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Abstract In this paper, we present a theory of vector-valued growth rates for discrete-

and continuous-time semiflows on Hausdorff spaces. For a given compact flow-invariant

set M and an associated growth rate, we introduce the uniform growth spectrum over

M , and associated real-valued spectra via projections of the vector-valued spectrum

onto one-dimensional subspaces. We show that these real-valued spectra are closed

intervals if M is additionally connected. We also define the Morse spectrum associated

with a growth rate by evaluating the growth rate along chains. Moreover, we relate the

uniform growth spectrum to the Morse spectrum and we analyze the meaning of limit

sets for the long-time behavior of growth rates.
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1 Introduction

In the qualitative theory of dynamical systems, exponential growth rates characterizing

the long-time behavior of flows play an important role, in particular, Lyapunov expo-

nents measuring the exponential rate of divergence for nearby trajectories, and rotation

numbers measuring the angular rate of rotations (cf., e.g., [1,7,13,14,15], for the lat-

ter). In the present paper, we study abstract vector-valued growth rates for semiflows,

which generalize both Lyapunov exponents and rotation numbers. Our emphasis is on

two spectral concepts for these growth rates and their relations, namely the so-called

uniform growth spectrum and the Morse spectrum. Our analysis is essentially based on

methods developed in Colonius & Fabbri & Johnson [1], Colonius & Kliemann [2,3]

and Lars Grüne [6].
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A growth rate for a semiflow Φ : T+
0 × X → X (T+

0 ∈ {Z
+
0 ,R

+
0 }) is basically

defined as a continuous map ρ : T+ × X → Rm, (t, x) 7→ ρt(x), such that the map

(t, x) 7→ tρt(x) is an additive cocycle over the semiflow Φ, i.e., such that the relation

t1ρ
t1(x) + t2ρ

t2(Φ(t1, x)) = (t1 + t2)ρt1+t2(x)

is satisfied for all t1, t2 > 0 and x ∈ X. To develop a spectral theory for such growth

rates, we additionally have to impose some boundedness conditions. This fairly gen-

eral definition, which includes in particular finite-time Lyapunov exponents for linear

flows on vector bundles, rotations numbers, and harmonic averages, has already found

application in Mezić & Banaszuk [9] and in Wichtrey [16].

The state space X of the semiflow Φ, in this definition, is only assumed to be a

Hausdorff space, not necessarily metrizable. A motivation for working in this general

context is that abstract topological spaces arise, e.g., in compactifications of dynamical

systems (cf. Patrão [10] and Patrão & San Martin [11,12]).

For Lyapunov exponents of linear flows on vector bundles, Lars Grüne [6] intro-

duced the uniform exponential spectrum, one of whose motivations lies in the under-

standing and interpretation of experimental and simulation results. We adapt his defi-

nition, and introduce the uniform growth spectrum over a compact invariant setM, for

a given growth rate ρ. This spectrum is defined as the set of all limits limk→∞ ρtk (xk)

with xk ∈ M and tk → ∞. It is an outer approximation of the Lyapunov spectrum,

i.e., the set of limits limt→∞ ρt(x), x ∈ M. In particular, it is a compact set and, in

case thatM is connected, each of its projections onto a one-dimensional subspace is a

compact interval, whose boundary points are Lyapunov exponents.

We also study the Morse spectrum of a given growth rate over a compact invariant

setM, which is, roughly speaking, defined via evaluating the growth rate along chains.

This concept was first introduced by Colonius & Kliemann [2] for linear flows on

vector bundles. In the analysis of the Morse spectrum, we mainly adapt methods from

Colonius et al. [1] to the more general situation. Additionally assuming connectedness

and chain transitivity ofM, the Morse spectrum overM turns out to be a compact and

convex set which is the closed convex hull of the Lyapunov spectrum and the convex

hull of the uniform exponential spectrum. Moreover, we show that for each point x in

a compact invariant set, the limit points limk→∞ ρtk (x) are contained in the Morse

spectrum over the ω-limit set of x.

The present paper is structured as follows: In Section 2, the central notion of

growth rates is introduced and several examples are given. In Section 3, we define the

uniform growth spectrum associated with a growth rate and the (real-valued) z-related

spectra, and we derive some elementary properties of these sets. In the subsequent

section 4, we analyze the z-related spectra in more detail and prove our first main

result, which states that the z-related spectrum over a compact connected invariant

set is a compact interval, whose boundary points are Lyapunov exponents. Section 5

is devoted to the study of the vector-valued and z-related Morse spectra associated

with a growth rate. In particular, for connected invariant sets, we prove that the

z-related Morse spectra coincide with the z-related uniform spectra. Moreover, for

chain transitive and connected sets we show that the vector-valued Morse spectrum

is a compact convex set whose exposed points are Lyapunov exponents. The main

result of Section 6 states that all limits of the form limk→∞ ρtk (x) are contained in

the Morse spectra over ω-limit sets.
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Notation: The notation T simultaneously stands for the abelian groups Z (the

integers) and R (the reals). Moreover, we write T+
0 = {t ∈ T : t ≥ 0}, T≥1 = {t ∈

T : t ≥ 1}, and T+ = T+
0 \{0}. If X is a topological space and A ⊂ X, we denote by

clA the closure of A in X. We write 〈·, ·〉 and ‖ · ‖ for the Euclidean inner product

and its associated norm in Rm, respectively. By Br(x) we denote the open ball in

Rm centered at x with radius r, and by Sm−1 we denote the unit sphere in Rm,

Sm−1 = {x ∈ Rm : ‖x‖ = 1}. The convex hull of a set A ⊂ Rm is denoted by coA. A

semiflow on a topological space X is a continuous mapping Φ : T+
0 ×X → X such that

Φ(0, x) = x for all x ∈ X and Φ(t+ s, x) = Φ(s, Φ(t, x)) for all t, s ∈ T+
0 and x ∈ X. A

subset M ⊂ X is called invariant for the semiflow Φ (or Φ-invariant) if Φ(t,M) ⊂ M
holds for all t ∈ T+

0 .

2 Growth Rates

In this section, we introduce growth rates for semiflows and give some examples. We

will frequently consider a semiflow

Φ : T+
0 ×X → X

on a Hausdorff space X in this and all subsequent sections.

Definition 1 A growth rate for the semiflow Φ is a continuous function

ρ : T+ ×X → Rm, (t, x) 7→ ρt(x),

with the following properties:

1. The function (t, x) 7→ tρt(x) is an additive cocycle over Φ, i.e., for all t1, t2 ∈ T+

and x ∈ X the relation

t1ρ
t1(x) + t2ρ

t2(Φ(t1, x)) = (t1 + t2)ρt1+t2(x) (1)

holds.

2. The restriction of ρ to T≥1 ×X is bounded.

3. In case T = R: the function

(t, x) 7→ tρt(x), (0, 1)×X → Rm,

is bounded.

For every vector z ∈ Sm−1 we define the mapping

ρz : T+ ×X → R, (t, x) 7→ ρtz(x) := 〈ρt(x), z〉.

We call ρz the z-related growth rate (associated with ρ). Moreover, we define

M := M(ρ) := max

{
sup

(t,x)∈((0,1)∩T+)×X

∥∥∥tρt(x)
∥∥∥ , sup

(t,x)∈T≥1×X

∥∥∥ρt(x)
∥∥∥} . (2)

If for x ∈ X the limit λ(x) := limt→∞ ρt(x) exists, we call this limit a Lyapunov

exponent (of ρ). If M ⊂ X is a compact Φ-invariant set, the Lyapunov spectrum over

M is defined as the set of all Lyapunov exponents

ΣLy,Φ,ρ(M) := {λ(x) : x ∈M, λ(x) exists} .

If it is clear from the context what Φ and ρ are, we omit the corresponding indices.
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The following lemma shows a relation between the long-time behavior of a semiflow

and that of its associated growth rates.

Lemma 1 Let ρ : T+ ×X → Rm be a growth rate for the semiflow Φ and let tk be a

sequence in T+ with tk → ∞. If λ = limk→∞ ρtk (x) exists for some x ∈ X, then for

any t ∈ T+ it holds that λ = limk→∞ ρtk−t(Φ(t, x)), where the sequence is only defined

for k large enough such that tk − t > 0. The same holds for z-related growth rates.

