ox? y" HC(O 1],R) (it =)

and

N — Nt 2
Hy (Eti—ijl)(t)_%yzv(]) P F (™ (t; ))HC([Ol]R)

SQ,wN(tQ_t1)+(t2—t1).H832PNF( Nt ))Hc([ouR)

to—1t1 82 N 52 N
+Htrtl/0 Sz v ()ds — oy (1)

<2 wn(ty —t1) 4 (b —t) - Haa—; PNF(zN(t'))H

+ H 5 i 0 /Otul(ss - 1)88_; yN(tl)dsH

C([0,1],R)

C([0,1],R)

C([0,1],R)
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for every 0 < t; <ty <7 and every j € {1,2} due to (5.9). This implies

Hytz—gw N 88—;2 G PNF(xN(tj))cho 11,8)
<2 wn(ta —t) + (t2 — 1) OESET H 222 b (S))Hc([o,l],ﬂ%i)
to—t
L itl /0 - (S - )88902 v )Hcao,lm)ds
and finally

Hytzfgv(tl) - ;_;2 N (t;) — PNF(:cN(tJ-))HC([OJLR)

<2t =)+ et s 175 PP ]
+(t2 — 1) - H@ yN(tl)HC([O Lk

S2wnltz—h)+{t2—t)- sup Ha;ﬂ (S))HC([OJLR)

+ (tg —t1) - su H— SH
(ta = 1) ogng ozt ” (s) c([0,1],R)

for every 0 < t; < ta <7 and every j € {1,2} due to (5.9). This shows

SN0 = sy + PEEN ) = V(0 + Py ) + o¥(0)

and hence

0

&HyN(t)H%z

82
=20 (1), 7, vV ()2 = 2 (yN (1), 35 ™ () + PN F(yN (1) + 0" (1))
ot Oor 12

Ny 9w N N

=2 (50 5y O+ F¥ 0 + 0¥ (0))
X L2

< ly™ @®)ll72 '4C2||0N(t)||20([0,1],]R) + 402||0N(t)||40([0,1],1R)
<N (@))72 - 4c? Sup 0™ (120,17, + 4¢? e o™ ()1E0,11.2)

<s<t

for every ¢ € [0, 7] due to Lemma 5.9. Therefore, Gronwall’s lemma yields

2
ly™ (1)]172 < exp (402T sup ||0N(5)||20([o,1],R)) : <2|C| Sup ||0N(5)||20([0,1],R)>

SSST

< exp (4C2T sup ||0N(S)||20([0,1],R)) - exp (4|C| sup ||0N(5)||20([o,1],R))
0<s<t 0<s<T7

< exp (4 + (T +1) sup 0¥ ()20,

0<s<T
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for every ¢ € [0, 7] and finally

sup [ly™ 1)z < exp (4 + )T +1) swp V() B om)-  (5:10)
0<t<r 0<s<7

In the next step we obtain

L4

t
< [ |PrSnl S eaF@V )| d
_/0 H N2z L(L2((0,1),R),L4((0,1),R) ) 52 (@7(s)) 2"

for every t € [0,7]. Due to Lemma 5.8, we obtain

I Olle = || [ Py s

@l < [ (57 S o), ds
= 2td [t o) [Supa [ 6]

1

|/ (=974 @) (52) 7N ()P ds

ds
L2

o

7

= 254(T + 1)] c|/ t—s_%~|\:cN(S)||%zds
and
¢
_z 2 1
¥ Ol <8+ 01 [ =9 F [ G ads < 04T+ 0THC s |2 ()1
0 SSST
(5.11)

for every t € [0, 7]. Additionally, we have

t
HyN(t)Hc([o,ﬂ,R) - H/ (PvSu—sF (2" (5))) ds
0 c([0,1],R)

t
S/ HPNS(t*S
0 2

. ||F(:EN(S))H1LF1 ds

£(z2((0,1),R),C([0,1],R)) ' L(H-1((0,1),R),L2((0,1),R))

and

I Ollogoasy < [ (7)7F (5 PG o]
e,

<2|c|/ (t—s)7% ||V (s))? 2 ds

for every t € [0, 7] due to Lemma 5.8. This implies

+
wlw

t
_é 1
||yN(t)|IC([o,1],1R>SQlCl/O(t—s |z ()l Zads = 8[e|TT sup [ (s)[[F4 (5.12)

0<s<T
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for every ¢ € [0, 7]. Combining (5.10), (5.11) and (5.12) yields

2
1
sup [y~ (Olleqonm < ST ( sup [y¥ @)l + sup oV (6)]s)
0<t<T 0<t<r 0<t<T

1 1 2
< 8¢TH (64(T +1)TH e sup [z (s)]|22 + z)
0<s<t

<215(|eP + 1)(T + 1)3( sup ||xN(s)||%z + z2)

0<s<t
and therefore
2
sup_ ly™ ()l oo < 2% + )T + 1P (( sup_ Jy(s)llez +2) +2*)
0<t<r 0<s<r

