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Abstract In this paper, we present a theory of vector-valued growth rates for discrete-
and continuous-time semiflows on Hausdorff spaces. For a given compact flow-invariant
set M and an associated growth rate, we introduce the uniform growth spectrum over
M, and associated real-valued spectra via projections of the vector-valued spectrum
onto one-dimensional subspaces. We show that these real-valued spectra are closed
intervals if M is additionally connected. We also define the Morse spectrum associated
with a growth rate by evaluating the growth rate along chains. Moreover, we relate the
uniform growth spectrum to the Morse spectrum and we analyze the meaning of limit
sets for the long-time behavior of growth rates.
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1 Introduction

In the qualitative theory of dynamical systems, exponential growth rates characterizing
the long-time behavior of flows play an important role, in particular, Lyapunov expo-
nents measuring the exponential rate of divergence for nearby trajectories, and rotation
numbers measuring the angular rate of rotations (cf., e.g., [I7I314,[15], for the lat-
ter). In the present paper, we study abstract vector-valued growth rates for semiflows,
which generalize both Lyapunov exponents and rotation numbers. Our emphasis is on
two spectral concepts for these growth rates and their relations, namely the so-called
uniform growth spectrum and the Morse spectrum. Our analysis is essentially based on
methods developed in Colonius & Fabbri & Johnson [I], Colonius & Kliemann [2)/3]
and Lars Griine [6].
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A growth rate for a semiflow & : T§ x X — X (T € {ZJ,R{}) is basically
defined as a continuous map p : TT x X — R™, (t,z) — p’(z), such that the map
(t,z) — tp'(z) is an additive cocycle over the semiflow @, i.e., such that the relation

tlptl (z) + t2pt2 (D(t1, ) = (t1 + tQ)pt1+t2 ()

is satisfied for all ¢1,t2 > 0 and « € X. To develop a spectral theory for such growth
rates, we additionally have to impose some boundedness conditions. This fairly gen-
eral definition, which includes in particular finite-time Lyapunov exponents for linear
flows on vector bundles, rotations numbers, and harmonic averages, has already found
application in Mezi¢ & Banaszuk [9] and in Wichtrey [16].

The state space X of the semiflow &, in this definition, is only assumed to be a
Hausdorff space, not necessarily metrizable. A motivation for working in this general
context is that abstract topological spaces arise, e.g., in compactifications of dynamical
systems (cf. Patrao [10] and Patrao & San Martin [T1}[12]).

For Lyapunov exponents of linear flows on vector bundles, Lars Griine [6] intro-
duced the uniform exponential spectrum, one of whose motivations lies in the under-
standing and interpretation of experimental and simulation results. We adapt his defi-
nition, and introduce the uniform growth spectrum over a compact invariant set M, for
a given growth rate p. This spectrum is defined as the set of all limits limy,_, o pt* ()
with z, € M and ¢, — oco. It is an outer approximation of the Lyapunov spectrum,
i.e., the set of limits lim;—so0 pt(x), x € M. In particular, it is a compact set and, in
case that M is connected, each of its projections onto a one-dimensional subspace is a
compact interval, whose boundary points are Lyapunov exponents.

We also study the Morse spectrum of a given growth rate over a compact invariant
set M, which is, roughly speaking, defined via evaluating the growth rate along chains.
This concept was first introduced by Colonius & Kliemann [2] for linear flows on
vector bundles. In the analysis of the Morse spectrum, we mainly adapt methods from
Colonius et al. [1] to the more general situation. Additionally assuming connectedness
and chain transitivity of M, the Morse spectrum over M turns out to be a compact and
convex set which is the closed convex hull of the Lyapunov spectrum and the convex
hull of the uniform exponential spectrum. Moreover, we show that for each point x in
a compact invariant set, the limit points limp_, o pt’“ (z) are contained in the Morse
spectrum over the w-limit set of x.

The present paper is structured as follows: In Section the central notion of
growth rates is introduced and several examples are given. In Section |3] we define the
uniform growth spectrum associated with a growth rate and the (real-valued) z-related
spectra, and we derive some elementary properties of these sets. In the subsequent
section {4} we analyze the z-related spectra in more detail and prove our first main
result, which states that the z-related spectrum over a compact connected invariant
set is a compact interval, whose boundary points are Lyapunov exponents. Section
is devoted to the study of the vector-valued and z-related Morse spectra associated
with a growth rate. In particular, for connected invariant sets, we prove that the
z-related Morse spectra coincide with the z-related uniform spectra. Moreover, for
chain transitive and connected sets we show that the vector-valued Morse spectrum
is a compact convex set whose exposed points are Lyapunov exponents. The main
result of Section |§| states that all limits of the form limy_,, p'* (x) are contained in
the Morse spectra over w-limit sets.
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Notation: The notation T simultaneously stands for the abelian groups Z (the
integers) and R (the reals). Moreover, we write T(J{ ={teT:t>0},T>; ={te
T:¢t>1}, and TT = ']T(T\{O} If X is a topological space and A C X, we denote by
cl A the closure of A in X. We write (-,-) and || - || for the Euclidean inner product
and its associated norm in R™, respectively. By Br(z) we denote the open ball in
R™ centered at x with radius r, and by S™ ! we denote the unit sphere in R™,
Sm=1 — {2 € R™ : ||lz|| = 1}. The convex hull of a set A C R™ is denoted by coA. A
semiflow on a topological space X is a continuous mapping @ : ']I‘a' x X — X such that
&(0,z) =z for all z € X and (¢t + s,x) = P(s,D(¢,z)) for all ¢,s € Tar and z € X. A
subset M C X is called invariant for the semiflow @ (or @-invariant) if (¢, M) C M
holds for all t € ']I'a'.

2 Growth Rates
In this section, we introduce growth rates for semiflows and give some examples. We
will frequently consider a semiflow
&:TExX =X

on a Hausdorff space X in this and all subsequent sections.
Definition 1 A growth rate for the semiflow @ is a continuous function

p:TH x X 5 R™, (t,2) — p'(2),
with the following properties:

1. The function (¢,z) — tp'(z) is an additive cocycle over @, i.e., for all t1,ty € TT
and z € X the relation

t1p" (@) + t2p" (B(t1, ) = (t1 + t2)p" T (2) (1)

holds.
2. The restriction of p to T»q x X is bounded.
3. In case T = R: the function

(t,2) — tp'(x), (0,1) x X = R™,
is bounded.
For every vector z € S™~1 we define the mapping
p :THx X 5 R, (ta)— ph(z) = (p'(x), 2).

