
The Trust-Enabling Middleware:
Introduction and Application

Rolf Kiefhaber, Florian Siefert, Gerrit Anders,
Theo Ungerer, Wolfgang Reif

Institut für Informatik
Universität Augsburg

Report 2011-10 March 2011

Institut für Informatik
D-86135 Augsburg

Copyright © Rolf Kiefhaber, Florian Siefert, Gerrit Anders, Theo Ungerer,
Wolfgang Reif
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

The Trust-Enabling Middleware: Introduction
and Application

Rolf Kiefhaber, Florian Siefert, Gerrit Anders, Theo Ungerer,
Wolfgang Reif

Institute of Computer Science
Augsburg University, Germany

E-Mail: {kiefhaber, siefert, anders, ungerer, reif}@informatik.uni-augsburg.de

Abstract

In this report, we present the Trust-Enabling Middleware (TEM) that
is based on the message- and service-oriented organic middleware OCµ.
The TEM enhances OCµ by features that enable the middleware as well
as applications based on it to use trust data. These features include
the possibility to save experiences made with interaction partners and
to derive trust data with the help of trust metrics out of these saved
experiences. Furthermore, we show an example application based on the
Trust-Enabling Middleware that considers uncertainty in power networks,
the Trusted Energy Grid, and especially illustrate its use of the Trust
Metric Infrastructure provided by the TEM.

1 Introduction
Many distributed applications use the concept of trust as a way to deal with
uncertainty or to enable cooperation among its entities. For this purpose, these
entities must have the capability to save experiences made with interaction
partners in a specific context, to interpret these experiences with a specific
metric to trust values, and to query trust values. However, it is not useful
that all applications come up with individual solutions to this generic problem.
Therefore, a common foundation that provides an infrastructure for storing,
interpreting, and querying trust data is required.

To be able to provide a generic infrastructure for applications that have
the need for the concept of trust, we therefore developed the Trust-Enabling
Middleware (TEM). The TEM is based on the message- and service-oriented
organic middleware OCµ [8], a middleware that uses Organic Computing prin-
ciples [4] and thus incorporates self-x properties, such as the ability to configure,
optimize, and heal itself. The Trust-Enabling Middleware extends OCµ by the
concept of trust. On the one hand, the TEM hence provides generic functional-
ity for applications running on top of it that need to save, interpret, and query
trust related information. This functionality is encapsulated in the Trust Met-
ric Infrastructure. On the other hand, the TEM can increase its robustness by
making use of trust data itself by considering trust in the self-x algorithms.

Trust, as we define it [7], is a multi-faceted concept. It considers the faith
of users in the system as well as the faith of entities in other entities. It thus
enables cooperation among entities, like needed, for example, in multi-agent
systems [5]. An important property of trust is that it depends on the given
context as, for instance, you may trust your doctor in giving therapy to you
when you are ill but not in repairing your car. Moreover, trust evolves over
time and is a subjective concept. It consists of the facets functional correctness,
safety, security, reliability, credibility, and usability.

If different facets of trust are regarded, different measures have to be taken
either at design time or at run time. This report focusses on reliability and
credibility. Reliability gives a measure of the availability, resilience, performance
of a system, while credibility gives a measure of how beneficially an interaction
partner behaved in the past. Both facets are quantifiable and can be measured
and evaluated while a system is running. While reliability is measured by the
middleware, credibility has to be evaluated by the application.

In this report, we describe the architecture of the Trust-Enabling Middleware
and its Trust Metric Infrastructure. Moreover, we show an example application
based on the Trust-Enabling Middleware. The remainder of this report is struc-
tured as follows: Sect. 2 presents the architecture of OCµ. In Sect. 3, we give
a detailed introduction to the TEM’s Trust Metric Infrastructure that enables
applications based on the TEM as well as the TEM itself to save, interpret,
and query trust data. Afterwards, an application that uses the Trust-Enabling
Middleware and its use of the provided functionality, especially the Trust Metric
Infrastructure, is shown in Sect. 4. Finally, Sect. 5 concludes this report.

4

2 Architecture
The Trust-Enabling Middleware (TEM) is based on the OCµ middleware and en-
hances it with trust capabilities. Before the TEM enhancements are explained,
we give a short overview of OCµ.

Figure 1: Architecture of OCµ

Figure 1 shows the architecture of OCµ. The left part depicts a typical
middleware where services can send and receive messages. The right part, the
Organic Manager, implements the self-x properties that make the middleware
organic. The self-x-properties include self-configuration and self-optimization
to balance the workload of nodes by relocating services. Self-healing is applied
in case of node failures. With these properties, OCµ is able to autonomously
react to different situations, like the failure of a node or an increase of the load
of a node. The Organic Manager observes the system and uses a planner to find
actions to improve the system, which are then executed by the actuator.

Services are registered and run on nodes. A TEM node is similar to a node
in a Peer-to-Peer network composed of physical devices, such as PCs. Every
node is identified by a unique identifier (id), the node id. A service is defined
by implementing the Service interface that provides methods to interact with
the rest of the system and notifications about what part of the service lifecycle
(see Figure 2) the service is in.

Services are also able to register message monitors. Monitors can be added
for incoming and for outgoing messages. All messages are sent through a monitor
queue before being transferred to other nodes (outgoing monitor queue) or being
dispatched to services (incoming monitor queue). A monitor needs to implement
the Monitor interface and can be registered using the MonitorManager interface
obtained by the ServiceConnector. It is able to add piggy-back1 information
to a message or generally observe the message flow of a node.

1Piggy-backing information on a message means to add additional information on top of
an already existing message.