Proof For t1 = t and t2 = tk − t, the definition of growth rates implies

ρtk−t(Φ(t, x)) =
1

tk − t

[
tkρ

tk (x)− tρt(x)
]

=
1

1− t
tk

ρtk (x)− t

tk − t
ρt(x).

From this identity the assertion immediately follows. For z-related growth rates the

proof works analogously.

Example 1 The following example shows that the (classical) finite-time Lyapunov ex-

ponents of a linear flow on a vector bundle define a real-valued growth rate for the

induced flow on the associated projective bundle: Consider a linear flow ψ : R×V → V
on a vector bundle π : V → B with compact metric base space B and base flow

Θ : R× B → B. Assume that we are given a norm on V, i.e., a family of norms ‖ · ‖b
on the fibers Vb, varying continuously with b ∈ B. Let Pπ : PV → B be the associated

projective bundle with the induced flow Φ = Pψ : R× PV → PV, and define

ρt(Pv) :=
1

t
log

∥∥∥∥ψ(t, v

‖v‖

)∥∥∥∥ , ρ : R+ × PV → R.

This map is easily seen to be well-defined and continuous. Moreover, we have

t1ρ
t1 (Pv) + t2ρ

t2 (Φ(t1,Pv))

= log

∥∥∥∥ψ(t1, v

‖v‖

)∥∥∥∥+ log

∥∥∥∥ψ(t2, ψ(t1, v)

‖ψ(t1, v)‖

)∥∥∥∥
= log ‖ψ (t1, v)‖ − log ‖v‖+ log ‖ψ (t2, ψ(t1, v))‖ − log ‖ψ(t1, v)‖

= log

∥∥∥∥ψ(t1 + t2,
v

‖v‖

)∥∥∥∥ = (t1 + t2)ρt1+t2(Pv).

The function ρ is bounded on R≥1 × PV, since there are constants K ≥ 1 and α > 0

such that (cf. Colonius et al. [1, Rem. 2.1])

1

K
e−αt ≤

∥∥∥∥ψ(t, v

‖v‖

)∥∥∥∥ ≤ Keαt
for all t ≥ 0 and v ∈ V, ‖v‖ 6= 0, which implies

− log(K)− α ≤ ρt(Pv) ≤ log(K) + α for all t ≥ 1, Pv ∈ PV.

Finally, for t ∈ (0, 1) we have

− log(K)− α ≤ tρt(Pv) ≤ log(K) + α.

Hence, ρ is a growth rate for Φ with M(ρ) ≤ log(K) + α.

http://www.ams.org/mathscinet-getitem?mr=2358975
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Example 2 Consider a bilinear control system

ẋ(t) =

[
A0 +

m∑
i=1

ui(t)Ai

]
x(t) = A(u(t))x(t), u ∈ U ,

on Rd with admissible control functions

U =
{
u : R→ Rm : u measurable with u(t) ∈ U a.e.

}
,

where U ⊂ Rm is a compact and convex set. The unique solution with initial value x

for the control function u is denoted by ϕ(t, x, u). These solutions define a continuous

skew-product flow on U ×Rd, the so-called control flow, by

ψ : R× (U ×Rd)→ U × Rd, (t, (u, x)) 7→ (u(t+ ·), ϕ(t, x, u)),

where U is endowed with the weak∗-topology of L∞(R,Rm) = L1(R,Rm)∗, which

makes it a compact metrizable space. Here, we are interested in the induced flow on

U × St2Rd, where St2Rd is the Stiefel manifold of orthonormal 2-frames in Rd. This

flow is given by

Φ : R× (U × St2Rd) → U × St2Rd,
(t, (u, (x0, y0))) 7→ (u(t+ ·), xt(x0, u), yt(x0, y0, u)),

where xt(x0, u), yt(x0, y0, u) are defined via Gram-Schmidt orthonormalization of

(ϕ(t, x0, u), ϕ(t, y0, u)). For this flow, a growth rate rot : R+ × (U × St2Rd) → R
can be defined, which measures the rotational behaviour of the solutions ϕ(t, x, u).

This growth rate is given by

rott(u, (x0, y0)) :=
1

t

∫ t

0

〈A(u(t))xt(x0, u), yt(x0, y0, u)〉 dt.

The numbers rott(u, (x0, y0)) are called (finite-time) rotation numbers. Relation (1) is

verified using the flow property of Φ:

(t1 + t2) rott1+t2(u, (x0, y0)) =

∫ t1+t2

0

〈A(u(t))xt(x0, u), yt(x0, y0, u)〉 dt

=

∫ t1

0

〈A(u(t))xt(x0, u), yt(x0, y0, u)〉 dt

+

∫ t2

0

〈A(u(t+ t1))xt+t1(x0, u), yt+t1(x0, y0, u)〉 dt

= t1 rott1(u, (x0, y0))

+

∫ t2

0

〈A(u(t+ t1))xt(xt(x0, u), u(t1 + ·)), yt(xt(x0, u), yt(y0, u), u(t1 + ·))〉 dt

= t1ρ
t1(u, (x0, y0)) + t2ρ

t2(Φ(t1, (u, (x0, y0)))).

Standard estimates lead to∣∣∣rott(u, (x0, y0))
∣∣∣ ≤ max

u∈U
‖A(u)‖ for all t > 0.

For continuity of rot and a detailed analysis of rotation numbers we refer to Stender

[15].
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Example 3 In this example, we describe the growth rates which are studied in Colonius

et al. [1]. Let ψ : R×X → X be a continuous flow on a fiber bundle π : X → B with

compact base space B, and let f : X → Rm be a continuous function. Assume that

the map

fB : R×B → Rm, (t, b) 7→ f(ψ(t, x))− f(x), x ∈ π−1(b),

is well-defined, i.e., that fB(t, b) is independent of the choice of x ∈ π−1(b). Define

ρ : R+ ×B → Rm, (t, b) 7→ 1

t
fB(t, b).

Then ρ is a growth rate for the induced flow Φ on the base space B. Continuity of ρ

follows from the facts that (t, x) 7→ f(ψ(t, x))−f(x) is continuous and π is a projection

map (cf. [1, Lem. 2.3]). The relation (1) follows easily:

(t1 + t2)ρt1+t2(b) = fB(t1 + t2, b) = f(ψ(t2, ψ(t1, x)))− f(x)

= f(ψ(t2, ψ(t1, x)))− f(ψ(t1, x)) + f(ψ(t1, x))− f(x)

= fB(t2, Φ(t1, b)) + fB(t1, b)

= t2ρ
t2(Φ(t1, b)) + t1ρ

t1(b).

By compactness of B and continuity of fB , also the required boundedness assumptions

for growth rates follow (cf. Example 4). This general construction in particular includes

Lyapunov exponents as described in Example 1. Here X is the complement of the zero

section in the total space of a vector bundle (with compact base space), B is the total

space of the associated projective bundle, and π : X → B is the natural projection.

The function f is given by f(x) = log ‖x‖.

Example 4 In San Martin & Seco [8], vector-valued Lyapunov and Morse exponents for

flows on principal bundles are analyzed. The general construction is as follows: Let E

be a compact Hausdorff space and Φ : T×E → E a continuous flow (T ∈ {Z,R}). If V

is a finite-dimensional normed vector space, a V -valued cocycle over E is a continuous

map a : T× E → V with

a(t+ s, x) = a(t, Φ(s, x)) + a(s, x) for all t, s ∈ T, x ∈ E. (3)

Given x ∈ E and t ∈ T+, the finite-time Lyapunov exponent of the cocycle a at (x, t)

is

λt(x) :=
1

t
a(t, x).

Taking V = Rm, this defines a growth rate in the sense of our definition. Continuity is

clear and the relation (1) immediately follows from the cocycle property (3). Moreover,

from (3) we conclude (for T = R, without loss of generality), writing t = n + r ≥ 1

with n ∈ Z+ and r ∈ [0, 1),∥∥∥λt(x)
∥∥∥ =

1

n+ r
‖a(n+ r, x)‖ ≤ 1

n+ r

(
‖a(r, Φ(n, x))‖+

n−1∑
k=0

‖a(1, Φ(k, x))‖

)

≤ n+ 1

n+ r
max

(s,x)∈[0,1]×X
‖a(s, x)‖ ≤ 2 max

(s,x)∈[0,1]×X
‖a(s, x)‖ <∞,

and ∥∥∥tλt(x)
∥∥∥ = ‖a(t, x)‖ ≤ max

(s,x)∈[0,1]×X
‖a(s, x)‖ for all (t, x) ∈ (0, 1]×X.

http://www.ams.org/mathscinet-getitem?mr=2358975
http://www.ams.org/mathscinet-getitem?mr=2358975
http://www.ams.org/mathscinet-getitem?mr=2643716
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In [8], continuous flows on principal bundles with semisimple structure group G are

investigated. Using the Iwasawa decomposition G = KAN , an additive cocycle over

the flow taking values in a = logA can be constructed and its Lyapunov and Morse

exponents are studied.