We call p. the z-related growth rate (associated with p). Moreover, we define

M :=M(p) := max{ sup Htpt(x)
(t,2)€((0,1)NT+)x X

e e} e

(t,z)GTZl xX

If for z € X the limit A(z) := lims oo p'(x) exists, we call this limit a Lyapunov
exponent (of p). If M C X is a compact ®-invariant set, the Lyapunov spectrum over
M is defined as the set of all Lyapunov exponents

Dry,@,p(M) :={X(z) : =€ M, \x) exists}.

If it is clear from the context what & and p are, we omit the corresponding indices.



The following lemma shows a relation between the long-time behavior of a semiflow
and that of its associated growth rates.

Lemma 1 Let p: TT x X — R™ be a growth rate for the semiflow ® and let t), be a
sequence in T with t, — co. If A = limy_, o p* () exists for some x € X, then for
any t € T it holds that A = limy_, o pt’“_t(éﬁ(t7 x)), where the sequence is only defined
for k large enough such that t, —t > 0. The same holds for z-related growth rates.

Proof For t; =t and to = t;, — t, the definition of growth rates implies

1 4, t
7 P (I) - _
1- & e — 1

P @(t ) = s [t () — 1 ()] = P(@).

e —t

From this identity the assertion immediately follows. For z-related growth rates the
proof works analogously.

Ezample 1 The following example shows that the (classical) finite-time Lyapunov ex-
ponents of a linear flow on a vector bundle define a real-valued growth rate for the
induced flow on the associated projective bundle: Consider a linear flow p : RxV — V
on a vector bundle 7 : V — B with compact metric base space B and base flow
O : R x B — B. Assume that we are given a norm on V), i.e., a family of norms || - ||,
on the fibers V,, varying continuously with b € B. Let Pr : PV — B be the associated
projective bundle with the induced flow @ = Py : R x PV — PV, and define

o ()

This map is easily seen to be well-defined and continuous. Moreover, we have
t1p" (Pv) + t2p" (&(t1,Pv))

L tl’
M“w ||) ’w (tz’ To(es, v |)H

= log ||'¢ (tla )” _IOg”UH +10g\|1/) (t27 (t17 H —10g|\’¢(t17 H

‘1& (tl + to, m) H = (t1 +t2)pt1+t2(Pv).

o (Pv) = log . p:RT xPY SR

= log + log

= log

The function p is bounded on Rx; x PV, since there are constants K > 1 and a > 0
such that (cf. Colonius et al. [I, Rem. 2.1])

<o) o
[lv]l

for all ¢ > 0 and v € V, ||v|| # 0, which implies
—log(K) —a < p'(Pv) <log(K) +a forallt > 1, Pve PV.
Finally, for ¢t € (0,1) we have
—log(K) — a < tp' (Pv) < log(K) + a.

Hence, p is a growth rate for @ with M(p) < log(K) + a.
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Example 2 Consider a bilinear control system

i(t) = 2(t) = A(u(t)z(t), wel,

m
Ao+ ui(t)A;
=1

on R? with admissible control functions
U= {u :R— R™ : u measurable with u(t) € U ale.} ,

where U C R™ is a compact and convex set. The unique solution with initial value =
for the control function w is denoted by ¢(t, z,u). These solutions define a continuous
skew-product flow on U x ]Rd, the so-called control flow, by

ViR x (UXxRY) U xR (¢, (u,2) — (u(t+ ), o(t, z,u)),

where U is endowed with the weak*-topology of L™ (R,R™) = L!(R,R™)*, which
makes it a compact metrizable space. Here, we are interested in the induced flow on
U x Sto Rd, where Sto R? is the Stiefel manifold of orthonormal 2-frames in R?. This
flow is given by
@R x (U x StaRY) = U x Sty RY,
(t, (u, (x0,y0))) = (u(t + ), zt(wo, u), yt(zo, yo, u)),

where x¢(zo,u), yt(zo,y0,u) are defined via Gram-Schmidt orthonormalization of
(¢(t, zo,u), o(t, yo,u)). For this flow, a growth rate rot : RT x (U x St RY) — R
can be defined, which measures the rotational behaviour of the solutions ¢(t,z,u).
This growth rate is given by

1

t
rot’ (u, (z0,30)) = ;/O (A(u(t))zt(zo,u), yt (o, yo, u)) dt.

The numbers rot!(u, (zo,y0)) are called (finite-time) rotation numbers. Relation is
verified using the flow property of &:

t1+t2
(t1 + t2) 1ot (u, (20, 90)) = /O (A(u(t)zt(zo,w), ye (2o, Yo, u)) dt
t1
- /O (ACu(t))z2 (20, ), e (20, yo, ) dt

ta
+ / (A(u(t + t1))zt+t, (20, ), Yttt, (T, Yo, w)) dt
0
=ty rot™ (u, (20, y0))

to
+ /0 (A(u(t + 1))zt (ze (w0, w), u(ts + ), ye (ze (z0, w), Yt (Yo, w), u(ts + -))) dt
= tlptl (uv (1’0, y())) + t2pt2 (é(tlv (uv (1707 yO))))

Standard estimates lead to

rot’ (u, (z0,40))| < max ||A(u)|| for all £ > 0.
uelU

For continuity of rot and a detailed analysis of rotation numbers we refer to Stender
[15].



Example 3 In this example, we describe the growth rates which are studied in Colonius
et al. [1]. Let ¢ : R x X — X be a continuous flow on a fiber bundle 7 : X — B with
compact base space B, and let f : X — R™ be a continuous function. Assume that
the map

fBiRx B=R™, (8,0) = f(¥(t,2) = f(z), zen '(b),

is well-defined, i.e., that fp(t,b) is independent of the choice of x € 7r71(b). Define
p:RY x B R™, (t,b)— %fB(t,b).

Then p is a growth rate for the induced flow ¢ on the base space B. Continuity of p
follows from the facts that (¢,2) — f(¢(t,z)) — f(x) is continuous and 7 is a projection
map (cf. [1, Lem. 2.3]). The relation follows easily:

(t1 +t2)p" T2 (b) = fu(t1 +t2,b) = f(b(t2,Y(t1,2))) — f(z)
= f((t2,¥(t1,2))) — f((t1,2)) + f(¥(t1, 7)) — f(2)
= fp(t2,P(t1,b)) + fp(t1,b)
= tap"* ((t1,b)) + t1p" (b).

By compactness of B and continuity of fpg, also the required boundedness assumptions
for growth rates follow (cf. Example. This general construction in particular includes
Lyapunov exponents as described in Example[I] Here X is the complement of the zero
section in the total space of a vector bundle (with compact base space), B is the total
space of the associated projective bundle, and 7 : X — B is the natural projection.
The function f is given by f(x) = log ||z||.