5

To receive messages, a service has to bind itself to the middleware. A bind-
ing is a unique string that serves as an address for other services to contact it.
A binding consists of subbindings separated by a dot. All messages directed to
the services registered bindings are dispatched to it. This also includes mes-
sages that contain a registered binding as subbinding. For example, if a service
is registered for the binding de.octrust.service.md5, it receives messages with
the target binding de.octrust.service.md5, but also messages with the bind-
ing de.octrust.service.md5.encryptionRequest. To bind itself to a binding,
the service needs to call methods on a ServiceBinder, also obtained by the
ServiceConnector.

unregistered inactive active

unregister

(destroy)

start
register
(init)

stop

Figure 2: Service Lifecycle

Figure 2 shows the lifecycle of a service. The lifecycle consists of the following
three states:

unregistered In this state, the service object was just created and can be
registered on the middleware. The service can also be relocated to another
node in this state. When the service is registered on the middleware, its
init method is called and after completion of the method the service is
in the inactive state.

inactive In this state, the service is registered and has a service id assigned
to it, but does not yet receive messages. Unregistering it moves it back
into the unattached state after calling the destroy method of the service.
Starting the service moves it to the active state after a call to its start
method.

active This is the state in which the service can receive messages until it is
stopped again, marked by a call to its stop method.

The methods init, start, stop and destroy acknowledge a state change to a
service and are described in more detail below:

init In the init phase, a service is registered with OCµ. All information to in-
teract with the system is provided in this phase by the ServiceConnector
interface. A service should set its binding here.

start After a service is started, it receives messages from other nodes. In this
phase, monitors should be registered with the middleware, if required, by

6

using the MonitorManager interface. The interface can be obtained from
the ServiceConnector.

stop After a service is stopped, it can no longer receive messages. Messages are
stored on the node until the service is started again. This phase is useful
to unregister all monitors until the service is started again.

destroy In the destroy phase, the service is unregistered from OCµ and can
no longer be started. In this phase, all open resources, e.g., database
connections or file streams, should be closed.

If a message is dispatched to the service, a method processMessage of the
service is called and the message is given as argument. A message in OCµ is
always an EventMessage object. It contains the sender and the receiver as well
as the payload. The sender and receiver are both identified by their node id
and service binding. The binding of the sender is a reply binding where answers
should be sent to. A message is created by the EventMessageFactory and sent
by using the MessageSender, both obtained from the ServiceConnector.

To send a message, the receiving node (targetNodeId) and the receiving ser-
vice (destinationServiceBinding) have to be set and the data to be sent can
be added (putElement). If no targetNodeId is given, the message is broadcast
to all nodes in the network. If no destinationServiceBinding is given, the
message is broadcast to all services on the receiving nodes. Both can be com-
bined, so a message without targetNodeId and destinationServiceBinding
is broadcast to all services on all nodes. In addition, a replyBinding has to
be set. This reply binding is the second part of the return address, besides the
node id of the sender ((sourceNodeId).

The mode of the message can be set to REQUEST, RESPONSE, EVENT, or
FAILURE.The modes are not interpreted by OCµ, but provide the services a way
to mark the type of a message. If the message is of type FAILURE, it indicates a
fault in the service call, and an error report, e.g., an exception, has to be added
to the fault message with a specific key. REQUEST and RESPONSE are used for
typical request / response communications, like the call to a md5-hasher. EVENT
messages are typically used for one-way messages, like heartbeat-messages.

Additionally, OCµ provides a special service for proactive behavior, the
PeriodicService, as required, for instance, in multi-agent systems. This ser-
vice does not only react on received messages but also triggers a step method
periodically. The interval can be set in each PeriodicService by overriding the
getInterval method. It returns the amount of milliseconds for the intervall.
Every n milliseconds, n given by the getInterval method, the step method is
called. This only happens when the service is in the active state. The timer is
automatically suspended in the inactive state.

As a special feature, OCµ provides a FailureDetector service to moni-
tor other nodes and discover node failures [6]. The FailureDetector service
is based on a typical heartbeat monitor, which periodically expects heartbeat
messages to assure the node is still alive. The FailureDetector service in OCµ
uses the capabilities of the organic middleware and its lazy implementation [6]
adds piggy-backs on application messages by using message monitors. This re-
duces the message overhead created by typical failure detectors. Other services
can register themselves to receive announcements of node failures.

7

To discover other nodes, OCµ provides a DiscoveryService. This ser-
vice performs an asynchronous look-up to find services registered to a binding.
This includes all bindings that contain the search binding as a subbinding.
After a timeout given by the calling service, all services found are returned
with full contact information, using the ServiceAdvertisment class, to the
DiscoveryListener interface provided by the calling service.

The full Javadoc for OCµ can be found at https://ginkgo.informatik.
uni-augsburg.de/oc-trust/ocmu/javadoc/index.html. The documents at
this address will be kept up-to-date with new developments and might therefore
differ slightly from the description made in this report.

The Trust-Enabling Middleware (TEM) extends OCµ with trust capabilities.
A core part of this extension is the Trust Metric Infrastructure explained in the
next section.

3 The Trust Metric Infrastructure
The objective of the Trust-Enabling Middleware (TEM) is to collect trust val-
ues and provide trust information to the application level as exemplified by the
Trusted Energy Grid (TEG) in Section 4. The TEM provides techniques to
handle trust operations for different contexts and is usable for measurements
for different trust facets. It has to be noted that the TEM does only provide the
ability to handle those trust values for facets that can be measured at run time.
Both trust values from direct observation and reputation are considered in this
report. Trust from direct observation is gathered from direct interactions with
a communication partner. Reputation on the other hand is a trust value aggre-
gated from information of third parties. If a potential reputation partner is not
known, others in the system provide their direct trust values and a reputation
trust value can be derived from this information. The nodes with direct trust
values of a node that provide a reputation value from are called neighbor of the
target node.