Example 5 Let X be a metric space and ψ : R+
0 ×X → X a semiflow on X. For some

ω ∈ R, consider the semiflow

Φω : R+
0 × (S1 ×X)→ S1 ×X, (t, (z, x)) 7→

(
eiωtz, ψ(t, x)

)
.

Here, the unit circle S1 is regarded as a subset of the complex plane C. Let f : X → C
be a bounded continuous function and define

ρt(z, x) := z
1

t

∫ t

0

eiωtf(ψt(x))dt.

It can easily be verified that ρ satisfies (1) for the semiflow Φω. Growth rates of this

form can be used to study the rotational behavior of dynamical systems. They, together

with their spectral sets, are studied in Wichtrey [16], not only in the continuous but

also in a measurable setting.

3 The Uniform Growth Spectrum

In the setting of the preceding section, we now introduce the uniform growth spectrum

over a compact Φ-invariant set for a given growth rate. This definition generalizes

Grüne’s definition of the uniform exponential spectrum for linear flows on vector bun-

dles (cf. [6, Def. 3.1]).

Definition 2 Let M ⊂ X be a compact Φ-invariant set and ρ : T+ × X → Rm a

growth rate for Φ. The uniform growth spectrum over M (associated with ρ) is defined

by

ΣUG,Φ,ρ(M) :=

{
λ ∈ Rm :

∃tk →∞ and xk ∈M
such that limk→∞ ρtk (xk) = λ

}
.

For z ∈ Sm−1, the z-related uniform growth spectrum over M is defined by

ΣzUG,Φ,ρ(M) :=

{
λ ∈ R :

∃tk →∞ and xk ∈M
such that limk→∞ ρtkz (xk) = λ

}
.

If it is clear from the context what Φ and ρ are, we omit the corresponding indices.

By boundedness of ρ on T≥1 × X, it is clear that ΣUG(M) and ΣzUG(M) are

nonempty if M is nonempty. The following lemma can be proved by easy topological

arguments, hence we omit the proof.

Lemma 2 It holds that

ΣUG(M) =
⋂

T∈T+

cl
⋃
t≥T

ρt(M) and ΣzUG(M) =
⋂

T∈T+

cl
⋃
t≥T

ρtz(M).

Corollary 1 If T = R and M is connected, then also ΣUG(M) and ΣzUG(M) are

connected.

http://www.ams.org/mathscinet-getitem?mr=2643716
http://www.ams.org/mathscinet-getitem?mr=1790662
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Proof This follows by the same arguments which are used to prove that ω-limit sets of

continuous-time systems on compact spaces are connected.

As the next proposition shows, in the continuous-time case it is sufficient to consider

time sequences tk →∞ with tk ∈ Z+ in the definition of ΣUG(M).

Proposition 1 Assume that T = R in Definition 2. Then

ΣUG(M) =

{
λ ∈ Rm :

∃tk ∈ Z+, tk →∞, and xk ∈M
such that limk→∞ ρtk (xk) = λ

}
.

The analogous statement holds for the z-related uniform growth spectrum.

Proof Consider sequences tk ∈ R+, tk → ∞, and xk ∈ M such that the limit λ =

limk→∞ ρtk (xk) exists. We write each tk as tk = btkc + τk, where btkc denotes the

integer part of tk and τk = tk − btkc ∈ [0, 1). Since tk → ∞, we may assume that

btkc ≥ 1 for all k. For all k with tk /∈ Z+, i.e., τk > 0, the definition of growth rates

implies

τkρ
τk (xk) + btkcρbtkc(Φ(τk, xk)) = tkρ

tk (xk).

Defining a sequence yk ∈M by yk := Φ(τk, xk) for all k, we obtain

ρbtkc(yk) =

{
ρtk (xk) if τk = 0,

tk
btkcρ

tk (xk)− 1
btkcτkρ

τk (xk) if τk > 0.

Since tk/btkc → 1, 1/btkc → 0, and |τkρτk (xk)| ≤M , we have limk→∞ ρbtkc(yk) = λ,

which implies the assertion. For the z-related spectrum the proof works analogously.

The above proposition justifies to consider only the discrete-time case in the analysis

of the uniform growth spectrum. Hence, in the rest of this section we assume that

T = Z. The next two lemmas are modifications of Grüne [6, Lem. 2.3 and Lem. 2.4].

Lemma 3 Let ρ : Z+ × X → Rm be a growth rate for the semiflow Φ. Then for all

t1, t2 ∈ Z+ and x ∈ X we have∥∥∥ρt1+t2(x)− ρt1(x)
∥∥∥ ≤ 2M

t2
t1 + t2

,

with M defined as in (2). The same inequality holds for z-related growth rates.

Proof It follows directly from the definition of growth rates that∥∥∥ρt1+t2(x)− ρt1(x)
∥∥∥ =

∥∥∥∥ 1

t1 + t2

(
t2ρ

t2(Φ(t1, x)) + t1ρ
t1(x)

)
− ρt1(x)

∥∥∥∥
≤ t2
t1 + t2

∥∥∥ρt2(Φ(t1, x))
∥∥∥+

∣∣∣∣ t1
t1 + t2

− 1

∣∣∣∣ ∥∥∥ρt1(x)
∥∥∥

=
(∥∥∥ρt2(Φ(t1, x))

∥∥∥+
∥∥∥ρt1(x)

∥∥∥) t2
t1 + t2

≤ 2M
t2

t1 + t2
.

For z-related growth rates the corresponding inequality follows with Cauchy-Schwarz.

http://www.ams.org/mathscinet-getitem?mr=1790662
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Lemma 4 Let ρ : Z+ × X → Rm be a nonzero growth rate for the semiflow Φ.

Fix z ∈ Sm−1 and let x ∈ X, t ∈ Z+. Then for any ε ∈ (0, 2M) there is a time

t1 ≤ [(2M − ε)t]/(2M) such that

ρsz(Φ(t1, x)) ≤ ρtz(x) + ε for all s ∈ (0, t− t1] ∩ Z, (4)

where M is defined as in (2). Furthermore, t− t1 ≥ εt/(2M)→∞ for t→∞.

Proof For brevity, we write σ := ρtz(x). Let ε ∈ (0, 2M) and define

β := max
s∈(0,t]∩Z

ρsz(x).

If β ≤ σ + ε, the assertion follows with t1 = 0. For β > σ + ε let

t1 := max
{
s ∈ (0, t] ∩ Z : ρsz(x) ≥ σ + ε

}
.

Then we have

ρt1z (x) ≥ σ + ε. (5)

We use Lemma 3 with t1 and t2 = t− t1 to obtain

ε ≤ ρt1z (x)− σ = ρt1z (x)− ρtz(x) =
∣∣∣ρt1z (x)− ρtz(x)

∣∣∣ ≤ 2M
t− t1
t

.

This implies t − t1 ≥ εt/(2M). Now, let s ∈ (0, t − t1] ∩ Z. Then s + t1 ∈ (t1, t], and

hence ρs+t1z (x) < σ + ε. Using the definition of growth rates, this implies

ρsz(Φ(t1, x)) =
1

s

[
(t1 + s)ρt1+sz (x)− t1ρt1z (x)

]
<

1

s
[(t1 + s)(σ + ε)− t1(σ + ε)]

= σ + ε = ρtz(x) + ε,

which finishes the proof.

Proposition 2 Let M⊂ X be a compact Φ-invariant set, ρ : Z+×X → Rm a growth

rate for Φ, and z ∈ Sm−1. Then

〈ΣUG(M), z〉 = ΣzUG(M).

Proof To show the inclusion “⊂”, let λ ∈ 〈ΣUG(M), z〉. Then there are sequences

tk →∞ and xk ∈M such that λ = 〈µ, z〉 with µ := limk→∞ ρtk (xk). Hence,

λ = 〈µ, z〉 =

〈
lim
k→∞

ρtkz (xk), z

〉
= lim
k→∞

〈
ρtkz (xk), z

〉
.