Ezample 4 In San Martin & Seco 8], vector-valued Lyapunov and Morse exponents for
flows on principal bundles are analyzed. The general construction is as follows: Let E
be a compact Hausdorff space and ¢ : T x E — E a continuous flow (T € {Z,R}). If V
is a finite-dimensional normed vector space, a V-valued cocycle over E is a continuous
map a: T x E — V with

a(t+ s,x) = a(t,d(s,z)) + a(s,z) forallt,s €T, z € E. (3)

Given z € E and t € T, the finite-time Lyapunov exponent of the cocycle a at (z,t)
is
t 1
A(z) = Ea(t,x).

Taking V' = R™, this defines a growth rate in the sense of our definition. Continuity is
clear and the relation immediately follows from the cocycle property . Moreover,
from we conclude (for T = R, without loss of generality), writing t = n+r > 1
with n € Z* and r € [0, 1),

—1
. 1 1 &
= < —
@) n+TMW+nwn_n+r@anﬂmwn+;%mu@ww»0
< +1 max la(s, z)|| < 2 max lla(s, z)|| < oo,
n+7 (s,x)€[0,1]x X (s,2)€[0,1]x X
and
Ht)\t(x)H —llalt,z)| < max |a(s,2)| forall ()€ (0,1] x X.

T (s,x)€[0,1]x X
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In [8], continuous flows on principal bundles with semisimple structure group G are
investigated. Using the Iwasawa decomposition G = KAN, an additive cocycle over
the flow taking values in a = log A can be constructed and its Lyapunov and Morse
exponents are studied.

FEzample 5 Let X be a metric space and 1 : Rar X X — X a semiflow on X. For some
w € R, consider the semiflow

R x (ST x X) = S'x X, (¢ (2,2)) — (eiwtz71/)(t, w)) .

Here, the unit circle S Lis regarded as a subset of the complex plane C. Let f: X — C
be a bounded continuous function and define

t
t —— eiwt x .
o) /0 F ()t

It can easily be verified that p satisfies for the semiflow ®“. Growth rates of this
form can be used to study the rotational behavior of dynamical systems. They, together
with their spectral sets, are studied in Wichtrey [I6], not only in the continuous but
also in a measurable setting.

3 The Uniform Growth Spectrum

In the setting of the preceding section, we now introduce the uniform growth spectrum
over a compact @-invariant set for a given growth rate. This definition generalizes
Griine’s definition of the uniform exponential spectrum for linear flows on vector bun-
dles (cf. [6, Def. 3.1]).

Definition 2 Let M C X be a compact @-invariant set and p : TT x X — R™ a
growth rate for @. The uniform growth spectrum over M (associated with p) is defined
by

It — oo and z € M
X = R™ k k .
uG.2.p(M) {A € such that limy_, o p** (z) = A

For z € S™ 1, the z-related uniform growth spectrum over M is defined by

3t d
L66,0,0(M) = {A eR k= o0 and o, € M } .

such that limy_, o p2* (z5) = A
If it is clear from the context what & and p are, we omit the corresponding indices.

By boundedness of p on T>q x X, it is clear that Yyg(M) and Xg(M) are
nonempty if M is nonempty. The following lemma can be proved by easy topological
arguments, hence we omit the proof.

Lemma 2 It holds that

SveM) = [ d | o'M) and SieM) = ) d | pt(M).

TeT+ t>T TeT+ t>T

Corollary 1 If T = R and M is connected, then also Xyg(M) and XGa (M) are
connected.
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Proof This follows by the same arguments which are used to prove that w-limit sets of
continuous-time systems on compact spaces are connected.

As the next proposition shows, in the continuous-time case it is sufficient to consider
time sequences t;, — co with ¢;, € ZT in the definition of Yug(M).

Proposition 1 Assume that T = R in Definition @ Then

Sua(M) {)\GRm ] HtkEZ"',tk—)oo,anda:kEM}
U = . *

such that limy,_,o pt* (z) = A
The analogous statement holds for the z-related uniform growth spectrum.

Proof Consider sequences t;, € R", t;, — oo, and xj, € M such that the limit A\ =
limy,_, o0 p* (1) exists. We write each t;, as t, = [t1] + 7, where [t;] denotes the
integer part of ¢;, and 1, = ¢, — |tx] € [0,1). Since ¢, — oo, we may assume that
lte] > 1 for all k. For all k with ¢, ¢ ZT, i.e., 7, > 0, the definition of growth rates
implies

mep™ (@) + [t |l (@, ) = tp™ ().

Defining a sequence y € M by yi := &(13, x) for all k, we obtain

thkJ (i) =4 & Pt (Ili) if 7, =0,
¥ TogP (k) = ymee™ (ek) if 7 > 0.

Since 5,/ [tx] = 1, 1/|t5] — 0, and |7,p7 ()| < M, we have limy,_,o pt* () = A,
which implies the assertion. For the z-related spectrum the proof works analogously.

The above proposition justifies to consider only the discrete-time case in the analysis
of the uniform growth spectrum. Hence, in the rest of this section we assume that
T = Z. The next two lemmas are modifications of Griine [0, Lem. 2.3 and Lem. 2.4].

Lemma 3 Let p: ZT x X — R™ be a growth rate for the semiflow ®. Then for all
ti1,to € ZT and z € X we have

to
t1 +t2’

o2 (@) = " @) < 2M

with M defined as in . The same inequality holds for z-related growth rates.

Proof 1t follows directly from the definition of growth rates that

o+ (@) = " @) = ‘ - itz (t20" (@(11,2)) + 11" (@) = 9" (@)
< ot + | - 1' o @]

t
2 ootz
t1 + 12 t1 + 12

= (| @]+ |0 @])

For z-related growth rates the corresponding inequality follows with Cauchy-Schwarz.
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Lemma 4 Let p : ZT x X — R™ be a nonzero growth rate for the semiflow ®.
Fiz z € S™ Y and let v € X, t € Z". Then for any e € (0,2M) there is a time
t1 <[(2M —e)t]/(2M) such that

p3(B(t1,2)) < p(x) +¢ forall s € (0,t —t1] NZ, (4)
where M is defined as in ([2). Furthermore, t —t1 > et/(2M) — oo for t — oo.
Proof For brevity, we write o := p%(z). Let € € (0,2M) and define

R S
B = e p=(z).

If 8 < o + ¢, the assertion follows with ¢t; = 0. For 8 > o + ¢ let
t1:=max{s € (0,{]NZ : pi(z) >o+c}.

Then we have
pet(x) > 0 +e. (5)
We use Lemma [3] with ¢1 and t3 =t — ¢; to obtain

t—1t1
ol (o) = ph(a)] < 2M "

e <pi(a) — o= pt(z) — pi(z) =

This implies ¢t — t; > et/(2M). Now, let s € (0,t —t1] N Z. Then s +t1 € (¢1,t], and

hence p§+t1 (z) < o+ ¢. Using the definition of growth rates, this implies

P01, 2)) =~ [(t1 -+ ) (@) — 1102 (2]
<2t + )0 +) — tafo +<)]
—ote=pia) te,
which finishes the proof.

