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Chapter 1

Summary

In this Thesis dynamical mean-field methods in combination with a continuous-time

quantum Monte Carlo impurity solver are used to study selected open problems of

condensed matter theory. These problems comprise the effect of correlations and their

quantification in covalent band insulators, non-local correlation effects and their in-

triguing consequences in frustrated two-dimensional systems, and a phenomenological

approach to investigate temperature-dependent transport in graphene in the presence

of disorder. While these problems seem to be quite diverse, at least in part, a recur-

rent theme in all of these studies is the quasiparticle concept as introduced by Landau

in his famous Fermi-liquid theory. Apart from merely summarizing the results it will

also be shown how the quasiparticle picture is found to appear in surprising contexts

and to be invalidated in situations where it is usually expected to hold.

In Chapter 2 a brief introduction to the physics and theory of correlated elec-

tron systems is given and the quasiparticle concept is presented. In Chapter 3 the

Hubbard model is introduced as the generic minimal model of correlated electronic

systems, and methods to solve the Hubbard model with a focus on dynamical-mean

field approximations are described. Especially the Mott metal-insulator transition is

discussed and the effects of non-local correlations are illustrated by contrasting the

case of infinite dimensions, where correlation effects are purely local, with the case
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of two dimensions, where non-local correlations become important. Also instabilities

of the two-dimensional Hubbard model towards unconventional superconductivity

are discussed. Finally, the continuous-time quantum Monte Carlo impurity solver is

briefly introduced.

Correlations in a covalent band insulator are the topic of Chapter 4. A covalent

band insulator is a band insulator with partially filled identical local orbitals, a char-

acteristic which is relevant for materials like FeSi or FeSb2. These materials exhibit

non-trivial temperature dependent magnetic and transport properties partly reminis-

cent of Kondo insulators, and they are also of interest for thermoelectric applications.

In our model study we show that a discontinuous transition from a band insulator

to a Mott insulator takes place upon increasing the local Coulomb repulsion between

electrons at low temperature. Moreover unexpected behavior is induced by electronic

correlations. The charge gap shrinks with increasing interaction strength, and the

charge and spin gaps deviate from each other in the correlated band insulator. In the

Mott insulator the more conventional behavior is observed, with a vanishing spin gap

and a charge gap which increases with increasing Coulomb repulsion. The shrinking

of the charge gap in the correlated band insulator is traced to a gain of correlation

energy by adding a single electron to the half-filled system. This consequently leads

to a stronger energetic lowering of the single-electron excited state compared to the

lowering of the ground state, hence a gap reduction. Interestingly this effect explains

why band structure calculations for FeSi and FeSb2 overestimate the charge gap by

underestimating correlations, while for Mott insulators the charge gap is usually un-

derestimated. Surprisingly, further insight into the problem is provided by an analogy

with Fermi-liquid theory: the charge gap renormalization is related to a renormaliza-

tion factor extracted from the linear slope of the real part of the self-energy, similar to

the effective mass renormalization known, for example, from heavy-fermion systems.

Therefore correlations in a band insulator are quantified by a relation borrowed from
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the quasiparticle concept in Fermi-liquid theory, which is quite a remarkable fact.

In Chapter 5 a cluster generalization of dynamical-mean field theory to a plaquette

is used to investigate the two-dimensional Hubbard model on the square lattice with

a next-nearest neighbor hopping. Here the quasiparticle picture is found to break

down already at relatively weak coupling and half-filling in the antinodal directions

in momentum space. Moreover a d-wave superconducting phase emerges from this

non-Fermi liquid metallic phase upon cooling. Hence Cooper pairs are formed in a

state in which the quasiparticle lifetime in the respective momentum space region is

already very small and non-Fermi liquid behavior is observed. A crossover from the

weak-coupling non-Fermi liquid to a more conventional Fermi liquid metal is obtained

upon doping the system. It is a fascinating open problem whether the non-Fermi liq-

uid and superconducting phases at weak coupling and half-filling are related to the

respective phases known to exist at strong coupling and finite doping. These ques-

tions lie at the heart of understanding the two-dimensional Hubbard model in the

presence of a next-nearest neighbor hopping, which is also relevant for the super-

conducting cuprates. Furthermore it would be intriguing to study the theoretically

observed weak-coupling phases in experiments. We mention here recent progress in

the synthesis and investigation of new materials from the cuprate family, which for

example allowed to study the difference between hole and electron doping and to

provide insight into the consequences of weak and strong coupling magnetic ordering

mechanisms in the undoped mother compounds.

A direct experimental motivation gave rise to the investigation presented in Chap-

ter 6. In quasi two-dimensional organic charge transfer salts the bandwidth-controlled

Mott metal-insulator transition can be studied by the application of hydrostatic pres-

sure. In a series of conductance and NMR measurements under pressure it was found

that the critical behavior at the continuous finite-temperature Mott transition in κ-

(ET)2Cu[N(CN)2]Cl is not compatible with the conventional Ising universality class,
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which is known to apply to the three-dimensional Mott transition in (V1−xCrx)2O3.

A possible theoretical explanation of the deviation from Ising universality was guided

by the insight that observables (like the conductance) may show different critical be-

havior than the order parameter of the transition, which is in fact not even precisely

known for the Mott transition, and that Ising universality with modified critical ex-

ponents for the conductance therefore still applies. However, it was also proposed in

a different theoretical approach that the real cause for unconventional Mott criticality

in two dimensions lies in the fundamental importance of non-local correlations and

the partial vanishing of the Fermi surface in the correlated metal. In essence, the idea

behind this proposal is that the Mott transition in high dimensions may be described

by a single number, namely the isotropic quasiparticle renormalization factor, which

vanishes at the continuous transition and thus acts like a scalar (Ising-like) order

parameter. This consequently leads to Ising criticality in high dimensions, and Ising

universality is therefore also observed in three-dimensional systems if the quasipar-

ticle picture holds in the correlated metal. In two dimensions, however, non-local

correlation effects render the isotropic quasiparticle picture invalid and momentum-

space differentiation with a partial depletion of the Fermi surface occurs, which is why

Ising universality does not apply according to these arguments. Therefore the precise

extent of validity of the quasiparticle concept and deviations from conventional Fermi-

liquid physics play an important role also for this problem. While not elaborating on

these fundamental issues, we still contribute to the discussion by modeling the exper-

imental situation and following critical observables for the charge and spin degrees

of freedom across the continuous transition. Remarkably, we find considerable agree-

ment regarding the critical scaling laws with experimental data as well as theoretical

predictions despite certain approximations involved. It is important to note here that

the cluster dynamical-mean field method on the plaquette, which is used to calculate

the observables, indeed captures a certain amount of non-local correlations. Hence
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the consistency of our results with experiments suggests the importance of non-local

correlations for unconventional Mott criticality in two dimensions.

The manufacture of single sheets of two-dimensional carbon, known as graphene,

has recently attracted a lot of attention. A clean system of tight-binding electrons

on a half-filled honeycomb lattice is a non-ideal conductor, which means that it has

a finite dc conductivity at zero temperature even in the absence of impurities. This

peculiar behavior is directly related to the linear quasiparticle dispersion at low en-

ergies in combination with the two-dimensionality, i.e., to the physics of massless

two-dimensional Dirac fermions. In Chapter 7 we contribute to the investigation

of the remarkable electronic properties of graphene by calculating its dc conductiv-

ity in the presence of local disorder. While disorder effects are particularly strong

in non-suspended graphene on insulating substrates, recently fabricated suspended

graphene samples show ultrahigh charge carrier mobilities. However, microscopic

corrugations known as ripples, which are thermally induced intrinsic instabilities in

two-dimensional sheets, and also impurity atoms or molecules adhering to the sheet

still make the system “imperfect” with respect to a simple tight-binding model on

a honeycomb lattice. In our work we use a phenomenological model for disorder

by introducing a local random disorder distribution, which is treated in a coherent-

potential approximation, the analogue to dynamical mean-field theory for disordered

systems. By allowing the disorder strength to depend on temperature explicitly, our

approach describes several features of the temperature dependent dc conductivity

observed in experiments. In particular, a finite minimum conductivity at the charge

neutrality point is found, which increases with temperature similar to the conductivity

in a semiconductor. To be precise, the behavior is not entirely semiconducting, how-

ever, since the system has a finite minimum conductivity even at zero temperature.

Away from the charge neutrality point, the temperature dependence changes, and at

sufficiently large densities the conducitvity becomes metallic. We show that a resis-
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tivity which increases linearly with temperature and has a slope which decreases with

increasing density, as measured for suspended graphene, is reproduced by assum-

ing a temperature-dependent disorder strength. The corresponding scattering rate

has a finite zero-temperature offset and increases linearly with temperature. This

finding suggests the importance of at least two sources of scattering: a temperature-

independent contribution, possibly related to adsorbed impurities, and a contribution

from thermal excitations which may be related to ripples.



Zusammenfassung

In der vorliegenden Arbeit werden dynamische Molekularfeld-Näherungen auf aus-

gewählte offene Probleme der Theorie der kondensierten Materie angewandt. Zu die-

sen Problemen gehören Korrelationseffekte und deren Quantifizierung in kovalenten

Band-Isolatoren, nichtlokale Korrelationen und deren Auswirkungen in frustrierten

zweidimensionalen Systemen sowie ein phänomenologischer Zugang zu temperatur-

abhängigem Transport in Graphen mit Unordnung. Diese Probleme scheinen auf den

ersten Blick sehr unterschiedlich zu sein. Neben der methodischen Verwandtschaft in

deren Behandlung findet sich jedoch ein weiterer roter Faden, nämlich das Quasiteil-

chen-Konzept, das von Landau im Rahmen seiner Fermiflüssigkeitstheorie eingeführt

wurde. In dieser Zusammenfassung sollen die vorgestellten Probleme auch unter dem

Aspekt ihres Bezugs zum Konzept der Quasiteilchen betrachtet werden. Insbeson-

dere soll gezeigt werden, wie das Quasiteilchen-Konzept in überraschenden Zusam-

menhängen auftaucht und dann wiederum in Situationen ungültig wird, in denen man

es nicht unbedingt erwartet.

In Kapitel 2 wird die Physik korrelierter Elektronen vorgestellt und das Quasiteil-

chen-Konzept präsentiert. Kapitel 3 enthält eine Einführung in das Hubbard-Modell

als ein minimales Modell für die Physik korrelierter Elektronen. Ferner wird die dyna-

mische Molekularfeld-Theorie vorgestellt, die im Grenzfall unendlicher Dimensiona-

lität eine exakte Lösung des Hubbard-Modells liefert. Der Phasenübergang von einem

Metall zu einem Mott-Isolator wird disktutiert, und anhand dessen unterschiedlicher
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Charakteristika in unendlichen und in zwei Dimensionen wird die Bedeutung nichtlo-

kaler elektronischer Korrelationen in niedrigdimensionalen Systemen illustriert. An-

schließend werden Instabilitäten des zweidimensionalen Hubbard-Modells gegenüber

unkonventioneller Supraleitung besprochen. Schließlich wird kurz gezeigt, wie man

eine numerische Lösung von Quanten-Störstellen-Problemen, die im Rahmen von dy-

namischen Molekularfeld-Näherungen auftauchen, mit einem Quanten-Monte-Carlo-

Algorithmus in kontinuierlicher imaginärer Zeit erhält.

Korrelationen in einem Band-Isolator sind das Thema von Kapitel 4. Ein kova-

lenter Band-Isolator ist definiert als Band-Isolator mit teilweise gefüllten identischen

lokalen Orbitalen. Solche Charakteristika tauchen zum Beispiel in Materialien wie FeSi

oder FeSb2 auf, die ähnlich wie Kondo-Isolatoren nichttriviale temperaturabhängige

magnetische und Transport-Eigenschaften aufweisen und für thermoelektrische An-

wendungen interessant sind. In unserer Modell-Studie zeigen wir, dass ein diskonti-

nuierlicher Übergang zwischen einem Band-Isolator und einem Mott-Isolator durch

die lokale Coulomb-Abstoßung zwischen Elektronen induziert wird. Die Energielücke

für Ladungsanregungen wird ungewöhnlicherweise durch Korrelationen verkleinert.

Zudem sind die Ladungs- und Spinanregungslücken im korrelierten Band-Isolator

verschieden. Das Schrumpfen der Lücke im korrelierten Band-Isolator lässt sich dar-

auf zurückführen, dass das System durch Einteilchen-Anregungen Korrelationsenergie

gewinnt, dadurch der angeregte Zustand eine größere störungstheoretische Energie-

Absenkung erfährt als der Grundzustand und sich somit die Anregungslücke im

Vergleich zum nichtwechselwirkenden System verkleinert. Interessanterweise werden

ähnliche Effekte in der Tat in FeSi und FeSb2 beobachtet. Dort überschätzen Band-

struktur-Rechnungen die Energielücke, wohingegen sie in Mott-Isolatoren die Lücke

typischerweise unterschätzen. Dies lässt sich so interpretieren, dass Bandstruktur-

Rechnungen tendenziell Korrelationseffekte unterschätzen. Wenn nun, wie im Fall

des korrelierten kovalenten Isolators, Korrelationen die Lücke schrumpfen lassen,
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wird die Lücke folglich überschätzt, wenn Korrelationseffekte unterschätzt werden.

Im korrelierten Band-Isolator taucht auch überraschenderweise ein Konzept der Fer-

miflüssigkeitstheorie auf. Man kann nämlich zeigen, dass die Renormierung der Lücke

sich durch einen Renormierungsfaktor quantifizieren lässt, der formal dem Quasiteil-

chen-Gewicht aus der Fermiflüssigkeitstheorie entspricht. Die Verkleinerung der Ener-

gielücke durch Korrelationen entspricht unter diesem Aspekt der Erhöhung der effek-

tiven Bandmasse, die man beispielsweise aus Schwer-Fermionen-Systemen kennt —

ein durchaus bemerkenswerter Zusammenhang.

Die Kapitel 5 and 6 befassen sich mit der Anwendung einer nicht-lokalen Er-

weiterung der dynamischen Molekularfeld-Theorie auf eine Plaketten-Geometrie für

zweidimensionale Modelle (Plaketten-Näherung). In Kapitel 5 wird das zweidimensio-

nale Hubbard-Modell mit einem Nächst-Nachbar-Hüpfen in der Plaketten-Näherung

gelöst. Das Quasiteilchen-Bild bricht für dieses System bei halber Bandfüllung schon

bei schwacher Wechselwirkung zusammen, und zwar in der Nähe des (π, 0)-Punkts.

Zudem entsteht aus diesem ungewöhnlichen Metall bei Abkühlung ein unkonven-

tioneller Supraleiter mit d-Wellen-Symmetrie. Das bedeutet, dass die Cooperpaare in

einem Zustand gebildet werden, in dem es in gewissen Impulsbereichen gar keine wohl-

definierten Quasiteilchen gibt. Durch Dotierung wird der Nicht-Fermiflüssigkeitszu-

stand wieder in eine Fermiflüssigkeit überführt. Die vorliegenden Ergebnisse bei hal-

ber Füllung und schwacher Kopplung erinnern in verschiedener Hinsicht an bekannte

Resultate bei starker Kopplung und endlicher Dotierung. Beim Dotieren eines Mott-

Isolators gibt es nämlich auch eine Tendenz zu d-Wellen-Supraleitung und eine Nicht-

Fermiflüssigkeits-Phase mit einem sogenannten Pseudogap und einem Zusammen-

bruch des Quasiteilchen-Bilds entlang gewisser Impulsrichtungen. Wenngleich diese

Stark-Kopplungs-Phasen schon bei höheren Temperaturen und in größeren Bereichen

des Phasenraums auftreten, ist ein möglicher Zusammenhang mit den entsprechen-

den Phasen bei schwacher Kopplung sehr interessant und zum Beispiel auch für die
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Kuprat-Supraleiter von Relevanz.

Experimentelle Befunde gaben Anlass zu der Studie in Kapitel 6. In quasi-zwei-

dimensionalen organischen Ladungstransfersalzen wie κ-(ET)2Cu[N(CN)2]Cl (kurz κ-

Cl) kann der bandbreiten-kontrollierte Mott-Übergang durch Anwendung von hydro-

statischem Druck untersucht werden. In einer Reihe von Messungen der elektrischen

Leitfähigkeit und der Spin-Gitter-Relaxationsrate, gemessen mit Kernspinresonanz

(NMR), wurde gezeigt, dass das Verhalten von Ladungs- und Spin-Freiheitsgraden am

kontinuierlichen Mott-Übergang bei der kritischen Temperatur in κ-Cl nicht mit dem

kritischen Verhalten gemäß der zweidimensionalen Ising-Universalitätsklasse kompati-

bel ist. Diese Beobachtung steht im Kontrast zum dreidimensionalen Mott-Übergang

zum Beispiel in (V1−xCrx)2O3, wo man Ising-Universalität beobachtet. Das unge-

wöhnliche Verhalten in κ-Cl liegt möglicherweise darin begründet, dass Observablen

wie die Leitfähigkeit ein vom Ordnungsparameter abweichendes kritisches Verhalten

zeigen können und demnach die Ising-Universalitätsklasse dennoch gültig ist. Ein

anderer theoretischer Ansatz erklärt das ungewöhnliche kritische Verhalten jedoch

dadurch, dass der Ordnungsparameter für den Mott-Übergang in zwei Dimensio-

nen nicht Ising-artig ist. Demnach ist der dreidimensionale Mott-Übergang durch

eine einzige Zahl (einen Skalar) charakterisiert, nämlich das isotrope Quasiteilchen-

Gewicht, das am kontinuierlichen Metall-Isolator-Übergang verschwindet. Wegen des

so definierten skalaren Ordnungsparameters ist der dreidimensionale Mott-Übergang

Ising-artig — im Gegensatz zum zweidimensionalen Fall, in dem nichtlokale Kor-

relationen das Quasiteilchen-Konzept impulsabhängig zusammenbrechen lassen und

folglich der Mott-Übergang nicht mehr Ising-artig ist. Diese Argumentation unter-

streicht die Bedeutung nichtlokaler Korrelationseffekte und insbesondere des präzisen

Gültigkeitsbereichs des Quasiteilchen-Konzepts in niedrigdimensionalen Systemen. In

unserer Studie gehen wir nicht im Detail auf diese zweifellos faszinierenden tieferlie-

genden Fragen ein, sondern beschränken uns vielmehr auf eine numerische Berech-
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nung des Skalen-Verhaltens von Ladungs- und Spin-Freiheitsgraden in einem effekti-

ven zweidimensionalen Hubbard-Modell für κ-Cl im Rahmen der Plaketten-Näherung.

Trotz notwendiger Näherungen finden wir eine erstaunlich gute Übereinstimmung mit

den experimentellen Daten wie auch mit den vorhandenen theoretischen Ansätzen.

Da die Plaketten-Näherung in einem gewissen Maß auch nichtlokale Korrelationen

berücksichtigt, legt die gute Übereinstimmung unserer Ergebnisse mit den Experi-

menten die Bedeutung nichtlokaler Korrelationen für das unkonventionelle kritische

Verhalten am zweidimensionalen Mott-Übergang nahe.

Die Herstellung zweidimensionaler Schichten aus Graphit, die unter dem Namen

Graphen bekannt sind, hat in letzter Zeit große Aufmerksamkeit erregt. Ein rei-

nes System von Tight-Binding-Elektronen auf einem Honigwabengitter ist ein nicht-

idealer Leiter ohne Störstellen. Das bedeutet, dass das System eine endliche elektri-

sche Gleichstrom-Leitfähigkeit am absoluten Temperatur-Nullpunkt besitzt. Dieses

Verhalten hängt mit der linearen Dispersionsrelation bei niedrigen Energien in Kom-

bination mit der Zweidimensionalität zusammen, also mit der Physik masseloser1

zweidimensionaler Dirac-Fermionen. In Kapitel 7 wird eine phänomenologische Theo-

rie zur Berechnung der elektrischen Leitfähigkeit von Graphen mit lokaler Unord-

nung vorgestellt. Während nicht-freischwebendes Graphen starke Unordnungseffekte

zeigt, weisen freischwebende Graphen-Proben sehr hohe Ladungsträgermobilitäten

auf, was auf einen verringerten Einfluss von Unordnung hindeutet. Bei freischweben-

dem Graphen treten jedoch sogenannte Ripples auf, also thermisch angeregte int-

rinsische Verzerrungen der zweidimensionalen Schicht. Zudem können sich auf der

Schicht Störatome oder -moleküle befinden, die das System verunreinigen und im

1Ich erlaube mir, an dieser Stelle aus der amerikanischen Comedy-Serie The Big Bang Theory zu
zitieren: “Good lord! The interference pattern in the fracture, the motion of the wave through the
molecular structure ... I’ve been looking at it all wrong! I can’t consider the electrons as particles.
They move through the graphene as a wave! It’s a wave! The moment to applaud would be now! ...
Troglodytes!” (Dr Sheldon Cooper, Staffel 3, Folge 14: The Einstein Approximation)



12 Summary

Vergleich zum perfekten Honigwaben-Gittermodell imperfekt machen. Wir beschrei-

ben Unordnungseffekte durch ein phänomenologisches Modell zufällig verteilter Stör-

stellen, das mit einer Molekularfeld-Methode näherungsweise gelöst wird. Mit einer

Unordnungsstärke, die explizit von der Temperatur abhängt, beschreiben wir mit

diesem Zugang mehrere beobachtete Transport-Effekte in freischwebendem Graphen.

Insbesondere berechnen wir die Temperatur-Abhängigkeit der sogenannten minimalen

Leitfähigkeit im ungeladenen System und verfolgen das Transportverhalten beim An-

legen einer Gate-Spannung, also bei endlichen Ladungsdichten. Dabei beobachten wir

in Übereinstimmung mit dem Experiment einen Übergang von halbleiterartigem Ver-

halten bei kleinen Dichten zu metallischem Verhalten bei großen Dichten. Das lineare

Verhalten des temperaturabhängigen Widerstand bei großen Dichten lässt sich konsi-

stent mit einer temperaturabhängigen Unordnungsstärke modellieren, die aus einem

konstanten Beitrag sowie einem linear mit der Temperatur wachsenden Beitrag be-

steht. Dieses Ergebnis legt die Bedeutung mindestens zweier Quellen für Streuung in

freischwebendem Graphen nahe, von denen eine temperaturunabhängig ist und die

andere mit thermischen Anregungen verknüpft ist.



Chapter 2

Introduction

2.1 Introductory Remarks

The understanding of the physical properties of electrons in a solid involves a highly

complex quantum-mechanical many-body problem. Even if the ionic lattice is treated

as a static potential for the electrons in the Born-Oppenheimer approximation, the

Coulomb repulsion between the electrons renders exact solutions of the problem im-

possible in most cases. Nevertheless it is often a good approximation to reduce

the many-electron problem to an effective single-particle description, as in density

functional theory [1], which has been successfully applied to rather weakly inter-

acting systems with conduction bands derived from s or p electrons. However, the

single-particle picture fails when the Coulomb repulsion becomes too strong, which

is typically the case in systems with open d or f shells.

A periodic lattice with an even number of electrons per unit cell is a band insulator

because its energy bands are either filled or empty. In a class of materials called Mott

insulators, in contrast, the Coulomb repulsion between electrons renders the system

insulating even though the bands are partially filled. The single-band Hubbard model

[2, 3, 4] (see Sec. 3.1) is a generic minimal model which contains the limiting cases of

(i) non-interacting, delocalized electrons in a metallic band and (ii) localized electrons
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in a Mott insulator.1 Its main parameters are the bare bandwidth W , the strength

of the local Coulomb repulsion U , the band filling n and the lattice dimensionality

d. The phase transition which occurs in between the two limits (i) and (ii) is known

as the Mott metal-insulator transition (MIT) [5]. The bandwidth-controlled MIT at

zero temperature and half-filling occurs when the ratio U/W exceeds a critical value,

which depends on the dimensionality and lattice structure of the system.

An important step forward in the understanding of the Mott transition was made

when it was realized that the Hubbard model can be solved numerically exactly in the

limit of infinite dimensions or, equivalently, infinite lattice coordination number [6].

In this limit the electronic self-energy becomes local, and the full lattice problem can

be mapped to an auxiliary impurity problem [7] with a surrounding bath which has to

be determined self-consistently. In the framework of the dynamical mean-field theory

(DMFT, see Sec. 3.2) this mapping can also be used as a controlled approximation

for treating electronic correlation effects in a solid [8]. In DMFT the local dynamical

correlations are accounted for exactly, while non-local dynamical correlations are

neglected. In conjunction with the local-density approximation (LDA) to the density

functional theory, DMFT has thus become a very successful tool for the ab-initio study

of strongly correlated electron systems, an approach which is commonly abbreviated

as LDA+DMFT [9,10].

Naturally, as it is formulated for the limit of infinite dimensions, the application

of DMFT to model systems becomes problematic if the dimensionality is low, e.g.,

in two dimensions. However, there are fascinating examples of classes of effectively

two-dimensional systems which one would like to understand and where correlations

are strong, like the high-temperature cuprate superconductors or the organic charge

transfer salts. In the latter, for example, the bandwidth-controlled MIT can be probed

1The Hubbard model can indeed be formulated for any kind of band structure involving also
band insulators, see Chapter 4.
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by applying hydrostatic pressure. Moreover, in both of the mentioned material fam-

ilies unconventional superconducting phases are observed.

In fact, it is quite obvious why DMFT, in its single-site version, is insufficient

to describe the physics of these two-dimensional systems. The description of uncon-

ventional superconducting pairing, e.g., d-wave pairing, in a model with repulsive

bare interactions requires the inclusion of non-local dynamical pair field amplitudes,

hence the inclusion of non-local dynamical correlations. Moreover, in two-dimensional

correlated systems the phenomenon of momentum-space differentiation occurs. This

means that even in the metallic state parts of the Fermi surface may vanish while

other parts still survive, the proper description of which demands to take into account

the momentum dependence (i.e., the non-locality) of the self-energy.

Several generalizations of DMFT have been proposed to deal with situations in

which non-local correlations become important. Among them are quantum cluster

theories (see Sec. 3.3), such as the cellular DMFT (CDMFT), the dynamical cluster

approximation (DCA) or the variational cluster approximation (VCA), the dynamical

vertex approximation (DΓA) and the dual-fermion (DF) method. In contrast to

DMFT, all of these methods allow for a momentum dependence of the self-energy.

By these means, it became possible to study the Mott MIT also in the two-dimensional

Hubbard model, where certain characteristics of the transition are different from the

infinite-dimensional limit (see Sec. 3.4).

Both in DMFT and its cluster generalizations the lattice problem is mapped to

an effective (single- or cluster-) impurity problem. The solution of the impurity

problem requires the application of a so-called impurity solver. One possible choice

is the continuous-time quantum Monte Carlo (CTQMC) method. Its flavor used

throughout this work, the hybridization expansion, is based on the expansion of the

effective impurity action in the hybridization between impurity and bath sites. A

derivation of the basic formulas and a brief description of the underlying algorithm
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is presented in Sec. 3.6.