For the converse inclusion, let λ ∈ ΣzUG(M). Then there are sequences tk → ∞ and

xk ∈ M such that λ = limk→∞〈ρtk (xk), z〉. Since ρ is bounded, there is a convergent

subsequence ρtkl (xkl)→ µ ∈ ΣUG(M), which implies λ = 〈µ, z〉 ∈ 〈ΣUG(M), z〉.

As the next proposition shows, the uniform growth spectrum and the z-related

growth spectra are compact sets.

Proposition 3 Let M ⊂ X be a compact Φ-invariant set and ρ : Z+ × X → Rm a

growth rate for Φ. Then ΣUG(M) and ΣzUG(M) (for any z ∈ Sm−1) are compact sets.
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Proof Since ρ is bounded, also ΣUG(M) is bounded. Now, consider a sequence λk in

ΣUG(M) such that the limit λ := limk→∞ λk exists. For each k there are xk ∈M and

tk ≥ 1 with ‖ρtk (xk)− λk‖ ≤ 2−k implying∥∥∥λ− ρtk (xk)
∥∥∥ ≤ ‖λ− λk‖+

∥∥∥λk − ρtk (xk)
∥∥∥ ≤ ‖λ− λk‖+

1

2k
.

Hence, ρtk (xk) converges to λ, which proves that ΣUG(M) is closed. For ΣzUG(M) the

proof works analogously.

4 Properties of the Real-Valued Spectra

In this section, we analyze the z-related spectra over a connected compact Φ-invariant

set. Again, without loss of generality, we only consider the discrete-time case. The

following theorem is a straightforward generalization of Grüne [6, Thm. 3.3]. It shows

that the z-related spectra are compact intervals whose boundary points are Lyapunov

exponents.

Theorem 1 Let M ⊂ X be a connected compact Φ-invariant set, ρ : Z+ ×X → Rm
a growth rate for Φ, and z ∈ Sm−1. Then there are real numbers ρ∗ ≤ ρ∗ such that

ΣzUG(M) = [ρ∗, ρ
∗].

Moreover, there are x∗, x
∗ ∈ M such that ρtz(x∗) ≤ ρ∗ and ρtz(x∗) ≥ ρ∗ for all t ≥ 1

and

lim
t→∞

ρtz(x∗) = ρ∗, lim
t→∞

ρtz(x∗) = ρ∗.

Proof Compactness of ΣzUG(M) is guaranteed by Proposition 3. If ρ ≡ 0, the proof is

trivial. Hence, we may assume that ρ is not identically zero. The rest of the proof is

subdivided into two steps.

Step 1. Let ρ∗ := minΣzUG(M). We first show the existence of x∗. By definition of

ΣzUG(M), there are sequences xk ∈M and tk →∞ with

ρtkz (xk) < ρ∗ + εk,

where εk ↘ 0. Let ε̃k := 1/
√
tk. By applying Lemma 4 to xk and tk with ε = ε̃k for

each k large enough such that ε̃k < 2M , we obtain times t∗k such that

ρsz(Φ(t∗k, xk)) ≤ ρ∗ + εk + ε̃k for all s ∈ (0, tk − t∗k] ∩ Z, (6)

where tk−t∗k ≥ ε̃ktk/(2M) =
√
tk/(2M). We let x̃k := Φ(t∗k, xk) and t̃k := tk−t∗k →∞.

SinceM is compact, there is a convergent subnet of the sequence (x̃k)k∈Z+ (considered

as a net), converging to some x̃ ∈M (cf. Willard [17, Thm. 11.5 and Thm. 17.4]). That

is, there is a directed set (E,≥) and a function f : E → Z+ with e1 ≤ e2 implying

f(e1) ≤ f(e2) such that for every n ∈ Z+ there is e ∈ E with f(e) ≥ n and such that

for every neighborhood U of x̃ there is e0 ∈ E with x̃f(e) ∈ U for all e ≥ e0. Now, fix

t ∈ Z+ and ε > 0. By continuity of the map x 7→ ρtz(x), there exists e0 ∈ E such that

|ρtz(x̃)− ρtz(x̃f(e))| ≤ ε and t̃f(e) ≥ t for all e ≥ e0 (cf. Willard [17, Thm. 11.8]). Then

ρtz (x̃) ≤ ρtz
(
x̃f(e)

)
+
∣∣∣ρtz (x̃)− ρtz

(
x̃f(e)

)∣∣∣ ≤ ρ∗ + εf(e) + ε̃f(e) + ε for all e ≥ e0.

http://www.ams.org/mathscinet-getitem?mr=1790662
http://www.ams.org/mathscinet-getitem?mr=0264581
http://www.ams.org/mathscinet-getitem?mr=0264581


11

Now, for each k ∈ Z+ we find ē ∈ E with f(ē) ≥ k. Then there is e ∈ E with both

e ≥ e0 and e ≥ ē, and hence

ρtz(x̃) ≤ ρ∗ + εf(e) + ε̃f(e) + ε.

Since f(e) ≥ f(ē) ≥ k and εk, ε̃k ↘ 0 for k →∞, it follows that ρzt (x̃) ≤ ρ∗ + ε. Since

ε and t have been chosen arbitrarily, we conclude

ρtz(x̃) ≤ ρ∗ for all t ≥ 1, (7)

and thus lim supt→∞ ρtz(x̃) ≤ ρ∗. Now, assume that lim inft→∞ ρtz(x̃) < ρ∗. This

implies the existence of a sequence tk → ∞ such that limk→∞ ρtkz (x̃) < ρ∗ =

minΣUG(M), which is a contradiction. Therefore, x∗ := x̃ has the desired properties.

With the same arguments we can prove the assertion for ρ∗.

Step 2. It remains to show that ΣzUG(M) is an interval. In Step 1, we have shown

that ΣzUG(M) ⊂ [ρ∗, ρ
∗]. Thus, we have to show that [ρ∗, ρ

∗] ⊂ ΣzUG(M). Since M is

compact and connected, and ρtz : X → R is continuous for each t ≥ 1, the sets ρtz(M)

are compact intervals. Furthermore, using (7), for each t ≥ 1 it holds that ρtz(x∗) ≤ ρ∗
and ρtz(x∗) ≥ ρ∗, which implies [ρ∗, ρ

∗] ⊂ ρtz(M) for all t ≥ 1. Since we can write

ΣzUG(M) =
⋂
T>0

cl
⋃
t≥T

ρtz(M)

by Lemma 2, we conclude that [ρ∗, ρ
∗] ⊂ ΣzUG(M).

Corollary 2 Under the assumptions of Theorem 1 it holds that

inf
x∈M

lim sup
t→∞

ρtz(x) = inf
x∈M

lim inf
t→∞

ρtz(x) = lim
t→∞

inf
x∈M

ρtz(x) (8)

and

sup
x∈M

lim sup
t→∞

ρtz(x) = sup
x∈M

lim inf
t→∞

ρtz(x) = lim
t→∞

sup
x∈M

ρtz(x). (9)

Proof Let us prove (8). The proof of (9) works analogously. Write

α := inf
x∈M

lim sup
t→∞

ρtz(x),

β := inf
x∈M

lim inf
t→∞

ρtz(x),

γ := lim
t→∞

inf
x∈M

ρtz(x).

Existence of the limit in the definition of γ follows from superadditivity of the function

f(t) := t infx∈M ρtz(x), which is proved as follows:

f(t+ s) = inf
x∈M

〈
(t+ s)ρt+s(x), z

〉
= inf
x∈M

〈
tρt(x) + sρs(Φ(t, x)), z

〉
= inf
x∈M

[〈
tρt(x), z

〉
+
〈
sρs(Φ(t, x)), z

〉]
≥ t inf

x∈M

〈
ρt(x), z

〉
+ s inf

x∈M

〈
ρs(Φ(t, x)), z

〉
≥ t inf

x∈M
ρtz(x) + s inf

x∈M
ρsz(x) = f(t) + f(s).
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Note that the inequalities γ ≤ β and β ≤ α are trivial. Hence, it suffices to show

that α ≤ γ. To this end, we first show that γ ∈ ΣzUG(M). By compactness of M and

continuity of ρtz it follows that for each t ≥ 1 there is xt ∈ M with infx∈M ρtz(x) =

ρtz(xt). Choose an arbitrary sequence tk →∞. Then

γ = lim
k→∞

ρtkz (xtk ) ∈ ΣzUG(M).