Proposition 2 Let M C X be a compact $-invariant set, p : ZT x X — R™ a growth
rate for &, and z € S™ L. Then

(Zua(M), z) = Zig(M).

Proof To show the inclusion “C”, let A € (XYyg(M), z). Then there are sequences
t, — oo and z, € M such that A\ = (i, z) with g := limy_, o p** (x3). Hence,

A=(pz2) = < lim p* (xk),2> = lim <ptz‘“ (wk),Z>-
k—o00 k—o0
For the converse inclusion, let A € X§q(M). Then there are sequences ¢, — oo and
xy, € M such that X\ = limj,_, o (p"* (1), z). Since p is bounded, there is a convergent
subsequence p'*i (zy,) — p € Yyg(M), which implies X = (i, 2) € (Zyg (M), 2).

As the next proposition shows, the uniform growth spectrum and the z-related
growth spectra are compact sets.

Proposition 3 Let M C X be a compact $-invariant set and p : ZT x X — R™ q
growth rate for ®. Then Zyg(M) and ZFq (M) (for any z € S™1) are compact sets.
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Proof Since p is bounded, also Y'yg (M) is bounded. Now, consider a sequence \j in
Yua (M) such that the limit A := limg_, o Ag exists. For each k there are z;, € M and
tr > 1 with [|p% (z1) — Akl| < 27% implying

1
7= o o | < 13 = xel | = o )| < 3= Ml + 5

Hence, p'* () converges to ), which proves that Yyg(M) is closed. For X§ (M) the
proof works analogously.

4 Properties of the Real-Valued Spectra

In this section, we analyze the z-related spectra over a connected compact @-invariant
set. Again, without loss of generality, we only consider the discrete-time case. The
following theorem is a straightforward generalization of Griine |6, Thm. 3.3]. It shows
that the z-related spectra are compact intervals whose boundary points are Lyapunov
exponents.

Theorem 1 Let M C X be a connected compact ®-invariant set, p : Zt x X - R™
a growth rate for @, and z € S™~L . Then there are real numbers p« < p* such that

ZoG(M) = [px, p"].

Moreover, there are xx,z* € M such that pt(zs) < p« and pL(x*) > p* for all t > 1
and

: t _ . t kY ok
Jim pe(z) = px, - lim p(27) = p7

Proof Compactness of X (M) is guaranteed by Proposition |3 If p = 0, the proof is
trivial. Hence, we may assume that p is not identically zero. The rest of the proof is
subdivided into two steps.

Step 1. Let px := min X (M). We first show the existence of z«. By definition of
YHq (M), there are sequences zp, € M and t, — oo with

P2 (1) < px + epy

where ¢, \( 0. Let £ := 1/4/t;. By applying Lemmato x), and t;, with € = g}, for
each k large enough such that €5, < 2M, we obtain times tj, such that

P2 (D(th, x)) < px + e + & forall s € (0,1, — 13| NZ, (6)

where ty —tf > Eptr/(2M) = I /(2M). We let T, == D(t},, zp) and T}, := t)—t}, — oo.
Since M is compact, there is a convergent subnet of the sequence (T )y cz+ (considered
as a net), converging to some z € M (cf. Willard [I7, Thm. 11.5 and Thm. 17.4]). That
is, there is a directed set (E,>) and a function f : E — Z1 with e; < ey implying
f(e1) < f(e2) such that for every n € ZT there is e € E with f(e) > n and such that
for every neighborhood U of  there is eg € E with Zy(,y € U for all e > eg. Now, fix
t € ZT and € > 0. By continuity of the map z — p%(z), there exists ey € E such that
IpL(Z) — pi(:?f(e))\ <eand ;.f(E) >t for all e > eg (cf. Willard |17, Thm. 11.8]). Then

Pt (@) < Pt (Tpe)) +

oL (@) — pb (Ef(e))‘ < px +Ef(e) T Epe) T € foralle> ep.
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Now, for each k € Z* we find € € E with f(&) > k. Then there is e € E with both
e > eg and e > €, and hence

PL(T) < ps + Ef(e) T Ef(e) T &

Since f(e) > f(€) > k and ep,&E \, 0 for kK — oo, it follows that pf(Z) < p« + €. Since
¢ and t have been chosen arbitrarily, we conclude

pL(F) < ps forall t > 1, (7

and thus limsup,_, . pL(Z) < p«. Now, assume that liminf;eo pb(Z) < ps. This
implies the existence of a sequence t;, — oo such that limy_,o pi (Z) < px =
min Yyg (M), which is a contradiction. Therefore, z+ := T has the desired properties.
With the same arguments we can prove the assertion for p*.

Step 2. It remains to show that Xg(M) is an interval. In Step 1, we have shown
that Xfa (M) C [px, p*]. Thus, we have to show that [p«, p*] C X (M). Since M is
compact and connected, and pt : X — R is continuous for each t > 1, the sets p’ (M)
are compact intervals. Furthermore, using , for each ¢t > 1 it holds that ptz(:r*) < px
and pL(z*) > p*, which implies [p«, p*] C p&(M) for all ¢ > 1. Since we can write

ShaM) = () d | pim)

T>0 t>T
by Lemma [2} we conclude that [p«, p*] C g (M).

Corollary 2 Under the assumptions of Theorem it holds that

inf limsup pl(z) = inf liminf ol (z) = lim inf pi(z 8

zeM tﬁooppZ( ) reEM t—o0 pZ( ) t—>ocg:eMpZ( ) ( )
and

sup limsup p%(z) = sup liminf pl(z) = lim sup pi(z). (9)

TEM t—00 zeM t—o0 =00 e M

Proof Let us prove . The proof of @[) works analogously. Write
a:= inf limsup pl(z
Jnf t_)ooppz( ),

. Lo t
B = mle% liminf p (z),

= 1 inf pl(x).
v:= lim inf p:(z)

Existence of the limit in the definition of v follows from superadditivity of the function
f(t) == tinf,e aq pt(x), which is proved as follows:

flt+s)= inf ((t+9)"(@),2) = inf (t6'(2) +5p"(@(t,2)), 2)
= inf Ktpt(x),z> + (sp*(@(t, x)),zﬂ
>t inf <pt(x),z>+smienj{4 (p*(@(t,2)), 2)

. t . S .
> tzlenJ{/l px(x) -I-leen/{/lpz(w) = f(t)+ f(s).
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Note that the inequalities v < 8 and 8 < « are trivial. Hence, it suffices to show
that a < . To this end, we first show that v € Xfg(M). By compactness of M and
continuity of pt it follows that for each t > 1 there is 2y € M with infrem ol () =
pt (). Choose an arbitrary sequence t;, — co. Then

v=lim p¥(zy,) € SHa(M).
k—o0
Now, using Theorem (I} we find

= inf li ! (z) < lim pl = ps <
a= inf ltrgsogppz(fv) < lm px (@) = pe <,

which completes the proof.

