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vorgelegt von

Dipl.-Phys. Sebastian Deffner

aus Augsburg

Augsburg, Dezember 2010



Dissertation zur Promotion im Institut für Physik der Mathematisch-Naturwissenschaftlichen
Fakultät an der Universität Augsburg (Doctor rerum naturalium)

1. Gutachter: Dr. Eric Lutz
2. Gutachter: Prof. Dr. Peter Hänggi
3. Gutachter: Prof. Dr. Udo Seifert

Tag der mündlichen Prüfung: 07. Februar 2011
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1 Prologue

1.1 Thermodynamics - The theory of heat and work

Thermodynamics is the phenomenological theory describing the energy conversion of heat and
work. The Scottish physicist Lord Kelvin was the first to formulate a concise definition of ther-
modynamics when he stated in 1854 [Tho82]:

Thermodynamics is the subject of the relation of heat to forces acting between con-
tiguous parts of bodies, and the relation of heat to electrical agency.

At its origins the theory of thermodynamics was developed to understand and improve heat en-
gines. Hence, special interest lies on the dynamical properties of energy conversion processes.
However, the original theory was only able to predict the behavior of physical systems by con-
sidering their macroscopic state functions (such as entropy, temperature, pressure or volume).

Equilibrium and nonequilibrium processes

A system is considered to be in a stationary state, if all relaxation processes have come to an end.
Moreover, thermal equilibrium is characterized as a stationary state in which all thermodynamic
properties of the system of interest are time-independent. If the physical system changes very
slowly, and, hence, the system is in an equilibrium state at all times, the process is considered
to be quasistatic. All real physical processes, however, contain nonequilibrium contributions.
A thermodynamic system is out of equilibrium, if the system is time-dependent or fluxes are
present. Due to the importance of mass or energy fluxes at the system’s boundaries, it is not
possible to apply the thermodynamic limit. Especially for small system sizes it becomes neces-
sary to describe the dynamical properties including thermal fluctuations.

Quantum thermodynamics

The modern trend of miniaturization leads to the development of smaller and smaller devices,
such as nanoengines and molecular motors [CZ03, Cer09, HM09]. On these very short length
scales, thermal as well as quantum fluctuations become important, and usual thermodynamic
quantities, such as work and heat, acquire a stochastic nature. Moreover, in the quantum regime
a completely new theory had to be invented, since classical notions of work and heat are no
longer valid [LH07]. The present thesis contributes to this prevailing field by the research for
analytical expressions of the nonequilibrium entropy production in open and closed quantum
systems. Complementary to other publications [TH09a, TH09b, CH09] our approach deals with
the reduced dynamics of the system only. We are motivated by an experimental point of view
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1 Prologue

in the sense that the system under consideration can always be separated into an accessible sub-
system and the environment. Since, generally, the environment can be arbitrarily large, e.g. the
universe, it is usually not experimentally controllable. Hence, the present thesis is interested in
the thermodynamic properties of the reduced system only. To this end, we will have to deal with
methods and quantities of statistical physics, conventional thermodynamics, quantum informa-
tion theory and the theory of open quantum systems.

1.2 Organization of the thesis

The scope of the present thesis is to draw a bow over a wide range of coupling strengths of a
quantum system to its thermal surroundings. Therefore, we start with an introductory chap-
ter 2, in which we summarize the main developments in recent statistical physics for classical
systems arbitrarily far from equilibrium. In particular, we will briefly summarize the notion of
fluctuation theorems [CM93, Jar97, Cro98, HS01, Sei05] and a couple of exemplary derivations.

Then, we will turn to quantum systems and discuss in chapter 3 the dynamical properties
of isolated quantum systems. Chapter 3 presents a detailed analysis of quantum peculiarities,
which will have a notable impact on the thermodynamics properties discussed in the succeeding
chapter. In particular, chapter 3 focuses on the description and implications of the dynamics of
quantum systems. To this end, we will see that a geometric approach [Rup95] and the definition
of statistical distances [Woo81] capture the dynamical properties. Moreover, we will propose
an appropriate measure to quantify how far from equilibrium an arbitrary process operates in
terms of the time averaged Bures length [Bur68, Bur69]. The definition of the Bures length will
also serve as our starting point for the derivation of the generalized Heisenberg uncertainty
relation [MT45, ML98, LT09]. We will derive the minimal time that an isolated quantum system
needs to evolve from one state to another.

In chapter 4 we turn to a thermodynamic discussion of isolated quantum systems. Quantum
mechanical work and heat, however, are not given by the eigenvalues of Hermitian operators
[LH07]. Hence, we will have to deal with the quantum probability distributions of work and
heat. It will turn out that the irreversible entropy production can be written as a relative entropy
[Kul78, Ume62] between the current, nonequilibrium state and the corresponding equilibrium
one. This identification will lead to a generalized Clausius inequality, where we will find a sharp
lower bound for the irreversible entropy production in terms of the Bures length. Further, com-
bining the quantum speed limit from chapter 3 with the analytic expression for the entropy pro-
duction we will derive the maximal rate of entropy production in an isolated quantum system.
The latter is a mere quantum result and a generalized version of the Bremermann-Bekenstein
bound [Bre67, Bek74, Bek81, BS90]. This bound is an upper limit on the entropy, or information,
that can be contained within a given finite region of space which has a finite amount of energy.
In information theory this implies that there is a maximum rate of communication along a given
channel. The chapter will be completed by illustrating the rigorous results with the help of the
parameterized harmonic oscillator [Def08]. The lattermodel is the paradigm for an experimental
verification of our generalized expressions of the second law of thermodynamics in modulated,
cold ion traps [SSK08].

The next chapter introduces the quantum heat bath to the earlier considerations. We will

2



1.2 Organization of the thesis

analyze a quantum system coupled to an ensemble of harmonic oscillators usually called the
Caldeira-Leggett model [CL81, CL83]. In contrast to the classical case, it is still an unsolved
problem how to derive general expressions of the second law of thermodynamics for a reduced
quantum system with arbitrary coupling to its environment. To illustrate the difficulties we
will discuss the quantum Langevin equation. Nevertheless, we will be able to derive a closed
expression for the irreversible entropy production bymaking use of solely thermodynamic argu-
ments. It can be shown that this entropy production is the integral version of the instantaneous
rate earlier derived in [Spo78, Lin83, Bre03]. Moreover, our expression of the entropy produc-
tion fulfills an integral fluctuation theorem generalizing the universal form to quantum systems
[Sei08]. For the sake of completeness we present, finally, a couple of quantum master equations
[Lin76, CL83, PZ92] and their range of applicability.

In a last chapter 6 we complete the discussion by turning to the strong damping regime. For
high friction coefficients a semiclassical description becomes possible, where the reduced dy-
namics of the quantum system are described by means of a quantum Smoluchowski equation
[PG01, Tu04, TM07, DL09]. Quantum effects manifest themselves as additional quantum fluctu-
ations, and, hence, an effective diffusion coefficient. We will derive Crooks and Jarzynski type
fluctuation theorems by making use of a Wiener path integral representation of the solution of
the evolution equation [GG79, CJ06]. Again, we will be able to propose a physical system for
the experimental verification of our analytical predictions. In the case of high damping Joseph-
son junctions are a possible choice. To prove the applicability of the quantum Smoluchowski
equation we will suggest the measurement of the I-V characteristics, before we will propose a
possible measurement procedure.

In the present thesis analytical expressions for the irreversible entropy production of a quan-
tum system undergoing arbitrary nonequilibrium processes are derived for almost all kinds of
couplings to a thermal environment. We start with isolated dynamics and increase the friction
coefficient to continuously reach the high damping regime in the last chapter.

For the sake of simplicity of notation we will use units where the Boltzmann constant kB = 1
throughout the present thesis. Hence, β = 1/T, will synonymously denote the inverse temper-
ature and the inverse thermal energy. Moreover, we will use the shorthand notation dx and ∂x
for the total and partial derivative with respect to x, respectively.

3



1 Prologue

4



2 Classical systems far from equilibrium

Thermodynamics is a phenomenological theory, whose original goal was the understanding and
improving of heat engines. However, it turned out to be one of the most powerful concepts ex-
plaining physical systems from chemical reactions to black holes. Its basic structure is set on
two fundamental laws: the first law of thermodynamics or law of conservation of energy, and
the second law of thermodynamics or entropy law. The french engineer Sadi Carnot is consid-
ered as the inventor of thermodynamics. In is most famous publication [Car24] he proposed
the first systematic treatment of work and heat. He was the first to formulate the second law
explaining practical experience of the construction of heat engines. To this end, he invented par-
ticular engines working in reversible cycles. In honor of his contribution the heat engine with
the highest efficiency is still called Carnot engine. Several years later Rudolf Clausius restated
Carnot’s theory in a mathematical formulation [Cla64]. The first law expresses that the change
in internal energy, ∆E, of a thermodynamic system is given by the sum of work, W, performed
on the system and the heat, Q, transferred from the environment,

∆E = W + Q . (2.1)

The latter Eq. (2.1) is a reformulation of the mechanic concept of the law of conservation of en-
ergy. It was one of themajor developments to recognize the heat,Q, as an energy form contribut-
ing to ∆E. The key quantity of thermodynamics, however, is given by Clausius’ formulation of
the second law. Like work, heat is a process dependent quantity and involves details of the
change of all internal degrees of freedom. Clausius proved that there is a quantity measuring
the heat, which merely depends on the initial and final state of the system, the entropy S. Fur-
thermore, the entropy change, ∆S, for the thermodynamic system under consideration is always
larger than the heat exchange with its surroundings. The second law can, then, be expressed as,

∆S ≥ βQ , (2.2)

where β is the inverse temperature. The latter Clausius inequality (2.2) is generally valid for ir-
reversible as well as for reversible processes and for isolated as well as for open systems. The
equality sign is only reached for processes in which the system is in an equilibrium state for all
times. Such quasistatic processes are reversible and the only ones fully describable by means of
conventional thermodynamics. For nonequilibrium, irreversible processes the inequality (2.2)
still holds. However, an inequality is always less informative than an equality. Hence, thermo-
dynamics has to be extended in order to fully describe nonequilibrium situations. The purpose
of the present chapter is to introduce recent results and methods of nonequilibrium thermody-
namics. Furthermore, we discuss statistical approaches and generalizations of the second law.
Here, we concentrate on classical systems before we move to the quantum regime in the follow-
ing chapters.
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2 Classical systems far from equilibrium

2.1 Entropy production in the linear regime

Let us start with an extension of thermodynamics to the linear regime. Here, linear regime means
that the system under consideration stays close enough to equilibrium that in a first order ap-
proximation the microscopic dynamics are locally describable by equilibrium processes. The
nonequilibrium phenomena under consideration are e.g. relaxation or heat conduction. The
first complete description was introduced by Lars Onsager [Ons31a, Ons31b] and further elab-
orated by Ilya Prigogine [Pri47] and Ryogo Kubo [Kub57]. Moreover, a lucid treatment can be
found by de Groot and Mazur [dGM84].

A systematic thermodynamic scheme for the description of nonequilibrium processes must
also be built on the first (2.1) and second law (2.2). To extend the formulation to irreversible
processes, however, it is necessary to restate these laws in a way suitable for this purpose. In
the following, we mainly concentrate on the second law, since the conservation of energy can be
taken for granted even in nonequilibrium situations. First, we reformulate the Clausius inequal-
ity (2.2) with the irreversible entropy change, ∆Sir, as an equality,

∆S = ∆Sir + ∆Sre , (2.3)

where the reversible entropy change is given by the heat exchanged with the environment,
∆Sre = βQ. Accordingly, the second law (2.2) translates into,

∆Sir ≥ 0 , (2.4)

which is easily understood by considering particular processes, where the total heat exchange
vanishes, e.g. for isolated systems or cyclic processes. Moreover, the irreversible part of the en-
tropy change, ∆Sir, has to be zero for reversible, equilibrium transformations of the system. In
the following, the latter Eq. (2.4) will be called synonymously Clausius inequality. The reversible
part, ∆Sre, on the other hand, may be positive, zero or negative, depending on the interaction of
the system with its surroundings. Conventional thermodynamics is concerned with the study
of reversible transformations. The thermodynamic description of irreversible processes, how-
ever, is interested in the relation of the quantity ∆Sir and various irreversible phenomena, which
may occur inside the system. Before calculating the irreversible entropy production in terms of
the quantities which characterize the irreversible phenomena, we rewrite Eqs. (2.3) and (2.4) in
terms of extensive properties, as mass and energy. For extensive properties the densities, ρ, are
continuous functions of space coordinates and we, hence, write,

S =

V∫
dVρ s , (2.5a)

dtSre = −
Ω∫
dΩ Jtot , (2.5b)

dtSir =

V∫
dV sir . (2.5c)

By dt we denote the total derivative with respect to time, ρ is the continuous, extensive density,
s the entropy per unit mass, V the volume of the system, Jtot denotes the total entropy flow per
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2.1 Entropy production in the linear regime

unit area and unit time, Ω is the surface of the system, and, finally, sir is the entropy source
strength or irreversible entropy production per unit volume and unit time. Thus, Eq. (2.3) can
be rewritten with Eqs. (2.5) and the help of the Gauß’ theorem as,

V∫
dV [∂t (ρ s) + div {Jtot} − sir ] = 0 , (2.6)

where ∂t is the partial derivative with respect to time. Since Eqs. (2.3) and (2.4) hold indepen-
dently of the volume, it follows that

∂t (ρ s) = −div {Jtot}+ sir , (2.7a)

sir ≥ 0 . (2.7b)

The latter equations are the local, mathematical formulation of the second law of thermodynam-
ics. Furthermore, (2.7a) is a balance equation for the entropy density, ρ s, with the positive source
term sir. For later purpose (2.7a) can be rewritten as [dGM84],

ρdts = −div {J}+ sir , (2.8)

where the entropy flux J is the difference between the total entropy flux Jtot and a convective
contribution. For the derivation of Eqs. (2.7) it has been implicitly assumed that the macroscopic
Eqs. (2.3) and (2.4) remain valid for infinitesimally small parts of the system. This is in agreement
with the assumption that macroscopic measurements on the system are really measurements of
the properties of small parts, which still contain a large number of constituting particles. Hence,
it makes sense to deal with local values of fundamentally macroscopic concepts as entropy and
entropy production.

The main physical concept defining the linear regime is that, although the total system is not
in equilibrium, there exists within small mass elements a state of local equilibrium. For these
small mass elements the local entropy s is functionally defined by a local formulation of the first
law (2.1),

dts =
1

T
dte +

p

T
dtv−

n

∑
k=3

fk dtxk . (2.9)

In Eq. (2.9) we introduced the temperature T, the local energy e, the volume per mass unit v,
the pressure p, and further thermodynamic forces fk according to the extensive quantities xk per
mass unit. The hypothesis of local equilibrium can only be justified by virtue of the validity
of the conclusions derived from it. For particular microscopic models is can be shown that the
relation (2.9) only remains valid, if the system is not too far away from an equilibrium state. For
most familiar transport phenomena the use of (2.9) is justified. By combining Eqs. (2.8) and (2.9)
we obtain an expression for the irreversible entropy production sir,

sir = div {J}+ ρ

(
1

T
dte +

p

T
dtv−

n

∑
k=3

fk dtxk

)
. (2.10)

Hence, the irreversible entropy production is given by a total differential in terms of the exten-
sive variables,

sir = div {J} − ρ
n

∑
k=1

fk dtxk . (2.11)

7



2 Classical systems far from equilibrium

Concluding, we remark that the latter expression (2.11) fully describes the nonequilibrium phe-
nomena for processes during which the system stays close to equilibrium. The latter (2.11) is
the starting point of successfully understanding nonequilibrium entropy production and led to
the famous Onsager reciprocal relations [Ons31a, Ons31b]. However, far from equilibrium the
hypothesis of local equilibrium breaks down and a more careful treatment of the microscopic
dynamics becomes necessary.

2.2 Microscopic dynamics

2.2.1 Langevin equation

In the present section we introduce the mathematical description of the microscopic dynamics
of systems coupled to a thermal environment. By deriving the fluctuation-dissipation theo-
rem in 1905 Albert Einstein [Ein05] initiated the modern research of stochastic processes. Three
years later Paul Langevin, a French physicist, proposed a very different, but likewise power-
ful description of Brownian motion [Lan08, LG97]. Both descriptions have been analyzed to be
mathematically distinct. However, they are physically equivalent tools for the study of contin-
uous random processes. The Langevin equation is a Newtonian equation of motion with an
additional force stemming from the environment,

M ẍ + Mγ ẋ + V ′(x) = ξt . (2.12)

By M we denote the mass of the particle, γ is the damping coefficient and V ′(x) a conservative
force arising from a confining potential. Thus, the left hand side of Eq. (2.12) is the conventional
Newtonian equation of motion for a particle in a potential. Langevin’s innovation is the exter-
nal force ξt. It describes the randomness in a small, but open system introduced by thermal
fluctuations of the environment. Hence, ξt is a stochastic variable, which is in the simplest ver-
sion assumed to be Gaussian distributed. Usually one considers Gaussian white noise, which is
characterized by a δ-correlation,

〈ξt〉 = 0 (2.13a)

〈ξt ξs〉 = 2D δ (t− s) , (2.13b)

where D is the noise strength, or diffusion coefficient. Despite its apparently simple form the
Langevin equation (2.12) bears mathematical difficulties. Especially the handling of the stochas-
tic force, ξt, led to the study of stochastic differential equations. For further mathematical details
we refer to the mathematical literature [Ris89]. For the present purpose it is sufficient to keep
in mind that the underlying Newtonian equation of motion of a Brownian particle is given by
Eq. (2.12). However, to justify the expression used in the following for the diffusion coefficient
D let us briefly derive the fluctuation-dissipation theorem.

Fluctuation-Dissipation theorem

To this end, we rewrite the Langevin equation (2.12) for the case of a free particle, V(x) = 0, in
terms of the velocity v = ẋ,

M v̇ + Mγ v = ξt . (2.14)

8



2.2 Microscopic dynamics

The solution of the latter first-order differential equation (2.14) can be evaluated,

vt = v0 exp (−γt) +
1

M

t∫

0

ds ξs exp (−γ (t− s)) , (2.15)

where v0 is the initial velocity. Since the Langevin force is of vanishing mean (2.13), the averaged
solution 〈vt〉 results in,

〈vt〉 = v0 exp (−γt) . (2.16)

Moreover, the mean-square velocity
〈
v2t
〉
takes the form,

〈
v2t
〉

= v20 exp (−2γt) +
1

M2

t∫

0

ds1

t∫

0

ds2 exp (−γ (t− s1)) exp (−γ (t− s2)) 〈ξs1ξs2〉 . (2.17)

With the help of the correlation function (2.13) the twofold integral can be written in closed form
and, thus, (2.17) becomes,

〈
v2t
〉

= v20 exp (−2γt) +
D

γM2
(1− exp (−2γt)) . (2.18)

In the stationary state, which is reached for t ≫ 1, the exponentials become negligible and the
mean-square velocity (2.18) further simplifies to,

〈
v2t
〉

=
D

γM2
=

1

βM
. (2.19)

In the long time limit the system relaxes to equilibrium. Thus, we applied for the second equality
in Eq. (2.19) the equilibrium mean-square velocity of the kinetic gas theory. Concluding, we
obtain the fluctuation-dissipation theorem, which relates the external noise strength D with the
internal friction γ,

D =
Mγ

β
. (2.20)

The latter was derived earlier by Einstein [Ein05] without knowledge of the Langevin equation
(2.12). Hence, Eq. (2.20) is often synonymously called the Einstein relation.

2.2.2 Fokker-Planck equation

The Langevin force, ξt, with properties (2.13) is a stochastic quantity. Hence, the left hand side of
Eq. (2.12) and, in particular, the position and velocity of the Brownian particle become stochas-
tic, as well. Therefore, the microscopic dynamics of the Brownian particle are equivalently de-
scribed by the evolution equation of the probability w (x, v, t) to find a particle with a velocity
in the interval (v, v + dv) and at a position in the interval (x, x + dx). Generally, the probability
distribution w (x, v, t) solves a partial differential equation, the Fokker-Planck equation, of the
form,

∂tw (x, v, t) = F(x, v, t) w (x, v, t) , (2.21)

9



2 Classical systems far from equilibrium

where the linear operator F(x, v, t) is given by,

F(x, v, t) = −∂x D
x
1 (x, v, t)− ∂v D

v
1 (x, v, t) + ∂2x D

x,x
2 (x, v, t) + ∂2v D

v,v
2 (x, v, t)

+ ∂x∂v D
x,v
2 (x, v, t) + ∂v∂x D

v,x
2 (x, v, t) .

(2.22)

In the following, we discuss two simple, one-dimensional examples of Fokker-Planck equations,
namely the Klein-Kramers and the Smoluchowski equation.

Klein-Kramers equation

The Klein-Kramers equation is an equation of motion for distribution functions in position and
velocity space, which is equivalent to the full Langevin equation (2.12). In the one-dimensional
case it takes the form,

∂tw = −∂x (vw) + ∂v

(
V ′

M
w + γvw

)
+

γ

Mβ
∂2vw , (2.23)

where w = w (x, v, t). Moreover, we replaced the diffusion coefficient with the help of the
fluctuation-dissipation theorem (2.20). Then, the stationary solution of Eq. (2.23) is given by
a Boltzmann-Gibbs distribution, weq ∝ exp

(
−β/2Mv2 − βV

)
. The main advantage of the

Fokker-Planck equation (2.23) is that we can compute the entropy production in a specific sys-
tem directly. Let us start with a macroscopic equivalent of the balance equation (2.8),

Ṡ = βQ̇ + σt . (2.24)

If the system is initially prepared in an equilibrium state, the entropy can be identified with the
Shannon entropy,

S = −
∫

dx
∫

dvw (x, v, t) lnw (x, v, t) . (2.25)

The heat flux, on the other hand, is computed by noting that the internal energy of the system is
given by the mean Hamiltonian, E = 〈H〉,

E =
∫

dx
∫

dvw (x, v, t) H (x, v, t) . (2.26)

Hence, the energy flux separates into two terms,

Ė =
∫

dx
∫

dv ẇ H +
∫

dx
∫

dvw Ḣ

= Q̇ + Ẇ ,
(2.27)

where we identified the change in the Hamiltonian as work, W. Moreover, the variation of
the probability distribution is given by the evolution equation, and, hence, governed by the
coupling to the environment. Therefore, we identify the term arising from the time dependence
of w (x, v, t) as heat, Q. Concluding, the rate of irreversible entropy production is given by,

σt = −
∫

dx
∫

dv (ẇ lnw + ẇ βH) . (2.28)

10



2.2 Microscopic dynamics

The latter expression (2.28) can be written with the stationary solution, weq ∝ exp (−βH), of
Eq. (2.23) as,

σt = −
∫

dx
∫

dv ẇ
(
lnw− lnweq

)
, (2.29)

which reduces for a time independent Hamiltonian, i.e. when no work is performed, to the
negative time derivative of the Kullback-Leibler divergence D(.||.) [Kul78] between the current
state and the equilibrium distribution of the system,

σt = −dt

∫
dx
∫

dvw
(
lnw− lnweq

)
= −dt D

(
w||weq

)
. (2.30)

Later, we will derive the quantum generalization of Eq. (2.30) in the weak coupling limit (cf.
subsection 5.2.1). The Kullback-Leibler divergence D (w1||w2) is a non-commutative measure of
the distinction between two probability distributionsw1 and w2. Moreover, D (w1||w2) ≥ 0 with
equality only for identical densities. Further mathematical properties of the Kullback-Leibler
divergence are postponed to appendix A.1. The latter observation (2.29) is always true, as long
as the stationary solution of the system is given by a Gibbsian. More insight into the dynamics,
however, can be obtained by explicitly applying the evolution equation (2.23) to the expression
for σt in Eq. (2.28). With the help of the normalization of w,

∫
dx
∫
dvw = 1, it is a tedious but

straightforward calculation to obtain,

σt =
γ

Mβ

∫
dx
∫

dv
(∂vw + w βMv)2

w
. (2.31)

In the latter equation we derived an exact formula for the rate of irreversible entropy production
for systems whose dynamics are described by the Klein-Kramers equation (2.23). Thus, we
rewrote Eq. (2.11) in a non-local form and generalized the expression in the sense that Eq. (2.31)
is derived from microscopic dynamics. Furthermore, our result in Eq. (2.31) coincides with an
earlier published version in the context of the fluctuation-dissipation theorem [DK97].

Smoluchowski equation

The Klein-Kramers equation (2.23) further simplifies in the limit of high damping. For systems
strongly coupled to the environment the inertial term in the Langevin equation (2.12) can be
neglected. The latter is equivalent to considering the dynamics of the system for very large time
scales. As follows from Eq. (2.16) the relaxation time of the velocity degrees of freedom is given
by 1/γ and, thus, the inertial term in Eq. (2.23) becomes negligible for times t ≫ 1/γ. For these
time scales the Klein-Kramers equation reduces to the Smoluchowski equation [Dav54] in terms
of the marginal p (x, t) =

∫
dvw (x, v, t),

∂tp(x, t) =
1

γM
∂x
[
V ′(x, t) p(x, t)

]
+

1

βγM
∂2xp(x, t) . (2.32)

Equivalently to the consideration for the Klein-Kramers equation (2.23) we can compute the
rate of irreversible entropy production (2.28), which simplifies for dynamics described by the
Smoluchowski equation (2.32) to,

σt = −
∫

dx ( ṗ ln p + ṗ βV) . (2.33)
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2 Classical systems far from equilibrium

Combining Eqs. (2.32) and (2.33) we obtain with the help of the normalization,
∫
dx p(x, t) = 1,

after a few lines of calculation,

σt =
1

βγM

∫
dx

(∂xp + pβV ′)2

p
, (2.34)

which is the high damping limit of Eq. (2.31). Our expression (2.34) is the corrected form of the
entropy production identified by Daems and Nicolis [DN99]. In Eq. (15) of [DN99] the Fisher

information,
∫
dx (∂xp)

2 /p (cf. appendix A.2), of the instantaneous probability distribution
is called entropy production. However, the irreversible entropy production has to nullify in
equilibrium. On the contrary the Fisher information of theGibbs distributions, peq ∝ exp (−βV),
does not vanish, and, thus, an additional term has to be included. One easily convinces oneself
that our expression (2.34) fulfills the second law by being always nonnegative and vanishing in
equilibrium.

The above expressions for the irreversible entropy production (2.11), (2.31) and (2.34) are suffi-
cient to characterize nonequilibrium phenomena. However, the physical relevance is restricted
to situations where the thermodynamic entropy can be identified with the Shannon entropy.
This means explicitly that only system close to equilibrium are describable. The following sec-
tion is dedicated to recently proposed generalizations of the second law, which are valid arbi-
trarily far from equilibrium.

2.3 Generalizations of the second law arbitrarily far from
equilibrium

Almost two decades ago Evans, Cohen andMorris (1993) [CM93] discovered in the context of the
simulation of sheared fluids how to generalize the second law. For small systems the dynamics
are governed by thermal fluctuations and, thus, the second law has to be generalized in terms
of probability distributions. The fluctuation theorems relate the probability to find a negative
entropy production Σ with the probability of the positive value. They take the general form,

P (Σ = −A)

P (Σ = A)
= exp (−A) . (2.35)

The main statement is that the occurrence of negative entropy production for single realizations
of a particular process is exponentially rare. The fluctuation theorem is, hence, the generaliza-
tion of the second law for small systems driven arbitrarily far from equilibrium. In 1995 the
fluctuation theorem (2.35) was proven rigorously for deterministic dynamics [GC95] and later
generalized to stochastic Langevin dynamics [Kur98] and general Markov processes [LS99]. A
Brownian particle dragged in a harmonic potential, for which the fluctuation theorem is sim-
ply derivable [vZC03], was the paradigm for the first experimental verification by Wang et al.
[SE02]. However, Eq. (2.35) bears the disadvantage that one has to identify the entropy pro-
duction in general nonequilibrium systems. More easily accessible is the nonequilibrium work
relation contributed by Jarzynski in 1997 [Jar97],

〈exp (−βW)〉 = exp (−β∆F) , (2.36)
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2.3 Generalizations of the second law arbitrarily far from equilibrium

which relates the nonequilibrium work with the equilibrium free energy difference between
the initial and final state. Note that the system has to start in an equilibrium state, whereas
the final state can be a arbitrarily far from equilibrium. The free energy difference is computed
between the initial state and the equilibrium state into which the systemwould relax, if it had the
possibility. The Jarzynski equality generalizes the second law in the sense that a formulation of
the second law can be derived from Eq. (2.36). With the help of Jensen’s inequality, exp (〈x〉) ≤
〈exp (x)〉, we conclude,

exp (−β∆F) ≥ exp (− 〈βW〉) , (2.37)

which is equivalent to,
〈W〉 ≥ ∆F . (2.38)

The latter equation states that the mean work is always larger than the work performed for
quasistatic, isothermal processes. Thus, the second law is a corollary of the Jarzynski equality
(2.36) or Eq. (2.36) the generalization of the second law to nonequilibrium. Moreover, a first
experimental verification of Eq. (2.36) was proposed by Liphardt et al. [JB02] by stretching RNA-
molecules.

In the rest of the section we discuss simple derivations of the Jarzynski equality (2.36) and
some generalizations. For the sake of clarity we will restrict ourselves to exemplary considera-
tions. However, the relations are universally valid and derivable under fairly universal condi-
tions [Jar08]. In particular the coupling between system and environment can be treated gener-
ally. Furthermore, the system under consideration is driven out of equilibrium by an external
work parameter, α, with Hamiltonian H(α). Imagine for example a cylinder, whose volume is
varied by moving the piston, or a rubber band, which is stretched. In the following we consider
processes in which the work parameter is changed from an initial value, α0, at t = 0, to a final
value, α1, at t = τ.

2.3.1 Jarzynski’s work relation

Let us first consider the special case in which the system is thermodynamically isolated from
the environment, while the work parameter is varied from α0 to ατ . The physical situation, that
we have in mind, is a small system very weakly coupled to the environment. Thus, the system
equilibrates with inverse temperature β for a fixed work parameter, α. The time scale of the
variation of the work parameter, however, is supposed to be much shorter than the relaxation
time, 1/γ (2.16). Hence, the dynamics of the system during the variation of α can be approxi-
mated by Hamilton’s equations of motion to high accuracy. Specifically, let ζ = (q,p) denote a
microstate of the system. Thus, ζ is a point in the many-dimensional phase space, which includes
all relevant coordinates to specify the microscopic configurations q at momenta p. Let H (ζ; α)
denote the Hamiltonian of the system and the microscopic evolution is then given by,

q̇ = ∂pH , ṗ = −∂qH . (2.39)

If the work parameter, α, is not varied, and, hence, the system not perturbed, it equilibrates with
respect to the environment. Its according distribution for fixed α is Gibbsian,

p
eq
α (ζ) =

1

Zα
exp (−βH (ζ; α)) , (2.40)
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2 Classical systems far from equilibrium

where we introduced the partition function Zα, which is associated with the free energy corre-
sponding to the equilibrium state,

Zα =
∫

dζ exp (−βH (ζ; α)) , βFα = − lnZα . (2.41)

Now, we consider realizations of the process induced by varying αt over the time interval 0 ≤
t ≤ τ corresponding to a specific protocol. Due to the thermal isolation during the process the
work performed,W, is the net change in the internal energy,

W = H (ζτ (x0) ; α1)− H (ζ0; α0) , (2.42)

where ζt denotes the phase space evolution. Moreover, ζτ (x0) is the final microstate of the sys-
tem under the condition that it started in x0. In order to derive the nonequilibrium work relation
(2.36) we have to compute the average of exp (−βW (ζ0)) over initial conditions sampled from
the equilibrium distributions at α0,

〈exp (−βW)〉 =
∫

dζ0 p
eq
α0

(ζ0) exp (−βW (ζ0)) (2.43a)

=
1

Zα0

∫
dζ0 exp (−βH (ζτ (x0) ; ατ)) (2.43b)

=
1

Zα0

∫
dζτ

∣∣∣∣
∂ζτ

∂ζ0

∣∣∣∣
−1

exp (−βH (ζτ ; ατ)) . (2.43c)

In Eqs. (2.43) we substituted Eqs. (2.40) and (2.42) in the second line and changed the variables of
integration from ζ0 to ζτ (x0) in the third line. Such a change of variables is permitted by the one-
to-one correspondence of initial and final microstates under Hamiltonian evolution. Further,
Eq. (2.43c) simplifies by making use of Liouville’s theorem, which ensures conservation of phase
space volume and we arrive at,

〈exp (−βW)〉 =
1

Zα0

∫
dζτ exp (−βH (ζτ ; ατ)) =

Zα1

Zα0

= exp (−β∆F) . (2.44)

It is worth mentioning that the Hamiltonian approach invoked the conservation of phase space
volume. The latter derivation of the Jarzynski equality (2.44) is rather restrictive. Therefore, we
discuss in the next subsection a more general approach for stochastic evolution.

2.3.2 Crooks’ fluctuation theorem

Next, let us consider a stochastic approach following Crooks [Cro98, Cro99]. As before we are
interested in the evolution of the system for times 0 ≤ t ≤ τ, during which the work parameter,
αt, is varied according to some protocol. The process, however, is now described as a sequence,
ζ0, ζ1, ..., ζN , of microstates visited at times t0, t1, ..., tN as the system evolves. For the sake of
simplicity we assume the time sequence to be equally distributed, tn = nτ/N, and, implic-
itly, (ζN ; tN) = (ζτ ; τ). Moreover, the dynamics are describable with the Langevin equation
(2.12) with Gaussian white noise, and, thus, we assume that the evolution is a Markov process:
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given the microstate ζn at time tn, the subsequent microstate ζn+1 is sampled randomly from
a transition probability distribution, P, that depends merely on ζn, but not on the microstates
visited at earlier times than tn [vK92]. Physically, that randomness arises from the contact with
the environment. The Markov assumption is an equivalent formulation for sequences of the
δ-correlation of white noise (2.13). We explicitly exclude memory effects leading to dependence
of the transition probability, P, on more than the last microstate.