Now, using Theorem 1, we find

α = inf
x∈M

lim sup
t→∞

ρtz(x) ≤ lim
t→∞

ρtz(x∗) = ρ∗ ≤ γ,

which completes the proof.

Remark 1 Note that in the proof of the preceding corollary we did not use that

ΣzUG(M) is connected. Hence, looking at the proof of Theorem 1, we see that we do

not need the assumption that M is connected either for the validity of the identities

(8) and (9).

5 The Morse Spectrum

In this section, we introduce and study the Morse spectrum over a compact invariant set

for a given growth rate. We will frequently assume that X is a paracompact Hausdorff

space and Φ : T+
0 × X → X a semiflow on X. By O(X) we denote the family of all

open covers of X.

Definition 3 Let U ∈ O(X) and x, y ∈ X, T ∈ T+. A (U , T )-chain ζ from x to y

consists of an integer n ≥ 1, a sequence of points {x = x0, . . . , xn = y} ⊂ X, a sequence

of times {T0, . . . , Tn−1} ⊂ T+ with Ti ≥ T for i = 0, . . . , n−1, and a sequence of open

sets {U1, . . . , Un} ⊂ U such that for i = 0, . . . , n− 1 we have

Φ(Ti, xi), xi+1 ∈ Ui+1.

The total length of ζ is defined by
∑n−1
i=0 Ti. We say that ζ is a chain in M ⊂ X

if {x0, . . . , xn} ⊂ M. If x0 = xn, ζ is called periodic. The chain ζ is called trivial if

xi+1 = Φ(Ti, xi) for i = 0, . . . , n− 1.

Definition 4 For U ∈ O(X), Y ⊂ X and T ∈ T+ we define the (U , T )-chain reachable

set from Y by

Ω(Y,U , T ) := {x ∈ X : ∃y ∈ Y and a (U , T )-chain from y to x} .

The Ω-limit set of a subset Y ⊂ X is defined by

Ω(Y ) :=
⋂

U∈O(X),

T∈T+

Ω(Y,U , T ).

For x ∈ X we write Ω(x) := Ω({x}) and we define the relation

x � y :⇔ y ∈ Ω(x).
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The next proposition can be found in Patrão & San Martin [11, Prop. 3.3] (here

the assumption of paracompactness of X is essential, since this assumption guarantees

that O(X) is an admissible family in the sense of [11].)

Proposition 4 The relation � is transitive, closed and Φ-invariant. Here, “closed”

means that for convergent sequences xn and yn in X with xn � yn for all n, it holds that

limn→∞ xn � limn→∞ yn. “Φ-invariant” means that x � y implies Φ(t, x) � Φ(s, y)

for all s, t ≥ 0.

Definition 5 We define the relation

x ∼ y :⇔ x � y and y � x.

A point x ∈ X is called chain recurrent if x ∼ x. The set R of all chain recurrent points

is called the chain recurrent set. The restriction of ∼ to R is clearly an equivalence

relation. A subset Y ⊂ X is called chain transitive if for all x, y ∈ Y it holds that

x ∼ y. An equivalence class of ∼ is called a chain recurrent component.

Remark 2 For a flow Φ : R×M →M on a compact metric space M , the chain recurrent

components are the connected components of the chain recurrent set (cf. Colonius &

Kliemann [3, Thm. B.2.22]).

Definition 6 Let ρ : T+×X → Rm be a growth rate for Φ. We define the growth rate

of a (U , T )-chain ζ with times T0, . . . , Tn−1 ≥ T and points x0, . . . , xn ∈ X by

ρ(ζ) :=

(
n−1∑
i=0

Ti

)−1 n−1∑
i=0

Tiρ
Ti(xi).

For z ∈ Sm−1 we also define the z-related growth rate of ζ by

ρz(ζ) :=

(
n−1∑
i=0

Ti

)−1 n−1∑
i=0

Tiρ
Ti
z (xi) = 〈ρ(ζ), z〉 .

Lemma 5 Let ρ : T+ × X → Rm be a growth rate for Φ, and ζ a (U , T )-chain with

times T0, . . . , Tn−1 ≥ T and points x0, . . . , xn ∈ X. Then for each z ∈ Sm−1 we have

min
i=0,...,n−1

ρTi
z (xi) ≤ ρz(ζ) ≤ max

i=0,...,n−1
ρTi
z (xi).

Proof Let T := T0 + · · ·+ Tn−1. The assertion for the maximum follows by

ρz(ζ) = T
−1
[
T0ρ

T0
z (x0) + · · ·+ Tn−1ρ

Tn−1
z (xn−1)

]
≤ T0

T
max

i=0,...,n−1
ρTi
z (xi) + · · ·+ Tn−1

T
max

i=0,...,n−1
ρTi
z (xi)

= max
i=0,...,n−1

ρTi
z (xi),

and analogously for the minimum.

http://www.ams.org/mathscinet-getitem?mr=2279950
http://www.ams.org/mathscinet-getitem?mr=2279950
http://www.ams.org/mathscinet-getitem?mr=1752730
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Definition 7 Let ξ be a (U , T )-chain in X, given by points {x = x0, . . . , xn = y} ⊂ X,

times {T0, . . . , Tn−1} ⊂ T+ and open sets {U1, . . . , Un} ⊂ U , and let ζ be another

(U , T )-chain given by points {y = z0, . . . , zm} ⊂ X, times {S0, . . . , Sm−1} ⊂ T+ and

open sets {V1, . . . , Vm} ⊂ U . We define the concatenated (U , T )-chain ζ ◦ ξ as the

chain with points {p0, . . . , pn+m} ⊂ X, times {R0, . . . , Rn+m−1} ⊂ T+ and open sets

{W1, . . . ,Wn+m} ⊂ U , given by

pi :=

{
xi i = 0, . . . , n

zi−n i = n+ 1, . . . , n+m
, Ri :=

{
Ti i = 0, . . . , n− 1

Si−n i = n, . . . , n+m− 1

Wi :=

{
Ui i = 1, . . . , n

Vi−n i = n+ 1, . . . , n+m

The proof of the next lemma follows by an easy computation which can be seen in

Colonius et al. [1, Lem. 2.5].

Lemma 6 Let ξ, ζ be (U , T )-chains in X of total lengths σ and τ , respectively, such

that the initial point of ζ coincides with the endpoint of ξ. Then for the concatenated

chain ζ ◦ ξ we have

ρ(ζ ◦ ξ) =
σ

σ + τ
ρ(ξ) +

τ

σ + τ
ρ(ζ).

In the rest of this section, ρ : T+ × X → Rm is a fixed growth rate for Φ, and

M⊂ X is a compact Φ-invariant set.

Definition 8 For each U ∈ O(X), T ∈ T+ and z ∈ Sm−1 we define the sets

ΣMo,Φ,ρ(M;U , T ) := {ρ(ζ) : ζ is a (U , T )-chain in M} ,
ΣzMo,Φ,ρ(M;U , T ) := {ρz(ζ) : ζ is a (U , T )-chain in M} .

Then the Morse spectrum over M is defined by

ΣMo,Φ,ρ(M) :=
⋂

U∈O(X),

T∈T+

clΣMo,Φ,ρ(M;U , T ).

For each z ∈ Sm−1 the z-related Morse spectrum over M is defined by

ΣzMo,Φ,ρ(M) :=
⋂

U∈O(X),

T∈T+

clΣzMo,Φ,ρ(M;U , T ).

If it is clear from the context what Φ and ρ are, we omit the corresponding indices.

The next proposition summarizes some elementary properties of the Morse spec-

trum.

Proposition 5 The following statements hold:

1. ΣUG(M) ⊂ ΣMo(M) and ΣzUG(M) ⊂ ΣzMo(M).

2. 〈ΣMo(M), z〉 ⊂ ΣzMo(M).

3. The sets ΣMo(M) and ΣzMo(M) are compact.

Proof

http://www.ams.org/mathscinet-getitem?mr=2358975
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1. Let λ ∈ ΣUG(M), i.e., λ = limk→∞ ρtk (xk) with xk ∈ M and tk ∈ T+, tk → ∞.

