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Abstract. For continuous-time linear control systems, a concept of entropy for controlled and
almost controlled invariant subspaces is introduced. Upper bounds for the entropy in terms of the
eigenvalues of the autonomous subsystem are derived.
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1. Introduction. Controlled and conditioned invariant subspaces of linear dy-
namical systems play a crucial role in understanding controller design problems such
as disturbance decoupling, filtering, robust observer design, and high gain state feed-
back. In fact, starting form the early work of Basile–Morro [1] and Wonham [14],
controlled invariant subspaces became a cornerstone of geometric control theory. In
this paper, we begin an investigation of how geometric control design via controlled
invariant subspaces is affected by entropy estimates and associated data rate con-
straints. The main motivation for this circle of ideas comes from the increasing needs
of controlling systems with communication constraints, i.e. for systems where the
state passes through a communication channel and may thus not be fully available to
the controller.

As a starting point for such an investigation, we associate to any almost (A,B)–
invariant subspace V of a linear control system a number, called the invariance entropy
of V, that measures how difficult it is, using open loop controls, to keep the system in
V . It is defined by the exponential growth rate of the number of controls necessary
to keep the system in an arbitrarily small ε-neighborhood of V . More generally, by
extending the familiar notion of topological entropy for the flow defined by A, we
define the entropy of an arbitary linear subspace V of the state space. We show that
the invariance entropy is finite for any almost (A,B)-invariant subspace and derive
upper bounds in terms of the sum of the eigenvalues of A with positive real part.
Sharper upper bounds are derived for specific classes of linear systems.

Our approach partially extends and follows that by Colonius and Kawan [4], where
an entropy-like notion was proposed for controlled invariance of compact subsets of
the state space of general control systems. Their approach in turn has been motivated
by the work of Nair et al. [8] on feedback entropies for nonlinear discrete-time sys-
tems. The entropy notion considered here may be regarded as a lower bound for the
minimum data rate (take the logarithm with base 2 instead of the natural logarithm
used, for convenience, in the present paper.) More explicit relations to data rates are
given in Kawan’s PhD thesis [9].

The contents of this paper are as follows: Section 2 recalls basic facts on (A,B)-
invariant and on almost (A,B)-invariant subspaces. Section 3 introduces entropy of
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almost (A,B)-invariant subspaces and provides an upper bound in terms of eigenval-
ues. We also show that this invariance entropy can be characterized by an entropy
property of the uncontrolled system and use this to show sharper bounds for special
cases. Since these results rely on Bowen’s classical characterization [2] of entropy of
linear maps, we have, for the convenience of the reader, included an essentially self-
contained proof of his result in the appendix (where also related notation is recalled).

2. Preliminaries on controlled-invariant subspaces. The purpose of this
section is to summarize some well-known definitions and facts from geometric con-
trol theory, i.e. controlled and almost controlled invariant subspaces. The notion
of controlled invariant or (A,B)–invariant subspaces was introduced by Basile and
Morro [1], and Wonham [14], while almost controlled invariant subspaces were first
introduced by J.C. Willems [13]; we also refer to the PhD Thesis by J. Trumpf [12]
for a useful summary of basic definitions and facts.

Consider linear control systems in state space form

ẋ(t) = Ax(t) + Bu(t) (2.1)

with matrices A ∈ R
n×n and B ∈ R

n×m. The solutions of (2.1) are given by the
variations-of-constants formula:

ϕ(t, x, u) = eAtx +

∫ t

0

eA(t−s)Bu(s)ds.

Recall that a subspace V is called (A,B)-invariant, if for all x ∈ V there is u ∈ R
m

with

Ax + Bu ∈ V.

Equivalently, there is a matrix F ∈ R
m×n, a so-called friend of V , such that for

AF := A + BF

AF V ⊂ V.

This can be seen by choosing for a basis x1, ..., xk of V control values u1, ..., uk ∈ R
m

with Axi + Bui ∈ V . Then extend this to a basis of R
n and define a linear map F by

Fxi = ui, for i = 1, ..., k , and F arbitrary outside V.

This also shows that V is (A,B)-invariant if and only if it is controlled invariant, i.e.,
for every x ∈ V there is an open loop continuous control function u : R → R

m with
ϕ(t, x, u) ∈ V for all t ≥ 0. In fact, differentiating the solution one finds

V ∋
d

dt
ϕ(0, x, u) = Ax + Bu(0).

Conversely, define for x ∈ V a control by u(t) = Fe(A+BF )tx, t ≥ 0.
A linear subspace V is called almost (A,B)-invariant, if for any x ∈ V and any

ε > 0 there exists a control function u(·) such that for all t ≥ 0

dist(ϕ(t, x, u), V ) < ε.

Almost (A,B)-invariant subspaces are of interest to study subspaces invariant
under high gain state feedback. Thus, almost (A,B)-invariant subspaces cannot be
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made invariant under state feedback, so there is no friend, but they can be made
almost-invariant in the sense that for every x ∈ V and any ε > 0 there exists a
feedback F such that for all t ≥ 0

dist(eAF tx, V ) < ε.

Here, for any norm on R
n, the distance of x ∈ R

n to a nonvoid subset A ⊂ R
n is

denoted as

dist(x,A) := inf
a∈A

‖x − a‖ .

In order to derive explicit estimates for the entropy of controlled invariant sub-
spaces it is useful to have explicit parametrizations of the class of all controlled in-
variant subspaces. This is a difficult task and we refer to e.g. [7],[12] for further
information. Special types of subspaces are of special interest here. A controlled
invariant subspace V is called coasting, if V ∩ ImB = {0}. Equivalently, {0} is the
largest controllability subspace contained in V . Any controlled invariant subspace of
a controllable single-input system is coasting. Given an (A,B)–invariant subspace
V and a friend F ∈ R

m×n, then V is AF -invariant. The restriction (Ā, B̄) and co-
restriction (Ã, B̃), respectively, then are defined as

(Ā, B̄) = (AF |V,B|B−1V ),

(Ã, B̃) = (AF : R
n/V → R

n/V, π ◦ B : R
m/B−1V → R

n/V ).

Note, that the co-restriction (Ã, B̃) is controllable, whenever (A,B) is controllable,
while the restriction is controllable only for a controllability subspace. Note also, that
B̄ and B̃ are both full column rank if B has full column rank. Of course, the co-
restriction may well depend upon the choice of a friend F , so there are in fact many
possible co-restrictions and not just one. However, the controllability indices of the
co-restrictions are all the same. It is thus a remarkable but simple fact, that for any
coasting subspace V , the co-restriction is uniquely defined and independent of F .