Moreover, the transition probability to the next microstate, ζn+1, depends not only on the
current microstate, ζn, but also on the current value of the work parameter, αn. Now, we assume
a detailed balance condition [vK92] for the ratio of a forward process, P (ζn → ζn+1; αn), and its
time reversed twin, P (ζn ← ζn+1; αn), which reads,

P (ζ → ζ′; α)

P (ζ ← ζ′; α)
=

exp (−βH (x′; α))

exp (−βH (x; α))
. (2.45)

When the work parameter, α, is varied in discrete time steps from α0 to αN = ατ as a forward
process, the evolution of the system during one time step is given by a sequence,

forward : (ζn, αn)→ (ζn, αn+1)→ (ζn+1, αn+1) . (2.46)

The latter sequence (2.46) represents that first the value of the work parameter is updated and is,
then, followed by a random step taken by the system. A trajectory between initial, ζ0, and final
microstate, ζτ , is generated by first sampling ζ0 from the initial distribution p

eq
α0

(2.40) and, then,
repeating the sequence (2.46) in time increments, δt = τ/N. Trajectories of the reverse process
(α0 ← ατ) are analogously generated. However, the starting point is sampled from p

eq
α1

and the
system is first taking a random step and, then, the value of the work parameter is updated,

reversed : (ζn+1, αn+1)← (ζn+1, αn)← (ζn, αn) . (2.47)

Consequently, the net change in internal energy, ∆E = H (ζN , αN)− H (ζ0, α0), can be written as
a sum of two contributions. First, the changes in energy due to variation of the work parameter,

W =
N−1
∑
n=0

[H (xn; αn+1)− H (xn; αn)] , (2.48)

and second, changes due to transitions between microstates in phase space,

Q =
N−1
∑
n=0

[H (xn+1; αn+1)− H (xn; αn+1)] . (2.49)

In the latter Eqs. (2.48) and (2.49) we already used notation for work,W, and heat, Q. As argued
by Crooks [Cro98] the first contribution (2.48) is given by an internal change in energy and the
second term (2.49) stems from the interaction with the environment introducing the random
steps in phase space. By applying the latter identification of work and heat the first law of
thermodynamics (2.1), ∆E = W + Q, is formulated in discrete time steps of the microscopic
evolution of the system.
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2 Classical systems far from equilibrium

The probability to generate a trajectory starting in a particular initial state, ζ0, is given by the
product of the initial distribution and all subsequent transition probabilities,

PF[Ξ] = p
eq
α0 (ζ0)

N−1
∏
n=0

P (ζn → ζn+1; αn+1) , (2.50)

where the stochastic independency of the single steps is guaranteed by the Markov assumption
and Ξ = (ζ0 → ...ζN). Now, we compare the probability of a trajectory Ξ during a forward pro-
cess, PF[Ξ], with the probability of the conjugated path, Ξ† = (ζ0 ← ...ζN), during the reversed
process, PR[Ξ†]. The ratio of these probabilities reads,

PF[Ξ]

PR[Ξ†]
=

p
eq
α0

(ζ0)
N−1
∏
n=0

P
(

ζn → ζn+1; α
ξ
n+1

)

p
eq
α1

(ζN)
N−1
∏
n=0

P
(
ζn ← ζn+1; α

R
N−1−n

) . (2.51)

In the latter equation the sequence
{

αF
0 , α

F
1 , ..., α

F
N

}
is the protocol for varying the external work

parameter from α0 to ατ during the forward process. Analogously,
{

αR
0 , α

R
1 , ..., α

R
N

}
specifies the

reversed process, which is related to the forward process by,

αR
n = αF

N−n . (2.52)

Hence, every factor P (ζ → ζ′; α) in the numerator of the ratio (2.51) is matched by P (ζ ← ζ′; α)
in the denominator. Concluding, Eq. (2.51) reduces with Eqs. (2.45), (2.48) and (2.52) to [Cro98],

PF[Ξ]

PR[Ξ†]
= exp

(
β
(
WF[Ξ]− ∆F

))
, (2.53)

whereWF[Ξ] is the work performed on the system during the forward process. The relation be-
tweenWF[Ξ] and the work performed during the reversed process,WR[Ξ†], reads by Eq. (2.48),

WF[Ξ] = −WR[Ξ†] (2.54)

for a conjugate pair of trajectories, Ξ and Ξ†. The work distributions, ρF and ρR, are computed
by integrating over all possible realizations, i.e. all discrete trajectories of the process,

ρF (+W) =
∫

dΞ PF[Ξ] δ
(
W −WF[Ξ]

)
(2.55a)

ρR (−W) =
∫

dΞ PR[Ξ†] δ
(
W +WR[Ξ†]

)
, (2.55b)

where dΞ = dΞ† = ∏n dxn. Substituting Eq. (2.53) into Eq. (2.55a),

ρF (+W) = exp (β (W − ∆F))
∫

dΞ PR[Ξ†] δ
(
W +WR[Ξ†]

)
, (2.56)

it follows the Crooks fluctuations theorem [Cro99],

ρR (−W) = exp (−β (W − ∆F)) ρF (+W) . (2.57)

16



2.3 Generalizations of the second law arbitrarily far from equilibrium

The theorem in Eq. (2.57) is a detailed version of the Jarzynski equality (2.36), which follows
from integrating Eq. (2.57) over the forward work distribution,

1 =
∫

dW ρR (−W) =
∫

dW exp (−β (W − ∆F)) ρF (+W) = 〈exp (−β (W − ∆F))〉F . (2.58)

The latter nonequilibrium work relations (2.36) and (2.58) are generally valid for all kind of
processes arbitrarily far from equilibrium. However, they are restricted to situations, where the
system starts in a thermal equilibrium state. Thus, we consider in the following subsection the
generalization to arbitrary initial states.

2.3.3 Generalization to arbitrary initial states

After the first verification [SE02] fluctuation theorems have been investigated experimentally in
various nonequilibrium situations [JB02, SE04, TB05, SB06]. The canonical example is a highly
damped Brownian particle in a driven potential. Due to the experimental and theoretical impor-
tance of the strongly damped regime, the overdamped Langevin equation,

Mγ ẋ + ∂xV (x, α) = ξt . (2.59)

with Gaussian white noise, ξt in Eq. (2.13) and the equivalent Smoluchowski equation (2.32)
have become important tools for the analysis of classical fluctuation theorems. In the following
we use a slightly generalized form of Eq. (2.59),

Mγ ẋ = F (x, α) + ξt , (2.60)

where the force F (x, α) may contain nonconservative contributions f (x, α),

F (x, α) = −∂xV (x, α) + f (x, α) . (2.61)

As before, α denotes an externally controllable work parameter. Now, the question arises, if the
notions appearing in the first and second law of thermodynamics can be consistently applied to
microscopic nonequilibrium processes like dragging a colloidal particle through a viscous fluid
[SE02].

Stochastic thermodynamics

Concerning the first law (2.1) Sekimoto interpreted the terms in the overdamped Langevin equa-
tion (2.59) in the sense of stochastic energetics or stochastic thermodynamics [Sek98]. To this end, we
rewrite Eq. (2.59),

0 = − (−Mγ ẋ + ξt)dx + ∂xV (x, α) dx , (2.62)

where we separated contributions stemming from the interaction with the environment and
internal variations of the system. Next, we identify the change in internal energy, de, for a single
trajectory, x, with the variation of the potential,

de(x, α) = dV(x, α) = ∂xV(x, α)dx + ∂αV(x, α)dα , (2.63)
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since we are considering overdamped dynamics. Moreover, we identify the external terms in
Eq. (2.62), which are governed by the damping and the noise, as the heat exchanged with the
environment, δq(x) = (−Mγ ẋ + ξt) dx. Combining Eqs. (2.62) and (2.63) we then obtain,

0 = −δq(x) + de(x, α)− ∂αV(x, α)dα , (2.64)

which is a stochastic, microscopic expression of the first law, with δw = ∂αV(x, α)dα. It is worth
emphasizing that the work increment, δw, is given by the partial derivative of the potential with
respect to the externally controllable work parameter, α. This is the only definition of work we
will use throughout the present thesis. For the second law and, in particular, entropy a proper
formulation is more subtle. Usually entropy is considered as an ensemble property measuring
the disorder or information content of a system. Hence, it might be questionable, if the concept
of entropy is assignable to stochastic, single trajectory formulations like (2.64). The fluctuation
theorem (2.57), however, relates the probability of entropy generating trajectories to those of
entropy annihilating ones. Thus, a definition of entropy on the level of single trajectories is
required. The idea of a stochastic entropy was first used by Crooks [Cro99] and later elaborated
by Seifert [Sei05]. For the sake of generality we formulate the Smoluchowski equation (2.32)
corresponding to the general Langevin equation (2.60) including nonconservative forces,

∂tp(x, t) = −∂x j(x, t) = − 1

γM
∂x [F(x, α) p(x, t)] +

1

βγM
∂2xp(x, t) , (2.65)

where we introduced the stochastic flux j(x, t). In particular, for systems with nonconservative
forcing, f (x, α) 6= 0, the stationary solution of Eq. (2.65) is not a Boltzmann-Gibbs distribution.
Therefore, the following considerations are completely general with respect to the initial state
of the system. Next, we continue with the observation that in equilibrium the thermodynamic
entropy is given by the Shannon entropy. Thus, we are interested in the dynamics of St, with

St = −
∫

dxp(x, t) ln (p(x, t)) , (2.66)

even in nonequilibrium. In the latter Eq. (2.66) p(x, t) is a solution of the Smoluchowski equation
(2.65). The Shannon entropy (2.66), however, takes the form of an average of a quantity st, St =
〈st〉, which can be interpreted as the trajectory-dependent entropy for the particle or system,

st = − ln (p(x, t)) , (2.67)

where the probability p(x, t) is evaluated along the stochastic trajectory xt. Furthermore, for any
given trajectory xt the quantity st depends on the initial state of the system, from which x0 is
sampled. Thus, st contains information on the whole ensemble. Similarly to above consider-
ations in subsection 2.2.2 we are interested in the rate of entropy change. Here, however, we
concentrate on the dynamics of the stochastic quantity st. The time derivative of st reads,

ṡt = −∂tp(x, t)

p(x, t)
− ∂xp(x, t)

p(x, t)
ẋ , (2.68)

which can be written in terms of the probability flux j(x, t),

ṡt = −∂tp(x, t)

p(x, t)
+ βγM

j(x, t)

p(x, t)
ẋ− β F(x, α) ẋ . (2.69)
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2.4 Summary

The third term in Eq. (2.69) can be related to the rate of heat dissipated in the medium [Sei05],

β q̇t = β F(x, α) ẋ . (2.70)

Then, Eq. (2.69) can be written as a balance equation (2.24) for the total trajectory dependent
entropy production,

ṡirt = β q̇t + ṡt

= −∂tp(x, t)

p(x, t)
+ βγM

j(x, t)

p(x, t)
ẋ .

(2.71)

In Eq. (2.71) we defined a trajectory dependent irreversible entropy production, sirt , which is a
microscopic formulation of the rate of irreversible entropy production, σt, derived in Eq. (2.34).
With themicroscopic formulation of irreversible entropy production the fluctuation theorem can
be derived, now.

Integral fluctuation theorem

Next, the fluctuation theorem follows from a path integral analysis of the stochastic dynamics.
Since we propose a more general derivation at a later point in section 6.2, we, here, merely
present the result. It can be shown [Sei05] that the total irreversible entropy production, ∆sir =∫ τ
0 dt sirt , obeys an integral fluctuation theorem,

〈exp (−∆sir)〉 = 1 , (2.72)

generalizing the Jarzynski equality (2.36) to arbitrary, initial states. It is worth emphasizing that
the integral fluctuation theorem (2.72) is truly universal, since it holds for any kind of initial
condition, any time dependence of force and potential, with (for f = 0) and without (for f 6= 0)
detailed balance at fixed α, and any length of trajectory t without need for waiting for equi-
libration. Moreover, the Jarzynski equality (2.36) is recovered by evaluating ∆sir for an initial
Boltzmann-Gibbs distribution.

2.4 Summary

In the present chapter we discussed generalizations and extensions of conventional thermody-
namics to various nonequilibrium situations. For classical systems, which obey a local equilib-
rium condition, thermodynamicmethods can be extended to derive the irreversible entropy pro-
duction. Further, we summarized properties of the Langevin and the Fokker-Planck equation,
both describing the microscopic dynamics. Especially the Fokker-Planck equations are useful to
obtain an insight into the dynamics of entropy production. Finally, we discussed generalizations
of the second law to systems arbitrarily far from equilibrium. The fluctuation theoremsmeasure,
on the one hand, the exponentially small probability of negative entropy production for single
realizations of a process, and on the other hand, relate the nonequilibrium work with the equi-
librium free energy difference. The present chapter was merely concerned with small, but still
classical systems. Naturally, the question about quantum effects arises when considering smaller
and smaller system sizes. The following chapters are dedicated to various generalizations of the
second law for isolated and thermally coupled quantum systems.
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2 Classical systems far from equilibrium
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3 Dynamical properties of nonequilibrium
quantum systems

The preceding chapter introduced and discussed recent generalizations of the second law for
classical systems far from thermal equilibrium. As argued earlier, fluctuations become more im-
portant for smaller and smaller systems under consideration. Hence, the natural question arises,
what changes, if additional to thermal fluctuations quantum uncertainty enters the game. In or-
der to elucidate this issue, the present chapter is dedicated to a geometric approach to driven
quantum systems. For the sake of simplicity, we, here, restrict ourselves to isolated systems,
and, therefore, unitary dynamics,

ih̄ ∂t|ψt〉 = Ht |ψt〉 , (3.1)

with a possibly time-dependent Hamiltonian Ht. We start by introducing a natural distance on
the space of density operators. This distance will be illustrated with an application, namely
determining how far from equilibrium the linear regime is valid for a parameterized harmonic
oscillator. Finally, a fundamental implication, the minimal quantum evolution time, the quantum
speed limit, is derived.

3.1 Geometric approach to isolated quantum systems

In an earlier section 2.1 we introduced the linear regime, which is to some extent close to equilib-
rium. Processes not describable by means of linear response theory are usually called far from
equilibrium. It would be desirable to define the expression far more precisely than merely not
being in the linear regime. Thus, the present chapter is dedicated to a geometric approach of
distinguishing quantum states. By defining a physically meaningful measure we will be able
to determine the distance between nonequilibrium and equilibrium states of quantum systems.
Let us start with pure states in subsection 3.1.1 and later generalize to arbitrary mixed states in
subsection 3.1.2.

3.1.1 Wootters’ statistical distance

The geometric approach to pure quantum states can equivalently be discussed in terms of arbi-
trary probability distributions. Hence, we consider a distinguishability criterion for probability
distributions, first. Since Wootters definition of the statistical distance [Woo81] is the starting
point of our later analysis, let us, briefly, summarize the basic concepts and the derivation of the
statistical distance.
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3 Dynamical properties of nonequilibrium quantum systems

Figure 3.1: Equally spaced points in the sense of the statistical distance (3.2) (taken from
[Woo81]).

1-dimensional probability space

We start by considering two differently weighted coins. For only two possible outcomes the
according probability space is one-dimensional. Every coin can be characterized by its probabil-
ity of heads, p1 and p2, which we call the YES outcome. A statistical distance, ℓ, can, then, be
defined as,

ℓ(p1, p2) = lim
n→∞

1√
n
×[maximum number of mutually

distinguishable intermediate probabilities] ,

(3.2)

where the mutually distinct probabilities are counted in n trials. Thus, we included a factor
1/
√
n to ensure that the limit exists. Now, we call two probabilities p and p′ distinguishable in

n trials, if ∣∣p− p′
∣∣ ≥ ∆p + ∆p′ , (3.3)

where ∆p denotes the usual standard deviation, ∆p =
√

p(1− p)/n. Substituting Eq. (3.3) in
the definition (3.2) we obtain for the statistical distance,

ℓ(p1, p2) = lim
n→∞

1√
n

p2

∑
p=p1

1

2∆p
=

p2∫

p1

dp

2
√

p(p− 1)
. (3.4)

By evaluating the integral in Eq. (3.4) [BM90a] the statistical distance (3.2) between two differ-
ently weighted coins, finally, reads,

ℓ(p1, p2) = arccos (
√
p1)− arccos (

√
p2) . (3.5)
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3.1 Geometric approach to isolated quantum systems

Figure 3.2: Illustration of the definition of statistical length of a path through points with regions
of uncertainty in a 3-dimensional probability space (taken from [Woo81]).

It is worth noting that the statistical distance (3.5) is not the usual Euclidean distance on prob-
ability space, which is given by |p1 − p2|. The difference originates in probabilities close to 1/2
being more difficult to distinguish than probabilities near 0 and 1. In Fig. 3.1 a series of probabil-
ities is plotted, which are equally spaced in the sense of the statistical distance (3.2). The curves
represent the distributions of the YES outcome for each of the special probabilities of YES. The
statistical distance is given by the number of curves which fit between two given points.

d-dimensional probability space

Next, we generalize the above definition (3.2) to experiments with more than two possible out-
comes. Thus, we will be able to calculate e.g. the statistical distance of two different non-Laplace
dices or the statistical distance of two pure preparations of a general quantum system. Let us
consider a probabilistic experiment with N possible outcomes. Accordingly, we have N proba-
bilities, p1,..., pN , which span an (N − 1)-dimensional probability space. The probability space
is merely characterized by the conditions:

pi ≥ 0, ∀ i = 1, ...,N and
N

∑
i=1

pi = 1 . (3.6)
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3 Dynamical properties of nonequilibrium quantum systems

Similarly to the previous case (3.2) we define the statistical distance to be proportional to the
number of distinguishable points. However, in a d-dimensional space, with d > 1, intermediate
points are not well-defined. Therefore, we have to refine the definition. The statistical length ℓC

of an arbitrary curve, C, in the probability space reads,

ℓC(p, p′) = lim
n→∞

1√
n
×[maximum number of mutually

distinguishable points along the curveC(p→ p′)] ,
(3.7)

where again the distinguishable probabilities are counted in n trials. The statistical distance
between two points in the (N − 1)-dimensional probability space is, then, the statistical length
of the shortest such curve connecting two points,

ℓ(p, p′) = min
C(p→p′)

ℓC(p, p′) . (3.8)

The idea of the above definition (3.8) is illustrated in Fig. 3.2 for a 3-dimensional probability
space. In order to complete the definition we have to define the meaning of distinguishable in n
trials. The actual frequencies of occurrence, ξ1,...,ξN, for a given set of probabilities of the out-
comes, p1,...,pN, are multinomially distributed. Due to the central limit theorem the multinomial
distribution can be approximated by a Gaussian distribution for n≫ 1,

ρ (ξ1, ..., ξN) ∝ exp

(
−n

2

N

∑
i=1

(ξi − pi)
2

pi

)
. (3.9)

The region of uncertainty around the point p = (p1, ..., pN) is defined to be the set of all points
(ξ1, ..., ξN) for which the absolute value of the exponent in Eq. (3.9) is less than 1/2. We choose
1/2 to agree with the earlier definition of distinguishability (3.2) in the previous case, N = 2.
Hence, two points, p and p′, in the probability space are distinguishable in n trials, if their regions
of uncertainty do not intersect. For n≫ 1, this is the case if and only if

√
n

2

√√√√
N

∑
i=1

δp2i
pi

> 1 , (3.10)

where we introduced δpi = pi − p′i. The latter condition (3.10) completes the definition of the
statistical distance ℓ(p, p′) on the (N − 1)-dimensional probability space.

Now, we want to find an explicit expression of ℓ(p, p′), where p and p′ are arbitrary points
in the probability space. We parameterize the smooth curve connecting these two points by
pt, 0 ≤ t ≤ τ with p0 = p and pτ = p′. According to the above definition (3.7) of the statistical
length and the criterion of distinguishability (3.10) we obtain,

ℓC(p, p′) =
1

2

τ∫

0

dt

√√√√
N

∑
i=1

1

pi(t)

[
dpi(t)

dt

]2
. (3.11)
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3.1 Geometric approach to isolated quantum systems

In order to calculate the statistical distance, the minimal statistical length of a curve connecting
p and p′ is determined by an arbitrary optimization method. Here, we make use of a coordinate
transformation, xi =

√
p
i
, for which Eq. (3.11) simplifies to,

ℓC(p, p′) =

τ∫

0

dt

√√√√
N

∑
i=1

(
dxi
dt

)2

. (3.12)

Equation (3.12) is the Euclidean length of the curve in the x-space. Moreover, we rewrite the
characterizing conditions of the probability space (3.6) as,

1 =
N

∑
i=1

pi(t) =
N

∑
i=1

x2i (t) . (3.13)

Now, according to Eq. (3.13) the curve x(t) has to lie on the Euclidean unit sphere in the x-space.
Hence, ℓ(p, p′) is given by the shortest distance along the unit sphere between the points x and
x′ defined by x =

√
p and x′ =

√
p′. This shortest distance in an Euclidean space is given by the

radian angle between the unit vectors x and x′. Therefore, the final expression of the statistical
distance between p and p′ reads,

ℓ(p, p′) = arccos

(
N

∑
i=1

xix
′
i

)
= arccos

(
N

∑
i=1

√
pip
′
i

)
. (3.14)

The latter result in Eq. (3.14) can be regarded as a natural notion of a distance on probability
space. It takes the actual difficulty of the distinguishability of different probabilistic experiments
into account.

The above definition (3.8) can be straightforwardly generalized to a probability space of count-
ably infinite dimensions. We label the outcomes of a corresponding probabilistic experiment by
i = 1, ...,∞. First, we want to approximate a remainder term and, thus, regard all the outcomes
with i = N + 1,N + 2, ... as just one outcome for a specific integer N. For large enough N the
probability,

pN,∞ =
∞

∑
i=N+1

pi , (3.15)

of this one outcome is very small. According to Eq. (3.14) the latter approximation of the sta-
tistical distance between two points, p = (p1, p2, ...) and p′ = (p′1, p

′
2, ...), in probability space

reads,

ℓapprox(p, p
′) = arccos

[(
N

∑
i=1

√
pip
′
i

)
+
√

pN,∞p′N,∞

]
. (3.16)

Finally, the exact statistical distance is defined as,

ℓ(p, p′) = lim
N→∞

ℓapprox(p, p
′) = arccos

(
∞

∑
i=1

√
pip
′
i

)
. (3.17)
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3 Dynamical properties of nonequilibrium quantum systems

The square root appearing in Eq. (3.17) is due to Eq. (3.9) and is based on the combinatorial
argument that leads to the multinomial distribution.

From the latter Eq. (3.17) we observe that the natural distinguishability distance of two pure
quantum states is given by their angle in Hilbert space. In quantum mechanics the probability
densities are given by the square of thewave functions’ absolute values. Moreover, the argument
of the arccos(.) in Eq. (3.17) is given by the overlap of two wave vectors |ψ〉 and |ψ′〉,

∣∣〈ψ|ψ′
〉∣∣ =

∞

∑
i=1

|〈ψ|i〉|
∣∣〈i|ψ′

〉∣∣ =
∞

∑
i=1

√
pip
′
i . (3.18)

Hence, generalizing Wootters’ statistical distance to arbitrary, mixed quantum states is equiva-
lent to properly defining the overlap (3.18) in the space of density operators.

3.1.2 Generalization to mixed states: The Bures length

However, for two arbitrary density operators, ρ1 and ρ2, it is, ad hoc, not clear at all how to
determine their overlap, i.e. their fidelity function. By means of an algebraic approach Uhlmann
was able to prove [Uhl76] that a properly well-defined fidelity function takes the form,

F (ρ1, ρ2) =

[
tr

{√√
ρ1 ρ2

√
ρ1

}]2
. (3.19)

Uhlmann’s analysis is based on general considerations of W∗-algebras following Bures [Bur68,
Bur69], who derived a natural metric on the space of density operators (cf. appendix A.3).
Here, we will summarize Jozsa’s [Joz94] axiomatic approach in order to make the definition
in Eq. (3.19) plausible. The more lucid axiomatic approach, however, bears the disadvantage
that we are not able to prove the uniqueness of F (ρ1, ρ2). Nevertheless, it can be shown with
more abstract methods [Uhl76] that F (ρ1, ρ2) (3.19) is, indeed, the unique definition fulfilling
the following axioms and being implied by the natural generalization of Wootters’ statistical
distance. First, let us start by introducing the mathematical concept of purification for mixed
quantum states in order to follow Jozsa’s considerations [Joz94].

Purification of mixed quantum states

LetH12 be a Hilbert space being divided into two subspaces,H12 = H1 ⊗H2, where ⊗ denotes
the usual tensor product [BZ06]. Further, we choose the orthonormal bases {|ei〉} for H1 and
{| f j〉} for H2. Then the total Hilbert space H12 is spanned by the product states |ei〉 ⊗ | f j〉. The
basis vectors are direct products of vectors in the factor Hilbert space H12, but by taking linear
combinations we will obtain vectors that cannot be written in such a form. Analogously, we can
define tensor products of operators acting on single subspaces. Let A1 act onH1, and A2 acts on
H2, then the product A1 ⊗ A2 is defined by its action on the basis elements,

(A1 ⊗ A2) |ei〉 ⊗ | f j〉 = A1|ei〉 ⊗ A2| f j〉 . (3.20)

The tensor product, as defined in Eq. (3.20), is a main concept in quantum mechanics. One
splits the universe into two parts, where a first part is the accessible system under consideration
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3.1 Geometric approach to isolated quantum systems

and a second part is the non-controllable environment. The second part may be a physical, e.g.
thermal environment, or from a mathematical point of view a general device with no pretence
of realism. In any case, the split is more subtle than in classical physics, since the total Hilbert
space usually contains states which cannot be written as direct products. Subsystems implying
such states are called entangled.

Now, we take the view from the total Hilbert space H12. To compute the expectation value
of an arbitrary observable we need the density matrix ρ12. With the definition of the tensor
product (3.20) we can, further, define the reduced density matrices ρ1 and ρ2, acting onH1 andH2,
respectively, by taking partial traces,

ρ1 = tr2 {ρ12} = ∑
f j

〈ei′ | ⊗ 〈 f j|ρ12|ei〉 ⊗ | f j〉 , (3.21)

and analogously for ρ2. The latter construction (3.21) is the mathematical formulation of the
physical situation that experiments are exclusively performed on the first subsystem. In this
case we are only interested in observables of the form,

A = A1⊗ 12 . (3.22)

In this case the total density operator contains more information than we need to determine the
expectation value 〈A〉, since

〈A〉 = tr {ρ12 A} = tr1 {ρ1 A1} . (3.23)

In the latter equation tr1 {.} denotes the trace taken over the first subsystem only. It is worth
mentioning that even if ρ12 is a pure state, then ρ1 will, in general, be a mixed state. Thus, we
obtain mixed states by taking partial traces in larger Hilbert spaces. In the following we define
the concept of purification, which turns around the latter observation. We start with a mixed
state and ask for the pure state in an enlarged Hilbert space. In order to treat this property
transparently, we need some further preparations in form of Schmidt’s theorem [BZ06]:

Theorem: Every pure state |ψ〉 in the Hilbert spaceH12 = H1⊗H2 can be expressed
in the form

|ψ〉 = ∑
i

√
λi |ei〉 ⊗ | fi〉 , (3.24)

where {ei} is an orthonormal basis for H1 and { fi} forH2.

Theorem (3.24) is also known as the Schmidt decomposition or Schmidt’s polar form. The real num-
bers λi in (3.24) are called Schmidt coefficients with the sum rule,

∑
i

λi = 1 , λi ≥ 0 . (3.25)

For a proof of Schmidt’s theorem (3.24) we refer to [BZ06] and, now, concentrate on two corol-
laries. Given any density matrix ρ on a Hilbert space H, we can use Eq. (3.24) to find a pure
state on a larger Hilbert space, whose reduction down to H is ρ. The first key statement can be
summarized as,
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3 Dynamical properties of nonequilibrium quantum systems

Reduction: Let ρ12 be a pure state on H12. Then the spectra of the reduced den-
sity matrices ρ1 and ρ2 are identical, except possibly for the degeneracy of any zero
eigenvalue.

Secondly, we formulate the concept of

Purification: Given a density matrix ρ1 on a Hilbert spaceH1, there is a Hilbert space
H2 and a pure state ρ12 onH1 ⊗H2 such that ρ1 = tr2 {ρ12}.

The above corollaries follow directly from Eq. (3.24). Their implications will become important
in the following. First, purification will be used to derive Uhlmann’s fidelity function (3.19) and,
second, for further derivations of dynamical properties (cf. section 3.3) it suffices to consider
merely pure states, without loss of generality. Generalizations to mixed states are obtained by
taking partial traces over appropriately chosen subspaces of the Hilbert space under considera-
tion.

Uhlmann’s transition probability

Now, let us come back to the generalization of the fidelity to mixed states. For two pure states,
|ψ1〉 and |ψ1〉, the natural definition of a fidelity function F (having values between 0 and 1) is
provided by their overlap,

F (|ψ1〉〈ψ1|, |ψ2〉〈ψ2|) = |〈ψ1|ψ2〉|2 . (3.26)

Equation (3.26) is in agreement with the interpretation of the statistical distance as the angle
in Hilbert space (3.18). If only one state is impure then the fidelity can straightforwardly be
generalized to read,

F (|ψ1〉〈ψ1|, ρ2) = 〈ψ1|ρ2|ψ2〉 , (3.27)

which is the average of Eq. (3.26) over any ensemble of pure states with a density ρ2. Now, we
want to generalize Eq. (3.27) to the case of two mixed states, ρ1 and ρ2. To this end, Jozsa [Joz94]
formulated the following axioms to be necessary to hold for a well-defined fidelity F (ρ1, ρ2):

F1 0 ≤ F (ρ1, ρ2) ≤ 1 and F (ρ1, ρ2) = 1 if and only if ρ1 = ρ2.

F2 F (ρ1, ρ2) = F (ρ2, ρ1).

F3 If ρ1 is pure, then Eq. (3.27) holds.

F4 F (ρ1, ρ2) is invariant under unitary transformations on the state space.

From Eqs. (3.26) and (3.27) one is tempted to define F (ρ1, ρ2) = tr {ρ1ρ2}. However, for general
mixed states this definition fails to satisfy F1 and it is not possible to fulfill all axioms by a
simple modification. On the contrary, one easily convinces oneself that the definition in Eq. (3.19)
satisfies all axioms. Moreover, Jozsa proved [Joz94] the following theorem:
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3.1 Geometric approach to isolated quantum systems

Theorem: For two arbitrary mixed quantum states ρ1 and ρ2 the fidelity function
satisfying all axioms F1-F4 reads,

F (ρ1, ρ2) =

[
tr

{√√
ρ1 ρ2

√
ρ1

}]2
= max |〈φ1|φ2〉|2 (3.28)

where the maximum is taken over all purifications |φ1〉 and |φ2〉 of ρ1 and ρ2, respec-
tively.

In the latter theorem we assumed implicitly that the two purifications are elements of the same
enlarged Hilbert space. This is justified, since without loss of generality we always can use the
largest Hilbert space. For the proof of Jozsa’s theorem (3.28) we refer to the literature [Joz94].
The important point is that for all theoretical analyses, i.e. not explicitly evaluating the fidelity,
we can assume without loss of generality the considered states to be pure. The evaluation of
F (ρ1, ρ2) for two general densities, ρ1 and ρ2, is non-trivial due to the square root of operators,
and, in general, only feasible for low-dimensional Hilbert spaces (cf. appendix A.3). Never-
theless, we will see an infinite dimensional example in the next section, namely F (ρ1, ρ2) for
Gaussian states. Finally, we summarize the properties of F (ρ1, ρ2), which are given by the ax-
ioms F1-F4 and implications of (3.28):

P1 0 ≤ F (ρ1, ρ2) ≤ 1 and F (ρ1, ρ2) = 1 if and only if ρ1 = ρ2.

P2 (Symmetry) F (ρ1, ρ2) = F (ρ2, ρ1).

P3 If ρ1 = |ψ1〉〈ψ1| is pure, then F (ρ1, ρ2) = 〈ψ1|ρ2|ψ1〉 = tr {ρ1ρ2}.

P4 a) (Convexity) If ρ1, ρ2 ≥ 1 and p1 + p2 = 1, then

F (ρ, p1ρ1 + p2ρ2) ≥ p1 F (ρ, ρ1) + p2 F (ρ, ρ2) . (3.29)

b) F (ρ1, ρ2) ≥ tr {ρ1ρ2}.

P5 (Multiplicativity) F (ρ1 ⊗ ρ2, ρ3 ⊗ ρ4) = F (ρ1, ρ3) F (ρ2, ρ4).

P6 (Non-decreasing) F (ρ1, ρ2) is preserved under unitary transformation. If any measure-
ment is made on the state, transforming ρ1, ρ2 into ρ′1, ρ

′
2, then F (ρ′1, ρ

′
2) ≥ F (ρ1, ρ2).

Next, having properly identified the overlap of mixed states, we can generalize Wootters’ statis-
tical distance (3.18) to arbitrary quantum systems.

Generalization of Wootters’ statistical distance

With the fidelity for mixed quantum states (3.19) Wootters’ statistical distance (3.17) is naturally
generalized by the Bures length,

L (ρ1, ρ2) = arccos

(√
F (ρ1, ρ2)

)
= arccos

(
tr

{√√
ρ1 ρ2

√
ρ1

})
. (3.30)
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3 Dynamical properties of nonequilibrium quantum systems

The latter definition generalizes the notion of an angle to arbitrary, mixed quantum states. The
density operators are maximally distinguishable, if they are orthogonal, and the Bures length is
bounded from above, L < π/2. Moreover, it has been shown by Braunstein and Caves [BC94]
that the underlying metric, i.e. the Bures metric (cf. appendix A.3) is the natural generaliza-
tion of Wootters’ infinitesimal distinguishability criterion taking explicitly non-diagonal matrix
elements of the density operators into account.

3.2 Measuring the distance to equilibrium

Having defined the Bures length on the space of density operators, we come back to one of our
original questions, whether we can measure the range of validity of the linear regime. With the
Bures length we obtained a distance between density operators and, hence, we are able to quan-
tify how far from equilibrium a nonequilibrium process operates. For the validity of the linear
regime during an arbitrary process, one supposes the system to stay close to equilibrium at all
times. Therefore, the present section proposes that, generally, the time averaged Bures length
has to be small for the validity of the linear regime. The time average is essential, since arbitrary
processes may contain nonlinear contributions, but, nevertheless, drive the system close to an
equilibrium state at single instants. To confirm the time averaged Bures length being the appro-
priate measure, we discuss a specific, analytically solvable example, namely the parameterized
harmonic oscillator.