Fix U ∈ O(X) and T ∈ T+. We have to show that λ ∈ clΣMo(M;U , T ). To this

end, define a sequence ζk of (U , T )-chains in M as follows: let k0 ∈ Z+ be chosen

such that tk ≥ T for all k ≥ k0. Then, for each k ∈ Z+, let ζk be the trivial chain

consisting of points {xk+k0 , Φ(tk+k0 , xk+k0)}, time(s) {tk+k0}, and open set(s)

{Uk}, where Uk ∈ U is chosen such that Φ(tk+k0 , xk+k0) ∈ Uk. Then ζk clearly is

a (U , T )-chain in M for each k ∈ Z+ and ρ(ζk) = ρtk+k0 (xk+k0), which implies

λ = lim
k→∞

ρtk (xk) = lim
k→∞

ρ(ζk) ∈ clΣMo(M;U , T ).

The corresponding assertion for ΣzUG(M) is proved analogously.

2. This follows from continuity of the function x 7→ 〈x, z〉 and the obvious relation

〈ΣMo(M;U , T ), z〉 = ΣzMo(M;U , T ), which holds for all U ∈ O(X), T ∈ T+.

3. Closedness of ΣMo(M) and ΣzMo(M) follows immediately from the definitions.

Boundedness follows from boundedness of ρ on T≥1 ×X.

If we additionally assume that the set M is connected and that the restriction

of Φ to M is chain transitive, we can say more about the Morse spectrum and its

relations to the uniform growth spectrum and the Lyapunov spectrum. To prove the

corresponding results, we need the following two lemmas.

Lemma 7 Assume that the restriction of Φ toM is chain transitive and fix U ∈ O(X)

and T ∈ T+. Then there exists T (U , T ) ∈ T+ such that for all x, y ∈ M there is a

(U , T )-chain from x to y with total length ≤ T (U , T ).

Proof By chain transitivity, for all x, y ∈ M there is a (U , T )-chain in M from x to

y. Fix z ∈ M. By compactness of M and continuity of Φ, there are finitely many

(U , T )-chains connecting every x ∈ M to z, if we do not distinguish between chains

which only differ in their initial points. Similarly, (modulo their endpoints) there are

only finitely many (U , T )-chains connecting z with arbitrary y ∈ M. Hence, there are

finitely many (U , T )-chains connecting all points in M. The maximum of their total

lengths is the desired upper bound T (U , T ).

The next lemma says that we only have to consider periodic chains to obtain

the Morse spectrum. The proof is essentially the same as that of Colonius et al. [1,

Prop. 2.6].

Lemma 8 Assume that the restriction of Φ to M is chain transitive. For each U ∈
O(X) and T ∈ T+ let

ΣMo,Per(M;U , T ) := {ρ(ζ) : ζ is a periodic (U , T )-chain in M} .

Then it holds that

ΣMo(M) =
⋂

U∈O(X),

T∈T+

clΣMo,Per(M;U , T ).

Proof Let λ ∈ ΣMo(M) and fix U ∈ O(X) and T ∈ T≥1. It suffices to prove that for

every δ > 0 there exists a periodic (U , T )-chain ζ′ with ‖λ− ρ(ζ′)‖ < δ. By Lemma 7,

there exists T (U , T ) ∈ T+ such that for all x, y ∈ M there is a (U , T )-chain from x to

y with total time ≤ T (U , T ). For S > T choose a (U , S)-chain ζ with ‖λ− ρ(ζ)‖ < δ/2

http://www.ams.org/mathscinet-getitem?mr=2358975
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given by points {x0, . . . , xn} ⊂ M, times {S0, . . . , Sn−1} ⊂ T+ with Si ≥ S for

i = 0, . . . , n − 1, and open sets {U1, . . . , Un} ⊂ U with total time σ =
∑n−1
i=0 Si.

Concatenate ζ with a (U , T )-chain ξ from xn to x0, given by points {xn = y0, . . . , ym =

x0} ⊂ M, times {T0, . . . , Tm−1} ⊂ T+ with Ti ≥ T for i = 0, . . . ,m− 1, and open sets

{Ũ1, . . . , Ũm} ⊂ U with total time τ =
∑m−1
i=0 Ti ≤ T (U , T ). The periodic (U , T )-chain

ζ′ := ξ ◦ ζ has the desired approximation property: Since the chain ξ depends on ζ,

also τ depends on ζ. However, the total length of ξ is bounded. Moreover, Lemma 6

implies

‖ρ(ζ)− ρ(ξ ◦ ζ)‖ =
∥∥∥ρ(ζ)− σ

σ + τ
ρ(ζ)− τ

σ + τ
ρ(ξ)

∥∥∥
≤
[
1− σ

σ + τ

]
‖ρ(ζ)‖+

τ

σ + τ
‖ρ(ξ)‖.

Since T ≥ 1 (which we could assume without loss of generality), we have

max{‖ρ(ζ)‖, ‖ρ(ξ)‖} ≤ M . Since τ remains bounded for S → ∞, the right-hand side

tends to 0 as S →∞.

Theorem 2 If M is connected and the restriction of Φ to M is chain transitive, then

the following statements hold:

1. ΣzMo(M) = ΣzUG(M) for each z ∈ Sm−1.

2. 〈ΣMo(M), z〉 = ΣzMo(M) for each z ∈ Sm−1.

3. ΣMo(M) is a convex set.

4. Every exposed point p ∈ ΣMo(M) is the Lyapunov exponent of some point x ∈M,

i.e., there exists x ∈ M with limt→∞ ρt(x) = p. Hence, ΣMo(M) is the closed

convex hull of the Lyapunov spectrum ΣLy(M), and the convex hull of the uniform

growth spectrum ΣUG(M).

Proof

1. By Proposition 5 (3) and Proposition 3, both ΣzUG(M) and ΣzMo(M) are compact,

hence they have minimal and maximal elements. Moreover, by Proposition 5 (1),

the inclusion ΣzUG(M) ⊂ ΣzMo(M) holds. By Theorem 1, ΣzUG(M) is an interval.

Hence, it suffices to show that minΣzMo(M) ≥ minΣzUG(M) and maxΣzMo(M) ≤
maxΣzUG(M). Without loss of generality, we only prove the first inequality. To this

end, choose an arbitrary sequence Uk ∈ O(X) and a sequence of times Tk ∈ T+

with Tk →∞. Since minΣzMo(M) =: λ ∈ ΣzMo(M), we find for each k a (Uk, Tk)-

chain ζk ⊂ M with |λ − ρz(ζk)| ≤ 1/2k. By Lemma 5, we can take a point xk
in the chain ζk and a time tk ≥ Tk such that ρtkz (xk) ≤ ρz(ζk). Then there is a

convergent subsequence ρ
tkl
z (xkl) with limit µ = liml→∞ ρ

tkl
z (xkl) ∈ Σ

z
UG(M). To

complete the proof, it suffices to show that µ ≤ λ, which is proved by

µ− λ = lim
l→∞

(
ρ
tkl
z (xkl)− λ

)
≤ lim sup

l→∞

(
ρz(ζkl)− λ

)
≤ lim sup

l→∞

1

2kl
= 0.

2. For the inclusion “⊂”, see Proposition 5 (2). The converse inclusion follows from

statement (1), Proposition 2 and Proposition 5 (1):

ΣzMo(M) = ΣzUG(M) = 〈ΣUG(M), z〉 ⊂ 〈ΣMo(M), z〉.
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3. We adapt the proof of Colonius et al. [1, Thm. 2.7]: Let λ be an element of the

convex hull of ΣMo(M). It suffices to show that for each δ > 0, U ∈ O(X) and

T ∈ T+ there is a (U , T )-chain ζ in M with ‖ρ(ζ)− λ‖ ≤ δ. So let λ =
∑n
i=0 αiλi

with αi > 0 and
∑n
i=0 αi = 1, λi ∈ ΣMo(M). By Lemma 8, there are periodic

(U , T )-chains ζi, i = 0, 1, . . . , n, in M with

‖ρ(ζi)− λi‖ ≤ δ for i = 0, 1, . . . , n.

Denote the initial (and final) point of ζi by xi. By chain transitivity, there are

(U , T )-chains ξi from xi to xi+1 and ξn from xn to x0. For k ∈ Z+, let ζi,k be

the k-fold concatenation of ζi. Then for arbitrary k1, . . . , kn ∈ Z+ the concatena-

tion ζ(k1, . . . , kn) := ξn ◦ ζn,kn ◦ · · · ◦ ξ1 ◦ ζ1,k1 is a periodic (U , T )-chain in M.