<27(ef* + )T+ 1) sup_ [y (s)]32 +227)
0<s<T

<217(|e* + 1)(T + 1) (exp{4(c® + 1)(T + 1)2°} + 22%) .
Finally,
S Iy™ Ollogo,.m) < 2'(|ef® + 1)(T +1)% exp{6(c* + 1)(T + 1)2%}
<eexp{3(c + 1)(T +1)} - exp{6(c* + 1)(T +1)2%}
<exp{13( + 1)(T +1)(z> + 1)},

where z € R is given by z := supg<;<, 0™ ()|l c((0,1,r)- O
LEMMA 5.8. Let S : (0,T] — L(H'((0,1),R),C([0,1],R)) be given by Lemma

H
4.6 and let Py : C([0,1],R) — C([0,1],R), N € N, be given by (4.11). Then, we
obtain

»h-l»—l
ool—

<t~

1P~ St”L( L2((0,1).R),L4((0,1),R)) =

L2((0,1),R),C((0,1),R)) =t 1P St”L(

and

N[=

<t~

/ -3
aronmaqonm) S0 19l S 4T+ D ol

Il

for every t € (0,T], N € N and every v € C1([0,1],R).
Proof. [Proof of Lemma 5.8] First of all, we have

N

1
| PnStvllcqo,1),r) = sup Z 267”%2’5/ sin(nms) v(s) ds - sin(mrx)‘
0<z<1 ne1 0

N
< Z 2efn27r2t
n=1
N
< (22672’” g t ( 2’/ sin(nms) v(s) ds )
n=1

2 22 3
<( e_de) V|2 < oz <t T |vllpe (5.13
(| 5= lollze < (2)7 lolla < ¢ ol e (513)

/ 1 sin(nms) v(s) ds

=
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for every t € (0, 7], N € N and every v € L?((0,1),R), which shows the first estimate.
Moreover, we obtain

1
| P Sivllts = / Py Sio(@)]* d < || Py Seol3al Py Seol2 o < ¢ ol4s

for every v € L?((0,1),R), t € (0,7] and every N € N due to (5.13) for the second
estimate. For the third estimate we obtain

o0

ISl = 3 (VB wsin(un())

$ atgtpe-ee V2SO E )

e < ol < 4wl

for every t € (0,7],w € H=1((0,1),R), since z - e~ < 1 for every x € R. Finally, we
establish the fourth estimate. To this end we consider

1
(Siw)(z Z 2T t/ sin(nms) w(s) ds - sin(nmwzx)
and

1
(Spw)'( Z e T t/ sin(nms) w(s) ds - cos(nmzx)

0

for every t € (0,7],z € [0,1] and every w € L2 ((0,1),R). This implies

| (Stw) [l co0,1.r) < Z nme T t‘/ sin(nws) w(s) ds‘
(\/_nﬂ'e_" 't 2)5 : (nij:l ‘ /01 V2sin(nms) w(s) dsr)i

— (Z2n2 2 —2n?7r t) ”wHL2

n=1

& 22 2
(/ 2z +1)*n%e 20T tdx) Nwl| 2
0

B | M

-

and

1

oo 2 2 EY
IS oo < ([ 20262 + 20+ 062 o) olos
0
< 27r(/ (z% + 1)6729627‘—2)5 dz) ’. [lw]| 2
0
2m (/oo 1 (x2 2 \3
_ o 1o ae) ol
([ ol

om)i 1 \2 1,3
< OO (1 VYl <4+ R

= 43 472t
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for every t € (0,7] and every w € L? ((0,1),R). Therefore, we obtain

1Se(W)llz = sup [w, Se(v)) 2] = sup  [(Syw,v') e[ = sup  [{(Syw)',v) L]

llwllp2<1 llwllp2<1 lwllg2<1
_3
< sup [[(Sew)lleqo,r) - o]l < AT+ 1)t % ||v]|
llwllp2<1
for every t € (0,T] and every continuously differentiable function v : [0,1] — R. O

LEMMA 5.9. Let F : C([0,1],R) — H=1((0,1),R) be given by Lemma 4.8. Then,
we have

(v, 0"+ F(v+w)) 2 <2 CQH”H%Z ||w||20([0,1],1R) +2 02||w||é([0,1],n§)
for all twice continuously differentiable functions v : [0,1] — R and w : [0,1] — R

with v(0) = v(1) = 0 and where ¢ € R is used in Lemma 4.8.
Proof. [Proof of Lemma 5.9] We have

(v, F(v+w)) - c/o v ((v+w)?) de

1 1 1
=—c/ U'-U2d$—20/ U'-U-wdx—c/ v - w?dx
0 0 0

and therefore as fol v'vidr =0

1 1 1
(U,F(U+’LU)>L2=—C/ U'-U2d$—20/ U'-U-wdx—c/ v - w? de
0 0 0

for all continuously differentiable functions v,w : [0,1] — R with v(0) = v(1) = 0.
Hence, we obtain