3.2.1 Green-Kubo formalism

Let us start with the basics concepts of the Green-Kubo formalism as a general approach to the
linear regime [TH85]. To this end, we separate the Hamilton into an explicitly time-dependent
contribution and the unperturbed, initial system H0,

Ht = H0 + Vt, (3.31)

where Vt describes a weak time-dependent perturbance. As before, we are considering a quan-
tum process operating from t = 0 and to t = τ, and, hence, Vt = 0 at t = 0−. The derivation
simplifies by introducing the interaction picture, where the time-dependence of an operator Ot

stemming from the initial Hamiltonian, H0, is separated,

OI
t = exp (iH0t/h̄)Ot exp (−iH0t/h̄) . (3.32)

Analogously, the von Neumann equation translates in the interaction picture to,

ih̄ dt ρI
t =

[
V I
t , ρ

I
t

]
. (3.33)

A solution ρI
t of the differential equation (3.33) equivalently solves the corresponding integral

equation,

ρI
t = ρ0 −

i

h̄

t∫

t0

ds
[
V I
s , ρ

I
s

]
. (3.34)
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3.2 Measuring the distance to equilibrium

The latter integral equation can be solved self-consistently by means of the Picard iteration
[Aul04]. In the framework of linear response, however, the iteration takes merely the first or-
der into account, i.e. the solution is approximated linearly. Hence, the time-dependent density
operator is written as,

ρI
t ≃ ρ0 −

i

h̄

t∫

t0

ds
[
V I
s , ρ0

]
. (3.35)

Accordingly, the mean of an arbitrary, time-dependent observable, 〈Ot〉 = tr
{

ρI
t O

I
t

}
, reads,

〈Ot〉linear = 〈Ot〉ρ0 −
i

h̄

t∫

t0

ds tr
{

ρ0

[
OI

t ,V I
s

]}
. (3.36)

As before, we assume the system to be initially thermalized, ρ0 = exp (−βH0)/Z0, and, thus,
[ρ0, exp (iH0t/h̄)] = 0. Finally, reformulating Eq. (3.36) in the Schrödinger picture the mean of a
time-dependent operator is given by,

〈Ot〉linear ≃ 〈Ot〉ρ0 −
i

h̄

t∫

t0

ds tr {ρ0 [Ot,Vs]} . (3.37)

Equation (3.37) serves as a starting point for the derivation of the Green-Kubo formulas [TH85].
Here, however, we concentrate on applications of the Bures length (3.30). The approximations
of the linear regime are valid, if the exact average of an observable equals the linear approxima-
tion, 〈Ot〉exact ≃ 〈Ot〉linear. We will see in the following that this is the case, if the Bures length
averaged over the process time τ is small. First, however, we have to discuss, how the Bures
length (3.30) is evaluated, i.e. how to evaluate the fidelity function (3.19).

3.2.2 Fidelity for Gaussian states

Generally, the evaluation of the fidelity function (3.19) is rather involved due to the square root
of operators. However, for Gaussian, squeezed, thermal states F (ρ1, ρ2) can be written in closed
form [Scu98],

F (ρ1, ρ2) =
2√

∆ + δ−
√

δ
, (3.38)

where the parameters are defined as ∆ = det (A1 + A2) and δ = (det (A1)− 1) (det (A2)− 1).
Therefore, the fidelity for Gaussian states is merely governed by products of determinants of the
according covariance matrices Ai. These are given by,

Ai =


 2

(〈
x2i
〉
− 〈xi〉2

)
2
h̄

(
1
2 〈xipi + pixi〉 − 〈xi〉 〈pi〉

)

2
h̄

(
1
2 〈xipi + pixi〉 − 〈xi〉 〈pi〉

)
2
h̄2

(〈
p2i
〉
− 〈pi〉2

)

 . (3.39)

Consequently, the fidelity (3.38) for Gaussian states is completely determined by the first and
second moments. Next, we will discuss an analytically solvable system, namely the parameter-
ized harmonic oscillator, which is in a Gaussian state at all times. For a complete treatment of
the Gaussian properties of the harmonic oscillator we refer to [Def08, AL10] and a brief review
in appendix B.
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3.2.3 The parameterized harmonic oscillator in the linear r egime

As an illustrative example for the application of the Bures length (3.30) we choose the time-
dependent Hamiltonian,

Ht =
p2

2M
+

M

2
ω2

t x
2 . (3.40)

where the angular frequency, ωt, is varied from an initial value, ω0, to a final value, ω1, during
the time interval, 0 ≤ t ≤ τ. As before, we assume the oscillator to be initially thermalized, and,
hence, the initial density operator, ρ0, reads in space representation [KP07],

ρ0(x, x
′) =

√
Mω0

πh̄
tanh (β/2 h̄ω0) exp

(
−Mω0

2h̄
coth (βh̄ω0)

[(
x2 + x′2

)
− 2 sech(βh̄ω0)xx

′
])

,

(3.41)
and in momentum representation,

ρ0(p, p
′) =

√
tanh (β/2 h̄ω0)

πMh̄ω0
exp

(
− 1

2Mh̄ω0
coth (βh̄ω0)

[(
p2 + p′2

)
− 2 sech(βh̄ω0)pp

′
])

.

(3.42)
Let us, now, evaluate the time averaged Bures length. To this end, we ask for the distance
between the instantaneous nonequilibrium state, ρt, and the equilibrium state corresponding
to the current configuration of the system, ρ

eq
t . The equilibrium density operator, ρ

eq
t , for the

current state is given by Eqs. (3.41) and (3.42) and by replacing ω0 by ωt everywhere. For the
evaluation of the Bures length, L

(
ρt, ρ

eq
t

)
, we, first, have to calculate the covariance matrices

(3.39) for ρt and ρ
eq
t . The covariance matrix for the equilibrium state, ρ

eq
t , follows from Eqs. (3.41)

and (3.42) by integration over the x- and p-space,

A
eq
t =

(
h̄

Mωt
coth (β/2 h̄ωt) 0

0 Mωt
h̄ coth (β/2 h̄ωt)

)
. (3.43)

The instantaneous nonequilibrium density operator, ρt = U†
t ρ0Ut, can be written with the ex-

plicit expression for the time evolution operator (B.6) in space representation,

ρτ(x, x
′) =

√
Mω0

πh̄

tanh (β/2 h̄ω0)

Y2
τ + ω2

0X
2
τ

exp

(
−Mω0

2h̄

coth (βh̄ω0)

Y2
τ + ω2

0X
2
τ

[(
x2 + x′2

)
− 2 sech(βh̄ω0)xx

′
])

,

(3.44)
and in momentum representation

ρτ(p, p
′) =

√
ω0

πMh̄

tanh (β/2 h̄ω0)

Ẏ2
τ + ω2

0Ẋ
2
τ

exp

(
− ω0

2Mh̄

coth (βh̄ω0)

Ẏ2
τ + ω2

0Ẋ
2
τ

[(
p2 + p′2

)
− 2 sech(βh̄ω0)pp

′
])

.

(3.45)
In the latter Eqs. (3.44) and (3.44) the functions Xt and Yt are solutions of the force free classical
equation (B.4) with boundary conditions X0 = 0, Ẋ0 = 1 and Y0 = 1, Ẏ0 = 0. Accordingly, the
covariance matrix at time t is given by,

At =




h̄
Mω0

(
Y2
t + ω2

0X
2
t

)
coth

(
β
2 h̄ω0

)
1

ω0

(
YtẎt + ω2

0XtẊt

)
coth

(
β
2 h̄ω0

)

1
ω0

(
YtẎt + ω2

0XtẊt

)
coth

(
β
2 h̄ω0

)
M
h̄ω0

(
Ẏ2
t + ω2

0Ẋ
2
t

)
coth

(
β
2 h̄ω0

)

 , (3.46)
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3.2 Measuring the distance to equilibrium

where we used that 〈xp + px〉 = M dt

〈
x2
〉
. Finally, by making use of the mathematical proper-

ties of Xt and Yt [Def08] the fidelity function between the instantaneous nonequilibrium density
operator and its equilibrium counter part results in (cf. subsection 3.2.2),

F
(
ρt, ρ

eq
t

)
= 2

[
− ch(β/2 ε0)ch(β/2 εt)

+
√

coth2 (β/2 ε0) + coth2 (β/2 εt) + 2Q∗t ch(β/2 ε0)ch(β/2 εt) + ch2(β/2 ε0)ch
2(β/2 εt)

]−1
,

(3.47)

where we introduced the energies, εt = h̄ωt, and the measure of adiabaticity, Q∗t in Eq. (B.11).
Moreover, the ch(.)-function is a short notation for cosh(.). Now, the time averaged Bures length
is given with Eq. (3.47) by,

〈L〉τ =
1

τ

τ∫

0

dtL
(
ρt, ρ

eq
t

)
. (3.48)

Due to the lengthy formula for the fidelity (3.47) it is not feasible to find a closed expression
for 〈L〉τ . Thus, we continue with a graphical analysis of the linear approximation. In order to
determine the range of validity of the linear regime we, first, calculate the mean energy 〈H〉 in
the linear approximation, and, second, compare it with the exact result (B.18). To this end, we
identify the perturbation Hamiltonian as,

Vt = −M

2
(ω2

0 − ω2
t ) x

2 , (3.49)

and obtain by evaluating Eq. (3.37),

〈Hτ〉linear =
h̄

4

ω2
0 + ω2

1

ω2
0

coth

(
β

2
h̄ω0

)
. (3.50)

In Fig. 3.3 we plot the exact mean energy (B.18) and the linear approximation (3.50) as a function
of the time averaged Bures length (3.48) for different parameterizations of ωt. As expected the
exact and the approximated mean energy are indistinguishable for small values of 〈L〉τ . For
larger values of 〈L〉τ, i.e. for higher ω1, the system is on average farther away from equilibrium,
and, thus, the linear approximation fails. Concluding, the time averaged Bures length (3.48) is
an appropriate measure for the validity of the linear regime.

Since the exact fidelity (3.47) is still a complicated function, we analyze in the following sim-
plifying limits to deepen our insight.

Zero temperature limit

In the zero temperature limit, h̄β ≫ 1, where initially merely the ground state is occupied, the
fidelity function reduces to,

F
(
ρt, ρ

eq
t

) h̄β≫1−→
√

2

1+ Q∗t
, (3.51)
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Figure 3.3: Upper plots: Exact mean energy (B.18) (red, dashed line) and linear approximation
(3.50) (blue, solid line) as a function of the time averaged Bures length (3.48) with
βh̄ω0 = 1, M = 1 and τ = 1; Lower plots: corresponding parameterization of ωt for
arbitrary values of ω1

which can be derived directly, as well. In the zero temperature limit the harmonic oscillator is
initially in a pure state |0〉. Hence, the instantaneous equilibrium density operator reads at all
times,

ρ
eq
t

∣∣∣
T=0

= |0〉〈0| . (3.52)

If one state is pure, the fidelity reduces to Eq. (3.27) and we obtain,

F
(
ρt, ρ

eq
t

) ∣∣∣
T=0

= tr
{

ρt ρ
eq
t

}
= 〈0|ρt|0〉 = 〈0|U†

t ρ0 Ut|0〉 = |〈0|Ut|0〉|2 = pt0,0 . (3.53)

In the latter equation pt0,0 denotes the transition probability from initial to final ground state, i.e.
their overlap. It is given by [AL10],

pτ
0,0 =

√
2

1+ Q∗t
. (3.54)

Thus, we recover the zero temperature limit of the fidelity function (3.49), which was originally
defined as the overlap of two wave functions (3.26).
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3.3 Minimal quantum evolution time

Classical limit

On the other hand, in the limit of very high temperatures, i.e. in the classical limit, h̄β ≪ 1, we
obtain,

F
(
ρt, ρ

eq
t

) ∣∣∣
h̄β≪1

=
4ω0ωt

ω2
0 + 2Q∗t ω0ωt + ω2

t

. (3.55)

It is remarkable that in the classical limit the fidelity vanishes for large values of Q∗t like Ft ∝

1/Q∗t , whereas in the zero temperature limit Ft ∝ 1/
√

Q∗t .

3.3 Minimal quantum evolution time

In the last section we discussed an illustrative application of the Bures length. Now, we turn to a
more fundamental implication of the Bures angle (3.30) for general, isolated quantum systems.
Among the most interesting peculiarities of quantum mechanics are the Heisenberg uncertainty
relations. They express the probabilistic nature of quantum systems, which distinguishes them
from the classical world. Here, let us consider the Heisenberg uncertainty relation for energy
and time,

∆E ∆t ≥ h̄ . (3.56)

Usually, the latter equation is interpreted as: there is a minimal time it takes for a quantum
system to evolve between two orthogonal states, which is always larger than the inverse of its
initial energy spread ∆E. A more accurate expression for the quantum speed limit, τQSL, has been
derived in [MT45, ML98, LT09] for time-independent Hamiltonians,

τQSL = max

{
π

2

h̄

E
,

π

2

h̄

∆E

}
, (3.57)

where E is the expectation value of the Hamiltonian, E = 〈H〉, and ∆E denotes the disper-

sion, ∆E2 = 〈H〉2 −
〈
H2
〉
. Only recently Giovannetti, Lloyd, and Maccone [LM03] treated the

case of arbitrary angles within a numerical analysis, whereas Jones and Kok [JK10] proposed
a systematic treatment based on a geometric approach for orthogonal states. However, all pre-
vious studies dealt merely with time-independent Hamiltonians. The following derivation of
the quantum speed limit generalizes the geometric approach to arbitrary angles and explicitly
time-dependent Hamiltonians. As argued earlier (cf. subsection 3.1.2) we can restrict ourselves
without loss of generality to the case of pure states.

3.3.1 Mandelstam-Tamm type bound

Our derivation starts with the quantum Fisher information, which is an information theoretic
quantity related to the Bures length (cf. appendix A.2). For two arbitrary density operators, ρ
and ρ′, and a parameterization ρt, which starts at ρ at t = 0 and ends at ρ′ at t = τ, the gradient
of the Fisher information, It, is given by,

dtIt = (dtL)2 . (3.58)
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With the latter definition the distinction of two densities, ρ and ρ′, is reduced to the estima-
tion of t. The information about t obtained by a particular measurement is given by the Fisher
information, It. Moreover, it has been shown by Braunstein and Caves [BC94] that the Bures
angle between two infinitesimally close density operators, ρ′ = ρ + dρ, i.e. the Bures metric (cf.
appendix A.3) can be written as,

dL2 = tr
{
dρR−1ρ (dρ)

}
. (3.59)

The superoperatorR−1 reads in terms of the eigenvalues pi of ρ, ρ = ∑i pi|i〉〈i|,

R−1ρ (O) = ∑
j,k

〈j|O|k〉
pj + pk

|j〉 |k〉, (3.60)

for an arbitrary operatorO. On the other hand, the von Neumann equation can be rewritten as,

ih̄dtρ = [H, ρ] = [H − 〈H〉 , ρ] = [∆H, ρ] , (3.61)

where 〈H〉 is a real number, and can, hence, be included in the commutator. Finally, combining
Eqs. (3.58)-(3.61) we conclude,

dtIt = tr
{
dtρR−1ρ (dtρ)

}
=

1

h̄2
∑
j,k

(
pj − pk

)2

pj + pk

∣∣∆Hj,k

∣∣2 ≤ 1

h̄2

〈
〈∆H〉2

〉
, (3.62)

where the latter estimation is implied by a triangle-type inequality. Equation (3.62) states that
the amount of information about t in any measurement has an upper bound by the variance of
its generator H. Now, the Mandelstam-Tamm type inequality follows almost immediately. With
the definition of It (3.58) and taking the positive roots, we obtain,

dtL ≤
1

h̄
δH , (3.63)

where δH =

∣∣∣∣
√〈
〈∆H〉2

〉∣∣∣∣. The latter differential inequality is solved by means of separating

the variables and integration yields,

L(ρ0,ρτ)∫

0

dL ≤ 1

h̄

τ∫

0

dt δH . (3.64)

Thus, we finally obtain with the time averaged variance, ∆Eτ = 1/τ
∫ τ
0 dt (

〈
H2

t

〉
− 〈Ht〉2)1/2,

our first generalized quantum speed limit,

τ ≥ h̄

∆Eτ
L (ρ0, ρτ) . (3.65)

The latter result (3.65) generalizes the Mandelstam-Tamm bound [MT45] to arbitrary angles and
time-dependent Hamiltonians. The derivation is merely based on the triangle-type inequality in
Eq. (3.62) and the definition of the Bures angle in the space of density operators.
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3.3 Minimal quantum evolution time

3.3.2 Margolus-Levitin type bound

Instead of using the bound on the Fisher information we can also use the finite expression of
the angle L(ρ0, ρτ) between initial and final state to derive another differential inequality. To
this end, we assume without loss of generality the system to be in a pure state at all times,
ρt = |ψt〉〈ψt|. Thus, we have,

L (ψ0,ψt) = arccos (|〈ψ0|ψt〉|) . (3.66)

Evaluating the derivative of L (ψ0,ψt) with respect to time, t, yields,

dtL = − 1√
1− |〈ψ0|ψt〉|2

dt |〈ψ0|ψt〉| . (3.67)

Now, since the prefactor has a lower bound, 1/
√
1− x2 ≥ 1 for all x ∈ R, we obtain the

inequality,

dtL ≤ −dt |〈ψ0|ψt〉| . (3.68)

Next, let us have a closer look at the right hand side of Eq. (3.68). In order to simplify the
expression we will prove that

−dt |〈ψ0|ψt〉| ≤ |dt 〈ψ0|ψt〉| . (3.69)

To this end, we expand the derivative on the left hand side of Eq. (3.69) as,

dt |〈ψ0|ψt〉| = dt

√
〈ψ0|ψt〉 〈ψt|ψ0〉 . (3.70)

With the help of the Schrödinger equation (3.1) the latter expression in Eq. (3.70) can be evaluated
and we obtain,

dt |〈ψ0|ψt〉| =
〈ψ0|Ht|ψt〉 〈ψt|ψ0〉 − i 〈ψ0|ψt〉 〈ψt|Ht|ψ0〉

2ih̄ |〈ψt|ψ0〉|
(3.71a)

=
Im (〈ψ0|Ht|ψt〉 〈ψt|ψ0〉)

h̄ |〈ψt|ψ0〉|
(3.71b)

≤ |〈ψ0|Ht|ψt〉 〈ψt|ψ0〉|
h̄ |〈ψt|ψ0〉|

. (3.71c)

Therefore, the right hand side of (3.69) can be further bounded from below,

|dt 〈ψ0|ψt〉| =
1

h̄
|〈ψ0|Ht|ψt〉| (3.72a)

=
|〈ψ0|Ht|ψt〉| |〈ψt|ψ0〉|

h̄ |〈ψt|ψ0〉|
(3.72b)

≥ |〈ψ0|Ht|ψt〉 〈ψt|ψ0〉|
h̄ |〈ψt|ψ0〉|

, (3.72c)
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where we again used the Schrödinger equation (3.1). Furthermore, Eq. (3.72c) is implied by the
Cauchy-Schwarz inequality. Finally, combining Eqs. (3.71) and (3.72) we have,

dt |〈ψ0|ψt〉| ≤ |dt 〈ψ0|ψt〉| . (3.73)

Since the arccos (.) is a monotonically decreasing function in the interval 0 ≤ x ≤ 1, the
derivative of |〈ψ0|ψt〉| with respect to time, t, is strictly positive and we have, therefore, proved
Eq. (3.69). Continuing the derivation of the Margolus-Levitin type inequality, we combine
Eqs. (3.68), (3.69) and (3.72),

dtL ≤ |dt 〈ψ0|ψt〉| =
1

h̄
|〈ψ0|Ht|ψt〉| ≤

1

h̄
|〈ψt|Ht|ψt〉| , (3.74)

which is again a differential inequality as in the above derivation of the Mandelstam-Tamm type
inequality (3.63). Analogously, Eq. (3.74) is solved by separating the variables,

L(ψ0,ψτ)∫

0

dL ≤ 1

h̄

τ∫

0

dt 〈ψt|Ht|ψt〉 . (3.75)

Thus, we finally derived the generalized Margolus-Levitin bound [ML98] for arbitrary angles
and time dependent Hamiltonians,

τ ≥ h̄

Eτ
L (ψ0,ψτ) , (3.76)

where Eτ is the time averaged mean energy, Eτ = 1/τ
∫ τ
0
dt 〈ψt|Ht|ψt〉. As earlier discussed

in detail (cf. subsection 3.1.2) the above derivation of Eq. (3.76) is equivalently valid for arbi-
trary mixed states. We always can interpret pure states as purifications of mixed densities in an
enlarged Hilbert space. Hence, we can generally write,

τ ≥ h̄

Eτ
L (ρ0, ρτ) (3.77)

with Eτ = 1/τ
∫ τ
0 dt tr {ρtHt}. Concluding, we derived another lower bound on the time a

quantum system needs to evolve from an initial state, ρ0, to a final one, ρτ .

3.3.3 Quantum speed limit

Collecting the above derived bounds on the quantum evolution time (3.66) and (3.77) we obtain
the quantum speed limit τQSL as,

τQSL = max

{
h̄L (ρτ , ρ0)

Eτ
,
h̄L (ρτ , ρ0)

∆Eτ

}
. (3.78)

The minimum time is determined by the time averaged mean and variance of the energy and
not by their initial values, as earlier estimated by numerical methods in [LM03],

τmin ≃ max

{
2h̄L2 (ρτ , ρ0)

π E0
,
h̄L (ρτ , ρ0)

∆E0

}
, (3.79)
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Figure 3.4: Quantum speed limit time τQSL, Eq. (3.78), (red, solid line) and actual driving time τ
(blue, dashed line) for the linearly parameterized quantum harmonic oscillator (3.40)
and (3.80) with h̄ = τ = 1, 1/β = 0 and ω0 = 0.1.

where E0 = 〈H0〉 and ∆E0 = (
〈
H2

0

〉
− 〈H〉2)1/2. The latter bound in Eq. (3.78) is merely valid for

time-independent systems or quasistatic processes. As a consequence, the quantum speed limit
time for driven systems can be smaller than for undriven systems, when Eτ > E0 (∆Eτ > ∆E0).
This is, for instance, the case at zero temperature: According to Eq. (3.79), a quantum system
never leaves an initial (non-degenerate) pure state (infinite τmin) in the absence of driving, while
Eq. (3.78) predicts a finite τQSL for a driven Hamiltonian. Figure 3.4 shows that for the time-
dependent, harmonic oscillator (3.40) at zero temperature, the actual driving time τ can ap-
proach the absolute minimum evolution time τQSL within a factor of two, for a simple linear
change of its angular frequency,

ω2
t = ω2

0 + (ω2
1 −ω2

0) t/τ . (3.80)

Hence, the quantum speed limit is attainable by properly choosing the protocol parameterizing
the Hamiltonian. Moreover, it is remarkable that the rigorously derived quantum speed limit,
τQSL, (3.78) does not exactly reduce for time-independent systems to the numerically estimated
bound, τmin, (3.79). The latter observation is not a contradiction, since the quantum speed limit
is derived with the help of estimating inequalities, and, hence, with some degree of freedom.

The above derivation of the quantum speed limit (3.78) is valid for general driving and arbi-
trary angles. Therefore, earlier, heuristic assumptions [GS09, GC10] about the correct form of
τQSL for time-dependent Hamiltonians are clarified.
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Finally, in the classical limit, h̄ ≪ 1, the quantum speed limit vanishes as the Heisenberg
uncertainty relation (3.56) is a mere quantum effect.

3.4 Summary

The present chapter discussed dynamical properties of time-dependent quantum systems by
means of a geometric approach. To this end, we introduced a natural distance on the space
of density operators. The Bures length is, on the one hand, the generalization of the classical
distinguishability distance to mixed quantum states, and, on the other hand, the generalized
angle between density operators. Furthermore, we proposed the time averaged Bures length as
an appropriate measure for the validity of the linear regime. A quantum system can be described
by means of linear response theory, if it stays close to an equilibrium state at all times, i.e. if
the time averaged Bures length is small. We confirmed this conclusion with the help of an
analytically solvable system, namely the parameterized harmonic oscillator. Finally, we derived
a fundamental lower bound on the time of quantum evolution. The quantum speed limit is
the minimal time a quantum system needs to evolve between two distinguishable states. This
minimal time is governed by the time averaged mean and variance of the system energy and the
Bures length, i.e. the angle between initial and final state.
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Chapter 3 dealt with the dynamical properties of time-dependent quantum systems. In partic-
ular, the meaning of equilibrium and nonequilibrium states and their distinguishability were
clarified. In the present chapter we come back to thermodynamics. As before, we assume the
quantum system under consideration to be isolated, and, thus, describable by means of unitary
dynamics (3.1). We will start with a preliminary discussion of the notion of work and heat in
quantum systems before we turn to a generalized and sharpened Clausius inequality. We will
see that the geometric approach, which was discussed in detail in the last chapter, turns out to
be an appropriate method to explain the thermodynamics of closed quantum systems.

4.1 Thermodynamics: Work and heat in quantum mechanics

Let us start with two basic quantities in thermodynamics, work, W, and heat, Q. Since W and
Q are path or trajectory dependent their infinitesimal increments, δW and δQ, are not given
by total differentials. This fact is a first hint that a careful treatment is necessary in quantum
mechanics. In quantum systems the meaning of single trajectories is lost, and one rather has
to deal with probability distributions. How to define work and heat quantum mechanically,
and the according corollaries are discussed in this section. Moreover, we assume as before in
the context of classical Hamiltonian dynamics (in subsection 2.3.1) the system to be initially
thermalized, but otherwise isolated during the process in a time interval, 0 ≤ t ≤ τ.

4.1.1 Work is not an observable

The discussion of the probability density of quantum work was initiated by Kurchan [Kur00]
and Tasaki [Tas00]. The conclusions presented here follow Talkner, Lutz, and Hänggi [LH07].
We consider an explicitly time-dependent quantum system with Hamiltonian Ht (cf. Eq. (3.1)).
Thus, thermodynamic work is performed during the variation of Ht with time. Microscopi-
cally, quantum work for a single transition between distinct eigenstates of the system is given
by the difference of the initial and final energy eigenvalue, E0

n and Eτ
m. For an initial density,

ρ0 = exp (−βH0)/Z0 with eigenvalues p0n, we have to average over the thermal occupation
probabilities. Furthermore, we have to account for the induced transitions by the unitary evo-
lution with probabilities pτ

m,n. Hence, the probability density of the total work done on the
quantum system during time τ is given by,

P(W) = ∑
m,n

δ
(
W − (Eτ

m − E0
n)
)
pτ
m,n p

0
n . (4.1)
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4 Unitary quantum processes in thermally isolated systems

Note that Eq. (4.1) expresses the work being a random quantity due to the presence of both
thermal and quantum uncertainties, encoded in p0n and pτ

m,n, respectively. The transition proba-
bilities are given by the overlap between an instantaneous eigenstate, Hτ |mτ〉 = Eτ

m |mτ〉, and a
time evolved initial one, H0 |nτ〉 = E0

n |n0〉,
pτ
m,n = |〈mτ|Uτ|n0〉|2 , (4.2)

where the time evolution operator is, as usual, given with the time ordering operator, T>, by,

Uτ = T> exp


 1

ih̄

τ∫

0

dt Ht


 . (4.3)

Equivalently to the probability distribution, P(W) in Eq. (4.1), the statistical properties ofW are
encoded in the characteristic function, G(µ), which is defined as the Fourier transform of the
probability density,

G(µ) =
∫

dW exp (iµW)P(W) . (4.4)

Substituting the probability density, P(W) in Eq. (4.1), with Eq. (4.2) into Eq. (4.4), the charac-
teristic function, G(µ), can be evaluated to read,

G(µ) = ∑
m,n

exp
(
iµ
(
Eτ
m − E0

n

))
〈mτ |Uτ|n0〉〈n0|U†

τ |mτ〉
1

Z0
exp(−βE0

n)

= ∑
m,n

〈mτ|Uτ exp (−iµ H0) ρ0|n0〉〈n0|U†
τ exp (iµ Hτ)|mτ〉 .

(4.5)

By further making use of the completeness relation of the energy eigenstates, the characteristic
function, G(µ), is written as an average over the initial density, ρ0,

G(µ) = tr
{
U†

τ exp (iµHτ)Uτ exp (−iµH0) ρ0

}

= 〈exp (iµHτ) exp (−iµH0)〉ρ0 .
(4.6)

We observe that the characteristic function, G(µ) in Eq. (4.6), has the form of a time-ordered two
point correlation function. Therefore, we conclude that there is no Hermitian operator defining
the work in quantum systems. This is in agreement with the classical, thermodynamic notion
of work being not a state function. In order to determine the work, a two-time measurement is
necessary. Since the Hamiltonian at different times does not have to commute with itself, the
characteristic function (4.6) cannot be further simplified without an additional time-ordering
operator [LH07]. The latter point becomes more obvious by the observation that the character-
istic function equals the exponentiated work (cf. Eq. (4.4)) for the particular choice, µ = iβ. By
further evaluating Eq. (4.6) we obtain the quantum version of the Jarzynski equality (2.36),

〈exp (−βW)〉 = 〈exp (−βHτ) exp (βH0)〉ρ0 =
Zτ

Z0
= exp (−β∆F) . (4.7)

The main conclusion is that the Jarzynski equality (4.7) remains valid for isolated quantum sys-
tems. However, the nonequilibrium work is not an observable and, thus, one has to concentrate
on quantum statistical properties of thermodynamic quantities. To this end, the present chapter
provides a detailed analysis of implications and applications of the work density (4.1).

42



4.1 Thermodynamics: Work and heat in quantum mechanics

4.1.2 Fluctuation theorem for heat exchange

In the last subsection it was shown that there is no Hermitian operator describing the work
performed during a quantum process. In the latter analysis we restricted ourselves to the simple
case of unitary dynamics, and, thus, isolated systems. This means explicitly that no heat was
exchanged with any environment. Now, we turn our attention to situations in which merely
heat is exchanged, but no work is performed. The present analysis follows Jarzynski andWójcik
[JW05] in our notation. Let us consider a quantum system consisting of two subsystems,

Htot = HA ⊗ 1
B + 1

A ⊗ HB + hγ , (4.8)

where hγ denotes a very weak interaction between A and B. Moreover, we consider the total
Hamiltonian, Htot, to be time-independent in order to exclude work performing processes. Now,
we assume that the total system and both subsystems are time-reversal invariant. In quantum
mechanics the invariance of time reversal of a system is expressed by the condition,

[Θ, H] = 0 , (4.9)

where Θ is the quantum time-reversal operator and H the Hamiltonian of the system under
consideration. The operator Θ reverses linear and angular momentum while keeping posi-
tion unchanged. Now, we assume the subsystems A and B having equilibrated with inverse
temperatures βA and βB before the experiment and are, thus, described by thermal densities,
ρi = exp

(
−βiH

i
)
/Zi with i = A,B. At time t = 0− we separate the systems from the reservoirs

having induced the equilibration. By measuring the energies each subsystem i is projected onto
a pure state |ni〉 with probability pi

ni
= exp

(
−βiE

i
ni

)
/Zi and the total system is described by the

product state |nA〉 ⊗ |nB〉. Turning on the interaction term, hγ, at t = 0 we allow the system to
evolve until t = τ. The final state, |ψτ〉, of the total system is determined by the unitary evo-
lution under Schrödinger’s equation for the total system (3.1). Now, we turn off the interaction
term, and measure once again the energies of each subsystem separately. Therefore, the state
|ψτ〉 is projected onto a final product state |mA〉 ⊗ |mB〉. It is worth emphasizing that the time
τ may be chosen randomly. Usually, the total system is in an arbitrary nonequilibrium state at
time τ. Since we assumed weak coupling between the subsystems, we expect the energy of the
total system to be almost preserved,

EA
n + EB

n ≃ EA
m + EB

m . (4.10)

Hence, the energy changes of the two subsystems are approximately equal and we identify the
heat exchange Qn→m as,

Qn→m = EB
m − EB

n ≃ EA
n − EA

m . (4.11)

Analogously to the work density (4.1) we, now, formulate the probability density of the heat
exchange, Q, to read,

P(Q) = ∑
n,m

δ (Q−Qn→m) pτ
m,n p

A
nA p

B
nB , (4.12)

where |n〉 = |nA〉 ⊗ |nB〉 and |m〉 = |mA〉 ⊗ |mB〉. As before, pτ
m,n denotes the transition probabil-

ity between a time evolved initial state Uτ|n〉 and the final energy eigenstate |m〉 (cf. Eq. (4.2)).
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4 Unitary quantum processes in thermally isolated systems

Here, Uτ denotes the unitary time evolution operator of the total system. In order to derive the
fluctuation theorem for the heat transfer, Q, we, now, consider the total probability for a forward
transition from |n〉 to |m〉,

Pτ (|n〉 → |m〉) = pτ
m,n p

A
nA p

B
nB = |〈mτ|Uτ|n0〉|2

exp
(
−βAE

A
nA

)
exp

(
−βBE

B
nB

)

ZAZB
, (4.13)

and its time reversed counterpart (cf. Eqs. (2.50) and (2.51)),

Pτ (Θ|n〉 → Θ|m〉) =
∣∣∣〈mτ|Θ† Uτ Θ|n0〉

∣∣∣
2 exp

(
−βAE

A
mA

)
exp

(
−βBE

B
mB

)

ZAZB
. (4.14)

The time-reversal operator Θ, however, is anti-unitary, and Uτ Θ = ΘU−τ, which follows from
Eq. (4.9) and the anti-linearity [JW05]. Hence, we conclude for the transition probabilities,

〈mτ|Θ† Uτ Θ|n0〉 = 〈mτ|Θ† ΘU−τ|n0〉 = 〈mτ|U−τ|n0〉 , (4.15)

and for the ratio of forward and reversed transition,

Pτ (|n〉 → |m〉)
Pτ (Θ|n〉 → Θ|m〉) ≃ exp (∆β Qn→m) . (4.16)

In the latter equation we introduced the temperature difference, ∆β = βB − βA. Due to the
unitary evolution of the total system each eigenstate has a corresponding time-reversed twin.
Thus, the net probability of the heat transfer Q in time τ can be written as,

P(Q) = ∑
n,m

δ (Q−Qn→m) Pτ (|n〉 → |m〉)

= exp (∆β Q) ∑
Θn,Θm

δ (Q + QΘn→Θm) Pτ (Θ|n〉 → Θ|m〉)

= exp (∆β Q)P(−Q) .

(4.17)

In Eq. (4.17) we obtained a fluctuation theorem for the heat transfer Q between to weakly cou-
pled systems. The weak coupling limit is crucial for the identification of the heat, where we
assumed that no energy is lost in the interaction, hγ. Furthermore, the weak coupling limit en-
sures that the final state |ψτ〉 can be projected onto a product state of the two subsystemswithout
loss of information.