From Lemma 6 it follows that we can choose k1, . . . , kn sufficiently large such that

‖ρ(ζ(k1, . . . , kn))− λ‖ ≤ δ, which finishes the proof.

4. Let p ∈ ΣMo(M) be an exposed point. There exists a supporting hyperplane H

given by a vector z ∈ Sm−1, i.e., H = {x ∈ Rm : 〈x, z〉 = 〈p, z〉} and

ΣMo(M)\{p} ⊂
{
x ∈ Rm : 〈x, z〉 < 〈p, z〉

}
. (10)

By statements (1) and (2), it holds that 〈ΣMo(M), z〉 = 〈ΣUG(M), z〉, and by

(10), 〈p, z〉 is the right boundary point of 〈ΣMo(M), z〉. Theorem 1 implies the

existence of x∗ ∈M such that limt→∞〈ρt(x∗), z〉 = 〈p, z〉. It remains to show that

limk→∞ ρtk (x∗) = p for every sequence tk → ∞. To this end, assume that there

is a limit point p̃ 6= p, i.e., p̃ = limk→∞ ρtk (x∗) for some sequence tk → ∞. Then

〈p̃, z〉 ∈ 〈ΣMo(M), z〉, and hence 〈p̃, z〉 < 〈p, z〉, which is a contradiction.

Proof This follows from the fact that the Morse spectrum is the convex hull of the

uniform growth spectrum (both in continuous- and discrete time) and Proposition 1.

Remark 3 For a compact, connected and chain transitive set M we have found the

following relations for the different spectral sets associated with a growth rate:

ΣLy(M) ⊂ ΣUG(M) ⊂ cl coΣLy(M) = coΣUG(M) = ΣMo(M).

Instead of assuming paracompactness of X and taking the family O(X) of all open

covers of the space X in the definition of the Morse spectrum, it would also be possible

to work with admissible families of open covers in the sense of Patrão & San Martin

[11]. However, as indicated in San Martin & Seco [8], in this more general setting we

would still find that for M being connected, the Morse spectrum is the closed convex

hull of the Lyapunov spectrum, and hence independent of the chosen family of covers.

In fact, that is the reason why we chose not to work in this general setting.

Remark 4 We defined the Morse spectrum in the same way as this is done in San

Martin & Seco [8] for vector-valued cocycles (cf. also Example 4). In the special cases

of Examples 1 and 3, our definition gives the same set as the usual definition via (ε, T )-

chains in metric spaces. In Stender [15], a somewhat different definition of the Morse

spectrum is used which also coincides with the usual one in the corresponding special

cases.

We end this section by describing a transformation that preserves all the spectral

sets which we introduced for growth rates (cf. San Martin & Seco [8, Cor. 3.5]).

http://www.ams.org/mathscinet-getitem?mr=2358975
http://www.ams.org/mathscinet-getitem?mr=2279950
http://www.ams.org/mathscinet-getitem?mr=2643716
http://www.ams.org/mathscinet-getitem?mr=2643716
http://www.ams.org/mathscinet-getitem?mr=2643716
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Proposition 6 Consider two semiflows Φ1 : T+
0 ×X1 → X1 and Φ2 : T+

0 ×X2 → X2

with the same time set. Let ρ1 and ρ2 be corresponding growth rates, which are related

by

ρt2(π(x)) = L(ρt1(x)) for all t ∈ T+, x ∈ X1,

where π : X1 → X2 is a continuous map and L : Rm → Rm a linear automorphism. If

M⊂ X1 is a compact Φ1-invariant set such that π(M) ⊂ X2 is Φ2-invariant, then

LΣLy,Φ1,ρ1(M) = ΣLy,Φ2,ρ2(π(M)),

and the same holds for the uniform growth spectra. If M and π(M) are additionally

connected and chain transitive, the same holds for the Morse spectra.

Proof Let x ∈ M and assume that the Lyapunov exponent λ(x) = limt→∞ ρt1(x) ex-

ists. Then ρt2(π(x)) = L(ρt1(x)) converges to L(λ(x)) = λ(π(x)) for t → ∞. Hence,

LΣLy,Φ1,ρ1(M) ⊂ ΣLy,Φ2,ρ2(π(M)). The converse inclusion holds by invertibility

of L. Now, let λ be an element of ΣUG,Φ1,ρ1(M), i.e., λ = limk→∞ ρtk1 (xk) with

xk ∈ M and tk → ∞. Then ρtk2 (π(xk)) = L(ρtk1 (xk)) → L(λ) ∈ ΣUG,Φ2,ρ2(π(M)).

The other inclusion again follows by invertibility of L. If M and π(M) are con-

nected and chain transitive, they are the closed convex hulls of ΣLy,Φ1,ρ1(M)

and ΣLy,Φ2,ρ2(π(M)), respectively. By linearity and invertibility of L, this implies

LΣMo,Φ1,ρ1(M) = ΣMo,Φ2,ρ2(π(M)).

Remark 5 For two linear flows on vector bundles and the growth rates from Example

1 (finite-time Lyapunov exponents), a transformation as in the preceding proposition,

e.g., is given if there exists a cohomology between the two flows, i.e., a fiber preserving

homeomorphism which is linear on the fibers and conjugates the two flows.

6 The Meaning of Limit Sets for Growth Rates

In this section, we show that for the analysis of the long-time behavior of growth

rates it is sufficient to consider initial values contained in ω-limit sets. Consider again

a semiflow Φ : T+
0 × X → X on a paracompact Hausdorff space X. For any subset

Y ⊂ X we define the ω-limit set of Y by

ω(Y ) :=
⋂
t≥0

cl
⋃
s≥t

Φ(s, Y ).

For Y = {x}, we write ω(x) := ω({x}). Again, we denote by O(X) the family of all

open covers of X.

The following proposition is taken from Conley [4, II.4.1.D]. Its proof is based on

elementary topological arguments.

Proposition 7 Let M ⊂ X be a compact Φ-invariant set. If x ∈ M, then ω(x) is a

nonempty compact invariant set inM. If T = R, then ω(x) is connected. Furthermore,

if U is any neighborhood of ω(x), then there is t ∈ T+ such that Φ(t, x) ∈ U .

Proposition 8 In addition to the assumptions of the preceding proposition, let U ∈
O(X). Then there are finitely many sets U1, . . . , Uk ∈ U with ω(x) ⊂ U1 ∪ . . .∪Uk and

a time T = T (U) such that for each t ≥ T there is i ∈ {1, . . . , k} with Φ(t, x) ∈ Ui.

http://www.ams.org/mathscinet-getitem?mr=511133
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Proof By Proposition 7, ω(x) is compact. Hence, ω(x) is covered by finitely many sets

U1, . . . , Uk ∈ U . Assume to the contrary that there is a strictly increasing sequence

tl →∞ such that Φ(tl, x) /∈ Ui for all i ∈ {1, . . . , k} and l ∈ Z+. Then on the one hand

we have

ω(x) =
⋂
t≥0

cl
⋃
s≥t

Φ(s, {x}) =
⋂
l∈Z+

cl
⋃
s≥tl

Φ(s, {x}) ⊃
⋂
l∈Z+

cl
⋃
k≥l

Φ(tk, {x}),

and on the other hand
⋂
l∈Z+ cl

⋃
k≥l Φ(tk, {x}) is a nonempty subset of the closed set

X\(U1 ∪ . . . ∪ Uk), and hence disjoint from ω(x).

We will make use of the following lemma, which can be considered as an analogue

of uniform continuity on compact sets. For the special case M = X, the lemma can be

found in Patrão & San Martin [11, Lem. 3.5], but for M 6= X the proof works totally

analogously, hence we will not repeat it here.

Lemma 9 Let X,Y and M be topological spaces, Y compact, and F : X × Y →M a

continuous mapping. Let U ∈ O(M). Then there is Z ∈ O(X) such that the following

holds: for arbitrary y ∈ Y and u, v ∈ Z for some Z ∈ Z, there exists U ∈ U with

F (u, y), F (v, y) ∈ U .