If V is an (A,B)-invariant subspace that is coasting, then there is some a-priori
information about the dimensions of the bounding subspaces 〈A |V 〉 and ker(A;V )
that determine the entropy bound (4.1). Here, ker(A;V ) is defined as the largest in-
variant subspace that is contained in V , while ker(A;V ) denotes the smallest invariant
subspace containing V . Generically, one expects 〈A |V 〉 = R

n and ker(A;V ) = {0},
but one can be more specific. For simplicity, we focus on the single input case, i.e.
m = 1.

Lemma 2.1. Let (A, b) be controllable and let V be any (A, b)-invariant subspace
that is not A-invariant. Then every A-invariant subspace W ⊃ V satisfies W = R

n.
Any generic (A, b)-invariant subspace satisfies ker(A;V ) = {0} and 〈A |V 〉 = R

n.
Proof. Note, that in the single input case only, every (A, b)-invariant subspace is

automatically coasting. By duality, it suffices to show for single-output systems (c,A)
that 〈A |V 〉 = R

n, for any tight (c,A)-invariant subspace V that is not A-invariant.
In order to show this we apply the theory of polynomial models; see Fuhrmann [5],
Fuhrmann and Willems [6]. Let q(z) = det(zI − A) denote the characteristic poly-
nomial and Xq denote the associated polynomial model. Thus, Xq denotes the set of
polynomials of degree < n with the module structure given by multiplication mod-
ulo q. The (tight) conditioned invariant subspaces of codimension d then uniquely
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correspond to the intersection

V = Xq ∩ t(z)R[z], (2.2)

via a unique monic polynomial t of degree d; see Fuhrmann and Helmke [7]. Let
V∗ (V ∗) denote the largest (smallest) shift invariant subspace of Xd contained in V
(containing V ). In this polynomial framework, the A invariant subspaces are of the
form q1Xq2

⊂ Xq, for any factorization q = q1q2. Thus q1Xq2
⊂ Xq ∩ t(z)R[z] if and

only if t divides q1. In particular, t must then divide q, i.e. V must be an invariant
subspace. Now assume that V is not an invariant subspace (for the shift), i.e. t does
not divide q. Then V does not contain any nontrivial invariant subspace. Applying
duality, this implies the lemma. But more can be said. Factor t = q1a with q1 a
polynomial of degree r dividing q, q = q1q2, and a a polynomial that is coprime to q.
Then q1Xq2

is the smallest invariant subspace containing V . The codimension of this
subspace is thus deg gcd {q, t}. In particular, if q and t are coprime, then V∗ = {0}
and V ∗ = Xq.

3. Entropy for controlled invariant subspaces. In this section we give two
different, but closely related definitions for entropy of a linear subspace V ⊂ R

n. Our
first definitions is a suitable adaptation of the well-known topological entropy of linear
differential equations [2].

3.1. Subspace entropy of flows. Let V be a linear subspace of R
n. For a

linear map A : R
n → R

n, let Φ(t, x) = eAtx, t ∈ R
+
0 , x ∈ R

n, be the induced
semiflow. For any compact subset K ⊂ V and for given T, ε > 0 we call R ⊂ K a
(T, ε,K, V,Φ)-spanning set, if for all x ∈ K there exists y ∈ R with

max
0≤t≤T

dist(etA(x − y), V ) < ε. (3.1)

Let r(T, ε,K, V,Φ) denote the minimal cardinality of a (T, ε,K, V,Φ)-spanning set. If
no finite (T, ε,K, V,Φ)-spanning set exists, we set r(T, ε,K, V,Φ) = ∞. Similarly, we
call S ⊂ K a (T, ε,K, V,Φ)-separated set, if for all x 6= y in S

max
0≤t≤T

dist(etA(x − y), V ) ≥ ε.

The maximal cardinality of such a set is denoted by s(T, ε,K, V,Φ). Note that the
points x in R (and in S) will, in general, not lead to solutions eAtx which remain in
the ε-neighborhood of V .

Definition 3.1. Let A be a linear map A on R
n with associated semiflow Φ and

consider a subspace V of R
d. For a compact subset K ⊂ V, we set

hspan(ε,K, V,Φ) := lim sup
T→∞

1

T
ln r(T, ε,K, V,Φ),

hspan(K,V,Φ) := lim
εց0

hspan(ε,K, V,Φ),

and define the entropy of V with respect to Φ by

h(V,Φ) := supKhspan(K,V,Φ),

where the supremum is taken over all compact subsets K ⊂ V .
Analogously, an entropy of V can be defined via minimal separated sets.
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As usual in the context of topological entropy, one sees that, by monotonicity,
the limits for ε ց 0 exist. Since all norms on a finite dimensional vector space are
equivalent, the entropy does not depend on the norm used in (3.1). Furthermore, the
definitions via separated and spanning sets coincide, which easily follows from the
next proposition (cf. Robinson [11, Lemma VIII.1.10]).

Proposition 3.2. Let K ⊂ V be compact and fix T, ε > 0. Then

s(T, 2ε,K, V,Φ) ≤ r(T, ε,K, V,Φ) ≤ s(T, ε,K, V,Φ).

Proof. Let S ⊂ K be a maximal (T, ε,K, V,Φ)-separated set and let x ∈ K. By
maximality of S, there is some y ∈ S such that

max
0≤t≤T

dist(etA(x − y), V ) < ε.

Therefore S is (T, ε,K, V,Φ)-spanning showing the second inequality. For the first
one, consider a maximal (T, 2ε,K, V,Φ)-separated set S and a minimal (T, ε,K, V,Φ)-
spanning set R. We define a map H : S → R in the following way: For x ∈ S there is
y := H(x) ∈ R with dist(etA(x − y), V ) < ε for all t ∈ [0, T ]. If H(x1) = H(x2) = y,
then

max
0≤t≤T

dist(etA(x1 − x2), V )

≤ max
0≤t≤T

dist(etA(x1 − y), V ) + max
0≤t≤T

dist(etA(x2 − y), V ) < 2ε.

Thus x1 = x2 follows. This shows that H is injective, and hence r(T, ε,K, V,Φ) ≥
s(T, 2ε,K, V,Φ).