Illustrative example - two coupled harmonic oscillators

Next, in order to illustrate P(Q) in Eq. (4.12), we consider an analytically solvable example,
namely twoweakly coupled, isotropic harmonic oscillators. The total systemHamiltonian reads,

Htot = HA ⊗ 1
B + 1

A ⊗ HB + γ xA ⊗ xB , (4.18)

where the Hamiltonian of each subsystem is quadratic, Hi = pi
2/2M + M/2ω2xi

2, i = A,B.
For small coupling coefficients, γ ≪ Mω2, the transition probabilities, pτ

m,n, can be calculated
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4.2 Generalized Clausius inequality

by means of time-independent perturbation theory [DL77a]. It can be shown that second order
perturbation theory is sufficient to obtain numerically exact results for the probability density
P(Q) [LD10]. Since the perturbational distribution, P(Q), is given by a lengthy formula, we,
here, merely present illustrative plots based on a numerical analysis. Later on (cf. subsection
4.5.3), we will discuss the perturbational approach to the work distribution (4.1), as well. The
heat distribution (4.12) is given by a sum of δ-peaks. Hence, the cumulative distribution,

Pint(Q) =

Q∫

−∞

dQ′ P(Q′) , (4.19)

is given by a sum of step functions. In Fig. 4.1 we plot Pint(Q) for different time spans τ. We
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Figure 4.1: Cumulative heat distribution Pint(Q) (4.19) with γ = h̄ω/20, βA = 2, βB = 1, and
τ = 10 (left) and τ = 20 (right).

choose initial conditions, where the subsystem A starts with smaller temperature than subsys-
tem B, i.e. βA > βB. We observe that the mean heat flux is larger than zero, as B is in a hotter state
than A. However, due to the small system size fluctuations are important and, thus, negative
values for the heat transfer occur. That means explicitly that there is a nonzero probability that
for single realizations heat flows from cold (subsystem A) to hot (subsystem B). Furthermore,
the mean heat exchange, 〈Q〉, grows with time and the distributions broaden by increasing the
process time, i.e. the longer the subsystems interact, the more account fluctuations.

4.2 Generalized Clausius inequality

In the last section we introduced the quantum mechanical notions of heat and work. We ana-
lyzed, why we cannot define an operator describing work or heat. Hence, we concentrated on
the statistical properties. For nonequilibrium situations, however, the irreversible entropy pro-
duction characterizes the dynamics. We saw earlier (cf. section 3.2) that the time averaged Bu-
res length is appropriately measuring the distance of a nonequilibrium to an equilibrium state.
Now, we return to a thermodynamic approach by generalizing the Clausius inequality (2.4)
to quantum processes. Classical thermodynamics, however, merely states that the irreversible
entropy production during an arbitrary process is always nonnegative [Pri47], ∆Sir ≥ 0, with
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4 Unitary quantum processes in thermally isolated systems

equality for quasistatic processes. The validity of the latter Clausius inequality is independent
of the kind of operation on the system. For highly nonquasistatic transformations, however, the
information gained about the size of ∆Sir is not very sharp. Hence it would be desirable to gen-
eralize and sharpen the Clausius inequality for isolated quantum systems undergoing processes
arbitrarily far from equilibrium (see also [DL10]). To this end, we, first, identify the irreversible
entropy production, Sir, and second, sharpen the Clausius inequality by deriving a lower bound
in terms of the Bures length (3.30) between the final nonequilibrium and equilibrium states. Fur-
thermore, we assume the system to be isolated during the process under consideration. Never-
theless, initially the quantum system starts in a thermal equilibrium state. The latter assumption
is justified for systems which are ultra-weakly coupled to a thermal environment. Then the
time scales of the interaction between system and bath are infinitely large compared to the time
scales of the considered nonequilibrium processes. Hence, the dynamics of the system during
such a process can be described by unitary dynamics, whereas for quasistatic driving the system
remains in thermal equilibrium at all times.

4.2.1 Irreversible entropy production

We start by deriving an analytic expression for the irreversible entropy production from micro-
scopic principles. Usually the entropy production, ∆Sir, is identified with the mean irreversible
part of the work [Cro98],

β 〈Wir〉 = ∆Sir , (4.20)

where 〈Wir〉 = 〈W〉 − ∆F. Here, ∆F is the equilibrium work performed during quasistatic pro-
cesses. It is worth emphasizing that we compare a fast, nonequilibrium situation, described by
W, with its thermodynamic equivalent ∆F. The equilibrium process, however, cannot be real-
ized by unitary dynamics, since the system relaxes infinitely fast to equilibrium. As discussed
earlier quantum mechanically work is not an observable (cf. subsection 4.1.1). It is rather given
by a time-ordered correlation function and, hence, special interest lies on the probability distri-
bution (4.1),

P (W) = ∑
m,n

δ
(
W −

(
Eτ
m − E0

n

))
pτ
m,n p

0
n . (4.21)

Here,
(
Eτ
m − E0

n

)
is the microscopic work defined by the difference of initial and final energy

eigenvalues. Startingwith a canonical preparation one has to average over the given initial (ther-
mal) density operator ρ0 = exp (−βH0)/Z0 with eigenvalues p0n. Further, quantum mechanics
introduces additional uncertainty by possible transitions with probabilities pτ

m,n between ini-
tial and final states |n0〉 and |mτ〉. The derivation of the expression for the irreversible entropy
production starts with the averaged work,

〈W〉 = ∑
m,n

(
Eτ
m − E0

n

)
pτ
m,n p

0
n . (4.22)

We define the thermal density operator at time τ as, ρ
eq
τ = exp (−βHτ)/Zτ with eigenvalues

pτ
m, which corresponds to the equilibrium state of the final configuration of the system. Thus,

Eq. (4.22) can be rewritten,

β 〈W〉 = ∑
n

p0n ln p0n −∑
m,n

p0n p
τ
m,n ln pτ

m + ln (Z0/Zτ) , (4.23)
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and we obtain with the statistical definition of the free energy, ∆F = −1/β ln (Zτ/Z0), and an
expression of the second law, 〈W〉 = 〈Wir〉+ ∆F, that the irreversible part of the work is given
by,

β 〈Wir〉 = ∑
n

p0n ln p0n −∑
m,n

p0n p
τ
m,n ln pτ

m . (4.24)

On the other hand, the quantum Kullback-Leibler divergence [KL51, Ume62], the relative en-
tropy, is defined as,

S
(
ρτ ||ρeqτ

)
= tr

{
ρτ ln ρτ − ρτ ln ρ

eq
τ

}
. (4.25)

The relative entropy, S
(
ρτ ||ρeqτ

)
, is a non-commutative measure of the distinction between two

density operators, ρτ and ρ
eq
τ . Moreover, S

(
ρτ ||ρeqτ

)
≥ 0 with equality only for identical den-

sities (cf. appendix A.1). Equation (4.20) can be evaluated by applying the equilibrium density
operators explicitly and we conclude by comparing Eqs. (4.23) and (4.25),

β 〈W〉 = S
(
ρτ ||ρeqτ

)
+ β∆F , (4.26)

and especially

∆Sir = β 〈Wir〉 = S
(
ρτ ||ρeqτ

)
≥ 0 , (4.27)

which constitutes our first quantum generalization of the second law of thermodynamics. Arbi-
trarily far from equilibrium the irreversible entropy production is given by the relative entropy
measuring the distinguishability of the final nonequilibrium density, ρτ , and its equilibrium
counter part, ρ

eq
τ . By further noting the invariance of S

(
ρτ ||ρeqτ

)
under unitary transformations

[Ume62] we rediscover in the classical limit the results of [PdB07] and [VJ09]. We note, however,
that the relative entropy is not a true metric, as it is not symmetric and does not satisfy the trian-
gle inequality; it, therefore, cannot be used as a proper quantum distance. Moreover, the exact
result in Eq. (4.27) is not very suitable for practical use. For the evaluation of the relative entropy
the full density operators are needed. Hence, we next derive a lower bound for the quantum
entropy production, which we express in terms of the fidelity, one of the most commonly used
and well-studied measures in quantum information theory [NC00].

4.2.2 Lower bound for the irreversible entropy

The relative entropy, S (ρ1||ρ2), measures the distinguishability of two density operators, ρ1 and
ρ2. However, S (ρ1||ρ2) is neither symmetric nor fulfills a triangle inequality. In an earlier chapter
(cf. subsection 3.1.2) we discussed the Bures length as a proper distance on the space of density
operators. Hence, we would like to estimate the irreversible entropy production (4.27) from
below with the help of the Bures length, L. To this end we, first, analyze the Kullback-Leibler
divergence, D (p1||p2), i.e. the classical relative entropy of two probability measures, p1 and p2.

Lower bound in terms of the Bures distance

Let us start by introducing the Hellinger distance, h. Like Wootters’ statistical distance (3.17) the
Hellinger distance is a measure of the distinguishability of two probability distributions. It is,
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as well, a true distance, which fulfills the mathematical conditions, i.e symmetry, non-negativity
and the triangle inequality. For two probability distributions, p1 and p2, h is defined as,

h2 (p1, p2) =
∫

dx

(√
p1 (x)−

√
p2 (x)

)2

. (4.28)

Definition (4.28) can be rewritten in terms of the continuous, classical fidelity function (3.18),
f (p1, p2) =

∫
dx
√

p1(x)p2(x), as,

h (p1, p2) =
√

2− 2 f (p1, p2) . (4.29)

The corresponding Kullback-Leibler divergence between p1 and p2 can, now, be estimated from
below. With the functional estimation,

√
y− 1 ≥ 1/2 ln (y), we write,

√
p2 (x)

p1 (x)
− 1 ≥ 1

2
ln

(
p2 (x)

p1 (x)

)
. (4.30)

The latter equation has to be averaged and we obtain by taking expectation values with respect
to p1,

2


1−

〈√
p2 (x)

p1 (x)

〉

P1


 ≤

〈
ln

(
p1 (x)

p2 (x)

)〉

p1

. (4.31)

Hence, we conclude that the Kullback-Leibler divergence of two probability distributions, p1
and p2, is bounded from below by the square of the Hellinger distance between p1 and p2,

D (p1||p2) ≥ 2− 2 f (p1, p2) = h2 (p1, p2) . (4.32)

Next, we generalize the classical bound (4.32) to density operators involving mixed quantum
states. The quantum generalization of the Kullback-Leibler divergence, D (p1||p2), is given by
the relative entropy, S (ρ1||ρ2). Moreover, the quantum analog of the classical Hellinger distance
(4.28) is given by the Bures distance, D. Here, the Bures distance is a further element of the
distance family implied by the Bures metric (cf. appendix A.3). Thus, D reads in terms of the
quantum fidelity (3.19),

D2 (ρ1, ρ2) = 2

(
1−

√
F (ρ1, ρ2)

)
. (4.33)

As we discussed earlier (cf. subsection 3.1.2) the fidelity function for mixed quantum states is
given by the overlap of pure states in an enlarged Hilbert space. Hence, the quantum version of
the expectation values in Eq. (4.30) are obtained by taking the partial trace over the purifications
of ρ1 and ρ2 and we obtain,

2

(√
F (ρ1, ρ2)− 1

)
≤ 〈ln (ρ1)− ln (ρ2)〉ρ1 . (4.34)

Concluding, the relative entropy and, therefore, the irreversible entropy production (4.27) is
bounded from below by the Bures distance between the final nonequilibrium state, ρτ , and its
equilibrium counter part, ρ

eq
τ ,

∆Sir ≥ D2
(
ρτ , ρ

eq
τ

)
. (4.35)
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The latter equation constitutes our first generalization of the Clausius inequality. In otherwords,
inequality (4.35) quantifies in a precise way the intuitive notion that the irreversible entropy
production is larger, when a system is driven farther away from equilibrium. However, the
lower bound in terms of the Bures distance is merely useful for nonequilibrium processes which
drive the system not to far away from equilibrium. The Bures distance is bounded from above,
whereas the relative entropy grows exponentially. Moreover, the Bures distance, D, lacks a clear
physical interpretation in contrast to the Bures length, L, being the generalized angle between
mixed quantum states. Hence, we sharpen the latter inequality (4.35) in the following and ex-
press the lower bound of the irreversible entropy production in terms of L (3.30).

Lower bound in terms of the Bures length

Only recently Audenaert and Eisert established a mathematical, lower bound for the relative
entropy [AE05]. For any unitarily invariant norm, d(ρ1, ρ2), it can be shown that,

S(ρ1||ρ2) ≥ s

(
d (ρ1, ρ2)

d (e1,1, e2,2)

)
, (4.36)

where ei,j = |i〉〈j| are the projection operators, i.e. the matrices with the i, j element equal to 1
and all other elements 0. The function s(.) is obtained by an optimization procedure and can,
eventually, be written as,

s(x) = min
x<r<1

{
(1− r + x) log

(
1+

x

1− r

)
+ (r− x) log

(
1− x

r

)}
. (4.37)

Generally, the minimum on the right hand side of Eq. (4.37) has to be evaluated numerically.
However, it can be expanded in series around x = 0, which converges quickly. The leading
orders of the series expansion read,

s(x) = 2x2 +
4

9
x4 +

32

135
x6 +

992

5103
x8 +

6656

32805
x10 +O(x12) . (4.38)

For a discussion of the convergence of the series we refer to the literature [AE05]. Note, how-
ever, that the latter expansion (4.38) is more precise than earlier published versions due to the
evaluation of two higher orders.

Now, we can choose an arbitrary, unitarily invariant norm, d, to evaluate the sharp lower
bound of the relative entropy (4.36). Thermodynamically relevant distances should be physi-
cally motivated and to some degree unique [Rup95]. Since we saw earlier that the Bures length,
L (3.30), is an appropriate measure for the distance between equilibrium and nonequilibrium
states, we proceed with s(L). Noting that L(e1,1, e2,2) = π/2, since the two matrices are orthog-
onal (F(e1,1, e2,2) = 0), we obtain the generalized Clausius inequality,

∆Sir ≥ s

(
2

π
L
(
ρτ , ρ

eq
τ

))
≥ 8

π2
L2
(
ρτ , ρ

eq
τ

)
, (4.39)

where the last term on the right hand side of Eq. (4.39) is the leading quadratic order. The latter
Eq. (4.39) constitutes a sharp lower bound on the irreversible entropy production. Consequently,
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Eq. (4.39) is the properly generalized Clausius inequality for nonquasistatic quantum processes.
The loss during an arbitrary process can be estimated from belowwith the length measuring the
distance between the current state and the corresponding equilibrium one. From an experimen-
tal point of view the generalized Clausius inequality (4.39) estimates the quality of a processwith
the help of the fidelity. Moreover, we conclude that the minimal irreversible entropy production
is governed by the generalized angle between the final nonequilibrium state and its correspond-
ing equilibrium one. The higher orders in the series expansion are essential for a sharp lower
bound, since for large excitations the angle converges to its maximal value π/2, whereas ∆Sir
grows continuously.

In Fig. 4.2 we compare the above, constructively derived lower bound in terms of the Bures
distance, D in Eq. (4.35), with the leading order of the series expansion in terms of the Bures
length, L in Eq. (4.39). We observe that both distance measures behave qualitatively similarly
as both are implied by the same underlying metric (cf. appendix A.3). In the leading order, the
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Bures distance (4.35) sets a sharper lower bound on the irreversible entropy production. How-
ever, the Bures length, i.e. the angle between the final nonequilibrium state and its equilibrium
counter part, has a clear physical interpretation, whereas the Bures distance is merely a related
mathematical quantity. Finally, the constructively derived lower estimation (4.35) is recovered
as leading order of the series expansion (4.38) in terms of the Bures distance.

For almost quasistatic transformations, where the system remains close to an equilibrium
state at all times, the entropy production can be approximated by the infinitesimal Bures length,
L(ρeq + dρ) [LP05],

4 S (ρeq + dρ||ρeq) ≃ L2 (ρeq + dρ, ρeq) . (4.40)

The latter Eq. (4.40) constitutes with Eq. (4.27) the quantum generalization of Salamon’s in-
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4.2 Generalized Clausius inequality

finitesimal expression for the classical entropy production published almost thirty years ago
[NB84, SB83, AA85]. Whereas in the classical case the generalized Clausius inequality easily fol-
lows from integrating the classical equivalent of Eq. (4.40) and the Cauchy-Schwarz inequality
[Cro07], here, we have to deal with infinitesimal changes in the operator space. Concluding,
our generalized Clausius inequality (4.39) implies in the classical limit extensions of previously
proposed results. So far the entropy production was estimated [SB83, NB84, AA85, Cro07] from
below by the square of the thermodynamic length. Earlier derivations, however, are only valid
for open systems close to equilibrium. Here, the classical limit of the generalized Clausius in-
equality is valid for closed systems arbitrarily far from equilibrium.

4.2.3 Upper estimation of the relative entropy

In the last subsection we proposed a lower bound on the irreversible entropy production in
terms of the Bures length (4.39). The derivation is based on an analytic, sharp bound on the
relative entropy. The relative entropy, however, is a complicated function, which grows expo-
nentially. Hence, we ask for a further upper bound in order to estimate the relative entropy from
below and from above. To this end, we make use of various algebraic inequalities. We start with
the estimation [OZ01],

tr {ρ1 ln ρ1 − ρ1 ln ρ2} ≤
1

ν
tr
{

ρ1+ν
1 ρ−ν

2 − ρ1

}
, (4.41)

which is true for all positive definite operators, ρ1 and ρ2 and ν > 0. For our purpose we
can concentrate on the final nonequilibrium and equilibrium densities, ρτ and ρ

eq
τ . Further, we

choose ν = 1 and obtain with the normalization of density operators, tr {ρ} = 1, the upper
bound,

tr
{

ρτ ln ρτ − ρτ ln ρ
eq
τ

}
≤ tr

{
ρ2τ
(
ρ
eq
τ

)−1}− 1 . (4.42)

For the sake of simplicity we further estimate the relative entropy in Eq. (4.42) by making use of
the inequality [Mir75],

|tr {ρ1ρ2}| ≤
n

∑
r=1

σ1
r σ2

r , (4.43)

which holds for any complex n × n matrices ρ1 and ρ2 with descending singular values, σ1
1 ≥

... ≥ σ1
n and σ2

1 ≥ ... ≥ σ2
n . The singular values of an operator T acting on a Hilbert space are

defined as the eigenvalues of the operator
√
T†T. If the ρ1 and ρ2 are density operators acting on

the same Hilbert space, Eq. (4.43) remains true for arbitrary dimensions and the singular values
are identically given by the corresponding eigenvalues [Gri91]. Hence, Eq. (4.42) can be further
estimated to yield,

tr
{

ρτ ln ρτ − ρτ ln ρ
eq
τ

}
≤∑

n

(
p0n
)2

pτ
n

− 1 , (4.44)

where, as before, p0n ∝ exp
(
−βE0

n

)
and pτ

n ∝ exp (−βEτ
n) denote initial and final eigenvalues

of the equilibrium density operators. Note that the upper bound on the relative entropy in
Eq. (4.44) is independent of the nondiagonal matrix elements of ρτ and ρ

eq
τ . In the general case
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4 Unitary quantum processes in thermally isolated systems

the quantum relative entropy can, now, be estimated by an only recently proposed inequality
[SS00],

∑
x∈X

p2(x)

q(x)
− 1 ≤ 1

4

(
max
x∈X

{
p(x)

q(x)

}
−min

xεX

{
p(x)

q(x)

})2

. (4.45)

Hence, the final upper bound on the quantum relative entropy reads,

∆Sir ≤
1

4

(
max

n

{
p0n
pτ
n

}
−min

n

{
p0n
pτ
n

})2

, (4.46)

which generalizes the earlier published classical inequality [SS00] taking nondiagonal density
operators into account. For thermal states, however, where pn ∝ exp (−βEn), the latter inequal-
ity (4.46) is only useful for Eτ

n < E0
n. Merely in this case the right hand side takes a finite value

and infinity otherwise. On the contrary, the irreversible entropy production can always be es-
timated from above with inequality (4.44). The upper bound can then be evaluated explicitly
with the eigenvalues of the according initial and final equilibrium states of the system.

In the latter upper estimation of the relative entropy we rediscovered the algebraic difficulties
arising from nondiagonal density operators. Moreover, a physical interpretation of the upper
bound (4.46) is lacking. Therefore, we turn in the following to a physically fundamental bound
on the maximal rate of entropy production.

4.3 Maximal rate of entropy production

Nonequilibrium irreversible phenomena are not only characterized by the irreversible entropy
change, but also by the rate of entropy production, σ = ∆Sir/τ. The entropy rate, σ, is a central
quantity that is associated with the speed of evolution of a nonequilibrium process [dGM84].
In the last chapter we identified a fundamental minimal time, τQSL, which limits the speed of
quantum evolution. It can be written in terms of the time averagemean energy, Eτ, and variance,
∆Eτ , as (3.78),

τQSL = max

{
h̄L (ρτ , ρ0)

Eτ
,
h̄L (ρτ , ρ0)

∆Eτ

}
, (4.47)

where L (ρτ , ρ0) is the Bures length (3.30) between initial, ρ0, and final state, ρτ . Hence, the
maximal rate of irreversible entropy production, σmax = ∆Sir/τQSL, is bounded from above by
the minimal time the quantum system needs to evolve from its initial to its final state. For the
sake of clarity we, furthermore, write ∆Sir explicitly as,

∆Sir = β 〈Hτ〉 − β 〈H0〉 − βFτ + βF0 . (4.48)

By making use of a formulation of the second law, ∆F = Fτ − F0 ≤ 〈Hτ〉 − 〈H0〉, the irreversible
entropy production can be estimated from above by,

∆Sir ≤ 2β (〈Hτ〉+ 〈H0〉) , (4.49)

where we, moreover, assumed for the sake of simplicity that ∆F ≥ 0. Now, combining Eqs. (4.47)
and (4.49) the maximal rate of irreversible entropy production, σmax, is given by,

σmax ≤
2β (〈Hτ〉+ 〈H0〉)

h̄L (ρτ , ρ0)
min {Eτ ,∆Eτ} . (4.50)
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4.4 Illustrative example - the parameterized oscillator

The latter equation constitutes a fundamental upper bound on the quantum speed of evolution
during a nonquasistatic process. The upper bound goes to infinity for identical states, ρτ =
ρ0, and takes its finite minimum for orthogonal initial and final states governed by the time
averaged energy during the process of the system with respect to its initial and final state. The
fundamental maximal rate (4.50) is a mere quantum result, which is based on the Heisenberg
uncertainty of energy and time. A classical equivalent is lacking and, hence, the maximal rate
is unbounded in classical systems. Moreover, Eq. (4.50) is a generalization of the information-
theoretic Bremermann-Bekenstein bound [Bre67, Bek74, Bek81, BS90], whichwewill derive from
Eq. (4.50). The Bremermann-Bekenstein bound is an upper limit on the entropy, S, that can be
contained within a given finite region of space which has a finite amount of energy, E. Let us
consider large excitations, for which initial and final state become orthogonal, L (ρ0, ρτ) = π/2,

σmax ≤
4β (〈Hτ〉+ 〈H0〉)

h̄ π
min {Eτ ,∆Eτ} . (4.51)

Furthermore, we can assume for large excitations and continuous parameterizations that the
final energy is much larger than the initial one. For large heating rates, 〈Hτ〉 ≫ 〈H0〉, we hence
conclude,

σmax .
4β 〈Hτ〉

h̄ π
min {Eτ,∆Eτ} . (4.52)

In the high temperature limit, h̄β≪ 1, the latter Eq. (4.52) further simplifies by noting, Eτ ≃ 1/β
(∆Eτ ≃ Eτ/

√
N ≤ Eτ for N degrees of freedom),

σ ≤ 4

h̄π
〈Hτ〉 . (4.53)

The Bremermann-Bekenstein bound gives the maximum quantum communication rate (capac-
ity) that is possible through a noiseless single channel with signals of finite duration. We stress
that the present derivation is solely based on the thermodynamic definition of the entropy pro-
duction (4.20) and does not make any reference to information entropy or channels; it is, thus,
free of the caveats of the original derivations, such as the use of the periodic boundary condition
approximation [BS90]. Finally, in the classical limit, h̄ → 0, the bound becomes arbitrarily large
and, hence, entropy can be produced in classical systems arbitrarily fast.

4.4 Illustrative example - the parameterized oscillator

In the latter subsection we generalized the Clausius inequality by deriving a sharp lower bound
for the irreversible entropy production (cf. Eq. (4.39)). Moreover, we found a fundamental
quantum upper bound on the speed of nonequilibrium processes, namely a maximal rate of
entropy production (cf. Eq. (4.50)). The present section illustrates the latter results for a com-
pletely, analytically solvable system, namely the parameterized harmonic oscillator. As before
(cf. Eq. (3.40)), the Hamiltonian reads,

Ht =
p2

2M
+

M

2
ω2

t x
2 . (4.54)

where the angular frequency, ωt, is varied from an initial value, ω0, to a final value, ω1, during
the time interval, 0 ≤ t ≤ τ (cf. [Def08]).
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Figure 4.3: Irreversible entropy production (4.55) (blue, solid line) togetherwith the lower bound
(4.39) in lowest order expansion (red, dashed line) and including higher orders (4.38)
(green, dotted line).

4.4.1 Lower bound on entropy production

Now, we want to illustrate the sharpened Clausius inequality (4.39). To this end, we, first, have
to evaluate the irreversible entropy production, ∆Sir. For the parameterized harmonic oscillator
we obtain [DL08b, AL10] (cf. appendix B),

∆Sir =
β h̄ (ω1− ω0)

2
Q∗ coth

(
β

2
h̄ω0

)
− ln

(
sinh (β/2 h̄ω0)

sinh (β/2 h̄ω1)

)
, (4.55)

where Q∗ is again the nonadiabaticity measure (B.11). For the lower bound in terms of the Bures
length, L, we need an explicit expression for the fidelity function, F, between the current state,
ρτ , and its equilibrium counter part, ρ

eq
τ . For Gaussian states the fidelity can be evaluated (cf.

subsection 3.2.2) and the result is given by the lengthy expression in Eq. (3.47). In Fig. 4.3 we
plot the irreversible entropy production, ∆Sir, as a function of Q∗ together with the lower bound
in the lowest order expansion and including the first five non-vanishing orders. The farther
away from equilibrium the process operates, i.e. the higher the value of Q∗, the more entropy is
produced irreversibly. Furthermore, the quadratic order converges quickly to its maximal value,
whereas including the higher terms significantly sharpens the estimation.

4.4.2 Maximal rate of entropy production

For the illustration of the maximal rate of entropy production, σmax in Eq. (4.50), we have to
evaluate the fidelity between the initial density operator, ρ0, and the final one, ρτ . Analogously
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4.4 Illustrative example - the parameterized oscillator

to the above derivation (cf. subsection 3.2.2) we obtain,

F (ρ0, ρτ) =
2 (cosh (βh̄ω0)− 1)√

3−Q+ (1+Q) cosh (2βh̄ω0)− 2
, (4.56)

where we introduced the quantity,

Q =
1

2ω2
0

{
ω2

0

[
ω2

0 X
2
τ + Ẋ2

τ

]
+
[
ω2

0 Y
2
τ + Ẏ2

τ

]}
. (4.57)

Similarly toQ∗ the quantityQ is a measure of the adiabaticity of the process. Since, however, the
fidelity between the initial equilibrium and the final nonequilibrium state is independent of the
equilibrium state of the final configuration, the final frequency, ω1, does not explicitly appear.
Hence, Q is a mere mathematical tool which lacks a clear physical interpretation in contrast to
Q∗ (cf. appendix B). However, for cyclic processes, ω1 ≡ ω0, the measure of adiabaticty, Q∗,
reduces to Q. Moreover, we evaluate again the low and high temperature limits. In the zero
temperature regime, h̄β≫ 1, the fidelity F (ρ0, ρτ) reduces to,

F (ρ0, ρτ)
∣∣∣
h̄β≫1

=

√
2

1 +Q . (4.58)

On the other hand, we obtain in the classical limit, h̄β≪ 1,

F
(
ρτ , ρ

eq
τ

) ∣∣∣
h̄β≪1

=
2

1+Q . (4.59)

It is remarkable that the zero temperature limit is given by the square root of the classical result.
Now, we illustrate in Fig. 4.4 the maximal rate, σmax in Eq. (4.50). Here, σmax is plotted as a
function of Q∗ and Q. For equilibrium processes, Q∗ = Q = 1, the maximal rate diverges,
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Figure 4.4: Maximal rate of irreversible entropy production, σmax, (4.50) as a function ofQ∗ (B.11)
(left) and Q (4.57) (right)

since the corresponding processes are either operating infinitely slowly on the system or all
intermediate states are almost indistinguishable. For systems driven very far from equilibrium,
the maximal rate grows, since the minimal quantum evolution time decreases by investing more
energy on the time average. For finite time driving and investing finite energy, the maximal rate
of irreversible entropy production has a minimum.
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4 Unitary quantum processes in thermally isolated systems

4.5 Experimental realization in cold ion traps

In the preceding chapter as well as in the latter section we illustrated newly derived results
with the help of a parameterized harmonic oscillator. Now, the present section is dedicated to
an experimental realization in cold ion traps. Thus, we will confirm that the time-dependent
harmonic oscillator is not only a toy model, but also has physical relevance. A unique property
of ion traps is the possibility to study quantum systems that are either isolated or coupled to
tailored quantum environments using reservoir engineering [CZ96, MW00a]. Single ions in ra-
dio frequency traps are quantum nanosystems with remarkable properties. They can be laser
cooled to very low temperatures, reaching to the motional ground state in the potential. The use
of a segmented trap further allows for engineering a vast variety of time-dependent trapping
potentials. Hence, trapped ions are not only good candidates for quantum computing, but may
also allow us to experimentally approach the verification of the generalized formulations of the
second law [DL08a].

4.5.1 Experimental set-up

Figure 4.5: Electrode design. (a) Close-up view of the blade design with loading, taper, and
experimental zone. (b) Sketch of assembled X-trap consisting of four blades. Com-
pensation electrodes C1 and C2 are parallel to the trap axis. (Taken from [SSK08])

Let us start with a summary of the experimental set-up. For a detailed discussion we refer to
[SSK08]. The trap consists of four blades, of which two are connected to a radio frequency (rf)
supply and two are segmentedwith static (dc) voltages, cf. Fig. 4.5. The dc- and rf-blades are as-
sembled perpendicular to each other. The complicated design of the trap is chosen to define the
trap potential with high accuracy and to suppress precession of the trapped ion. In Fig. 4.6 we
show results of numerical simulations for the confining potential. We observe that in a very good
approximation the trap potential is given by the parameterized harmonic oscillator (4.54). The
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4.5 Experimental realization in cold ion traps

time-dependence of the angular frequency is controlled externally by changing the (dc) voltage
at the blades. Besides the external, motional degrees of freedom the ion (e. g. 40Ca+) provides an
internal, electronic level scheme. For the further exploration we choose a Λ system comprising
the ground state S1/2 and two exited states P1/2 and D5/2. The state P1/2 has a short lifetime

Figure 4.6: (a) Contour plot of the potential in the (x − y)-plane in the experimental zone. (b)
Cross-section trough potential along x = y-direction. (Taken from [SSK08])

and decays rapidly into the S1/2-state. This decay provides a high spontaneous photon scatter
rate used for fluorescence detection. The D5/2-state is populatedwith laser pulses, if the spectral
bandwidth of the S1/2 − D5/2 exciting light field is small compared to the sideband structure.
Thus, coherent laser pulses allow the exploitation and storage of the motional quantum state
information in the internal quantum states.

4.5.2 Verifying the quantum Jarzynski equality

In the beginning of the chapter (cf. subsection 4.1.1) we discussed how to derive the quantum
Jarzynski equality (4.7). Now, we describe the experimental verification with the help of cold
ion traps introduced above. The measurement procedure can be taken as a paradigm for the
experimental realization of other above introduced generalizations of the second law.

The crucial point in experimental verifications is the measurement of the instantaneous quan-
tum state of the system. To this end, a measurement device filtering all possible states is neces-
sary.

Filtering scheme

The basic idea of our filtering is a null measurement. To this end, laser pulses are applied de-
terministically depopulating a single state, which is supposed to be occupied. If a successive
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fluorescence measurement yields dark, it can be concluded that the systemwas in the supposed
state. In the following, we describe how this idea is implemented for the ion trap.

The filtering scheme starts with a sequence of laser pulses being applied to the ion on the nar-
row S to D transition, coherently processing its internal and external degrees of freedom. This
pulse sequence is tailored such that the ion will end in the metastable D5/2-state with certainty,
if the vibrational quantum state was |mtest〉. Subsequently, the ion is illuminated with light res-
onant to the S1/2 to P1/2 transition. If we observe no fluorescence, the ion is measured in the
D5/2-state. However, for vibrational states different from |mtest〉, the laser pulse sequence leads
to a superposition state, α|S1/2〉+ β|D5/2〉, such that there remains a non-vanishing probability
|β|2 of projecting the superposition into |D5/2〉, and thus observing no fluorescence. Therefore,
the procedure is repeated a few times such that a high quality of the filtering procedure is en-
sured. Considering the evolution of the quantum state itself, the influence of the above sequence
reminds of the operating principle of a filter: its projective transmission is unity for a certain in-
put state |mtest〉 and zero otherwise. This laser pulse sequence is adapted to reach all relevant
eigenstates |n〉 and |m〉. Moreover, to estimate the time for one whole experiment cycle from
preparation to detection, we can assume a few 10µsec for sideband pulses and a few hundred
µsec fluorescence detection time. Thus, one cycle with multiple filtering iterations will take
less than 10 msec, which is short compared to the lifetime of the D5/2-state (1.2 sec for 40Ca+)
[DL08a]. Therefore, it is assured that the system is fairly isolated from the environment and the
dynamics are to very high accuracy unitary. With that filtering scheme the probability distri-
bution of the work (4.1) can be determined and, finally, the quantum Jarzynski equality (4.7)
verified.

Measurement protocol

Now, we turn to the experimental measurement protocol of the work distribution. It can be sum-
marized to consist of four consecutive steps:

1. The trapped ion is prepared initially in a thermal state with mean phonon number, 〈n〉 =
(exp(βh̄ω0) − 1)−1, in the electronic ground state S-level by laser cooling and optical
pumping. To this end, the ion is laser cooled into the vibrational ground state, |n = 0〉, and
subsequently allowed to heat up for a certain time without laser cooling. As the heating
rate of the ion within the trap can be precisely measured, this procedure is favorable for
very low values of 〈n〉.

2. In the second step, the initial phonon number, n, is measured using the filtering scheme
described in detail above. In this way, the initial energy eigenstate, E0

n, is determined from
spectroscopy measurements.

3. In the third step, the trap potential is varied from an initial value, ω0, to a final value, ωτ.
This changing potential will, in general modify the ion’s motional state into a nonequilib-
rium state, while its internal electronic state remains unaffected.

4. In the last step, the new phonon number,m, is measured using the filtering scheme and the
final energy eigenstate, Eτ

m, is determined. The distribution of the nonequilibrium work,
W = Eτ

m − E0
n (cf. Eq. (4.1)), is then reconstructed by repeating the measurement sequence.
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By evaluating both sides of Eq. (4.7) for adiabatic and nonadiabatic processes, the Jarzynski
equality can be verified.