(0, P+ w)) 2 < 2lel - [0/ 122 - lellz - [wllogo,um + el 10/l - el o,z
< 2lel (Ilvllz2 - lholleqon » + el oz ) - I10'l1z2
2
< lef? (Ilollze - Il + ol gonz) + 1013
and finally
(v, F(v+w)) 2 < 260l 22 lwlEpo,1m) + 26 1wl og.m) + 101172

for all continuously differentiable functions v,w : [0,1] — R with v(0) = v(1) = 0.
Therefore, we obtain

(0,0" + F(v+w)) 2 = —[[V'[|72 + (v, Fv + w)) 12

<2 ||vl|7: lwllE o) + 202”w||é‘([0,1],]R)

for all twice continuously differentiable functions v : [0,1] — R and w : [0,1] — R
with v(0) = v(1) = 0, which is the assertion. O
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5.7. Gronwall’s Lemma. In the proof of Theorem 3.1 the following Gronwall
inequality is needed. It is very similar to Lemma 7.1.11 in [13] and just for complete-
ness its proof is presented below.

LEMMA 5.10. Let b,8 € (0,00), a € [0,00) and let e : [0,T] — [0,00) be a
B([0,T7)/B([0, 00))-measurable mapping, which satisfies

t
e(t) <a+ b/ (t— )P Ve(s)ds < oo (5.14)
0
for every t € [0, T]. Then, we obtain
e(t) < a-Fy (10T (8)?) (5.15)
o @B

for every t € [0,T], where Eg : [0,00) — [0,00) is given by Eg(x) = ", NCYEsy)
for every x € [0, 00).
Proof. [Proof of Lemma 5.10] Consider the set

U:= {u :[0,T] — [0,00) is B (]0,T]) /B (][0, 00)) -measurable

‘ /Ot(t —5) P Dy(s)ds < ooV t € [0,T] }

and the mapping

B:U—U, (Bu)(t)= b/t (t — )PP u(s)ds
0

for every ¢ € [0,T] and every u € U. First of all, B is well defined, since
t t s
/ (t — )P~V (Bu) (s)ds = / (t — s)ﬁ—lb/ (s — )P~ u(r) drds
0 0 0

t s
:b/ / (t—s)ﬁfl(s—r)ﬁflu(r) dr ds

o Jo

¢ ot
:b/ / (t — )P~ (s — )P~ Ydsu(r) dr

0 Jr

and therefore

t t  p(t—r)
—8)P"Y(Bu)(s)ds = —r—8)P P s u(r) dr
[u=stmaeas=o [ [ -r-y dsu(r)d
= 77,2B71 —sﬁflsﬂfl su(r)dr
v [e=rpt [a-s dsu(r)d
_bl"(ﬁ)2 t — )28 Ly(r) dr
| =

- T2
L(B)*TP [ 51
< T(27) /0 (t—r)"" u(r)dr <
for every t € [0,T] and every u € U. Moreover, we have
ny, _ (br(ﬂ))n ! —s nﬁflu s)ds
) () = i [ =9ty d (5.16)
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for every t € [0,T], u € U and every n € N. We show (5.16) by induction on n € N.

In the case n = 1 equation (5.16) follows from the definition of B : U — U. Therefore,
we assume that (5.16) holds for a fixed n € N and obtain

(B(”+1)u) (1) :b/t(t—s)ﬁ—l(m )(s) ds

b"+1F
/ / (t — )P~ Y(s — )"~ Lu(r) dr ds

b"'HF
= / / (t —5)°~Y(s — )P~ dsu(r) dr

and

bn+1F t T
(B(”Jrl)u) (t) = / / (t —r —s)P 1" Ldsu(r) dr

bn+11’\ (n+1)8—1 ! B-1 nﬁ L dsu(r) dr
T8) /O<f ) |- dsu(r)d
Aty ‘ 7T(n+1)ﬁflwur r
S R A e UL
2N C)) iy P R R,
= T g J, -7l

for every ¢ € [0,T] and every u € U. This shows (5.16) for every n € N by induction.
Additionally, we have

e(t) <a-+ (Be)(t)
for every t € [0,T] due to (5.14). Moreover, note that (Bu)(t) < (Bv)(t) for every
t € 10,7 and every u,v € U with u(t) < v(t) for all ¢ € [0,T]. Hence, we obtain
(Be)(t) < (B(a + Be))(t) = (Ba)(t) + (B)(t)
and therefore
e(t) <a+ (Be)(t) < a+ (Ba)(t) + (B%)(t)
for every t € [0,T]. Tterating this idea yields
e(t) < a+ (Ba)(t) + (B%a)(t) + ...+ (B™"Va)(t) + (B"e)(t)

n—1 k t
=at %/0 (t— )" lads + (B e)(t)
k=1

n—1 k +
=a+ a%/o s¥A=1ds + (B™e)(t)
k=1

and
n—1 k tkﬁ

<a+Za brzﬂ))) 35+ (B0

S (t(bﬂﬁ)f)w
:a.kZ:OWJr(Bne)(t)
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for every t € [0,7] and every n € N due to (5.16). Since lim,, . (B™¢e)(t) = 0 for
every t € [0, 7], we finally obtain the assertion by taking the limit n — co. O
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