2.2 Fermi-Liquid Theory and Quasiparticles

One of the most important advances in the theoretical understanding of condensed

matter was the formulation of Landau’s Fermi-liquid theory [11,12]. In essence, Fermi-

liquid theory is a phenomenological theory which applies to normal Fermi systems, i.e.,

systems which can be adiabatically connected to the Fermi gas. Fermi-liquid theory

was successfully applied to normal 3He [13] and provided a basis for the understanding

of heavy-fermion systems [14] and correlated metals in general.

By introducing the concept of quasiparticles, Fermi-liquid theory treats a system of

interacting fermions (e.g., electrons in a solid) as a liquid of quasiparticles which also

obey Fermi-Dirac statistics. The quasiparticles are characterized by an effective mass

m∗ which is larger than the bare fermionic mass m due to the interactions between the

bare fermions. Landau’s theory explains why thermodynamic properties (temperature

dependence of the specific heat, spin susceptibility etc.) of interacting Fermi systems

correspond to the properties of the free Fermi gas, but with renormalized parameters.

If more than one quasiparticle is excited there are also weak residual interactions

between quasiparticles. However, scattering processes are sufficiently suppressed by

Pauli’s exclusion principle, at least for three-dimensional isotropic systems. Therefore

the phase space volume available for scattering processes close to the Fermi surface

is severely reduced and the residual interactions between quasiparticles are indeed

weak. In fact, in a Fermi liquid the quasiparticles have an infinite lifetime at the Fermi

surface and at zero temperature. Thus Fermi-liquid theory consistently guarantees the

existence of well-behaved quasiparticles provided that the initial mapping between the

Fermi gas and the Fermi liquid is possible. In other words, the gas-to-liquid mapping

can be viewed as the main assumption of Fermi-liquid theory.
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A relation of the phenomenological quasiparticle concept to the microscopically

determined single-particle self-energy is formulated in Sec. 3.4. As mentioned above,

the consistency of Fermi-liquid theory is based on the assumption of reduced scatter-

ing phase space. This assumption can be shown to hold for three-dimensional isotropic

systems [15]. For two-dimensional systems, however, the phase space argument does

not necessarily hold. Indeed the existence of van-Hove singularities in the density of

states due to saddle points in the bare energy dispersion may further enhance low-

energy scattering phase space and provide a basis for the breakdown of Fermi-liquid

theory in the presence of electronic correlations. An example of non-Fermi liquid

behavior in a two-dimensional system even for weak electronic interactions is shown

in Chapter 5.



18 Introduction



Chapter 3

Models and Methods

3.1 The Hubbard Model

The fermionic Hubbard model [2,3,4] is a conceptually simple model for the descrip-

tion of interacting electrons hopping on a lattice. However, its simplicity at first sight

is misleading since the Hubbard model contains a rich variety of physical phenomena.

Written in terms of creation (c†iσ creates an electron with spin σ = ↑, ↓ in an orbital

on lattice site i) and annihilation operators (ciσ), which anticommute according to

fermionic statistics ({ciσ, c†jσ′} = ciσc
†
jσ′ + c†jσ′ciσ = δijδσσ′ , {ciσ, cjσ′} = {c†iσ, c†jσ′} =

0), the single-band Hubbard model is given by

H =
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (3.1)

where niσ = c†iσciσ is the local particle number operator, tij is the matrix element

for hopping between sites i and j of the lattice (tji = t∗ij), and U is the strength of

the on-site Coulomb repulsion, i.e., an amount of energy U that is required for each

doubly occupied site. The operator for double occupancy, ni↑ni↓, has eigenvalues 0

and 1, and the average double occupancy D = L−1
∑

i 〈ni↑ni↓〉 (L is the number of

lattice sites) is an indicator for the degree of localization of the electrons. Typically

D is larger in the metal than in the Mott insulator. Here

〈O〉 =
Tr Oe−βH

Tr e−βH
(3.2)
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denotes the quantum-statistical average1 of the operator O, Tr . . . =
∑

n〈n| . . . |n〉 is

the trace (with a Hilbert space basis {|n〉}).
As mentioned above, the Hamiltonian (3.1) contains two important limiting cases.

For U = 0 it describes non-interacting electrons in delocalized Bloch states moving

in a band with dispersion ǫk =
∑

ij e
ik(Ri−Rj)tij and bandwidth W . For the following

discussion we make a further simplification and consider simple lattices retaining only

hopping matrix elements between nearest-neighboring sites. Writing tij = −t if i and

j are nearest neighbors (and tij = 0 else), the single-band Hubbard model takes the

even simpler form

H = −t
∑

〈i,j〉nnσ

(

c†iσcjσ + h.c.
)

+ U
∑

i

ni↑ni↓. (3.3)

For very large U/t ≫ 1 the Hubbard model can be mapped to the t-J model with

exchange coupling J ∝ t2/U [16], which contains as a limiting case at half-filling

(one spin per site) the spin-1/2 Heisenberg model. The Heisenberg model is a non-

trivial quantum spin model, and a discussion of its properties for various cases is

beyond the scope of this work. Here we mention only that for bipartite lattices

(i.e., lattices which can be divided into two sublattices such that each lattice site

has only nearest neighbors of the opposite sublattice) the unfrustrated Heisenberg

model exhibits long-range antiferromagnetic order with a finite critical temperature in

dimensions d > 2 [17,18] and with a critical temperature Tc = 0 in d = 2 [19,20,21,22].

In between the limits of non-interacting electrons and localized quantum spins (at

half-filling), the Hubbard model exhibits a bandwidth-controlled MIT with a critical

interaction strength Uc of the order of the bandwidth. In a simplified picture, the MIT

can be understood as a phase transition occurring due to the competition between a

kinetic energy gain (parametrized by W ∝ t) by the delocalization of electrons and a

1We adapt the usual notation β = (kBT )−1 and set the Boltzmann constant kB = 1 throughout
this work.
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potential energy gain (parametrized by U) avoiding the local Coulomb repulsion by

localization. More details of the Mott transition with a focus on the limit of infinite

dimensions and a contrasting perspective for the two-dimensional Hubbard model will

be presented in Sec. 3.4.

In contrast to the strong coupling regime, where antiferromagnetism in the so-

called Mott-Heisenberg insulator may appear as an ordered state of localized spins, an-

tiferromagnetic order is also found as a weak-coupling instability, with an energy gain

due to the opening of an energy gap by the doubling of the unit cell. The correspond-

ing mechanism is also referred to as the Slater mechanism for antiferromagnetism,

and it may be studied within a static mean-field (Hartree-Fock) approximation to the

Hubbard model. In general, the tendency of the system to order antiferromagnetically

is strongest on lattices with perfect nesting (where a single reciprocal nesting vector

connects parts of the Fermi surface), for example on unfrustrated hypercubic lattices

with only nearest-neighbor hopping.

Away from half-filling the homogeneous phase of the system may become unstable

and the system may show a tendency to exhibit phase separation [23, 24, 25] and to

form patterns in real space, e.g., stripes [26]. We note in passing that in contrast

to antiferromagnetism, a weak-coupling approach to the Hubbard model does not

allow for a ferromagnetic solution. However, one of the few rigorous statements

about the Hubbard model is the Nagaoka theorem [27], which states that in the

limit of infinite Coulomb repulsion U the ground state of the half-filled system plus a

single hole is a fully polarized ferromagnet. The Nagaoka theorem holds for different

lattice structures, among them the hypercubic lattice. Ferromagnetic solutions of the

Hubbard model at strong but finite U and at finite doping have been studied, e.g.,

within DMFT [23]. Only recently the existence of a thermodynamic Nagaoka phase

was established in the limit of infinite dimensions [28].

While in dimensions d > 2 many characteristics of the Hubbard model can be
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studied, at least qualitatively, within dynamical or even static mean-field approxima-

tions, approximate schemes neglecting non-local quantum fluctuations become more

unreliable in two dimensions. However, especially due to the importance of non-local

fluctuations the two-dimensional Hubbard model shows rich physics, e.g., unconven-

tional superconductivity [29, 30], the intriguing pseudogap phenomenon observed in

the cuprates [31, 32] or the notion of a quantum spin-liquid state [33, 34]. A dis-

cussion of numerical studies of the two-dimensional Hubbard model with a focus on

unconventional superconductivity will be given in Sec. 3.5.

3.2 Dynamical Mean-Field Theory

The Dynamical Mean-Field Theory (DMFT) is a non-perturbative, controlled and

conserving approximation to the full many-body problem. The development of DMFT

started with the demonstration of Metzner and Vollhardt [6] that the diagrammatics

of fermionic quantum lattice models simplify in an appropriately chosen limit of

infinite dimensions or, equivalently, infinite lattice coordination number Z. DMFT

became a computational scheme by the insight that the lattice problem can be mapped

to a quantum impurity model plus a self-consistency condition in this limit [7, 35].

DMFT thus is the dynamical analogue to static Weiss mean-field or Hartree-Fock

approximations. The impurity problem is solved by either an approximate analytical

scheme or a numerical impurity solver. The results of this work were obtained using

a continuous-time quantum Monte Carlo solver, which will be introduced in Sec. 3.6.

In practice DMFT is a useful and successful computational scheme in various

contexts. First of all, it allows for an exact solution of the Hubbard model with

local interaction in the limit of infinite dimensions. Moreover, the DMFT is a good

approximation for three-dimensional electron systems, especially if the number of

nearest neighbor ions Z is relatively large, e.g., Z = 12 on the face-centered cubic
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lattice as compared to Z = 6 on the body-centered cubic lattice. Combined with

band structure calculations on the basis of density functional theory, DMFT enables

material-specific investigations of electronically correlated materials with quantitative

predictive power [36]. Finally, by generalizing the DMFT approximation to include

non-local correlation effects even two-dimensional models can be studied using a clus-

ter extension of dynamical mean-field theory.

A detailed derivation of the DMFT equations is given, e.g., in the DMFT review

article, Ref. [8]. Here we illustrate the DMFT by applying it to the single-band

Hubbard model as defined in Eq. (3.1). In this case the basic quantities of DMFT

are the following:

• the electronic dispersion relation ǫk, which depends on the lattice geometry and

the hopping matrix elements tij

• the local Coulomb interaction strength U

• the one-particle Green function G(k, iωn) = (iωn + µ− ǫk −Σ(iωn))
−1

• the one-particle local Green function G(iωn) =
∑

kG(k, iωn)

• the dynamical mean field or “Weiss field” G0(iωn)

• the local electronic self-energy Σ(iωn)

• the desired electronic density or band filling n (for fixed filling)2 or the chemical

potential µ (for fixed chemical potential)

Here ωn = (2n+ 1)πT = (2n+ 1)π/β is the nth fermionic Matsubara frequency3,

2If the filling is fixed, one needs to adjust the chemical potential accordingly. This is typically
done during each loop of the self-consistency cycle, see Fig. 3.1.

3The DMFT equations may be formulated equivalently on the real instead of the imaginary
frequency axis. The choice depends on whether the impurity solver works on the real-frequency
axis, as, e.g., the numerical renormalization group, or on the imaginary (Matsubara) frequency axis,
like a solver based on quantum Monte Carlo methods. Since we are using one of the latter we
formulate DMFT on the Matsubara axis.
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and the relation between the Weiss field and the self-energy will be shown below.

Note that we suppress the possible spin dependence of the Green function, the Weiss

field and the self-energy for brevity, i.e., we show the equations for a paramagnetic

state.

The DMFT is set up by selecting an arbitrary site coined “0” and by defining4

the local effective action:

Seff = −
β
∫

0

dτ

β
∫

0

dτ ′
∑

σ

c†0σ(τ)G0(τ − τ ′)−1c0σ(τ ′) + U

β
∫

0

dτ n0↑(τ)n0↓(τ) (3.4)

where τ is the imaginary time and the imaginary-time dependent operators in the

Heisenberg picture5 are given by c(τ) = exp(Heffτ)c exp(−Heffτ). G0(τ) is the inverse

Fourier transform of the Weiss field G0(iωn) according to the relations

g(τ) = β−1
∑

n

exp(−iωnτ)g(iωn), (3.5)

g(iωn) =

β
∫

0

dτ exp(iωnτ)g(τ), (3.6)

where g stands for the Weiss field or the Green function.6

The local effective action defines a single-impurity problem which is equivalent to

a conveniently chosen single-impurity Anderson model (SIAM) for a given Weiss field

G0. An impurity solver is an analytical or numerical method to determine, given the

effective action, the local one-particle Green function

G(τ) = −〈Tτ c0(τ)c
†
0(0)〉Seff

, (3.7)

4Its relation to the original lattice model can be derived, e.g., using the so-called cavity construc-
tion, as shown in Ref. [8].

5Note that this notation implies that one knows the effective Hamiltonian Heff corresponding to
the effective action Seff. While this is the case for the single-impurity Anderson model, it is not
the case in general. Then the imaginary-time dependence of the operators in (Eq. 3.4) should be
viewed as a formal expression. In fact it is often more convenient to express the effective action
using Grassmann variables and path integrals instead of fermionic operators, see Sec. 3.6.

6The Fourier transformation needs to be performed also for the Green function during the self-
consistency cycle, which is why we show the relations for a general function g here.
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where Tτ is the imaginary-time ordering operator ensuring the required antiperiodicity

of the fermionic Green function with respect to imaginary time shifts of β. Again we

have dropped the spin dependence of the operators. The physics of the effective action

given by Eq. (3.4) is that of a local impurity embedded in a bath of noninteracting

electrons, where U is the energy associated with a double occupancy of the impurity

site with a spin-up and a spin-down electron, and the Weiss field contains information

about the bath itself and its connection to the impurity site, i.e., hopping processes

between the impurity site and the bath.

The Weiss field is related to the lattice degrees of freedom of the original lattice

model; it contains all the information about the lattice structure. The mean field

needs to be determined self-consistently in an iterative process as detailed below. At

this point it is important to note that the Weiss field G0 is not equivalent to the

non-interacting Green function G0 of the original lattice model; G0 and G0 merely

coincide in the limit U = 0.7 Therefore G0 contains information about the interacting

system, while G0 contains information about the non-interacting system only.

The single-particle self-energy Σ(ω) obtained by DMFT is local and fulfills the

equations

G(iωn) =
∑

k

(iωn + µ−Σ(iωn) −ǫk)−1 , (3.8)

G−1
0 (iωn) = G−1(iωn) −Σ(iωn), (3.9)

the latter of which is the Dyson equation. The functional dependence ofΣ(iωn)[G0, U ],

defined on the discrete set of Matsubara frequencies ωn = (2n + 1)πT , on G0 and U

is determined by an auxiliary SIAM.

In practice one starts with some choice of the self-energy, computes the lattice

Green function, computes the Weiss field, solves the impurity problem, extracts the

7Actually the choice G0 = G0, i.e., the free solution, is a convenient starting point for the iterative
procedure in practice. Other simple possibilities are the static mean-field (Hartree/Hartree-Fock)
solution or the solution of the atomic problem.
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Figure 3.1: Illustration of the DMFT self-consistency cycle for fixed filling n and for
an impurity solver which works on the Matsubara axis.

self-energy, and so forth until convergence is achieved. A schematic illustration of

this self-consistency scheme is shown in Fig. 3.1.

As indicated in Fig. 3.1 it is necessary to Fourier transform the Green function

measured in imaginary time to Matsubara frequencies according to Eq. (3.6) in order

to extract the self-energy. Since the local Green function is discontinuous at τ = 0

due to the fermionic anticommutation relations, one needs to take care of this jump

in order to obtain the correct asymptotic high-frequency behavior of G(iωn). We
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therefore write down the high-frequency expansion of G,

G(iωn) =
c1
iωn

+
c2

(iωn)2
+

c3
(iωn)3

+ O
(

1

(iωn)4

)

, (3.10)

where the first three coefficients (corresponding to the zeroth, first and second mo-

ments of the spectral density) are given by [37]

c1 = −(G(0) +G(β)), (3.11)

c2 = G′(0) +G′(β), (3.12)

c3 = −(G′′(0) +G′′(β)). (3.13)

For the example of the local Green function c1 = −1.8 In principle it is possible to

obtain the higher order coefficients from QMC measurements of certain correlations

functions (see, e.g., Refs. [37] and [38]) and thus to enforce the correct high-frequency

behavior not only of the Green function but also of the self-energy. Such a scheme

according to Ref. [38] is used in Chapter 4 to compute also c2 and c3 using the average

density and the density-density correlator measured in QMC.

As already mentioned, for a solution of the DMFT equations (3.8) and (3.9) at

fixed filling the chemical potential needs to be adjusted accordingly. This is achieved

by increasing or decreasing the chemical potential with respect to its value in the

previous iteration, depending on whether the filling in the previous iteration is too

large or too small. This has to be repeated until the filling reaches the desired value

for the given self-energy in the present iteration according to

n =
∑

σ

(

1 − β−1
∑

n

∑

k

(iωn + µ− ǫk −Σ(iωn))−1

)

. (3.14)

Given a converged solution of the DMFT equations, one can measure in a final QMC

run the Green function and other imaginary-time correlation functions, e.g., the local

8In the cluster DMFT (see Sec. 3.3.1), for example, also off-diagonal components of the Green
function matrix need to be Fourier transformed, where c1 = 0 since the anticommutator of fermionic
creation and annihilation operators for different cluster sites vanishes.
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spin-spin correlation function, grouping measurements into bins (subsets of measure-

ments). These binned measurements can be used for a statistical error analysis and a

subsequent analytical continuation to the real-frequency axis by applying a maximum

entropy method [39], which is described in more detail in Appendix A.

Important results obtained with DMFT, especially for the Mott MIT, will be

discussed in Sec. 3.4.

3.3 Quantum Cluster Theories

Local correlations are in general the most important correlations in many-body sys-

tems. Non-local correlations, however, become essential in low-dimensional systems (d

≤ 2) and especially at low temperatures. In essence, non-local quantum fluctuations

are responsible for such intriguing phenomena as unconventional superconductivity,

magnons or spin-liquid phases.

While systems in less than two dimensions, such as Hubbard chains or spin lad-

ders, are successfully studied using techniques like the density-matrix renormalization

group (DMRG), two-dimensional quantum many-body systems are especially difficult

to approach from a theoretical physicist’s point of view. Finite-size methods, such as

determinantal or variational QMC, DMRG or exact diagonalization (ED) are limited

in system size due to the exponential growth of the Hilbert space. The functional

renormalization group (fRG) [40], on the other hand, is by construction restricted to

rather weak couplings.

The success of DMFT in describing correlation effects in dimensions higher than

two triggered a series of proposed generalized schemes inspired by dynamical mean-

field theory:

• quantum cluster theories, such as cellular/cluster DMFT (CDMFT), the dy-

namical cluster approximation (DCA) and the variational cluster approximation
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(VCA) [41],

• the dynamical vertex approximation DΓA [42],

• the dual-fermion (DF) method [43, 44].

The DΓA and DF approaches will be briefly discussed at the end of this section.

First, we focus on quantum cluster theories and present the relevant schemes and

properties.

The idea of finite-size simulations is to approximate the infinite system by an

isolated finite part of the system and to extrapolate the results to the bulk thermo-

dynamic limit using scaling arguments. Quantum cluster theories take a different

route: The bulk lattice is replaced by an effective finite-sized cluster embedded in a

self-consistently determined bath. Therefore quantum cluster theories give approxi-

mate results for the thermodynamic limit. The different flavors of quantum cluster

theories share the properties that they reduce to the single-site DMFT for a cluster

of size one and approach the bulk limit upon an increase in cluster size.

In single-site DMFT the electronic self-energy is purely local in real space and

therefore constant in momentum space, Σ(k, iωn) → Σ(iωn). In quantum cluster

theories a part of the momentum structure of the self-energy is recovered. In the

plaquette CDMFT used in Chapters 5 and 6 of this Thesis one computes, in addition

to the local self-energy, also the real-space matrix elements Σij(iωn) with i and j being

sites of a 2×2 plaquette, i.e., nearest- and next-nearest neighbor matrix elements of

the self-energy. This corresponds to a momentum-space resolution where Σ(K, iωn)

is obtained for K = (0, 0), (π, 0), (0, π) and (π, π).

In all quantum cluster schemes, the self-energy is approximated by a linear com-

bination of Nc basis functions Φn(k) for a cluster of Nc sites:

Σ(k, iωn) → Σcluster(k, iωn) =

Nc
∑

n=1

Φn(k)Σn(iωn). (3.15)
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Single-site DMFT is recovered for Nc = 1 with a k-independent basis function. It

is the particular choice of the basis functions which determines the relation between

the impurity model and the lattice model for Nc > 1. This choice is not unique

and differs for example between CDMFT and DCA. In CDMFT, which is built from

the real-space cluster perspective, the basis functions are the Fourier phase factors

N−1
c exp(ik(Ri −Rj)) and the coefficients are the corresponding cluster self-energies

Σij(iωn). For the example of the plaquette, the independent components are the

local self-energy, the self-energy for nearest neighbor sites in x direction, the self-

energy for nearest neighbor sites in y direction, and the self-energy for next-nearest

neighbor sites along the diagonal. In contrast, in DCA the basis functions are chosen

to be constants in certain patches that cover the Brillouin zone, e.g., patches of size

(∆kx, ∆ky) = (π, π) around the K vectors (0, 0), (π, 0), (0, π) and (π, π) for a 4-site

DCA on the square lattice.

The relevance of a momentum-resolved self-energy, even at moderate interaction

strength, is illustrated in Fig. 3.2 taken from Ref. [45]. Here the self-energy from quan-

tum cluster theories (in this instance the DCA) for several cluster sizes is compared

with the self-energy from an algorithm called diagrammatic Monte Carlo (DiagMC),

which directly evaluates diagrams of the lattice problem by Monte Carlo sampling.

DiagMC is restricted to rather weak interaction strengths but does not suffer from

momentum-space discretization errors. The figure shows the deviation of the self-

energy from its constant DMFT value along selected paths in the Brillouin zone and

also the convergence of DCA results to the bulk self-energy upon an increase in cluster

size.

After these introductory remarks we will now outline the set-up of CDMFT. For

most of the presentation we follow the review article on quantum cluster theories,

Ref. [41], in which also detailed derivations and discussions of the various flavors of

quantum cluster theories can be found.
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Figure 3.2: Momentum dependence of the self-energy at the lowest Matsubara
frequency along the indicated paths in the first Brillouin zone for the two-dimensional
square-lattice Hubbard model with parameters U/t = 4, µ/t = 3.1 and T/t = 0.4.
The results were obtained using a diagrammatic Monte Carlo method (DiagMC) and
DCA calculations with a continuous-time auxiliary field (CT-AUX) quantum Monte
Carlo solver for the indicated cluster sizes. From Ref. [45].

3.3.1 Cluster DMFT

The CDMFT algorithm is based on a division of the infinite lattice into real-space

clusters of size Nc. The origins of the clusters form a superlattice with vectors x̃,

and the sites within a cluster are connected to the cluster origin by vectors X. Thus

the position of each site of the lattice can be written as x = x̃ + X. Analogously

each reciprocal lattice vector in the Brillouin zone is written as k = k̃ + K, where

K labels the origin of a Brillouin zone patch and k̃ are vectors from the patch origin

to the momenta within a patch. The division of the lattice and the Brillouin zone is

illustrated in Fig. 3.3 for the case of a plaquette cluster.
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Figure 3.3: Real space and reciprocal space divisions into clusters and patches,
respectively.

The CDMFT equations are analogous to the DMFT equations presented above.

They read

G(iωn) =
∑

k̃

(

(iωn + µ)1 − Σ(iωn) −t(k̃)
)−1

, (3.16)

G−1
0 (iωn) = G−1(iωn) − Σ(iωn). (3.17)

Here the hopping matrix t(k̃) is defined via its matrix elements (i and j labeling

cluster sites)

tij(k̃) = N−1
c

∑

K

ei(K+k̃)(Xi−Xj)ǫK+k̃, (3.18)

all the quantities (t, the coarse-grained cluster Green function G, the corresponding

Weiss field G0 and the cluster self-energy Σ) are Nc × Nc matrices and we have

introduced the Nc ×Nc unit matrix 1.

As in the single-site case the self-consistency cycle is closed by solving the impurity
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problem, i.e., by calculating, for a given self-energy and the corresponding Weiss field,

a new cluster Green function matrix with elements

Gij(τ) = −〈Tτ ci(τ)c
†
j(0)〉Seff

, (3.19)

where the effective impurity problem is given by the action

Seff = −
β
∫

0

dτ

β
∫

0

dτ ′
∑

ijσ

c†iσ(τ)
(

G0(τ − τ ′)−1
)

ij
cjσ(τ

′) + U

β
∫

0

dτ
∑

i

ni↑(τ)ni↓(τ).

(3.20)

The effective impurity problem is an Nc × Nc cluster problem, with off-diagonal

elements of both the Green function matrix and the self-energy matrix.

3.3.2 Superconducting States

It is possible to generalize the cluster DMFT method to include also superconducting

states with momentum-dependent order parameter as long as the cluster size is large

enough to ensure the relevant momentum space resolution. This is discussed in detail,

e.g., in Ref. [29]. We consider superconducting states where the electrons are paired

in total spin Sz = 0 and total momentum K = 0 states, which may be described by

an order parameter ∆k = 〈ck↑c−k↓〉. Here it is necessary to introduce the anomalous

Green function F (k, τ) = −〈Tτ ck↑(τ)c−k↓〉 in addition to the normal Green function

G(k, τ). The allowed symmetry of the pairing state is restricted by the cluster geom-

etry. For an order parameter with dx2−y2 symmetry, which transforms according to

cos kx − cos ky, it is necessary to introduce at least a 4-site cluster.

The CDMFT formalism is easily generalized to superconducting states by intro-

ducing the concept of Nambu spinors

Ψ †
k =

(

c†k↑, c−k↓

)

, Ψk =
(

Ψ †
k

)†
. (3.21)
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The corresponding 2×2 Nambu Green function matrix in momentum space reads

G(k, τ) =

(

−〈Tτck↑(τ)c
†
k↑〉 −〈Tτ ck↑(τ)c−k↓〉

−〈Tτ c
†
−k↓(τ)c

†
k↑〉 −〈Tτc

†
−k↓(τ)c−k↓〉

)

=

(

G↑(k, τ) F (k, τ)

F ∗(k, β − τ) G↓(−k, β − τ)

)

. (3.22)

For the example of plaquette CDMFT the cluster Green function matrix is diagonal in

cluster momentum space. The corresponding cluster momenta are (0, 0), (π, 0), (0, π)

and (π, π), and the relevant anomalous Green functions for a d-wave order parameter

are F ((π, 0), τ) = −F ((0, π), τ), while the anomalous Green functions vanish at (0, 0)

and (π, π) due to the dx2−y2 symmetry.