Trust is also highly context specific, but often, context is a role the node
takes. A role is a subsumption of operations that are executed as part of an
interaction by one of the interaction partners. To rate the success of an in-
teraction, additional semantic knowledge is required. If, for example, an agent
requests a MD5-hash for a string from a hashing service, the requesting agent
can only determine the correctness of the result by checking the returned hash
with an algorithm that can verify it. The hashing service’s credibility can then
be rated in its role as a “md5-hash provider”. This role includes operations to ac-
cept the request, calculate the hash and return it to the requesting agent. A role
is identified by a unique name. The TEM provides a specific implementation of
this context, the Role class.

Our infrastructure provides an easy and standardized way to save trust re-
lated information and calculate trust data from this information. The infras-
tructure presented here also provides methods for users to calculate trust data
using rather simple trust metrics as well as more sophisticated metrics. There-
fore, we define the processing path as shown in Figure 3.

Services gather raw data about their interaction partners. These raw data
represent experiences that were made with the interaction partners, e.g., mea-
surements, and are used as a basis for the following calculations. Raw data are

8

https://ginkgo.informatik.uni-augsburg.de/oc-trust/ocmu/javadoc/index.html
https://ginkgo.informatik.uni-augsburg.de/oc-trust/ocmu/javadoc/index.html

Figure 3: Multi-Stage Process: Retrieving Trust Data

then transformed into a preprocessed form to process them easily with an in-
terpreter. Sometimes, e.g., only the most current measurements are of interest
(sliding time window). Finally, these transformed data are interpreted into trust
data. Trust data can either be a simple float value or a more complex object,
e.g., containing time series analysis data. Figure 4 shows the UML diagram
describing the Trust Metric Infrastructure, which is one of the main features of
the Trust-Enabling Middleware (TEM).

The data gathered is different for each application, so the five main concepts
(RawData, Transformer, TransformedData, Interpreter, TrustData) need to
be implemented by the applications. To make things easier for standard cases,
we provide default implementations for Transformer and TrustData. One of
the transformers we provide is the IdentityTransformer that returns the given
raw data. In this case, no TransformedData needs to be defined, instead the
RawData implements the interface RawTransformedData. This class is a RawData
as well as a TransformedData. We also provide a TrustData implementation
that only consists of a single float value, the SingleFloatTrustData.

Services can call methods to save and get raw data, store their transformers
and interpreters, and to start trust calculations. These methods are provided
to the services from the TEM by an interface called Trust.

3.1 RawData
Raw data are the basic data gathered by the services about their interaction
partners. For example, the middleware gathers information about the availabil-
ity of other nodes in the form of RawData objects by observing message losses
in order to estimate their reliability. Services as well as the middleware need to
provide an implementation of the RawData class that contains all gathered raw
data. The method addRawData in the abstract RawData class needs to be over-
ridden and has to provide a merging logic to merge two RawData classes. The
service can use the Trust interface to save new data by using the addRawData
method. Raw data are saved per node id, facet, and context.

3.2 Transformer and TransformedData
The transformer transforms raw data into transformed data. Transformer is an
abstract class with two methods to override: getInputClass and transform.
The method getInputClass returns the class object of the expected RawData

9

+
c
a
lc

u
la

te
D

ir
e
c
tT

ru
s
t(

 t
a
rg

e
tN

o
d
e
Id

 :
 S

tr
in

g
,
fa

c
e
t
:
F

a
c
e
t,
 c

o
n
te

x
t
:
C

o
n
te

x
t
)

:
T

ru
s
tD

a
ta

+
c
a
lc

u
la

te
R

e
p
u
ta

ti
o
n
(

ta
rg

e
tN

o
d
e
Id

 :
 S

tr
in

g
,
fa

c
e
t
:
F

a
c
e
t,
 c

o
n
te

x
t
:
C

o
n
te

x
t,
 t
im

e
o
u
t
:
lo

n
g
,
re

s
u
lt
L
is

te
n
e
r

:
R

e
p
u
ta

ti
o
n
R

e
s
u
lt
L
is

te
n
e
r

)
:
S

in
g
le

T
ru

s
tD

a
ta

+
<

R
 :
 i
n
te

rf
a
c
e
 >

 R
a
w

D
a
ta

,
T

 :
 i
n
te

rf
a
c
e
 >

 T
ra

n
s
fo

rm
e
d
D

a
ta

,
U

 :
 i
n
te

rf
a
c
e
 >

 T
ru

s
tD

a
ta

>
c
a
lc

u
la

te
D

ir
e
c
tT

ru
s
t(

 t
a
rg

e
tN

o
d
e
Id

 :
 S

tr
in

g
,
fa

c
e
t
:
F

a
c
e
t,
 c

o
n
te

x
t
:
C

o
n
te

x
t,
 T

ra
n
s
fo

rm
e
r

:
T

ra
n
s
fo

rm
e
r<

R
,T

>
,
In

te
rp

re
te

r
:
In

te
rp

re
te

r<
T

,U
>

)
 :
 U

+
g
e
tR

a
w

D
a
ta

(
ta

rg
e
tN

o
d
e
Id

 :
 S

tr
in

g
,
fa

c
e
t
:
F

a
c
e
t,
 c

o
n
te

x
t
:
C

o
n
te

x
t
)