Lemma 10 Let ρ : T+ ×X → Rm be a growth rate for Φ. Consider a trivial chain ξ

from x to Φ(T, x) defined by

x0 := x, x1 := Φ(t0, x0), x2 := Φ(t1, x1), . . . , xn := Φ(tn−1, xn−1) = Φ(T, x),

where T =
∑n−1
i=0 ti. Then we have ρ(ξ) = ρT (x).

Proof We prove the lemma by induction over the length n of the chains. For n = 1 the

assertion trivially holds. Assume that it holds for a fixed n ∈ Z+. Define T0 :=
∑n−1
i=0 ti

and T := T0 + tn. Then we have

TρT (x0) = T0ρ
T0(x0) + tnρ

tn(Φ(T0, x0))

= T0 ·
1∑n−1
i=0 ti

n−1∑
i=0

tiρ
ti(xi) + tnρ

tn(xn) =

n∑
i=0

tiρ
ti(xi).

Dividing both sides of the equation by T concludes the proof.

For open covers U ,V ∈ O(X) we write V ≤ 1/2U if for each two sets V1, V2 ∈ V
with V1 ∩V2 6= ∅ there exists U ∈ U with V1 ∪V2 ⊂ U . The following lemma, for which

paracompactness of X is essential, is an easy consequence of a theorem of A. H. Stone

which characterizes paracompactness in terms of open star-refinements (cf. Dugundji

[5, Ch. VIII, Thm. 3.5]).

Lemma 11 For every U ∈ O(X) there exists V ∈ O(X) such that V ≤ 1/2U .

The meaning of limit sets for the analysis of growth rates becomes clear in the

following theorem, which is a generalization of Colonius et al. [1, Thm. 2.7] or Colonius

& Kliemann [3, Thm. 5.3.6]. For simplicity, we restrict ourselves to the continuous-time

case.

http://www.ams.org/mathscinet-getitem?mr=2279950
http://www.ams.org/mathscinet-getitem?mr=0193606
http://www.ams.org/mathscinet-getitem?mr=2358975
http://www.ams.org/mathscinet-getitem?mr=1752730
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Theorem 3 LetM⊂ X be a compact Φ-invariant set and ρ : R+×X → Rm a growth

rate for Φ. If limk→∞ ρtk (x) exists for some x ∈M and some sequence tk →∞, then

lim
k→∞

ρtk (x) ∈ ΣMo(ω(x)).

Proof Let x̃ ∈ M and let sk ∈ R+ be a sequence with sk → ∞ such that λ :=

limk→∞ ρsk (x̃) exists. Fix U ∈ O(X), T > 1 and δ > 0. It suffices to show that there

exists a (U , T )-chain ξ in ω(x̃) with ‖ρ(ξ)− λ‖ ≤ δ.
Since t · ρ : [T, 2T ]×X → Rm, (t, x) 7→ tρt(x), is continuous, Lemma 9 implies the

existence of an open cover V ∈ O(X) such that if a, b ∈ V for some V ∈ V, then∥∥∥tρt(a)− tρt(b)
∥∥∥ ≤ δ

2
for all t ∈ [T, 2T ]. (11)

By Lemma 11, we may assume that V ≤ 1/2U .

Since Φ : [0, 2T ]×X → X is continuous, Lemma 9 implies the existence of an open

cover Z ∈ O(X) such that, for arbitrary t ∈ [0, 2T ] and v, w ∈ Z for some Z ∈ Z, we

have that Φ(t, v), Φ(t, w) ∈ V for some V ∈ V. We may assume that Z ≤ 1/2V (in fact,

Z ≤ V will be sufficient.)

By Proposition 7, the set ω(x̃) is compact. Hence, there are finitely many sets

Z1, . . . , Zl ∈ Z such that ω(x̃) ⊂
⋃l
i=1 Zi. Furthermore, since Z ≤ 1/2V, there also

exists a finite cover {V1, . . . , Vl} ⊂ V of ω(x̃) with

Zj ⊂ Vj for j = 1, . . . , l. (12)

By Proposition 8, there exists a time S = S(Z) such that for any t ≥ S there

is j ∈ {1, . . . , l} with Φ(t, x̃) ∈ Zj . Let x := Φ(S, x̃). Then for all t > 0 there is

j ∈ {1, . . . , l} with Φ(t, x) ∈ Zj , and by Lemma 1, for the sequence tk := sk − S →∞
it holds that

lim
k→∞

ρtk (x) = λ.

Hence, there exists K ∈ Z+ such that∥∥∥ρtk (x)− λ
∥∥∥ ≤ δ

2
for all k ≥ K.

Choose k large enough such that T0 := tk ≥ max{tK , 2T}. Since T0 = nT + r̃ with

n ∈ Z+ and r̃ ∈ [0, T ), it holds that T0 = (n− 1)T + r with r ∈ [T, 2T ). Since T > 1,

we have

T0 > n. (13)

Now define a trivial (U , T )-chain ξ̃ with times

τ0 := · · · := τn−2 := T, τn−1 := r

and points

x0 := x, x1 := Φ(T, x0), x2 := Φ(T, x1), . . . , xn := Φ(r, xn−1).

Lemma 10 implies that ρT0(x) = ρ(ξ̃). Now we have a chain ξ̃ with∥∥∥λ− ρ(ξ̃)
∥∥∥ ≤ δ

2
. (14)
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The chain ξ̃ is not necessarily a chain in ω(x) = ω(x̃). Thus, we have to construct an

appropriate chain in ω(x).

For each xj , j = 0, . . . , n − 1, there exists i(j) ∈ {1, . . . , l} such that xj ∈ Zi(j).
Choose some yj ∈ Zi(j) ∩ ω(x) (we may assume that this intersection is nonempty,

since otherwise we could take a smaller subcover). By (12) we have Zi(j) ⊂ Vi(j) and,

by choice of Z, there exists a set V j+1 ∈ V with

xj+1 = Φ(τj , xj), Φ(τj , yj) ∈ V j+1.

Applying the same construction to xj+1 implies

xj+1 ∈ V j+1 ∩ Vi(j+1), Φ(τj , yj) ∈ V j+1 and yj+1 ∈ Vi(j+1).

Since V ≤ 1/2U , for each j ∈ {0, . . . , n−1} there exists Uj+1 ∈ U with V j+1∪Vi(j+1) ⊂
Uj+1.

By this construction, we have obtained a (U , T )-chain ξ in ω(x) given by the points

{y0, . . . , yn} ⊂ ω(x), times {τ0, . . . , τn−1} ⊂ R+ with τ0 = . . . = τn−2 = T , τn−1 =

r ≥ T , and sets {U1, . . . , Un} ⊂ U , and it holds that

‖λ− ρ(ξ)‖ ≤
∥∥∥λ− ρ(ξ̃)

∥∥∥+
∥∥∥ρ(ξ̃)− ρ(ξ)

∥∥∥
(14)
≤ δ

2
+

1

T0

n−1∑
j=0

∥∥τjρτj (xj)− τjρτj (yj)
∥∥

(11)
≤ δ

2
+

n

T0

δ

2

(13)
≤ δ,

which finishes the proof.

Remark 6 We like to note that in the setting of the preceding theorem, the restriction

of the semiflow Φ to the ω-limit set ω(x) is chain transitive (cf. Patrão & San Martin

[11, Cor. 3.15]).

7 Open Questions

We end this paper with a list of unsolved problems and topics for further research

which we want to investigate in the future.

1. We would like to know more about the topological and geometric properties of

the uniform growth spectrum. For instance, for discrete-time systems we do not

know if this set is connected provided that M is connected. Another topic for

further research concerns the dimensions of the spectral sets ΣLy(M), ΣUG(M)

and ΣMo(M).

2. A further open question concerns the dependence of the spectral sets ΣUG(M)

and ΣMo(M) on flow parameters. In Colonius & Kliemann [2, Thm. 3.11], upper

semicontinuous dependence of the Morse spectrum under appropriate assumptions

is proved for a family of linear flows on vector bundles. However, for the Morse

spectrum in the general setting of the present paper, this is still an unsolved prob-

lem.

3. In Remark 3, we pointed out the relations between the different spectral sets.

However, in the general setting, we do not know if or when equality holds in the

inclusions ΣLy(M) ⊂ ΣUG(M) and ΣUG(M) ⊂ ΣMo(M).

http://www.ams.org/mathscinet-getitem?mr=2279950
http://www.ams.org/mathscinet-getitem?mr=1329532
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