Although this will not play any role in the sequel, we describe the behavior of
this entropy notion under a special semiconjugacy.

Proposition 3.3. Let W be an A-invariant subspace for a linear map A on R
n.

Then, for a subspace V of R
n the entropies of the induced flows Φ(t, x) = eAtx on R

n

and Φ̂(t, x̄) on the quotient space R
n/W , respectively, satisfy

h(V,Φ) ≥ h(V/W, Φ̄).

Proof. Let K ⊂ V be compact and for T, ε > 0 consider a (T, ε,K, V,Φ)-spanning
set R ⊂ K. Denote the projection of R

n to R
n/W by π, hence πV = V/W . Then the

set πR is a (T, ε, πK, πV, Φ̄)-spanning set. In fact, let R = {x1, ..., xℓ} and consider
πx ∈ πK for some element x ∈ K. Then there exists xj ∈ R with

max
0≤t≤T

dist(etA(x − xj), V ) < ε.

Denoting the map induced by A on R
n/W by Ā one finds for all t ∈ [0, T ]

dist(etĀ(πx − πxj), πV ) = inf
z∈V

∥

∥

∥
etĀ(πx − πxj) − πz

∥

∥

∥

= inf
z∈V,w∈W

∥

∥etA(x − xj) − z − w
∥

∥

≤ dist(etA(x − xj), V )

< ε.

It follows that the minimal cardinality of a (T, ε,K, V,Φ)-spanning set is greater than
or equal to the minimal cardinality of a (T, ε, πK, πV, Φ̄)-spanning set. Taking the
limit superior for T → ∞, letting ε tend to 0 and, finally, taking the supremum over
all compact K ⊂ V yields the assertion.
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3.2. Entropy for almost (A,B)-invariant subspaces. We now introduce the
invariance entropy for almost (A,B)-invariant subspaces of linear control system (2.1)
on R

n. In the following, we consider a fixed almost (A,B)-invariant subspace V of R
n

with dim V = d. Furthermore, we admit arbitrary continuous controls in the space
C(R, Rm) of continuous functions u : R → R

m.
Definition 3.4. For a compact subset K ⊂ V and for given T, ε > 0 we call a

set R ⊂ C(R, Rm) of control functions a (T, ε,K, V )-spanning set if for all x0 ∈ K
there is u ∈ R with

dist(ϕ(t, x0, u), V ) < ε for all t ∈ [0, T ].

By rinv(T, ε,K, V ) we denote the minimal cardinality of a (T, ε,K, V )-spanning set.
If no finite (T, ε,K, V )-spanning set exists, we set rinv(T, ε,K, V ) = ∞.

In other words: we require for a (T, ε,K, V )-spanning set R that for every initial
value in K, there is a control in R such that up to time T the trajectory remains in
the ε-neighborhood of V .

We note that the definition above differs from earlier ones used for invariance
entropy (cf. [4, 3]) by the fact, that the set V whose invariance is studied here, is not
compact.

Remark 3.5. Let ε, T > 0. By almost (A,B)-invariance of V there exists for
every x ∈ K a control function u with dist(ϕ(t, x, u), V ) < ε for all t ≥ 0. Hence, using
continuous dependence on initial values and compactness of K, there exist finitely
many controls u1, ..., ur such that for every x ∈ K there is uj with ϕ(t, x, uj) ∈ Nε(V )
for all t ∈ [0, T ]. Hence rinv(T, ε,K, V ) < ∞. It seems, that the class of almost
(A,B)-invariant subspaces is the largest class of subspaces for which this is true.

Now we consider the exponential growth rate of rinv(T, ε,K, V ) for T → ∞ and
let ε → 0.

Definition 3.6. Let V be an almost (A,B)-invariant subspace. Then, for a
compact subset K ⊂ V , the invariance entropy hinv(K,V ) is defined by

hinv(ε,K, V ) := lim sup
T→∞

1

T
ln rinv(T, ε,K, V ), hinv(K,V ) := lim

εց0
hinv(ε,K, V ).

Finally, the invariance entropy of V is defined by

hinv(V ;A,B) := supKhinv(K,V ),

where the supremum is taken over all compact subsets K ⊂ V .

In the sequel, we will always use for a given underlying system (A,B) the short-
hand notation hinv(V ) for hinv(V ;A,B). Note that hinv(ε1,K, V ) ≤ hinv(ε2,K, V )
for ε2 ≤ ε1. Hence the limit for ε → 0 exists (it might be infinite.) Since all norms
on finite dimensional vector spaces are equivalent, the invariance entropy of V is in-
dependent of the chosen norm. We will show later that every almost (A,B)-invariant
subspace has finite invariance entropy. It is clear by inspection, that both the in-
variance entropy hinv(V ) and the subspace entropy h(V,Φ) are invariant under state
space similarity; i.e. hinv(SV ;SAS−1, SB) = hinv(V ;A,B).

The following theorem shows that the entropy of an almost invariant (A,B)-
subspace V can be characterized by the entropy of V for the corresponding uncon-
trolled system ẋ = Ax. This result will be useful in order to compute entropy bounds.
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Theorem 3.7. Let V be an almost (A,B)-invariant subspace for system (2.1)
and consider the entropies hinv(V ) and h(V,Φ) of V with respect to control system
(2.1) and to the linear semiflow Φ(t, x) = eAtx, respectively. Then

hinv(V ) = h(V,Φ).

Proof. (i) Let K ⊂ V be compact, and fix T, ε > 0. Consider a (T, ε,K, V )-
spanning set R = {u1, ..., uℓ} of controls with minimal cardinality rinv(T, ε,K, V ).
This means that for every x ∈ K there is uj with dist(ϕ(t, x, uj), V ) < ε for all t ∈
[0, T ]. By minimality, we can, for every uj , pick xj ∈ K with dist(ϕ(t, xj , uj), V ) < ε
for all t ∈ [0, T ]. Then, using linearity, one finds for all x ∈ K a control uj and a
point xj ∈ K such that for all t ∈ [0, T ]

dist(eAtx − eAtxj , V ) = dist(ϕ(t, x, uj) − ϕ(t, xj , uj), V ) < 2ε.

This shows that the points xj form a (T, 2ε,K, V,Φ)-spanning set, and hence

rinv(T, ε,K, V ) ≥ r(T, 2ε,K, V,Φ).