:
R

a
w

D
a
ta

+
a
d
d
R

a
w

D
a
ta

(
ta

rg
e
tN

o
d
e
Id

 :
 S

tr
in

g
,
F

a
c
e
t
:
F

a
c
e
t,
 c

o
n
te

x
t
:
C

o
n
te

x
t,
 r

a
w

D
a
ta

 :
 R

a
w

D
a
ta

)
+

<
R

 :
 i
n
te

rf
a
c
e
 >

 R
a
w

D
a
ta

,
T

 :
 i
n
te

rf
a
c
e
 >

 T
ra

n
s
fo

rm
e
d
D

a
ta

,
U

 :
 i
n
te

rf
a
c
e
 >

 T
ru

s
tD

a
ta

>
s
e
tD

ir
e
c
tT

ru
s
tM

e
tr

ic
(

F
a
c
e
t
:
F

a
c
e
t,
 c

o
n
te

x
t
:
C

o
n
te

x
t,
 T

ra
n
s
fo

rm
e
r

:
T

ra
n
s
fo

rm
e
r<

R
,T

>
,
in

te
rp

re
te

r
:
In

te
rp

re
te

r<
T

,U
>

)
+

<
R

 :
 i
n
te

rf
a
c
e
 >

 R
a
w

D
a
ta

,
T

 :
 i
n
te

rf
a
c
e
 >

 T
ra

n
s
fo

rm
e
d
D

a
ta

>
s
e
tR

e
p
u
ta

ti
o
n
M

e
tr

ic
(

fa
c
e
t
:
F

a
c
e
t,
 c

o
n
te

x
t
:
C

o
n
te

x
t,
 T

ra
n
s
fo

rm
e
r

:
T

ra
n
s
fo

rm
e
r<

R
,T

>
,
In

te
rp

re
te

r
:
In

te
rp

re
te

r<
T

,
S

in
g
le

T
ru

s
tD

a
ta

>
)

T
ru

s
t

-d
ir
e
c
tM

e
tr

ic
s
 :
 M

a
p
<

M
e
tr

ic
Id

e
n
ti
fi
e
r,

 M
e
tr

ic
<

?
 e

x
te

n
d
s
 R

a
w

D
a
ta

,
?
 e

x
te

n
d
s
 T

ra
n
s
fo

rm
e
d
D

a
ta

,
?
 e

x
te

n
d
s
 T

ru
s
tD

a
ta

>
-r

e
p
u
ta

ti
o
n
M

e
tr

ic
s
 :
 M

a
p
<

M
e
tr

ic
Id

e
n
ti
fi
e
r,

 M
e
tr

ic
<

?
 e

x
te

n
d
s
 R

a
w

D
a
ta

,
?
 e

x
te

n
d
s
 T

ra
n
s
fo

rm
e
d
D

a
ta

,
S

in
g
le

T
ru

s
tD

a
ta

>
-r

a
w

D
a
ta

M
a
p
 :
 M

a
p
<

D
a
ta

Id
e
n
ti
fi
e
r,

 R
a
w

D
a
ta

>

T
ru

s
tS

e
rv

ic
e

+
c
a
lc

u
la

te
d
R

e
p
u
ta

ti
o
n
(

fa
c
e
t
:
F

a
c
e
t,
 c

o
n
te

x
t
:
C

o
n
te

x
t,
 r

e
p
u
ta

ti
o
n
D

a
ta

 :
 S

in
g
le

T
ru

s
tD

a
ta

)

R
e
p

u
ta

ti
o

n
R

e
s
u

lt
L

is
te

n
e
r

#
g
e
tI
n
p
u
tC

la
s
s
()

 :
 C

la
s
s
<

T
>

#
in

te
rp

re
t(

 t
ra

n
s
fo

rm
e
d
D

a
ta

 :
 T

)
 :
 U

+
in

te
rp

re
tG

e
n
e
ri
c
(

tr
a
n
s
fo

rm
e
d
D

a
ta

 :
 T

ra
n
s
fo

rm
e
d
D

a
ta

)
 :
 T

ru
s
tD

a
ta

In
te

rp
re

te
r

T
 :
 i
n
te

rf
a
c
e
 >

 T
ra

n
s
fo

rm
e
d
D

a
ta

U
 :
 i
n
te

rf
a
c
e
 >

 T
ru

s
tD

a
ta

-t
a
rg

e
tN

o
d
e
Id

 :
 S

tr
in

g
{r

e
a
d
O

n
ly

}

«
c
o
n
s
tr

u
c
to

r»
+

D
a
ta

Id
e
n
ti
fi
e
r(

 t
a
rg

e
tN

o
d
e
Id

 :
 S

tr
in

g
,
fa

c
e
t
:
F

a
c
e
t,
 r

o
le

 :
 R

o
le

)
+

g
e
tT

a
rg

e
tN

o
d
e
Id

()
 :
 S

tr
in

g

D
a
ta

Id
e
n

ti
fi

e
r

#
tr

a
n
s
fo

rm
(

ra
w

D
a
ta

 :
 R

T
)

 :
 R

T

Id
e
n

ti
ty

T
ra

n
s
fo

rm
e
r

R
T

 :
 i
n
te

rf
a
c
e
 >

 R
a
w

T
ra

n
s
fo

rm
e
d
D

a
ta

#
g
e
tI
n
p
u
tC

la
s
s
()

 :
 C

la
s
s
<

R
>

#
tr

a
n
s
fo

rm
(

ra
w

D
a
ta

 :
 R

)
 :
 T

+
tr

a
n
s
fo

rm
G

e
n
e
ri
c
(

ra
w

D
a
ta

 :
 R

a
w

D
a
ta

)
 :
 T

ra
n
s
fo

rm
e
d
D

a
ta

T
ra

n
s
fo

rm
e
rR

 :
 i
n
te

rf
a
c
e
 >

 R
a
w

D
a
ta

T
 :
 i
n
te

rf
a
c
e
 >

 T
ra

n
s
fo

rm
e
d
D

a
ta

-f
a
c
e
t
:
F

a
c
e
t{

re
a
d
O

n
ly

}
-c

o
n
te

x
t
:
C

o
n
te

x
t{

re
a
d
O

n
ly

}

«
c
o
n
s
tr

u
c
to

r»
+

M
e
tr

ic
Id

e
n
ti
fi
e
r(

 f
a
c
e
t
:
F

a
c
e
t,
 c

o
n
te

x
t
:
C

o
n
te

x
t
)

