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Abstract

At the beginning of this 21st century, companies are faced with two key challenges
with regard to their IT systems: first, the increasing complexity of I'T systems gives
rise to escalating operational expenditures for their administration and maintenance.
Second, the intensifying, worldwide competition in all markets requires IT systems
providing more agility, flexibility, scalability, robustness, and adaptivity in tackling
daily businesses. Consequently, companies call for IT solutions with a high degree
of autonomy — in order to manage themselves — as well as a high degree of decen-
tralization — in order to provide the required, beneficial properties.

Self-organizing emergent systems are generally acknowledged as a potential solu-
tion able to cover both of these requirements. They consist of many, simple elements
(e.g. agents, servers, mobile devices, or robots), which have only partial or even no
global system knowledge and make their decisions solely based on locally available
information. The global coherent system behavior is achieved only by means of the
local actions and interactions between the elements, each unaware of the system’s
goals. The problem-solving power of a self-organizing emergent system hence mainly
resides in the interactions between its elements instead of the internal reasoning of
individual elements.

However, there exist several problems and challenges, which hinder the acceptance
of self-organizing emergent systems by industry. This thesis tackles two of them:
first, the design of efficient self-organizing emergent systems today is too complex,
time-consuming, and costly. Second, an acceptable efficiency of self-organizing emer-
gent systems during the operation cannot be guaranteed for all situations. These
problems form two challenging paradoxes: first, in order to conquer system complex-
ity, one has to create more complex systems in a much more complex way. Second,
in order to lower operational expenditures, one has to use potentially inefficient
systems that actually may increase operational expenditures.

Thus, this thesis presents several artifacts that on the one hand simplify the design
of effective as well as efficient self-organizing emergent systems and on the other hand
facilitate their efficient operation even in unforeseeable situations. In more detail,
the major contributions of this thesis are as follows:

1. We investigate the general principles behind decentralized coordination by
means of chemical stimuli (infochemicals) between organisms in biology and
adopt them in a computational coordination model. Because infochemical-
based coordination (IBC) is the most universally employed communication and
coordination model between organisms in biology with a plethora of inspiring
examples, the formally adopted principles provide the foundation for the future



specification of various, bio-inspired, decentralized coordination mechanisms
using digital infochemicals. The expressiveness of the adopted model and
the use of infochemicals with different semantics, dynamics, and functions,
allow for the simplified design of more efficient solutions and solution processes
compared to existing approaches.

. We present a corresponding design pattern that encapsulates the adopted coor-
dination model in a systematic way familiar to software engineers. The pattern
hides the inherent complexity of the designed system and makes meaningful
abstractions from the biological principles. Furthermore, we present design
guidelines that support the identification and adaptation of new coordination
mechanisms based on IBC. This simplifies the design of new solutions but does
not force engineers to be biological experts at the same time. Moreover, we
develop an adequate tool for the simulation of various coordination models
and mechanisms in different application domains.

. We present the general model of an advisor that is able to improve the efficiency
of self-organizing emergent systems solving dynamic optimization problems
with recurring tasks. This so-called Efficiency Improvement Advisor (EIA) re-
alizes an unobtrusive feedback and learning mechanism that is independent of
the coordination model or mechanism used by the underlying self-organizing
emergent system as well as the problem domain in hand. The EIA in par-
ticular takes into account the low observability and poor controllability of
self-organizing emergent systems during operation, considers their openness
and basic autonomy, and preserves their beneficial self-organizing emergent
properties.

. We develop a decentralized coordination mechanism based on IBC, which takes
its inspiration from the pollination of flowers by honey bees. This so-called
pollination-inspired coordination (PIC) mechanism demonstrates the many
beneficial capabilities of IBC and can e. g. be used for the self-organizing emer-
gent solution to every-day problems in logistics, more specifically pickup and
delivery problems. Likewise we develop an instantiation of the EIA model for
this mechanism and domain. An experimental evaluation proves the efficiency
of the PIC mechanism as well as the achieved improvements by the EIA.



Zusammenfassung

Im Hinblick auf ihre I'T-Systeme sind Unternehmen zu Beginn des 21. Jahrhunderts
mit zwei entscheidenden Herausforderungen konfrontiert: Zum Einen fiithrt die wach-
sende Komplexitét von I'T-Systemen zu permanent steigenden Betriebsausgaben fiir
deren Administration und Wartung. Zum Anderen verlangt der sich weltweit in-
tensivierende Wettbewerb in vielen M#rkten nach IT-Systemen, welche mehr Agi-
litat, Flexibilitdt, Skalierbarkeit, Robustheit und Adaptivitdt zur Bewéltigung der
taglichen Geschifte bieten. Als Konsequenz fordern diese Unternehmen IT-Lésungen
mit einem hohen Grad an Autonomie — so dass sich die Systeme selbsténdig admi-
nistrieren und warten kénnen — sowie einem hohen Grad an Dezentralitdt — um die
genannten Eigenschaften erbringen kénnen.

Selbst-organisierende emergente Systeme werden allgemein als solch eine Losung
gesehen, welche beide Anforderungen abdeckt. Diese Systeme bestehen aus einer
Vielzahl einfacher Elemente, wie z. B. Agenten, Servern, mobiler Gerite, oder Robo-
tern, welche allerdings nur partielles oder gar kein globales Wissen iiber das System
besitzen und ihre Entscheidungen lediglich auf lokal verfiighbaren Informationen ba-
sierend treffen. Das global koh&rente Systemverhalten wird einzig und allein mittels
den lokalen Aktionen und Interaktionen zwischen den Systemelementen erreicht,
wobei jedes einzelne Element in Unkenntnis iiber die Aufgaben und Ziele des ge-
samten Systems ist. Die problemltsende Fihigkeiten dieser Systeme liegen daher
hauptséchlich in den Interaktionen zwischen allen Elementen anstatt im internen
Denken und Folgern individueller Elemente.

Allerdings existieren mehrere Probleme und Herausforderungen, welche heutzu-
tage die breite Akzeptanz solcher Systeme seitens der Industrie verhindern. Diese
Arbeit befasst sich mit zwei dieser Probleme: Zum Einen ist das Design von effizi-
enten, selbst-organisierenden emergenten Systemen heutzutage zu komplex, zeitin-
tensiv und kostspielig. Zum Anderen kann eine akzeptable Effizienz dieser Systeme
wahrend ihres Betriebs nicht immer garantiert werden. Diese Probleme stellen zwei
herausfordernde Paradoxe dar: Erstens, um die Auswirkungen der steigenden Kom-
plexitéit von I'T-Systemen zu reduzieren, miissen noch komplexere Systeme auf eine
viel komplexere Art und Weise entwickelt werden. Zweitens, um Betriebsausgaben
senken zu konnen, miissen potentiell ineffiziente Systeme eingesetzt werden, welche
moglicherweise die Betriebsausgaben gar steigern.