A superconducting solution to the CDMFT equations in the repulsive Hubbard

model may be found for appropriately chosen parameter values, as shown in Chapter

5. If the CDMFT self-consistency cycle is initiated with a normal-conducting solution,

where the anomalous Green functions are zero, one ends up with a normal-conducting

solution even if the system has a pairing instability for the chosen parameter val-

ues. In order to study superconducting solutions one therefore needs to initialize

the self-consistency cycle with a small order parameter, for example F ((π, 0), iωn) =

−F ((0, π), iωn) = ∆, and then iterate the equations. It is not necessary from our

experience to include superconducting source fields in the impurity problem for the

first few iterations and switch them off later, although such a procedure might lead

to a faster convergence. In each cycle, the anomalous Green functions are measured

together with the normal Green functions, and the convergence of all components is re-

quired to obtain a fully converged solution. In practice, the superconducting solutions

therefore require more CPU time than the normal-conducting ones, and it is advanta-

geous for numerical reasons to probe superconductivity by starting from a converged

normal-conducting solution at the same parameter values. If convergence in the su-

perconducting state is achieved, the order parameter is given by ∆k = F (k, τ = 0+).
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3.3.3 DCA

As discussed in Ref. [41] the CDMFT formalism lacks translational invariance within

the cluster, which means that generically the cluster self-energy is not diagonal in mo-

mentum space although the lattice problem has translational symmetry.9 Therefore

in the DCA one restores the translational invariance within the cluster by including

a phase factor in the hopping matrix,

t
(DCA)
ij (k̃) = tij(k̃)e−ik̃(Xi−Xj). (3.23)

Since this hopping matrix is invariant under a translation by a vector X connecting

cluster sites in real space using periodic boundary conditions, its Fourier transform to

cluster momentum space is diagonal in the corresponding cluster momenta K. This

means that also the cluster impurity problem has a diagonal kinetic energy part, and

in addition the cluster Green function and the cluster self-energy become diagonal

in momentum space, which simplifies the solution of the impurity problem in the

self-consistency cycle of the DCA.

3.3.4 Other Non-Local Generalizations of DMFT

Apart from cluster generalizations of DMFT there are other approaches which in-

clude non-local quantum fluctuations. Rubtsov et al. introduced a dual fermion

(DF) approach, which is based on a change of Grassmann variables in the path inte-

grals occurring in the action of the many-body problem [43]. The new variables also

describe fermionic degrees of freedom and correspond to weakly interacting quasipar-

ticles in the case of strong local correlations in the Hubbard model. Thereby non-local

9For the plaquette geometry this problem does not occur, since the self-energy is diagonal in
cluster momentum space. The lack of translational invariance becomes important for larger clusters,
where also the computational demands grow and it is preferable to resort to the DCA scheme where
the impurity problem is diagonal in momentum space. In practice, the CDMFT scheme is therefore
typically preferred for smaller clusters, while the DCA is advantageous for larger clusters of size,
say, Nc = 8 and more.



36 Models and Methods

correlations are treated as perturbations to DMFT in the zeroth order DF approx-

imation. Another generalization, the dynamical vertex approximation (DΓA) [42],

assumes the n-particle irreducible vertex to be local, i.e., DΓA equals DMFT for n

= 1 since the one-particle irreducible vertex is the self-energy. The n-particle irre-

ducible vertices as the building blocks of DΓA are then connected by non-local Green

functions to yield, e.g., a non-local self-energy. A first review of results obtained with

DΓA is found in Ref. [46].

3.4 The Mott Transition in Infinite and Two Dimen-
sions

The metal-insulator transition (MIT) in the limit of high dimensions has been in-

tensely studied within DMFT. There are in principle two ways to study the MIT

in DMFT: One possibility is to suppress antiferromagnetic order by restricting the

DMFT equations to paramagnetic solutions (Σ↑ = Σ↓), the other possibility (for a

bipartite lattice) is to formulate coupled equations for the two sublattices A and B

and to allow for commensurate magnetic ordering by setting ΣA↑ = ΣB↓. In the

former case the paramagnetic bandwidth-controlled Mott transition is a continuous

transition at zero temperature and a discontinuous first-order transition with hys-

teretic behavior at finite temperatures T < Tc ending in a second-order critical end

point at Tc (see also Fig. 3.4). In the latter case it turns out that the Mott MIT is

hidden by an antiferromagnetically ordered phase for the unfrustrated model [23].

In two dimensions, however, the situation is different. Here antiferromagnetic

long-range order is suppressed at finite temperatures due to stronger quantum fluc-

tuations as compared to higher dimensionality [19,20], although strong short-ranged

antiferromagnetic correlations [50] are present. Several non-local generalizations of

DMFT, as, e.g., plaquette CDMFT [48] and the variational cluster approximation
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metal Mott insulator metal Mott insulator

metal Mott insulator

Figure 3.4: Top left: Sketch of the DMFT phase diagram as detailed, e.g., in
Ref. [47]. In the shaded region coexistence of a metallic and a Mott insulating solution
is found. A first-order Mott transition occurs at Uc(T ) (red line), which ends in second-
order critical points at T = Tc and T = 0. Top right: Phase diagram, as obtained
in Ref. [48], within plaquette CDMFT. The first-order line ends in the lower critical
interaction strength Uc1 at T = 0. Bottom: Phase diagram supported by plaquette
VCA calculations (performed here only at T = 0), where the first-order line does not
end in a critical point at T = 0, but a first-order Mott transition is found even at zero
temperature. From Ref. [49].

(VCA) on a plaquette [49] were used to study the Mott MIT and to compare it with

the case of infinite dimensions. Apart from the fact that the two different studies

of the two-dimensional Mott transition using CDMFT and VCA come to different

results with regard to the nature of the zero-temperature limiting behavior, there are

several notable differences between the infinite- and two-dimensional cases.

The first difference between the infinite-dimensional (upper left diagram in Fig.

3.4) and the two-dimensional MIT (upper right and bottom diagram) is the size of

the critical interaction strength (not shown in the figure): While in DMFT for the

infinite dimensional case (Bethe lattice) the critical value of the interaction strength
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relative to the bandwidth is approximately Uc/W = 1.46 [47], this ratio is considerably

smaller in two dimensions, namely approximately Uc/W = 0.66 for the plaquette [48].

This decrease in the critical interaction strength with reduced dimensionality may

be interpreted as the effect of non-local correlations, which make the system “more

strongly correlated” in low dimensions as compared to higher dimensions. At the

same time Tc/W decreases from 0.018 to 0.01 from infinite to two dimensions within

plaquette CDMFT.

The second difference is the slope of the first-order transition line: In infinite

dimensions the critical U increases upon lowering the temperature and coincides with

the upper critical interaction strength (indicated by the red dot at U/W = 1.46 and

T = 0 in Fig. 3.4) at zero temperature. In two dimensions the critical U decreases

with decreasing temperature. This behavior may be interpreted in physical terms

as follows: In infinite dimensions the insulating state has a higher entropy than

the metallic state, namely ln(2) per site, which corresponds to the two degenerate

spin directions for each localized spin in the paramagnetic Mott insulator. Thus the

insulating state is favored at higher temperatures, while the metallic state becomes

more favorable at lower temperatures, where the contribution of the entropy S to the

Gibbs free energy F = E − TS is reduced as compared to the inner energy E. In

contrast, in two dimensions the Mott insulating state is more complicated, and non-

local correlation effects “freeze” the spins already at higher temperatures (although

true long-range order is suppressed), thus lowering the entropy of the insulating state.

This makes the Mott insulator more favorable at lower temperatures, but the metallic

state more favorable at higher temperatures in turn. In fact it was shown in Ref. [50]

as well as in Ref. [48] that the insulating phase at low temperature is characterized by a

dominant occupation of the plaquette by a single state, namely a singlet configuration

of the four electrons. This leads to the fact that the entropy of the insulating state

indeed approaches zero at zero temperature, as expected. Since the entropy should
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vanish at zero temperature both in the metallic and in the insulating states, the slope

of the transition line should become infinite at zero temperature [51]. This is the

reason why from a rigorous point of view the scenario shown in the bottom diagram

of Fig. 3.4, as obtained in VCA, is more likely10 than the scenario presented in Ref. [48]

(top right diagram). In VCA the MIT is a first-order transition even at T = 0, while

in CDMFT the MIT at T = 0 is continuous. Of course plaquette CDMFT offers an

improvement over the single-site DMFT for the two-dimensional Mott transition in

the sense that it is a “step in the right direction”, although only a detailed study of

the low-temperature Mott transition using larger clusters will provide insight into the

“exact” Mott transition in two dimensions.

A third difference, less directly related to the MIT, is the nature of the metallic

state below the critical interaction strength. In DMFT the effect of electronic corre-

lations on the system is quantified by the effective mass renormalization m∗/m = 1/Z

(see Chapter 2) with the quasiparticle weight Z, which corresponds to a uniform jump

in the momentum distribution n(k) = 〈c†kck〉 at the Fermi surface in all k directions.

The quasiparticle weight is calculated from the self-energy as

Z =

(

1 − ∂ Re Σ(ω)

∂ω

∣

∣

∣

∣

∣

ω→0

)−1

, (3.24)

and, for the range of frequencies near ω = 0 in which the real part of the self-energy

is predominantly linear, the pole in the single-particle Green function is given by the

equation

ω − ǫk − ReΣ(ω) ≈ ω − ǫk −
(

1 − Z−1
)

ω = 0, (3.25)

hence

ω ≈ Zǫk. (3.26)

10However, the expected infinite slope of the transition line may be visible only at very low
temperatures.
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This shows that within DMFT the effective dispersion near the Fermi energy is given

by the bare dispersion renormalized by a single number, namely Z. DMFT calcula-

tions [52] further show that the Z factor is continuously reduced from Z = 1 at U =

0 to Z = 0 at the second-order MIT at zero temperature. Therefore a large Fermi

surface is retained in the correlated metal within DMFT even at the verge of the

MIT.

In two dimensions, however, the situation is qualitatively different. Here one can

still define a k-dependent renormalization factor Zk, but it might only be well-defined

(i.e., take a value between 0 and 1) along certain directions in momentum space in the

correlated two-dimensional metal. Imada et al. [53] suggested that the MIT in two

dimensions is a topological transition, since it is governed by a topological change in

the Fermi surface. A discussion is given in terms of the single-particle Green function

G(k, ω) =
1

ω − ǫk −Σ(k, ω)
, (3.27)

the poles and zeros of which have turned out to play an important role in understand-

ing the metal-insulator transition in two dimensions [54, 55, 56, 57]. In the following

we will outline the arguments leading to this conclusion: For ω → −∞ the real part

of G must be negative, while in the opposite limit ω → +∞ it must be positive.

Thus at least one sign change of Re G must occur for an intermediate value of ω.

In a metal such a sign change is provided by poles of Re G, which determine the

Fermi surface by the implicit equation ω = ǫk +ReΣ(k, ω) at ω = 0. This is the only

possibility for a sign change in the metallic phase if the self-energy is local and thus

k-independent. If, however, the self-energy develops a pole at zero frequency along

certain k directions, then Re G changes sign by passing through zero, which is also

the mechanism of the sign change in insulators, in which no Fermi surface exists at

all.

For the two-dimensional Hubbard model on the square lattice, for example, the
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bare dispersion is negative at the Brillouin zone center k = (0, 0) and positive at the

zone boundary k = (π, π). Hence a sign change of Re G occurs at ω = 0, e.g., at

the Fermi surface for U = 0. For a continuous metal-insulator transition (e.g., at

the critical end point of the Mott transition) the surface where Re G changes sign

is continuously connected between the non-interacting case and the Mott insulator.

Therefore the poles of Re G need to be continuously replaced by zeros of Re G

(poles of the self-energy) upon approaching the transition. While this takes place

exactly at the continuous MIT at zero temperature within DMFT for all k points, a

k-dependent self-energy allows for k-space differentiation. In two dimensions a non-

Fermi liquid state may thus emerge as a precursor of the MIT in the metallic phase,

with a shrinking Fermi surface and the appearance of a “zero surface” (zeros of Re

G) as its features.

It is argued, e.g. in Ref. [53], that a topological MIT may trigger non-Fermi liquid

behavior in the metallic phase and also lead to unconventional critical behavior at the

finite-temperature critical end point of the transition in two dimensions. A related

study of unconventional superconductivity emerging from a non-Fermi liquid metal in

the frustrated Hubbard model at half-filling will be presented in Chapter 5. Uncon-

ventional critical behavior at the critical end point of the Mott transition was observed

experimentally [58, 59] in two-dimensional organic conductors. A theoretical investi-

gation of critical exponents at the continuous Mott transition in a two-dimensional

Hubbard model related to organic conductors is presented in Chapter 6.
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3.5 Unconventional Superconductivity in the
2D Hubbard Model

Conventional superconductors are characterized by broken gauge symmetry, which

leads to the notion of phase coherence and the existence of a macroscopic wave func-

tion. Provided that an arbitrarily weak attractive interaction exists for electrons with

a given relative spin and momentum state, e.g., a singlet state with zero total spin

and zero total momentum, the Fermi sea can be shown to become unstable against

the formation of Cooper pairs. The superconducting state is then characterized by

a non-zero anomalous expectation value (the superconducting order parameter) ∆k

= 〈c†k,↑c
†
−k,↓〉, which opens an energy gap in the density of states. In a conventional

superconductor the symmetry of the order parameter ∆k in momentum space is

compatible with the symmetry of the lattice. In other words, a conventional super-

conductor is defined as a superconductor in which only gauge symmetry is broken.

This criterion is fulfilled for an s-wave superconductor with a spatially isotropic gap

function.

In unconventional superconductors additional symmetries are broken. In a dx2−y2-

wave superconductor on a square lattice, for example, the order parameter is of the

form cos kx − cos ky, i.e., it shows a sign change under rotation by an angle of π/2,

breaking the discrete rotational symmetry of the lattice. In fact, phase sensitive

experiments, which can be used to determine the relative sign of the macroscopic wave

function at superconductor-superconductor interfaces, provided evidence for such an

unconventional state of matter in the superconducting cuprate materials [60].

In the following we will briefly discuss the BCS mean-field approach [61, 62] to

superconductivity, show how unconventional order parameter symmetries can oc-

cur for momentum-dependent (non-local) pairing interactions and summarize previ-

ous results providing evidence for superconducting instabilities in the repulsive two-
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dimensional Hubbard model.

3.5.1 BCS Theory

Let us start from a one-band model consisting of the kinetic energy part Hkin and

the two-body interaction part Hint as follows,

H = Hkin +Hint, (3.28)

where

Hkin =
∑

kσ

ǫknk,σ, (3.29)

Hint =
∑

kk′

Vk′kb
†
k′bk. (3.30)

The interaction potential is given by the matrix element

Vk′k = 〈k′,−k′|V |k,−k〉 (3.31)

and describes scattering of a pair of electrons from the initial momentum states (k, ↑)
and (−k, ↓) to the final momentum states (k′, ↑) and (−k′, ↓). The electron pairs are

represented by the operators

b†k = c†k↑c
†
−k↓, (3.32)

bk = c−k↓ck↑. (3.33)

In their original theory of superconductivity Bardeen, Cooper and Schrieffer used a

potential which is attractive when the single-particle energies of the two electrons

are both close to the Fermi surface, namely closer than a cutoff energy ωc. The

cutoff energy is the characteristic energy scale of the processes responsible for the

superconducting pairing, e.g., the Debye energy in conventional superconductors with

phonon-mediated pairing.



44 Models and Methods

In the BCS mean-field approximation the interaction part of the Hamiltonian is

simplified using the decomposition

b†k′bk = 〈b†k′〉bk + b†k′〈bk〉 +
(

b†k′ − 〈b†k′〉
)

(bk − 〈bk〉) − 〈b†k′〉〈bk〉

≈ 〈b†k′〉bk + b†k′〈bk〉 + const.

Using this mean-field approximation, neglecting other possible contractions and ig-

noring the constant term we obtain the mean-field Hamiltonian

Hmf = Hkin +
∑

kk′

Vk′k

(

〈b†k′〉bk + b†k′〈bk〉
)

. (3.34)

Defining the mean field as

∆k =
∑

k′

Vk′k〈b†k′〉, ∆∗
k =

∑

k′

Vkk′〈bk′〉 (3.35)

we rewrite the mean-field Hamiltonian as

Hmf = Hkin +
∑

k

(

∆kbk +∆∗
kb

†
k

)

. (3.36)

In order to simplify the notation we introduce Nambu spinors,

Ψk =

(

ck↑
c†−k↓

)

, Ψ †
k =

(

c†k↑, c−k↓

)

. (3.37)

Note that these spinors obey the fermionic commutation relations

{

Ψk, Ψ
†
k′

}

= δkk′1, {Ψk, Ψk′} = 0.

The Hamiltonian is rewritten as follows:

Hmf =
∑

k

Ψ †
k

(

ǫk ∆∗
k

∆k −ǫk

)

Ψk. (3.38)

Here we have dropped a constant term resulting from the reordering of the spin-↓
operators. One advantage of the Nambu formalism is that the Hamiltonian (3.38) is

readily diagonalized. Its eigenvalues are

λ± = ±Ek = ±
√

ǫ2k + |∆k|2. (3.39)
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The unitary transformation diagonalizing Hmf is introduced as follows:

Hmf =
∑

k

Ψ †
kU

†U

(

ǫk ∆∗
k

∆k −ǫk

)

U †UΨk, (3.40)

where

U =

(

uk vk

−v∗k uk

)

, U † = U−1 =

(

uk −vk

v∗k uk

)

, (3.41)

so that

U

(

ǫk ∆∗
k

∆k −ǫk

)

U † =

(

Ek 0
0 −Ek

)

. (3.42)

This diagonalization requires that the coefficients of the unitary transformation fulfill

the conditions

|uk|2 =
1

2

(

1 +
ǫk
Ek

)

, |vk|2 =
1

2

(

1 − ǫk
Ek

)

. (3.43)

The eigenoperators of Hmf are found to be

γk = UΨk =

(

ukck↑ + vkc
†
−k↓

−v∗kck↑ + ukc
†
−k↓

)

. (3.44)

Using this we can write

Hmf =
∑

k

γ†k

(

Ek 0
0 −Ek

)

γk. (3.45)

In the BCS theory the mean field has to be determined self-consistently, i.e. one has

to calculate the expectation values in (3.35) using the mean-field Hamiltonian itself.

The expectation value in (3.35) is evaluated as follows:

〈b†k′〉 = 〈uk′v∗k′γ
†
k′1γk′1 − uk′v∗k′γ

†
k′2γk′2〉

= uk′v∗k′ (f(Ek′) − f(−Ek′)) , (3.46)

where in the first line we have dropped off-diagonal terms like 〈γ†k′1γk′2〉 and we have

introduced the Fermi-Dirac distribution function

f(x) =
1

1 + eβx
. (3.47)
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We proceed employing the equalities

ukv
∗
k =

∆k

2Ek

, (3.48)

f(Ek) − f(−Ek) = − tanh

(

βEk

2

)

, (3.49)

and obtain

〈b†k′〉 = − ∆k′

2Ek′

tanh

(

βEk′

2

)

. (3.50)

Inserting this into (3.35) the self-consistency condition or gap equation is derived as

∆k = −
∑

k′

Vk′k

∆k′

2Ek′

tanh

(

βEk′

2

)

. (3.51)

The gap equation is the central equation of BCS theory. From this equation the

k-dependence of the order parameter ∆k for a given (effective) electron-electron in-

teraction Vk′k is determined. If the interaction is attractive near the Fermi surface,

i.e. Vk′k = −V for ǫk′ and ǫk (measured from the Fermi energy) within a certain

energy range |ǫ| < ~ωc, the order parameter has the same sign all around the Fermi

surface and s-wave superconductivity results:

∆ ∝ ωc exp

(

− 1

N0V

)

. (3.52)

Here N0 is the density of states at the Fermi energy.11

Unconventional superconductivity with a more complicated momentum structure

of the order parameter may also be described in the framework of an extended BCS

theory. Consider for example a repulsive interaction which is enhanced for k′ − k =

(π, π). One can directly see from Eq. (3.51) that a solution to the gap equation with

11Note that superconductivity emerges from a metallic state with N0 > 0 and is exponentially
suppressed for both V → 0 (weak attraction) or N0 → 0 (e.g., in a band insulator) within BCS
theory. In fact the same is true for non-s-wave pairing symmetries. In Chapter 5 we will see an
example of unconventional superconductivity emerging from a non-Fermi liquid metallic state with
a partially depleted Fermi surface. The understanding of the pairing process in such a situation
certainly demands concepts going beyond standard BCS theory.
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non-zero order parameter may be found if, say, ∆(π,0) > 0 and ∆(0,π) < 0. This is

the reason why repulsive interactions may support d-wave superconductivity with a

momentum-dependent order parameter. The pairing interaction can for example be

mediated by spin fluctuations with predominant wave-vector Q = (π, π) leading to

an order parameter of the form ∆k = ∆ (cos kx − cos ky). An example of a non-local

pairing interaction and the derivation of its momentum structure is presented in the

following paragraph.

3.5.2 Non-Local Pairing Interactions

In order to understand how a momentum structure of the interaction vertex sup-

porting unconventional superconductivity may arise from electronic interactions in

real space [63], it is instructive to Fourier transform a simple Hamiltonian describing

nearest-neighbor attraction on a square lattice,

Hint =
V

2

∑

〈ij〉σ
c†iσc

†
jσcjσciσ. (3.53)

Fourier transformation to momentum space yields

Hint =
V

4

∑

iδσ

c†iσc
†
i+δσci+δσciσ

=
V

4

∑

σ

∑

k1k2k3k4

∑

i

ei(k1+k2−k3−k4)Ri

∑

δ

ei(k2−k3)Rδc†k1σc
†
k2σck3σck4σ

=
V

4

∑

σ

∑

k1k2k3

∑

δ

ei(k2−k3)Rδc†k1σc
†
k2σck3σck1+k2−k3σ

=
V

2

∑

σ

∑

kk′Q

(

cos (kx − k′
x) + cos

(

ky − k′y
))

c†kσc
†
−k+Qσc−k′+Qσck′σ

=
∑

kk′Q

Vkk′c†k↑c
†
−k+Q↓c−k′+Q↓ck′↑,

Vkk′ = V
(

cos (kx − k′x) + cos
(

ky − k′y
))

. (3.54)
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In the special case of an attractive interaction V < 0 Cooper pairing can occur. With

a restriction to singlet pairing we rewrite the pairing interaction,

Vkk′ = V
(

cos kx cos k′x + cos ky cos k′y + sin kx sin k′x + sin ky sin k′y
)

→ V
(

cos kx cos k′x + cos ky cos k′y
)

= V
(

(cos kx − cos ky)
(

cos k′x − cos k′y
)

+ (cos kx + cos ky)
(

cos k′x + cos k′y
))

= Vd
kk′ + Vs

kk′, (3.55)

where the restriction to singlet pairing requires the pairing interaction to be even

in k and k′, which is why the sine terms are dropped in the second line, and the d

and s contributions to the pairing interaction refer to dx2−y2 and s± = sx2+y2 pairing

symmetry, respectively. Obviously a nearest-neighbor attractive interaction can lead

to a variety of possible pairing instabilities. The precise realization of an ordered

state therefore does not only depend on the effective pairing interaction but also on

the underlying electronic structure. An example for such an interplay between pair-

ing interaction and Fermi surface structure will be briefly discussed in the Outlook.

Here we note that an effective attraction between electrons does not necessarily arise

due to additional degrees of freedom, like phonons, but it may also occur in purely

electronic models with repulsive bare interactions. As an example, the emergence of

superconductivity in the repulsive Hubbard model is presented in the following.

3.5.3 Superconductivity in the Repulsive Hubbard Model

The idea that the cuprates bear resemblance in their physical properties to the two-

dimensional Hubbard model or the related t-J model was put forward by Anderson

already in 1987 [33]. Numerical studies of these models provide evidence for their

relationship to the cuprates [64]. In the following we will briefly summarize some

basic results in this context.
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Figure 3.5: Inverse of the d-wave pair-field susceptibility as a function of temperature
in units of the hopping, T/t, for various cluster sizes and geometries (the clusters are
shown in Ref. [30]) within DCA for interaction strength U/t = 4 and filling n = 0.9.
From Ref. [30].

The undoped cuprates are antiferromagnetic insulators, which corresponds to the

ground state of the unfrustrated Hubbard model at half-filling, albeit a finite coupling

in the z direction (i.e., some weak three-dimensionality) is required in theory to obtain

a finite Néel temperature. Upon doping the cuprates become superconducting with

dx2−y2 order parameter symmetry, and a superconducting pairing instablility with

d-wave character was also found in theoretical studies using variational Monte Carlo

for the doped t-J model [65] and quantum cluster theories for the doped Hubbard

model [29, 30, 66, 67, 68]. The results of Maier et al. (Ref. [30]) are shown as an

example in Fig. 3.5, where the divergence of the d-wave pair-field susceptibility and the

convergence of the corresponding superconducting critical temperature with cluster

size is seen in DCA calculations.

Similarly, the normal state pseudogap below a characteristic temperature T ∗ in



50 Models and Methods

the underdoped cuprates, which manifests itself in a suppression of the magnetic

susceptibility (seen as a decrease of the Knight shift) [31] or in a suppression in

the tunneling density of states [32], is also found in numerical investigations of the

Hubbard model [30,69,70,71,72,66,67,68]. Moreover evidence for stripe correlations

from studies of n-leg t-J ladders is interpreted as related to striped states seen in the

cuprates [26].

Naturally, due to the above mentioned direct relevance to the cuprates, many

studies focus on unconventional superconductivity emerging at finite doping in the

strongly coupled Hubbard model. There is, however, a different route to obtain

a superconducting ground state in the Hubbard model. Instead of going to strong

coupling and choosing the relevant doping regime, we may also ask whether the weakly

coupled Hubbard model at half-filling has a superconducting instability as well. One

obvious obstacle to such a realization is the perfect nesting condition favoring an

antiferromagnetic ground state in the unfrustrated model, which is why one needs to

introduce a finite next-nearest neighbor hopping t′ to find a superconducting phase

at half-filling.

QMC investigations of finite-sized lattices of the U -t-t′ Hubbard model at half-

filling [73, 74] could not provide conclusive evidence that there might be a second

critical U in the problem, apart from the critical U of the Mott transition. A study

of the weakly coupled Hubbard model using the functional renormalization group in

combination with a mean-field theory with the renormalized effective interactions as

input parameters [75] showed that for small values of U a finite t′ was required to find

d-wave superconductivity. Similar results were obtained using CDMFT with Lanczos

exact diagonalization extended to study superconducting and antiferromagnetic states

at zero temperature [67] and a variational Monte Carlo approach [76]. In Chapter 5

we present results for the U -t-t′ Hubbard model at half-filling, showing evidence from

CDMFT calculations that there are indeed two critical U values, one for the transition
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from a superconducting state at weak coupling to a non-Fermi liquid metallic state,

and a second one for the transition to the Mott insulator.

3.6 Continuous-Time Quantum Monte Carlo

The impurity problem in DMFT algorithms, while conceptually much simpler than

the full lattice problem, remains a complicated dynamical many-body problem, and

its solution still is a formidable task. Therefore the role of an efficient impurity solver

in the practical application of DMFT cannot be overestimated.

DMFT is a controlled and conserving approximation to the many-body problem.

Its only approximation is the local approximation, which consists of effectively re-

placing the non-local electron dynamics by an effective medium, the dynamical mean

field. In principle, the local approximation remains the only approximation – pro-

vided that one can solve the impurity problem exactly! With the exception of rare

limiting cases, however, this is not possible with the methods available today. In

all other cases one is forced to resort to a properly chosen impurity solver, which

typically entails more approximations beyond the local approximation of the DMFT

scheme.