+
g
e
tF

a
c
e
t(

)
:
F

a
c
e
t

+
g
e
tC

o
n
te

x
t(

)
:
C

o
n
te

x
tM

e
tr

ic
Id

e
n

ti
fi

e
r

-t
ra

n
s
fo

rm
e
r

:
T

ra
n
s
fo

rm
e
r<

R
,T

>
-i
n
te

rp
re

te
r

:
In

te
rp

re
te

r<
T

,U
>

+
g
e
tT

ra
n
s
fo

rm
e
r(

)
:
T

ra
n
s
fo

rm
e
r<

R
,T

>
+

s
e
tT

ra
n
s
fo

rm
e
r(

 t
ra

n
s
fo

rm
e
r

:
T

ra
n
s
fo

rm
e
r<

R
,T

>
)

+
g
e
tI
n
te

rp
re

te
r(

)
:
In

te
rp

re
te

r<
T

,U
>

+
s
e
tI
n
te

rp
re

te
r(

 i
n
te

rp
re

te
r

:
In

te
rp

re
te

r<
T

,U
>

)

M
e
tr

ic

R
 :
 i
n
te

rf
a
c
e
 >

 R
a
w

D
a
ta

T
 :
 i
n
te

rf
a
c
e
 >

 T
ra

n
s
fo

rm
e
d
D

a
ta

U
 :
 i
n
te

rf
a
c
e
 >

 T
ru

s
tD

a
ta

-t
ru

s
tV

a
lu

e
 :
 f
lo

a
t{

re
a
d
O

n
ly

}

«
c
o
n
s
tr

u
c
to

r»
+

S
in

g
le

T
ru

s
tV

a
lu

e
(

tr
u
s
tV

a
lu

e
 :
 f
lo

a
t
)

+
g
e
tT

ru
s
tV

a
lu

e
()

 :
 f
lo

a
t

S
in

g
le

T
ru

s
tD

a
ta

#
ta

rg
e
tN

o
d
e
Id

 :
 S

tr
in

g

+
g
e
tT

a
rg

e
tN

o
d
e
Id

()
 :
 S

tr
in

g
+

s
e
tT

a
rg

e
tN

o
d
e
Id

(
ta

rg
e
tN

o
d
e
Id

 :
 S

tr
in

g
)

A
b

s
tr

a
c
tT

ru
s
tD

a
ta

+
g
e
tT

a
rg

e
tN

o
d
e
Id

()
 :
 S

tr
in

g
+

s
e
tT

a
rg

e
tN

o
d
e
Id

(
ta

rg
e
tN

o
d
e
Id

 :
 S

tr
in

g
)

T
ru

s
tD

a
ta

+
a
d
d
R

a
w

D
a
ta

(
ra

w
D

a
ta

 :
 R

a
w

D
a
ta

)

R
a
w

D
a
ta

-n
a
m

e
 :
 S

tr
in

g
{r

e
a
d
O

n
ly

}

«
c
o
n
s
tr

u
c
to

r»
+

R
o
le

(
n
a
m

e
 :
 S

tr
in

g
)

+
g
e
tN

a
m

e
()

R
o

le

F
U

N
C

T
IO

N
A

L
_
C

O
R

R
E

C
T

N
E

S
S

R
E

L
IA

B
IL

IT
Y

C
R

E
D

IB
IL

IT
Y

U
S

A
B

IL
IT

Y

S
E

C
U

R
IT

Y
S

A
F

E
T

Y

«
e
n
u
m

e
ra

ti
o
n
»

F
a
c
e
t

R
a
w

T
ra

n
s
fo

rm
e
d

D
a
ta

T
ra

n
s
fo

rm
e
d

D
a
ta

C
o

n
te

x
t

1

0
..
1

1

0
..
1

h
o
ld

s

*

0
..
1

«
u
s
e
»

«
u
s
e
»

c
re

a
te

s

1

1
..
*

e
x
p
e
c
ts

1

1
..
*

c
re

a
te

s

1

1
..
*

e
x
p
e
c
ts

1

1
..
*

«
u
s
e
»

s
a
v
e
s

* 0
..
1

c
re

a
te

s

11
e
x
p
e
c
ts

11

Figure 4: Trust Metric Infrastructure: Class Diagram

10

class. This method is needed due to the way generics are implemented in Java.
The important method is the transform method: it expects a RawData class
and transforms it into TransformedData. This TransformedData contains the
raw data in prepared form. TransformedData also needs to be implemented by
the application. If raw data do not need to be transformed in a specific way, the
IdentityTransformer can be used instead. It takes and returns an object of
type RawTransformedData, which is a RawData and a TransformedData. Be-
cause of the way generics are implemented in Java, the getInputClass method
still needs to be overridden, but that can be done in an anonymous inner class.
The transformGeneric method is used internally and is of no concern for ap-
plications.

3.3 Interpreter and TrustData
The transformed data can then be interpreted to yield trust data. The ab-
stract class Interpreter is similar to the Transformer. The getInputClass
method returns the class of the TransformedData that is expected as input. The
interpretGeneric method is used internally and can therefore be ignored. The
interpret method contains the logic to create an object of class TrustData,
which usually represents a single float value. We provide a default implemen-
tation of this trust data, the SingleFloatTrustData, for such cases. If other
implementations are needed, they have to be provided by the application.