Letting T tend to infinity, then ε → 0 and, finally, taking the supremum over all
compact subsets K ⊂ V , one obtains hinv(V ) ≥ h(V,Φ).

(ii) For the converse inequality, let K be a compact subset of V and T, ε > 0.
Let E ⊂ K a maximal (T, ε,K, V )-separated set with respect to the semiflow Φ, say
E = {y1, . . . , ys} with s = s(T, ε,K, Φ). Then E is also (T, ε,K)-spanning which
means that for all x ∈ K there is j ∈ {1, . . . , s} with

max
t∈[0,T ]

dist(eAtx − eAtyj , V ) = max
t∈[0,T ]

inf
z∈V

∥

∥eAtx − eAtyj − z
∥

∥ < ε.

Since V is almost (A,B)-invariant, we can assign to each yj , j ∈ {1, . . . , s}, a control
function uj ∈ C(R, Rm) such that ϕ(R+

0 , yj , uj) ⊂ V . Let R := {u1, . . . , us} ⊂
C(R, Rm). By linearity one has ϕ(t, x, u) − ϕ(t, y, u) = eAtx − eAty for all t ≥ 0,
x, y ∈ R

n and u ∈ C(R, Rm). We obtain that for every x ∈ K there is j such that

max
t∈[0,T ]

dist(ϕ(t, x, uj) − ϕ(t, yj , uj), V )

= max
t∈[0,T ]

dist(eAtx − eAtyj , V )

< ε.

Since dist(ϕ(t, yj , uj), V ) < ε for t ∈ [0, T ], there is z1 ∈ V with ‖ϕ(t, yj , uj) − z1‖ < ε
and hence

dist(ϕ(t, x, uj), V ) = inf
z∈V

‖ϕ(t, x, uj) − z‖

≤ inf
z∈V

‖ϕ(t, x, uj) − ϕ(t, yj , uj) + z1 − z‖ + ‖ϕ(t, yj , uj) − z1‖

< inf
z∈V

‖ϕ(t, x, uj) − ϕ(t, yj , uj) − z‖ + ε

< 2ε.

This implies that for all x ∈ K there is uj ∈ R such that

max
t∈[0,T ]

dist(ϕ(t, x, uj), V ) < 2ε.

Hence R is (T, 2ε,K, V )-spanning and it follows that

rinv(T, 2ε,K, V ) ≤ s(T, ε,K,Φ) for all T, ε > 0,

and consequently hinv(K,V ) ≤ hsep(K,V,Φ) ≤ h(V,Φ).
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4. Entropy Bounds. A general upper bound for entropy of almost (A,B)-
invariant subspaces of control system (2.1) is provided. Using the characterization
via the subspace entropy of the associated autonomous flow, sharper upper bounds
are obtained in special cases.

Theorem 4.1.

(i) Let V ⊂ R
n be any subspace and consider the smallest A-invariant subspace

〈A |V 〉 containing V and the largest A-invariant subspace ker(A;V ) contained
in V . Then the subspace entropy of the flow Φ(t, x) = etAx is finite and
satisfies

h(V,Φ) ≤ max
(

0,
∑

Re λi

)

, (4.1)

where summation is over the eigenvalues λ1, ..., λn with Re λi > 0 of the map
induced by A on the quotient space 〈A |V 〉 / ker(A;V ).

(ii) The invariance entropy of any almost (A,B)-invariant subspace V for system
(2.1) is finite and satisfies the inequality (4.1)

Proof. Note first, that by A-invariance the restriction A|〈A|V 〉 as well as the

induced map on 〈A |V 〉 / ker(A;V ) are well-defined. Moreover, for any subspace V of
the state space there exists a matrix B such that V is an (A,B)-invariant subspace.
Thus it suffices to show inequality (4.1) for any almost (A,B)-invariant subspace. It
suffices to show that (4.1) is satisfied for hinv(K,V ), where K is an arbitrary compact
subset of V . Our proof then depends on a topological entropy inequality for linear
maps due to R. Bowen, see the appendix.

Consider the linear semiflow Φ(t, x) = eAtx, Φ : R
+
0 × R

n → R
n with time-one

map Φ1 = Φ(1, ·). By Appendix, Corollary 5.3

htop(Φ) = htop(Φ1) = max

(

0,
∑

i: Re λi>0

Re λi

)

.

Analogously, the restriction of Φ1 to 〈A |V 〉 has topological entropy given by the sum
of the positive real parts of eigenvalues of Φ|〈A|V 〉. Therefore, the time-one map of

the induced flow Φ̂ on 〈A |V 〉 / ker(A;V ) has topological entropy given by the right
hand side of (4.1); this also coincides with the topological entropy of Φ̂.

Let K be a compact subset of V and π denote the projection of 〈A |V 〉 to the
quotient space 〈A |V 〉 / ker(A;V ). Thus, the set πK is compact. Let T, ε > 0 be
given and denote by E ⊂ πK a maximal (T, ε, πK)-separated set with respect to
the semiflow Φ̂ on 〈A |V 〉 / ker(A;V ), say E = {πy1, . . . , πyℓ} with yj ∈ K and ℓ =

s(T, ε, πK, Φ̂). Then E is also (T, ε, πK)-spanning which means that for all x ∈ K
there is j ∈ {1, . . . , ℓ} with

max
t∈[0,T ]

dist(eAtx − eAtyj , ker(A;V )) = max
t∈[0,T ]

inf
z∈ker(A;V )

∥

∥eAtx − eAtyj − z
∥

∥ < ε.

Since V is almost (A,B)-invariant, we can assign to each yj , j ∈ {1, . . . , ℓ}, a control
function uj ∈ C(R, Rm) such that dist(ϕ(t, yj , uj), V ) < ε for all t ≥ 0. Let R :=
{u1, . . . , uℓ} ⊂ C(R, Rm). By linearity one has ϕ(t, x, u)−ϕ(t, y, u) = eAtx− eAty for
all t ≥ 0, x, y ∈ R

n and u ∈ C(R, Rm). We obtain that for every x ∈ K there is j
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such that

max
t∈[0,T ]

dist(ϕ(t, x, uj) − ϕ(t, yj , uj), V )

≤ max
t∈[0,T ]

dist(ϕ(t, x, uj) − ϕ(t, yj , uj), ker(A;V ))

= max
t∈[0,T ]

dist(eAtx − eAtyj , ker(A;V ))

< ε.