Impurity solvers in general can be classified in two categories: perturbative (dia-

grammatic) and non-perturbative ones. Among the perturbative solvers are second

order perturbation theory, fluctuation-exchange (FLEX) [77,78] approximations and

the non-crossing approximation (NCA) [79,80,81,82]. Non-perturbative solvers com-

prise Quantum Monte Carlo (QMC) [83,84,85], exact diagonalization (ED) [86], Wil-

son’s numerical renormalization group (NRG) [87,88,89,47] and, yet less widely used

in the context of DMFT, the density matrix renormalization group (DMRG) [90].

The main advantage of non-perturbative solvers is that they allow for an accurate

treatment of weakly, intermediately and strongly interacting systems. They are reli-
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able solvers to study solutions to the DMFT equations across interaction-driven phase

transitions.

In this work we exclusively use a certain flavor of QMC, the continuous-time QMC

as introduced by Werner and Millis [85]. QMC methods allow to solve impurity

problems numerically exactly in the sense that the accuracy is limited only by the

invested computer time. In reality QMC is an efficient impurity solver, especially at

comparatively high temperatures and for more involved impurity problems such as

cluster or multiorbital impurities. Among the non-perturbative impurity solvers the

QMC can be viewed as a complementary method to NRG, which is most effective

at low or even zero temperature, and for impurities comprising rather few orbitals.

In practice, NRG is mostly used at zero temperature, as is the exact diagonalization

(ED) technique. The main disadvantage of QMC lies in the fact that it provides

information about correlation functions solely on the imaginary time or imaginary

frequency axes. Therefore one needs to analytically continue the resulting functions

to real frequencies in order to obtain information on dynamical correlation functions,

such as the single-particle spectral function, the dynamical spin susceptibility or the

optical conductivity.

The basic idea of continuous-time QMC (CTQMC) [91] is to partition the Hamil-

tonian H into a sum of two parts Ha +Hb and to expand the partition function Z =

e−βH , written in the interaction representation with respect to Ha, in powers of Hb:

Z = TrTτe
−βHa exp

(

−
∫ β

0

dτ Hb(τ)

)

=
∑

k

(−1)k

∫ β

0

dτ1 . . .

∫ β

τk−1

dτk

×Tr
(

e−βHaHb(τk−1) . . .Hb(τ1)
)

. (3.56)

The trace Tr is performed by contracting the operators appearing in Hb using prop-

agators of the form e−(τi−τj)Ha involving Ha and to use Monte Carlo importance
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sampling to obtain numerical estimates of both the sum over perturbation orders k

and the integral over imaginary times τi. A particular advantage of this technique

over time-discretized versions of QMC, like the Hirsch-Fye algorithm [83], is that

CTQMC is formulated in continuous imaginary time from the outset. Therefore time

discretization error issues (which may be controlled by using multigrid extensions of

Hirsch-Fye [92]) do not occur. Moreover, CTQMC does not rely on partitioning the

Hamiltonian into non-interacting and interacting parts; rather one is free to choose

Ha and Hb to most conveniently solve the problem at hand.

For fermionic impurity problems several flavors of CTQMC have been proposed,

among them the interaction-expansion solver (CT-INT), the auxiliary-field solver

(CT-AUX) and the hybridization-expansion solver (CT-HYB) [91]. The various fla-

vors differ in the choice of the partitioning of the Hamiltonian, i.e., in the choice of

Hb.

The hybridization expansion algorithm CT-HYB [85] is based on the expansion of

the impurity partition function Z in the impurity-bath hybridization around the local

or atomic limit. One advantage of the hybridization algorithm is that the average

expansion order at the Mott transition is smaller than in an interaction expansion

method, and therefore lower temperatures are accessible [93].

3.6.1 Hybridization Expansion

Here we will give a derivation of the basic formulas of the hybridization expansion.

One may perform this diagrammatic expansion either in terms of the effective im-

purity action or in terms of the impurity Hamiltonian, respectively. In the following

we use the effective action representation. An alternative derivation based on the

Hamiltonian can be found in Refs. [85, 93, 37, 91].
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One starts from the impurity partition function

Z =

∫

dΨ †dΨe−S, (3.57)

where Ψ † and Ψ denote a set of anticommuting Grassmann variables and

S = S0 + S1 (3.58)

is the effective impurity action partitioned into the local action S0 and the impurity-

bath hybridization action

S1 =

β
∫

0

dτ

β
∫

0

dτ ′
∑

a

ψ†
a(τ)∆a(τ, τ

′)ψa(τ
′). (3.59)

The sum is over flavors a which label spins and orbitals. Note that we first consider

the simplified case where the hybridization matrix ∆a(τ, τ
′) is diagonal in the fla-

vors. A generalization to full matrices is straightforward, and a specific example for

Nambu matrices used to simulate superconducting states will be considered in the

next subsection.

The physical interpretation of the terms in S1 is the following: At imaginary

time τ an electron with flavor a hops from the bath onto the impurity site, stays

there from τ to τ ′ and then hops back into the bath. The hybridization matrix

∆aa′(τ, τ ′) = ∆aa′(τ − τ ′) (= δaa′∆a(τ − τ ′) for the flavor diagonal-case considered in

this subsection) and the Weiss field (cf. Eq. (3.20)) are related through their Fourier

transforms to imaginary frequencies,

∆aa′(iωn) = (iωn + µ)δaa′ −
(

G0(iωn)
−1
)

aa′
. (3.60)

The partition function is then expanded in powers of S1,

Z = Z0

∫

dΨ †dΨ
e−S0

Z0

∏

a

∑

ka

Z̃ka
, (3.61)
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where the ka-th order coefficient is given by

Z̃ka
=

1

ka!

β
∫

0

dτ1 . . .

β
∫

0

dτka

β
∫

0

dτ ′1 . . .

β
∫

0

dτ ′ka
ψa(τ

′
1)ψ

†
a(τ1) . . . ψa(τ

′
ka

)ψ†
a(τka

)

×∆a(τ1, τ
′
1) . . .∆a(τka

, τ ′ka
).

We consider the second order contribution for one specific flavor whose index is sup-

pressed in the following,

Z̃2 =
1

2

β
∫

0

dτ1

β
∫

0

dτ2

β
∫

0

dτ ′1

β
∫

0

dτ ′2ψ(τ ′1)ψ
†(τ1)ψ(τ ′2)ψ

†(τ2)∆(τ1, τ
′
1)∆(τ2, τ

′
2).

The τ1 and τ2 integrations are time ordered such that τ2 > τ1,

Z̃2 =
1

2

β
∫

0

dτ1

β
∫

τ1

dτ2

β
∫

0

dτ ′1

β
∫

0

dτ ′2ψ(τ ′2)ψ
†(τ2)ψ(τ ′1)ψ

†(τ1)

× (∆(τ1, τ
′
1)∆(τ2, τ

′
2) −∆(τ2, τ

′
1)∆(τ1, τ

′
2)) ,

where the lower integration limit of the τ2 integral has been adjusted and the inte-

gration variables τ1 and τ2 have been renamed accordingly. The minus sign in the

brackets stems from the reordering of the Grassmann variables ψ†(τ1) and ψ†(τ2).

The time ordering is applied analogously to the primed integration variables,

Z̃2 =
1

2

β
∫

0

dτ1

β
∫

τ1

dτ2

β
∫

0

dτ ′1

β
∫

τ ′

1

dτ ′2

×
(

ψ(τ ′2)ψ
†(τ2)ψ(τ ′1)ψ

†(τ1) (∆(τ1, τ
′
1)∆(τ2, τ

′
2) −∆(τ2, τ

′
1)∆(τ1, τ

′
2))

−ψ(τ ′2)ψ
†(τ2)ψ(τ ′1)ψ

†(τ1) (∆(τ1, τ
′
2)∆(τ2, τ

′
1) −∆(τ1, τ

′
1)∆(τ2, τ

′
2))
)

=

β
∫

0

dτ1

β
∫

τ1

dτ2

β
∫

0

dτ ′1

β
∫

τ ′

1

dτ ′2ψ(τ ′2)ψ
†(τ2)ψ(τ ′1)ψ

†(τ1)Det∆.
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Here we have collected all the second-order diagrams in a single determinant of a

matrix of hybridization functions,

∆ =

(

∆(τ1, τ
′
1) ∆(τ1, τ

′
2)

∆(τ2, τ
′
1) ∆(τ2, τ

′
2)

)

.

The same procedure is applied to the integrals appearing in each order k of the

expansion:

1. Sort all unprimed times τi, i = 1, . . . , k and permute the corresponding Grass-

mann variables ψ†(τi). Rename the integration variables accordingly. Every

permutation of two Grassmann variables yields a minus sign.

2. Sort all primed times τ ′i , i = 1, . . . , k and permute the Grassmann variables

ψ(τi), again rename the variables to compactify the notation.

3. The total number of permutations for the k fermion creation and annihilation

processes described by pairs ψ†(τi), ψ(τi) is given by k!, which exactly can-

cels the prefactor 1/k! stemming from the Taylor expansion of the exponential

function.

4. The k! terms in the sum and the corresponding minus signs from the reordering

of Grassmann variables are absorbed in a single determinant.

Applying this procedure the k-th order coefficient for flavor a is rewritten as

Z̃ka
=

β
∫

0

dτ1 . . .

β
∫

τka−1

dτka

β
∫

0

dτ ′1 . . .

β
∫

τ ′

ka−1

dτ ′ka
ψa(τ

′
ka

)ψ†
a(τka

) . . . ψa(τ
′
1)ψ

†
a(τ1)Det∆a,

(3.62)

with the determinant defined as

Det∆a = Det







∆a(τ1, τ
′
1) . . . ∆a(τ1, τ

′
ka

)
...

...
∆a(τka

, τ ′1) . . . ∆a(τka
, τ ′ka

)






. (3.63)
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This is the basic result for the Monte Carlo sampling of diagrams in the hybridization

expansion.

The important point is that one does not need to compute all kinds of products

of hybridizations ∆(τi, τ
′
j), but it is sufficient to compute a single determinant of the

hybridization matrix for a given configuration. Thus all the different diagrams for

a certain number of annihilation and creation processes are efficiently sampled in a

Monte Carlo program. The Monte Carlo sampling and details of the implementation

are described in Refs. [85, 93, 37]. For the implementation the ALPS libraries were

used [94, 95].

3.6.2 Generalization to Superconducting States

So far we have assumed that the impurity-bath hybridization ∆a(τ, τ
′) is flavor-

diagonal. A more general formulation of the hybridization expansion renders the

simulation of superconducting states possible [96]. The generalized version starts

from the impurity-bath hybridization action

S1 =

β
∫

0

dτ

β
∫

0

dτ ′
∑

aa′

∑

ij

γ†ia(τ)∆ij,aa′(τ, τ ′)γja′(τ ′). (3.64)

The Nambu spinors γ†a = (ψ†
↑a, ψ↓a) with components i = 1, 2 corresponding to the

two spin species (e.g., γ†1a = ψ†
↑a) obey Grassmann spinor anticommutation rules

{γa, γ
†
a′} = {γ†a, γ†a′} = {γa, γa′} =

(

0 0
0 0

)

. (3.65)

The expansion of the partition function now reads

Z = Z0

∫

dΨ †dΨ
e−S0

Z0

∏

aa′

∑

kaa′

Z̃kaa′
, (3.66)
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with the expansion coefficients, derived by the same line of arguments as before,

Z̃kaa′
=

∑

i1...ik
aa′

∑

j1...jk
aa′

β
∫

0

dτ1 . . .

β
∫

τk
aa′

−1

dτkaa′

β
∫

0

dτ ′1 . . .

β
∫

τ ′

k
aa′

−1

dτ ′kaa′

×γjk
aa′

a′(τ ′kaa′
)γ†ik

aa′
a(τkaa′

) . . . γj1a′(τ ′1)ψ
†
i1a(τ1)Det∆aa′ , (3.67)

with the determinant defined as

Det∆aa′ = Det







∆i1j1,aa′(τ1, τ
′
1) . . . ∆i1jk

aa′
,aa′(τ1, τ

′
kaa′

)
...

...
∆ik

aa′
j1,aa′(τkaa′

, τ ′1) . . . ∆ik
aa′

jk
aa′

,aa′(τkaa′
, τ ′kaa′

)






. (3.68)

The implementation of the generalized hybridization algorithm to include supercon-

ducting states is straightforward in the Monte Carlo program. It basically requires to

interchange the annihilation and creation operators for the down spins and to mea-

sure not only the spin-diagonal Green functions but also the anomalous off-diagonal

components. It should be noted that a non-zero anomalous Green function for the

flavors a and a′ is only measured if the corresponding off-diagonal component of the

hybridization function, ∆12,aa′ , is non-zero. This means that a superconducting bath

needs to be introduced by hand as an initial step in the DMFT, which is then de-

termined self-consistently and found to converge to a non-zero solution if the system

indeed becomes superconducting.



Chapter 4

Correlations in a Band Insulator

The results of this Chapter have been published in Refs. [97, 98].

While the Hubbard model has become a paradigm for the description of electronic

correlations in metals and the metal-insulator transition [5], much less attention has

so far been paid to electronic correlations in band insulators. E.g., modeling of

Kondo insulators is far from trivial, and the only recently achieved progress in the

topological classification of band insulators [99] demonstrates that our understanding

of the insulating state is still incomplete.

Motivated by several investigations of the ionic Hubbard model [100,101,102,103,

104,105,106,107] we have analyzed a covalent insulator as a complementary example

of a band insulator. As a covalent insulator we denote a band insulator with partially

filled local orbitals. This definition implies that the band gap is a hybridization

gap arising from a particular pattern of hopping integrals. It has been proposed that

similar characteristics apply to materials such as FeSi, FeSb2 or CoTiSb [108], some of

which exhibit temperature dependent magnetic and transport properties reminiscent

of Kondo insulators.

In our model study we use a simple particle-hole symmetric model at half-filling

with two semi-circular electronic bands crossing at their respective Fermi levels. In-

troducing a k-independent hybridization a band gap is induced in the system since
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the hybridization leads to a bonding-antibonding splitting of energy levels. We then

introduce a local electron-electron interaction which allows us to study correlation

effects on the band insulator.

We use DMFT in conjunction with the recently developed continuous-time QMC

[85] to study the evolution from the band insulator at small to the Mott insulator

at large Coulomb interaction strength. The insulator-insulator transition is discon-

tinuous at finite but low temperatures, with a region of interaction strengths where

hysteretic behavior with two solutions of the DMFT equations is observed. Surpris-

ingly we find that both charge and spin gaps shrink with increasing Coulomb repul-

sion. This behavior is in contrast to the correlation-induced Mott insulator where

the charge gap increases with increasing interaction strength. Furthermore, in the

correlated insulator charge and spin gaps deviate from each other, and the spin gap

is smaller than the charge gap. From the self-energy we extract a renormalization

factor Z defined in the same way as the quasiparticle weight in a Fermi liquid. In

the band insulator the Z factor describes the renormalization of the charge gap at

moderate interaction strengths (see Fig. 4.7). Thus we obtain the remarkable finding

that a concept from Fermi liquid theory can be applied to quantify correlation effects

in a band insulator!

4.1 Abstract

We study a model of a covalent band insulator with on-site Coulomb repulsion at half-

filling using dynamical mean-field theory. Upon increasing the interaction strength

the system undergoes a discontinuous transition from a correlated band insulator

to a Mott insulator with hysteretic behavior at low temperatures. Increasing the

temperature in the band insulator close to the insulator-insulator transition we find

a crossover to a Mott insulator at elevated temperatures. Remarkably, correlations
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decrease the energy gap in the correlated band insulator. The gap renormalization

can be traced to the low-frequency behavior of the self-energy, analogously to the

quasiparticle renormalization in a Fermi liquid. While the uncorrelated band insulator

is characterized by a single gap for both charge and spin excitations, the spin gap is

smaller than the charge gap in the correlated system.

4.2 Introduction

The role of electron-electron (e-e) interactions in solids is one of the central problems of

condensed matter physics. The Hubbard model with local e-e interaction has become

a paradigm for the description of electronic correlations in narrow-band materials.

It has been used to investigate electronic correlations in metals and to study the

correlation-driven metal-insulator transition [5]. Much less attention has been paid to

electronic correlations in band insulators (BI), since the lack of low-energy excitations

rendered them less interesting.

However, the discoveries of the quantum Hall effect and Kondo insulators showed

that BIs are far from trivial, and recent progress in the topological classification of BIs

[99] demonstrates that our understanding of the insulating state is indeed incomplete.

The quest for materials with topologically non-trivial electronic structures suggests

to explore heavier elements with strong spin-orbit coupling involving d or f electrons

[109] and raises the question about the role of electronic correlations. The common

feature of these materials is that the constituting atoms have partially filled shells

and the gap – a hybridization gap – opens due to a particular pattern of inter-atomic

hopping integrals. It has been proposed that similar characteristics apply to materials

such as FeSi, FeSb2 or CoTiSb [108], some of which exhibit strongly temperature

dependent magnetic and transport properties reminiscent of Kondo insulators. We

call this class of BIs covalent insulators (CI).
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Recently the evolution of a band insulator (BI) into a Mott insulator upon in-

creasing the interaction strength has been studied in the context of the ionic Hub-

bard model [100, 101, 102, 103, 104, 105, 106, 107], a two-band Hubbard model with

crystal-field splitting [110], and a bilayer model with two identical Hubbard planes

coupled by single-particle hopping [111, 112, 113, 114, 115]. Different scenarios have

emerged with the possibility of an intervening phase and continuous or discontinuous

transitions at critical interaction strengths.

In order to study the properties of CIs with local e-e interaction we employ the

dynamical mean-field theory (DMFT) [6,116,35,7,8]. In particular we are interested

in the nature of the interaction-driven transition from a covalent to a Mott insulator,

the possible existence of an intervening metallic phase, the evolution of charge and

spin gaps and the single-particle self-energy as a function of the interaction strength

U .

This paper is organized as follows: In Sec. 4.3 we define the model and the methods

chosen to study correlations in the covalent band insulator. The subsequent investi-

gation is guided by the following questions: (i) How does the band insulator at weak

coupling evolve into the Mott insulator at strong coupling (Sec. 4.4.1)? (ii) What

is the effect of correlations on the spectral function, and what happens when the

temperature is increased in the correlated system (Sec. 4.4.2)? (iii) Can we quantify

correlation effects in a band insulator by means of concepts analogous to Fermi liquid

theory (Sec. 4.4.3)? (iv) Regarding the characterization of a simple band insulator as

an insulator with identical charge and spin excitation gaps: Is this picture modified

by correlations (Sec. 4.4.4)? Our results are summarized and conclusions are drawn

in Sec. 4.5.



Model and Methods 63

4.3 Model and Methods

As a covalent insulator we denote a band insulator with partially filled identical local

orbitals. This definition implies that the band gap is a hybridization gap arising

from a particular pattern of hopping integrals. Realizations of the covalent insulator

include dimerized or bilayer lattices [111, 112, 113, 114, 115], quantum Hall systems

with filled Landau levels or Haldane’s model [117] and the related model of Kane

and Mele [99] describing electrons on a honeycomb lattice with broken time-reversal

invariance.

We use a simple particle-hole symmetric model at half-filling described by the

Hamiltonian

H =
∑

kσ

(

a†kσ, b†kσ

)

H(k)

(

akσ

bkσ

)

+ U
∑

iα

ni↑αni↓α, (4.1)

H(k) =

(

ǫk V
V −ǫk

)

, (4.2)

with two semi-circular electronic bands of widths 4t (t = 1 in the following) and

dispersions ǫk and −ǫk, respectively, corresponding to two sublattices coupled by

the k-independent hybridization V and a local e-e interaction of strength U . Here

niσα = α†
iσαiσ measures the number of electrons with spin σ =↑, ↓ on site i of sublattice

α = a, b. We use the DMFT approximation to calculate the local single-particle

propagator and the local spin susceptibility, quantities which within DMFT depend on

the lattice only through the non-interacting density of states and thus are independent

of a particular realization of the CI. The single-particle self-energy Σ(ω) obtained by

DMFT is local and fulfils the equations

G(iωn)I =
∑

k

((iωn + µ−Σ(iωn)) I −H(k))−1 ,

G−1
0 (iωn) = G−1(iωn) −Σ(iωn), (4.3)
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where I denotes a 2 × 2 unit matrix. The functional dependence of Σ(iωn)[G0, U ],

defined on the discrete set of Matsubara frequencies ωn = (2n + 1)πT , on G0 and

U is determined by an auxiliary Anderson impurity problem, for a solution of which

we employ the continuous-time quantum Monte-Carlo (CT-QMC) algorithm [85].

For quantities obtained in the imaginary time domain, i.e. the spectral function and

the dynamical susceptibility, the analytic continuation to the real-frequency axis is

performed using the maximum-entropy method [118].

4.4 Results and Discussion

4.4.1 Phase diagram

The non-interacting ground state (U=0) of our model is characterized by a gap in

the spectral function of size ∆ = 2V at any V > 0. In the V = 0 limit we have

two decoupled copies of a single-band Hubbard model with semi-circular density of

states, a problem which has been extensively studied within DMFT [52,8]. It is well

known that upon increasing the interaction strength U at finite, low temperature the

paramagnetic phase undergoes a discontinuous transition from a metal to a MI with

a hysteresis in the interval Uc1 < U < Uc2 [52]. At high temperatures the hysteretic

behavior is replaced by a continuous crossover.

In Fig. 4.1 we show the phase diagram in the T -U plane obtained for V = 0.5. At

low temperatures two distinct phases exist separated by a discontinuous transition.

The phase boundaries were obtained by calculating the double occupancyD = 〈n↑n↓〉,
shown in the inset for two selected temperatures. In a finite range of U values we find

two stable self-consistent solutions of the DMFT equations.1 The two phases, adia-

batically connected to the band insulator (U = 0) and the Mott insulator (U → ∞),

respectively, both exhibit a gap in the single-particle spectral function as discussed

1For the determination of the critical interaction strength of the BI-MI transition it is necessary
to determine and compare the free energy of both coexisting solutions.
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Figure 4.1: T -U phase diagram at fixed V = 0.5. The critical values of the
interaction strength U are determined from the double occupancy (see inset). Below
a critical temperature both band and Mott insulating solutions of the DMFT equations
are found depending on the initial guess for the self-energy. For temperatures above
the critical end point of the coexistence region, there is a regime where the spectral
function has a single peak at the Fermi energy accompanied by broad Hubbard bands
(see Fig. 4.3). Inset: The double occupancy D = 〈n↑n↓〉 as a function of U for
T = 1/30 (circles) and T = 1/60 (squares) indicates the phase transition from the
correlated BI (larger D) to the MI (smaller D). Both values of the double occupancy
are shown in the region where two solutions are found in the DMFT self-consistency
cycle. Note that all energies are given in units of the hopping integral t = 1.

below. No signature of an intermittent metallic phase is found. The calculated phase

diagram resembles that of a single band Hubbard model including the existence of a

critical end point of the discontinuous phase transition, a weak T -dependence of Uc1

and a considerable increase of Uc2 upon lowering the temperature [52].
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Figure 4.2: Local spectral function A(ω) at fixed interlayer coupling V = 0.5 and
temperature T = 1/30 for various values of the interaction strength U . The non-
interacting density of states (U = 0) has a charge gap ∆c = 2V = 1. The gap in
the correlated band insulator shrinks with increasing U until a discontinuous transition
to a Mott insulator occurs with a hysteresis region 5.35 < U < 5.82. For U = 5.79
both the band (solid line) and Mott insulating (dashed line) solutions are displayed.
All energies are given in units of the hopping integral t = 1.

4.4.2 Single-Particle Spectral Function

The evolutions of the spectral function A(ω) = −Im G(ω+ i0+)/π along a horizontal

T = 1/30 and a vertical U = 5 line in the phase diagram of Fig. 4.1 are shown

in Figs. 4.2 and 4.3, respectively. Remarkably, starting from U = 0 the gap in the

spectral function shrinks with increasing interaction strength U . At the same time

the incoherent Hubbard bands evolve and spectral weight is transferred to them.

The gap is well distinguishable throughout the entire interaction range except for

a small region in the vicinity of Uc2 where thermal broadening smears the strongly
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Figure 4.3: Local spectral function A(ω) at fixed hybridization V = 0.5 and inter-
action strength U = 5 for various values of the temperature T . Upon increasing T
the correlated band insulator (split peak around ω = 0 plus Hubbard bands) shows a
crossover to a Mott insulator (broad Hubbard bands and reduced spectral weight near
ω = 0 at T = 1/5). At intermediate temperatures (T = 1/8 and T = 1/10) there is
a single peak at the Fermi energy accompanied by broad Hubbard bands. Note that
the curves are shifted by a vertical offset for clarity.

renormalized spectral features.

At low T the spectral function in the band insulator phase close to the transi-

tion region consists of well distinguishable low-energy quasiparticle bands, separated

by the hybridization gap, and incoherent Hubbard bands similar to the single-band

Hubbard model. Increasing the temperature the spectral gap is filled in while the

quasiparticle bands lose their spectral weight. At T = 1/10 the dip at chemical

potential has vanished completely and a single peak remains. This peak smoothly

disappears upon further increasing the temperature and at T = 1/5 only two broad

Hubbard bands remain in the spectrum reminiscent of the Mott insulator above the
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critical temperature of the metal-insulator transition [52]. In Ref. [108] it was shown

that this insulator–to–bad-metal crossover is reflected also in the dc and ac conduc-

tivity and is accompanied by a substantial increase of the spin susceptibility which

follows the Curie-Weiss law at high T .

4.4.3 Gap Renormalization and Self-Energy

The spectral densities of Fig. 4.2 reveal a reduction of the charge gap in the CI phase

with increasing U . In this section we analyze this behavior which is quantified in

Fig. 4.7 showing the charge gap ∆c(U) deduced from the spectral densities. In the

following we derive the gap renormalization in two different ways from second order

perturbation theory. Our derivation closely follows the approach of Ref. [119].

Renormalization of the Charge Gap Deduced from the Total Energy

The charge gap ∆c in the state with N particles is defined as

∆c = (E(N + 1) − E(N)) + (E(N − 1) − E(N)), (4.4)

where E(N) is the ground-state energy of the system with N particles. The first

correction to (4.4) from a perturbative expansion in U comes from the 2nd order

diagram. Using the factorization of the joint density of states in the limit of infinite

dimensions the second order correction to the ground-state energy can be written as

E(2) = −U
2

L3

∑

p1,p2,p3,p4

(1 − np1↑)np2↑(1 − np3↓)np4↓
ǫp1

− ǫp2
+ ǫp3

− ǫp4

, (4.5)

where npi
is the occupation number and ǫpi

is the energy of the single-particle state

with index pi. The non-interacting N -particle ground state is a band insulator with

all states with energies ǫ < −V filled. The non-interacting (N + 1)-particle ground

state is obtained by filling the lowest energy state of the empty conduction band

ǫp0
= V (we choose spin ↓ from the two possibilities). Keeping only the terms that
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do not vanish in the thermodynamic limit and using particle-hole symmetry, which

requires that ∆c = 2(E(N + 1) − E(N)), we obtain the second order correction to

the charge gap

∆(2)
c = −2

U2

L3

∑

p1,p2,p

(1 − np1↑)np2↑

×
[

1 − np↓
ǫp1

− ǫp2
+ ǫp − V

− np↓
ǫp1

− ǫp2
+ V − ǫp

]

.