3.4 Trust Interface
The Trust Metric Infrastructure can be accessed by using the Trust interface.
This interface can be accessed through the ServiceConnector of OCµ. In
the TEM, the ServiceConnector is extended to a TrustServiceConnector.
The ServiceConnector can be downcast to the TrustServiceConnector when
running a service in the TEM. The Trust interface provides methods to access
the Trust Metric Infrastructure, to save and get raw data, and to trigger trust
calculations. In the following, the methods are discussed in more detail.

addRawData, getRawData With addRawData, the raw data gathered by
the applications can be saved into the TEM. Raw data are saved per context,
facet, and node id. If a RawData object for such a combination already exists,
the addRawData method inside the RawData object is called, where the new
data is merged into the existing raw data. The method getRawData accordingly
returns the currently saved raw data.

setDirectTrustMetric This method sets a default transformer and inter-
preter for a facet and context combination. The Interpreter must expect the
TransformedData type returned by the Transformer. The input type of the
transformer and the export type of the interpreter can be chosen freely. If a de-
fault metric is set, the simpler version of calculateDirectTrust can be called
(see below).

calculateDirectTrust This method comes in two variants. Both variants
expect the context, facet, and node id of the node the trust data should be cal-

11

culated for. In the simple variant, no other arguments are needed and the trans-
former and interpreter are used, which are set by the setDirectTrustMetric
method. The more complex version additionally expects the Transformer and
Interpreter to be used. This version of the method can be used if an unusual
calculation is needed for a specific facet and context combination. In most cases,
the simple version that uses the default metric should suffice.

setReputationMetric This method sets the Transformer and Interpreter
that are used for reputation calculations. Like the direct trust metrics, they
are saved per context and facet. They are used to calculate direct trust data
of a neighbor node if a request for reputation data is received. The result
must always be a SingleFloatTrustData, therefore the TrustData type re-
turned by the Interpreter is pre-defined. As with the direct trust metric, the
TransformedData returned by the Transformer needs to be the input for the
Interpreter.

calculateReputation This method calculates the reputation of a node. For
this purpose, direct trust values from all neighbors of the target node are
gathered and locally combined to an overall value. The neighbors use the
Transformer and Interpreter set by the setReputationMetric method to
calculate a direct trust value of the target node. These direct trust values are
the basis for the reputation calculation on the requesting node and are there-
fore sent back to it. Since the communication with other nodes is asynchronous,
this method does not return anything immediately. Instead, a timeout and a
ReputationResultListener have to be provided to the method. After the
timeout is elapsed, the currently received data is calculated to yield a trust
value and the result is handed to the listener.

All metrics for evaluating reputation as well as direct trust, are best set in
the init phase of a service.

The TEM already provides a method to gather data about the reliability of
other nodes. The Delayed-Ack-Algorithm [3] uses the monitoring ability of the
TEM to add piggy-back information on messages to observe the message flow of
application messages. By doing so, the algorithm can determine the targets of
application messages and whether or not the application messages were received.
From this data, it can calculate a reliability value per node and save it data into
the Trust Metric Infrastructure. The reliability data can be read by calling the
calculate methods with a special context and the facet reliability. The Delayed-
Ack-Algorithm therefore provides a Transformer and Interpreter for the raw
data it gathers.

The classes at the top of the diagram, MetricIdentifier, DataIdentifier,
Metric, and TrustService are internal classes to implement the logic of the
infrastructure and are not further explained.

The full Javadoc of the TEM can be found at https://ginkgo.informatik.
uni-augsburg.de/oc-trust/tem/javadoc/index.html. The documents pro-
vided at this address will be kept up-to-date with new developments and might
therefore differ slightly from the description made in this report.

In the next section, an application of the TEM and its Trust Metric Infras-
tructure to a system that deals with uncertainty in power grids is shown.

12

https://ginkgo.informatik.uni-augsburg.de/oc-trust/tem/javadoc/index.html
https://ginkgo.informatik.uni-augsburg.de/oc-trust/tem/javadoc/index.html

4 Application of the Trust-Enabling Middleware
The Trusted Energy Grid (TEG) is a platform providing an infrastructure for
applications based on a power grid with producers and consumers. It uses the
Trust-Enabling Middleware (TEM) as underlying middleware framework and
makes use of the functionality and interfaces the TEM provides, including the
Trust Metric Infrastructure. Due to the number of producers and consumers,
the fact that the power grid always has to work properly, and the potential
damage in case of failures, the Trusted Energy Grid is a large-scale, safety-
critical system.

In this section, a scenario in which the Trusted Energy Grid allows an ap-
plication to deal with these problems is described. The concepts of the Trusted
Energy Grid and the application are then instantiated based on the abstractions
provided by the Trust-Enabling Middleware.

4.1 Scenario
The big challenge in power networks is to balance energy production and con-
sumption while considering uncertainty introduced by stochastic energy sources
and by a fluctuating energy demand. Stochastic power sources are, for example,
energy sources based on natural resources like wind and sun, or domestic com-
bined heat and power (CHP) units. Both have in common that they are less
controllable than regular power sources and are rather unpredictable regarding
their power output, because they either depend on weather conditions or the
customer’s behavior. Moreover, especially the tremendously increasing num-
ber of stochastic power sources exacerbates the situation. The system’s task is
to master this situation and to plan and operate under these conditions while
maintaining safety.

An application on top of the Trusted Energy Grid are Autonomous Virtual
Power Plants (AVPPs) [1], which are an approach to hold the balance between
energy consumption and energy production despite the rising complexity and
uncertainty introduced by stochastic power sources and by a fluctuating energy
demand. For this purpose, the power plant landscape is partitioned into several
clusters, the AVPPs. An AVPP is a self-organizing, self-adapting, and self-
optimizing ensemble of power plants. It autonomously plans the energy supply
based on predictions made by producers and consumers, and it reacts to load
or supply changes by adjusting schedules. The composition of an AVPP is
not fixed; on the contrary, AVPPs change their structure from time to time if
necessary, for example, when the AVPP permanently cannot cope with the load.