The above explained filtering scheme and measurement protocol are described for the ideal case.
However, in real experimental situations one has to handle additional external perturbations.
Whereas the filtering and the measurement protocol remain unaffected, the outcome has to be
analyzed carefully. Especially, the heating of the cold ion induced by the electronic surroundings
might disturb the desired measurement. Hence, we analyze in the following the effect on the
work distributions of external perturbations on the ion trap.

4.5.3 Anharmonic corrections and fluctuating electric field s

The two main sources of external perturbations can be identified as imperfections of the har-
monic trap and electromagnetic background radiation. Since, however, in the real experiment
a main focus lies on avoiding external perturbation, we can assume anharmonic corrections to
the harmonic trap and heating rates to be perturbatively small. Thus, we develop in the present
section a perturbative approach to determine the quantumwork distribution, P(W) in Eq. (4.1).
We treat in detail the case of a small quartic correction to the potential as well as the effect of a
small external fluctuating electric field on a charged harmonic oscillator. Both situations are mo-
tivated by the experimental study of the quantum work statistics in linear Paul traps [DL08a].
First, however, we discuss the perturbational approach to the work distribution (4.1) of the har-
monic oscillator without external perturbations. Here, we mainly concentrate on the transition
probabilities, pτ

m,n, since the initial distributions and the energy eigenvalues are known for the
harmonic oscillator for any point of time.

Perturbation theory

To this end, let us start by separating the Hamiltonian (4.54) into the initial harmonic oscillator
and a time-dependent part stemming from the change of the angular frequency ωt,

Ht = H0 + Ωt , (4.60)

where we have introduced the unperturbed, initial Hamiltonian H0,

H0 =
p2

2M
+

M

2
ω2

0x
2 . (4.61)

The perturbation term in the Hamiltonian is given by,

Ωt = −M

2

(
ω2

0 − ω2
t

)
x2 , (4.62)

where the latter can be considered as small for small frequency changes. In first order time-
dependent perturbation theory, the transition probabilities between initial state, |n〉, and final
state, |m〉, are given by [DL77b],

pτ
m,n =

∣∣∣∣∣∣
δm,n +

1

ih̄

τ∫

0

dt exp (iωm,nt) Ωt
m,n

∣∣∣∣∣∣

2

, (4.63)
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where h̄ωm,n = E0
m − E0

n denotes the difference of the unperturbed energy eigenvalues and,
Ωt

m,n = 〈m|Ωt|n〉, are the corresponding interaction matrix elements. By expressing the position

operator, x =
√
h̄/2mω0

(
a† + a

)
, in terms of the usual ladder operators, a†|n〉 =

√
n + 1 |n + 1〉

and a |n〉 =
√
n |n− 1〉, the interaction matrix elements can be written explicitly as,

Ωt
m,n = − h̄

4ω0

(
ω2

0 − ω2
t

) [√
n + 1

√
n + 2 δm,n+2 + (2n + 1) δm,n +

√
n− 1

√
n δm,n−2

]
(4.64)

with the Kronecker-delta δm,n. Equation (4.64) shows that only transitions that satisfy m = n± 2
are possible. It should be emphasized that this selection rule is at variance with usual textbook
examples which contain the selection rule m = n± 1. The latter applies to a quantum oscillator
driven by a small perturbation linear in the position, whereas we here deal with a perturbation
(4.62) which is quadratic in x. The full expression of the transition probabilities (4.63) that follow
from Eq. (4.64) can be found in [AL10]. In appendix B we propose the completely analytical
solution of the parameterized harmonic oscillator. The selection rule, m = n± 2, is rediscovered
in terms of the exact transition probabilities (B.33) and (B.34). The perturbation theory has the
advantage that all structural properties of the work distribution are already present for small
frequency changes. Now, let us turn to additional external perturbations.

Anharmonic corrections

Abovewe discussed amethod how to experimentallymeasure the quantumwork distribution in
modulated ion trap systems. Next, we investigate the influence of a small quartic anharmonicity
on the work distribution P(W). As before, we write the total Hamiltonian as,

Ht = H0 + Ωt + At , (4.65)

where the first anharmonic correction is given by,

At = αt x
4 . (4.66)

The total transition probabilities can then be written as,

pτ
m,n =

∣∣∣∣∣∣
δm,n +

1

ih̄

τ∫

0

dt exp (iωm,n t)
(
Ωt

m,n + At
m,n

)
∣∣∣∣∣∣

2

, (4.67)

where At
m,n are the anharmonic interaction matrix elements. The analytic transition probabili-

ties, pτ
m,n, are again given in [AL10]. The complete results are omitted here due to the lengthy

expressions of the formulas. For the sake of clarity, we will continue with a numerical discus-
sion of the structural properties of the resulting work distribution. For the numerical analysis,
we choose the parameterization of ω2

t to be linear in time,

ω2
t = ω2

0 +
(
ω2

1 − ω2
0

)
t/τ . (4.68)

Since the anharmonic corrections are given by the geometric set-up and, hence, directly scale
with the angular frequency of the harmonic oscillator, we assume that

αt = σα

(
ω2

1 − ω2
0

)
t/τ . (4.69)
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Figure 4.7: Variance and mean (inset)of the work for an oscillator with weak anharmonic correc-
tions (red, solid line) (4.65) compared with those of the unperturbed oscillator (blue,
dashed line) (4.54) (ω0 = 0.5, τ = 1, β = 0.5, M = 1, h̄ = 1 and σα = 0.025).

The parameter σα controls the strength of the perturbation. In Fig. 4.7, we have plotted the

mean work, 〈W〉, and the variance, var(W) =
〈
W2
〉
− 〈W〉2, of the work distribution for the

anharmonically perturbed harmonic oscillator (4.65), together with the exact result for the un-
perturbed oscillator (4.54). We observe that both quantities are enhanced by the anharmonicity.
From the analytical expressions of the transition probabilities (cf. [AL10]), we see that additional
transitions m = n± 4 now become possible because of the quartic correction. These additional
transitions lead to a larger mean and variance of the work. Based on our discussion in appendix
B, we can, therefore, conclude that the anharmonic perturbation increases the degree of nonadi-
abaticity of the frequency change. Numerical comparison further shows that the effect of At can
be neglected up to a strength of roughly one percent, σα . 0.01, of the harmonic amplitude Ωt.
For a standard trap configuration with trap frequencies of the order kHz-MHz, the harmonic as-
sumption is fulfilled up to energies of the order of eV (cf. [SSK08]) and the effect of anharmonic
corrections is negligible for these energies.

Random electric field corrections

Linear Paul traps are almost perfectly isolated from their surroundings. They, however, suffer
from the presence of random electric fields that are generated in the trap electrodes [MW00b].
These weak fluctuating fields are the source of motional heating of the charged ions confined in
the harmonic trap. The Hamiltonian of the quantum oscillator in the presence of the field is,

Ht = H0 + Ωt + Λt , (4.70)
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4 Unitary quantum processes in thermally isolated systems

where the small perturbation, Λt, is linear in position,

Λt = λtx . (4.71)

The function, λt = qEt, is proportional to the random electric field Et (q is the charge of the ion)
and is taken to be Gaussian distributed with

〈λt〉 = 0 and 〈λt λs〉 = κt,s . (4.72)

The heating rate of the trap is related to the spectral density of the noise λt [OT97],

〈ṅ〉 ≃ 1

4M h̄ωt

+∞∫

−∞

ds exp (iωts) 〈λt λt+s〉 . (4.73)

We first calculate the transition probabilities, pτ
m,n, for a fixed value of λt and then average over

λt using Eq. (4.72). In complete analogy to Eq. (4.67), we obtain

pτ
m,n =

∣∣∣∣∣∣
δm,n +

1

ih̄

τ∫

0

dt exp (iωm,n t) (Ωt
m,n + Λt

m,n)

∣∣∣∣∣∣

2

, (4.74)

with the interaction matrix elements, Λt
m,n, given by,

Λt
m,n = λt

√
h̄

2M ω0

(√
n + 1 δm,n+1 +

√
n δm,n−1

)
. (4.75)

The explicit expression of the transition probabilities can, again, be found in [AL10]. After av-
eraging over all possible λt, the transition probabilities can be divided into two distinct contri-
butions coming from the parametric variation of the frequency (Ωt in Eq. (4.70)) and the noise
term (Λt in Eq. (4.70)), 〈

pτ
m,n

〉
λt

= pτ
m,n(ωt) + pτ

m,n (〈λt λs〉) . (4.76)

Similarly, we can separate the mean final energy into a deterministic and a stochastic part,

〈Hτ〉 = ∑
m,n

Eτ
m

(
pτ
m,n(ωt) + pτ

m,n (〈λt λs〉)
)
p0n

=
h̄ω1

2

(
Q∗ + Q∗λt

)
coth

(
β

2
h̄ω0

)
.

(4.77)

Here, we defined in analogy to the measure of adiabaticty, Q∗, for the unperturbed oscillator the
parameter Q∗λt

as,

Q∗λt
=

〈Hτ〉λt

h̄ω1/2 coth (β/2 h̄ω0)
, (4.78)

which is given by the contribution to the internal energy stemming from the external heating,

〈H〉λt
= ∑

n,m

h̄ω1

(
m +

1

2

)
pτ
m,n (〈λt λs〉) p0n . (4.79)
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Figure 4.8: Variance and mean (inset) of the work for a charged oscillator with weak electric
noise (red, solid line) (4.65) compared with those of the unperturbed oscillator (blue,
dashed line) (4.54) (ω0 = 0.5, τ = 1, β = 0.5, M = 1, h̄ = 1 and σα = 0.025).

Equation (4.77) shows that the effect of the random electric field is to renormalize the adiabatic-
ity parameter Q∗ → Q∗ + Q∗λt

. Both the mean and the variance of the work distribution are
increased as depicted in Fig. 4.8. The fluctuating field, thus, enhances the degree of nonadia-
baticity. This effect can be understood by noting that the perturbation, Λt, generates additional
transitions between states (the latter obey m = n± 1). We observe that the variance is more sen-
sitive to the perturbation than the mean, since it depends quadratically on Q∗ and not linearly.
For the numerical analysis we have chosen a white noise of the form,

κt,s = σλ

(
ω2

0 − ω2
1

)
δ(t− s) , (4.80)

where the relative noise strength is given by σλ. As for the case of the anharmonic perturbation,
we note that one can neglect the influence of the electric noise up to a relative strength of roughly
one percent, σλ . 0.01.

Finally, we conclude that for small geometric aberrations and weak electromagnetic back-
ground radiations effect in apparent more nonadiabatic processes. Nevertheless, the main struc-
tural properties survive as mean and variance remain qualitatively unaffected.

4.6 Summary

The present chapter was dedicated to quantum generalizations of the second law. So far we con-
centrated on isolated quantum systems, and, hence, unitary dynamics. We started by the proper
definition of quantum work and heat pointing out that thermodynamically process dependent
quantities are not given by Hermitian operators. Hence, special interest lies on the probability
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4 Unitary quantum processes in thermally isolated systems

distributions, which lead to various fluctuation theorems. Starting with the work distribution
the irreversible entropy production is identified to be given in terms of a relative entropy. This
relative entropy serves as the starting point for generalizing and sharpening the Clausius in-
equality. In particular, we derived a sharp lower bound on the entropy production in terms
of the Bures angle between the current nonequilibrium state and its equilibrium counter part.
Upper bounds on the relative entropy are more involved and only useful in a limited range of
situations. However, we found a fundamental upper bound on the rate of entropy production
implied by the quantum speed limit discussed in an earlier chapter 3. This maximal rate is a gen-
eralized version of the Bremermann-Bekenstein bound, which can, however, be derived without
the caveats of the original derivation. As an illustrative example we discussed in detail a com-
pletely analytically solvable system, namely the parameterized harmonic oscillator. Due to its
Gaussian properties the entropy production as well as the Bures angle can be evaluated explic-
itly. The parameterized harmonic oscillator serves as a paradigm for experimental verifications.
Especially, linear Paul traps are described with accuracy by isolated harmonic oscillators and
we considered how to verify the quantum Jarzynski equality in cold ion traps. Finally, we dis-
cussed within a perturbational approach experimental corrections due to geometric aberrations
and fluctuating electromagnetic fields. For most experimental situations external perturbations
result in an apparent more nonadiabatic process. In conclusion, the present chapter proposed
an enlightening set of expressions of the second law for isolated quantum systems arbitrarily far
from equilibrium. In the next chapters we will have to deal with the task to generalize the latter
results to open systems.
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5 Thermodynamics of open quantum systems

In the previous chapter we developed formulations of the second law generalized for isolated
quantum systems arbitrarily far from equilibrium. However, real physical systems are always
coupled to an environment. Especially in experiments a weak thermal background radiation
survives even for the best possible insulation of the set-up. Hence, we discuss in the present
chapter various mathematical descriptions and approximations for a quantum system coupled
to a heat bath. A lucid introduction to open quantum systems may also be found in the text-
book [BP07]. As a new result we will be able to derive a quantum version of a Jarzynski type
fluctuation theorem in the weak coupling limit.

5.1 Quantum Langevin equation

As in the classical case (cf. subsection 2.2.1) let us start by considering Langevin dynamics.
Starting from a simple model consisting of a particle of interest coupled to an ensemble of har-
monic oscillators we will derive the quantum equivalent of the classical Eq. (2.12). However,
we will realize that the quantum Langevin equation is mathematically more involved than the
classical equivalent. Hence, we will illustrate the physical properties by considering, first, a free
Brownian particle, and, second, a particle in a harmonic trap. In particular, we will see that the
mean square displacement does not vanish even in the zero temperature limit, which can be
interpreted as an expression of the Heisenberg uncertainty relation.

5.1.1 Caldeira-Leggett model

Among the first Ford, Kac, and Mazur [KM65] noted that a thermal environment can be de-
scribed as an ensemble of coupled harmonic oscillators. This model enables to obtain the quan-
tum mechanical form of the Langevin equation (2.12) for a Brownian particle moving in an
external potential. In the original derivation the quantum heat bath was given by a chain of
coupled harmonic oscillators [KM65]. In the following we consider a simpler model, in which
the quantum Brownian particle is coupled to an ensemble of independent, harmonic oscillators
[FK87]. The Hamiltonian of the total systems is, then, given by,

H =
p2

2M
+ V(x) + ∑

j

p2j

2Mj
+

1

2
Mjν

2
j

(
qj −

cj

Mjν
2
j

x

)2

, (5.1)

where x and p are position and momentum operators of the particle, respectively. The subscript
j labels the harmonic oscillators of the bath with position operators qj, and cj are the coupling
coefficients. The Hamiltonian in Eq. (5.1) is often called the Caldeira-Leggett model [CL81, CL83].
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5 Thermodynamics of open quantum systems

Furthermore, to the latter Hamiltonian the canonical commutation relations are appended,

[x, p] = ih̄ and
[
qj, pk

]
= ih̄ δj,k , (5.2)

where δj,k is the Kronecker-delta. The equations of motion for the time-dependent position and
momentum operators are given by the corresponding Heisenberg equations (cf. Eq. (2.39)). We
obtain for the Brownian particle under consideration,

ẋ =
p

M
and ṗ = −V ′(x) + ∑

j

cj

(
qj −

cj

Mjν
2
j

x

)
, (5.3)

and for the jth harmonic oscillator of the bath,

q̇j =
pj

Mj
and ṗj = −Mjν

2
j qj + cj x . (5.4)

The equations of motion (5.4) for the harmonic oscillators mimicking the bath are simple linear
differential equations and the solution can be written as,

qj(t) = qj(0) cos
(
νj t
)
+

pj(0)

Mjνj
sin
(
νj t
)
+

cj

Mjν
2
j

xt −
cj

Mjν
2
j

x0 cos
(
νj t
)

− cj

Mjν
2
j

t∫

0

dt′ ẋs cos
(
νj (t− s)

)
.

(5.5)

Substituting Eq. (5.5) in the Heisenberg equations for the particle (5.3) we arrive at,

M ẍt = −V ′(x)−
t∫

0

ds Γ (t− s) ẋs + ξt , (5.6)

where we introduced the force operator, ξt, as,

ξt = ∑
j

[(
qj(0)−

cj

Mjν
2
j

x0

)
cos

(
νj t
)
+

pj(0)

Mjνj
sin
(
νj t
)
]
, (5.7)

and where the damping kernel, Γ(t), is given by,

Γ(t) = ∑
j

c2j

Mjν
2
j

cos
(
νj t
)
. (5.8)

Equation (5.6) already has the form of a Langevin equation. Note, however, that Eq. (5.6) is still a
deterministic equation. Hence, the stochastic nature of open dynamics has to be introducedwith
the help of the surrounding harmonic oscillators. To this end, we explicitly make use of the fact
that the initial values of the bath, qj(0) and pj(0), occur merely in the external force, ξt; all other
terms are functions of the variables of the particle only. Since the harmonic oscillators describe
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5.1 Quantum Langevin equation

a thermal environment, we assume them to be initially, thermally distributed, ρo ∝ exp (−βHo).
With the Hamiltonians of free harmonic oscillators, Ho = ∑j(pj/2Mj + Mjνj/2 q

2
j ) we, thus,

obtain,

〈
pj(0) pj(0)

〉
= δj,k

Mjh̄νj

2
coth

(
β

2
h̄νj

)
(5.9a)

〈
q̃j(0) q̃k(0)

〉
= δj,k

h̄

2Mjνj
coth

(
β

2
h̄νj

)
(5.9b)

〈
pj(0) q̃k(0)

〉
= −

〈
q̃k(0) pj(0)

〉
= −1

2
ih̄ δj,k , (5.9c)

where we introduced, q̃j(0) = qj(0)− cj/Mjν
2
j x0. In addition, we have the Gaussian property,

i.e. the expectation value of an odd number of factors of qj(0) and pj(0) vanishes; the expectation
value of an even number of the factors is a sum of products of pair expectation values. With
the latter correlation functions we, now, obtain the two-time correlation function of the force
operator, ξt in Eq. (5.7),

1

2
〈ξtξs + ξsξt〉 =

h̄

2 ∑
j

c2j

Mjνj
coth

(
β

2
h̄νj

)
cos

(
νj (t− s)

)
, (5.10)

and for the two-time commutator,

[ξt, ξs] = −ih̄∑
j

c2j

Mjνj
sin
(
νj (t− s)

)
. (5.11)

Equation (5.6) together with the statistical properties of the force operators, ξt, in Eqs. (5.10) and
(5.11) almost constitutes the desired result. However, we still have a single particle coupled to
a discrete set of harmonic oscillators, which are thermally distributed. The quantum Langevin
equation describes a Brownian particle with a stochastically fluctuating force stemming from a
continuous bath. Hence, we define the spectral density, J (ν),

J (ν) = ∑
j

πcj

Mjνj
δ
(
ν− νj

)
, (5.12)

where δ (.) is the Dirac-δ-function. With the spectral density, J (ν), we can rewrite the damping
kernel, Γ(t), the random force, ξt, and, thus, Eq. (5.6) continuously. The result is a set of equations
constituting the quantum generalization of the classical Langevin equation (2.12) with Gaussian,
colored, quantum noise,

M ẍt = −V ′(x)−
t∫

0

ds Γ (t− s) ẋs + ξt (5.13a)

Γ(t− s) =
1

π

∫
dν

ν
J (ν) cos (ν (t− s)) (5.13b)

1

2
〈ξtξs + ξsξt〉 =

h̄

2π

∫
dνJ (ν) coth

(
β

2
h̄ν

)
cos (ν (t− s)) (5.13c)

[ξt, ξs] = − ih̄

π

∫
dνJ (ν) sin (ν (t− s)) . (5.13d)
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5 Thermodynamics of open quantum systems

Note that the quantum Langevin equation (5.13) is an equation for the position operator, xt,
of the quantum Brownian particle. Moreover, the quantum nature of the heat bath introduces
memory effects as the fluctuating force operator, ξt, is not δ-correlated. The classical limit of
Gaussian white noise, 〈ξtξs + ξsξt〉 ∝ δ (t− s), is rediscovered in the high temperature limit,
h̄β ≪ 1, coth (β/2 h̄ν) ≃ 1 and for a strictly Ohmic spectral density, J (ν) = 2Mγν. Due to the
complicated correlation function of ξt the solution of quantum Langevin dynamics is mathemat-
ically much more involved than the classical equivalent. Especially the derivation of fluctuation
theorems, or quite generally, formulations of the second law for open quantum systems far from
equilibrium obeying Langevin dynamics is still an unsolved problem. Nevertheless, let us fur-
ther illustrate the properties of the quantumLangevin equation (5.13) for two simple cases before
we continue with thermodynamics in the next section.

5.1.2 Free particle

The Langevin equation simplifies for the special case of a free particle, V(x) ≡ 0. Moreover, we
assume the spectral density, J (ν), to be Ohmic, J (ν) = 2Mγν, and, thus, we have,

M ẍt + Mγ ẋt = ξt (5.14a)

1

2
〈ξtξs + ξsξt〉 =

Mγh̄

π

∫
dν ν coth

(
β

2
h̄ν

)
cos (ν (t− s)) . (5.14b)

Note that the correlation function (5.14b) still represents memory effects. Only in the classical
limit, h̄β ≪ 1, the noise correlation (5.14b) reduces to a δ-function, and, thus, white Gaussian
noise. However, the latter differential equation (5.14a) can be solved in the Laplace space. The
Laplace transform of an arbitrary operatorOt is defined as,

Õς =

+∞∫

0

dt exp (−ςt)Ot . (5.15)

Then the solution x̃ς of Eq. (5.14b) reads in the Laplace space with initial position, x0, and initial
velocity, v0,

x̃ς =
ξ̃ς + Mγx0 + Mx0ς + Mv0

Mς2 + Mγς
. (5.16)

The time-dependent position operator, xt, which solves the quantum Langevin equation (5.14a),
is given by the inverse Laplace transform of x̃ς. To this end, we introduce an auxiliary Green’s

function, G̃(ς) = 1/(Mς2 + Mγς), whose inverse Laplace transform, G(t), reads [BM90b],

G(t) =
1

Mγ
(1− exp (−γ t)) . (5.17)

Hence, a solution of the quantum Langevin equation for a free Brownian particle (5.14) can be
written as,

xt = x0 +
v0
γ

(1− exp (−γ t)) +

t∫

0

ds G(t− s) ξs . (5.18)
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5.1 Quantum Langevin equation

As in the classical case (cf. subsection 2.2.1), special interest lies on the mean square displace-
ment and the two-time correlation function of position. The remaining subsection is dedicated
to the derivation of closed expressions for the latter two quantities. For the sake of simplicity,
we assume the initial velocity to be zero, v0 = 0. We can, then, rewrite the solution xt as,

xt = x0 +

t∫

−∞

ds G(t− s) ξs −
0∫

−∞

ds G(−s) ξs , (5.19)

where the last term in the latter equation can be identified with the initial position, x0. With the
reformulation of the solution, xt, in Eq. (5.19), the integrals appearing in the two-time correlation
function, 1

2 〈xtxs + xsxt〉 , can be evaluated,

1

2
〈xtxs + xsxt〉 =

1

2

t∫

0

ds

t′∫

0

ds′ G(t− s)G(t′ − s′) 〈ξsξs′ + ξs′ξs〉 . (5.20)

After a few lines of calculation we obtain,

1

2
〈xtxs + xsxt〉 =

h̄γ

πM

∞∫

0

dν
coth (β/2 h̄ν)

ν (γ2 + ν2)

(
cos

(
ν(t− t′)

)
− cos (νt)− cos

(
νt′
)
+ 1
)
, (5.21)

and for the mean square displacement by taking t = s,

〈
x2t
〉

=
2h̄γ

πM

∞∫

0

dν
coth (β/2 h̄ν)

ν (γ2 + ν2)
(1− cos (νt)) . (5.22)

Note that the angular brackets 〈...〉 denote an ensemble average over the fluctuations of the
quantum heat bath. The latter expressions (5.21) and (5.22) are still given in terms of spectral
integrals. However, in the classical limit, h̄β≪ 1, the integral in Eq. (5.22) can be evaluated and
the mean square displacement can be written in closed form,

〈
x2t
〉
≃ 4γ

πMβ

∞∫

0

dν
1− cos (νt)

ν2 (γ2 + ν2)
=

2

βMγ

[
t +

1

γ
(exp (−γ t)− 1)

]
, (5.23)

which coincides with the usual, classical mean square displacement of a free Brownian particle
[Ris89]. On the other hand, in the zero temperature limit, h̄β≫ 1, we obtain,

〈
x2t
〉
≃ 2h̄γ

πM

∞∫

0

dν
1− cos (νt)

ν (γ2 + ν2)

=
2h̄

πMγ
[c + ln (t γ)− cosh (t γ) chi(t γ) + sinh (t γ) shi(t γ)] ,

(5.24)

where c = 0.577... is the Euler constant. Moreover, chi(.) and shi(.) denote the cosine and sine
integral functions, respectively [AS72]. The latter result is mere quantum peculiarity. Even in
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5 Thermodynamics of open quantum systems

the zero temperature limit, where thermal fluctuations vanish, the mean square displacement
is finite. In other words, even in the zero temperature limit the quantum particle maintains a
non-vanishing, statistical width, and, hence, Eq. (5.24) can be understood as an expression of
the Heisenberg uncertainty relation for position and momentum. A detailed analysis of the long
time behavior of Eq. (5.24) can also be found in [SI87] and an approximate discussion in [FO01].

5.1.3 Harmonic potential

In the latter subsection we analyzed the quantum Langevin dynamics of a free, Brownian par-
ticle. For arbitrary potentials the solution of the quantum Langevin equation (5.13) cannot be
written in closed form. However, for the harmonic oscillator the integration becomes feasible.
Thus, we consider in the present subsection a quantum Brownian particle in a harmonic trap,
V(x) = M/2ω2x2, and, as before, an Ohmic spectral density,J (ν) = 2Mγν. Thus, the Langevin
equation (5.13) takes the form,

M ẍt + Mγ ẋt + Mω2 x = ξt (5.25a)

1

2
〈ξtξs + ξsξt〉 =

Mγh̄

π

∫
dν ν coth

(
β

2
h̄ν

)
cos (ν (t− s)) . (5.25b)

As before, the quantum Langevin equation (5.25a) can be solved in the Laplace space and a
solution is given by,

x̃ς =
ξ̃ς + Mx0ς + Mv0 + Mγx0

Mς2 + Mγς + Mω2
, (5.26)

where again x0 and v0 are initial position and velocity of the Brownian particle, respectively. The
Green’s function, G̃(ς) = 1/(Mς2 + Mγς + Mω2), takes the form,

G(t) =
2 exp (−γt/2) sinh

(
t/2

√
γ2 − 4ω2

)

M
√

γ2 − 4ω2
. (5.27)

Analogously to Eq. (5.19), we can rewrite the solution, xt, of Eq. (5.25a) with zero initial velocity,
v0 = 0, in terms of the Green’s function, G(t), as,

xt =

t∫

−∞

ds G(t− s) ξs . (5.28)

Then the two-time correlation function results in,

1

2
〈xtxs + xsxt〉 =

1

2

t∫

0

ds

t′∫

0

ds′ G(t− s)G(t′ − s′) 〈ξtξs + ξsξt〉

=
h̄γ

πM

∞∫

0

dν
ν coth (β/2 h̄ν)

(ω2 − ν2)2 + γ2ν2

(
cos

(
ν(t− t′)

)
− cos (νt)− cos

(
νt′
)
+ 1
)
,

(5.29)
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5.2 Thermodynamics in the weak coupling limit

and the mean square displacement reads,

〈
x2t
〉

=
2h̄γ

πM

∞∫

0

dν
ν coth (β/2 h̄ν)

(ω2 − ν2)2 + γ2ν2
(1− cos (νt)) . (5.30)

In contrast to the free particle
〈
x2t
〉
remains even in the classical as well as in the zero temperature

limit a non-trivial integral. Hence, one might conclude that the dynamics of open quantum
systems are mathematically more involved than in the classical case.

In particular for driven systems it is not feasible to formulate a simple description univer-
sally valid for arbitrary potentials. In general, neither in terms of Langevin equations nor with
the help of quantum master equations (cf. section 5.3) dynamical properties of open, time-
dependent quantum systems are completely analytically analyzable.

5.2 Thermodynamics in the weak coupling limit

Since we saw in the last section that the dynamics of open quantum systems might become
mathematically difficult, the present section is dedicated to a purely thermodynamic analysis
of open quantum systems. Let us start by considering a quantum system of interest, which is
weakly coupled to a thermal environment. The Hamiltonian of the total system, H, can, then, be

Figure 5.1: Defined quantum system and thermal surroundings
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5 Thermodynamics of open quantum systems

separated into system, HS, bath, HB, and an interaction term, hγ (cf. Eq. (4.8)),

H = HS
t ⊗ 1

B + 1
S ⊗ HB + hγ . (5.31)

In Fig. 5.1 we illustrate the physical situation of a subsystem of interest separated from its
thermal surroundings. We allow the Hamiltonian of the system of interest, HS

t , to be time-
dependent. Hence, work is performed on the system as the Hamiltonian varies with an external
work parameter. Moreover, for the sake of simplicity, we assume in the present section the in-
teraction Hamiltonian, 〈hγ〉, to be small compared to the mean energy of the system,

〈
HS

t

〉
, for

all times. Therefore, the Hilbert subspaces of the system and the bath factorize and effects of the
interaction can be treated by means of perturbation theory [BP07]. In the following, however,
we propose a completely thermodynamic treatment. To this end, we derive a closed expression
for the entropy generated during a process starting in an arbitrary initial state. Furthermore, we
will show that this entropy production fulfills a Jarzynski type fluctuation theorem. It is worth
emphasizing that the present treatment is independent of caveats arising from Lindblad master
equations or quantum trajectories [EM06]. A brief introduction to quantum master equations
will be provided in the next section.

5.2.1 Quantum entropy production

Let us begin by considering the first law of thermodynamics in its reduced formulation for the
system,

∆US =
〈
QS
〉

+
〈
WS
〉
, (5.32)

where ∆US denotes the change in the internal energy,
〈
WS
〉
is the work performed during a pro-

cess acting on the system of interest, and
〈
QS
〉
the heat exchanged with the environment. With

the balance equation (cf. Eq. (2.3)) representing the second law we conclude for the irreversible
entropy production,

∆Sir = ∆SS − β ∆ES + β
〈
WS
〉
. (5.33)

In the following we consider processes starting at time t = 0 and ending at t = τ. Hence,
we denote the change in internal energy by, ∆ES = ES

τ − ES
0 , and the change in entropy by,

∆SS = SSτ − SS0. The change in thermodynamic entropy, ∆S, can be identified with the change in
the von Neumann entropy,

SS = −tr
{

ρS ln ρS
}

, (5.34)

if the initial and final state are close enough to an equilibrium state. As before, we denote by ρS

the reduced density operator of the system of interest only. Otherwise, however, the system is al-
lowed to visit nonequilibrium states arbitrarily far from thermal equilibrium. The latter is consis-
tent with processes described by means of conventional thermodynamics, where processes are
completely determined by their initial and final equilibrium states. Now, by further introducing

the instantaneous equilibrium density operator for the reduced system, ρ
S, eq
t = exp

(
β HS

t

)
/ZS

t ,
in terms of the time-dependent Hamiltonian, HS

t , the internal energy, Ut =
〈
HS

t

〉
, is written as,

βUS
t = −tr

{
ρSt ln ρ

S, eq
t

}
− lnZS

t . (5.35)
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5.2 Thermodynamics in the weak coupling limit

Moreover, we used in the latter Eq. (5.35) the definition of the reduced partition function, ZS
t =

tr
{
exp

(
β HS

t

)}
. Finally, regarding the last term on the right hand side of Eq. (5.33), the work is

identified with the change of the Hamiltonian with time,

β
〈
WS
〉

= β

τ∫

0

dt tr
{

ρSt ∂tH
S
t

}
= −

τ∫

0

dt tr
{

ρSt ∂t ln ρ
S, eq
t

}
− lnZS

τ + lnZS
0 , (5.36)

which we again expressed in terms of the corresponding equilibrium density operator, ρ
S, eq
t . In

the latter Eq. (5.36) we used the conventional identification [Ali02],

dU = d 〈H〉 = tr {(dρ) H}+ tr {ρ (dH)} = 〈δQ〉+ 〈δW〉 . (5.37)

Now,we conclude by combining Eqs. (5.34)-(5.36) to Eq. (5.33) ourmain result for the irreversible
entropy production,

∆Sir = S
(

ρS0||ρ
S, eq
0

)
− S

(
ρSτ ||ρ

S, eq
τ

)
−

τ∫

0

dt tr
{

ρSt ∂t ln ρ
S, eq
t

}
, (5.38)

where we again introduced the relative entropy S(.||.) (cf. appendix A.1). Equation (5.38) indi-
cates three contributions to the irreversible entropy production, ∆Sir. The first termmeasures the

distinguishability between the initial density operator, ρS0, and its equilibrium counter part, ρ
S, eq
0 .

In the following we will see that S(ρS0||ρ
S, eq
0 ) is the entropy produced during a relaxation process

from the initial nonequilibrium state, ρS0, to equilibrium. The second termmeasures analogously
the remaining entropy production due to the system not relaxing from the final nonequilibrium
state, ρSτ , to equilibrium. It has to be subtracted since, generally, systems undergoing arbitrary
processes do not end in an equilibrium state. The last term, finally, is the contribution of the
irreversible work,

〈
WS

ir

〉
=
〈
WS
〉
− ∆FS. We denote by

〈
WS
〉
the average total work performed

during time τ and ∆FS is the according free energy difference. In Fig. 5.2 we illustrate the dy-
namics of the quantum system in a phase space sketch. The upper (blue) line represents a path
in phase space where the system is always in a nonequilibrium state. The lower (red) line is
the equilibrium analog. The dashed lines connecting the initial and final states, respectively,
are the distances between equilibrium and nonequilibrium quantified by the according relative
entropies.

Instantaneous rate

The upper result in Eq. (5.38) is obtained by merely use of thermodynamic arguments, only.
It can be alternatively derived, by identifying the instantaneous rate first. For the quantum
equivalent of the classical balance equation (2.24)

ṠS = βQ̇S + σ , (5.39)

Spohn derived for time-independent Hamiltonians [Spo78] the instantaneous rate, σt, which
was generalized by Breuer [Bre03] for time-dependent systems. The result reads (cf. subsection
5.3.1),

σt = −tr
{(

∂tρ
S
t

)
ln ρSt

}
+ tr

{(
∂tρ

S
t

)
ln ρ

S, eq
t

}
. (5.40)
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Figure 5.2: Phase space sketch illustrating the dynamics of the system; equilibrium (lower, red)
and nonequilibrium (upper, blue) path.