Daher présentiert diese Arbeit mehrere Artefakte, welche einerseits das Design
von effektiven als auch effizienten, selbst-organisierenden emergenten Systemen ver-
einfachen und andererseits deren effizienten Betrieb selbst in vorher nicht bedachten
Situation ermdglichen. Genauer gesagt enthiilt diese Arbeit folgende Hauptbeitrige
zur Bewéltigung der genannten Probleme:



1. Wir untersuchen die allgemeinen Prinzipien der dezentralen Koordination mit-
tels chemischen Duftstoffen (sog. Infochemikalien) zwischen biologischen Orga-
nismen und adoptieren diese in einem Koordinationsmodell fiir IT-Systeme.
Da die Koordination mittels Infochemikalien das am weitesten verbreitete
Kommunikations- und Koordinationsmodell zwischen Organismen ist und da-
her eine Fiille an inspirierenden Beispielen bereithélt, bieten die adoptier-
ten Prinzipien die Grundlage fiir die zukiinftige Spezifikation verschiedener,
biologisch-inspirierter, dezentraler Koordinationsmechanismen basierend auf
digitalen Infochemikalien. Die Ausdrucksfahigkeit des entwickelten Koordina-
tionsmodells und die Verwendung von Infochemikalien mit unterschiedlicher
Semantik, Dynamik und Funktionalitét ermoglichen ein einfacheres Design von
effizienteren Losungen und Prozessen im Vergleich zu existierenden Ansétzen.

2. Wir entwickeln ein Design Pattern, welches das abgeleitete Koordinationsmo-
dell in einer fiir Softwareingenieure bekannten und systematischen Art und
Weise kapselt. Das Pattern blendet die inhdrente Komplexitét des entwickel-
ten Systems aus und vollzieht sinnvolle Abstraktionen von den biologischen
Prinzipien. Dazu passend entwickeln wir Richtlinien fiir das Design, welche
die Identifikation und Adaptation von neuen, auf digitalen Infochemikalien
basierenden Koordinationsmechanismen unterstiitzen. Beides vereinfacht das
Design neuer Losungen, aber verlangt von Softwareingenieuren nicht gleich-
zeitig auch noch Experten auf dem Gebiet der Biologie zu sein. Zur weiteren
Unterstiitzung entwickeln wir ein Tool zur Simulation verschiedener Koordi-
nationsmodelle und -mechanismen fiir unterschiedliche Anwendungsgebiete.

3. Wir entwickeln das generelle Modell eines sog. Advisors (Ratgeber), welcher
in der Lage ist, die Effizienz von selbst-organisierenden emergenten Systemen
bei der Losung von dynamischen Optimierungsproblemen mit wiederkehren-
den Aufgaben zur Laufzeit zu verbessern. Das Modell realisiert einen diskreten
Feedback- und Lernmechanismus, welcher unabhéngig von dem verwendeten
Koordinationsmodell oder -mechanismus sowie der Problemdoméne ist. Das
Modell des Advisors beriicksichtigt insbesondere die geringe Beobachtbarkeit
und schlechte Kontrollierbarkeit von selbst-organisierenden emergenten Sys-
temen wihrend ihres Betriebs als auch ihre Offenheit und die grundlegen-
de Autonomie ihrer Elemente. Zudem bewahrt das Modell die vorteilhaften,
selbst-organiserenden, emergenten Eigenschaften dieser Systeme.

4. Wir entwickeln einen dezentralen Koordinationsmechanismus basierend auf
digitalen Infochemikalien, welcher seine Inspiration aus der Betdubung von
Bliiten durch Honigbienen gewinnt. Dieser Mechanismus kann bspw. fiir die
selbst-organisierende emergente Losung von alltdglichen Problemen in der Lo-
gistik eingesetzt werden. Gleichermaflen instantiieren wir das Modell des Ad-
visors fiir diesen Mechanismus und diese Doméne. Eine experimentelle Evalu-
ierung beweist die Effizienz des entwickelten Koordinationsmechanismus sowie
die erzielten Verbesserungen der Effizienz durch den Advisor.
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Self-Organizing Emergent
Systems






Chapter 1
Introduction

The beginning of the 21st century is dominated by computer systems and environ-
ments that comprise complex, heterogeneous tangles of hardware, middleware, and
software forming nebulous communication structures as well as arcane system archi-
tectures. The integration and configuration of new components into these systems
is a time-consuming and error-prone task, the operation and maintenance of these
systems requires vast quantities of human and monetary resources, and the combi-
nation and reuse of different (sub)systems is extremely challenging. For instance,
most organizations typically spend about three-fourths of their application deploy-
ment time and costs on the integration of different systems [Mur04] and one third
to one half of their IT budget on preventing or recovering from crashes [GKMO02].
At the present rate of growth of computer systems’ size and complexity, in near
future even skilled IT professionals may fail to manage these computer systems
and environments properly [Kep05]. Due to these facts, companies are more and
more forced to spend a progressively growing rate of their operational expenditures
(OPEX) on managing their computer systems instead on managing their core busi-
nesses. A few years ago, the total cost of ownership (TCO) of computer system
installations already outstripped purchase costs by a factor of 3 to 18, depending on
the type of system [GKMO02]. Thus, today CIOs and CTOs are tasked with reducing
TCO, in particular OPEX for the management of their computer systems [Mur04].
However, more and more companies become aware of the fact that conventional
paradigms for the management of their computer systems are particularly chal-
lenged in tackling this complexity and that new and efficient ways to manage these
systems have to be found. Consequently, a number of industrial initiatives have
been launched by major IT vendors, e. g. IBM’s Autonomic Computing [IBM02], In-
tel’s Proactive Computing [Ten00], Microsoft’s Dynamic Systems Initiative [Mic07],
Hewlett Packard’s Adaptive Infrastructure [Hew08], or Sun’s N1 [Sun02b], all ad-
dressing these challenges from the business perspective. But also on the academic
side comparable initiatives have been launched, e.g. Autonomic Communication
[Aut04, DDF106] or Organic Computing [OCI05]. Across the board all initiatives
agree that a kind of self-management of computer systems and networks, i.e. a high
degree of autonomy and autonomicity, offers the most promising approach in order
to cope with the increasing complexity. Future computer systems have to be able
to adapt at runtime to changing user needs, system intrusions or faults, changing
operational environments, and resource variability, while keeping most of their com-



plexity hidden from the user or administrator. They have to manage themselves, i. e.
their tasks, processes, processors, software, storage, networks, devices, and all other
components, as far as appropriate, in accordance with high-level objectives specified
by humans [KC03]. As a result, self-managing respectively self-adaptive systems are
more versatile, resilient, dependable, recoverable, customizable, and configurable,
which will consequently reduce TCO. Such properties are very often also referred to
as self-* properties [Hor01], e.g. self-configuring, self-optimizing, self-healing, and
self-protecting.