Remark 1 Note that in the proof of the preceding corollary we did not use that
YEq (M) is connected. Hence, looking at the proof of Theorem |1} we see that we do
not need the assumption that M is connected either for the validity of the identities

and (@

5 The Morse Spectrum

In this section, we introduce and study the Morse spectrum over a compact invariant set
for a given growth rate. We will frequently assume that X is a paracompact Hausdorff
space and @ : Ta‘ x X — X a semiflow on X. By O(X) we denote the family of all
open covers of X.

Definition 3 Let & € O(X) and z,y € X, T € TT. A (U, T)-chain ¢ from z to y
consists of an integer n > 1, a sequence of points {x = zg,...,zn =y} C X, a sequence
of times {Tp, ..., Tp_1} C TV with T} > T for i = 0,...,n—1, and a sequence of open
sets {U1,...,Un} C U such that for i =0,...,n — 1 we have

D(Ty,x5), Ti41 € Uiy

The total length of ¢ is defined by Z?z_ol T;. We say that ¢ is a chain in M C X
if {xo,...,zn} C M. If xg = zn, ( is called periodic. The chain ¢ is called trivial if
i1 = P(T;, ;) for i =0,...,n—1.

Definition 4 Forf € O(X),Y C X and T € T" we define the (U, T)-chain reachable
set from Y by

QY,U,T):={xre€X : JyeY and a (U, T)-chain from y to z}.
The §2-limit set of a subset Y C X is defined by

oY) = [ eWuT).
UeO(X),
TeTt

For x € X we write 2(z) := 2({z}) and we define the relation

xRy & ye N(x).
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The next proposition can be found in Patrao & San Martin [11, Prop. 3.3] (here
the assumption of paracompactness of X is essential, since this assumption guarantees
that O(X) is an admissible family in the sense of [11].)

Proposition 4 The relation = is transitive, closed and ®-invariant. Here, “closed”
means that for convergent sequences n, and yn, in X with xn =< yn for alln, it holds that
limp— o0 Tn = liMp—oo Yn. “@-invariant” means that x < y implies ®(t,z) < P(s,y)
for all s,t > 0.

Definition 5 We define the relation
r~y & r3yand y .

A point z € X is called chain recurrent if x ~ x. The set R of all chain recurrent points
is called the chain recurrent set. The restriction of ~ to R is clearly an equivalence
relation. A subset Y C X is called chain transitive if for all x,y € Y it holds that
x ~ 1. An equivalence class of ~ is called a chain recurrent component.

Remark 2 For aflow @ : Rx M — M on a compact metric space M, the chain recurrent
components are the connected components of the chain recurrent set (cf. Colonius &
Kliemann |3, Thm. B.2.22]).

Definition 6 Let p: TT x X — R™ be a growth rate for . We define the growth rate
of a (U, T)-chain ¢ with times Ty,...,Tn—1 > T and points zg,...,zn € X by

n—1 -1 n—1
p(¢) = (Z T) > Tip" ().
1=0 1=0

For z € S™ ! we also define the z-related growth rate of ¢ by

“1pa

n—1
pe(0) = (z T) S 1T (01) = (9(0). ).
1=0 1=0

Lemma 5 Let p: Tt x X — R™ be a growth rate for ®, and ¢ a (U, T)-chain with
times 1o, ..., Tn—1 > T and points xq,...,xn € X. Then for each z € S™1 we have

: T; T;
min = p;' (%) < pz(() < max pp'(z).

i=0,...n—1 i=0,....n—1

Proof Let T := Ty + --- + Ty—1. The assertion for the maximum follows by

| Ty
Pz (C) =T [TOPZO (130) +--+ Tnflpz ! (l'nfl):|
To T Th-1 T
<22 ) 4 - i (s
S T gmax pa (i) +--- + T (X P ()

and analogously for the minimum.
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Definition 7 Let £ be a (U, T)-chain in X, given by points {z = zg,...,zn =y} C X,
times {Tp,...,Tp_1} C TT and open sets {Uy,...,Un} C U, and let ¢ be another
(U, T)-chain given by points {y = zg,...,2zm} C X, times {So,...,Sn_1} C TT and
open sets {Vi,...,Vin} C U. We define the concatenated (U, T)-chain ¢ o & as the
chain with points {po, ..., Pn+m} C X, times {Ro, ..., Rntm—1} C T and open sets
{W1,...,Wntm} CU, given by

L z; 1=0,...,n R o= T 1=0,....,n—1
b= Ziipi=n+1,....,n4+m’ " | Si—pi=n,...,n+m—1

U, i=1,...,n
Wz'i{Vi_ni:n—Fl,...,n—km

The proof of the next lemma follows by an easy computation which can be seen in
Colonius et al. [I, Lem. 2.5].

Lemma 6 Let £, ¢ be (U, T)-chains in X of total lengths o and T, respectively, such
that the initial point of ( coincides with the endpoint of £&. Then for the concatenated
chain ¢ o & we have -

p(of)

p(&) +

p(¢)-

o+T o+T

In the rest of this section, p : TT x X — R™ is a fixed growth rate for &, and
M C X is a compact P-invariant set.

Definition 8 For each f € O(X), T € T and z € S™~! we define the sets
XMo@, p(M;U,T) :={p(¢) : ¢isa (U,T)-chain in M},
Ito,@,p (MU, T) == {pz(¢) : (is a (U,T)-chain in M}.

Then the Morse spectrum over M is defined by

2M0,¢>,p(M) = ﬂ cl EMO,QS,p(M;Z/LT)‘
UeO(X),
TeTt

For each z € S™ ! the z-related Morse spectrum over M is defined by

Eﬁ/lo,ds,p(M) = ﬂ cl Eﬁ/lo,@,p(M§u:T)'
UeO(X),
TeTt

If it is clear from the context what & and p are, we omit the corresponding indices.

The next proposition summarizes some elementary properties of the Morse spec-
trum.