However, the derivation of the preceding expression in Eq. (5.40) is based on the validity of
Lindblad master equations, which we will discuss in the next section. Moreover, the rate of
entropy production, σt, can be rewritten in terms of the relative entropy,

σt = −∂tS
(

ρSt ||ρ
S, eq
t

)
− tr

{
ρSt ∂t ln ρ

S, eq
t

}
. (5.41)

By integrating the rate, σt, over the process time interval form 0 to τ, ∆Sir =
∫ τ
0 dt σt, we redis-

cover the above proposed expression for the irreversible entropy production, ∆Sir in Eq. (5.38).
Independently of our upper analysis, the latter relation has earlier been realized by Lindblad
[Lin83]. It is worth emphasizing once again that the validity of the identification of σt is given
by the applicability of a Lindblad master equation. The upper derivation in the present subsec-
tion 5.2.1 is less restrictive, since it is merely based on thermodynamic arguments.

5.2.2 Particular processes

We, now, turn to the discussion of particular quantum processes, in order to clarify the physical
meaning of the contributions to ∆Sir. Let us start with a time-independent Hamiltonian and,

thus, ρ
S, eq
t ≡ ρ

S, eq
0 . The latter implies that no work is performed. In a first step we shall be

interested in a complete relaxation process, i.e the system starts in an arbitrary nonequilibrium

state, ρS0, and reaches after time τ its equilibrium state, ρSτ = ρ
S, eq
0 . Hence, the general entropy

production (5.38) reduces to,

∆Sir = S
(

ρS0||ρ
S, eq
0

)
. (5.42)
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5.2 Thermodynamics in the weak coupling limit

The latter is identical to the expression derived by Schlögl almost fifty years ago, which was,
however, published in a German paper [Sch66, Sch89]. As mentioned earlier, irreversible en-
tropy production is due to the distinguishability between the equilibrium and nonequilibrium

density operator measured by the relative entropy, S
(

ρS0||ρ
S, eq
0

)
. If we consider a partial relax-

ation process, i.e. the system starts in a nonequilibrium state, ρ0, but does not reach equilibrium
in time τ, the entropy production reads,

∆Sir = S
(

ρS0||ρ
S, eq
0

)
− S

(
ρSτ ||ρ

S, eq
τ

)
. (5.43)

The latter indicates the additive character of the entropy. The irreversible entropy production in
a partial relaxation process is given by the contribution of a relaxation from the real final state to
equilibrium subtracted from the contribution of the complete relaxation.

Next let us consider time-dependent systems. In conventional thermodynamics one usually

considers processes where the system starts, ρS0 = ρ
S, eq
0 , and ends, ρSτ = ρ

S, eq
τ , in equilibrium.

In general, the initial and final equilibrium states are not identical. Nevertheless the irreversible
entropy production reduces to,

∆Sir = −
τ∫

0

dt tr
{

ρSt ∂t ln ρ
S, eq
t

}
, (5.44)

which is nothing else than the irreversible part of the work, ∆Sir = β
〈
WS

ir

〉
. Hence, we conclude

that the expression of the entropy production in Eq. (5.38) is the general expression including all
possible thermodynamic processes operating on a quantum systemweakly coupled to a thermal
environment.

From the latter analysis of the entropy production for open quantum system far from equi-
librium we conclude that the thermodynamic properties are described in terms of relative en-
tropies. Hence, for nonequilibrium processes the relative entropy between the instantaneous
state and a corresponding equilibrium state is the crucial quantity. The thermodynamic infor-
mation is, therefore, contained in the relative entropy rather than in the von Neumann entropy
of the nonequilibrium state.

Unitary dynamics

Finally, we have to prove that Eq. (5.38) is consistent with the expression derived for isolated
quantum systems (4.27) starting in an equilibrium state. For unitary dynamics, where the von
Neumann entropy is constant, SSt ≡ SS0, the entropy production, ∆Sir, (5.38) can be further eval-
uated to read,

∆Sir = −
τ∫

0

dt tr
{

ρSt ∂t ln ρ
S, eq
t

}
=

τ∫

0

dt ∂tS
(

ρSt ||ρ
S, eq
t

)
= S

(
ρSτ ||ρ

S, eq
τ

)
. (5.45)

The latter is identical to the above result in Eq. (4.27), and, thus, the earlier identification of the
entropy production as the irreversible part of the work is confirmed.

75



5 Thermodynamics of open quantum systems

5.2.3 Jarzynski type fluctuation theorem

In the remaining part of the section we turn to a formulation of the second law. As usual, we
like to have a Jarzynski type fluctuation theorem being valid arbitrarily far from equilibrium.
To this end, we will, now, identify the entropy production for a single realization of the process
and, then, construct the corresponding probability distribution.

Fluctuating entropy

So far we considered the irreversible entropy production in the framework of thermodynamics.
Our above obtained result (5.38) is the mean entropy production averaged over all possible
realizations of a particular process, ∆Sir = 〈Σ〉. By Σ we denote the entropy production for
a single realization, which is, hence, a fluctuation quantity. By definition 〈Σ〉 is the sum of
the change in entropy and the heat transferred to the environment. By making explicit use of
the separability of the Hilbert subspaces in the weak coupling limit [BZ06, BP07], the entropy
production can be written as,

〈Σ〉 = −tr
{(

ρS0 ⊗ ρB
)
U†

τ

(
ln ρSτ ⊗ 1

B
)
Uτ

}
+ tr

{(
ρS0 ⊗ ρB

) (
ln ρS0 ⊗ 1

B
)}
− β QS . (5.46)

Generally, the last term in Eq. (5.46) is more complicated due to contributions of the change in
internal energy and work performed. However, by neglecting contributions of the interaction
energy, hγ, the heat transferred from the system S equals minus the heat absorbed by the bath B,
QS ≃ −QB (cf. subsection 4.1.2). Since no work is performed on the bath the change in internal
energy of the bath is identical to the heat exchanged with the system of interest, ∆EB = QB.
Thus, the last term in Eq. (5.46) can be written as an average over the same density operator
ρS0 ⊗ ρB,

QB = tr
{(

ρS0 ⊗ ρB
)
U†

τ

(
1
S ⊗ HB

)
Uτ

}
− tr

{(
ρS0 ⊗ ρB

) (
1
S ⊗ HB

)}
. (5.47)

The latter Eqs. (5.46) and (5.47) clarify that the entropy production, 〈Σ〉, is a quantity averaged
over the initial state, ρS0 ⊗ ρB, and quantum transitions induced by the time-dependent contri-
butions. Analogous expressions are obtained for the work distribution in isolated systems (4.1)
and the heat exchange between two subsystems (4.12).

Probability distribution

Hence, we postulate the probability distribution of Σ to read,

P (Σ) = ∑
ι,φ

pι〈ι|U†
τ |φ〉〈φ|Uτ|ι〉 δ

(
Σ− Σι→φ

)
. (5.48)

The latter equation generalizes Eq. (4.1) to open systems. Furthermore, we introduced the
eigenbasis of the initial density operator, ρ0 = ρS0 ⊗ ρB = ∑ι pι|ι〉〈ι|, and of the final one,
ρt = Uτ

(
ρS0 ⊗ ρB

)
U†

τ = ∑φ pφ|φ〉〈φ|. Here, we make again explicit use of the weak coupling
limit in the sense that we assume the initial and final basis sets as disjoint unions of the sub-
spaces S and B, |ι〉 ∈ {|ιS〉}∪̇{|ιB〉} and |φ〉 ∈ {|φS〉}∪̇{|φB〉}. The remaining task is to identify
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5.2 Thermodynamics in the weak coupling limit

the realization dependent entropy production Σι→φ. To this end, we rewrite Eq. (5.46) with (5.47)
by inserting the basis sets {|ι〉} and {|φ〉} to yield,

〈Σ〉 = − ∑
ιS,φS

pι ln pφ〈ι|U†
τ |φ〉〈φ|Uτ|ι〉+ ∑

ιS,φS

pι ln pι〈ι|U†
τ |φ〉〈φ|Uτ|ι〉

+ ∑
ιB,φB

pι βEB
φ〈ι|U†

τ |φ〉〈φ|Uτ|ι〉 − ∑
ιB,φB

pι βEB
ι 〈ι|U†

τ |φ〉〈φ|Uτ|ι〉 .
(5.49)

In Eq. (5.49) we introduced the initial and final energy eigenvalues of the bath, βEB
ι and βEB

φ ,
respectively. They can be introduced here, since the bath stays in its thermal equilibrium state,
ρB ∝ exp

(
−βHB

)
, at all times. As usual, U denotes the unitary time evolution operator of the

total system. Finally, the mean entropy production can be written as,

〈Σ〉 = ∑
ι,φ

pι〈ι|U†
τ |φ〉〈φ|Uτ|ι〉

(
δι,ιS ln pι − δφ,φS ln pφ + δφ,φBβEB

φ − δι,ιBβEB
ι

)
, (5.50)

where we used the Kronecker-delta δm,n. Further, by comparing the mean of the probability den-
sity in Eq. (5.48),

∫
dΣ ΣP (Σ), with the average 〈Σ〉 (5.49) we identify the microscopic entropy

production for a transition from state |ι〉 to a state |φ〉 to read,

Σι→φ = δι,ιS ln pι − δφ,φS ln pφ + δφ,φBβEB
φ − δι,ιBβEB

ι . (5.51)

The realization dependent entropy production, Σι→φ in Eq. (5.51), is the quantum mechani-
cal generalization of the trajectory dependent entropy production introduced in the context of
stochastic thermodynamics [Sei05]. It includes explicitly contributions of the entropy change in
the system of interest and the heat flow to the environment. It is worth emphasizing that Σι→φ in
Eq. (5.51) has been derived by merely making use of the thermodynamically evaluated entropy
production, ∆Sir in Eq. (5.38). At no point the use of a master equation or a quantum trajectory
has been necessary in contrast to [EM06].

Fluctuation theorem

In the remaining paragraph we will show that the above defined entropy production (5.51) in-
deed fulfills an integrated fluctuation theorem in its common form,

〈exp (−Σ)〉 = 1 . (5.52)

To this end, we evaluate 〈exp (−Σ)〉 with the probability distribution (5.48) and the microscopic
entropy production (5.51). Hence, we have

〈exp (−Σ)〉 = ∑
ι,φ

pι〈ι|U†
τ |φ〉〈φ|Uτ|ι〉 exp

(
−δι,ιS ln pι + δφ,φS ln pφ

)
exp

(
−δφ,φBβEB

φ + δι,ιBβEB
ι

)
,

(5.53)
which can be split with respect to the subspaces by evaluating the Kronecker-deltas to yield,

〈exp (−Σ)〉 = ∑
ιS,φS

pι〈ι|U†
τ |φ〉〈φ|Uτ|ι〉 exp

(
− ln pι + ln pφ

)

+ ∑
ιB,φB

pι〈ι|U†
τ |φ〉〈φ|Uτ|ι〉 exp

(
−βEB

φ + βEB
ι

)
.

(5.54)
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Since the bath B remains in thermal equilibrium at its initial, pιB ∝ exp
(
−βEB

ι

)
, as well as at its

final state, pφB ∝ exp
(
−βEB

φ

)
, we simplify Eq. (5.54) to read,

〈exp (−Σ)〉 =


∑

ιS,φS

+ ∑
ιB,φB


 pφ〈ι|U†

τ |φ〉〈φ|Uτ |ι〉 = tr {ρτ} = 1 , (5.55)

which concludes the proof of Eq. (5.52). In Eq. (5.55) we, moreover, used the normalization
of the probability distributions. Consequently, we derived the quantum generalization of an
integrated fluctuation theorem for systems initially in arbitrary nonequilibrium states. To this
end, we explicitly made use of the separability of the Hilbert subspaces as given by the weak
coupling limit. The latter fluctuation theorem (5.52) is a quantum version of the classical general
theorems derived by Seifert in [Sei08].

It is worth emphasizing once again that the above derivations are completely based on ther-
modynamic arguments. Hence, the fluctuation theorem (5.52) is valid for all kinds of processes
starting and ending close to an equilibrium state. Nevertheless, the quantum systemmay evolve
arbitrarily far from equilibrium at intermediate instants. This is in complete agreement with
thermodynamics, where processes are fully characterized by their initial and final equilibrium
state. Therefore, our approach does not rely on the formulation of master equations for driven
quantum systems as it was done in earlier considerations [EM06].

5.3 Statistical physics of open quantum systems

In the beginning of the present chapter, we introduced the quantum Langevin equation. The
latter turned out to be a non-trivial stochastic, operator equation with colored noise. In the last
section, we derived a closed expression for the entropy production and proved a Jarzynski type
fluctuation theorem. In the classical case (cf. chapter 2) we saw that an equivalent description
of Langevin dynamics becomes possible in terms of probability distributions for the microstate.
Starting from the Fokker-Planck description we were able to derive the fluctuation theorems, as
well. Thus, it would be desirable to obtain a quantum analog of that approach. However, wewill
see in the present section that the quantum equivalent of Fokker-Planck dynamics is physically
as well as mathematically involved. In particular the definition of work and heat is still an
unsolved problem. However, in the next chapter we will be able to derive the quantum entropy
production and a fluctuation theorem in the strong coupling regime. In order to deepen the
insight into open quantum dynamics, the present section briefly analyzes quantum equivalents
of the classical Klein-Kramers equation for various couplings between the system of interest and
the environment. In quantummechanics probability distributions translate to density operators.
Hence, we shall be interested in the evolution equation of the reduced density operator, ρS =
trB {ρ}, the quantum master equation,

ih̄dt ρSt =
[
HS

t , ρSt

]
+ D

(
ρSt

)
, (5.56)

which is the von Neumann equation for the reduced system with an additional contribution
in terms of the superoperator, D, which describes the interaction with the environment. The
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dissipative term in the quantum master equation (5.56) denoted by D is responsible for the
reduced dynamics not being unitary. Hence, we focus on expressions of D in the following
considerations. In the present section, we concentrate on the physical discussion and interpre-
tation of the resulting master equations, whereas we refer to the literature for their derivations
[BP07]. We start with the Markovian approximation in the weak coupling limit, before we turn
to more involved equations allowing for non-perturbational small interactions with the envi-
ronment. Moreover, we will restrict ourselves in the present discussion to time-independent
Hamiltonians since merely for the harmonic oscillator the actual form of D has been clarified for
time-dependent problems [ZH95].

5.3.1 Markovian approximation

In an earlier section 5.1 we derived and discussed the quantum Langevin equation. We saw that
in the general case a quantum mechanical heat bath is characterized by colored noise. Colored
noise, however, is an expression of memory effects, and, thus, processes described by quantum
Langevin dynamics are non-Markovian. Markov processes, on the other hand, are mathemati-
cally well-understood. Therefore, the question arises, whether under certain circumstances the
dynamics of an open quantum system can be approximated by a Markov process. An answer
was given by Lindblad [Lin74, Lin75, Lin76], who proposed the Lindblad master equation,

ih̄ dt ρSt =
[
HS, ρSt

]
+ ∑

k

γk

(
Ak ρSt A

†
k −

1

2
A†

kAk ρSt −
1

2
ρSt A

†
kAk

)
, (5.57)

where the Ak are called the Lindblad operators. The latter master equation (5.57) can be derived
from microscopic principles [BP07] and we concentrate, here, on the properties and conditions
of validity.

Properties of Lindblad dynamics

Let us summarize the most important properties of the dynamics generated by Eq. (5.57):

• The linear map, F , which is given in terms of the Lindblad operators, Ak,

dt ρSt = FρSt , (5.58)

is the generator of the quantum dynamical semigroup [Ali02]. Furthermore, the semi-
group property of a formal solution, S(t) = exp (F t), of Eq. (5.58) is the generalization of
a Markov condition to open quantum dynamics,

S(t1)S(t2) = S(t1 + t2) ∀ t1, t2 ≥ 0 . (5.59)

• The Lindblad master equation (5.57) is the most general, time-homogeneous equation de-
scribing the evolution of the reduced density operator, ρSt , which is trace preserving and
completely positive for any initial condition.

79



5 Thermodynamics of open quantum systems

• The non-negative quantities γk have the dimension of an inverse time provided the Ak

are taken to be dimensionless. It can be shown [BP07] that the γk are given in terms of
correlation functions of the thermal environment and play the role of relaxation rates for
different decay modes of the open system.

• The stationary solution of Eq. (5.57) is a Boltzmann-Gibbs equilibrium distribution, ρSstat ∝

exp
(
−βHS

)
, which is encoded in the construction of the Lindblad operators, Ak,

[
HS, Ak A

†
k

]
=
[
HS, A†

k Ak

]
= 0 ∀ k . (5.60)

• The form of Eq. (5.57) is not unique, since the set of Lindblad operators is closed under
unitary transformations.

Physical applicability of the model

Sometimes the Lindblad master equation (5.57) is supposed to be unphysical, since it completely
ignores the quantum nature of the heat bath. A quantum heat bath is characterized by its quan-
tum memory (cf. Eq. (5.13)), i.e. non-Markovian dynamics. However, in e.g. quantum optics,
where the systems of interest are fairly decoupled from the surroundings, the Lindblad equa-
tion becomes physically applicable. In an earlier discussion (cf. section 4.5) we considered a
cold ion trap. These ion traps are only locally cooled down to their motional ground state. That
means that merely the ion reaches very low temperatures, whereas the surroundings remain un-
affected. Hence, the dynamics of an open ion trap can be understood as an ultra-cold quantum
system coupled to a classical environment. This situation is perfectly described by the Lindblad
master equation (5.57).

Entropy production

As noted earlier Spohn derived the rate of entropy production for Lindblad dynamics [Spo78].
Starting again with the balance equation,

σt = Ṡ− β
〈
Q̇
〉
, (5.61)

and further identifying, Ṡ = −tr
{
D(ρSt ) ln ρSt

}
, and,

〈
Q̇
〉

= tr
{
D(ρSt )H

S
}
, we obtain for the rate

of entropy production, σt,

σt = −tr
{

D(ρSt ) ln ρSt

}
− β tr

{
D(ρSt ) H

S
}

. (5.62)

Note that σt is governed by the dissipative superoperator D, since the unitary part of the time
evolution can be absorbed by the cyclic invariance of the trace. From a physical point of view,
the rate of entropy production, σt, is completely determined by the interaction of the system of
interest and its surroundings. The irreversible entropy is the part of the total entropy increase,
which flows into the heat bath, and, thus, cannot be re-obtained by the system [dGM84]. For
isolated systems, and, hence, unitary dynamics, the irreversible entropy is the entropy, which
would flow to the environment, if the system was coupled to a heat bath. So far the expression
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for the rate of entropy production in Eq. (5.62) is completely general. For Lindblad dynamics,
where the stationary state is given by thermal equilibrium state, we can write,

σt = −dtS
(

ρSt ||ρSeq
)
, (5.63)

where we again used the relative entropy, S(.||.). The latter expression (5.63) for σt is consistent
with our earlier thermodynamic discussion (cf. Eq. (5.41)) for time-dependent systems. More-
over, Spohn proved in [Spo78] that σt in Eq. (5.63) is positive for all times.

5.3.2 Quantum Brownian motion

In the preceding subsection we presented the Lindblad master equation, which arises in the
so called quantum optical limit. The physical conditions underlying the approximations are
that the systematic evolution of the reduced system is fast compared with a typical relaxation
time. However, in various physical situations involving strong system-environment coupling
and low temperatures this condition is violated. In contrast to quantum optics it may even hap-
pen that the dynamics of the system of interest is slow compared to the correlation times of
the environment. Under such circumstances the Lindblad master equation (5.57) is not applica-
ble and another scheme of approximation becomes necessary. In the present subsection we are
concerned with the Caldeira-Leggett master equation [CL83], whose derivation starts with the
microscopic model (5.1). As we saw earlier, one of the crucial quantities in quantum Brownian
motions is the spectral density, J (ν). In a phenomenological modelling one often deals with an
Ohmic damping, J (ν) = 2Mγν. However, the high frequency modes of the environment lead
to a renormalization of the physical parameters in the particle potential [BP07]. To account for
this renormalization one introduces a high-frequency cutoff, Ω. An Ohmic spectral density with
e.g. a Lorentz-Drude cutoff reads,

J (ν) = 2Mγν
Ω2

Ω2 + ν2
. (5.64)

We can, now, determine the typical time scales in terms of the high-frequency cutoff, Ω.

Correlation time approximations

It is easy to see that with an Ohmic spectral density with cutoff Ω the largest correlation time,
τB, is given by [BP07],

τB = max

{
1

Ω
,
h̄β

2π

}
. (5.65)

Similarly, to a possible microscopic derivation of the Lindblad master equation (5.57) one as-
sumes the coupling to be weak,

h̄γ≪ max

{
h̄Ω,

2π

β

}
, (5.66)

for which a Born-Markov approximation becomes possible. The latter condition (5.66) corre-
sponds to τB ≪ τR, where τR is the typical relaxation time, with τR = 1/γ. However, for the
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applicability of the Lindblad master equation one also assumes that a typical time scale of the
reduced system, τS, is short compared to the typical relaxation time, τR. By contrast, we are,
here, interested in the case where the evolution of the reduced system is slow in comparison to
the bath correlation time. With a typical frequency of the system, ω0 = 1/τS, the latter condition
becomes,

h̄ω0 ≪ min

{
h̄Ω,

2π

β

}
. (5.67)

The main difference between Lindblad dynamics and the present model can be summarized
as: for the validity of Eq. (5.57) a typical time scale of the system has to be much less than the
relaxation time, τS ≪ τR. For the present model, which is taking account of quantum effects of
the bath, we assume that a typical correlation of the bath is much shorter than the time scales of
the reduced system, τB ≪ τS.

Caldeira-Leggett master equation

With the latter conditions (5.66) and (5.67) a master equation of the general form (5.56) can be
deduced. After a lengthy derivation [CL83, BP07] one obtains,

ih̄ dt ρSt =
[
HS, ρSt

]
+ γ

[
x,
{
p, ρSt

}]
− 2iMγ

h̄β

[
x,
[
x, ρSt

]]
, (5.68)

where {., .} is the anti-commutator. As usual the first term on the right hand side of the mas-
ter equation describes the free, unitary evolution of the system of interest. The second term,
which is proportional to the damping coefficient γ, is a dissipative term. Finally, the last term
describes thermal fluctuations and it can be shown that it is of fundamental importance for deco-
herence. Furthermore, the classical limit of the master equation (5.68) in position representation
reduces to the above discussed Klein-Kramers equation (2.23). It is worth mentioning, however,
that in the general case the stationary solution of Eq. (5.68) is not given by a Boltzmann-Gibbs
distribution, of which one easily convinces oneself by substituting ρ ∝ exp

(
−βHS

)
in Eq. (5.68).

Entropy production

Coming back to thermodynamics, let us evaluate the rate of entropy production (5.62) for the
Caldeira-Leggett master equation (5.68). With the help of the commutator expressions,

[
x, HS

]
=

ih̄

M
p (5.69a)

[
x2, HS

]
=

ih̄

M
{p, x} (5.69b)

we obtain after a few lines of calculation,

σt = tr

{([
ln ρSt , x

]
+

βih̄

M
p

)(
iγ

h̄

{
p, ρSt

}
+

2Mγ

βh̄2

[
x, ρSt

])}
. (5.70)

The latter result in Eq. (5.70) is the quantum generalization of the classical rate of entropy pro-
duction (2.31) under the conditions (5.66) and (5.67). Further evaluation of σt is only feasible for
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particular systems, since the rate of entropy production (5.70) is governed by the eigenstates of
the reduced density operator, ρSt .

5.3.3 Hu-Paz-Zhang master equation

The upper master equations (5.57) and (5.68) are approximate results, which are applicable un-
der certain conditions and physical circumstances. As we saw for the quantum Langevin equa-
tion (5.13) the general case is mathematically involved. However, for the harmonic oscillator (cf.
subsection 5.1.3) the situation simplifies a lot. Hu, Paz, and Zhang [PZ92] proposed the exact
master equation for a harmonic oscillator coupled to a bath of harmonic oscillators, which reads,

ih̄dt ρSt =
[
HS, ρSt

]
+ Γt

[
x,
{
p, ρSt

}]
− iM Γt ht

[
x,
[
x, ρSt

]]

− i Γt ft

[
x,
[
p, ρSt

]]
− 1

2
M δω2

t

[
x2, ρSt

]
.

(5.71)

The time-dependent coefficients Γt, ht, ft and δωt are non-trivial functions of the spectral density,
J (ν), and the coupling to the environment. The first term of the right hand side of the Hu-Paz-
Zhang master equation (5.71) is the dissipative termwith a time-dependent dissipative constant
Γt. The third and fourth terms are the diffusive terms with time-dependent coefficients Γt ht and
Γt ft, respectively. The last term, finally, depicts a time-dependent frequency shift δω2

t . The ex-
plicit time dependence of these coefficients is rather complicated, however, given a particular
form of the spectral density, J (ν), and the initial state of the environment, they can be calcu-
lated. Themaster equation (5.71) describes the non-Markovian behavior of a quantum Brownian
particle in a harmonic potential. Finally, for a strictly Ohmic spectral density and high temper-
atures, h̄β ≪ 1/Ω, with the high frequency cutoff, Ω, the Caldeira-Leggett master equation
(5.68) is recovered. It is worth noting that the Hu-Paz-Zhang master equation was generalized
to harmonic oscillators with time-dependent angular frequency by Zerbe and Hänggi [ZH95].

5.4 Summary

The present chapter was dedicated to a thermodynamic description of open quantum systems.
We started by introducing the Caldeira-Leggett model, which led to the derivation of the quan-
tum Langevin equation. The quantum Langevin equation is a stochastic operator equation with
colored, Gaussian, quantum noise. Hence, the classical derivations of generalizations of the sec-
ond law are not completely transferable to open quantum dynamics. Therefore, we turned to a
thermodynamics approach to systems in theweak coupling limit. For such situationswe derived
a closed expression of the total entropy production during a processes operating arbitrarily far
from equilibrium. We found that the crucial thermodynamic quantity for open, nonequilibrium
quantum systems is the relative entropy between the instantaneous state and a corresponding
equilibrium one. Apparently, the relative entropy contains the thermodynamic information in
contrast to the instantaneous von Neumann entropy during an arbitrary process. Furthermore,
we were able to derive a Jarzynski type fluctuation theorem for the entropy production. Our
derivation is independent of Lindblad dynamics or hypothetic quantum trajectories. It is solely
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5 Thermodynamics of open quantum systems

based on thermodynamic arguments and in analogy to the treatment of isolated quantum sys-
tems. Finally, we briefly introduced the quantummaster equations. A quantummaster equation
is the quantum analog of the classical Fokker-Planck description of Brownian motion. However,
the resulting equations turned out to be either mathematically involved or only applicable un-
der a restrictive set of conditions. Hence, a thermodynamic analysis of open quantum systems
starting with a general master equation for the reduced dynamics is still an unsolved problem.
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6 Strong coupling limit - a semiclassical
approach

In the previous chapter we introduced mathematical descriptions of the dynamic properties
of open quantum systems. We found that quantum Brownian motion is much more involved
than its classical analog. The quantum Langevin equation is a stochastic operator equation with
colored noise, and the quantummaster equations are only applicable in theweak friction regime.
Hence, derived generalizations of the second law, and, particularly, closed expressions for the
entropy production are merely valid for weak enough coupling of the system to its thermal
surroundings. To deepen the insight in thermodynamics of open quantum systems we, now,
turn to the opposite simplifying limit. The present chapter is dedicated to the strong friction
regime. First, we will briefly introduce the quantum Smoluchowski equation [PG01, TM07,
Tu04, DL09], before we, second, derive a detailed as well as an integral fluctuation theorem.
A notable advantage of the following description is that the usual classical definitions of work
and heat are valid in contrast to the full quantum regime [LH07]. Finally, we will propose a
Josephson junction experiment that would allow to test our predictions.

6.1 Quantum Smoluchowski dynamics

Let us start by briefly reviewing the main properties of the approximations in the high friction
regime. First, we will present the path integral formalism for the reduced system dynamics.
Then, we discuss various approximations and their range of validity, before we, finally, intro-
duce the quantum Smoluchowski equation. We will see that the description by means of the
quantum Smoluchowski equation is a semiclassical approach, where quantum effects manifest
themselves as additional quantum fluctuations. The meaning of these quantum fluctuations will
be elucidated with the analytic expression for the escape rate frommetastable wells. The present
discussion follows roughly [JAP05], where we will correct several results (cf. also [AG08]).

6.1.1 Reduced dynamics in path integral formulation

As before we consider a total quantum system, which can be separated into a system of interest,
HS, a thermal environment, HB, and an interaction term, hγ,

H = HS ⊗ 1
B + 1

S ⊗ HB + hγ . (6.1)

The heat bath is mimicked by an ensemble of independent harmonic oscillators bilinearly cou-
pled to the system (cf. Caldeira-Leggett model in Eq. (5.1)). By properly eliminating the bath
degrees of freedom one obtains the dissipative dynamics of the reduced system. In contrast to
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6 Strong coupling limit - a semiclassical approach

the above discussion (cf. chapter 5) the interaction term, hγ, is not perturbatively small, but
rather governs the dynamics of the reduced system. The quantum dynamics of the reduced
system follows from,

ρSt = trB {exp (−iHt/h̄) ρ0 exp (iHt/h̄)} , (6.2)

where ρ0 is the initial state of the total system. In the conventional Feynman-Vernon theory
[FV63] it is assumed that the initial state, ρ0, can be factorized. This is one of the assumptions
appearing in the last chapter 5 and can be interpreted as the system and bath being isolated
from each other at t = 0−. In the strong friction regime, however, the initial state has to be
correlated [SI88]. For the sake of simplicity, we assume the initial state to read in the initial
position representation with coordinates xi,

〈xi|ρS0|x′i〉 = 〈xi|ρSβ|x′i〉Λ
(
xi, x

′
i

)
, (6.3)

where 〈q|ρSβ|x′〉 = trB {〈x| exp (−βH)|x′〉} and the multiplicative term Λ (xi, x
′
i) is the position

representation of a preparation function. The reduced dynamics (6.1) with an initial state (6.3)
can, now, be described within the Feynman path integral formalism. Since the thermal environ-
ment is modeled as an ensemble of harmonic oscillators, it can be integrated and one obtains in
the final position representation with coordinates x f ,

〈x f |ρSt |x′f 〉 =
∫

dxi

∫
dx′i J

(
x f , x

′
f , t, xi, x

′
i

)
Λ
(
xi, x

′
i

)
, (6.4)

where the propagating function J(.) is a threefold path integral over the the system degree of
freedom only. With the reduced partition function, ZS = tr {exp (−βH)} /ZB, the integral ker-
nel, J(.), can be written as,

J
(
x f , x

′
f , t, xi, x

′
i

)
=

1

ZS

∫
D[x]

∫
D[x′]

∫
D[x] exp

(
− 1

ih̄
S
[
x, x′, x

])
. (6.5)

The two real time paths x(s) and x′(s) connect the initial points xi and x′i with the fixed end
points x f and x′f , respectively. On the contrary, x(ς) is an imaginary time path, which runs

from xi to x′i in the interval h̄β. The contribution of each path is weighted with an effective

action, S [x, x′, x] = SS[x] − SS[x′] + iS
S
[x] + iΦ[x, x′ , x]. Hence, the effective action consists

of the actions of the reduced system in real and imaginary time and an additional interaction
contribution Φ. The latter one is completely determined by the damping kernel Γ(t) (5.8). So far
no approximations have been applied and Eq. (6.5) is generally valid. Due to the mathematical
difficulties of further evaluation we turn, now, to the limit of strong coupling of the reduced
system to its environment.

6.1.2 Quantum strong friction regime

The classical Klein-Kramers equation reduces to the Smoluchowski equation if the time scales
of fast equilibration of momentum and slow equilibration of position separate (cf. subsection
2.2.2). Moreover, for dissipative quantum systems one expects that friction makes the system of
interest to behavemore classically due to decoherence effects. In particular, the complicated path
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6.1 Quantum Smoluchowski dynamics

integral expression (6.5) should simplify considerably in the limit of strong damping. The latter
expectation can be shown rigorously to hold [PG01] and we continue with the main results and
the range of validity of the approximations. As in the discussion of the Caldeira-Leggett master
equation (5.68) we assume an Ohmic spectral density with Lorentz-Drude cutoff (cf. Eq. (5.64)),

J (ν) = 2Mγν
Ω2

Ω2 + ν2
. (6.6)

Then, the strong damping limit can be expressed with a typical frequency ω0 of the reduced
system (e.g. its ground state frequency) as,

γ

ω2
0

≫ h̄β

2π
,
1

Ω
,
1

γ
. (6.7)

Note that the latter conditions (6.7) express the opposite limit as the separation of time scales in
Eqs. (5.66) and (5.67). Here, the separation of time scales implying the classical Smoluchowski
equation (2.32) must additionally incorporate the time scale of quantum fluctuations, h̄β. The
idea is now, to evaluate for strong friction, γ/ω0 ≫ 1, the path integral expression (6.4) on a
coarse-grained time scale, s≫ h̄β, 1/Ω, 1/γ. In this approximation we observe:

• Nondiagonal elements of the reduced density matrix are strongly suppressed during the
time evolution.

• The real time part of the kernel Γ(t) (5.8) becomes local on the coarse-grained time scale.

• Initial correlations described by Eq. (6.3) survive for times of order γ/ω2
0 verifying that the

initial state can be assumed to factorize.

Applying the latter recipe to the path integral expression in Eq. (6.4) the quantum Smoluchowski
equation can be derived as the evolution equation of the diagonal elements 〈x f |ρSt |x f 〉.