AVPPs use trust [7] as a way to handle uncertainty. Each power plant’s
trustworthiness is characterized by two aspects, credibility and reliability. The
credibility of a power plant is understood as the accuracy of its output predic-
tions. Hence, stochastic power plants are most likely less credible than baseload
plants. A power plant’s reliability describes how often it had technical problems
and, therefore, was off-line or had to reduce its power output unexpectedly.

On the one hand, trustworthiness of power plants is used to plan the en-
ergy supply. Untrustworthy power plants are less involved in supplying energy
than trustworthy power plants in order to reduce and limit possible imbalances
between energy production and consumption that could be caused by failing
power plants or unsteady power outputs. On the other hand, trustworthiness of

13

power plants is considered during the formation of AVPPs. In order to make the
system more robust, AVPPs ought to be of similar quality which all can cope
equally well with their tasks. Hence, an AVPP mainly consisting of untrust-
worthy power plants – that cannot cope with its task – is not desired, and the
formation mechanism of AVPPs thus tries to achieve a good mix of trustworthy
and untrustworthy power plants for every AVPP.

In order to enable AVPPs to use trust, experiences with power plants have
to be measured, collected, and interpreted to yield trust data. Thus, the TEM’s
Trust Metric Infrastructure suits the needs of AVPPs well. In the following, the
mapping of the TEM and its Trust Metric Infrastructure to the Trusted Energy
Grid and AVPPs is described.

4.2 Usage of the Trust-Enabling Middleware
Each power plant in the Trusted Energy Grid is a periodic service of the TEM,
thus achieving a proactive behavior that is needed for the power plants. More-
over, by being a periodic service, a power plant inherits several other required
capabilities, such as the ability to communicate with other services (which is
needed, e.g., in the process of forming AVPPs), to find other services, and to
start or stop itself when it goes on- or off-line.

The Trusted Energy Grid makes use of the TEM’s built-in feature to collect
reliability raw data of a node, i.e., the node’s availability. Because a node in
the middleware represents a physical device, each power plants runs on its own
node.

Since credibility depends on the application, credibility raw data cannot be
collected by the TEM itself. Thus, this has to be done by the application.
Therefore, the Trusted Energy Grid uses the TEM’s feature to store credibility
raw data in the TEM itself. As presented in Sect. 3, the Trust Metric Infrastruc-
ture provides the possibility to enhance the TEM by application-specific trust
metrics. Since deriving credibility values for power plants is a highly compli-
cated and application-specific process, specialized trust metrics using the Trust
Metric Infrastructure are needed. In the following, a trust metric for deriving
credibility values is outlined.

Raw data in terms of a power plant’s credibility is a list of predicted and
actual power outputs of the power plant that is stored in the TEM. This list can
then be transformed by a special transformer to transformed data which are, for
example, the average percental difference between actual output and predicted
output of all raw data, and/or some statistical data like the standard deviation.
The transformed data are interpreted by a special interpreter, considering, e.g.,
the positive or negative difference between actual and predicted output. A
positive difference, that is, the power plant produces in average more power
than predicted, might be regarded less critical than a negative difference. This
is due to the fact that a positive difference could act as a little cushion, and, if
not needed, be sold to other AVPPs. The time of day at which the prediction
was made is of special interest within the application of AVPPs as credibility at
peak load times like during midday is more important than credibility at night.
For that reason, the time of day is represented by the context. This results in
trust data for different time slots, for example, a credibility value for morning,
a credibility value for midday, and so on.

14

Even though the Trust-Enabling Middleware not only provides an infras-
tructure for deriving trust through direct observation but also provides the pos-
sibility to use reputation, this feature is currently not used in the application
of AVPPs. Instead, it is assumed that power plants honestly store their respec-
tive credibility raw data themselves and reliability raw data are collected by
the TEM, and that everyone can directly access these raw data or the resulting
trust data so that no reputation is needed.

The usage of the Trust-Enabling Middleware in the Trusted Energy Grid has
been described rather abstractly so far and is detailed in an actual instantiation
of parts of the Trusted Energy Grid in the next section.

4.3 Instantiation Example
In Figure 5, a simplified class diagram of the instantiation of the Trust Metric
Infrastructure in the Trusted Energy Grid (TEG) is shown. It only illustrates
the classes for the trust facet credibility; the classes for the facet reliability look
similar. Classes beginning with “TEG” depict the application-specific classes of
the Trusted Energy Grid.

TEGCredibilityTransformedData

TransformedData

TEGCredibilityTransformer

TransformerInterpreter

TEGCredibilityInterpreter

RawData

TEGCredibilityContext

«enumeration»

Facet

TrustService

Context

Trust

TEGCredibilityTrustData
TEGCredibilityRawData

TrustData

Figure 5: Application of the Trust Metric Infrastructure in the Trusted Energy
Grid (TEG): Simplified Class Diagram

The following outline briefly describes how to instantiate and use the Trust
Metric Infrastructure.

1. By the use of an implementation of the TEM’s interface Trust – the
TEM’s provided TrustService – each power plant gets the capability of

15

adding raw data and calculating trust data with the help of a transformer
and an interpreter.

2. For this purpose, raw data, transformed data, and trust data have to
be specified in the Trusted Energy Grid. This is done by implementing
the TEM’s interfaces RawData, TransformedData, and TrustData, result-
ing in TEGCredibilityRawData, TEGCredibilityTransformedData, and
TEGCredibilityTrustData.

3. Moreover, in the Trusted Energy Grid, the abstract classes Transformer
and Interpreter of the TEM have to be extended to know how to trans-
form TEGCredibilityRawData to TEGCredibilityTransformedData and
how to interpret these to yield TEGCredibilityTrustData. Thus, the
classes TEGCredibilityTransformer and TEGCredibilityInterpreter
are obtained.