Proposition 5 The following statements hold:

1. Zyc(M) C Eno(M) and Zfa(M) C i (M).
2. (Zpo(M), 2) C Xgo(M).
3. The sets Xnio(M) and X5, (M) are compact.

Proof
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1. Let A € Yyg(M), i.e., X = limg_, o pt’“ (zg) with z, € M and t, € T+, ty — o0.
Fix U € O(X) and T € TT. We have to show that X € cl g (M;U, T). To this
end, define a sequence ¢, of (U, T)-chains in M as follows: let kg € Z* be chosen
such that ¢, > T for all k > k. Then, for each k € Z, let ¢}, be the trivial chain
consisting of points {Zpyrq, P(tktkgs Thtky) ) time(s) {tixtr,}, and open set(s)
{Ux}, where Uy, € U is chosen such that ®(tg iy, Thtk,) € Ug. Then (i clearly is
a (U, T)-chain in M for each k € ZT and p({j,) = pte+ro (Zk+ky), which implies

A= lim p'*(x) = lim p(Cx) € el Znio (MU, T).
k—o0 k—o0

The corresponding assertion for X (M) is proved analogously.

2. This follows from continuity of the function = — (z,z) and the obvious relation
(Do (MU, T), 2) = ZFyo (M;U, T), which holds for all i € O(X), T € T™.

3. Closedness of X\1o(M) and X, (M) follows immediately from the definitions.
Boundedness follows from boundedness of p on T>; x X.

If we additionally assume that the set M is connected and that the restriction
of & to M is chain transitive, we can say more about the Morse spectrum and its
relations to the uniform growth spectrum and the Lyapunov spectrum. To prove the
corresponding results, we need the following two lemmas.

Lemma 7 Assume that the restriction of  to M is chain transitive and fitU € O(X)
and T € TV. Then there exists T(U,T) € T such that for all z,y € M there is a
(U, T)-chain from x to y with total length < T(U,T).

Proof By chain transitivity, for all z,y € M there is a (U, T)-chain in M from = to
y. Fix z € M. By compactness of M and continuity of @, there are finitely many
(U, T)-chains connecting every z € M to z, if we do not distinguish between chains
which only differ in their initial points. Similarly, (modulo their endpoints) there are
only finitely many (U, T)-chains connecting z with arbitrary y € M. Hence, there are
finitely many (U, T)-chains connecting all points in M. The maximum of their total
lengths is the desired upper bound T(U, T).

The next lemma says that we only have to consider periodic chains to obtain
the Morse spectrum. The proof is essentially the same as that of Colonius et al. [1}
Prop. 2.6].

Lemma 8 Assume that the restriction of ® to M is chain transitive. For each U €
O(X) and T € TT let

Mo, Per (MU, T) :={p(¢) : ¢ is a periodic (U, T)-chain in M} .
Then it holds that

ImeM) = [ ol nto,per(M;U,T).
UEO(X),
TeTt
Proof Let A € Xpjo(M) and fix U € O(X) and T € T;. It suffices to prove that for
every & > 0 there exists a periodic (U, T)-chain ¢’ with ||A — p(¢")|| < 6. By Lemmalﬂ
there exists T(U, T) € TT such that for all 2,y € M there is a (U, T)-chain from z to
y with total time < T'(U,T). For S > T choose a (U, S)-chain ¢ with ||A — p(¢)|| < §/2
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given by points {zq,...,zn} C M, times {Sp,...,S,_1} C T with S; > S for
t = 0,...,n— 1, and open sets {Ui,...,Un} C U with total time o = Z:'L:_()l S;.
Concatenate ¢ with a (U, T)-chain £ from zy, to zg, given by points {zn = yo,...,ym =
zo} C M, times {Tp,...,Tm—1} C T+ with T; > T for i = 0,...,m—1, and open sets
{(71, e, ljm} C U with total time 7 = 227;_01 T; <T(U,T). The periodic (U, T)-chain
¢’ := £ 0 ¢ has the desired approximation property: Since the chain & depends on ¢,
also 7 depends on (. However, the total length of £ is bounded. Moreover, Lemma |§|
implies

I0(©) = plg 0 Ol = (€)= —T=p(¢) = ——n(8)
< [1= =] 10 + == l(@)ll-

Since T > 1 (which we could assume without loss of generality), we have

max{||p(O)|, Ip(§)|I} < M. Since 7 remains bounded for S — oo, the right-hand side
tends to 0 as S — oo.

Theorem 2 If M is connected and the restriction of ® to M is chain transitive, then
the following statements hold:

1. Sfo(M) = S5c (M) for each z € S™1.

2. (Zno(M), 2) = Z51, (M) for each z € S™71.

3. Xnmo(M) is a convex set.

4. Every exposed point p € Xn\io(M) is the Lyapunov exponent of some point x € M,
i.e., there exists © € M with limi_o0 p'(z) = p. Hence, Sio(M) is the closed
convez hull of the Lyapunov spectrum Xy, (M), and the convex hull of the uniform
growth spectrum Xyg(M).

Proof

1. By Proposition (3) and Proposition both X (M) and X, (M) are compact,
hence they have minimal and maximal elements. Moreover, by Proposition [5| (1),
the inclusion £ (M) C X5, (M) holds. By Theorem [I} X (M) is an interval.
Hence, it suffices to show that min X§;, (M) > min Xfg (M) and max X5 (M) <
max X{ o (M). Without loss of generality, we only prove the first inequality. To this
end, choose an arbitrary sequence U}, € O(X) and a sequence of times T), € TT
with T}, — oo. Since min X5 (M) =: X € XF;, (M), we find for each k a (U, Ty,)-
chain ( C M with |A — p2 ()] < 1/2k. By Lemma |5 we can take a point xy
in the chain (; and a time t; > T}, such that p?‘ () < pz(Cr). Then there is a
convergent subsequence p?” (xg,) with limit g = lim;_, oo p?” (zr,) € ZHa(M). To
complete the proof, it suffices to show that p < A, which is proved by

©w—A= lim (pi’” () — )\) < lim sup (pz(gkl) - )\) < lim sup ik =0.
l—o0 2k1

l—o0 =00

2. For the inclusion “C”, see Proposition [5| (2). The converse inclusion follows from
statement (1), Proposition [2| and Proposition [5| (1):

Zo(M) = L56(M) = (Zug(M), 2) C (Emo(M), 2).
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3. We adapt the proof of Colonius et al. [I, Thm. 2.7]: Let A be an element of the
convex hull of Xy, (M). It suffices to show that for each § > 0, U € O(X) and
T € Tt there is a (U, T)-chain ¢ in M with |[p(¢) — A|| < 4. So let X\ = Yoo i
with a; > 0 and E?:O a; =1, A\ € Dvo(M). By Lemma there are periodic
(U, T)-chains (;, 7 =0,1,...,n, in M with

lp(&) — Nl <6 fori=0,1,...,n.