6.1.3 Quantum Smoluchowski equation

In the semiclassical picture introduced in the previous subsection, the quantum system follows
a classical trajectory and quantum effects manifest themselves through quantum fluctuations that
act in addition to the thermal fluctuations induced by the heat bath. Then, according to the latest
publications [DL09, MA10a, MA10b], the quantum Smoluchowski equation can be written as,

∂t p(x, t) =
1

γM
∂x

[
V ′(x) +

1

β
∂x De(x)

]
p(x, t) , (6.8)

where V ′(x) is the derivative of the external potential with respect to position and β the inverse
temperature. The effective diffusion coefficient De(x) is given by,

De(x) =
1

1− λβV ′′(x)
, (6.9)
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wherewe introduced the quantumparameter λ. It measures the size of the quantumfluctuations
and can be evaluated explicitly for the spectral density (6.6) to read,

λ =
h̄

πγM

[
c+ Ψ

(
γh̄β

2π
+ 1

)]
. (6.10)

Here, c = 0.577... is the Euler constant and Ψ the digamma function [AS72]. It should be noted
that quantum corrections depend explicitly on the position of the system through the curvature
of the potential V ′′(x). When λ = 0, Eq. (6.8) reduces to the classical Smoluchowski equation
(5.8) with constant diffusion coefficient. Moreover, in the high temperature limit, γh̄β ≪ 1, the
quantum parameter can be expressed in leading order as λ ≃ h̄2β2/12M, which coincides with
the equilibrium quantum correction proposed earlier by Wigner [Wig32]. Of particular interest,
however, is the limit of strong damping, γh̄β ≫ 1, where λ ≃ h̄/Mγπ ln (γh̄β/2π). Thus, the
quantum Smoluchowski approach is beyond perturbation theory and for strong friction quan-
tum systems can be described over a wide range of temperatures, 1/β. Finally, one can conclude
that off-diagonal matrix elements, 〈x|ρSt |x′〉, are strongly suppressed by friction and of the order
O(1/

√
γ ln (Ω/γ)) [JAP05].

The stationary equilibrium solution of Eq. (6.8), with natural boundary conditions, is

ps(x) =
1

ZS
exp

(
−βV(x) + λβ2V ′(x)2/2

) [
1− λβV ′′(x)

]
, (6.11)

where ZS is again the partition function of the reduced system. It is worth emphasizing that the
above equilibrium expression is in general non-Gibbsian when λ 6= 0, which is in accordance
with the above discussion. Once again we emphasize that the quantum Smoluchowski equation
(6.8) with the effective diffusion coefficient (6.9) is valid in the semiclassical range of parameters,
γ/ω2

0 ≫ (h̄β, 1/γ), h̄γ ≫ 1/β and |λβV ′′(x)| < 1, where ω0 is a characteristic frequency, i.e.
the curvature at a potential minimum of the system. In order to deepen our insight, we now
continue with an illustrative application of the quantum Smoluchowski equation (6.8), namely
the escape from a metastable well.

6.1.4 Quantum enhanced escape rates

The problem of escape from a metastable well is a prototypical example in physics, which can
be found e.g. in chemical reactions, diffusion in solids, or nuclear fission. Its particular feature is
the separation of time scales between local well motion and long time decay characterized by a
decay rate. The present subsection generalizes Kramers’ original derivation [Kra40] to yield the
semiclassical escape rate in the regime of the quantum Smoluchowski equation (6.8). In contrast
to earlier publications [Ank01] the following considerations take care of the correct form of the
quantum Smoluchowski equation (6.8) (see also [AG08]).

Let us start by considering a smooth potential, V(x), with a metastable state as illustrated in
Fig. 6.1. Moreover, we consider a semiclassical, Brownian particle to be initially trapped in the
well at point A = (xA, yA). Further, let the potential barrier, ∆ = yB − yA, be large compared
to the thermal energy, 1/β. We are interested in the rate for escapes from A to the next potential
well at point C = (xC , yC). Initially the particle is prepared in its equilibrium distribution (6.11)
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xA xB xC

yA
yB

yC

Figure 6.1: Exemplary smooth potential for typical escape problems.

in the well atA. We assume the well at C to be another metastable well and, thus, we are merely
interested in the rate for crossing over the single barrier at B. In the stationary limit thermally
activated escapes lead to a constant probability current,

j = − 1

γM

(
V ′(x)p(x) +

1

β
∂xDe(x)p(x)

)
. (6.12)

The latter current, j, in Eq. (6.12) can be rewritten in terms of the stationary distribution (6.11)
as,

j = − ps(x)De(x)

γMβ
∂x

p(x)

ps(x)
. (6.13)

The diffusive current between the two metastable wells at A and C can, then, be obtained by
integration and is given by,

jA→C =
p(xA)/ps(xA)− p(xC )/ps(xC)

γMβ
∫ C
A dx/ps(x)De(x)

. (6.14)

The latter equation enables us to derive an expression for the escape from a potential well over
a barrier. Since we assume the system to be initially in a stationary state at A, practically no
particle has yet arrived at C. Therefore, Eq. (6.14) can be simplified to read,

jA→C =
pA

γMβ
∫ C
A dx/ps(x)De(x)

, (6.15)

where we introduced pA = [p(x)/ps(x)]nearA. The escape rate, ΓA→C , can, now, be defined as
the ratio of the diffusive current, jA→C , and the number of particles, nA, in a small neighborhood
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around point A,
ΓA→C =

jA→C
nA

. (6.16)

The number of particles, nA, near A can be determined with the help of a harmonic approxima-
tion of the smooth potential, V(x) ≃ ω2

Ax
2/2. Then nA is given by,

nA =

+∞∫

−∞

dx pA exp

(
−β

2
ω2
A (1− λβω2

A) x2
) (

1− λβω2
A
)
. (6.17)

The Gaussian integral in Eq. (6.17) can be evaluated and we obtain,

nA = pA

√
2π
(
1− λβω2

A
)

β ω2
A

. (6.18)

Substituting the number of particles nearA, nA in Eq. (6.18), in the escape rate, ΓA→C in Eq. (6.16)
we conclude,

ΓA→C =
ωA

γM
√

2πβ
(
1− λβω2

A
)

1
∫ C
A dx/ps(x)De(x)

. (6.19)

The main contribution to the integral is due to a small region near the barrier top at B. Since we
assume V(x) to be smooth we can further approximate the potential in a small neighborhood
around B as, V(x) ≃ ∆− ω2

B(x− q)2/2, with q = xB − xA. Hence, the integral in Eq. (6.19) can
be evaluated,

C∫

A

dx
1

ps(x)De(x)
≃ exp (β∆)

+∞∫

−∞

dx exp

(
−β

2
ω2
B
(
1+ λβω2

B
)

(x− q)2
)

=
exp (β∆)

√
2π√

βω2
B
(
1+ λβω2

B
) ,

(6.20)

and, finally, the escape rate for quantum Smoluchowski dynamics results in,

ΓA→C ≃
ωA ωB
2πγM

√(
1+ λβω2

B
)

(
1− λβω2

A
) exp (−β∆) . (6.21)

The latter result for the escape rate, ΓA→C , reduces to the usual Kramers rate [Kra40] in the
classical limit, λ = 0. Otherwise, for λ 6= 0 the rate is enhanced due to additional quantum
fluctuations. The quantum fluctuations describe in a semiclassical framework the quantum pe-
culiarity of tunneling through the potential barrier at B. In Fig. 6.2 we plot the ratio of the
quantum Smoluchowski rate, ΓQSE (6.21), and the classical equivalent, Γcl (6.21) with λ = 0, for
the simplest case of ωA ≡ ωB. We observe that the quantum fluctuations drastically increase
the escape from a metastable well. Especially close to the boundary of the range of validity,
λβω2

A . 1, the quantum effects govern the dynamics.
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Figure 6.2: Ratio of quantum Smoluchowski and classical escape rate, ΓQSE/Γcl (6.21), for the
simple example ωA ≡ ωB

6.2 Quantum fluctuation theorems in the strong damping limit

In the preceding section we presented the quantum Smoluchowski equation (6.8), which is a
semiclassical model of an open quantum system strongly coupled to a thermal environment.
In the present section (see also [BL09]) we, now, derive extensions of the Jarzynski and Crooks
relations, Eqs. (2.36) and (2.57), by using a Wiener path integral representation of the solution of
the quantum Smoluchowski equation following [CJ06]. For the sake of generality, we consider a
generic driven Fokker-Planck equation, with position-dependent drift and diffusion coefficients,
D1 and D2, of the form,

∂t p (x, α, t) = Fα p (x, α, t) , (6.22)

where the linear operator Fα is given by,

Fα = −∂x D1 (x, α) + ∂2x D2 (x, α) . (6.23)

The quantum Smoluchowski equation (6.8) corresponds to the particular choice D1(x, α) =
−V ′(x, α)/γM and D2(x, α) = 1/[1 − λβV ′′(x, α)]γMβ. In the present analysis, we consider
a time-dependent problem where the potential V(x, αt) is driven by some external parameter
αt = α(t). The driving rate should be smaller than the relaxation rate, α̇t/αt ≪ γ, to ensure that
the non-diagonal elements of the density operator remain negligibly small at all times [DL09].
Note that this condition is not restrictive in the limit of very large γ. Then, for any fixed value of
the driving parameter, α, we write the stationary solution of Eq. (6.22) as,

ps (x, α) = exp (−ϕ (x, α)) , (6.24)
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where the function ϕ(x, α) is explicitly given by,

ϕ (x, α) =

x∫
dy

∂yD2 (y, α)− D1 (y, α)

D2 (y, α)
. (6.25)

We denote by X = {x}+τ
−τ a stochastic trajectory of the system that starts at t = −τ and ends at

t = +τ. We further define a forward process αF
t , in which the driving parameter is varied from an

initial value, αF
−τ = α0, to a final value, αF

+τ = α1, as well as its time reversed process, αR
t = αF

−t.
The conditional probability of observing a trajectory starting at x−τ for the forward process can,
then, be written as,

PF [X|x−τ ] = exp


−

+τ∫

−τ

dt S
(
xt, ẋt, α

F
t

)

 , (6.26)

with a similar expression for the reversed process. For our purposes the stochastic action in
Eq. (6.26), i.e. the generalized Onsager-Machlup functional S (xt, ẋt, αt), is taken to be of the
form (cf. appendix C),

S (xt, ẋt, αt) =
[ẋt − (D1(xt, αt)− ∂x D2(xt, αt))]

2

4D2(xt, αt)
. (6.27)

The last term in the numerator of Eq. (6.27) is included to guarantee that thermodynamic poten-
tials are independent of the state representation [GG79] and follows from the Itô-formula. By
assuming that the system is initially in an equilibrium state given by the solution (6.24) of the
Fokker-Planck equation (6.22), we obtain that the net probability of observing the trajectory X
for the forward process is,

PF[X] = ps (x−τ, α0) P
F [X|x−τ ] . (6.28)

In complete analogy, we find that the corresponding unconditional probability for the reversed
process reads,

PR[X] = ps (xτ , α1) P
R
[
X†|xτ

]
, (6.29)

wherewe introduced the time-reversed trajectory,X† = {x†t }+τ
−τ with x†t = x−t. We next compare

the probability of having the trajectory X during the forward process with that of having the
trajectory X† during the reversed process. We have

PR
[
X†|x†−τ

]
= exp


−

+τ∫

−τ

dt S
(
x†t , ẋ

†
t , α

R
t

)

 = exp


−

+τ∫

−τ

dt S†
(
xt, ẋt, α

F
t

)

 , (6.30)

where we defined the conjugate Onsager-Machlup function, S† (xt, ẋt, αt) = S (xt,−ẋt, αt). The
ratio of the conditional probabilities (6.29) and (6.30) is simply determined by the difference of
S and S†. Using the definition (6.27), we thus obtain,

PF [X|x−τ ]

PR
[
X†|x†−τ

] = exp




+τ∫

−τ

dt
D1

(
xt, α

F
t

)
− ∂x D2

(
xt, α

F
t

)

D2

(
xt, αF

T

) ẋt


 . (6.31)
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The ratio of the forward and reversed probabilities, Eqs. (6.28) and (6.29), follows directly as,

PF [X]

PR [X†]
=

ps (x−τ, α0) PF [X|x−τ ]

ps (xτ , α1) PR
[
X†|x†−τ

] = exp


∆ϕ +

+τ∫

−τ

dt
D1

(
xt, α

F
t

)
− ∂x D2

(
xt, α

F
t

)

D2

(
xt, αF

t

) ẋt


 , (6.32)

where ∆ϕ denotes the variation of the instantaneous stationary solution,

∆ϕ =

+τ∫

−τ

dt
(

α̇F
t ∂α ϕ + ẋt ∂xϕ

)
. (6.33)

By using the explicit expression (6.24) of the stationary solution ϕ(x, α), we finally arrive at

PF [X]

PR [X†]
= exp




+τ∫

−τ

dt α̇F
t ∂α ϕ


 . (6.34)

We are now in the position to derive generalized fluctuation theorems for stochastic processes
described by the generic Fokker-Planck equation (6.22). We begin by defining the generalized
entropy production Σ as,

Σ =

τ∫

−τ

dt α̇F
t ∂α ϕ . (6.35)

The entropy production Σ in Eq. (6.35) is similar to the entropy production introduced byHatano
and Sasa for systems initially in a nonequilibrium steady state [HS01]. In the present situation,
however, it corresponds to a non-Gibbsian equilibrium state. In addition, we note that the en-
tropy production, as defined in Eq. (6.35), is odd under time-reversal, ΣR

[
X†
]

= −ΣF [X]. The
distribution of the entropy production, ρF(Σ), for an ensemble of realizations of forward pro-
cesses can then be defined as,

ρF (Σ) =
∫
DX PF [X] δ

(
Σ− ΣF [X]

)
= exp (Σ)

∫
DX† PR

[
X†
]

δ
(

Σ + ΣR
[
X†
])

, (6.36)

where we used Eq. (6.34) in the last line. Moreover, the Wiener path integral,

∫
DX = lim

N→∞
(4πs)−N/2

N−1
∏
i=1

∫
dxisD (xis, αis)

−1/2 (6.37)

with s = 2τ/N, denotes the product of integrals over all possible, stochastic trajectories X. The
continuous integral in Eq. (6.36) is interpreted as the limit of a discrete sum. Equation (6.34) can
be recast in the form of a generalized Crooks relation for the entropy production,

ρR (−Σ) = ρF (Σ) exp (−Σ) . (6.38)

By further integrating Eq. (6.38) over Σ, we obtain an extended version of the Jarzynski equality,

〈exp (−Σ)〉 = 1 . (6.39)
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6 Strong coupling limit - a semiclassical approach

Expression (6.33) for the entropy production together with the fluctuation theorems (6.38) and
(6.39) constitutes our main result of the present chapter. Combined, they represent the quan-
tum generalizations of the Crooks and Jarzynski equalities, Eqs. (2.57) and (2.36), in the limit of
strong damping. In the classical limit, λ = 0, ϕ(x, α) = β(V(x, α)− F(α)), and the entropy pro-
duction (6.35) takes the familiar form, Σ = β

∫
dt α̇F

t ∂αV(xt, αF
t )− β ∆F. The inequality 〈Σ〉 ≥ 0

implied by Eq. (6.39) is often interpreted as an expression of the second law (cf. section 2.3). It is
worthwhile to mention that the above derivation applies without modification to the case of an
initial nonequilibrium steady state, instead of an initial equilibrium state, leading directly to a
quantum generalization of the Hatano-Sasa relation [HS01]. Moreover, it is worth emphasizing
that Σ (6.35) merely depends on the external driving, αt, and the induced variation of the sta-
tionary solution, ∂α ϕ. Fluctuations of Σ solely stem from the explicit dependence of ϕ (xt, αt) on
the stochastic position, xt.

6.3 Experimental verification in Josephson junctions

No experimental investigation of quantum fluctuation theorems has been performed so far. A
scheme to study the Crooks and Jarzynski relations in isolated and weakly damped quantum
systems using modulated ion traps has recently been put forward in [DL08a] (cf. section 4.5). In
the present section we turn to a possible experimental verification of the above derived fluctua-
tion theorems (6.38) and (6.39) in the strong coupling regime. The prototypical, physical system
described by the quantum Smoluchowski equation (6.8) consists of an overdamped Josephson
junction [Ank04, TC08, TC09, uH06]. A Josephson junction is built by two superconductors
separated by a thin barrier through which Cooper pairs can tunnel. In the following, we will
discuss how the dynamics of Josephson junctions can be described mathematically by means of
the quantum Smoluchowski approach. Moreover, we will present the resulting I-V characteris-
tics including quantum fluctuations and, finally, propose a possible measurement procedure for
the verification of the generalized expressions of the second law.

6.3.1 RCSJ-model

In order to describe the dynamics of Josephson junctions one has to consider situationswhere the
junction current is larger than themaximum Josephson current, Ic. For such set-ups an externally
applied current can not be completely carried by the Josephson current, Is. Hence, we have to
include additional channels carrying the excess current in the description. For temperatures
larger than zero, there is a finite probability for the Cooper pairs to break up into quasiparticles.
These quasiparticles contribute similar to normal electrons resistively to the current by a present
finite voltage over the junction. The second additional channel is given by the finite capacitance
of real Josephson junctions. An equivalent circuit is plotted in Fig. 6.3 to illustrate the situation.
Due to Kirchhoff’s law [Lik86] the net current, I, flowing through the Josephson junction can be
separated into four contributions,

I = Is + IR + IC − It , (6.40)

where IR is the resistive and IC the capacitive current. Moreover, we include a fluctuating term,
It, stemming e.g. from the Nyquist noise in electrical circuits. The resistive current is carried by
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6.3 Experimental verification in Josephson junctions

Figure 6.3: Equivalent circuit for a resistively and capacitively shunted Josephson junction
(RCSJ-model)

the quasiparticles. Therefore, we identify IR with the help of the usual Ohm’s law,

IR =
U

R
, (6.41)

where U is the voltage drop across the junction and R the resistance. For the dynamic case,
where not only Ut, but also its time derivative, dtUt, is nonzero, the capacitive current reads,

IC = CdtUt , (6.42)

with the capacitance C. Finally, the Josephson current, Is, is determined by the Josephson equa-
tions [Jos62],

Is = Ic sin (φt) and dtφt =
2e

h̄
Ut . (6.43)

The maximal current, Ic, is given by Ic = (2e/h̄) EJ , where EJ is the coupling energy (Josephson
energy). The phase difference between left and right superconductor is denoted by φ. Substitut-
ing Eqs. (6.41)-(6.43) in the net current (6.40) we obtain,

It = Ic sin (φt) +
Ut

R
+ CdtU − It

= Ic sin φt +
h̄

2e

1

R
dtφt +

h̄

2e
Cd2

t φt − It ,

(6.44)

where Φ0 = h/2e is the magnetic flux quantum. The latter equation can be rewritten as,
(

h̄

2e

)2

C d2
t φt +

(
h̄

2e

)2 1

R
dtφt +

h̄

2e
∂φ (−Ic cos (φt)− It φt) = It . (6.45)
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-Π�20 Π�20 Π�10-Π�10
Φ
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Figure 6.4: Stationary solution (6.49) for a circle-shaped junction with C = 1.2pF, R = 0.37Ω,
Ic = 0.2mA and βc = 0.1 and different temperature with: θ ≃ 1 and T = 0.973K (red,
solid line); θ = 0.99 and T = 0.979K (blue, dashed line); θ = 0.98 and T = 0.986K
(green, dot-dashed line); θ = 0.97 and T = 0.993K (purple, dashed line).

Hence, we conclude that the dynamics of Josephson junctions can be interpreted as the diffusive
motion of a particle with position φt and mass M = (h̄/2e)2 C, and the friction coefficient is
given by γ = 1/RC. Moreover, the external potential is identified as,

V(φ, t) = −EJ cos (φ)− EI(t) φ , (6.46)

where the energy, EI(t) = (h̄/2e)It, is determined by the bias current, It. An important quan-
tity in the RCSJ model is the dimensionless capacitance (Stewart-McCumber parameter), βc =
(2π/Φ0) IcR2C, where Φ0 = h/2e is the magnetic flux quantum. The inertial term in Eq. (6.45)
becomes negligible for βc ≪ 1 and, thus, the magnitude of the Stewart-McCumber parameter
determines the overdamped regime. Furthermore, it is worth emphasizing that the fluctuating
current, It, is completely determined by the thermal environment surrounding the Josephson
junction. Hence, for small temperatures the Josephson dynamics are governed by thermal as
well as by quantum fluctuations. In the overdamped case the quantum Smoluchowski equation
becomes applicable and Eq. (6.8) equivalently describes the dynamics (cf. subsection 2.2.2). The
effective diffusion coefficient (6.9) reads,

De(φ) =
1

1− θ cos (φ)
. (6.47)

The constant θ = λβEJ is the crucial parameter which governs themagnitude of quantum effects
in a Josephson junction. It is directly proportional to the quantum parameter λ in Eq. (6.10)
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which in the context of the RCSJ model can be reexpressed as,

λ = 2ρ

[
c + Ψ

(
βEc

2π2ρ
+ 1

)]
, (6.48)

where Ec = 2e2/C is the charging energy, ρ = R/RQ the dimensionless resistance and RQ =
h/4e2 the resistance quantum. The stationary solution of the quantum Smoluchowski equation
(6.3) with periodic boundary conditions, i.e. pstat(φ) = pstat(φ + L), can be written as [Rei02],

pstat(φ) =
ps(φ)

ZJ

∫ φ+L

φ

dy

De(y)ps(y)
, (6.49)

where ps(φ) is given by Eq. (6.11) and ZJ is the normalization constant. In Fig. 6.4 we plot the
stationary solution (6.49) for realistic experimental values of a niobium-based junction [KS10].
We observe that with decreasing temperature, i.e. increasing values of θ, the quantum fluctu-
ations drive the semiclassical particle from the potential well. Moreover, the quantum effects
depend sensitively on the temperature. For higher temperatures the distributions show the clas-
sically expected shape with their maximum at the potential minimum, φ = 0. By further cooling
down the probability to find a particle at the minimum of the potential withers, since the local
diffusion is proportional to the curvature. Hence, for very small temperatures the overdamped
quantum particle is most likely found outside the potential well. Nevertheless, by varying the
temperature, both the classical, θ ≪ 1, as well as the quantum regime, θ . 1, can be explored
with the same junctions.

6.3.2 I-V characteristics

In a first step for the verification of the fluctuation theorems (6.38) and (6.39) the applicability
of the quantum Smoluchowski description has to be confirmed. Experimentally, the I-V curve
is a significant characteristic. Hence, the present subsection is dedicated to the generalization
of the result of Ambegaokar and Halperin [AH69] for a Josephson junction in the quantum
Smoluchowski regime. The present derivation follows the main steps of [AH69]. To this end,
we review and simplify the original derivation and propose the quantum generalization. For
the sake of clarity we introduce the parameter a and the dimensionless current i,

a =
h̄βIc
e

and i =
I

Ic
. (6.50)

Hence, the potential, V(φ) in Eq. (6.46), can be rewritten as,

V(φ) = − a

2β
(cos (φ) + i φ) . (6.51)

Now, we express the quantum Smoluchowski equation (6.8) in terms of the probability current,
j, with the help of a particular solution, s(φ),

1

γM
∂φ

[
V ′(φ) +

1

β
∂φ De(φ)

]
s(φ) ≡ −∂φ j . (6.52)
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For the derivation of the I-V curve we are interested in the stationary state, where j is constant.
As noted earlier, for periodic boundary conditions as implied by potentials like in Eq. (6.51) we
only need to consider the value of φ modulo 2π (cf. Eq. (6.49)). Consequently, we may restrict φ
to the interval 0 ≤ φ ≤ 2π. For normalized stationary solutions, sstat(φ), the inverse probability
current, 1/j, is given by the mean first passage time, i.e. the average time for a phase slippage of
2π. Thus, the mean voltage 〈U〉 is given in accordance with the Josephson equations (6.43) by,

〈U〉 = h

2e
j . (6.53)

For the present purpose the stationary solution (6.49) is reformulated with L = 2π to read,

sstat(φ) = j Mγβ
ps(φ)

ps(2π)− ps(0)


ps(0)

φ∫

0

dη

De(η)ps(η)
+ ps(2π)

2π∫

φ

dη

De(η)ps(η)


 , (6.54)

where ps(φ) is again the stationary solution (6.11) normalized over the total support of the quan-
tum Smoluchowski equation (6.8). From the latter formulation of the periodic stationary solu-

tion (6.54) and noting its normalization over one period,
∫ 2π
0 dφ sstat(φ) = 1, the dimensionless

voltage v = 〈U〉 /IcR is obtained to read,

v =
4π

a

exp (aπi)− 1

exp (aπi)




2π∫

0

dφ

2π∫

0

dη
ps(φ)

De(η)ps(η)



−1

. (6.55)

The latter equation constitutes the generalization of the classical I-V characteristics to systems
describable by means of the quantum Smoluchowski equation (6.8). In the following we con-
tinue with a graphical analysis of the analytical I-V characteristics (6.55). To this end, the double
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Figure 6.5: Temperature dependent I-V characteristics (red, solid line) (6.55) togetherwith classi-
cally expected results (blue, dashed line) (6.60) for circle shaped Josephson junctions
with C = 1.2pF, R = 0.37Ω, Ic = 0.2mA and βc = 0.1 and different values of i; left,
i = 0.985; right, i = 0.995;

integral expression in Eq. (6.55) has to be evaluated numerically. For the sake of higher numerical
accuracy and comparability with the classically expected result [AH69] we further reformulate
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the I-V curve (6.55) with the help of a coordinate transformation. Let Υ be a two dimensional
map,

Υ :
[

π
2 ,

5
2π
]
× [0, 2π] → [0, 2π]2

(x, y) 7→ (φ, η) (6.56)

whose inverse map transforms the original variables, (φ, η), to the new variables, (x, y), and
explicitly reads,

x =
1

2
(η + φ + π) and y = η − φ (6.57a)

and

φ =
1

2
(2x− y− π) and η =

1

2
(2x + y− π) . (6.57b)

Then, the I-V characteristics (6.55) can be reformulated as a two dimensional integral expression
in the new variables, (x, y),

v =
4π

a

exp (aπi)− 1

exp (aπi)

{ 2π∫

0

dy

5/2π∫

π/2

dx

[
1− λa

2

(
sin (x) cos

(y
2

)
− sin

(y
2

)
cos (x)

)]

× exp
(
−ai

y

2
− a sin

(y
2

)
cos (x)

)
exp

(
λa2

8

[
sin (2x) sin (y) + 4i sin (x) sin

(y
2

)])}−1
.

(6.58)

The latter expression in Eq. (6.58) further simplifies in the classical limit, λ = 0, and we have,

vcl =
4π

a

exp (aπi)− 1

exp (aπi)




2π∫

0

dy

5/2 π∫

π/2

dx exp
(
−ai

y

2

)
exp

(
−a sin

(y
2

)
cos (x)

)


−1

, (6.59)

which can be simplified with the help of the modified Bessel function I0 [AS72] to read,

vcl =
2

a

exp (aπi)− 1

exp (aπi)




2π∫

0

dy exp
(
−ai

y

2

)
I0

(
a sin

(y
2

))


−1

. (6.60)

Equation (6.60) is the I-V curve, which is expected to be measured if quantum effects of a low
temperature bath are not taken into account. Moreover, Eq. (6.60) expresses the result of [AH69]
and coincides with the formula given in the lecture notes of Gross and Marx [GM05].

In Figs. 6.5 and 6.6 we plot the quantum Smoluchowski I-V characteristics (6.55) togetherwith
the classically expected result (6.60) for realistic Josephson junctions [KS10]. For illustration
of the quantum effects the voltage, U, is plotted as a function of the temperature for different
values of the dimensionless bias current, i. We observe that the quantum fluctuations lead to
an enhanced voltage, U, and, thus, manifest themselves in an apparently higher temperature
in the measurement outcome. The lower temperature range in the plots in Figs. 6.5 and 6.6
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Figure 6.6: Temperature dependent I-V characteristics (red, solid line) (6.55) togetherwith classi-
cally expected results (blue, dashed line) (6.60) for circle shaped Josephson junctions
with C = 1.2pF, R = 0.37Ω, Ic = 0.2mA and βc = 0.1 and different values of i; left,
i = 1.005; right, i = 1.015;

is determined by the conditions of validity of the quantum Smoluchowski equation (6.6). For
even lower temperatures a complete quantummechanical description becomes necessary [IP98,
IG99]. Finally we note that the additional quantum fluctuations imply for low temperatures
a significant effect on the I-V characteristics. However, highly sensitive measurements become
necessary to excludemeasurement errors on small voltage scales. Moreover, the quantum effects
in the I-V curves are largest for bias currents i & 1 (cf. Fig. 6.6) and are negligible for i . 1 (cf.
Fig. 6.6).

6.3.3 Possible measurement procedure

Once it has been shown that the quantum Smoluchowski description is applicable, the fluctu-
ation theorems (6.38) and (6.39) can be experimentally verified in such systems. The nonequi-
librium entropy production (6.35) can be experimentally determined in a Josephson junction by
applying the following measurement procedure. The phase φ can be directly deduced from a
measurement of the Josephson current, Is, once the current-phase relation of the junction has
been determined [KI04]. The system is then first prepared in a given initial state and let to relax
to its stationary state (6.49). After the latter has been attained, the Josephson potential, V(φ), is
modified according to a specific driving protocol, αt, with e.g the help of an external magnetic
field. The entropy production, Σ, during such a protocol (corresponding to either a forward or re-
versed transformation) can be evaluated via Eqs. (6.35) and (6.43) from the recorded values of the
current. The distribution function of the entropy can eventually be reconstructed by repeating
the above measurement sequence, and the validity of the quantum fluctuation theorems (6.38)
and (6.39) in the quantum Smoluchowski regime can be tested. For a Josephson junction, which
is driven by a time-dependent bias current, the entropy distributions have been determined and
the fluctuation theorems (6.38) and (6.39) verified numerically in [Bru10]. The driving with a
time-dependent bias current has the advantage that the complexity of the experimental set-up is
reduced by omitting additional wires inside the cryostat generating the predeterminedmagnetic
field. However, the external driving, i.e. here outside the cryostat, is more sensitive to external
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perturbations. The experimental realization of junctions with the appropriate parameters has
already been possible, whereas the details of the real measurement procedure still have to be
clarified [KS10].

6.4 Summary

In the present chapter we considered an open quantum system strongly coupled to a thermal
environment. For such quantum systems a semiclassical description becomes feasible due to
generic effects of the environment, like decoherence. First, we presented the quantum Smolu-
chowski equation, which is a classical equation of motion with a quantum modified diffusion
coefficient. In a semiclassical picture quantum effects manifest themselves as additional quan-
tum fluctuations and, hence, an effective diffusion coefficient. As an illustration of the properties
we derived the escape rate from a metastable well and showed that the quantum fluctuations
properly describe quantum peculiarities like tunneling through a potential barrier. As a com-
pletely new contribution we, then, derived Crooks and Jarzynski type fluctuation theorems for
the reduced system dynamics. The latter expressions of the second law for quantum systems ar-
bitrarily far from thermal equilibrium can be verified in a Josephson junction experiment. To this
end, we introduced the RCSJ-model and discussed, how the Josephson junctions dynamics are
translated into the quantum Smoluchowski regime. As an experimental verification of the ap-
plicability of the model we proposed the measurements of the I-V characteristics. We concluded
that the quantum effects lead to an enhanced voltage in the I-V curve for particular values of the
temperature and the bias current as it is expected from the classical theory. Finally, we proposed
a possible measurement procedure for the verification of the fluctuation theorems.
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7 Epilogue

The present thesis covered a wide range of problems in quantum thermodynamics. Starting
with a geometric approach to explain the dynamical properties of isolated quantum systems in
chapter 3 we developed a complete thermodynamic description of quantum systems obeying
unitary dynamics arbitrarily far from equilibrium in chapter 4. As a prototypic experimental
system for the research of quantum thermodynamics we analyzed cold ion traps. Then, we
turned to quantum systems coupled to a thermal environment. In chapter 5 we derived the
universal expression for the irreversible entropy production and an integral fluctuation theorem
valid in the weak coupling regime. Moreover, we were able to derive the equivalent result in the
strong damping limit in chapter 6, which could be verified with the help of a Josephson junc-
tion experiment. Nevertheless, there remain various open problems, which have to be solved in
future research. In particular, the development of a general approach to thermodynamics con-
sidering merely the reduced system dynamics is still lacking. Admittedly, the present thesis and
recent publications [TH09a, TH09b, CH09] cover most physically relevant situations. However,
from an experimental point of view, usually, only the system of interest is controllable. On the
contrary, the heat bath may be arbitrarily large, and, thus, it is not possible to gain complete
information. Moreover, we only have resilient results in the weak and high damping limit. For
general couplings of the reduced system to arbitrary environments a completely thermodynamic
description is an unsolved problem.

One might pose the question, whether it makes sense to insist on a thermodynamics descrip-
tion of the reduced system only. Over the last two centuries thermodynamics has been proven to
be an extremely powerful concept, since it is a phenomenological theory of mean values. From
chemical reactions to black holes thermodynamics can explain the physics of general systems
at any length scale. For systems arbitrarily far from equilibrium, however, the physical prop-
erties are significantly dependent on the explicit time evolution. For classical systems as well
as for quantum systems ultra-weakly coupled to a thermal environment it has been possible to
extend the conventional thermodynamic theory explicitly taking fluctuations into account. On
the contrary, for open quantum systems with arbitrary coupling to the environment dynamics
are governed by the interaction between the distinct subsystems. Hence, thermodynamic quan-
tities like work and heat have to be re-defined carefully. Thus, it is desirable to develop the
corresponding theory.

Concluding remarks

The present thesis drew a bow over a wide range of couplings between a quantum system of
interest and a thermal environment. We have been able to derive general expressions for the
irreversible entropy production for any kind of processes operating arbitrarily far from thermal
equilibrium. Starting with a phenomenological approach to the accessible degrees of freedom
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7 Epilogue

we developed general expressions of the second law for almost all imaginable, physically rele-
vant quantum situations. The present considerations have been motivated by an experimental
point of view and the original philosophy of thermodynamics. To this end, we had to elaborate
a geometric approach to isolated quantum systems and include methods of statistical physics,
quantum information theory and the theory of open quantum systems.
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A Quantum information theory

The present appendix introduces information theoretic quantities, which have been used in the
above considerations. We summarize definitions and outline the most important properties.

A.1 Relative entropy

The Shannon or von Neumann entropy [vN55] is a function that is an expression of the infor-
mation content of a probability distribution. However, in information theory one often wants to
measure the distinguishability of two distributions, p(x) and q(x). One of the most frequently
considered quantities is the Kullback-Leibler divergence [KL51],

D (p||q) =
∫

dx p(x) ln

(
p(x)

q(x)

)
. (A.1)

The latter equation defines a non-symmetric measure of the difference between two probability
distributions. Moreover, D (p||q) measures the expected number of extra bits required to code
samples from p(x) when using a code based on q(x), rather than using a code based on p(x).
The divergence is always non-negative,

D (p||q) ≥ 0, (A.2)

which is a result known as Gibbs’ inequality, withD (p||q) equals zero only for identical distribu-
tions, p ≡ q. Furthermore, the divergence remains well-defined for all continuous distributions
and is invariant under parameter transformations.