Since dist(ϕ(t, yj , uj), V ) < ε for t ∈ [0, T ], there is z1 ∈ V with

‖ϕ(t, yj , uj) − z1‖ < ε

and hence, using that V is a linear subspace, one finds

dist(ϕ(t, x, uj), V ) = inf
z∈V

‖ϕ(t, x, uj) − z‖

≤ inf
z∈V

‖ϕ(t, x, uj) − ϕ(t, yj , uj) + z1 − z‖ + ‖ϕ(t, yj , uj) − z1‖

< inf
z∈V

‖ϕ(t, x, uj) − ϕ(t, yj , uj) − z‖ + ε

< 2ε.

This implies that for all x ∈ K there is uj ∈ R such that dist(ϕ(t, x, uj), V ) < 2ε for
all t ∈ [0, T ]. Hence R is (T, 2ε,K, V )-spanning and it follows that

rinv(T, 2ε,K, V ) ≤ s(T, ε, πK, Φ̂) for all T, ε > 0,

and consequently hinv(K,V ) ≤ hsep(πK, Φ̂) = htop(πK, Φ̂) ≤ htop(Φ̂).

The above bound is rather conservative and can be improved in several cases.
We therefore turn to the computation of sharper bounds of h(V,Φ) under suitable
genericity conditions on the almost controlled invariant subspace V . Here one will
expect that starting in a neighborhood of the origin in V , the maximal real parts of
eigenvalues determine the behavior. This will be made precise below.

We begin with a few lemmas. In the sequel, e1, · · · , en denotes the standard basis
vectors of R

n. For a real diagonalizable matrix A, order the eigenvalues of A such
that

λ1 ≥ λ2 ≥ ... ≥ λn.

Lemma 4.2. Let A ∈ R
n×n be diagonalizable and consider a d-dimensional sub-

space V ⊂ R
n, such that the transversality condition V ∩ W = {0} holds for any

(n − d)-dimensional A-invariant subspace W ⊂ R
n. We can write the Jordan repre-

sentation J of A as

J = diag(λ1, ..., λn),

and we abbreviate

Λ1 := diag(λ1, ..., λd), and Λ2 := diag(λd+1, ..., λn), . (4.2)

Then there exist S ∈ GLn(R) and G ∈ R
(n−d)×d with V = {Se1, · · · , Sed}, and

S−1AS =

[

Λ1 0
G Λ2

]

. (4.3)
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Proof. Let w1, ..., wn be a corresponding basis of eigenvectors and denote

V1 := 〈w1, ..., wd〉 and W = 〈wd+1, ..., wn〉 .

By assumption on V , we have V ∩ W = {0} and therefore the canonical projection
mapπ : R

n → V1 along W maps V isomorphically onto V1. Choose any basis v1, · · · , vd

of V and extend it to a basis S1 = (v1, · · · , vd, wd+1, · · · , wn). Then

S−1
1 AS1 =

[

Γ1 0
A2 Λ2

]

,

and therefore Γ1 has the same eigenvalues as Λ1. Finally, we can transform Γ1 to
Jordan normal form by a matrix S2. Then conjugation with the matrix

S1 ·

[

S2 0
0 I

]

leads to (4.3).

In the situation as above, by invariance of the problem under similarity, we can
assume without loss of generality, that

A =

[

Λ1 0
G Λ2

]

, V = R
d × {0}. (4.4)

Note that for any vector z =

[

x
y

]

∈ R
n = R

d ×R
n−d we have dist(z, V ) = ‖y‖. For

x =

[

x1

0

]

, y =

[

y1

0

]

∈ V we compute

etA(x − y) =

[

etΓ1 0
M(t) etΛ2

](

x1 − y1

0

)

=

[

etΓ1(x1 − y1)
M(t)(x1 − y1)

]

and

dist(etA(x − y), V ) = ‖M(t)(x1 − y1)‖ .

The function M(t) is the unique solution to the linear differential equation Ṁ =
Λ2M + GetΛ1 with initial condition M(0) = 0 and therefore

M(t) = etΛ2

∫ t

0

e−sΛ2GesΛ1ds.

The formula for M(t) shows that for diagonal Λ2 and Γ1 one finds, with ej = jth
standard basis vector and gj = Gej ∈ R

n−d, j = 1, ..., d, for the jth column of M(t)

M(t)ej = etΛ2

∫ t

0

e−sΛ2GesΛ1ds ej = etΛ2

∫ t

0

e−sΛ2Gesλj ejds

= etΛ2

∫ t

0

es(λjIn−d−Λ2)ds gj .

Let for k = 1, ..., n − d, j = 1, ..., d

αkj(t) :=

{ 1
λj−λd+k

[

1 − et(λd+k−λj)
]

for λj > λd+k

t for λj = λd+k
.
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They satisfy for t > 0 the inequalities

0 < αkj(t) ≤

{

(λj − λd+k)−1 for λj > λd+k

t for λj = λd+k
.

Furthermore, for t ≥ 1 one has

αkj(t) ≥

{ 1
λj−λd+k

[1 − eλd+k−λj ] for λj > λd+k

1 for λj = λd+k

(recall that λj ≥ λd+k for all j = 1, ..., d and all k = 1, ..., n − d.)
One computes that

M(t)ej = etλj diag[α1j(t), ..., αn−d,j(t)] gj , j = 1, ..., d. (4.5)

Proposition 4.3. Let A ∈ R
n×n be diagonalizable and consider a d-dimensional

subspace V ⊂ R
n which satisfies V ∩W = {0} for any (n−d)-dimensional A-invariant

subspace W ⊂ R
n. Assume that the eigenvalues of A satisfy

λ1 ≥ ... ≥ λd > λd+1 ≥ ... ≥ λn.

Then the entropy h(V,Φ) of V with respect to the linear semiflow Φ(t, x) = eAtx
is bounded above by the topological entropy of the semiflow Φ1(t, x) = eΛ1tx where
Λ1 = diag[λ1, ..., λd]. Thus it satisfies the upper bound

h(V,Φ) ≤ max
(

0,
∑

λi

)

, (4.6)

where summation is over the positive eigenvalues λ1, ..., λd.
Proof. Let K ⊂ V be compact. We show that for T, ε > 0 any (T, ε,K,Φ1)-

spanning set R for the topological entropy of the semiflow Φ1 is (T, cε,K, V,Φ)-
spanning for Φ, with

c := (λd − λd+1)
−1 max

j=1,...,d
‖gj‖ .