Beside the call for self-managing computer systems, the intensifying, worldwide
competition in almost all markets additionally calls for computer systems that pro-
vide more agility, flexibility, scalability, robustness, and adaptivity in tackling ev-
eryday business. As a result, future computer systems have to exhibit a higher
degree of distribution and decentralization compared to today’s systems, lacking
any global or central control. The vast majority of future computer systems thus
will be characterized by context-awareness, openness, locality in control, and locality
in interactions [ZP03]. This trend is already observable by the converging activities
from several research areas, such as distributed artificial intelligence (DAI) respec-
tively multi-agent systems [Jen01], Ubiquitous Computing [Wei91], or peer-to-peer
(P2P) Computing [RIF02]. Consequently, the elements of future computer systems
are compelled to efficiently self-organize their actions and interactions [JBL06] as
well as to build emergent properties [DHO04] in order to fulfill tasks along with the
required high degree of autonomy and the favored self-* properties.

Although prototypical self-organizing emergent (computer) systems already have
been applied to different case studies in e. g. traffic control, network topology man-
agement, timetable scheduling, intrusion detection systems, manufacturing control,
packet delivery services, or mobile ad-hoc networks (cf. [MRFT03, BSKN05, MZ06,
BSHZ06, BHJYO07]), there still exist a couple of challenging problems that are op-
posed to their widespread application. This thesis tackles two of these problems,
which are affiliated to the design as well as the operation phase of the systems’ life
cycle: first, the design of self-organizing emergent systems today is too complex,
time-consuming, and costly in order to engineer effective but yet efficient solutions
for various problem domains; second, a required efficiency of these solutions during
operation can not be guaranteed, in particular not for dynamic problems. Section
1.1 explains these problems along with their challenges in more detail.

The objectives and contributions of this thesis hence are twofold. On the one hand,
this thesis simplifies the design of self-organizing emergent systems by developing
several artifacts that can be used for the systematic engineering of effective and
at the same time efficient solutions. On the other hand, this thesis facilitates an
efficient operation of self-organizing emergent systems by developing an approach
that autonomously adapts the local behavior of self-organizing elements in order
to improve the efficiency of the global solution in certain situations. Section 1.2
explains the objectives, the approaches taken, and the contributions in more detail.
Finally, Section 1.3 presents an outline of the chapters of this thesis, while Section
1.4 lists publications in which parts of this thesis have been previously published.



1.1 Problems and Challenges

"Conquer system complexity’ is one of the five grand research challenges in informa-
tion systems at the beginning of the 21st century, according to the US Computer
Research Association [Com02]: ”Meeting this challenge requires a reformulation at
all levels of computer architecture, software organization, and system design to break
through the complexity barrier and create more robust systems. We must be able to
design and implement systems that can autonomously adapt, maintain, repair, and
heal themselves. Such innovations will substantially lower the total cost of ownership,
reduce the need for intense manual supervision, and increase the future reliability and
scalability of our systems.” The grand research challenges 'Build systems you can
count on’ [Com02] as well as 'Dependable systems evolution’ — formulated by the
UK Computing Research Committee [KHO8] — similarly address systems in demand
of a high degree of autonomy.

The usage of the concepts self-organization and emergence for the realization of
such autonomous systems and their self-* properties is a promising but demand-
ing approach (cf. e.g. [ERAT03, DH04, JBL06, ABI0O7, Ant08]). A self-organizing
emergent system! consists of many locally interacting elements, which can either be
autonomous software elements, such as agents, or autonomous real-world elements
with computing and networking capabilities, such as servers, mobile devices, robots,
or cars. The elements have only partial or even no global system knowledge and de-
termine their actions solely based on local information available from their neighbors
in the communication topology as well as the environment. Because the elements
normally are kept relatively simple, e. g. for scalability reasons or due to limited re-
sources, single elements cannot direct such a complex system toward a global goal or
behavior on their own. Instead, the global coherent system behavior (on the macro-
scopic level) is achieved only by means of the local actions and interactions between
the elements (on the microscopic level), each unaware of the systems’ goals. The
problem-solving power of a self-organizing emergent system hence mainly resides in
the interactions between its elements instead of the internal reasoning of individual
elements.

Self-organizing emergent computer systems mostly function in the same way as
observable examples do in contexts such as biology, ecology, chemistry, physics,
economics, or sociology. Hence, instead of achieving efficiency, optimality, and pre-
dictability, new properties such as scalability, robustness to failures, flexibility w.r. t.
system changes, and adaptivity w.r.t. environmental changes are achieved, yielding
advantageous self-* properties. However, among other things there are two problems
that prevent self-organizing emergent systems from being practically applicable for
the effective and efficient usage in various areas.

!This class of computer systems is sometimes also referred to as decentralized autonomic computing
(DAC) system, complex adaptive system (CAS), or just self-organizing system (SOS).



Problem 1: Design of Efficient Systems is Too Complex, Time-consuming,
and Costly

The design of conventional computer systems depends fundamentally on the assump-
tion that any (sub)system can be described wholly by describing the behavior of its
parts and their interactions (cf. [Som01]). In contrast, the pathway from element
behavior to system behavior and vice versa is not clear for self-organizing emergent
systems. A profound model that relates the microscopic level, i.e. the local behav-
iors of the individual elements, to the macroscopic level of organizations, societies,
or systems does not exist yet (cf. e.g. [AGMS87, KR02, Saw03, And04]). This vague
coherence, which is often referred to as the 'micro-macro gap’, makes the design of
efficient self-organizing emergent systems complex, time-consuming, and costly. The
solution of this problem bears several challenges:

e Challenge 1 — Provide versatile and coherent models for efficient
decentralized coordination: An essential key for the reasonable design of
efficient self-organizing emergent solutions is the adequate coordination of the
system elements’ local actions and interactions (cf. [DH05, SGKO06]). How-
ever, conventional coordination models are inadequate for dealing with the
challenges coming along with these solutions, such as facilitating adaptivity,
robustness, scalability, etc. Even more, because today only a few models for
decentralized coordination exist, very often the required solution of a problem
in hand exceeds the capability of such a model, so that the functionality and
efficiency, which are not provided by the model, have to be integrated respec-
tively improved in a time-consuming ad hoc manner. The problem in hand
may even force an engineer to use several decentralized coordination models in
parallel, because every model has to play a part in contributing to the solution
(see e.g. [DHO7b, WHHS09]). This in turn requires high efforts for horizontally
integrating the required coordination models and infrastructures, respectively.