A.1.1 Inequalities in information theory

Themost important inequalities in information theory are lower bounds on the Kullback-Leibler
divergence (A.1). Even the Shannon-type inequalities can be recast in this category. There exist
only very rare results for useful upper bounds, since the divergence D (p||q) depends very sen-
sitively on events that are very rare in the reference distribution q. Hence, D (p||q) diverges if an
event of finite non-zero probability in p becomes exceedingly rare in q. Therefore, p is required
to be absolutely continuous with respect to q to avoid D (p||q) being ill-defined.

Gibbs’ inequality

The Gibbs’ inequality was first proposed in the 19th century. For discrete probability distribu-
tions, pn ∈ {p1, ..., pN} and qn ∈ {q1, ..., pN}, the following inequality between positive quanti-
ties holds,

−
N

∑
n=1

pn ln (pn) ≤ −
N

∑
n=1

qn ln (pn) , (A.3)
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with equality only if pn = qn for all n. A direct corollary is the non-negativity of Kullback-Leibler
divergence, D (p||q), in Eq. (A.2).

Kullback’s inequality

The Kullback’s inequality gives a lower bound on D (p||q) expressed in terms of the large devi-
ations rate function. It reads,

D (p||q) ≥ Ψ∗q (µ (p)) , (A.4)

where Ψ∗q is the rate function, i.e. the convex conjugate of the cumulant-generating function, of
q, and µ (p) is the first moment of p. A corollary of the latter Eq. (A.4) is the Cramér-Rao bound
[Rao45] (see also Eq. (A.19)).

A.1.2 Quantum relative entropy

In quantum information theory, the quantum relative entropy is the quantum mechanical gen-
eralization of the Kullback-Leibler divergence (A.1). It was first proposed by Umegaki [Ume62]
and reads for two density operators, ρ1 and ρ2,

S (ρ1||ρ2) = tr {ρ1 ln ρ1} − tr {ρ1 ln ρ2} . (A.5)

We immediately see from Eq. (A.5) that for commuting densities, [ρ1, ρ2] = 0, the definition
(A.5) coincides with the classical case (A.1). Further, the quantum relative entropy is always
non-negative, S (ρ1||ρ2) ≥ 0, which is usually known as Klein’s inequality. Finally, S (ρ1||ρ2)
serves as a measure of entanglement [Ved02]. Let a composite quantum system have a Hilbert
space,H, with

H = ⊗kHk , (A.6)

and ρ is a density operator acting on the total system. Then, the relative entropy of entanglement
of ρ is defined as,

Dent(ρ) = min
σ
{S (ρ||σ)} , (A.7)

where the minimum is taken over all separable states, σ. It follows, that ρ is not an entangled
state, if Dent(ρ) = 0.

A.2 Fisher information

The Fisher information, I (Θ), is the variance of the score. This means, that I (Θ) measures
the amount of information that an observable, random variable, x, carries about an unknown
parameter, Θ. We denote the likelihood function of Θ by p (x;Θ). The likelihood function is the
joint probability of the data, the values of x, conditional on the value of Θ. The variance of the
score is simply given by the second moment of the score, since the expectation is zero. Hence,
the Fisher information reads,

I (Θ) =
〈
[∂Θ ln (p (x;Θ))]2

〉
Θ
. (A.8)
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For parametric probability densities, p (x;Θ), Eq. (A.8) can be written as,

I (Θ) =
∫

dx
(∂Θp (x;Θ))2

p (x;Θ)
. (A.9)

From the latter formulation in Eq. (A.9) of I (Θ) we observe that the infinitesimal Fisher infor-
mation is given by the square of the infinitesimal statistical distance (3.11),

dI =

(
1

2
dℓ

)2

. (A.10)

The quantum generalization of the latter Eq. (A.10) was used in Eq. (3.58).

A.2.1 Relation to Kullback-Leibler divergence

Now, we consider two parametric probability distributions, p (Θ), with p1 = p (Θ1) and p2 =
p (Θ2). Then, the Kullback-Leibler divergence (A.1) reads,

D (p (Θ1) ||p (Θ2)) =
∫

dx p (x;Θ1) ln

(
p (x;Θ1)

p (x;Θ2)

)
. (A.11)

For infinitesimal changes in the parameter Θ, Θ2 = Θ1 + δΘ, the divergence is proportional to
the Fisher information (A.8) [Kul78],

D (p (Θ2 − δΘ) ||p (Θ2))
δΘ→0−→ 1

2
I (Θ2) (δΘ)2 , (A.12)

why we conclude,
∂2Θ D (p (Θ) ||p (Θ2))

∣∣
Θ=Θ2

= I (Θ2) . (A.13)

The latter equation is the underlying quantum information theoretic relation which led to the
generalization of the Clausius inequality in chapter 4.

A.2.2 Cram ér-Rao bound

TheCramér-Rao bound relates the Fisher informationwith the quality of ameasurementwith es-
timators Θ̂ (x). We consider in the following the class of unbiased estimates, obeying

〈
Θ̂ (x)

〉
=

Θ. Here, the angle brackets denote the average over the probability density, p (x;Θ),

〈
Θ̂ (x)−Θ

〉
Θ

=
∫

dx
(
Θ̂ (x)−Θ

)
p (x;Θ) = 0 . (A.14)

By differentiating with respect to Θ, the latter equation transforms into,
∫

dx
(
Θ̂ (x)−Θ

)
∂Θ p (x;Θ)−

∫
dx p (x;Θ) = 0 . (A.15)

With the identity ∂Θ p = p ∂Θ ln (p) and making use of the normalization of p Eq. (A.15) reads,
∫

dx
(
Θ̂ (x)−Θ

)
p (x;Θ) ∂Θ ln (p (x;Θ)) = 1 , (A.16)
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which we rewrite as,
∫

dx [
√
p ∂Θ ln (p (x;Θ))]

[(
Θ̂ (x)−Θ

)√
p
]

= 1 . (A.17)

By squaring Eq. (A.17) and making use of the Cauchy-Schwartz inequality we, finally, obtain,
〈
[∂Θ ln (p (x;Θ))]2

〉
Θ

〈[
Θ̂ (x)−Θ

]2〉
Θ
≥ 1 , (A.18)

which is the Cramér-Rao bound [Rao45]. Hence, the Fisher information, I (Θ), estimates the
precision of a measurement from below,

〈[
Θ̂ (x)−Θ

]2〉
Θ
≥ 1

I (Θ)
. (A.19)

It is worth emphasizing that the Fisher information, I(Θ), is a fundamental quantity in infor-
mation theory, whose relation to thermodynamics is not completely clarified yet.

A.3 Bures metric

In the above considerations we introduced the Bures length (3.30) and the Bures distance (4.33).
The underlying metric of both quantities first appeared in the literature by Kakutani in 1948
[Kak48] and was mathematically properly defined by Bures in 1969 [Bur69]. The Bures metric
defines the infinitesimal distance between density operators,

[L (ρ, ρ + δρ)]2 =
1

2
tr {δρ G} , (A.20)

where G is implicitly given by,
ρ G + G ρ = δρ . (A.21)

Therefore, the Bures metric is by definition a non-trivial quantity, whose explicit expression can
only be evaluated for special situations.

A.3.1 Explicit formulas

From the definition (A.20) the evaluation of the Bures metric is not evident. For finite dimen-
sional systems Dittmann [Dit99] proposed the following formulas valid for 2× 2 and 3× 3 sys-
tems, respectively,

[L (ρ, ρ + δρ)]2 =
1

4
tr

{
δρ2 +

1

det ρ
(1− ρ) δρ (1− ρ) δρ

}
, (A.22)

and

[L (ρ, ρ + δρ)]2 =
1

4
tr

{
δρ2 +

3

1− tr {ρ3} (1− ρ) δρ (1− ρ) δρ

}

+
1

4
tr

{
3det ρ

1− tr {ρ3}
(
1− ρ−1

)
δρ
(
1− ρ−1

)
δρ

}
.

(A.23)
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Moreover, in terms of the eigenvectors |n〉 and eigenvalues pn of the density operator ρ Hübner
found [Hue92],

[L (ρ, ρ + δρ)]2 =
1

2

n

∑
i,j=1

|〈j|δρ|k〉|2
pj + pk

. (A.24)

Finally, following Sommers and Życzkowski [SZ03] the volume element induced by the Bures
metric (A.20) can be used as a prior probability density.

A.3.2 Quantum Fisher information

The Bures metric (A.20) can also be seen as the quantum equivalent of the Fisher information
metric [BZ06]. In terms of the variation of coordinate parameters (A.20) reads,

[L (ρ, ρ + dρ)]2 =
1

2
tr
{
dΘµ

ρ Lν

}
dΘνdΘν (A.25)

where dΘµ ρ is given by,
1

2

(
ρ Lµ + Lµ ρ

)
= dΘµ

ρ . (A.26)

Hence, we obtain,

[L (ρ, ρ + dρ)]2 =
1

2
tr

{
1

2

(
Lµ Lν + Lν Lµ

)
ρ

}
dΘµdΘν , (A.27)

where the quantum Fisher information metric is identified as,

gµν = tr

{
1

2

(
Lµ Lν + Lν Lµ

)
ρ

}
. (A.28)

In its simplest formulation the identification in Eq. (A.27) served as a starting point for the
derivation of the quantum speed limit in Eq. (3.58).
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B Solution of the parametric harmonic
oscillator

In this appendix we summarize the basic concepts and solutions of the parametric harmonic
oscillator. We use the method of generating functions, which was introduced by Husimi in 1953
[Hus53]. For a detailed discussion and modern review we refer to [Def08] and [AL10].

B.1 The parametric harmonic oscillator

The Hamiltonian of a quantum mechanical harmonic oscillator with time-dependent angular
frequency ωt reads,

Ht =
p2

2M
+

M

2
ω2

t x
2 . (B.1)

The parameterization ωt starts at an initial value ω0 at t = t0 and ends at a final value ω1

at t = τ. We denote by φt
n the instantaneous eigenfunctions and by Et

n = h̄ωt (n + 1/2) the
instantaneous eigenvalues of the quadratic Hamiltonian (B.1). The dynamics of the harmonic
oscillator is Gaussian for any ωt. By introducing the Gaussian wave function ansatz,

ψt(x) = exp

(
i

2h̄

[
atx

2 + 2btx + ct
])

, (B.2)

the Schrödinger equation for the oscillator can be reduced to a system of three coupled differen-
tial equations for the time-dependent coefficients at, bt and ct,

1

M
dtat = − 1

M2
a2t −ω2

t , (B.3a)

dtbt = − 1

M
atbt, (B.3b)

dtct =
ih̄

M
at −

1

M
b2t . (B.3c)

The nonlinear equation (B.3a) is of the Riccati type and is, therefore, solvable. It can be mapped
to the equation of motion of a classical time-dependent harmonic oscillator via at = M Ẋt/Xt,
and we obtain,

d2
t Xt + ω2

t Xt = 0 . (B.4)

With the solutions of (B.3) the Gaussian wave function ψt(x) (B.2) is fully characterized by the
time-dependence of the angular frequency ωt. The general form of the propagator can be deter-
mined from ψt(x) by noting that

ψt(x) =
∫

dx0 Ut,t0(x|x0) ψt0(x0) . (B.5)
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It is explicitly given by [Hus53],

Ut,t0 =

√
M

2πih̄Xt
exp

(
iM

2h̄Xt

[
Ẋtx

2 − 2xx0 + Ytx
2
0

])
, (B.6)

where Xt and Yt are solutions of Eq. (B.4) satisfying the boundary conditions X0 = 0, Ẋ0 = 1
and Y0 = 1, Ẏ0 = 0, the latter being an expression of the commutation relation between position
and momentum.

B.2 Method of generating functions

The time variation of the angular frequency (B.1) induces transitions between different energy
eigenstates of the oscillator. We are, thus, interested in the transition probabilities, pτ

m,n, from an
initial state, |n〉 at t0 = 0, to a final state, |m〉 at t = τ. In the following, we use the method of
generating functions to evaluate pτ

m,n [Hus53]. We start with the definition,

pτ
m,n =

∣∣∣∣
∫

dx0

∫
dx φ∗τ

m(x)Uτ,0(x|x0) φ0
n(x0)

∣∣∣∣
2

, (B.7)

and denote the complex conjugate of a number z by z∗. The quadratic generating function of
φt
n(x) is given by,

∞

∑
n=0

un φt
n(x) φ∗tn(x0) =

√
Mωt

h̄π(1− u2)
exp

(
−Mωt

h̄

(1+ u2)(x2 + x20)− 4uxx0
2(1− u2)

)
, (B.8)

which can be calculated by a Fourier expansion of the left-hand side of Eq. (B.8). The generating
function of pτ

m,n is, then, defined as,

P(u, v) = ∑
m,n

umvnpτ
m,n . (B.9)

Combining Eqs. (B.7) and (B.8), we find that

P(u, v) =

√
2√

Q∗(1− u2)(1− v2) + (1 + u2)(1+ v2)− 4uv
. (B.10)

The (u, v)-dependence of the generating function, P(u, v), remains the same for all possible
transformations ωt. Details about the specific parameterization of the angular frequency only
enter through different numerical values of the parameter Q∗ given by,

Q∗ =
1

2ω0ω1

{
ω2

0

[
ω2

1 X
2
τ + Ẋ2

τ

]
+
[
ω2

1 Y
2
τ + Ẏ2

τ

]}
. (B.11)

From a physical point of view, Q∗ can be regarded as a measure of the degree of adiabaticity of
the process and will be discussed in more detail in the following section. Among the proper-
ties of the generating function, P(u, v), it is worth mentioning that the law of total probability,

∑
n
pτ
m,n = 1, is fulfilled and is equivalent to,

P(u, 1) =
1

1− u
. (B.12)
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For a constant frequency, ωt ≡ ω0, we note that the solutions of Eq. (B.4) are given by,

Xt =
1

ω0
sin (ω0 t) , and Yt = cos (ω0 t) . (B.13)

The latter imply with Eq. (B.11) that Q∗ = 1 and Eq. (B.10) thus simplifies to,

P(u, v)
∣∣
Q∗=1

=
1

1− uv
, (B.14)

which is equivalent to pτ
m,n = δm,n, indicating the absence of transitions, as expected. The

symmetry relation of the generating function (B.10), P(−u,−v) = P(u, v), further shows that
pτ
m,n = 0 if m, n are of different parity. This is an expression of a selection rule m = n ± 2k,

where k is an integer. We mention in addition that the transition probabilities are symmetric,
pτ
m,n = pτ

n,m, following P(u, v) = P(v, u). Explicit expressions for the transition probabilities,
pτ
m,n, are given in terms of hypergeometric functions in section B.4.

B.3 Measure of adiabaticity

The parameter Q∗ defined in (B.11) can be given a simple physical meaning [Hus53]. We base
our discussion of adiabaticity on the equivalent classical harmonic oscillator (B.4) since the gen-
erating function, P(u, v) in Eq. (B.10), is fully determined through the classical solutions Xt and
Yt. For an adiabatic transformation, the action of the oscillator, given by the ratio of the energy
to the angular frequency, is a time-independent constant. For quasistatic processes we have the
two adiabatic invariants,

Ẋ2
t + ω2

tX
2
t

ωt
=

1

ω0
, and

Ẏ2
t + ω2

tY
2
t

ωt
= ω0. (B.15)

From the definition (B.11) of the parameter Q∗, we see that in this case we simply have Q∗ =
1. As mentioned earlier, this implies P(u, v) = (1− uv)−1 and pτ

m,n = δm,n. The latter is an
expression of the quantum adiabatic theorem: For infinitely slow transformations no transitions
between different quantum states occur. For fast transformations, on the other hand, we can
regard Q∗ as a measure of the degree of nonadiabaticity of the process. As an illustration, we
evaluate mean and variance of the energy of the oscillator at time τ and express them as a
function ofQ∗. For a transition from initial state |n〉 to final state |m〉, themean-quantum number
of the final state 〈m〉n can be obtained by taking the first derivative of the generating function
(B.10) of pτ

m,n,

∑
n

un ∑
m

m pτ
m,n = ∂v P(u, v)

∣∣
v=1

=
Q∗(1+ u)− (1− u)

2(1− u)2
, (B.16)

and expanding the left hand side of (B.16) in powers of u:

〈m〉n = ∑
m

m pτ
m,n =

(
n +

1

2

)
Q∗ − 1

2
. (B.17)
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Noting that p0n = exp(−βE0
n)/Z0, the mean energy of the oscillator at time τ then reads

〈Hτ〉 = ∑
n

h̄ω1

(
〈m〉n +

1

2

)
p0n =

h̄ω1

2
Q∗ coth

(
β

2
h̄ω0

)
. (B.18)

Since 〈m〉n ≥ 0, and, hence, 〈Hτ〉 ≥ h̄ω1/2, the parameter Q∗ necessarily satisfies Q∗ ≥ 1 for
generic processes. In the zero temperature limit, Eq. (B.18) reduces to,

〈Hτ〉 =
h̄ω1

2
Q∗ (B.19)

The above equation corrects a misprint appearing in Eq. (5.21) of Ref. [Hus53] (ω0 should be

replaced by ω1). The mean-square quantum number,
〈
m2
〉
n
− 〈m〉2n, at time τ can be calculated

in a similar way by considering 〈m(m− 1)〉n. By differentiating Eq. (B.10) twice, we have,

∑
n

un ∑
m

m(m− 1) pτ
m,n =

1+ (u− 6)u + 3Q∗2(u + 1)2 + 4Q∗(u2 − 1)

4(u− 1)3
, (B.20)

and a series expansion in powers of u leads to,

〈 m(m− 1) 〉n =
1

4

[
1− 2n (n + 1)− 4Q∗ (2n + 1) + 3Q∗2

(
2n2 + 2n + 1

)]
. (B.21)

The mean-square quantum number is then obtained by combining Eqs. (B.17) and (B.20):

〈
m2
〉
n
− 〈m〉2n =

1

2

(
Q∗2 − 1

) (
n2 + n + 1

)
. (B.22)

From Eqs. (B.17), (B.18) and (B.22), we can finally write the variance of the energy as,

〈
H2

τ

〉
− 〈Hτ〉2 =

h̄2ω2
1

4
csch2

(
β

2
h̄ω0

) [
Q∗2 +

(
Q∗2 − 1

)
cosh (βh̄ω0)

]
. (B.23)

The zero-temperature limit,

〈
H2

τ

〉
− 〈Hτ〉2 =

h̄2ω2
1

2

(
Q∗2 − 1

)
, (B.24)

is again the correct version of Eq. (5.22) of Ref. [Hus53]. Equation (B.22) indicates that the param-

eterQ∗ directly controls the magnitude of the variance of the occupation number,
〈
m2
〉
n
− 〈m〉2n.

In the adiabatic limit, where Q∗ = 1, we readily get 〈m〉n = n and
〈
m2
〉
n
− 〈m〉2n = 0. We, there-

fore, recover that for adiabatic processes the system remains in its initial state, |m〉 = |n〉. On the

other hand, for fast nonadiabatic processes, the mean, 〈m〉n, and the dispersion,
〈
m2
〉
n
− 〈m〉2n,

increase with increasing values of Q∗, indicating that the quantum oscillator ends in a final state,
|m〉, which is farther and farther away from the initial state, |n〉. The latter corresponds to larger
and larger final values of the mean energy and energy variance, Eqs. (B.18) and (B.22).

It is worth mentioning that the above discussion of the adiabaticity parameter Q∗ for the
parametric oscillator is close in spirit to the Einstein criteria for adiabatic processes [Kul57].
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B.4 Exact transition probabilities

Einstein noted that for an adiabatic process, the classical action of the oscillator, 〈Ht〉 /ωt, should
remain constant and the number of quanta should, therefore, remain unchanged. In the present
situation, we have 〈Hτ〉 /ωτ ∝ Q∗, and the action only remains constant whenQ∗ = 1. The latter
is precisely the condition that we derived for an adiabatic transformation. For nonadiabatic
processes, the parameter Q∗ > 1, thus, gives a measure for the increase of the classical action of
the oscillator. Further discussions of adiabatic measures can be found in Ref. [Tak92].

B.4 Exact transition probabilities

We, here, collect the analytical expressions of the transition probabilities pτ
m,n [Hus53]. Despite

its apparent simplicity, the generation function, P(u, v) in Eq. (B.10), cannot be expanded in
powers of u and v in an exact series. We, thus, make use of the pτ

m,n as defined by the matrix

elements of the propagatorUτ,0(x|x0), pτ
m,n =

∣∣Uτ
m,n

∣∣2 (B.6). This matrix elements are given by,

Uτ
m,n =

∫
dx0

∫
dx φ∗τ

m(x)Uτ,0(x|x0)φ0
n(x0). (B.25)

We use again the method of generating functions here the linear generating function of φt
n(x)

[DL77a],

∞

∑
n=1

(√
π 2n

n!

)1/2

znφt
n(x) =

4

√
Mωt

h̄
exp

(
−Mωt

2h̄
x2 + 2

√
Mωt

h̄
z x− z2

)
, (B.26)

to evaluate the generating function of the propagator,

U(u, v) = ∑
m,n

(
π 2n+m

n!m!

)1/2

unvmUτ
m,n . (B.27)

By introducing the complex parameters,

ζ = ω1ω0Xτ −ω0iẊτ + ω1iYτ + Ẏτ , |ζ|2 = 2ω0ω1 (Q∗ − 1) (B.28a)

σ = ω1ω0Xτ − ω0iẊτ − ω1iYτ − Ẏτ , |σ|2 = 2ω0ω1(Q
∗ + 1) (B.28b)

we can write

U(u, v) =
4
√

ω0ω1√
iσ/2π

exp

(
ζu2 − 4i

√
ω0ω1uv + ζ∗v2

σ

)
. (B.29)

The matrix elements, Uτ
m,n, can then be obtained by a series expansion of (B.28) in powers of u

and v [Hus53],

Uτ
m,n = 4

√
2ω0ω1

√
n!m! ζnζ∗m

2n+m−1iσn+m+1

min (m,n)

∑
l=0

[−2i
√

2/(Q∗ − 1)]l

l! [(n− l)/2]! [(m − l)/2]!
. (B.30)

According to the selection rule m = n± 2k, l runs over even numbers only, if m, n are even, and
over odd numbers only, if m, n are odd. The explicit expression for the matrix elements, Uτ

m,n,
then reads for even elements,

Uτ
2µ,2ν =

√
2ν!2µ!

22ν+2µ−1i

√
ζ2νζ∗2µ

σ2ν+2µ+1

4
√
2ω0ω1

Γ(µ + 1) Γ(ν + 1)
2F1

(
−µ, −ν;

1

2
;

2

1− Q∗

)
, (B.31)
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and for odd elements,

Uτ
2µ+1,2ν+1 =

√
8 (2ν + 1)!(2µ + 1)!

(1− Q∗) 22ν+2µ+1

√
ζ2ν+1ζ∗2µ+1

σ2ν+2µ+1

4
√
2ω0ω1

Γ(µ + 1) Γ(ν + 1)
2F1

(
−µ, −ν;

3

2
;

2

1− Q∗

)
.

(B.32)
We have here introduced the hypergeometric function 2F1 [AS72] in order to simplify the sums
and write the matrix elements, Uτ

m,n, in closed form. Furthermore, Γ(x) denotes the Euler
Gamma function. Combining everything, we get the explicit expressions for the transition prob-
abilities, which reads for even transitions,

pτ
2µ,2ν =

21/2

(Q∗ + 1)1/2

(
Q∗ − 1

Q∗ + 1

)µ+ν
Γ(1/2 + µ) Γ(1/2 + ν)

πΓ(1+ µ) Γ(1+ ν)

[
2F1

(
−µ, −ν;

1

2
;

2

1−Q∗

)]2
,

(B.33)
and for odd transitions,

pτ
2µ+1,2ν+1 =

27/2

(Q∗ + 1)3/2

(
Q∗ − 1

Q∗ + 1

)µ+ν
Γ(3/2 + µ) Γ(3/2 + ν)

πΓ(1 + µ) Γ(1 + ν)

[
2F1

(
−µ, −ν;

3

2
;

2

1− Q∗

)]2
.

(B.34)
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C Stochastic path integrals

The last appendix is dedicated to an introduction to stochastic Wiener path integrals. Here, the
phrase path integrals refers to the generalization of the integral calculus to functionals. A lucidly
written introduction to the topic may also be found by Wiegel [Wie86]. The development of a
calculus for functionals was initiated by Volterra [Vol65]. His main contribution was a recipe
how to handle functions with infinitely many variables. (a) Replace the functional by a function
of a finite number, N of variables. (b) Perform all calculations with this function. (c) Take the
limit N to infinity. This recipe led after several developments to Feynman’s representation of the
propagator of the Schrödinger equation by the complex-valued path integral. The Schrödinger
equation, on the other hand, takes the form of a general Fokker-Planck equation with complex
time. Hence, path integrals are also applicable for the evaluation of the solution of stochastic
problems. In the following we review the definition and basic properties of stochastic path
integrals, also called Wiener functional integrals.

C.1 Definition and basic properties

Let us start with a very simple problem, namely the free diffusion of a Brownian particle. Its
dynamics are described by the diffusion equation,

∂tp(x, t) = D ∂2xp(x, t) , (C.1)

where, as usual, p(x, t) denotes the probability distribution of the particle and D is the diffusion
coefficient. Now, let p0(x, t) be a solution of (C.1) with deterministic initial position, (x0, t0),

p0(x, t0) = δ(x− x0) . (C.2)

Hence, the solution p0(t, x) is evaluated to read,

p0(x, t) =
1√

4πD (t− t0)
exp

(
− (x− x0)

2

4D (t− t0)

)
, (C.3)

as can be verified by substitution. The latter solution in Eq. (C.3) is, usually, called the Green’s
function of the diffusion equation, or the propagator of a Brownian particle. Following Volterra’s
recipe we have to replace the continuous solution p0(t, x) by a finite sequence. To this end,
we divide the time interval [t0, t] into N + 1 equal intervals of length ǫ. Thus, we obtain an
ordered sequence of time points, t1 < t2 < ... < tN . Now, we ask for the probability to find a
particle, which started in x0 at t0, in small neighborhoods around the positions x1, x2, ..., xN , x at
times t1, t2, ..., tN, t. The neighborhoods are understood as small spatial uncertainties denoted by
dx1, dx2, ..., dxN, dx. Since we can assume the dynamics in each subinterval to be independent,
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t1 t2 ... tN-1 tN t
time

x0

space

Figure C.1: Particle trajectory which starts at position x0 at time t0 and passes trough N + 1
intermediate time steps, t1, t2, ..., tN , t

i.e. Markovian dynamics, the total probability is given by the product of the propagator (C.3)
over the successive subintervals,

(4πDǫ)−(N+1)/2 exp

(
− 1

4Dǫ

N

∑
j=0

(
xj+1 − xj

)2
)

N+1

∏
j=1

dxj , (C.4)

where we defined the final time point xN+1 = x. In the continuous limit of infinitely many
intermediate time steps, ǫ → 0,N → ∞, (N + 1)ǫ = t− t0, the latter expression (C.4) converges
to the probability for the particle to follow a particular path X = {x}tt0 from x0 to x. Moreover,
the exponential in (C.4) can be written in the continuous limit as,

exp


− 1

4D

t∫

t0

ds (∂sx)
2


 . (C.5)

By construction one rediscovers after integration of expression (C.4) over all intermediate coor-
dinates, x1, x2, ..., xN, the original probability density (C.3). The result is the derivation of the
propagator of a Brownian particle as a Wiener path integral,

p0(x, t) =

x∫

x0

DX exp


− 1

4D

t∫

t0

ds (∂sx)
2


. (C.6)

It is worth emphasizing that the right-hand side of the latter equation (C.6) is merely a notation
for Volterra’s recipe applied to a particular functional. The symbol DX denotes the infinitesimal
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small collection of sequences X = {x}tt0 , which obey,

x(t0) =x0,

x1 < x(t1) < x1 + dx1,

x2 < x(t2) < x2 + dx2,

... ,

xN < x(tN) < xN + dxN,

x(t) =x .

(C.7)

Hence, the symbol DX can equivalently be expressed as a product over all intermediate coordi-
nates,

x∫

x0

DX = lim
N→∞

(4πDǫ)−(N+1)/2
N+1

∏
j=1

+∞∫

−∞

dxj . (C.8)

Further, on the left-hand side of Eq. (C.8) the boundaries of the path integral indicate, that all
possible paths, X, start and end in the same initial and final coordinates, x0 and x, respectively.
On the right hand side, however, the integrals runs over the whole probability space. For the
evaluation of path integrals one always has to perform all integrations in the discrete formula-
tion and, then, take the limit N → ∞.

C.2 Onsager-Machlup functional for space dependent diffus ion

In the latter section we considered the simplest, physically relevant case, namely the diffusion
equation of a free Brownian particle. Next, we turn to the more complicated problem of general
Fokker-Planck equations. A detailed derivation of the according path integrals was proposed
by Grabert and Green [GG79], whereas we follow, here, the more heuristic approach of Risken
[Ris89]. For the sake of generality, we consider a generic driven Fokker-Planck equation, with
time and position dependent drift and diffusion coefficients, D1 and D2, of the form,

∂tp (x, t) = F(x, t) p (x, t) , (C.9)

where the linear operator F(x, t) is given by,

F(x, t) = −∂x D1 (x, t) + ∂2x D2 (x, t) . (C.10)

A formal solution of Eq. (C.9) with the deterministic initial distribution (C.2) can be written as,

p0(x, t) = T> exp (F(x, t) (t− t0)) δ (x− x0) , (C.11)

where T> is the time ordering operator. The time ordering has to be included in the solution in
order to formulate the corresponding fundamental system of Eq. (C.9) as a well-defined formu-
lation. For small increments of time, ǫ = t− t0, the latter solution p0(x, t) can be expanded to
read,

pǫ(x, t) ≃
[
1+F(x, t) ǫ +O

(
ǫ2
)]

δ (x− x0) . (C.12)
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From the latter expansion we conclude that for small times ǫ the time ordering can be omitted.
Thus, we obtain up to corrections of the order ǫ2,

pǫ(x, t) =
(
1− ∂x D1 (x0, t) ǫ + ∂2x D2 (x0, t) ǫ

)
δ (x− x0) , (C.13)

where we replaced x by x0 in the drift and diffusion coefficients. If we now introduce the repre-
sentation of the δ-function in terms of a Fourier integral, we obtain for small ǫ,

pǫ(x, t) =
(
1− ∂x D1 (x0, t) ǫ + ∂2x D2 (x0, t) ǫ

) 1

2π

∫
du exp (iu (x− x0)) . (C.14)

By further evaluating the derivatives in Eq. (C.14) we then obtain,

pǫ(x, t) =
1

2π

∫
du exp (iu (x− x0))

(
1− iu D1 (x0, t) ǫ− u2 D2 (x0, t) ǫ

)

≃ 1

2π

∫
du exp

(
iu (x− x0)− iu D1 (x0, t) ǫ− u2 D2 (x0, t) ǫ

)
.

(C.15)

Thus, the propagator of a general Fokker-Planck equation is given for small time steps ǫ as,

pǫ(x, t) =
1√

4πD2(x0, t)ǫ
exp

(
− (x− x0 − D1(x0, t)ǫ)2

4D2(x0, t)ǫ

)
. (C.16)

As before (cf. Eq. (C.4)) the probability for a sequence of N successive, independent steps is
given by the product of the propagator of the individual, infinitesimal steps,

p0(x, t) = lim
N→∞

N+1

∏
j=1

(
4πD2(xj, t)ǫ

)−(N+1)/2
+∞∫

−∞

dxj exp

(
−

N

∑
j=1

(
xj+1 − xj − D1(xj, tj)ǫ

)2

4D2(xj, tj)ǫ

)
.

(C.17)
The latter equation can, then, be written by taking the continuous limit as,

p0(x, t) =

x∫

x0

DX exp


−

t∫

t0

ds S (xs, ẋs)


 , (C.18)

where we introduced the generalized Onsager-Machlup functional, i.e. the stochastic action,

S (xt, ẋt) =
[ẋt − D1(xt, t)]

2

4D2(xt, t)
. (C.19)

The form of S (xt, ẋt), however, is not unique. A class of statistically equivalent forms can be
derived by rearranging the coordinates and derivatives in Eqs. (C.13) and (C.14). A more rig-
orous analysis is presented in [CJ06]. For our purpose we reformulate Eq. (C.14) by keeping
the replacement of x and x0 in the drift coefficient, whereas the diffusion coefficient remains
unchanged. Thus, we obtain,

p̃ǫ(x, t) =
(
1− ∂x D1 (x0, t) ǫ + ∂2x D2 (x, t) ǫ

)
δ (x− x0)

= δ (x− x0)− D1 (x0, t) ǫ δ′ (x− x0)

+ ∂x
(
D′2 (x, t) δ (x− x0) + D2 (x, t) δ′ (x− x0)

)
ǫ ,

(C.20)
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where the prime is a short notation for the partial derivative with respect to space. After evaluat-
ing the first derivative in the diffusion termwe replace x by x0 and perform the second derivative
afterwards. Hence, we obtain the statically equivalent formulation of Eq. (C.15) as,

p̃ǫ(x, t) =
1

2π

∫
du exp (iu (x− x0))

[
1− iu

(
D1 (x0, t)− D′2 (x0, t)

)
ǫ− u2 D2 (x0, t) ǫ

]

≃ 1

2π

∫
du exp

[
iu (x− x0)− iu

(
D1 (x0, t)− D′2 (x0, t)

)
ǫ− u2 D2 (x0, t) ǫ

]
.

(C.21)

Finally, by evaluation of the Fourier integral, a statistically equivalent propagator of a general
Fokker-Planck equation for small time steps, ǫ, is given by,

p̃ǫ(x, t) =
1√

4πD2(x0, t)ǫ
exp

(
− [x− x0 − (D1 (x0, t)− D′2 (x0, t)) ǫ]2

4D2(x0, t)ǫ

)
. (C.22)

Accordingly, the continuous limit results in the modified, but equivalent stochastic action func-
tional,

S̃ (xt, ẋt) =
[ẋt − (D1 (xt, t)− D′2 (xt, t))]

2

4D2(xt, t)
. (C.23)

It is remarkable, that the latter Onsager-Machlup functional (C.23) merely has a modified drift,
whereas the path discretization and, hence, the increment DX remain unchanged. The form in
Eq. (C.23) of the stochastic action is appropriate for our purposes and, thus, used in the present
thesis. The here proposed derivation is heuristic in so far as we used some degree of freedom
how to interpret the δ-functions in Eqs. (C.20) and (C.21). A rigorous treatment can be found in
the paper of Grabert and Green [GG79].
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ihres Wissens und ihrer Erfahrung mit mir. Auch bedanke ich mich bei Prof. Dr. Dirk Blömker,
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