For every x ∈ K there is y ∈ R such that, by formula (4.5),

‖M(t)(x − y)‖ =

∥

∥

∥

∥

∥

∥

d
∑

j=1

M(t)ej(xj − yj)

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

d
∑

j=1

etλj diag[α1j(t), ..., αn−d,j(t)] gj(xj − yj)

∥

∥

∥

∥

∥

∥

≤

∣

∣

∣

∣

∣

∣

d
∑

j=1

etλj (xj − yj)

∣

∣

∣

∣

∣

∣

(λj − λd+k)−1 ‖gj‖

≤
∥

∥etΛ1(x − y)
∥

∥ (λd − λd+1)
−1 max

j=1,...,d
‖gj‖

≤ c max
t∈[0,T ]

∥

∥etΛ1(x − y)
∥

∥

< c ε.
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This implies inequality (4.6).
Proposition 4.3 yields the following estimate for the invariance entropy of almost

(A,B)-invariant subspaces. This estimate is sharper than the one provided in Theo-
rem 4.1 (in particular, for low dimensional spaces V .)

Theorem 4.4. Consider an almost (A,B)-invariant subspace V ⊂ R
n with

dimension d and denote the largest A-invariant subspace contained in V by ker(A;V )
and its dimension by ℓ. Suppose that the map A induced by A on the quotient space
R

n/ ker(A;V ) is diagonalizable and that the eigenvalues satisfy

λ1 ≥ ... ≥ λd−ℓ > λd+1−ℓ ≥ ... ≥ λn−ℓ.

Assume further that V/ ker(A;V ) intersects trivially any A-invariant subspace W ⊂
R

n/ ker(A;V ) of codimension d − ℓ. Then the invariance entropy of V satisfies the
inequality

hinv(V ) ≤ max
(

0,
∑

λi

)

, (4.7)

where summation is over the positive eigenvalues λi, i ∈ {1, ..., d − ℓ}.
Proof. We argue similarly as in the proof of Theorem 4.1, using now the subspace

entropy with respect to V instead of the topological entropy.
Let K be a compact subset of V . Then, for the projection π of R

n to the quotient
space R

n/ ker(A;V ), the set πK is compact. Let T, ε > 0 be given and denote by
E ⊂ πK a maximal (T, ε, πK, πV, Φ̂)-separated set with respect to the semiflow Φ̂
on R

n/ ker(A;V ), say E = {πy1, . . . , πys} with yj ∈ K and s = s(T, ε, πK, πV, Φ̂).

Then E is also (T, ε, πK, πV, Φ̂)-spanning which means that for all x ∈ K there is
j ∈ {1, . . . , s} with

max
t∈[0,T ]

dist(eAtx − eAtyj , V + ker(A;V )) = max
t∈[0,T ]

inf
z∈V

∥

∥eAtx − eAtyj − z
∥

∥ < ε.

Since V is almost (A,B)-invariant, we can assign to each yj , j ∈ {1, . . . , s}, a control
function uj ∈ C(R, Rm) such that dist(ϕ(t, yj , uj), V ) < ε for all t ≥ 0. Let R :=
{u1, . . . , us} ⊂ C(R, Rm). By linearity one has ϕ(t, x, u)−ϕ(t, y, u) = eAtx− eAty for
all t ≥ 0, x, y ∈ R

n and u ∈ C(R, Rm). We obtain that for every x ∈ K there is j
such that

max
t∈[0,T ]

dist(ϕ(t, x, uj) − ϕ(t, yj , uj), V ) = max
t∈[0,T ]

dist(eAtx − eAtyj , V ) < ε.

Since dist(ϕ(t, yj , uj), V ) < ε for t ∈ [0, T ], there is z1 ∈ V with

‖ϕ(t, yj , uj) − z1‖ < ε

and hence, using that V is a linear subspace, one finds

dist(ϕ(t, x, uj), V ) = inf
z∈V

‖ϕ(t, x, uj) − z‖

≤ inf
z∈V

‖ϕ(t, x, uj) − ϕ(t, yj , uj) + z1 − z‖ + ‖ϕ(t, yj , uj) − z1‖

< inf
z∈V

‖ϕ(t, x, uj) − ϕ(t, yj , uj) − z‖ + ε

< 2ε.
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This implies that for all x ∈ K there is uj ∈ R such that

max
t∈[0,T ]

dist(ϕ(t, x, uj), V ) < 2ε.

Hence R is (T, 2ε,K, V )-spanning and it follows that

rinv(T, 2ε,K, V ) ≤ s(T, ε, πK, πV, Φ̂) for all T, ε > 0,

and consequently

hinv(K,V ) ≤ hsep(πK, πV, Φ̂) = h(πK, πV, Φ̂) ≤ h(πV, Φ̂).

Since, by assumption, πV = V/ ker(A;V ) intersects trivially any A-invariant subspace
W ⊂ R

n/ ker(A;V ) of codimension d− ℓ. does not contain any nontrivial A-invariant
subspace, we can apply Proposition 4.3 in order to prove the assertion.

We list a few explicit cases in the single-input case in which the hypotheses of
Theorem 4.4 are satisfied.

Corollary 4.5. Assume that (A, b) ∈ R
n×n × R

n is controllable and A is
diagonalizable with n distinct real eigenvalues

λ1 > ... > λd > λd+1 > ... > λn.

Let α1, · · · , αd denote any distinct real numbers that are disjoint from λ1, · · · , λn.
Then

V = span
(

(A − α1I)−1b, · · · , (A − αdI)−1b)
)

(4.8)

is an (A, b)-invariant subspace with ker(A;V ) = {0} and < A|V >= R
n. The entropy

of V satisfies the inequality

hinv(V ) ≤ max

(

0,

d
∑

i=1

λi

)

, (4.9)

Proof. Without loss of generality we can assume that (A, b) is in Jordan canonical
form, i.e. A = diag(λ1, · · · , λn) and b = (1, · · · , 1)⊤. Thus V coincides with the
column span of the n × d matrix







(λ1 − α1)
−1 · · · (λ1 − αd)

−1

...
...

(λn − α1)
−1 · · · (λn − αd)

−1






.