e Challenge 2 — Specify efficient coordination mechanisms that fulfill
global system requirements: It is not obvious how to design and build a
system we do not even fully understand, in more detail, how to specify the
local behaviors of system elements such that the system as a whole demon-
strates a coherent global behavior that fulfills the global system requirements,
such as minimum throughputs or maximal waiting times. However, a rea-
sonable design of self-organizing emergent solutions requires either to re-use
existing coordination mechanisms, see e.g. [SR08], or to specify new coordi-
nation mechanisms employing simple behavioral and interaction rules for the
system elements that efficiently achieve ”functions that are useful to the sys-
tem’s stakeholders” [PB04], ”the required macroscopic behavior” [De 07], "the
right behavior at the global level” [GCGCO8]. The specification should not
require an engineer to be a biological, economical, physical, and social ex-
pert all at once. To the contrary, it should be based on and guided by the
expressiveness of the used coordination model.



e Challenge 3 — Provide design patterns, guidelines, and tools: A time-
saving and cost-effective design of efficient self-organizing emergent systems
requires design patterns that capture recurring solutions to standard problems.
Such patterns have to hide the inherent complexity of the designed system and
focus on environment characterizations, local behaviors, and realized self-*
properties. In addition, design guidelines are required that support engineers
in specifying new coordination mechanisms based on the used coordination
models. Similarly, simulation tools are required that support engineers in
identifying and selecting the most suitable and efficient coordination model(s)
and mechanism(s) according to the system requirements.

Please note that there are two different dimensions of efficiency that have to
be considered. On the one hand, the solution process formed by a self-organizing
emergent system has to be efficient in terms of messages sent, coordination and
communication overhead, etc. On the other hand, the solution produced by a self-
organizing emergent system has to be efficient in terms of time, costs, required
resources, etc. depending on the problem and application domain. Both dimensions
have to be carefully addressed, which leads us to the second problem tackled by this
thesis.

Problem 2: Efficiency During Operation Can Not be Guaranteed

Apart from the advantageous properties such as scalability, robustness, flexibil-
ity, and adaptivity inherently realized by self-organizing emergent systems, cer-
tain application domains, in particular in industrial settings, nonetheless call for
the achievement and maintenance of a certain degree of efficiency by these sys-
tems, even while they solve highly dynamic, complex, and often unpredictable
problems. Approaches able to (partly) guarantee a required efficiency already at
design time, which are mostly based on extensive simulations prior to the deploy-
ment (e.g. [BGP06, GVCOO08, SHWO08]) but also on elaborated design methodologies
[DHO5], interactive verification [HRS91], model checking [CGP99], or formal mod-
eling [RS06], are mostly insufficient, because self-organizing emergent systems are
expected to function in open and very dynamic environments with unforeseeable
contingencies, i.e. changes may be too complex or too frequent to be completely
constrained or predicted in advance. A major issue thereby is the fact that the
problems, in more detail the tasks that have to be fulfilled by the system elements
in a self-organizing manner, usually change dynamically.

Therefore, solving such dynamic problems by self-organizing emergent systems
optimally requires on the one hand as optimal local decisions as possible and on the
other hand appropriate adaptations of the system’s global structure or behavior,
preferably maintaining a high degree of autonomy. In order to make ’optimal’ local
decisions on its own, a system element would have to be in possession of an abun-
dance of relevant information. This includes information about the environment
topology (e.g. networks, machines, customers, etc.), the current and future state



of the environment, in particular the problem-relevant tasks, and the current and
future intended behavior of other elements. This would not only force the elements
to quickly gather real-time information from a large number of (possibly unknown)
entities, but also to be able to ’look into the future’, such that a dynamically ap-
pearing task can be assigned to the best system element (with respect to global
optimality of the solution), while other tasks are already executed by the elements.
Apparently, such an approach to gain almost global knowledge constitutes a very
complex endeavor.

Thus, approaches and system architectures are required that are able to improve
the efficiency of self-organizing emergent systems during operation, even in unfore-
seen and unexpected situations. In other words, these systems have to assess their
own behavior during operation and to change their behavior or structure when the
assessment indicates that a better performance is possible. This is essentially the
essence of self-adaptive systems (cf. [CGIT09]). In case of conventional computer
systems usually an additional subsystem is added as a controller for the purpose of
self-adaptation, which realizes a closed feedback control loop. The controller moni-
tors and analyzes the underlying basic system and adapts the structure or behavior
of this system based on high-level objectives specified by humans. In case of self-
organizing emergent systems, the integration of such a controller in general bears
several challenges that have to be respected:

e Challenge 4 — Take into account the low observability and poor con-
trollability: The operation of conventional computer systems depends funda-
mentally on the assumption that there is at least one system element equipped
with the corresponding capabilities to control or coordinate the activities of all
subsystems or other system elements. This becomes feasible due to the high
observability and good controllability of conventional systems. In contrast,
self-organizing emergent systems lack this/these central control element(s).
Because in these systems every element is exposed to incomplete information
and limited control of the system, usually no single element has the ability to
observe or control the system as a whole. Although these systems thus have
no single point of failure or processing bottleneck, a controller will neither be
able to observe every (inter)action at the time of occurrence, if ever, nor be
able to adapt or influence the behavior, intention, or upcoming action of any
system element yielding immediate effects.

e Challenge 5 — Preserve the basic self-organizing and emergent be-
havior: A controller may not limit the underlying system’s capabilities to
self-organize and to build emergent properties. It may also not decrease the
underlying system’s inherent properties of scalability, robustness, flexibility,
and adaptivity. This implicates that a controller may not execute the role of
a central controller prescribing all actions nor become a processing bottleneck
or single point of failure. In other words, if the controller crashes, the system
and its elements still have to function properly.



e Challenge 6 — Consider openness and autonomy: A controller has to
be able to cope with previously (i.e. at design time) unknown or unexpected
situations. The assessment of the underlying system’s behavior has to consider
current and past situations, while the behavior or structure of the system has to
be adapted autonomously depending on these possibly unforeseen situations.
In addition to its own autonomy, a controller may not limit or decrease the
underlying system’s autonomy. The problem solving decisions still have to be
made locally by all participating system elements themselves.

Further Problems and Challenges

Apart from the addressed problems and challenges described above, there exist quite
a few more that prevent self-organizing emergent systems from being practically
applicable for the effective and efficient usage in various areas. For instance, a cru-
cial research challenge in general is to understand and control self-organizing and
emergent phenomena. This requires a fundamental, theoretically profound model
of the behavior of complex, biological or technical, systems. Related to the de-
sign phase, consistent engineering methodologies have to be provided that focus
explicitly on the engineering of macroscopic properties of self-organizing emergent
systems. This requires methods to capture and model macroscopic self-* proper-
ties and to transform and refine these models into working self-organizing emergent
systems. Related to the operation phase, a general problem is the risk of emergent
misbehavior [Mog06]. Because already small changes in the behavior of individual
system elements may lead to enormous changes in the emergent system behavior
(see e.g. [Wil75, BTD 97, CDF*01, Bon02]), approaches are required that provide
guarantees on the trustworthiness of self-organizing emergent systems, i.e. their
safety, security, reliability, usability, etc. Providing guarantees on the efficiency of
these systems can be considered as one aspect of that. More problems and chal-
lenges related to self-organizing emergent systems in general can e.g. be found in
[MSvdMWO04, HMGO05, Kep05, Sch05, MBBY06, BBFT08, CGI*09].