(4.6)

Note that while E(2) is an extensive quantity, the difference in (4.6) remains finite

when L → ∞. Introducing the single-particle density of states D and its Laplace

transform F

D(ǫ) =
1

L

∑

p

δ(ǫ− ǫp), F (λ) =

∫ ∞

0

dǫ e−λǫD(ǫ), (4.7)

(4.6) can be rewritten as [119]

∆(2)
c = −2U2

∫

dǫ1 dǫ2 dǫ3 D(ǫ1)D(ǫ2)D(ǫ3)

× (1 − n1)n2

[

1 − n3

ǫ1 − ǫ2 + ǫ3 − V
− n3

ǫ1 − ǫ2 + V − ǫ3

]

= −4U2

∫ ∞

0

dλ sinh(λV )F 3(λ),

(4.8)

where the fixed spin index has been dropped for simplicity. Introducing the bare gap

∆0
c = 2V we can write the renormalized charge gap as

∆c = ∆0
c − 4U2

∫ ∞

0

dλ sinh

(

λ
∆0

c

2

)

F 3(λ). (4.9)

This expression shows that the reduction of the charge gap does not depend on the

details of D(ǫ), but rather on its overall characteristics such as the total bandwidth.

If ∆0
c is small compared to the total bandwidth we can linearize the expression (4.9)

to obtain

∆c = ∆0
c

(

1 − 2U2

∫ ∞

0

dλ F 3(λ)λ

)

. (4.10)
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In this limit the gap acquires a simple multiplicative renormalization, which is closely

related to the quasiparticle mass renormalization as shown below. The perturbative

results are compared with the numerical data in Fig. 4.7.

We close this section with two remarks. First, equation (4.5) relies on the equality

of the local and the total density of states, which is where the concept of a covalent

insulator enters the algebra. Second, the physical origin of the reduction of the gap is

best seen in (4.6). Adding a single electron to the insulating states blocks scattering

processes with a contribution of the order −1/4V but adds the same number of

processes contributing −1/2V and therefore leads to an overall gain in the correlation

energy in the (N + 1)-particle state and thus a reduction of the charge gap from its

non-interacting value.

Renormalization of the Charge Gap Deduced from the Self-Energy

An alternative derivation of the gap renormalization can be obtained from the per-

turbative calculation of the self-energy in the insulating ground state. Using the

factorization of the joint density of states as in the previous section, the second order

contribution to the self-energy is written as

Σ(ω) = U2

∫

dǫ1 dǫ2 dǫ3 D(ǫ1)D(ǫ2)D(ǫ3)

× (1 − n1)n2n3 + n1(1 − n2)(1 − n3)

ǫ1 − ǫ2 + ω − ǫ3
,

(4.11)

where the spin indices were dropped as in the previous section. For −3V < ω < 3V

the denominator of the integrand remains negative throughout the entire integra-

tion range, the self-energy is therefore real and can be expressed using the Laplace

transform (4.7) of the non-interacting density of states

Σ(ω) = −2U2

∫ ∞

0

dλ sinh(λω)F 3(λ). (4.12)
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Figure 4.4: The self-energy within second-order weak-coupling perturbation theory
at zero temperature (see Eq. (4.11)) for V = 0.5. The real part (solid line) is linear
around ω = 0; the slope (indicated by the dot-dashed line) determines the Z factor.
The imaginary part (dashed line) is gapped for |ω| < 3V . The dotted vertical lines
indicate the bare gap ∆0

c = 1. The scale of the vertical axis is U2/t.

The renormalization of the band gap is obtained by searching for the pole Ω of the

renormalized propagator of the lowest unoccupied state ǫp0
= V :

Ω − V −Σ(Ω) = 0. (4.13)

In the small U limit we can replace Σ(Ω) by Σ(V ) and with ∆c = 2Ω we recover

equation (4.9). As in the previous section we can linearize (4.12) for small V in the

interval |ω| . V , which leads to

∆c = Z∆0
c ,

where Z =

(

1 − ∂Re Σ(ω)

∂ω

∣

∣

∣

∣

ω=0

)−1

.
(4.14)

For |ω| > 3V the second order self-energy acquires a finite imaginary part and ex-

pression (4.12) is not applicable. The second order self-energy obtained by numerical

integration of (4.11) is shown in Fig. 4.4.
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Figure 4.5: Imaginary part of the self-energy as a function of Matsubara frequencies
ωn for three values of the interaction strength U . In the correlated BI the self-energy
has a negative slope at small ωn. In the coexistence region (U = 5.79) both solutions
are displayed.

The linear behavior of Re Σ(ω) around the chemical potential is reminiscent of a

Fermi liquid. It is not limited to second order perturbation theory, but is a general

consequence of a sufficiently fast vanishing of Im Σ(ω) in the vicinity of the chemical

potential and the Kramers-Kronig relations. While in Fermi liquids Im Σ(ω) ∼ ω2,

the existence of a gap in the spectral function of the covalent insulator, as found in

the numerical simulations, and the absence of a pole in Σ(ω) inside the gap, imply

Im Σ(ω) = 0 throughout the entire gap. As a result, Re Σ(ω) of the CI phase closely

resembles the self-energy of a Fermi liquid. This similarity is made evident in Fig. 4.5

where we show the self-energy on the discrete set of Matsubara frequencies: It is

barely distinguishable from the analogous plot obtained for the single-band Hubbard

model with comparable parameters [52].
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4.4.4 Spin Excitations in the Band Insulator

Typically a band insulator is characterized by identical gaps for charge and spin

excitations. So far we have identified the insulator below the critical interaction

strength as a “correlated band insulator” due to the fact that it is adiabatically

connected to the band insulator at U = 0. Naturally the question arises whether spin

and charge gaps remain indeed equal in the presence of correlations. To answer this

question and to characterize more precisely the correlated band insulator we evaluate

the dynamical spin susceptibility and compare spin and charge gaps.

While the spectral function A(ω) is gapped in both band and Mott insulators

(see Fig. 4.2), the spin gap is finite in the BI and zero in the MI. The spin exci-

tation spectrum is reflected in the local dynamical spin susceptibility χs(ω), which

is calculated by a QMC measurement of the imaginary time correlation function

χs(τ) = 〈Sz(τ)Sz(0)〉 and the analytic continuation of its Matsubara transform to

real frequencies. Here we use the maximum entropy method [118] for the bosonic

kernel according to

χs(τ) =
1

π

∫

dω
e−τω

1 − e−βω
Im χs(ω). (4.15)

In Fig. 4.6 the imaginary part of the spin susceptibility is shown on the real-

frequency axis for V = 0.5, T = 1/30, and U ∈ {2, 3, 3.5}. Similar to the charge

gap, the spin gap also shrinks with increasing interaction strength. For a quantitative

comparison of correlation effects on spin and charge excitations in the correlated band

insulator Fig. 4.6 also shows the bubble diagram calculated from the convolution of

the fully dressed local Green functions,

Im χB(ω) = π

∫

dǫ
A(ǫ)A(ω − ǫ)

(

1 − e−βω
)

(1 + e−βǫ)(1 + e−β(ω−ǫ))
. (4.16)

In the non-interacting limit (not shown) Im χB(ω) and Im χs(ω) coincide and exhibit

an energy gap of size 2V = 1. In contrast at finite U the curves differ considerably
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Figure 4.6: Local dynamical susceptibilities in the correlated BI. At V = 0.5 and
temperature T = 1/30 the imaginary parts of the spin susceptibility χs (solid lines)
and the bubble diagram χB (dashed lines) are shown for U ∈ {2, 3, 3.5}. The sus-
ceptibilities are obtained from the QMC data by analytic continuation. The bubble
diagram is calculated from the convolution of the fully-dressed Green functions (see
Eq. (4.16)). Thus the gap in Im χB(ω) corresponds to the single-particle energy gap
in A(ω), which is apparently larger than the spin gap observed in Im χs(ω) in the
correlated insulator.

from each other. In the spin susceptibility a prominent peak develops at energies lower

than the charge gap. Furthermore spectral weight is suppressed at higher energies

which correspond to excitations from the split central peak to the Hubbard bands.

The spin susceptibility is thus both qualitatively and quantitatively more strongly

influenced by correlations in comparison to the bubble diagram, which contains cor-

relation effects via the renormalized propagator only. The effect of correlations on

the band insulator therefore goes beyond the energy gap renormalization discussed

in Sec. 4.4.3.

The comparison of the spin susceptibility and the bubble diagram in Fig. 4.6 shows
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Figure 4.7: Spin and charge gaps in the correlated BI as a function of U for V = 0.5
as determined from the spectral function and the spin susceptibility at T = 1/30,
respectively. The thick solid line shows the charge gap obtained from second order
perturbation theory (Eq. (4.9)). The squares represent the Z factor (Eq. (4.14)).
Inset: Discontinuous change of spin and charge gaps at the BI to MI transition. In
the Mott insulator ∆s = 0.

that charge and spin gap do not coincide in the correlated BI. For a quantitative

analysis we extract the gap values by a linear extrapolation to the frequency axis

using the slope at the inflexion point of the spectral function and the imaginary part

of the spin susceptibility for the charge and the spin gap, respectively. Fig. 4.7 shows

the evolution of charge and spin gaps2 with increasing interaction strength in the

correlated band insulator. As discussed in Sec. 4.4.3 the energy gap renormalization

at moderate coupling strengths is well described by the Z factor (Eq. (4.14)) extracted

from the slope of the self-energy at low frequencies. For U & 2.5 the spin gap is

2Note that spin and charge gaps appear identical for U = 2. In Fig. 4.6, however, the gaps
in the spin susceptibility and the bubble diagram already differ from each other at U = 2. This
seeming quantitative discrepancy is due to the fact that we determine the charge gap directly from
the spectral function and not from the bubble diagram. In fact the charge gap is obtained slightly
larger if it is extracted from the bubble diagram.
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smaller than the charge gap, and ∆c − ∆s remains almost constant with increasing

the interaction strength further. Therefore, in contrast to the non-interacting limit,

the description of the band insulator as an insulator with identical energy gaps for

both charge and spin excitations no longer holds once the interaction is strong enough.

It is worthwhile to point out that different spin and charge gaps were also ob-

tained in the half-filled one-dimensional ionic Hubbard model in the weakly correlated

regime, when the ionic potential is smaller than the onsite interaction U [100, 101].

As in the covalent insulator, ∆c and ∆s decrease with increasing U . However, the

transition to the Mott insulator proceeds via an intermediate insulating phase with

bond order and a staggered modulation of the kinetic energy on neighboring bonds.

Hints for a possible difference of spin and charge gaps as obtained in the above

discussed correlated band insulator phase exist also from experiments on selected

insulating materials. In their study of FeSi Schlesinger et al. [120] pointed out the

possible difference between spin and charge gaps in correlated insulators based on

evidence for a larger charge gap in the Kondo insulator Ce3Bi4Pt3 [121, 122]. While

the single-particle charge gap can be measured with meV accuracy using photoemis-

sion spectroscopy, the determination of the spin gap requires accurate susceptibility

measurements to temperatures much lower than the gap energy. The relative gap

difference for FeSi, e.g., is expected to be less than 30 % and could so far not be

resolved from existing measurements [120].

4.5 Conclusion

We have studied correlation effects in a covalent band insulator using dynamical

mean-field theory. In the absence of correlations a band insulator is characterized by

its band gap. A local Coulomb repulsion renormalizes the energy gap, which surpris-

ingly shrinks when the interaction strength is increased. In second-order perturbation
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theory the gap shrinking can be traced to enhanced low-energy scattering phase space

in the conduction band. By analogy to the quasiparticle weight in Fermi-liquid the-

ory a renormalization factor Z can also be introduced in interacting insulators based

on the low-frequency behavior of the self-energy. The Z factor in the insulator de-

termines the energy gap renormalization. The simple one-gap picture of the band

insulator breaks down for sufficiently large interaction strengths. In the correlated

band insulator the spin gap is smaller than the charge gap. A discontinuous transition

from the band to the Mott insulator occurs upon increasing the Coulomb repulsion

at low but finite temperature. Close to the insulator-insulator transition the increase

of temperature in the correlated band insulator with a split central peak and pro-

nounced Hubbard bands leads to a crossover into a high-temperature Mott insulator

phase with broad Hubbard bands.

The correlation-driven reduction of the energy gap is rare among the known mate-

rials. Nevertheless, this mechanism provides a natural explanation of the uncommon

gap overestimation in band-structure calculations of systems like FeSi [123]. Tracing

the difference between spin and charge gaps in the correlated band insulator to its

physical origin remains a task for future work.

Note added: Recently, a study of correlated semiconductors revealed that a shrink-

ing of the charge gap induced by dynamical correlations is also observed in FeSb2, a

material which is interesting for thermoelectric applications due to its large Seebeck

coefficient [124].
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Chapter 5

Frustration-Induced Superconductivity in a
Non-Fermi Liquid

In this Chapter we present results for the plaquette CDMFT approximation to the

two-dimensional Hubbard model in the presence of frustrating next-nearest neighbor

hopping. The frustration opens up a possibility for unconventional superconductivity

to emerge at half-filling in the weak-coupling regime, where the Coulomb repulsion is

below its critical value for the Mott transition in the paramagnetic phase. At the same

time, non-local electronic correlations can lead to a non-Fermi liquid normal state

even at weak coupling. Indeed we will show in the following that superconductivity

emerges from a non-Fermi liquid state in the weakly coupled half-filled system.

At strong coupling the occurrence of superconductivity and the pseudogap phase

at finite doping was proposed to be related to stripe correlations [26], quantum critical-

ity associated with an ordered state [125], hidden order [126], or a “quantum-critical

point without an ordered state” [127], which was suggested to mark the crossover

from a non-Fermi liquid to a Fermi liquid at zero temperature. In contrast, at weak

coupling and half-filling stripe correlations are not expected to play a role. Follow-

ing arguments based on functional renormalization group calculations [128,129,130],

the partial vanishing of the Fermi surface and the concomitant observation of weak-

coupling pseudogap behavior is possibly favored by the occurrence of hot spots near
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the (π, 0) and (0, π) points, i.e., points at which the Fermi surface and the umklapp

surface (the line connecting the (π, 0) and (0, π) points) intersect. In any case the

emergence of superconductivity from a non-Fermi liquid state at weak coupling trig-

gers the intriguing question how both the superconducting and the non-Fermi liquid

states are related to their strong-coupling counterparts.

5.1 Abstract

We explore superconducting and normal-state properties of the two-dimensional U -

t-t′ Hubbard model on a square lattice using cellular dynamical mean-field theory on

a plaquette. For non-zero values of the next-nearest neighbor hopping t′ a d-wave

superconducting state emerges upon cooling from a non-Fermi liquid state with an

enhanced self-energy for the lowest Matsubara frequency at the (π, 0) point. At the

lowest accessible temperature, T = 0.01t, we observe at least two critical U values:

A lower critical U for the transition from the superconducting state at weak coupling

to a non-Fermi liquid metallic state, and the critical U of the Mott transition. Our

findings open a different route for anomalous metallic properties in the vicinity of an

unconventional superconducting phase, in addition to the scenario of doping into a

Mott insulator.

5.2 Introduction

The remarkable properties of the hole-doped cuprates, with an apparent non-Fermi

liquid normal state, the enigmatic pseudogap phase, and unconventional supercon-

ductivity emerging from a state in which well-defined quasiparticles are absent near

the (π, 0) point of the Brillouin zone, have triggered enormous research activity. It was

proposed that the pseudogap is related to a quantum-critical point associated with an

ordered state [125], or located at the transition from a non-Fermi liquid (NFL) to a
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Fermi-liquid (FL) ground state without necessitating the existence of order [127]. In

this context the two-dimensional Hubbard model at strong coupling and finite doping

has been studied as a generic minimal model of interacting fermions relevant to the

cuprates [30, 131, 132,133].

The possible existence of a superconducting ground state in the half-filled Hub-

bard model has received comparatively little attention. At half-filling and for only

nearest-neighbor hopping the system is an antiferromagnetic insulator at zero tem-

perature [134]. However, the suppression of antiferromagnetic correlations by a frus-

trating next-nearest neighbor hopping leads to conditions where insulating behavior is

suppressed [74] and unconventional superconductivity may be possible. The competi-

tion or coexistence of antiferromagnetic and superconducting orders at zero tempera-

ture were studied by a renormalized mean-field method [75] and by cellular dynamical

mean-field theory [67]. For the case of weak coupling it was shown that a sufficiently

strong next-nearest neighbor hopping may indeed render a superconducting ground

state possible.

The phenomenon of a weak-coupling pseudogap and concomitant deviations from

Fermi-liquid behavior of the self-energy, most prominently in proximity to so-called

hot spots, were reported in Refs. [129,130] by means of the functional renormalization

group. It was shown that in certain directions in momentum space the imaginary

part of the self-energy may develop a pronounced peak at low frequencies, indicating

a breakdown of the quasiparticle concept for the corresponding momenta. Similarly a

single-site DMFT study provided evidence that the existence of van-Hove singularities

in the non-interacting density of states can lead to a self-energy with non-Fermi

liquid features at low temperatures, even if non-local correlations are not taken into

account [135]. In the two-dimensional Hubbard model, however, non-local correlation

effects lead to a momentum-space differentiation with consequences such as Fermi-arc

formation [57] and a pseudogap phenomenon related to short-ranged spin fluctuations



82 Superconductivity in a Non-Fermi Liquid

[41, 72, 70].

Here we extend the preceding studies and investigate both the normal and anoma-

lous self-energies at finite temperatures, focusing on the weak-coupling regime of the

Hubbard model at half-filling. To this end we use a plaquette dynamical-mean field

approximation, in which dynamical correlations within a 2 × 2 cluster are treated

exactly and longer-range correlations are treated on a mean-field level. Including a

next-nearest neighbor hopping, which frustrates antiferromagnetism, we identify an

extended regime of weak interaction strength where d-wave superconductivity (dSC)

emerges from a NFL state with a partially depleted Fermi surface near (π, 0). Thus

an interesting analogy between the frustrated half-filled weakly coupled system and

the hole-doped strongly coupled system is revealed.

5.3 Model and Methods

We study the two-dimensional one-band U -t-t′ Hubbard model (see Fig. 5.1) with the

Hamiltonian

H =
∑

k,σ

ǫkc
†
k,σck,σ + U

∑

i

ni,↑ni,↓, (5.1)

where c†k,σ (ck,σ) creates (annihilates) an electron in a Bloch state with lattice mo-

mentum k, ni,σ is the local density operator for site i and spin σ = ↑, ↓, U > 0 is the

local Coulomb repulsion strength and the electronic dispersion is given by

ǫk = −2t (cos kx + cos ky) − 4t′ cos kx cos ky. (5.2)

Throughout this work we use energy units such that t = 1. Since we study the

half-filled system we are free to choose either positive or negative sign of the relative

next-nearest neighbor hopping amplitude t′/t, since for n = 1 the dispersion has the

symmetry ǫ(kx+π,ky+π)(t
′) = −ǫk(−t′).
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Figure 5.1: U -t-t′ Hubbard model on the two-dimensional square lattice with nearest
neighbor hopping t and next-nearest neighbor hopping t′. Within plaquette CDMFT a
plaquette impurity is singled out, and the rest of the lattice is replaced by an effective
medium which is determined self-consistently.

We use the cellular dynamical mean-field theory (CDMFT) for a 2×2 (plaquette)

cluster geometry (see Fig. 5.1). The CDMFT equations [136, 41] read

G(iωn) =
∑

k̃

(

(iωn + µ)1 − Σ(iωn) −t(k̃)
)−1

, (5.3)

G−1
0 (iωn) = G−1(iωn) − Σ(iωn). (5.4)

Here the hopping matrix t(k̃) is defined via its matrix elements (i and j labeling

cluster sites)

tij(k̃) = N−1
c

∑

K

ei(K+k̃)(Xi−Xj)ǫK+k̃. (5.5)

All the quantities (t, the coarse-grained cluster Green function G, the corresponding

Weiss field G0 and the cluster self-energy Σ) are Nc ×Nc matrices and we have intro-

duced the Nc ×Nc unit matrix 1. The self-consistency cycle is closed by solving the
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impurity problem, i.e., by calculating, for a given self-energy and the corresponding

Weiss field, a new cluster Green function matrix with elements

Gij(τ) = −〈Tτ ci(τ)c
†
j(0)〉Seff

, (5.6)

where the effective impurity problem is given by the action

Seff = −
β
∫

0

dτ

β
∫

0

dτ ′
∑

ijσ

c†iσ(τ)
(

G0(τ − τ ′)−1
)

ij
cjσ(τ

′) + U

β
∫

0

dτ
∑

i

ni↑(τ)ni↓(τ).

(5.7)

The CDMFT formalism is generalized to superconducting states by introducing the

concept of Nambu spinors

Ψ †
k =

(

c†k↑, c−k↓

)

, Ψk =
(

Ψ †
k

)†
. (5.8)

The corresponding 2×2 Nambu Green function matrix in momentum space reads

G(k, τ) =

(

−〈Tτck↑(τ)c
†
k↑〉 −〈Tτ ck↑(τ)c−k↓〉

−〈Tτ c
†
−k↓(τ)c

†
k↑〉 −〈Tτc

†
−k↓(τ)c−k↓〉

)

=

(

G↑(k, τ) F (k, τ)

F ∗(k, β − τ) G↓(−k, β − τ)

)

. (5.9)

For the example of the plaquette CDMFT the cluster Green function matrix is di-

agonal in cluster momentum space [137]. The corresponding cluster momenta are

(0, 0), (π, 0), (0, π) and (π, π), and the relevant anomalous Green functions for a d-

wave order parameter are F ((π, 0), τ) = −F ((0, π), τ), while the anomalous Green

functions vanish at (0, 0) and (π, π) due to the dx2−y2 symmetry. If convergence in

the superconducting state is reached, the order parameter is given by

∆k = F (k, τ = 0+). (5.10)

The cluster impurity problem is solved by the continuous-time quantum Monte Carlo

algorithm based on the expansion of the effective action in the impurity-bath hy-

bridization [85], generalized to include superconducting states [96]. We mention that
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the plaquette geometry generally tends to overestimate the superconducting order

parameter for d-wave pairing within the CDMFT framework. As shown by Maier

et al. within the dynamical cluster approximation for the unfrustrated doped two-

dimensional Hubbard model [30] a quantitative estimate of the critical temperature

may be achieved by a systematic cluster-size scaling analysis. Here we restrict our

study to the plaquette and rather investigate the overall phase diagram than focus on

the critical temperature for a specific parameter set. Also we do not aim at investi-

gating possible coexistence of superconducting and antiferromagnetic phases [29] but

study paramagnetic solutions at finite temperature, where superconductivity is never-

theless expected to be influenced by short-ranged antiferromagnetic correlations [50]

even in the absence of magnetic long-range order.

5.4 Results and Discussion

We focus on the half-filled system and present the main results of our study in the

phase diagram shown in Fig. 5.2. At half-filling the two-dimensional Hubbard model

is known to exhibit a transition from a metal to a Mott insulator (the Mott transi-

tion) [48] upon an increase in the local Coulomb repulsion U , with a critical inter-

action strength which increases slightly when a next-nearest neighbor hopping t′ is

introduced [138]. For the results shown in Fig. 5.2 the temperature T = t/100 is

chosen to be well below the critical temperature of the end point of the Mott transi-

tion, and the data points shown for the Mott insulating phase indicate the insulating

solutions above the critical interaction strength of the discontinuous Mott transition.

Upon introducing a finite next-nearest neighbor hopping t′ the system develops a

d-wave superconducting (dSC) instability at weak coupling in a range of U values

which increases upon an increase in t′. Thus we observe a frustration-induced super-

conducting phase in the weakly coupled Hubbard model at half-filling. Remarkably,
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Figure 5.2: Phase diagram of the plaquette CDMFT approximation to the two-
dimensional U -t-t′ Hubbard model at half-filling and temperature T = t/100. d-
wave superconductivity (dSC) is observed in a range of values of the local Coulomb
interaction strength U which depends on the frustrating next-nearest neighbor hopping
t′. Although the calculations are performed in the paramagnetic state, we observe
that short-ranged antiferromagnetic correlations still suppress superconducting order
for weak frustration, i.e., near t′ = 0. The shaded regions and the corresponding phase
boundaries are a guide to the eye.
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the dSC phase turns out to emerge from a non-Fermi liquid (NFL) state upon cool-

ing from higher temperatures, as will be detailed below. It is also an interesting

observation that superconductivity is suppressed if the Coulomb repulsion becomes

too strong, yet below the transition to the Mott insulator. In fact, within Hartree

theory for the U -t-t′ Hubbard model, it is found that on the square lattice the critical

interaction strength for the onset of antiferromagnetism increases in a similar fashion

as the phase boundary between the dSC and (NFL) metallic phases indicated in Fig.

5.2 [139]. This suggests that superconductivity is suppressed if short-ranged antifer-

romagnetic correlations, which are fully taken into account by the CDMFT method,

become too strong.

For a non-zero |t′/t| = 0.3 we show in Fig. 5.3 the observed sequence of phases

at T = t/100 as the interaction strength U is increased from zero to a value above

the critical U for the Mott transition. The Mott transition is traced by studying,

for example, the double occupancy, which continuously decreases upon an increase in

U in the metallic phase and drops discontinuously at the first-order Mott transition.

The dSC phase is studied by checking for an instability towards the establishment of

a solution with a finite d-wave order parameter ∆ =
1

2
|∆(π,0) −∆(0,π)| corresponding

to ∆k = ∆(cos kx − cos ky).

At weak coupling below U/t = 1 only a normal-conducting metallic state is ob-

served, but the system might become superconducting upon further cooling, with a

critical temperature which is exponentially small in the interaction strength. Whether

this is in fact the case or whether there is a small window of U values in which the

system does not become superconducting even at lower temperatures, however, was

not resolved. For values of U/t between 1 and 5 we obtain a dSC solution at the

given temperature. At larger U there is a transition to a non-Fermi liquid metallic

phase (see below), and then undergoes the Mott transition at even larger U .

Also shown in Fig. 5.3 is the absolute value of the imaginary part of the self-
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Figure 5.3: Sequence of phases (boundaries indicated by vertical dashed lines) upon
increasing U/t for finite next-nearest neighbor hopping |t′/t| = 0.3 at half-filling and
low temperature T/t = 0.01. At moderate U/t a d-wave superconducting (dSC) phase
is obtained, as indicated by the finite dSC order parameter. The underlying metallic
phase, obtained if dSC is suppressed, has non-trivial normal-state properties with a
non-monotonic behavior as a function of U/t, as seen from the imaginary part of the
self-energy at (π, 0). Around U/t = 5 a transition to the metallic phase takes place.
Also shown is the double occupancy, which decreases almost linearly in the metallic
and superconducting phases, but shows a jump at the discontinuous transition to the
Mott insulator above U/t = 6. In fact, at T/t = 0.01 a finite region in U/t is found
where metallic and insulating solutions to the CDMFT equations exist. Here we show
only the insulating solutions in the coexistence region. All quantities are rescaled as
indicated in the legend to match the scale.
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energy at the lowest Matsubara frequency ω0 = πT divided by ω0 for the accessible

momentum closest to the Fermi surface, k = (π, 0), in the normal-conducting state.