For any column v of this matrix, the pair (A, v) is controllable, which implies < A|V >
= R

n. Let W denote an arbitrary A-invariant eigenspace of codimension d and assume
W ∩V 6= {0}. Then there exists nonzero real numbers c1, · · · cd such that the rational
function

p(λ)

q(λ)
:=

d
∑

i=1

ci

λ − αi

vanishes at d eigenvalues λ ∈ {λi1 , · · · , λid
}. But then p = 0, as degp < d and

therefore c1 = · · · = cd = 0, which is a contradiction. Hence W ∩ V = {0} for
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any A-invariant subspace of codimension d. This implies also ker(A;V ) = {0}, as
any invariant subspace V0 ⊂ V can be extended to an (n − d)-dimensional invariant
subspace W . This shows that V satisfies the assumptions of Theorem 4.4.

We note that the (A, b)-invariant subspaces constructed in Corollary 4.5 are not
of the most general form; however for d = 1 they parameterize all one-dimensional
controlled invariant subspaces. In the scalar case, it can be shown that the estimate
above is sharp.

Example 4.6. Let d = 1, n = 2. We can suppose that A has the form (4.4)
and we use small letters instead of capital letters. Let K ⊂ V = R × {0} be compact.
Choose a (T, ε,K, V,Φ)-spanning set R ⊂ K . Thus for all x ∈ K there is y ∈ R such
that for all t ∈ [0, T ]

dist

(

etA

([

x
0

]

−

[

y
0

])

, V

)

= ‖m(t)(x − y)‖ < ε.

If V is not invariant, one has g 6= 0. For t ≥ 1

ε > ‖m(t)(x − y)‖ =

∥

∥

∥

∥

etλ2

∫ t

0

e−sλ2gesλ1ds (x − y)

∥

∥

∥

∥

=

{ g
λ1−λ2

etλ1 [1 − et(λ2−λ1)] ‖x − y‖ for λ1 > λ2

etλ1t |g| ‖x − y‖ for λ1 = λ2

≥ cetλ1 ‖x − y‖ ,

with a constant c > 0 given by

c :=

{

|g|
λ1−λ2

[1 − eλ2−λ1 ] for λ1 > λ2

|g| for λ1 = λ2

(recall that λ1 ≥ λ2.) Hence

etλ1 ‖x − y‖ ≤ c−1ε for t ∈ [1, T ].

Remark 5.4 shows, that the set R is a spanning set for the topological entropy of the
flow etλ1 , t ≥ 0, x ∈ V . It follows that

r(T, c−1ε,K, V ) ≥ rtop(T, ε,K, eΛ1·).

Hence hinv(V ) ≥ htop(e
Λ1·) follows showing that equality holds in (4.9).

Example 4.7. Here we treat the n-dimensional generalization of the above ex-
ample, i.e. d = 1 and n ≥ 2. Assume further, that λ1 > λ2 ≥ · · · ≥ λn and
G = (gj) ∈ R

(n−1)×1 is nonzero. Then

‖M(t)(x − y)‖ = etλ1 ‖x − y‖ ‖v(t)‖

with (we take the 1-norm)

‖v(t)‖ =

n
∑

j=2

|gj |
1 − et(λj−λ1)

λ1 − λj

upper bounded on [0,∞) by c :=
∑n

j=2 |gj |
1

λ1−λj
and lower bounded on [1,∞) by

c =
∑n

j=2 |gj |
1−eλj−λ1

λ1−λj
. Proceeding as in the above example, we conclude that the

entropy is given by max(0, λ1).
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5. Appendix: Topological entropy of linear maps. In this section we recall
the definition and characterization of topological entropy for linear maps from Bowen
[2]). For the reader’s convenience, we also provide a proof of the characterization in
terms of eigenvalues; this is a special case of the more general result in [2].

We consider a linear map A : R
d → R

d. Let K ⊂ R
d be a compact set and fix

ε > 0 and n ∈ N. A set S ⊂ K is called (n, ε,K;A)-separated if for all x, y ∈ K with
x 6= y there is i ∈ {0, 1, ..., n − 1} with

∥

∥Aix − Aiy
∥

∥ > ε. Denote by s(n, ε,K;A)
the maximal cardinality of an (n, ε,K;A)-separated set. A set R ⊂ K is called
(n, ε,K;A)-spanning if for every x ∈ K there is y ∈ R such that for all i ∈ {0, 1, ..., n−
1} one has

∥

∥Aix − Aiy
∥

∥ ≤ ε. Denote by s(n, ε,K;A) the minimal cardinality of an
(n, ε,K;A)-spanning set. Then the topological entropy of A with respect to K is
defined as

hsep(ε,K;A) := lim sup
n→∞

1

n
ln s(n, ε,K;A), hsep(K;A) := lim

εց0
hsep(ε,K;A),

and, finally,

htop(A) := supKhsep(K;A).

It is easily seen that the topological entropy can also be defined via spanning sets,
using instead of hsep(ε,K;A)

hspan(ε,K;A) := lim sup
n→∞

1

n
ln r(n, ε,K;A).

This follows, since a maximal (n, ε,K;A)-separated set is also (n, ε,K;A)-spanning,
which implies s(n, ε,K;A) ≥ r(n, ε,K;A); furthermore, using the triangle inequality
one sees that s(n, ε,K;A) ≤ r(n, 2ε,K;A). Topological entropy of linear maps can
be characterized by the eigenvalues of A.

Theorem 5.1. For a linear map A : R
d → R

d, the topological entropy is given
by

htop(A) = max
(

0,
∑

log |λi|
)

,

where the sum is taken over all eigenvalues λi, i = 1, ..., d, of A with |λi| > 1 (if no
eigenvalue λi with |λi| > 1 exists, the sum is omitted.)

Proof. Without loss of generality, there is an eigenvalue with absolute value
> 1. Decompose R

d into two subspaces R
d = X+ ⊕ X−, where X+ is the sum

of all (real) generalized eigenspaces corresponding to eigenvalues with absolute value
greater than 1 and X− is the sum of all eigenspaces corresponding to eigenvalues with
absolute value equal to or less than 1. These subspaces are invariant under A, i.e.,
the restrictions

A+ := A|X+ : X+ → X+ and A− := A|X− : X− → X−

are well defined. Then, using an elementary property of topological entropy (cf.
Pollicott and Yuri [10])

htop(A) = htop(A
+) + htop(A

−) ≥ htop(A
+). (5.1)

First we show htop(A) ≥
∑

log |λi|. By (5.1) it suffices to show the estimate for
A+. In other words, we may assume without loss of generality that all eigenvalues of A
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have absolute value greater than 1. Let K ⊂ R
d be compact with positive (Lebesgue-)

measure µ(K) > 0. Then for n ∈ N

µ(An(K)) = |det A|
n

µ(K) = (
∏

|λ|)
n

µ(K) = en
P

log|λ|µ(K).