1.2 Objectives, Approaches, and Contributions

In the evidence of the grand research challenges and the problems as well as their
associated challenges regarding the design and the operation of self-organizing emer-
gent systems described in the previous section, two challenging paradoxes emerge:
first, in order to conquer system complexity, we need to create more complex sys-
tems in a much more complex way. Second, in order to lower OPEX, we have to use
potentially inefficient systems that may increase OPEX in certain situations. Thus,
this thesis pursues two main objectives, which are described below along with the
approaches taken to achieve them. Additionally, the contributions of this thesis are
briefly emphasized.



Objective 1: Simplify the Design of Efficient Self-Organizing Emergent
Systems

The first objective of this thesis is to simplify the design of self-organizing emer-
gent systems by developing several artifacts that can be used for the systematic
engineering of effective and more efficient solutions. This will particularly reduce
the complexity of the design, save development time, and reduce development costs,
which consequently reduces TCO.

e Approach: In general, in order to achieve an effective coordination, two con-
trary approaches are possible (cf. [GVCOO08]): (1) devising an ad hoc strategy
that will solve the specific problem in hand, or (2) observing an existing sys-
tem that achieves similar results and trying to reverse-engineer its strategy.
Whereas it is generally acknowledged that the first approach is only applicable
to a limited set of problem domains while being not very sustainable, the sec-
ond approach, which we will employ in this thesis, is commonly regarded more
fruitful. Its successfulness is exemplified by versatile coordination models and
mechanisms inspired from physics [MZ04], economics [DZKS06], human soci-
eties [Hal06], social science [XSY 1 05], or biology [BCD ™ 06], for instance. Such
paradigms very often impressively demonstrated over thousands of years, how
a global functionality emerges from local processes and which local behaviors
are required to achieve certain global properties in an autonomous manner.

In more detail, in this thesis we investigate the general principles behind decen-
tralized coordination by infochemicals in biological systems [DS88] and adopt
them into the computational world. Infochemical-based coordination (IBC)
is the most universally employed communication and coordination model be-
tween organisms in biology (cf. [Lew84]), and hence provides a plethora of
inspiring examples that can be adopted as coordination mechanisms for self-
organizing emergent solutions to artificial problems in various application do-
mains. Pheromone-based coordination, as used during foraging in ant colonies,
is probably the best-known example for a coordination mechanism based on
the principles of IBC. However, pheromones constitute only one single type of
infochemicals. The principles of IBC in general allow for the combination of
different types of infochemicals within one and the same coordination mecha-
nism as well as a combination of quantitative and qualitative stigmergy, which
consequently allows for the design of better adaptable and efficient solutions
compared to existing coordination approaches.

In this thesis, we capture these general principles in a model for decentralized
coordination, which is as a direct consequence versatile and coherent, and thus
cope with Challenge 1. Based on the adopted coordination model and inspired
from the plethora of examples a vast amount of new and efficient coordination
mechanisms can be specified, which are naturally based on and guided by
the expressiveness of the coordination model, which copes with Challenge 2.
Furthermore, we capture the principles of IBC not only in a formal model, but



also in a design pattern, as well as develop design guidelines, how to use this
pattern technically, and thus cope with Challenge 3. This allows engineers
to specify new coordination mechanisms themselves, but does not force the
engineers to be biological experts at the same time.

e Contributions: Due to the described approach, this thesis presents the fol-
lowing artifacts that can be used for the simplified design of more efficient
self-organizing emergent systems:

— A decentralized coordination model for self-organizing emergent systems,
which is based on the general principles behind IBC in biology and hence
called digital infochemical coordination (DIC). The model facilitates the
efficient coordination of homogeneous as well as heterogeneous system
elements. Furthermore, it provides the basis for the identification as well
as specification of multiple new coordination mechanisms.

— A design pattern that describes the DIC model in a systematic way famil-
iar to software engineers. The pattern hides the inherent complexity of
the designed system and makes meaningful abstractions from the biolog-
ical principles. Both simplifies the instantiation of DIC in terms of new
coordination mechanisms and hence promotes the application of DIC to
a wider problem spectrum.

— Design guidelines that support the instantiation and usage of DIC for the
purpose of specifying new coordination mechanisms. This helps software
engineers in identifying the required types of digital infochemicals that
have to be combined in a coordination mechanism for a problem in hand.

— A decentralized coordination mechanism based on the DIC model, which
takes its inspiration from the pollination of flowers by honey bees. This so-
called pollination-inspired coordination (PIC) mechanism demonstrates
the many beneficial capabilities of the developed approach in a concrete
application domain.

— A Simulator for EfficieNt Self-Organizing Emergent Systems (SENSES)
that facilitates the identification, simulation, and improvement of decen-
tralized coordination mechanisms regarding a problem in hand. SENSES
can be integrated into existing engineering methodologies and cuts down
the design time.

Objective 2: Facilitate an Efficient Operation of Self-Organizing Emer-
gent Systems

The second objective of this thesis is to facilitate an efficient operation of self-
organizing emergent systems by developing an approach that autonomously adapts
the local behavior of self-organizing agents in order to improve the efficiency of the
global solution in certain situations.



e Approach: To overcome the limits of systems in guaranteeing an output of
a desired quality for dynamic problems, a well known approach — originating
mainly from control theory — is the integration of a closed feedback control
loop on top of the basic system. Instantiations of this general concept can be
found in several areas, such as Autonomic Computing (see [KC03]), Organic
Computing (see [RMBT06]), or multi-agent systems (see [SLT08]), for instance.

In contrast to existing instantiations, the basic approach pursued in this the-
sis is to only provide advice to a self-organizing emergent system instead of
controlling it. A dedicated system element, consequently called advisor, col-
lects the local history of the system elements and, based on the aggregated
global history, autonomously detects recurring task patterns the system had
and potentially will have to fulfill, but which are currently solved far from
optimal. Based on a global optimization function the advisor calculates the
optimal solution for these task patterns and, if necessary, provides the elements
with advice in form of exception rules that the elements can add to their own
problem solving behavior. As a result, all problem solving decisions are still
locally made by the agents, in order to cope with Challenge 6. In contrast
to a central control (and therefore the nearly total loss of autonomy of the
elements), the advisor only communicates with the elements when interaction
is possible. The advice can be ignored by the elements (and essentially will
be ignored, if it is not useful anymore) and the elements will continue to work
even if the advisor fails, which copes with Challenge 5. This frees the system
from a single point of failure. Furthermore, instead of trying to figure out
how the system has to work and what has to be optimized a priori, a learning
mechanism based on actual data helps the system elements to perform better
and to develop more efficient and coordinated solutions at runtime, in order
to cope with Challenge 4, which requires no intervention by a human user. By
this advisor approach, we obtain some of the benefits of a central control but
avoid its associated problems.

e Contributions: Due to the described approach, this thesis presents the fol-
lowing artifacts that facilitate an efficient operation of self-organizing systems:

— A general architecture of an advisor able to improve the efficiency of self-
organizing emergent systems solving dynamic problems with recurring
tasks. This so-called Efficiency Improvement Advisor (EIA) realizes an
unobtrusive feedback and learning mechanism that is independent of the
coordination model or mechanism used by the underlying self-organizing
emergent system as well as the application domain in hand.