As expected the self-energy becomes very large in the Mott insulator. More surpris-

ingly it shows a non-monotonic behavior at lower values of U , where it first increases

before decreasing again towards U = 0. Interestingly the non-monotonicity of the self-

energy in the normal-conducting phase is accompanied by a similar non-monotonic

behavior of the dSC order parameter, immediately triggering the question whether

there exists a relationship between non-Fermi liquid behavior and the establishment

of superconductivity.

We now turn to the discussion of the properties of the normal-conducting state

from which the dSC state emerges. In Ref. [127] a detailed study of |ImΣ(k, iω0)/ω0|
at the lowest Matsubara frequency ω0 = πT for k points near the Fermi surface in the

(0, 0)-(π, 0) direction provided evidence for a crossover from non-Fermi liquid behavior

near half-filling to a Fermi liquid upon doping in the more strongly coupled but

unfrustrated system. With the momentum resolution given by the plaquette we can

study the behavior of |ImΣ((π, 0), iω0)/ω0|, which is not exactly on the Fermi surface

for non-zero next-nearest neighbor hopping but still provides information about the

existence of well-defined quasiparticles in the (0, 0)-(π, 0) direction and, if they exist,

the quasiparticle weight Zk = (1−∂ReΣ(k, ω)/∂ω|ω→0)
−1 ≈ (1− ImΣ(k, iω0)/ω0)

−1,

where the latter approximate equality is a good approximation in a Fermi liquid

at low temperature. It is important to mention that Zk is only well-defined (and

takes values between 0 and 1) if the slope of ReΣ(k, ω) as a function of ω at ω = 0 is

indeed negative. This corresponds to a self-energy with a continuous negative slope of

ImΣ(k, z) for imaginary z at z = 0. If, for example, ImΣ(k, z) develops a sharp peak

for certain k values and at z = 0 such that both the slope of the real part along the

real-frequency axis and the slope of the imaginary part on the imaginary-frequency

axis become positive for very small frequencies, the Zk factor is not a well-defined
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Figure 5.4: Upper diagram:Temperature dependence of |ImΣ((π, 0), iω0)/ω0|
as a function of temperature for selected values of the interaction strength U
at |t′/t| = 0.3 and for half-filling. Lower diagram: Temperature dependence of
(1 − ImΣ((π, 0), iω0)/ω0)

−1 for the same parameters. In a Fermi liquid this quan-
tity converges to the quasiparticle weight Zk (k = (π, 0)) in the zero-temperature
limit. The vertical dashed line indicates the temperature below which the Fermi-liquid
description breaks down (also see Fig. 5.5).
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quantity and Fermi-liquid theory breaks down.

In the upper diagram of Fig. 5.4 the T dependence of |ImΣ((π, 0), iω0)/ω0| is

shown for the same parameter values as in Fig. 5.3 and for selected values of the

interaction strength. While at high temperatures |ImΣ((π, 0), iω0)/ω0| shows only a

weak T dependence, it increases upon cooling for temperatures below T/t ≈ 0.02,

which is above the superconducting critical temperatures observed for all U values.

In fact, at high temperatures the self-energy is larger for larger U , as expected, but

at lower temperatures there is a non-monotonic behavior of the self-energy at (π, 0)

as a function of U , as also seen in Fig. 5.3. In the lower diagram of Fig. 5.4 the

Zk factor for k = (π, 0), as calculated from (1 − ImΣ(k, iω0)/ω0)
−1, is shown as a

function of temperature. A strong suppression of the “quasiparticle weight” (1 −
ImΣ(k, iω0)/ω0)

−1 at k = (π, 0) upon cooling is observed, but we stress that the

concept of the quasiparticle weight itself breaks down for the lowest temperatures

below T/t = 0.02, indicated by the dashed vertical line in the lower diagram of Fig.

5.4, as we will now discuss in detail.

In order to demonstrate the deviation of the self-energy at (π, 0) from Fermi-

liquid behavior for the relevant interaction strength values U/t = 3 and 4, where the

system becomes superconducting slightly above T/t = 0.01, we extract the slope of

the imaginary part of the self-energy from its values at the two lowest Matsubara

frequencies. The results are shown in Fig. 5.5. While the slope is negative at high

temperatures it changes sign below T/t = 0.02 for both U/t = 3 and U/t = 4,

indicating a non-Fermi liquid (NFL) behavior at low temperatures. Intriguingly,

since the d-wave superconducting phase appears at even lower temperatures than

the deviation from Fermi-liquid behavior, superconductivity thus emerges from an

unconventional metallic phase with a non-Fermi liquid self-energy at the (π, 0) point.

To summarize our findings for the half-filled system, there are at least two critical

values of the interaction strength at low temperatures, namely a lower one (slightly
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Figure 5.5: Slope of the real part of the self-energy, estimated from the slope of
ImΣ at (π, 0) on the Matsubara axis, at selected values of the interaction strength
in the regime in which the system has a superconducting instability as a function of
temperature for t′/t = −0.3 and half-filling. Below T/t = 0.02 a sign change in
the slope is observed, signaling a breakdown of the Fermi-liquid picture in the region
around (π, 0) in the Brillouin zone.
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below U/t = 5 for T/t = 0.01 and |t′/t| = 0.3) for the transition from a d-wave super-

conducting phase, which emerges from an unconventional metallic phase upon cooling,

to a metallic phase with non-Fermi liquid properties around (π, 0), and an upper crit-

ical interaction strength for the well-known first-order Mott transition (slightly above

U/t = 6 for the selected parameter values). The non-Fermi liquid phase is character-

ized by a sign change in the slope of the real part of the self-energy at low frequencies

(and low temperatures) around the (π, 0) point, which indicates that the concept of

low-energy quasiparticles breaks down in the (π, 0) region of the Brillouin zone. At

the same time, a pseudogap is expected to appear in the k-resolved spectral function

A(k, ω) = −1

π

Im Σ(k, ω)

(ω − ǫk − Re Σ(k, ω))2 + (Im Σ(k, ω))2
(5.11)

near the (π, 0) point in the frequency regime where the imaginary part of the self-

energy is enhanced. Therefore the physics of the frustrated two-dimensional Hub-

bard model at weak coupling and half-filling indeed bears some resemblance with the

physics in the strong coupling regime at finite doping [140], where a superconducting

phase emerges from a pseudogap phase close to half-filling below optimal doping. At

weak coupling, however, the enhancement of the imaginary part of the self-energy

is restricted to a narrow frequency region. This observation is in agreement with

results from functional renormalization group calculations [129, 130], where similar

features in the self-energy at weak coupling and finite t′ were identified as the origin

of a pseudogap in the spectral function. However, while the weak-coupling pseudo-

gap is restricted to a very narrow frequency range, the strong-coupling pseudogap is

more pronounced and develops into a full gap in the Mott insulator at half-filling. In

fact, a momentum-selective metal-insulator transition was obtained as a function of

hole doping within an eight-site dynamical cluster approximation [138]. For eight-site

clusters the momentum resolution allows access to the (π/2, π/2) point (the nodal

direction) in addition to the (π, 0) point (antinodal direction), and finite-size effects
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leading to an overestimation of correlations are less pronounced. It was shown that

a two-stage transition takes place. For large hole doping the system is a Fermi liq-

uid. Upon approaching half-filling a pseudogap first appears in the momentum sector

containing the antinodal region, while the states in the nodal region remain gapless

until half-filling. Therefore the NFL-FL crossover was identified as the doping level

where the antinodal region becomes gapped.

0.850.90.951
Filling n

-0.5

0

0.5

1

1.5

Im
 (

Σ π0
(iω

1)-
Σ π0

(iω
0))

/(
ω

1-ω
0)

NFL

FL

T/t=0.01, U/t=4, t’/t=-0.3

Figure 5.6: Slope of the real part of the self-energy, estimated from the slope of
ImΣ on the Matsubara axis, as a function of filling upon hole-doping for U/t = 4, t′/t
= −0.3 and T/t = 0.01. Around 10 percent hole doping a crossover from a non-Fermi
liquid with positive slope to a Fermi liquid with negative slope takes place.

To make contact with strong-coupling results we follow the U/t = 4 solution at

t′/t = −0.3 and T/t = 0.01 as a function of hole doping. In Fig. 5.6 the slope of

ImΣ((π, 0), z), for z on the imaginary-frequency axis, extracted from the lowest two

Matsubara frequencies is shown. Indeed, starting from a positive slope at half-filling
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indicating NFL behavior the slope continuously decreases and changes sign around

10 percent hole doping, where thus an NFL-FL crossover takes place.

In Fig. 5.7 we visualize the results obtained in this work for the weak-coupling

scenario and present a generalized view by including results for the strongly coupled

system away from half-filling [138, 127, 140]. A non-zero next-nearest neighbor hop-

ping frustrates the weak-coupling antiferromagnetic instability [139] and thus opens

up a window of interaction strengths where superconductivity may exist even at half-

filling. A NFL phase, possibly due to short-ranged antiferromagnetic correlations, is

found to exist around half-filling, and it is this NFL phase from which the dSC phase

emerges upon cooling, even at weak coupling. The Fermi-liquid metal is recovered

upon doping. Similarly there is a dSC phase at strong coupling, which also emerges

from a NFL phase in the underdoped region. Although the strong-coupling pseudo-

gap appears at much larger energy (and consequently temperature) scales it is an

interesting question how the NFL phases at weak and strong coupling are related.

Moreover, in both cases dSC appears as an instability in a strange metallic phase

with a partially depleted Fermi surface and the absence of quasiparticles in certain

k directions, which seems to contradict the well-known BCS picture [61], in which

well-defined quasiparticles are paired. However, in the ordered phase the anomalous

expectation value 〈c†k↑c
†
−k↓〉 6= 0 is a well-defined quantity anyway. Thus the ordered

state is in fact less unusual than the underlying normal-conducting state, a fact which

is also reminiscent of the pseudogap phase in the cuprates [64].

5.5 Conclusion

To summarize, a d-wave superconducting (dSC) phase is observed in the plaquette

CDMFT approximation to the weakly coupled frustrated two-dimensional Hubbard

model at half-filling. Remarkably, superconductivity emerges upon cooling from a
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Figure 5.7: Sketch of phases in the two-dimensional frustrated Hubbard model in the
space of temperature T , doping 1−n and Coulomb repulsion U . Results are shown for
d-wave superconductivity (dSC) and the non-Fermi liquid (NFL) to Fermi-liquid (FL)
transitions upon doping at weak and strong coupling in the presence of frustration, t′

6= 0, where a finite weak-coupling window for dSC opens in which antiferromagnetism
is suppressed [139]. The sketch is based upon results obtained in this work and,
e.g., in Refs. [138, 127, 140]. Note that away from half-filling, and in particular at
strong coupling, a tendency towards phase separation is observed [140, 131]. It is an
interesting open question whether and how the dSC phases and the transitions from
NFL to FL physics at weak and strong coupling are related.
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non-Fermi liquid (NFL) metal with a narrow peak in the imaginary part of the self-

energy around the (π, 0) point, in an interesting analogy with the strong coupling

pseudogap and superconductivity phenomena away from half-filling. This unusual

behavior of the self-energy indicates that, even at relatively weak coupling, non-local

correlations in combination with low dimensionality may violate the quasiparticle

concept in certain directions in momentum space. Such preconditions lead to en-

hanced damping of quasiparticles, especially at low temperatures and close to the

Fermi surface. This is in marked contrast to Fermi-liquid theory, where quasiparti-

cles are long-lived and in fact have an infinite lifetime on the Fermi surface at zero

temperature. Naturally, the observed NFL effects at weak coupling are expected to be

particularly strong in the proximity of van-Hove singularities in the non-interacting

density of states, since enhanced phase space for low-energy scattering processes is

present in the respective momentum space regions. The precise nature of the scatter-

ing processes leading to NFL behavior, however, remains to be explored. In contrast,

at strong coupling it was shown that the opening of a pseudogap was not related

to van-Hove features in the density of states [138]. We also note that the plaquette

geometry used in our study typically overestimates correlation effects. Therefore

the observed non-Fermi liquid features are expected to be weaker for larger clusters.

Away from half-filling a crossover from a NFL to the more conventional Fermi-liquid

metallic phase upon doping is observed at weak coupling. It is an intriguing open

question how the dSC and NFL phases at weak coupling and half-filling are connected

to their counterparts at strong coupling and finite doping.
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Chapter 6

Charge and Spin Criticality at the Mott
Transition in a Two-Dimensional Organic
Conductor

6.1 Abstract

We study the behavior of the charge and spin degrees of freedom at the critical

end point of the bandwidth-controlled Mott transition in a two-dimensional Hubbard

model with anisotropic next-nearest neighbor hopping which is relevant to layered

organic conductors. Using cluster dynamical mean-field theory on a plaquette and a

continuous-time quantum Monte Carlo impurity solver, we obtain critical exponents

for the single-particle density of states at the Fermi energy (charge criticality) and the

nuclear spin-lattice relaxation rate divided by temperature (spin criticality). Both

charge and spin degrees of freedom are observed to show critical behavior with a

divergent slope at the critical end point, and the extracted critical exponents are

remarkably consistent with experimental data.

6.2 Introduction

The Mott metal-insulator transition is a paradigmatic example of a correlation-

induced phase transition, and the single-band Hubbard model is the generic theoret-
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ical model in which it occurs. Its model parameters are the local Coulomb repulsion

U , the bare bandwidth W and the average electronic density per lattice site (filling) n.

One distinguishes the bandwidth-controlled Mott transition, where at a fixed filling

the Mott-insulating system is driven metallic by increasing W/U , typically through

chemical or hydrostatic pressure, and the filling-controlled Mott transition, which

takes place when at large enough U/W the half-filled system is doped with electrons

or holes. In many cases the paramagnetic Mott transition is hidden by an ordered

phase, e.g., antiferromagnetism. However, in sufficiently frustrated systems and at

high enough temperatures the bandwidth-controlled transition from a paramagnetic

metal to a paramagnetic Mott insulator can be observed in experiments.

A prominent example for the observation of the bandwidth-controlled Mott transi-

tion is the quasi-two-dimensional κ-(ET)2Cu[N(CN)2]Cl (abbreviated as κ-Cl), which

belongs to a whole class of layered organic charge transfer salts (see Fig. 6.1) [142,

58, 141]. Since these materials are both low-dimensional and frustrated, such that

magnetic order is suppressed at elevated temperatures, one can follow the first-order

Mott transition to its second-order critical end point in the absence of long-range

order. Of special interest is the critical behavior, or Mott criticality, at the critical

point. Experimentally the criticality is probed by the behavior of observables (e.g.,

the conductivity σ) as a function of external parameters (temperature T , pressure P )

in the vicinity of the critical point. One observes scaling of the deviation ∆σ(tred, pred)

= σ(tred, pred = 0) − σc with the reduced parameters tred = (T − Tc)/Tc and pred =

(P − Pc)/Pc, where the index c denotes the respective values at the critical point.

Criticality is then classified by the exponents (β, γ, δ) defined via

∆σ(tred, pred = 0) ∝ |tred|β,
∂σ(tred, pred)

∂pred

∣

∣

∣

pred=0
∝ |tred|−γ,

∆σ(tred = 0, pred) ∝ |pred|1/δ, (6.1)
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Figure 6.1: Schematic phase diagram of the family of two-dimensional organic
conductors, with an insulating phase ordered antiferromagnetically at low pressure
(small t/U) and a superconducting phase at higher pressure (large t/U). The critical
end point of the Mott transition is located above the ordering temperatures of both
superconductivity and antiferromagnetism. Note that κ-Cl is an insulator at ambient
pressure. Hence the paramagnetic Mott transition can be studied in this material by
applying hydrostatic pressure. It is, from the point of view of this thesis, unclear how
the label “Fermi-liquid metal” is determined experimentally and whether it is justified
(see Chapter 5). From Ref. [141].

which obey the scaling law γ = δ (β − 1).

It is suggestive to propose that the Mott transition is in the Ising universality

class [143, 144, 145, 146], based on the argument that the double occupancy may be

interpreted as an “order parameter”. Since the double occupancy is a scalar field, Ising

universality would apply in this case. However, while conductivity measurements

for the three-dimensional (V1−xCrx)2O3 indeed confirm critical behavior compatible

with 3D Ising universality [147], the situation seems to be less clear-cut for the two-
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Figure 6.2: Nuclear spin-lattice relaxation rate divided by temperature, 1/T1T , and
conductance at the critical end point of the Mott transition in κ-Cl. From Ref. [59].

dimensional κ-Cl.

For quasi-two-dimensional systems the critical exponents of the 2D Ising model

are β = 1/8, γ = 7/4, and δ = 15 [148]. Conductivity measurements under pressure

performed on κ-Cl challenge this prediction, with the observed exponents β ≈ 1, γ ≈
1, and δ ≈ 2. While it is argued by Imada et al. [149,53] that the observed deviation

from Ising universality is a manifestation of unconventional quantum criticality due

to momentum-space differentiation near the topological Mott transition specific to a

two-dimensional system, a different scenario was proposed by Papanikolaou et al. [146]

who pointed out that the conductivity can have a different critical behavior than the

order parameter of the transition. The authors argued that when the coupling of

the conductivity to the energy density of the Ising model dominates, one may obtain

an extended regime around the critical point with modified critical exponents, β =

1, γ = 7/8, and δ = 15/8, in fair agreement with the exponents observed in κ-Cl.

Thermal expansion measurements on a related material [150] were explained by a

scaling theory for the two-dimensional Ising universality class, thus supporting the
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latter point of view [151].

Recently a new flavor was added to the picture by a study of the Mott criticality

of the spin degree of freedom. Kagawa et al. performed extensive NMR experiments

under pressure and found that the critical enhancement of the conductivity when

going through the critical end point is accompanied by a critical suppression of spin

fluctuations, as evidenced by a decrease of the nuclear spin-lattice relaxation rate

divided by temperature, 1/T1T (see Fig. 6.2) [59]. Interestingly the critical exponents

δ of charge (conductivity) and spin (1/T1T ) are found to be equal (δ ≈ 2) within

experimental accuracy.

6.3 Model and Methods

We aim at a microscopic description of the Mott criticality in organic conductors by

studying the two-dimensional one-band Hubbard model on an anisotropic triangular

lattice with the Hamiltonian

H =
∑

k,σ

ǫkc
†
k,σck,σ + U

∑

i

ni,↑ni,↓, (6.2)

where c†k,σ (ck,σ) creates (annihilates) an electron in a Bloch state with lattice mo-

mentum k, ni,σ is the local density operator for site i and spin σ = ↑, ↓, U > 0 is the

local Coulomb repulsion strength and the electronic dispersion is given by

ǫk = −2t (cos kx + cos ky) − 2tdiag cos(kx + ky). (6.3)

According to Ref. [152] we choose for the relevant κ-Cl material a diagonal hopping

tdiag = 0.44t and fix the filling at n = 1. Therefore the variable parameters are

the onsite Coulomb repulsion U and the temperature T . To solve the problem we

choose the cluster dynamical mean-field theory (CDMFT) [136, 41] on a plaquette

(see Fig. 6.3), where the full lattice model is mapped to a 2×2 cluster impurity
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Figure 6.3: U -t-tdiag Hubbard model on the two-dimensional square lattice with
nearest neighbor hopping t and anisotropic next-nearest neighbor hopping tdiag. Within
plaquette CDMFT a plaquette impurity is singled out, and the rest of the lattice is
replaced by an effective medium which is determined self-consistently.

model embedded in a self-consistently determined dynamical mean field. The cluster

impurity problem is solved using a continuous-time Quantum Monte Carlo method

based on the hybridization expansion [85]. In its single-site version DMFT is by now a

well-established, reliable and powerful method to study phase transitions in strongly

correlated materials, most notably the Mott transition in infinite dimensions. The

generalization to clusters is necessary in order to capture also non-local dynamical

correlation effects, which are of crucial importance in low-dimensional systems. In

particular CDMFT has been used to study the phase diagram of two-dimensional

organic conductors [153, 154].

The charge criticality is extracted from an estimate of the interacting density of

states at the Fermi level via the imaginary-time Green function, A(ω = 0) ≈ βG(β/2)

(β = 1/T ), which has proven an approximate but reliable way of obtaining detailed
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information on the finite-temperature Mott transition [138]. The spin criticality is

more difficult to study in theory. First of all, an approximate relation needs to be as-

sumed, namely the one between the local spin susceptibility χ(ω) and the spin-lattice

relaxation rate 1/T1, 1/T1T ≈ limω→0 Imχ(ω)/ω, where a form factor is omitted. Sec-

ondly, the spin susceptibility on the real-frequency axis needs to be calculated from

the spin-spin correlation function on the imaginary-time domain, i.e., by an analytical

continuation procedure, for which we employ the Maximum Entropy Method [39].

Figure 6.4: Route through the continuous Mott transition at fixed temperature. We
assume that the pressure-controlled transition in Ref. [59] corresponds approximately
to the bandwidth-controlled transition in theory. Therefore the hopping amplitude t
(bandwidth W ∝ t) is varied (blue arrow) while the local Coulomb repulsion U , the
relative anisotropic diagonal hopping tdiag/t and the temperature T are kept fixed in
our calculations. The indicated values of (T/U)c and (t/T )c are the critical values
found for tdiag/t = 0.44 as used in this study.

Before presenting our results we note here that a theoretical description of the

Mott criticality using these methods involves an important approximation. The

single-band Hubbard model is used as an effective low-energy model of κ-Cl [152],
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and in particular the pressure-controlled Mott transition in the experiment is identi-

fied with the bandwidth-controlled Mott transition in theory. The latter assumption

means that when in the experiment the temperature is kept fixed and pressure is

applied, in our theory we keep the temperature T , Coulomb repulsion U and also the

ratio tdiag/t fixed and change the size of the hopping matrix element t, assuming that

in a given range of pressure near the critical end point of the Mott transition a linear

increase in pressure amounts to a linear increase in t (see Fig. 6.4).

6.4 Results and Discussion

We now turn to the discussion of the critical behavior near the critical end point of

the Mott transition. Using the discontinuity of the double occupancy as a function

of U below the critical temperature Tc and its continuous decrease upon increasing U

above Tc as a guide to identify the critical end point, we find (U/T )c = 52. Fixing U/T

= (U/T )c we study the critical exponent δ of the critical observable σ as a function

of the variable t/T (see Eq. (6.1) and Fig. 6.4), where increasing t/T is assumed

to amount to increasing pressure as discussed above. Here σ is chosen to be G(β/2)

(charge criticality) and limω→0 Imχ(ω)/ω (spin criticality). The analytic continuation

of the spin susceptibility data on the insulating side of the transition turns out to be

difficult due to the formation of local moments. Therefore the spin-spin correlation

function on the imaginary-time axis becomes rather flat in the Mott insulator, which

corresponds to a sharp peak in Imχ(ω)/ω at ω = 0. Hence we restrict ourselves to

the behavior of the spin criticality on the metallic side of the transition.

The results are shown in Fig. 6.5. Both charge and spin degrees of freedom show

critical behavior with a maximal (infinite) slope at the continuous transition, which

is identified at (t/T )c = 7.68, independently for charge and spin. We first discuss

the qualitative resemblance of the theoretical results and the experimental data. The
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Figure 6.5: Critical behavior at the continuous bandwidth-controlled Mott transition
(vertical dashed line, (T/t)c = 7.68). Upper diagram: Evolution of critical observables
G(β/2) and limω→0 Im χ(ω)/ω (rescaled to match the value of G(β/2) at the critical
point) upon increasing t/T . The solid curves are fits to the critical scaling behavior
according to Eq. (6.1). Lower diagram: Double-logarithmic plot of the same data as
in the upper diagram, measured from the critical end point of the Mott transition.
Solid lines show the critical scaling (same fits as in upper diagram).
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increase of G(β/2) indicates that the low-energy spectral weight increases upon going

from the insulator to the metal. In fact, this behavior reflects the filling of the

charge gap in the Mott insulator with low-energy states and the development of the

Fermi surface at the insulator-metal transition. Thus the charge degrees of freedom,

which are localized in the insulator, become delocalized in the metal, as expected.

Similarly, the measured conductance (Fig. 6.2) increases in the metal. In contrast,

the spin susceptibility shows the opposite behavior. It is suppressed in the metal and

enhanced in the insulator, as seen both in Fig. 6.5 and the measured 1/T1T from

NMR (Fig. 6.2). The enhancement of spin excitations in the insulator is traced to

the predominant occupation of the plaquette with a four-electron singlet state with

zero total momentum and zero total spin S = 0 (see Fig. 6.6). The second-most

probable states (not shown) are three triplet states with spin S = 1. Since the singlet

state has such a high occupation probability in the insulator, spin flip (∆ S = 1)

excitations to the triplet states are more likely, which leads to the large susceptibility

in the insulator.

Even a quantitative comparison with the cited experiments is possible, as can

be seen in the lower diagram of Fig. 6.5. Indeed the double-logarithmic plot of the

observables relative to their values at the critical point as a function of the reduced

variable is in good agreement with the scaling relation, Eq. (6.1). From linear fits

to the double-logarithmic plot we extract the critical exponents. For the charge

criticality exponents 1/δ = 0.576 (on the insulating side of the transition) and 1/δ =

0.610 (metallic side) are found. The observation of critical behavior with an infinite

slope of the density of states at the Fermi energy, extracted from G(β/2), at the

transition is in agreement with the behavior of the measured conductivity, and also

the critical exponents (1/δ ≈ 0.5 for the conductivity [58]) are in fair agreement. A

quantitative comparison, however, is of course difficult, since the explicit relation of

the exponents for the density of states and for the conductivity is unclear. For the
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Figure 6.6: Probability of the plaquette singlet state as a function of t/T for the
same parameters as in Fig. 6.5, as extracted from the sector occupation statistics
measured in CTQMC [137, 48, 50]. The plaquette is predominantly occupied by this
singlet state in the insulator (left side of the vertical dashed line). With increasing
pressure the probability of the singlet state decreases, leading to a suppression of the
spin susceptibility in the metal.

spin criticality, however, even quantitative agreement with experiment is found, with

an exponent 0.481 very close to the experimentally determined 1/δ ≈ 0.5 [59].

6.5 Summary

To summarize, we have studied the critical behavior of charge and spin at the Mott

transition in the two-dimensional anisotropic Hubbard model relevant to the organic

charge transfer salt κ-Cl using plaquette cluster DMFT. The charge criticality was

obtained using an estimate of the density of states at the Fermi energy directly from

imaginary-time QMC data, while the spin criticality was extracted from an analytic
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continuation of the spin-spin correlation function to obtain a direct estimate of the

NMR data 1/T1T . In qualitative agreement with experimental observations, the den-

sity of states is enhanced when passing through the critical end point of the Mott

transition from the insulator to the metal, with an infinite slope at the transition.

Interestingly, the critical exponents for the theoretically evaluated density of states

and for the measured conductivity are quite close to each other. 1 Even more re-

markably, we find quantitative agreement with the experiment for the spin criticality.