Let ε > 0, n ∈ N, and consider an (n + 1, ε,K)-spanning set R of minimal cardinality
r(n + 1, ε,K). Then (by the definition of spanning sets) the set AnK is contained
in the union of r(n + 1, ε,K) balls B(xj , ε) of radius ε. Each ball has measure (2ε)d

(take the max-norm). Thus

µ(An(K)) ≤ r(n + 1, ε,K) · (2ε)d.

This yields

log r(n + 1, ε,K) ≥ log µ(An(K)) − log 2εd ≥ n
∑

log |λ| + log µ(K) − log 2εd.

and hence

lim sup
n→∞

1

n
log r(n, ε,K) = lim sup

n→∞

n

n + 1

1

n
log r(n + 1, ε,K) ≥

∑

log |λ| .

For the converse inequality, decompose R
d into linear subspaces which are the

sums of the (real) generalized eigenspaces Vi for eigenvalues of equal absolute values
|λi|. These subspaces are A-invariant and hence every restriction A|Vi

: Vi → Vi has
only eigenvalues of equal absolute value |λi| and the sum of their algebraic multiplic-
ities equals di := dimVi. Then one finds

htop(A) = htop(A|V1
)+ ... +htop(A|Vr

) ≤
∑

i

max(0, di log |λi|) =
∑

max(0, log |λi|),

where the inequality follows by Lemma 5.2(ii).
The following lemma is needed in the proof above.
Lemma 5.2. Let A be a linear map A on R

d. Then, for an eigenvalueλmax of A
with maximal absolute value, one has

htop(A) ≤ max(0, d log |λmax|).

Proof. We first show

htop(A) = supKh(A,K) ≤ max(0, d log ‖A‖). (5.2)

If ‖A‖ ≤ 1, then every (1, ε,K)-spanning set is also (n, ε,K)-spanning for n ≥ 1.
Hence htop(A) = 0 and there is nothing to prove. So we may assume ‖A‖ > 1. Let
K ⊂ R

d be compact. Then there is N ∈ N with

K ⊂ [−N,N ]d.

For δ > 0 and M :=
⌈

1
δ

⌉

∈ N, every point in [−N,N ] has distance less that 1
M ≤ δ to

one of the 2MN + 1 points in

S := {xi =
i

M
, i = −N, ..., N}.
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Then, in the max-norm, every point in K ⊂ [−N,N ]d has distance less than 1
M ≤ δ

to one of the (2MN + 1)d in the product Sd. Since

∥

∥Aix − Aiy
∥

∥ ≤ ‖A‖
i
‖x − y‖ ,

we see that Sd is an (n, δ ‖A‖
n
)-spanning set of cardinality (2MN + 1)d ≤ Md(2N +

1)d =
⌈

1
δ

⌉d
(2N + 1)d ≤

(

1
δ + 1

)d
(2N + 1)d.

Thus for ε > 0 and δ := ε
‖A‖n we find that there is an (n, ε)-spanning set of

cardinality equal to or less than

(

‖A‖
n

ε
+ 1

)d

(2N + 1)d =

(

‖A‖
n

+ ε

ε

)d

(2N + 1)d = (‖A‖
n

+ ε)dε−d(2N + 1)d.

We find that the minimal cardinality r(n, ε,K) of an (n, ε,K)-spanning set satisfies

r(n, ε,K) ≤ (‖A‖
n

+ ε)dε−d(2N + 1)d,

and hence

lim sup
n→∞

1

n
log r(n, ε,K) ≤ lim sup

n→∞

1

n

[

d log(‖A‖ + ε) − log εd + log(2N + 1)d
]

= d log(‖A‖ + ε).

For ε → 0 assertion (5.2) follows.
By Abramov’s Theorem (cf. Pollicott and Yuri [10]) and (5.2), we find for n ≥ 1

htop(A) =
1

n
htop(A

n) ≤
1

n
max(0, d log ‖An‖) = max(0, d

1

n
log ‖An‖)

= max(0, d log ‖An‖
1/n

).

Finally, by a standard property of matrices, ‖An‖
1/n

converges for n → ∞, to the
spectral radius of A which equals |λmax|.

For linear flows Φ(t, x) = eAtx, Φ : R
+
0 × R

n → R
n the topological entropy

htop(Φ) is defined analogously as for maps, based on the following notion. For a
compact subset K ⊂ R

n and T > 0, ε > 0, a set R ⊂ K is called (T, ε,K,Φ)-spanning
if for every x ∈ K there is y ∈ R such that

max
t∈[0,T ]

‖Φ(t, x) − Φ(t, y)‖ ≤ ε.

Corollary 5.3. Consider the linear semiflow Φ(t, x) = eAtx, Φ : R
+
0 ×R

n → R
n.

The topological entropy htop(Φ) equals the topological entropy of the time-one-map
Φ1(x) = eAx and hence

htop(Φ) = max
(

0,
∑

Re λi

)

,

where the sum is taken over all eigenvalues λi of A with positive real parts Re λi.
Proof. The topological entropy htop(Φ) equals the topological entropy of the time-

one-map Φ1(x) = eAx (see e.g. [4, Lemma 2.1]). By Theorem 5.1, the topological
entropy of the linear map Φ1 is given by

htop(Φ1) = max
(

0,
∑

ln |νi|
)

,

17



where the sum is taken over all eigenvalues νi of eA with |νi| > 1. Since |νi| =
∣

∣eλi

∣

∣ =
eRe λi for the eigenvalues λi of A, we obtain

htop(Φ) = htop(Φ1) = max
(

0,
∑

Re λi

)

,

where the sum is taken over all eigenvalues λi of A with Re λi > 0.
Remark 5.4. An easy consequence of this result is, that one also may define

(T, ε,K)-spanning sets R by requiring for T > 1, ε > 0 that for every x ∈ K there is
y ∈ R with ‖Φ(t, x) − Φ(t, y)‖ ≤ ε for all t ∈ [1, T ]. This leads to the same topological
entropy. The same is true for separated sets.
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