Denote the initial (and final) point of ¢; by x;. By chain transitivity, there are
(U, T)-chains &; from z; to z;411 and &, from zp to zg. For k € Z7t, let ik be
the k-fold concatenation of ¢;. Then for arbitrary ki,...,kn € ZT the concatena-
tion ¢(k1,...,kn) := &n 0 (pk, © -0 & 0 (1, is a periodic (U, T)-chain in M.
From Lemmall[fit follows that we can choose ki, ..., k, sufficiently large such that
lp(C(k1, -, kn)) — Al < J, which finishes the proof.

4. Let p € Xp\o(M) be an exposed point. There exists a supporting hyperplane H
given by a vector z € S ! e, H={z € R™: (z,2) = (p,2)} and

Snio(M\{p} € {z €R™ : (2,2) < (p,2) } . (10)

By statements (1) and (2), it holds that (Xy;,(M),z) = (Eyg(M),z), and by
7 (p, z) is the right boundary point of (X\o(M), z). Theorem [If implies the
existence of z* € M such that limt_>oo<pt(x*), z) = (p, z). It remains to show that
limy_, o0 p* (z*) = p for every sequence t;, — oo. To this end, assume that there
is a limit point p # p, i.e., p = limp_, 5 pt’C (z*) for some sequence tp, — co. Then
(P, 2) € (ZMo(M), 2), and hence (p, z) < (p, z), which is a contradiction.

Proof This follows from the fact that the Morse spectrum is the convex hull of the
uniform growth spectrum (both in continuous- and discrete time) and Proposition

Remark 8 For a compact, connected and chain transitive set M we have found the
following relations for the different spectral sets associated with a growth rate:

ZLy(M) C Yyag(M) Ccl COZLy(M) = coXyag(M) = o (M).

Instead of assuming paracompactness of X and taking the family O(X) of all open
covers of the space X in the definition of the Morse spectrum, it would also be possible
to work with admissible families of open covers in the sense of Patrdo & San Martin
[11]. However, as indicated in San Martin & Seco [8], in this more general setting we
would still find that for M being connected, the Morse spectrum is the closed convex
hull of the Lyapunov spectrum, and hence independent of the chosen family of covers.
In fact, that is the reason why we chose not to work in this general setting.

Remark 4 We defined the Morse spectrum in the same way as this is done in San
Martin & Seco [§] for vector-valued cocycles (cf. also Example . In the special cases
of Examplesand our definition gives the same set as the usual definition via (g,T)-
chains in metric spaces. In Stender [I5], a somewhat different definition of the Morse
spectrum is used which also coincides with the usual one in the corresponding special
cases.

We end this section by describing a transformation that preserves all the spectral
sets which we introduced for growth rates (cf. San Martin & Seco [8, Cor. 3.5]).
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Proposition 6 Consider two semiflows ®1 : ']I‘g x X1 — X1 and &9 : ']I‘g X X9 — X9
with the same time set. Let p1 and pa be corresponding growth rates, which are related
by

p((z)) = L(pi(x)) forallt e T, z e Xy,

where m: X1 — Xg is a continuous map and L : R™ — R™ a linear automorphism. If
M C X is a compact P1-invariant set such that 7(M) C Xo is Pa-invariant, then

Livy @, .01 (M) = JLy ba,p2 (mr(M)),

and the same holds for the uniform growth spectra. If M and w(M) are additionally
connected and chain transitive, the same holds for the Morse spectra.

Proof Let © € M and assume that the Lyapunov exponent A(z) = lims_s oo p () ex-
ists. Then pb(w(z)) = L(p}(z)) converges to L(A(x)) = A(m(z)) for t — co. Hence,
LYy ¢,,00(M) C Zry &,,p,(m(M)). The converse inclusion holds by invertibility
of L. Now, let A be an element of Yyg ¢, p, (M), ie, X = limp_, ptl’c (zg) with
x, € M and t, — co. Then plf (m(x1)) = L(pi* (zx)) — L(N) € Dua.dy,ps (1(M)).
The other inclusion again follows by invertibility of L. If M and w(M) are con-
nected and chain transitive, they are the closed convex hulls of Xy &, ,, (M)
and X1y &, p, (1(M)), respectively. By linearity and invertibility of L, this implies
LIo,,,p1 (M) = Zio,d5,p, (T(M)).

Remark 5 For two linear flows on vector bundles and the growth rates from Example
(finite-time Lyapunov exponents), a transformation as in the preceding proposition,
e.g., is given if there exists a cohomology between the two flows, i.e., a fiber preserving
homeomorphism which is linear on the fibers and conjugates the two flows.

6 The Meaning of Limit Sets for Growth Rates

In this section, we show that for the analysis of the long-time behavior of growth
rates it is sufficient to consider initial values contained in w-limit sets. Consider again
a semiflow @ : 'I[‘a' X X — X on a paracompact Hausdorff space X. For any subset
Y C X we define the w-limit set of Y by

w(Y) = (el Jo(s, V).

t>0 s>t

For Y = {z}, we write w(z) := w({z}). Again, we denote by O(X) the family of all
open covers of X.

The following proposition is taken from Conley [4, I1.4.1.D]. Its proof is based on
elementary topological arguments.

Proposition 7 Let M C X be a compact ®P-invariant set. If x € M, then w(x) is a
nonempty compact invariant set in M. If T =R, then w(x) is connected. Furthermore,
if U is any neighborhood of w(x), then there is t € TT such that $(t,z) € U.

Proposition 8 In addition to the assumptions of the preceding proposition, let U €
O(X). Then there are finitely many sets Uy, ..., U € U with w(z) C UL U...UU and
a time T = T(U) such that for each t > T there isi € {1,...,k} with &(t,x) € U;.
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Proof By Proposition [T} w(z) is compact. Hence, w(z) is covered by finitely many sets
Ui,..., U, € U. Assume to the contrary that there is a strictly increasing sequence
t; — oo such that &(t;,x) ¢ U; for all i € {1,...,k} and | € Z". Then on the one hand
we have

=(alJos =)= () al 26,4z} > () al 2(tr, {z}),

t>0 s>t lez+ s>t lez+ k>l

and on the other hand (;cz+ cllU,s; P(th, {x}) is a nonempty subset of the closed set
X\(Uy U...UUy), and hence disjoint from w(zx).

We will make use of the following lemma, which can be considered as an analogue
of uniform continuity on compact sets. For the special case M = X, the lemma can be
found in Patrao & San Martin |11, Lem. 3.5], but for M # X the proof works totally
analogously, hence we will not repeat it here.

Lemma 9 Let X,Y and M be topological spaces, Y compact, and F': X XY — M a
continuous mapping. Let U € O(M). Then there is Z € O(X) such that the following
holds: for arbitrary y € Y and u,v € Z for some Z € Z, there exists U € U with
F(u,y), F(v,y) € U.