— A multi-level classification of exception rules that can be used by an ETA
for adapting the local behavior of system elements in order to improve
the global self-organizing emergent solution.

— A customized instantiation of the EIA approach for the use in a concrete
application domain, demonstrating the gained efficiency improvements.



In order to prove and illustrate the artifacts developed in this thesis, we apply them
exemplary to a concrete application domain. In the research area of self-managing
systems, the application focus is usually on technology and communication infras-
tructures, such as huge server farms or data centers. However, more and more
researchers become aware of the fact that in order to exploit the full potential of
OPEX savings the entire product chain has to be regarded. This fact extends the
application focus in this research area to facility, production, and mobility infras-
tructures as well. Because self-organizing emergent systems in general are an eligible
candidate for solutions to dynamic optimization problems that can be found in the
latter areas, e.g. resource? allocation, load balancing, spatial distribution, dynamic
clustering, group formation, or re-organization problems, we apply the developed
artifacts to the domain of pickup and delivery problems.

Roughly spoken, a Pickup and Delivery Problem (PDP) concerns the service of
a set of customers in a given time period by a set of vehicles, which are located in
one (or more) depots and perform their movements by using an appropriate road
network. A solution of a PDP calls for the determination of a set of routes, each
performed by a single vehicle that starts and ends at its own depot, such that all re-
quirements of the customers are fulfilled, all the operational constraints are satisfied,
and one or more global optimization objectives are reached (cf. [TV02]). Practically,
the PDP is an omni-present problem that appears in various areas of logistics, such
as courier services, manufacturing control, aircraft sharing, dial-a-ride transporta-
tion, container terminals, delivery of heating oil, taxi cab services, emergency vehicle
dispatching, or even patient transportation in hospitals, to name only a few. Appar-
ently, in all of these areas, efficiency plays a major role. For instance, the reduction
of logistics costs, which represent to a great extent OPEX, has the highest priority
for the world’s leading food, beverage, and consumer products companies [[BMO0S§].
Moreover, high logistics costs for instance caused by inefficient vehicle routes are also
responsible for a tremendous energy consumption as well as a poor carbon footprint,
which make energy-saving, efficient solutions also highly valuable for nature.

Solving PDPs efficiently by hand is impossible as soon as the number of vehicles,
requests, customers, packages, constraints, or restrictions exceed a certain, rather
small limit. Solving PDPs efficiently by conventional solution methods, such as exact
algorithms, heuristics, or meta-heuristics (see e.g. [BCGL07, PDH08a, PDHO8b]),
is impossible as well, as soon as the problem size and in particular the dynamics
exceed a certain limit. This handicap calls for self-organizing emergent solutions.
However, their complex and costly design as well as their uncertain runtime efficiency
compared to conventional solutions currently prevents them from being applied to
such problem classes in practice.

2A resource can be a task, power, bandwidth, space, (CPU) time, a device, a machine, etc.



1.3 Outline

The structure of this thesis is illustrated in Figure 1.1. Even though a straightfor-
ward reading is recommended, the arrows indicate possible reading sequences. Part I
deals with a concise introduction to and basics of self-organizing emergent systems.
Experienced readers that are familiar with these topics may skip Chapter 2 or at
least some parts of it. Readers then have the choice of reading first Part I that deals
with the design phase of self-organizing emergent systems, i.e. Chapters 3 and 4, or
reading first Part I1I that deals with their operation phase, i.e. Chapters 5 and 6.
Part IV then builds upon the content of the prior parts and deals with the applica-
tion of the developed concepts to a concrete problem domain in Chapter 7 and its
experimental evaluation in Chapter 8. Finally, Chapter 9 presents the conclusions
of this thesis and an outlook on future work. In more detail, the individual chapters
have the following content:

Chapter 1 — Introduction

This chapter introduces the class of computer systems considered in this thesis and
identifies problems and challenges related to their design and operation. It defines
the thesis’ objectives, sketches the taken approaches to achieve them, and briefly
emphasizes the contributions of this thesis. At the end an overview of the chapters
of this thesis is provided and publications are listed, in which parts of this thesis
have been previously published.

Chapter 2 — Basics

This chapter presents the necessary background knowledge for this thesis. It dis-
cusses the basic terms and concepts used across the remaining chapters, more specif-
ically self-management, self-adaptation, self-organization, as well as multi-agent sys-
tems, and elaborates on their definitions. Furthermore, this chapter surveys research
areas related to this thesis.

Chapter 3 — Designing Self-Organizing Emergent Systems

This chapter presents the background for and state of the art in designing self-
organizing emergent systems. In more detail, it deals with the concept of coordi-
nation — as a key issue for the design phase — and provides a comprehensive survey
on existing coordination models and languages for computer systems in general and
multi-agent systems in particular. A special focus thereby is on models and mech-
anisms for decentralized coordination. Finally, this chapter examines the design
process of self-organizing emergent systems in the context of existing engineering
methodologies.
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Chapter 4 — Infochemical-based Coordination

This chapter starts with a concise introduction into IBC in nature and presents the
adaptation of the general principles behind IBC for the computational world by a
formal coordination model. The chapter subsequently describes the coordination
model as a design pattern for self-organizing emergent systems and provides corre-
sponding design guidelines. Furthermore, it exemplary instantiates the coordination
model by the existing pheromone-based coordination mechanism.

Chapter 5 — Operating Self-Organizing Emergent Systems

This chapter presents the background for and state of the art in operating self-
organizing emergent systems. In more detail, it lists reasons for the runtime ineffi-
ciencies of self-organizing emergent systems and provides necessary foundations on
control theory as well as different types of control systems to compensate these inef-
ficiencies in principle. This chapter furthermore describes several reference models
for the control theory-based adaptation of computer systems in general and surveys
existing approaches and architectures for adapting self-organizing emergent systems
in particular.

Chapter 6 — Efficiency Improvement Advisor

This chapter presents the general architecture of the Efficiency Improvement Advisor
for the adaptation of self-organizing emergent systems during their operation. This
chapter first introduces the terminology and premises used for this approach and
then describes the formal foundation of this architecture in detail. Finally, this
chapter considers several aspects with regard to the realization of this approach.