The spin susceptibility is suppressed upon an increase in bandwidth, and we find a

critical exponent 1/δ ≈ 0.5 for 1/T1T . Our results do not resolve the issue of whether

a quantum-critical scenario with unconventional exponents [149,53] or a classical sce-

nario with modified exponents [146] is the appropriate framework for the description

of the Mott critical end point in two-dimensional quantum systems. However, we have

shown that results consistent with experiments (and with both theoretical scenarios)

can be obtained from a single-band Hubbard model in the plaquette dynamical mean

field approximation solved with a continuous-time quantum Monte Carlo method,

and in particular under the assumption that a linear change in pressure close to the

transition can be modeled by a linear change in bandwidth.

1Note that there is a linear relation between the density of states at the Fermi level and the dc
conductivity for a metal within the relaxation-time approximation in Boltzmann theory. However,
whether a similar relation holds in the correlated system close to the Mott transition and especially
in the Mott insulator is far from clear.



Chapter 7

DC Conductivity of Disordered Graphene

7.1 Abstract

Two of the hallmark features of graphene are its linear quasiparticle dispersion and

the finite minimum conductivity [155]. In non-suspended graphene (NSG) the mini-

mum conductivity σmin, i.e., the minimal value of the dc conductivity σdc with respect

to density variations, is weakly dependent on temperature T but varies considerably

from sample to sample [155, 156]. In order to push graphene’s transport properties

to the ballistic limit of Dirac fermions without scattering, realizations of suspended

graphene (SG) sheets have been prepared, allowing for unprecedented electron mobil-

ities [157,158,159] and showing a stronger increase σmin upon increasing T [160,161].

At finite densities σdc decreases with T below a crossover temperature, and the re-

sistivity increases linearly with T at high densities. Here we show that the observed

range of σmin values is compatible with disorder potentials on the order of meV. More-

over, the temperature dependence of the resistivity at high densities and the density

dependence of the respective slopes are consistently explained by a temperature-

dependent disorder strength Γ , which consists of a constant Γ0 and a contribution

α1T . This finding suggests that at least two contributions to scattering in graphene

are important for its transport properties, and that one of the contributions is due to

scattering of electrons from thermally induced excitations.
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7.2 Introduction

Free electrons on the half-filled honeycomb lattice constitute a perfect conductor

with a non-zero Drude weight at finite temperature and a finite dc conductivity of

σ0 = πe2/2h at zero temperature [162, 163, 164, 165]. This is a direct consequence of

the linear quasiparticle dispersion near the Dirac points (points of zero energy in the

Brillouin zone), where the conduction and valence bands (defined as the eigenvalues

of the tight-binding Hamiltonian with positive and negative energy, respectively1)

touch each other. At finite temperatures the optical conductivity is also of order σ0

for visible frequencies (Fig. 7.1). This theoretical result neglecting disorder effects is

indeed observed with excellent accuracy in optical absorption experiments on charge-

neutral graphene [166].

Existing graphene samples [167,168] are not pristine, however. Scanning-tunneling

microscopy images of NSG samples show inhomogeneous patterns [169] whose origin

was traced to the presence of impurities at the substrate-graphene interface [170].

It was proposed that impurities nucleate electron- or hole-rich puddles [171], which

would obscure the intrinsic Dirac fermion physics of pristine graphene. In suspended

graphene (SG) scattering can occur due to microscopic corrugations of the otherwise

unstable two-dimensional crystal, so-called ripples, which were observed by transmis-

sion electron microscopy [172] and theoretically analyzed as one possible source for

electron scattering [173, 174] or charge inhomogeneity [175].

The dc conductivity σdc of graphene is minimal at the charge neutrality point,

which corresponds to a honeycomb lattice model at half-filling, i.e., with one electron

1Note that the terminology of valence and conduction bands is conveniently borrowed from semi-
conductor physics, even though the “bands” defined in this way are not differentiable at the Dirac
points. The conduction and valence bands are nevertheless uniquely defined as the + and − solu-
tions (±

√

ǫ2k) of the eigenvalue equation for the 2 × 2 tight-binding Hamiltonian for each k. In
fact, a different classification with two partially filled bands would be arbitrary since all the filled
states (at T = 0) in momentum space are continuously connected, and they would have to be split
up into two subsets in an arbitrary way.
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per lattice site. Upon applying a gate voltage σdc increases [161], hence the name

“minimum conductivity”. Disorder-induced charge-density modulations imply a spa-

tially varying chemical potential and thereby conceal clean Dirac fermion physics.

Also the dc transport measurement process itself may introduce a bias, e.g., due to

charge transfer at metal contacts [176].

Figure 7.1: Transport at the charge neutrality point in pristine graphene. (a) At
T = 0 the valence band (states below the chemical potential µ), sketched here for
a single Dirac cone, is completely filled (indicated by the dark blue shading) and
the conduction band is empty. At T > 0 some particles are thermally excited to
the conduction band due to the Fermi-Dirac distribution (lighter blue shading). (b)
Contributions to the conductivity: Only interband transitions are allowed at T = 0
due to Fermi blocking. Intraband transitions become important for dc transport at
finite temperature. (c) Dynamical conductivity of pristine graphene within the Dirac-
cone approximation at T = 0 and T > 0. At T = 0 interband transitions lead to a
universal finite conductivity of σ0 = πe2/2h. For T > 0 a Drude peak emerges due
to intraband transitions, with a Drude weight D ∝ T . For visual frequencies ωvis the
optical conductivity still is of order σ0.

Theoretical work on transport in graphene comprises studies of charged-impurity

scattering, as reviewed in Ref. [177], alternative sources of disorder [178], and also the
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crossover between low- and high-density regimes [179]. More recent studies focused on

ballistic [180] or diffusive transport [181]. Unresolved problems remain in particular

in the low-density regime, which is relevant for the minimum conductivity problem.

Several theoretical approaches predicted a minimum conductivity of 4e2/πh [182,

183, 184,185,186] in the absence of disorder. In fact, this limiting value at zero tem-

perature is found if the dc limit first and the zero-disorder limit afterwards [162,164].

Experiments on both NSG and SG samples [155, 161,160] show non-universal values

of the minimum conductivity. However, a trend is observed that the T dependence of

the minimum conductivity is enhanced in clean SG samples as opposed to dirty SG

samples [161] or NSG samples [161,160]. In fact, the minimum conductivity increases

upon an increase in temperature, i.e., it behaves as in a semiconductor. In contrast,

at sufficiently large finite gate voltages a metallic T dependence of the conductivity

is observed, with a linearly increasing resistivity as a function of T and a slope that

decreases upon an increase in gate voltage [161].

Here we present a theory of the dc conductivity based on the Kubo formula. Dis-

order effects are included by a random chemical potential, which is treated within the

coherent-potential approximation (CPA) [187, 188]. The associated disorder energy

scale Γ may itself depend on temperature. We specifically investigate the case of

a Lorentzian disorder distribution of width Γ (“Lloyd model”), for which the Kubo

formula can be evaluated exactly within CPA. At half-filling σdc depends only on the

type of disorder distribution and the dimensionless ratio T/Γ within the CPA for the

Lloyd model. At high temperatures T/Γ ≫ 1 the minimum conductivity increases

linearly with T/Γ . For a temperature-dependent Γ = Γ0+α1T the minimum conduc-

tivity thus saturates at high temperatures. With this simple ansatz and a choice of

typical meV energy scales for Γ the T dependence of σdc changes from semiconducting

at half-filling to metallic at sufficiently large band filling, with an intermediate den-

sity regime where a crossover from metallic to semiconducting behavior is observed in
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the relevant temperature range between 0 and 200 K. Moreover, the experimentally

observed behavior with a linearly increasing resistivity at high temperatures in the

metallic regime is reproduced by our ansatz, even including the decreasing slope upon

increasing the density.

7.3 Model and Method

An infinite sheet of pristine graphene is modeled by a tight-binding Hamiltonian

with an effective next-neighbor hopping on a honeycomb lattice without impurity

scattering and electron-electron interactions. The longitudinal dc conductivity follows

from the Kubo formula

σdc =
2πe2

~2

∞
∫

−∞

dν

∞
∫

−∞

dǫ ρ̃(ǫ) [Aǫ(ν) + A−ǫ(ν)]Aǫ(ν)
−dfx

dx

∣

∣

∣

x=ν−µ
, (7.1)

where fx = (1+exp(x/T )) is the Fermi-Dirac distribution function (kB = 1), µ is the

chemical potential (µ = 0 at half-filling), ρ̃(ǫ) = L−1
∑

k(∂ǫk/∂kx)
2δ(ǫ− ǫk), L is the

number of unit cells of the lattice, the integration variables ǫ and ν are energies and

Aǫ(ν) = δ(ǫ− ν). We use the Dirac cone approximation ρ̃(ǫ) = ~|ǫ|/2π for |ǫ| < ǫmax,

where ǫmax is a cutoff energy on the order of the half-bandwidth of graphene. Indeed

the Dirac cone approximation for ρ̃(ǫ) gives the exact result for σdc and is a good

approximation even for visual frequencies [163], where the full band structure leads

to only weak quadratic corrections to the frequency dependence of the conductivity.

The term in Eq. (7.1) which involves Aǫ(ν)
2 in the integrand leads to the usual

intraband conductivity as in single-band models. It gives rise to a Drude-like contribu-

tion, hence an infinite dc conductivity in a perfect conductor. Also in the presence of

electron-electron interactions this expression for the intraband conductivity remains

correct if the self-energy Σ(ν) is local and Aǫ(ν) = −Im(ǫ− ν−Σ(ν))−1/π [189,190].

The second term in Eq. (7.1), involving Aǫ(ν)A−ǫ(ν), appears for a particle-hole
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symmetric two-band system. It describes excitations of a particle at energy ǫ and

a hole at −ǫ and accounts for interband transitions. This contribution gives rise

to the visual transparency of graphene in the dc limit of the optical conductivity,

σ0 = πe2/2h (see Fig. 7.2c) [166]. A detailed derivation of the Kubo formula for

the longitudinal conductivity of clean graphene and a discussion of intraband and

interband excitations in this case are given in Appendix B.

The presence of disorder complicates the situation considerably. First of all dis-

crete translational invariance is broken, rendering microscopic theoretical approaches

much more difficult than in the homogeneous case. Secondly, the precise type of

disorder is usually unknown. One standard approach is the Anderson tight-binding

model [191] with local potential impurities,

H = H0 +
∑

i

Vini, (7.2)

where H0 is the tight-binding Hamiltonian for the clean system, ni is the local density

operator on site i of the lattice and Vi is a random variable drawn from some distribu-

tion function P (Vi). Here we do not aim at a full microscopic description of disorder,

e.g., in the spirit of a self-consistent diagrammatic treatment of impurity scattering

effects [192]; in any case it is known that weak localization is suppressed by long-

range scattering in graphene [193,194,195]. Instead we apply the coherent-potential

approximation (CPA) [187, 188], which is a mean-field approach to determine an ef-

fective random medium described by a local self-energy Σ(ω), which is determined

by a self-consistent solution of the CPA equations

Ḡ(ω) = G0(ω −Σ(ω)),

Ḡ(ω) = D̃
[

G−1(ω)
]

=

∫

dV
P (V )

G−1(ω) − V
,

G−1(ω) = Ḡ−1(ω) +Σ(ω), (7.3)

where G0(z) =
∫

dω ρDOS(ω)/(z − ω) is the local Green function of the clean system
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described by H0, G(ω) is a dynamical Weiss field and D̃[z] is the Hilbert transform

with respect to the disorder distribution P as defined above.

Within CPA the Kubo formula, Eq. (7.1), provides an the exact equation for

the conductivity [196] if one uses Aǫ(ν) = −Im(ǫ − ν − Σ(ν))−1/π. Moreover, the

CPA equations (7.3) can be solved, at least numerically, for an arbitrary disorder

distribution. In order to keep the subsequent analysis as simple and transparent as

possible, we focus on the specific case of a Lorentzian disorder distribution of width

Γ ,

P (x) =
1

π

Γ

Γ 2 + x2
. (7.4)

This is the so-called Lloyd model, for which the CPA equations are exactly solvable

using D̃[z] = (z + iΓ )−1, which yields Σ(ν) = −iΓ . Hence we obtain for the Lloyd

model

Aǫ(ν) =
1

π

Γ

Γ 2 + (ǫ− ν)2
(7.5)

as the input quantity for Eq. (7.1). Aǫ(ν) can be written in the form a((ǫ− ν)/Γ )/Γ ,

from which it follows that the dc conductivity is only a function of the ratio T/Γ for

µ = 0 (minimum conductivity, σmin = σdc(µ = 0)) and of µ/Γ for T = 0 (but only if

µ ≪ ǫmax, which is, however, fulfilled in the cited experiments).

The scaling behavior of σmin can be traced to two reasons: (a) the cutoff energy

ǫmax can be replaced by infinity in the ǫ-integral in Eq. (7.1) and thus does not appear

as an additional energy scale, and (b) for dimensional reasons the dc conductivity

is universal in the sense that it does not depend on the hopping matrix element

t of the underlying two-dimensional tight-binding Hamiltonian and, consequently,

not on the Fermi velocity vF . Both reasons are directly related to the linearity of

the quasiparticle-energy dispersion in graphene up to energies much larger than the

relevant temperatures.2

2For calculations at finite density the universality in this sense is not given any more, since the
density dependence of the chemical potential contains the hopping matrix element t.
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In experiments the gate voltage controls the electronic density per area, n, mea-

sured from half-filling. For given temperature T , disorder strength Γ and chemical

potential µ the density is given by

n =

∫ ∞

−∞
dω ρDOS(ω) (fω−µ − fω) , (7.6)

where

ρDOS(ω) =
4√

3πt2Au

∫ ǫmax

−ǫmax

dǫ |ǫ|Aǫ(ω) (7.7)

is the density of states (for both spins) for the disordered system, t = 2.7 eV the

hopping matrix element of the tight-binding model, Au = 3
√

3a2
0/2 the size of the

unit cell and a0 = 1.42 × 10−10 m the interatomic distance on the honeycomb lattice.

7.4 Results

We now turn to the discussion of the results for the dc conductivity obtained from the

CPA approximation to the Lloyd model. We first keep the disorder strength Γ fixed

(temperature-independent) and discuss basic properties of the minimum conductivity

and the conductivity at finite chemical potential and zero temperature. We show the

density dependence of the conductivity for a typical disorder strength (on the order

of meV) and for typical temperatures in the range from 0 K to 200 K. Especially we

consider the temperature dependence of the resistivity (inverse of the conductivity)

at fixed densities and show that, at high densities, a temperature-independent Γ is

insufficient to explain the linear T dependence of the resistivity observed in exper-

iments. Adding a linear T -dependent contribution to Γ , which should be viewed

as a phenomenological parameter, the experimental observation can be matched by

our ansatz. Moreover, the observed density dependence of the slope in the T -linear

regime of the resistivity comes out naturally without any additional assumptions. For

a selected T -dependent Γ = Γ0 + α1T the minimum conductivity is observed to in-

crease upon an increase in temperature but with a decreasing slope and a saturation
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at high temperatures, also in similarity to experiments. Finally, the T dependence of

the conductivity is shown, where a density-dependent crossover from metallic behav-

ior (dσdc/dT < 0) at low T to semiconducting behavior (dσdc/dT > 0) at high T is

observed.
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Figure 7.2: DC conductivity for the Lloyd model in CPA. Left diagram: Minimum
conductivity (µ = 0) as a function of T/Γ . Right diagram: DC conductivity at T =
0 as a function of µ/Γ .

The minimum conductivity σmin as a function of T/Γ for the Lloyd model with

disorder strength Γ is shown in the left diagram in Fig. 7.2. For T/Γ → 0, σmin tends

to the limiting value 4e2/πh. On the other hand σmin increases linearly with T/Γ for

T/Γ ≫ 1,

σmin =
e2

h

(

2 ln(2)
T

Γ
+ O

(

Γ

T

))

. (7.8)

In order to provide a better understanding of the physical processes involved we

discuss the relevant contributions to σmin. First of all we note that the clean case

at zero temperature, where the limits Γ → 0 and T → 0 are both taken before the

dc limit, is not recovered by our theory for σdc. Recall that at zero temperature

intraband excitations are blocked since the valence band is completely filled and the

conduction band is completely empty. Thus only interband excitations occur, leading

to Re σ(ω → 0) = σ0 [163] (see Fig. 7.1 and Appendix B). Our theory, on the other
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hand, is rather tailored to describe dc measurements, for which the dc limit must be

taken first, and which are in addition always performed at finite T .

At finite temperature thermally excited particles in the conduction band render

intraband particle-hole excitations possible, leading to a non-zero Drude weight (Fig.

7.2 c) and thus an infinite σdc (for Γ → 0, thus T/Γ → ∞), while interband low-

energy excitations are blocked by thermally occupied states in the conduction band.

Upon an increase in the disorder strength Γ the minimum conductivity decreases, and

for T/Γ → 0 both intraband and interband excitations contribute equally to σmin =

σdis (disordered limit). Viewed as a function of temperature for fixed Γ the minimum

conductivity is semiconducting , i.e., dσdc/dT > 0.

At finite chemical potential the interband excitations become less important, and

the behavior is determined mostly by intraband excitations. The situation thus re-

sembles more and more the case of a single partially filled band for higher densities,

where metallic behavior sets in for sufficiently low temperatures and finite densities,

i.e., dσdc/dT < 0.

The dc conductivity at T = 0 as a function of µ/Γ is shown in the right dia-

gram in Fig. 7.2. It tends to the limiting value 4e2/πh for µ/Γ → 0 and increases

linearly for |µ/Γ | ≫ 1 but well below ǫmax/Γ , which is the case for all the densities

achieved in experiments. This linear dependence upon the chemical potential for large

|µ/Γ | is analytically extracted from the Kubo formula, taking into account intraband

excitations only,

σdc(µ, T = 0) ≈ 2e2

πh

∫ ∞

−∞
dǫ|ǫ| Γ 2

(Γ 2 + (ǫ− µ)2)2 ≈
∣

∣

∣

µ

Γ

∣

∣

∣

e2

h
. (7.9)

In the cited experimental literature the conductivity data is shown for fixed den-

sities instead of fixed chemical potential [161, 160]. For a fixed value of the disorder

strength, Γ = 1 meV, we therefore show in Fig. 7.3 the dc conductivity and its in-

verse, the resistivity ρ, as a function of density for selected temperatures. Since the
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Figure 7.3: Upper diagram: Conductivity as a function of density for the indicated
temperatures for temperature-independent Γ . Lower diagram: Same data as in the
upper diagram, but resistivity instead of conductivity (ρ = σ−1

dc ).
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density depends quadratically on the chemical potential for µ/Γ ≫ 1 and σdc depends

linearly on |µ/Γ | in this limit and at zero temperature, the low-temperature conduc-

tivity increases like
√
n at high densities. In fact a sublinear density dependence of

the conductivity is reported also in Ref. [160].

In Ref. [161] a linear increase of the resistivity as a function of temperature at el-

evated temperatures was observed for high densities. For a temperature-independent

Γ , σdc = |µ/Γ | e2/h for large |µ/Γ |, and the temperature dependence of the chem-

ical potential for a fixed density is µ = µ(T = 0) + O(T 2) (like for the standard

Fermi gas). Hence, for a fixed density σdc(T ) = σdc(T = 0) + O(T 2) and thus ρ =

ρ(T = 0) +O(T 2). Following this argument a linear dependence of ρ on temperature

requires a temperature-dependent Γ within our ansatz. In fact, a linearly increasing

resistivity at high densities naturally occurs for a T -dependent Γ with Γ = Γ0 +α1T ,

ρ ≈ Γ

µ

h

e2
=
Γ0

µ

h

e2
+
α1T

µ

h

e2
. (7.10)

Note that µ depends not only explicitly on temperature, but also implicitly via the T -

dependent Γ . For very large fillings, however, this implicit T dependence is negligible.

In fact also the explicit T dependence is very weak since it scales like the ratio of

temperature to Fermi energy, which is very small for the relevant temperatures.

The density dependence of the resistivity for the selected T -dependent disorder

strength is shown in the upper diagram of Fig. 7.4. For moderate temperatures,

below 200 K, the linearity of the resistivity is presented in the lower diagram of Fig.

7.4. In fact from Eq. (7.10) one can also see that the slope in the linear regime is

proportional to α1/µ, and since µ ∝ √
n the slope decreases like 1/

√
n. For very large

temperatures (well above 200 K for sufficiently large densities, but below 200 K for

moderate densities) there is a deviation from the linear behavior, and the resistivity

decreases again since also interband excitations contribute.

The anticipated crossover from metallic behavior at finite densities and low tem-
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peratures to semiconducting behavior at elevated temperatures is shown in the upper

diagram of Fig. 7.5. The crossover temperature is zero at zero density, since the min-

imum conductivity increases with temperature for all temperatures, and increases

upon an increase in the density. In fact, for the selected temperature dependence of

Γ the behavior is always metallic below 200 K for densities larger than 8 × 1010/cm2.

The temperature dependence of the minimum conductivity for the same T -dependent

Γ is shown in the lower diagram of Fig. 7.5. Here a sublinear T dependence of σmin is

observed for elevated temperatures. Indeed, the curvature of σdc changes sign at an

intermediate temperature depending on the relative sizes of Γ0 and α1. An increasing

σmin as a function of temperature with a sublinear behavior at elevated T yet below

200 K is also observed in experiments [161, 160].

7.5 Summary and Discussion

To summarize, we have presented a phenomenological theory of the temperature

dependence of the dc conductivity of graphene at zero and finite particle densities

including potential disorder in a coherent-potential approximation (CPA). To be spe-

cific we have chosen a Lorentzian disorder distribution (“Lloyd model”), which has

the advantage that the CPA equations are exactly solvable in this case.3 Our ap-

proach recovers well-established limits in the clean case and at the same time enables

a better understanding of the remarkable transport properties of graphene. Espe-

cially an enhanced T dependence of the minimum conductivity in cleaner SG samples

is explained, and we find σmin ∝ T/Γ for T/Γ ≫ 1. As a consequence we expect

a very steep increase of σmin with temperature in even cleaner samples [159]. More-

over we have shown that the observed linearly increasing resistivity as a function of

temperature at high densities and the density dependence of the slope are explained

3The method is not restricted to the Lloyd model, however, and it may be interesting to compare
our results with results for other disorder distributions.



126 DC Conductivity of Disordered Graphene

by a temperature-dependent Γ = Γ0 + α1T . This phenomenologically determined T

dependence of Γ suggests the existence of at least two sources for scattering in sus-

pended graphene. The constant Γ0 points to static disorder due to impurities, whereas

the T -linear part α1T suggests scattering off a thermally excited perturbation. One

obvious possibility is a ripple-related mechanism, since ripples are thermally excited

in suspended graphene. In fact, even the linear T dependence of the scattering rate

could be explained within the ripple scenario [174].

In this work we have investigated the role of disorder, as described by an Anderson

impurity model with a phenomenological disorder strength, as a source for scattering

in graphene. As pointed out in Ref. [176], it is essential to understand which addi-

tional extrinsic effects mask intrinsic properties of graphene, especially the sensitive

Dirac fermion physics at the neutrality point. Possible extrinsic perturbations are

the influence of metal contacts via contact resistance, spurious chemical doping into

the contact regions, or macroscopic charge inhomogeneity on length scales reaching

the sample size. Such effects need to be added to the picture in order to gain a

full understanding of the unusual transport properties of graphene especially at the

charge-neutrality point. Also improved techniques for the doping of graphene using

organic molecules [197] may help to unveil its intrinsic transport properties. Further

theoretical and experimental activity should clarify these aspects so that graphene

can fulfill its promise as a basis of future electronic devices.



Chapter 8

Outlook

Electronic correlations are at the heart of many fascinating phenomena and keep

challenging our theoretical understanding. New or improved methods to qualitatively

and even quantitatively capture correlation effects help us understand the intriguing

effects in many materials. Dynamical-mean field methods, as applied in this Thesis,

are tailored to investigate correlated electron systems.

As an example, the difference between the electron- and hole-doped cuprates was

only recently traced to the difference in the strength of electronic correlations using

LDA+DMFT [198]. It turned out that the electron-doped materials are less strongly

correlated, and that their parent compounds are Slater insulators, which owe their

insulating behavior to the opening of a gap due to long-range magnetic order, rather

than Mott insulators, in which correlations are strong enough to open a gap even

in the absence of magnetic order. Simultaneously, the synthesis of an “ambipolar”

cuprate material allowed for a direct comparison between electron and hole doping

in the same compound. Here the asymmetry in transport measurements was indeed

related to a difference in the nature of the antiferromagnetic ground states on the

electron- and hole doped sides [199].

Investigations of new materials are therefore guided by basic questions that can be

answered by correlated electron theorists: What is the band structure? How strong
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are correlations? What is the symmetry of the superconducting order parameter?

Which magnetic ordering patterns occur? How conventional or unconventional is the

normal-conducting state? The latter question is related to the observation of pseu-

dogap behavior and the notion of a “strange metal” [200] in the cuprates. As shown

in this Thesis unconventional metallic phases can be observed in a wide parameter

regime in low-dimensional correlated systems.

Not only theoretical investigations but possibly also studies of ultracold atomic

or molecular Fermi gases, that can be viewed as experimental realizations1 of the-

oretical models, may provide insight into these questions. Only recently pseudogap

behavior above the superfluid transition temperature was claimed to be observed in

experiments on cold atoms [202].

Of special interest are superconducting materials that come in families, like the

cuprates or the ferropnictides [203]. It has been appreciated that unconventional su-

perconductivity is likely caused by an electronic pairing mechanism [204], and that

the pairing symmetry is sensitive not only to the momentum dependence of the pair-

ing interaction, but also to the band structure and especially to the topology as well

as the orbital composition of the Fermi surface. Especially since the discovery of su-

perconductivity in the ferropnictides, which are multiband systems with disconnected

Fermi surface sheets made up of a variety of orbitals, it is natural to ask what influ-

ence a more complicated band structure has on the superconducting and magnetic

properties.

Moreover, insights about multiband systems gained from the recent interest in the

pnictides may in turn help to learn more about the seemingly well-studied cuprates.

For example, a two-orbital model for the cuprates including the Cu-dz2 orbitals in

1The interpretation of ultracold gases in terms of many-body models like the Hubbard model is
not straightforward. It is in fact difficult to extract the relevant parameters and to construct an
appropriate Hamiltonian with the correct interactions. A major advantage of cold gases is that the
model parameters can be tuned more easily than in a solid. For a review see Ref. [201].
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addition to the dx2−y2 orbitals explains why the single-layer Hg compound has a

considerably different superconducting critical temperature than the La compound

[205]. Here the influence of orbital contributions to the Fermi surface, rather than the

mere shape of the Fermi surface, was identified as an important factor, and that strong

admixtures of dz2 orbital content to the mainly dx2−y2-derived band crossing the Fermi

surface were found to be counteracting superconductivity in the La compound.

The theoretical study of multiband systems is of course more complicated than

the study of the simpler one-band Hubbard model. For low-dimensional multiband

systems it is desirable to combine band structure calculations with cluster DMFT

to treat multiband and non-local correlation effects, and to capture unconventional

pairing symmetries in a multiband model.