Lemma 10 Let p: TT x X — R™ be a growth rate for . Consider a trivial chain &
from x to (T, x) defined by

zo =z, x1:= P(to, o), x2 :=D(t1,21), ..., Tn = P(tn—1,2n-1) = (T, x),
where T = Z?gol t;. Then we have p(¢) = p* ().

Proof We prove the lemma by induction over the length n of the chains. For n =1 the
assertion trivially holds. Assume that it holds for a fixed n € ZT. Define Ty := Z?;ol t

and T := Ty + t,. Then we have

Tp" (x0) = Top™° (x0) + tnp'™ (#(To, x0))
1 n—1

=T0 ——— Z tzp Iz) +tn,0 " xn thp xl
Zz =0 tl i=0

Dividing both sides of the equation by 1" concludes the proof.

For open covers U,V € O(X) we write V < 1/2U if for each two sets Vi,Vo € V
with V1 NV, # ) there exists U € U with V3 UVs C U. The following lemma, for which
paracompactness of X is essential, is an easy consequence of a theorem of A. H. Stone
which characterizes paracompactness in terms of open star-refinements (cf. Dugundji
[5, Ch. VIII, Thm. 3.5]).

Lemma 11 For every U € O(X) there exists V € O(X) such that V < 1/2U.

The meaning of limit sets for the analysis of growth rates becomes clear in the
following theorem, which is a generalization of Colonius et al. [1, Thm. 2.7] or Colonius
& Kliemann [3, Thm. 5.3.6]. For simplicity, we restrict ourselves to the continuous-time
case.


http://www.ams.org/mathscinet-getitem?mr=2279950
http://www.ams.org/mathscinet-getitem?mr=0193606
http://www.ams.org/mathscinet-getitem?mr=2358975
http://www.ams.org/mathscinet-getitem?mr=1752730

20

Theorem 3 Let M C X be a compact D-invariant set and p : RT x X — R™ a growth
rate for @. If limj,_, oo p* (z) exists for some x € M and some sequence tj, — oo, then
lim p'* (z) € Spro(w(x)).

k—o0
Proof Let Z € M and let s, € RT be a sequence with s; — oo such that A :=
limy o0 p°% (T) exists. Fix U € O(X), T > 1 and & > 0. It suffices to show that there
exists a (U, T)-chain £ in w(zx) with |[p(&) — A|| < 4.
Since t-p: [T,2T] x X — R™, (t, ) — tp'(z), is continuous, Lemma@ implies the
existence of an open cover V € O(X) such that if a,b € V for some V € V, then

Htpt(a) - tpt(b)H < g for all ¢ € [T, 2T]. (11)

By Lemma we may assume that V < 1/2U.

Since @ : [0,27] x X — X is continuous, Lemma@ implies the existence of an open
cover Z € O(X) such that, for arbitrary ¢ € [0,27] and v,w € Z for some Z € Z, we
have that &(¢,v),P(t,w) € V for some V € V. We may assume that Z < 1/2V (in fact,
Z <V will be sufficient.)

By Proposition m the set w(z) is compact. Hence, there are finitely many sets
Zi,...,Z; € Z such that w(z) C Uﬁ:l Z;. Furthermore, since Z < 1/2V, there also
exists a finite cover {Vi,...,V;} C V of w(z) with

Z;CVy forj=1,...,L (12)

By Proposition [8] there exists a time S = S(Z) such that for any ¢ > S there
is j € {1,...,1} with &(t,z) € Z;. Let ¢ := &(S,z). Then for all ¢ > 0 there is
Jj€{1,...,1} with &(t,x) € Z;, and by Lemma for the sequence tp := s — S — oo
it holds that

lim p'* (z) = A.

k—o0
Hence, there exists K € ZT such that
tr 0
pF(x) — A §§ for all k > K.
Choose k large enough such that Ty := ¢, > max{tx,27}. Since To = nT + r with
n € Z" and 7 € [0,T), it holds that Ty = (n — 1)T + r with r € [T, 2T). Since T > 1,

we have
To > n. (13)

Now define a trivial (U, T)-chain € with times
Toi=-i=Tp_2: =T, Th_1:=71
and points
zg:=x, z1:=P(T,x0), z2:=P(T,21), ..., xTn:=P(r,zn_1).

Lemma [10| implies that p™°(2) = p(€). Now we have a chain & with

|2 0@ < 3. (14)
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The chain £ is not necessarily a chain in w(z) = w(Z). Thus, we have to construct an
appropriate chain in w(z).

For each z;, j = 0,...,n — 1, there exists i(j) € {1,...,l} such that z; € Z;).
Choose some y; € Z;;) N w(x) (we may assume that this intersection is nonempty,
since otherwise we could take a smaller subcover). By we have Z;;y C V() and,

by choice of Z, there exists a set VIt eV with

)

i+1
Tjy1 = @(Tj,xj), @(Tj,yj) e vt
Applying the same construction to z;41 implies
j+1 +1
zit1 € VIOV, O(r,y) € VI and g € V-
Since V < 1/2U, for each j € {0,...,n—1} there exists Uj 1 € U with Vj+1UVZ-(j+1) C
Uj+1.
By this construction, we have obtained a (U, T')-chain & in w(z) given by the points

{50, yn} C w(x), times {70,..., 71} CRT with 79 = ... =70 =T, Th_1 =
r > T, and sets {U1,...,Un} C U, and it holds that

A= p©ll < [A=p@)| + |[o& - pic)

E 1= . .
5t To ZO ([750™ (25) — 7507 (y;) |
i=

NG

+ <9

)

INE]
NS
NS

Sz

which finishes the proof.

Remark 6 We like to note that in the setting of the preceding theorem, the restriction
of the semiflow @ to the w-limit set w(z) is chain transitive (cf. Patrao & San Martin
[11} Cor. 3.15]).

7 Open Questions

We end this paper with a list of unsolved problems and topics for further research
which we want to investigate in the future.

1. We would like to know more about the topological and geometric properties of
the uniform growth spectrum. For instance, for discrete-time systems we do not
know if this set is connected provided that M is connected. Another topic for
further research concerns the dimensions of the spectral sets X, (M), Zyg(M)
and X0 (M).

2. A further open question concerns the dependence of the spectral sets Xyg(M)
and X\o(M) on flow parameters. In Colonius & Kliemann [2, Thm. 3.11], upper
semicontinuous dependence of the Morse spectrum under appropriate assumptions
is proved for a family of linear flows on vector bundles. However, for the Morse
spectrum in the general setting of the present paper, this is still an unsolved prob-
lem.

3. In Remark [3] we pointed out the relations between the different spectral sets.
However, in the general setting, we do not know if or when equality holds in the
inclusions X1y (M) C Lyg(M) and Dyg(M) C Zyio(M).
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