Chapter 7 — Application Domain: Pickup and Delivery Problems

This chapter starts with a concise introduction into the application domain of PDPs,
to which we apply the concepts developed in Chapter 4 and Chapter 6 to. It then
presents PIC as a biologically-inspired coordination mechanism based on IBC that
can be used for a more efficient self-organizing emergent solution to this class of
dynamic optimization problems. Likewise, this chapter presents an instantiation of
the EIA architecture customized to PIC for this application domain as well.

Chapter 8 — Experimental Evaluation

This chapter experimentally evaluates the concepts developed in Chapter 4 and 6
based on the instantiations presented in Chapter 7. This chapter first deals with the
developed simulation tool used to execute the experiments. It then presents two case
studies from the application domain of PDPs and finally explains the experiment
execution and analyzes the experimental results.



Chapter 9 - Conclusions and Outlook

The last chapter summarizes the contributions presented in this thesis and discusses
their limitations and implications. Based on these results, the thesis ends with an
outlook on future work.
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Chapter 2
Basics

The increasing complexity of computer systems and applications as well as the need
for autonomy and continuous availability has led different communities, e. g. software
engineering (SE), distributed systems, or system management, to look for inspira-
tion in diverse fields, such as complex systems, artificial intelligence, sociology, and
biology, to find new ways of designing and managing networks, systems, and ser-
vices. In this endeavor, three promising, interrelated facets of this paradigm shift
have emerged: self-management, self-adaptation, and self-organization.

Although every single one of them has its own roots, their interrelation, com-
bination, and convergence is highly valued for tackling the challenges of complex-
ity. This can be deduced, for instance, from the workshop and conference series
being held in recent years, aiming at a cross-pollination between these different
facets: the SASO (Self-Adaptive and Self-Organizing Systems) conference series
[SMFJZ07, BRB08, MSM*09] emerged from the workshop series ESOA (Engineer-
ing Self-Organizing Applications) [SKRZ04, BSKN05, BSHZ06, BHJY07], SelfMan
(Self-Managed Networks, Systems and Services) [MFSG05, KMF06], Self-Star (Self-
* Properties in Complex Information Systems) [BJMT05], and IWSAS (International
Workshop on Self-Adaptive Software) [RSLO1, LRS03b]. Likewise, the SACC (Self-
organization and Adaptation of Computing and Communications) conference series
[Tia08, Tia09] evolved from the SOAS (Self-Organization and Autonomous Systems
in Computing and Communications) conference series [CUBTO05, Tia06, Tia07].
A workshop series that aims to combine principles from self-adaptation and self-
management is SEAMS (Software Engineering for Adaptive and Self-Managing Sys-
tems) [CAFT06, CAFT07, CAGT08, CAGT09]. A workshop series that by contrast
aims to combine principles from self-adaptation and self-organization is SOAR (Self-
Organizing Architectures) [WMdLA10, WMAS10].

In the subsequent three sections of this chapter we survey these three interre-
lated terms and concepts in more detail. Section 2.1 focuses on self-management,
Section 2.2 on self-adaptation, and Section 2.3 on self-organization along with emer-
gence. This provides a clarifying understanding of these terms, necessary to classify
mechanisms, techniques, and approaches mentioned and developed in this thesis,
and results in the definition of self-organizing emergent systems as understood in
this thesis. Section 2.4 presents the basics of multi-agent systems as an eligible
technology to model and realize self-organizing emergent systems. In Section 2.5
we survey industrial and academic research areas related to the tackled problems



and challenges of this thesis, first and foremost Autonomic Computing and Organic
Computing. Finally, Section 2.6 concludes this chapter.

2.1 Self-Management

The term self-management rather describes a vision than a elaborated technical
concept. The vision of self-management is "to free system administrators from the
details of system operation and maintenance and to provide users with a machine
that runs at peak performance 24/7” [KC03]. The desire to move control from
the human to the system is rational, because administrators have a limited response
rate, often make mistakes, are expensive to maintain, and difficult to train. Although
the idea of self-managing systems is actually very old and dates back to the 1960s
(see e.g. [Wie65, vB69]), they have recently come into the limelight due to IBM’s
Autonomic Computing Initiative [Hor01] (see later Subsection 2.5.1). This is why
self managing systems are also often referred to as autonomic systems respectively
why self-management is often referred to as autonomicity (cf. [HS06, THRRO06]).

At this point, one has to be aware of the difference made by the Autonomic
Computing community between autonomy and autonomicity. Generally, a system
is considered as autonomous, if it can achieve its goals without human intervention
(cf. [THRRO6]). Thus, autonomy (in the sense of self-governance or self-direction)
is seen as the delegation of responsibility to the system to meet the defined goals
of the system, i.e. an automation of responsibility including some decision making
for the success of tasks. For instance, the goal of a system (potentially implemented
as multi-agent system) may be to find the best schedule for processing certain jobs
on machines in a manufacturing environment. Therefore, the system may have
the autonomy to negotiate between certain time windows, price ranges, budgets,
priorities, and penalties. However, with autonomy alone, absent autonomicity, the
performance of the system might degrade in unforeseen situations or the system
might not be able to recover from faults. This would not fall under this specific
delegated task of the agents, i.e. their autonomy. Thus, in contrast, autonomicity
is seen as the self-management of the system, i.e. an automation of responsibility
including some decision making for the successful operation of the system. It may
be considered as specialized form of autonomy, that is the autonomy is specifically
to manage the system (cf. [SGHOO06]). In this sense, our approach presented in
Chapter 4 will promote the autonomy of a computer system, whereas our approach
presented in Chapter 6 will promote a system’s autonomicity.

Due to the proximity to Autonomic Computing, the properties of a self-managing,
or autonomic, system can be summarized by four objectives and four attributes (see
Figure 2.1). Essentially, the objectives represent broad system requirements, while
the attributes identify basic implementation mechanisms.

Self-configuration enables the system to adapt to unpredictable conditions by au-
tomatically changing its configuration, such as adding or removing new elements,
or installing software changes without disrupting service. Self-optimization enables
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Figure 2.1: Self-managing system properties tree (adapted from [Ste05])

the system to continuously tune itself, either proactively to improve on existing pro-
cesses or reactively in response to environmental changes. Self-healing prevents and
recovers from failures by automatically discovering, diagnosing, circumventing, and
recovering from issues that might cause service disruptions. Self-protection detects,
identifies, and defends against viruses, unauthorized access, or denial-of-service at-
tacks. To achieve these objectives, a self-managing system ought to be (cf. [Hor01]}):
self-aware, i.e. to have knowledge of its elements, status, capacity, etc., but also of
the context of its activity and those of other elements within the infrastructure; self-
situated (environment-aware), i.e. to sense and analyze environmental conditions,
which includes both to proactively take the pulse of other elements and looking for
ways to improve the system’s functions as well as to notice change and understand
the implications of that change, which means self-monitoring; self-adjusting, i.e. to
plan for and affect change by altering its own state and effecting changes in other
elements. However, some of these attributes only apply to centralized systems.
From an abstract point of view, two different categories of approaches can be dis-
tinguished to enable self-management (cf. [WHET08]): exogenous self-management,
which works in a top-down style considering an individual system, and endogenous
self-management, which works in a bottom-up style considering cooperative systems.
Individual self-managing systems assess their own behavior and change it when the
assessment indicates that they are not accomplishing what they were intended to
do, or when better functionality or performance is possible. For these purposes, an
additional system element (or subsystem) is added on top of the system. The sub-
system realizes a control loop, i.e. it monitors and analyzes the underlying system
at runtime and adapts the structure or behavior of the system based on an explicit