To illustrate how new states of matter may arise in multiband models, pairing in

a two-band model is studied within BCS theory [204]. In a simple setup the coupled

gap equations are derived for pairing interactions V ij
k′k (for the notation see Section

3.5.1) between Cooper pairs in bands i and j, each of which is made up of electrons

in the same band.2 The coupled gap equations read

∆1(k) = −
∑

k′

(

V 11
k′k

∆1(k
′)

2E1(k′)
tanh

βE1(k
′)

2
+ V 21

k′k

∆2(k
′)

2E2(k′)
tanh

βE2(k
′)

2

)

, (8.1)

∆2(k) = −
∑

k′

(

V 22
k′k

∆2(k
′)

2E2(k′)
tanh

βE2(k
′)

2
+ V 12

k′k

∆1(k
′)

2E1(k′)
tanh

βE1(k
′)

2

)

, (8.2)

with order parameters ∆i(k) and dispersions Ei(k) =
√

ǫi(k)2 +∆i(k)2 for band i =

1, 2.

Fascinating new order parameter symmetries may indeed be stabilized by a more

complicated topology of the Fermi surface with disconnected sheets. As an example, a

time-reversal symmetry breaking s+id-wave pairing state [206] is possible in a system

with Fermi surface pockets around the (0, 0) and (π, π) points. We have conducted

2In principle, also interband pairing is possible.
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first mean-field studies which show that transitions from d-wave via s+id to extended

s-wave behavior can be investigated even in a simple two-band model with two square

lattice sheets coupled by a hybridization V . Within the BCS approach, a non-local

attractive pairing interaction (see Eq. (3.55)) indeed favors various order parameter

symmetries depending on the topology of the Fermi surface, which is controlled by the

interlayer hybridization. Further research in this direction, including realistic band

structures and methods going beyond BCS theory, is a challenging and fascinating

goal for the future.

In addition to the development of more refined and efficient numerical methods,

a thorough understanding of emergent phenomena also demands progress regard-

ing analytical techniques. The formulation of a mean-field theory of unconventional

superconductivity in the repulsive Hubbard model still is an open problem, for ex-

ample. As shown in this Thesis, even the two-dimensional one-band Hubbard model

at half-filling is still not completely understood. In fact, while renormalized mean-

field treatments have been undertaken [75], a simple Hartree-Fock like decoupling

for non-local superconducting states has not been achieved yet. In particular for

weak interactions such a decoupling would be helpful to understand the observed

superconducting and non-Fermi liquid states (see Chapter 5) more intuitively. So

far a mean-field decoupling based on a transformation to bond operators has been

performed for the Heisenberg and t-J models [207, 208]. For the Hubbard model,

however, such an approach is much more difficult to accomplish due to the larger

Hilbert space. Also the bond operator method has the disadvantage that it is nat-

urally built for models with spontaneous or explicit bond-centered order, as in spin

Peierls systems. Perhaps a conveniently chosen set of unitary transformations, simi-

lar to the Schrieffer-Wolff transformation, may allow for a mean-field decoupling with

superconducting pair fields in the repulsive Hubbard model.

Finally the theoretical modeling of interfaces and heterostructures of correlated
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materials requires the adaption of dynamical mean-field methods to inhomogeneous

systems, an approach which is referred to as real-space dynamical mean-field the-

ory (R-DMFT) [209, 25]. R-DMFT has already been used to study the penetration

of a metal into a Mott insulator via the Kondo effect [210] or the emergence of a

metallic state at the interface between a band insulator and a Mott insulator [211].

Certainly the combination of the variety of possible quantum states, collective phe-

nomena and ordering patterns, which already appear in correlated bulk materials,

with new effects specific to interfaces [212] poses grand challenges, but also offers

great opportunities [213]. It is therefore highly desirable to understand correlation

effects in inhomogeneous model systems and to go beyond studies of simplified models

to incorporate the complex characteristics of real materials.
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Appendix A

Analytic Continuation of QMC Data

Solutions to the DMFT equations in this thesis were obtained using the CTQMC

impurity solver (see Chapter 3). In some parts of this work local correlation functions,

namely the single-particle Green function

G(τ) = −〈Tτ c(τ)c
†(0)〉Seff

(A.1)

and the spin-spin correlation function

χ(τ) = 〈Sz(τ)Sz(0)〉Seff
, (A.2)

were analytically continued to the real-frequency axis. The analytical continuation,

which is a difficult and in principle ill-conditioned problem, yields estimates of the

spectral function

A(ω) = −1

π
ImG(ω + i0+) (A.3)

and the imaginary part of the spin susceptibility

Imχ(ω) = Imχ(iωn → ω + i0+). (A.4)

These quantities were used to extract the charge and spin gaps in Chapter 4 and the

nuclear spin-lattice relaxation rate in Chapter 6.

To this end a maximum entropy (MaxEnt) method, as described in Refs. [39,51],

was employed. The basic problem of analytic continuation consists in inverting the
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relation (given here for G)

G(τ) =

∫ ∞

−∞

exp(−τω)

1 + exp(−βω)
A(ω), (A.5)

with the fermionic kernel

K(τ, ω) =
exp(−τω)

1 + exp(−βω)
. (A.6)

The QMC data for G(τ) are given as Nd measurements at Λ points on a τ grid, i.e.,

Gl ≡ G(l∆τ) with 0 ≤ l < Λ. For simplicity we assume that the measurements

are independent both in imaginary time (no autocorrelation between adjacent time

slices) and in computer time (no autocorrelation between subsequent measurements),

the latter of which is assured by binning a large number of subsequent measurements

and performing the maximum entropy method for the binned variables. If we further

assume that the statistical errors are distributed according to a Gaussian distribution,

the probability for the measured values Ḡ ≡ {Ḡl}, Ḡl =
∑Nd

i=1G
(i)
l , to be observed

given the “true” spectrum A is

P (Ḡ|A) ∝ e−
1

2
χ2[Ḡ,A], χ2[Ḡ, A] =

Λ−1
∑

l=0

Ḡl −Gl

σ2
l

, (A.7)

where σ2
l ≈

∑Nd

i=1(Ḡl − Ḡ
(i)
l )2/(Nd(Nd − 1)) is estimated from the data.

In order to find the most probable spectrum given the measured G one makes use

of Bayes’ theorem,

P (A|Ḡ) = P (Ḡ|A)P (A)/P (Ḡ). (A.8)

The two unknown quantities are P (Ḡ), which is constant for given data and indepen-

dent of A, and P (A), the probability of a spectrum A in the absence of any data. In

order to estimate P (A) one makes an entropic ansatz,

P (A) = eαS[A(ω),m(ω)], (A.9)
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where α is a Lagrange parameter, m is a default model (which may contain prior

knowledge about the spectrum) and S is a generalized Shannon-Jaynes entropy,

S[A,m] =

∫ ∞

−∞
dω (A(ω) −m(ω) − A(ω) ln (A(ω)/m(ω))) . (A.10)

The entropy has a maximum value of 0 when A = m, and it is the more negative

the more the spectrum A differs from the default model m. The posterior probability

P (A|Ḡ,m, α) is then given by

P (A|Ḡ,m, α) ∝ eαS[A(ω),m(ω)]− 1

2
χ2[Ḡ,A]. (A.11)

Numerically one may use different algorithms to obtain the most probable spectrum.

A simple MaxEnt program searches for the spectrum A with maximum probability for

given α and searches for the best value of α to find a balance between a good match

of data and a high entropy, e.g., the value with the highest probability P (A|Ḡ,m, α)

(classic MaxEnt) or chosen such that χ2 = Λ (historic MaxEnt).

In practice the MaxEnt procedure should be repeated for different default models

(e.g., Gaussian and flat default models) and for different subsets of data (if one

has enough measurements). Also one may increase the measured error bars σl by

hand and check how robust the features in A really are. The Green function is

typically measured on 1000 time slices in CTQMC in order to simplify the Fourier

transformation needed during the DMFT self-consistency cycle. For the MaxEnt

procedure data points may be skipped in order to avoid numerical problems [51], so

that 100-200 time slices are used in MaxEnt. As an example, we show in Fig. A.1

the dependence of the spectrum on the size of the error bars for data obtained in the

Mott insulating phase of the κ-Cl model introduced in Chapter 6. Clearly the basic

features of the spectrum are robust with respect to the different error bars, such as

the energy gap, the lower and upper Hubbard bands and the sharp peak just below

zero energy.



136 Analytic Continuation of QMC Data

-10 -5 0 5
ω/t

0

0.1

0.2

0.3

0.4

0.5

S
pe

ct
ra

l d
en

si
ty

 A
(

ω
)

smaller error bars
intermediate error bars
larger error bars

MaxEnt Example
κ-Cl model, Plaquette CDMFT, U/t=7, tdiag/t=0.44, βt=25

Figure A.1: Example of analytically continued data for the κ-Cl model (Chapter 6)
with different sizes of error bars.

The analytical continuation of spin-spin correlation functions is analogous to the

algorithm for the Green function, albeit with a bosonic instead of the fermionic kernel,

χ(τ) =

∫ ∞

0

ω(exp(−τω) + exp(−(β − τ)ω))

1 − exp(−βω)

Imχ(ω)

ω
. (A.12)

Here it is more convenient to divide the dynamic susceptibility by ω so that the

spectral density Imχ(ω)/ω is positive definite and the kernel

K(τ, ω) =
ω(exp(−τω) + exp(−(β − τ)ω))

1 − exp(−βω)
(A.13)

is non-singular at zero frequency.

In contrast to the Green function the spin-spin correlation function is not deter-

mined during each iteration of the self-consistency cycle in DMFT but only in the last

iteration after convergence is reached. Typically the spin-spin correlation function is

measured on Λ = 100-200 time slices. The accurate measurement of the spin-spin
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correlation function (two-particle correlation functions in general) is more difficult

than for the single-particle Green function, and it is therefore necessary to perform

longer QMC runs in order to reduce the size of the error bars.



138 Analytic Continuation of QMC Data



Appendix B

Electrodynamics on the Honeycomb Lattice

Most of the following calculations have been performed by Armin Seibert during his

Fortgeschrittenen-Praktikum in our group. They are quoted here with his permission

in order to make contact with the results for disordered graphene in Chapter 7. A

derivation of the Kubo formula on the honeycomb lattice will be given, and the

resulting dynamical conductivity will be discussed focusing on the dc limit.

We consider a tight-binding Hamiltonian,

H0 = −t
∑

m

(

a†mbm + a†m+v1
bm + a†m+v2

bm + h.c.
)

, (B.1)

which describes electrons hopping on a honeycomb lattice with the hopping amplitude

t ≈ 2.7 eV [165]. The lattice consists of two triangular sublattices A and B with a

lattice constant a, and the interatomic distance is a0 = a/
√

3, which is set to unity in

the following. We introduce the fermionic operators a
(†)
m+vi

and b
(†)
m which annihilate

(create) electrons on the respective sublattices A and B in the mth unit cell, as shown

in Fig. B.1. The basis vectors v1/2/a0 = (3/2,∓
√

3/2) are also shown in Fig. B.1.

Here we suppress the spin degree of freedom for simplicity. It merely doubles the

number of states and enters the results as a prefactor of 2 in the conductivity.

The Hamiltonian (B.1) is diagonalized by Fourier transformation and subsequent

Bogoliubov transformation. In the diagonal representation with the fermionic opera-
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Figure B.1: Unit cell of the honeycomb lattice with basis vectors v1/2 =

(3a0/2,∓
√

3a0/2) of the triangular superlattice and the basis vector x = (a0, 0)
connecting A and B sublattices. The lattice constant of the triangular superlattice is
a =

√
3a0 and a0 = 1 (unit length). For the case of graphene one has a0 = 1.42 ×

10−10 m. The size of the unit cell is Au = 3
√

3a2
0/2. The fermionic operators a† and

b† create electrons on the sublattices A and B. The current operators jD,E,F describe
charge currents flowing along the respective bonds from the B site to the A sites.
Figure created by Armin Seibert.

tors α
(†)
k and β

(†)
k the Hamiltonian reads

H0 = −
∑

k

(

ǫkα
†
kαk − ǫkβ

†
kβk

)

. (B.2)

The energy dispersion ǫk,± = ±ǫk is given by

ǫk/t =
√

3 + 2 cos(kv1) + 2 cos(kv2) + 2 cos(kv3)

=
[

1 + 4 cos(
√

3
2
ky)
(

cos(
√

3
2
ky) + cos(3

2
kx)
)]1/2

. (B.3)

The dispersion ǫk,± vanishes linearly at the corners (0,± 4π
3
√

3
) and (± 2π

3
√

3
,± 2π

3
√

3
) of the

hexagonal Brillouin zone, at the so-called Dirac points, and forms two Dirac cones

since the linear slope is rotationally invariant near the Dirac points.

In order to derive the Kubo formula for the dynamical conductivity we define the

charge and current density operators on the honeycomb lattice. The charge density
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operators on the A and B sites of the lattice are given by

ρA
m ≡ ρ(rm) = ea†mam, ρB

m ≡ ρ(rm + x) = eb†mbm. (B.4)

Three current density operators have to be defined for the different kinds of bonds

(Fig. B.1), namely

jD
m =

−iet

~
(a†mbm − b†mam),

jE
m =

−iet

~
(a†m+v2

bm − b†mam+v2
),

jF
m =

−iet

~
(a†m+v1

bm − b†mam+v1
). (B.5)

With this choice of operators the continuity equations for the charge density on the

A and B sites, respectively, read

ρ̇A
m = −jD

m − jE
m−v2

− jF
m−v1

, ρ̇B
m = jD

m + jE
m + jF

m. (B.6)

In order to derive the Kubo formula for the longitudinal conductivity in the x direction

we need to project the current operators jD
m, jE

m and jF
m on the x axis. The projected

current density operator reads

jx
m = jD

m − 1

2
jE
m − 1

2
jF
m. (B.7)

In the next step we couple the system to an external electromagnetic potential Φ such

that the corresponding electric field E(r) = −∇Φ(r) points along the x direction.

After Fourier transformation to q-space and including a frequency dependence the

electric field is thus given by E(q, ω) = Ex(q, ω)ex, where ex is a unit vector of

length a0 = 1 pointing in x direction. Within linear response theory the current

density induced by the electric field is then given by

〈jx
q(ω)〉 =

〈Kx〉 + Λxx(q, ω)

i(ω + i0+)
Ex(q, ω). (B.8)
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Here Ex(q, ω) is the electric field in x direction, and the prefactor

σxx(q, ω) =
〈Kx〉 + Λxx(q, ω)

i(ω + i0+)
(B.9)

is identified as the q-dependent dynamical conductivity. Here

Kx=
−2te2

AuN~2

∑

m

(a†mbm+
1

4
(a†m+v1

bm+a†m+v2
bm)+h.c.) (B.10)

denotes the kinetic energy density operator in x direction and

Λxx(q, ω) =
2i

AuN~

∫ ∞

0

dt〈[jx,q(t), jx,−q(0)]〉ei(ω+i0+)t (B.11)

is the current-current correlation function, with N the number of unit cells and Au =

3
√

3a2
0/2 the area of the unit cell. The prefactor of 2 in (B.10) and (B.11) accounts

for the spin degree of freedom, which was omitted in the Hamiltonian (B.1).

The dynamical conductivity is measured in the long-wavelength limit q → 0,

σxx(ω) = (〈Kx〉 + Λxx(ω))/(i(ω + i0+)), where

Λxx(ω) =
iße2t2

AuN~2

∑

k

(

δ(~ω − 2ǫk) − δ(~ω + 2ǫk)+

+
1

~ω + 2ǫk
− 1

~ω − 2ǫk

)

Jx 2
k g(ǫk) (B.12)

at temperature T and chemical potential µ, and g(ǫ) = tanh[(ǫ−µ)/(2kBT )]+tanh[(ǫ+

µ)/(2kBT )]. The real part of σxx(ω) thus has the well-known form expected for a

tight-binding model without electron-electron or impurity scattering [214],

Re σxx(ω) ≡ D δ(ω) + σreg(|ω|), (B.13)

where we have introduced the Drude weight

D =
2πe2t

AuN~2

∑

k

g(ǫk)

(

ξx
k − tJx 2

k

ǫk

)

, (B.14)
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the regular part (for ω > 0)

σreg(ω) =
πe2t2

AuN~2ω
g
(

~ω

2

)

∑

k

δ
(

~ω

2
− ǫk

)

Jx 2
k , (B.15)

and the vertex functions

Jx
k =

t

ǫk

(

1 + cos(
√

3
2
kx) cos(1

2
ky) − 2 cos2(1

2
ky)
)

, (B.16)

ξx
k =

t

ǫk

(

1 + 5
2
cos(

√
3

2
kx) cos(1

2
ky) + cos2(1

2
ky)
)

(B.17)

Interestingly the limits T → 0 and ω → 0 do not commute, because the factor g(~ω
2

)

in B.15 is nonzero if the limit T → 0 is taken first but zero if ω → 0 is taken first.

For the thermodynamic limit we replace the k-summation by an integral over the

Brillouin zone, 1
N

∑

k →
∫

d2k
FBZ

, where FBZ = 8π2/(3
√

3) is the area of the Brillouin

zone. The resulting dynamical conductivity is shown in Fig. B.2.
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Figure B.2: Regular part of the dynamical conductivity on the honeycomb lattice
at the indicated temperatures. At zero temperature the dc limit is πe2/2h, whereas it
vanishes at finite temperatures. Inset: Temperature dependence of the Drude weight.
It vanishes at zero temperature and increases linearly upon an increase in T . Thus the
dc conductivity of clean graphene is πe2/2h at T = 0, and it is infinite at finite T .
Figure created by Armin Seibert.
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The dc conductivity of clean graphene at zero temperature, where the Drude

weight vanishes, is σdc ≡ σreg(ω → 0). In order to compare our result with previous

theoretical calculations [163], we calculate the zero-frequency limit of the dynamical

conductivity at T = 0 analytically from (B.15). This is achieved by expanding the k-

dependent functions Jx
k and ǫk around the Dirac points and performing the integration

over the expanded integrand.

Near the Dirac points the dispersion is linearized,

ǫkD+p ≈
√

3

2
p, (B.18)

where kD is one of the two Dirac points mentioned below (B.3). The vertex function

Jx 2
k (B.16) is also expanded near the Dirac points,

Jx 2
kD+p ≈ 4

3p2

27

16
p2

y. (B.19)

This leads to

σreg(ω → 0) =
6π2e2

hAuFBZ

∫ 2π

0

dφ sin2 φ, (B.20)

where we have introduced polar coordinates and include a factor of 2 to account

for the valley degree of freedom, i.e., the fact that both Dirac points give the same

contribution to the conductivity. The zero-frequency limit of the regular part of the

conductivity at zero temperature and half-filling is thus given by

σdc ≡ σreg(ω → 0) =
π

2

e2

h
. (B.21)

Note that the dc conductivity has the form σdc = gdof(π/8)e2/h, with gdof = 4

the number of degrees of freedom (spin and valley degeneracy). Indeed the numerical

prefactor π/8 is universal for non-interacting two-dimensional systems with a linear

energy dispersion at low excitation energies. For bosons at the superfluid-insulator

transition [215,216] the same prefactor π/8 is found within the Gaussian approxima-

tion. Similarly for a Heisenberg antiferromagnet with rotationally invariant exchange
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Classification Drude
weight
D

Localiz. length

∼
∞
∫

0

dωRe σ(ω)
ω

Im σ(ω),
ω → 0+

Re ǫ(0+) Im ǫ(0+)

Insulator Zero Finite ∼ ω Finite Zero
Non-Ideal Conductor Zero Infinite ∼ ω Finite Infinite

Ideal Conductor Finite Infinite ∼ D/ω Infinite Infinite

Table B.1: Classification of insulators, non-ideal and ideal conductors at T = 0 in
terms of response functions.

coupling the dc spin conductivity is obtained as σs = π/8 × (gµB)2/h within linear

spin-wave theory [217].

We also point out that the electrodynamics of non-interacting electrons on the

disorder-free honeycomb lattice classifies the system as a non-ideal conductor even

though there are no impurities. Consider the local (momentum-integrated) dielectric

response function

ǫ(ω) = 1 + 4πi
σ(ω)

ω
, (B.22)

Re ǫ(ω) = 1 − 4π
Im σ(ω)

ω
, (B.23)

Im ǫ(ω) = 4π
Re σ(ω)

ω
. (B.24)

According to Ref. [218] a generalized scheme for the classification of insulators, non-

ideal conductors and conductors is shown in Table B.1. On the honeycomb lattice

the Drude weight vanishes at T = 0 (see inset in Fig. B.2). At the same time the

localization length diverges, since the integral over Re σ(ω)/ω diverges due to the

finite zero-frequency limit of Re σ. Thus the vanishing Drude weight indicates the

absence of perfect conduction, yet the quasiparticles are delocalized. Similarly, the

dielectric response function shows insulating behavior with a finite real part at zero

frequency, but also conducting behavior with a diverging instead of zero imaginary
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part. Hence the linear energy dispersion and the two-dimensionality indeed render

the system an “in-between” — neither an insulator with a full gap nor a metal.

We now turn to the connection of the above derivation with the calculations

presented for disordered graphene in Chapter 7. Starting from the representation of

the longitudinal conductivity as a convolution of Green functions [51],

σ(iν) =
2e2

νπ~2

∞
∫

−∞

dǫ ρ̃(ǫ)T
∑

n

[Gǫ(iωn + iν) +G−ǫ(iωn + iν)]Gǫ(iωn), (B.25)

which is valid for non-interacting electrons described by a tight-binding model or for

interacting electrons if vertex corrections may be neglected. Here we have already

assumed the band structure of graphene, with the valence and conduction bands as

introduced in Chapter 7 and ρ̃(ǫ) =
∑

k(∂ǫk/∂kx)
2δ(ǫ− ǫk) ≈ ~|ǫ|/2π for |ǫ| < ǫmax

in the Dirac cone approximation, where ǫmax is a cutoff energy on the order of the

half-bandwidth of graphene. Analytical continuation of Eq. (B.25) leads to

Re σ(ω) =
2πe2

~2

∞
∫

−∞

dǫ ρ̃(ǫ)

∞
∫

−∞

dν [Aǫ(ν + ω) + A−ǫ(ν + ω)]Aǫ(ν)
fν−µ − fω+ν−µ

ω
.

(B.26)

where fx = (1 + exp(x/T )) is the Fermi-Dirac distribution function (kB = 1) and µ

is the chemical potential. In the dc limit (ω → 0), one directly obtains Eq. (7.1),

σdc =
2πe2

~2

∞
∫

−∞

dν

∞
∫

−∞

dǫ ρ̃(ǫ) [Aǫ(ν) + A−ǫ(ν)]Aǫ(ν)
−dfx

dx

∣

∣

∣

x=ν−µ
. (B.27)

We now show the equivalence of Eq. (B.13) and Eq. (B.26), considering the in-

traband (Aǫ(ν +ω)Aǫ(ν)) and interband (A−ǫ(ν +ω)Aǫ(ν)) contributions separately.
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The intraband contribution for clean graphene (Aǫ(ν) = δ(ǫ− ν)) is given by

Re σintra(ω) =
2πe2

~2

∞
∫

−∞

dǫ ρ̃(ǫ)

∞
∫

−∞

dν δ(ǫ− ν − ω)δ(ǫ− ν)
fν−µ − fω+ν−µ

ω

=
2πe2

~2

∞
∫

−∞

dǫ ρ̃(ǫ)
−df(ǫ− µ)

dǫ
δ(ω), (B.28)

which is of the form Dδ(ω) with the Drude weight D given by a formula equivalent to

Eq. (B.14). Within the Dirac cone approximation the linearization of ρ̃(ǫ) amounts

to linearizing the dispersion according to Eq. (B.18) and approximating the vertex

function appearing in Eq. (B.14) according to Eq. (B.19). Similarly, the interband

contribution is given by

Re σinter(ω) =
2πe2

~2

∞
∫

−∞

dǫ ρ̃(ǫ)

∞
∫

−∞

dν δ(−ǫ− ν − ω)δ(ǫ− ν)
fν−µ − fω+ν−µ

ω

=
2πe2

~2

∞
∫

−∞

dǫ ρ̃(ǫ)
f(ǫ− µ) − f(ω + ǫ− µ)

ω
δ(ω − 2ǫ), (B.29)

in equivalence to Eq. (B.15) for the regular part of the conductivity. In particular,

using ρ̃(ǫ) ≈ ~|ǫ|/2π and taking the dc limit at T = 0 one directly obtains σdc =

πe2/2h in accordance with Eq. (B.21).

Obviously the intraband excitations give rise to the Drude-like contribution lead-

ing to an infinite dc conductivity in a perfect conductor. The interband excitations

appear in a two-band system, like in graphene, and lead to its visual transparency,

for example. For the dc transport in disordered graphene, as discussed in Chapter 7,

both contributions become important at low temperatures and near half-filling, i.e.,

at low densities. However, at high temperatures and high densities dc transport is

governed by intraband excitations solely. The introduced classification into valence

and conduction bands thus provides a useful terminology, even though it may be
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uncommon to deal with bands which are not differentiable manifolds, at least at the

Dirac points.
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[51] N. Blümer, Mott-Hubbard Metal-Insulator Transition and Optical Conductivity

in High Dimensions (PhD Thesis, Universität Augsburg, 2002)

[52] R. Bulla, T.A. Costi, D. Vollhardt, Phys. Rev. B 64, 045103 (2001)

[53] M. Imada, T. Misawa, Y. Yamaji, J. Phys. Condens. Matter 22, 164206 (2010)

[54] I. Dzyaloshinskii, Phys. Rev. B 68, 085113 (2003)

[55] R.M. Konik, T.M. Rice, A.M. Tsvelik, Phys. Rev. Lett. 96, 086407 (2006)

[56] K.Y. Yang, T.M. Rice, F.C. Zhang, Phys. Rev. B 73, 174501 (2006)

[57] T.D. Stanescu, G. Kotliar, Phys. Rev. B 74, 125110 (2006)



Bibliography 153

[58] F. Kagawa, K. Miyagawa, K. Kanoda, Nature 436, 534 (2005)

[59] F. Kagawa, K. Miyagawa, K. Kanoda, Nature Phys. 5, 880 (2009)

[60] D.J. Scalapino, Phys. Rep. 250, 329 (1995)

[61] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

[62] J.R. Schrieffer, Theory of Superconductivity (Perseus Books; Revised edition,

1999)

[63] F. Loder, private communication

[64] D.J. Scalapino, Numerical Studies of the 2D Hubbard Model (Chapter 13 in

the“Handbook of High Temperature Superconductivity”) (Springer, New York,

2007)

[65] S. Sorella, G. Martins, R. Becca, C. Gazza, L. Capriotti, A. Parola, E. Dagotto,

Phys. Rev. Lett. 88, 117002 (2002)

[66] C. Dahnken, M. Potthoff, E. Arrigoni, W. Hanke, Low Temp. Phys. 32, 457

(2006)
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schen und hilfreichen Anregungen bei meinen Vorträgen und für das motivierende
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Werner, ohne dessen Unterstützung in numerischen Fragen und im Verständnis der
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• A. P. Kampf, M. Kollar, J. Kuneš, M. Sentef, and D. Vollhardt, Material-Specific

Investigations of Correlated Electron Systems, arXiv:0910.5126 (accepted for

publication in “High Performance Computing in Science and Engineering, Gar-

ching 2009” (Springer)).





Lebenslauf

Michael Andreas Sentef
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