4. The TEGCredibilityTransformer and the TEGCredibilityInterpreter
have to be made known to the Trust interface by calling the method
setDirectTrustMetric.

5. If TEGCredibilityRawData are measured, they can be stored in the TEM
by calling addRawData provided by the interface Trust.

6. Whenever TEGCredibilityTrustData are needed, the interface Trust
provides the method calculateDirectTrust. This method automatically
uses the defined transformer and interpreter. However, the interface Trust
also provides an overloaded version of the method calculateDirectTrust
in which another transformer and interpreter can be passed (see Sect. 3).

5 Conclusion and Future Work
In this report, we presented the Trust-Enabling Middleware (TEM) that is based
on the organic middleware OCµ. Since services in OCµ only act reactively, the
TEM introduces the concept of periodic services, thus obtaining a proactive be-
havior. Services can communicate with other services by exchanging messages.
This makes it possible for the TEM to act as the basis for multi-agent systems.
Additionally, the TEM provides a failure detector which monitors nodes and
thus observes if a node goes off-line.

Furthermore, the Trust-Enabling Middleware provides the Trust Metric In-
frastructure for storing, interpreting, and querying trust data for a specific con-
text and facet of trust. For this purpose, experiences that were made with
interaction partners in a specific context and for a specific facet are stored as
raw data and then transformed to transformed data. These are interpreted
to yield trust data afterwards. The Trust-Enabling Middleware has a built-in
mechanism to collect reliability raw data by monitoring message losses. Further,
it already provides basic metrics. However, it is possible to define application-
specific, more sophisticated trust metrics by developing customized transformers
and interpreters, especially for trust facets like credibility which cannot be in-
terpreted by the middleware itself as credibility is a highly application-specific
property.

16

Finally, we showed an example application, the Trusted Energy Grid, that
is based on the Trust-Enabling Middleware and makes use of the features the
middleware offers. In particular, we showed what a complex trust metric looks
like in the Trusted Energy Grid, and illustrated how to implement it using
the interfaces of the TEM. Another example application that uses the TEM as
underlying middleware is the Trusted Computing Grid [2], a desktop grid com-
puting system that uses trust as a way to increase performance and robustness.

Future work includes the fine-tuning of the middleware’s architecture, the
Trust Metric Infrastructure, and the interfaces. Moreover, the Trust-Enabling
Middleware will be extended by further features. For instance, the self-x prop-
erties of the middleware will be improved in such a way that they consider
the trustworthiness of nodes. So it will be possible that the TEM’s ability to
self-optimize migrates services to other nodes (load balancing) while considering
the trustworthiness of nodes: it is better to migrate a service to a trustworthy
node than to migrate it to an untrustworthy node. Further, metrics aggregating
direct trust values and reputation will be developed. A node’s confidence, i.e.,
how much a node trusts its own experiences, will play an important role in this
case. Last but not least, a persistent storage will be included in the TEM. This
will be used by the services which then do not have to take care of a persistent
storage of data themselves.

Acknowledgment
This research is partly sponsored by the research unit “OC-Trust” (FOR 1085)
of the German Research Foundation (DFG).

17

References
[1] G. Anders, F. Siefert, J.-P. Steghöfer, H. Seebach, F. Nafz, and W. Reif.

Structuring and Controlling Distributed Power Sources by Autonomous Vir-
tual Power Plants. In Proceedings of the Power & Energy Student Summit
2010 (PESS 2010)), pages 40–42, October 2010.

[2] Y. Bernard, L. Klejnowski, J. Hähner, and C. Müller-Schloer. Towards Trust
in Desktop Grid Systems. In IEEE International Symposium on Cluster
Computing and the Grid, pages 637–642, Los Alamitos, CA, 2010. IEEE
Computer Society.

[3] R. Kiefhaber, B. Satzger, J. Schmitt, M. Roth, and T. Ungerer. Trust Mea-
surement Methods in Organic Computing Systems by Direct Observation.
In Proceedings of the 8th International Conference on Embedded and Ubiq-
uitous Computing (EUC 2010), pages 105–111. IEEE, 2010.

[4] C. Müller-Schloer. Organic Computing – On the Feasibility of Controlled
Emergence. In CODES+ISSS ’04: Proceedings of the International Con-
ference on Hardware/Software Codesign and System Synthesis, pages 2–5,
Washington, DC, USA, 2004. IEEE Computer Society.

[5] S. Ramchurn, D. Huynh, and N. Jennings. Trust in multi-agent systems.
The Knowledge Engineering Review, 19(01):1–25, 2005.

[6] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer. A Lazy Monitor-
ing Approach for Heartbeat-Style Failure Detectors. In Proceedings of the
The Third International Conference on Availability, Reliability and Security
(ARES 2008), Technical University of Catalonia, Barcelona, Spain, pages
404–409, March 4-7 2008.

[7] J.-P. Steghöfer, R. Kiefhaber, K. Leichtenstern, Y. Bernard, L. Klejnowski,
W. Reif, T. Ungerer, E. André, J. Hähner, and C. Müller-Schloer. Trustwor-
thy Organic Computing Systems: Challenges and Perspectives. In Proceed-
ings of the 7th International Conference on Autonomic and Trusted Com-
puting (ATC 2010). Springer, October 2010.

[8] W. Trumler. Organic Ubiquitous Middleware. PhD thesis, University of
Augsburg, 2006.

18

	Introduction
	Architecture
	The Trust Metric Infrastructure
	RawData
	Transformer and TransformedData
	Interpreter and TrustData
	Trust Interface

	Application of the Trust-Enabling Middleware
	Scenario
	Usage of the Trust-Enabling Middleware
	Instantiation Example

	Conclusion and Future Work