internal representation of the system and high-level objectives specified by humans
(for a more detailed description of control loops see later Section 5.2). Exogenous
self-management most closely corresponds to the understanding of self-adaptation
(see Section 2.2). In contrast, bottom-up self-managing systems are composed of a
large number of elements that interact locally according to simple rules. In these
systems, the system elements adapt their structure or behavior to changing require-
ments themselves and hence cooperatively realize self-management. Consequently,
endogenous self-management most closely corresponds to the understanding of self-
organization [JBLOG6| (see Section 2.3).

To summarize, self-management offers a vision for the development and evolu-
tion of software, brings new levels of automation, autonomy, and autonomicity to
systems, while simultaneously hides their complexity, which at large reduces costs.
The two approaches for self-management in form of individual and cooperative sys-
tems respectively self-adaptive and self-organizing systems are often considered as
two extreme poles of a self-management spectrum. In practice, the line between
both is rather blurred, and compromises will often lead to an engineering approach
incorporating representatives from these two extreme poles (cf. [WHET08]). Even
this thesis uses and develops concepts from both sides of the spectrum, as we use
concepts of self-organization to design efficient self-managing systems but also use
concepts of self-adaptation to operate self-organizing systems efficiently.

2.2 Self-Adaptation

The actual motivation for self-adaptive software and systems arose from society’s
increasing dependence on software-intensive systems and the real risks, costs, and
inconvenience that their downtime presents (cf. [OMTO08]). More and more sys-
tems are required to work continuously, and to do so in environments where users’
requirements or system resources may change frequently. This change makes the
continuous availability a critical requirement for certain classes of software systems.
Consequently, this fact brakes with the implicit assumption in software engineering
that systems are designed as well as maintained offline. To address this new kind of
software systems, engineers need cost-effective techniques and mechanisms to build
reliable systems that adapt their own behavior dynamically.

One of the earliest definitions of self-adaptive systems respectively software was
given by Oreizy et al. [OGT"99] in 1999: ”Self-adaptive software modifies its own
behavior in response to changes in its operating environment. By operating envi-
ronment, we mean anything observable by the software system, such as end-user
input, external hardware devices and sensors, or program instrumentation. ...[The
system] observes its own behavior and analyzes these observations to determine ap-
propriate adaptations.” A similar but more detailed definition was given by Laddaga
et al. [LRS03a] some years later: a ”[s/elf-adaptive software evaluates its own behav-
ior and changes behavior when the evaluation indicates that it is not accomplishing
what the software is intended to do, or when better functionality or performance is



possible. ... This implies that the software has multiple ways of accomplishing its
purpose, and has enough knowledge of its construction to make effective changes at
runtime. Such software should include functionality for evaluating its behavior and
performance, as well as the ability to replan and reconfigure its operations in order to
improve its operation.” Both definitions characterize the demand for systems whose
environment changes at a rate that necessitates the system to adapt! at runtime.

However, at that early date, self-adaptation and self-management had been two
separate research fields and hence none of the definitions makes a clear declaration
on the involvement of humans in the adaptation process. The convergence of these
two research fields is expressed by a recent definition, which resulted from a seminar
on software engineering for self-adaptive systems [CGIT09]: “self-adaptive systems
can configure and reconfigure themselves, augment their functionality, continually
optimize themselves, protect themselves, and recover themselves, while keeping most
of their complexity hidden from the user and administrator.” Similarly, the vision
of self-adaptation and self-management are closely related, too: ”The vision of self-
adaptation is that software systems can autonomously adapt themselves to context
changes and handle changes of the requirements on their own”? [GGHOS].

In general, there are two different approaches to implementing self-adaptation (cf.
[MSKCO04]): parameter adaptation and compositional adaptation. Parameter adap-
tation modifies program variables that determine the behavior of the system. It can
tune parameters or direct a system to use a different existing strategy. However,
it cannot adopt new strategies and does not allow new algorithms and elements to
be added to an application after the original design and implementation. By con-
trast, compositional adaptation exchanges algorithmic or structural system elements
with others that improve an application’s fit to its current environment. Thus, an
application can adopt new algorithms for addressing concerns that were unforeseen
during development. This flexibility supports more than simple tuning of program
variables or strategy selection, it enables dynamic recomposition of the software
during runtime.

Compositional adaptation in most earlier applications has been implemented in a
fairly ad hoc fashion. Mechanisms that support self-adaptation have been around for
a long time in the form of programming language features, e.g. Java exceptions or
runtime assertion checking, and algorithms, e. g. network protocols or self-stabilizing
algorithms such as timeouts for Remote Procedure Calls (RPC). The code that deals
with self-adaptation was typically tightly integrated with the application itself and
wired at the code level. Such ”internal” mechanisms suffer from the problem that lo-
calized error handling may not be able to determine the true source of the problem,
and consequently are not able to determine the required remedial action. More-
over, while they can only trap an error at the moment of detection, they are not
well-suited to recognizing ”softer” system anomalies, such as gradual degradation

'In computer science literature, the terms ’self-adaptive’ and ’adaptive’ are very often used syn-
onymously.
2The term ’context’ has a very general meaning in this vision.



of performance, or patterns of unreliability. Because internal mechanisms are so
intertwined with the normal code of the system, they complicate both the appli-
cation and adaptation code and make the change or reuse of adaptation strategies
impossible (cf. [GS02]).

McKinley et al. [MSKC04] propose three key technologies for compositional adap-
tation, which can be used by software engineers to construct self-adaptive systems
in a systematic and principled — as opposed to ad hoc — fashion : separation of con-
cerns, computational reflection, and component-based design. Separation of con-
cerns, which is also an important principle in mainstream software engineering,
enables the separate development of an application’s functional behavior, i.e. its
business logic, and the code for crosscutting concerns, such as quality of service
(QoS), energy consumption, fault tolerance, and security. Computational reflection
refers to an applications’s ability to reason about, and possibly alter, its own be-
havior. It comprises two activities: introspection, i.e. to let an application observe
its own behavior, and intercession, i.e. to let a system or application act on these
observations and modify its own behavior. The third technology for compositional
adaptation is component-based design. It supports two types of composition: in
static composition, a developer can combine several components at compile time to
produce an application, whereas in dynamic composition, the developer can add,
remove, or reconfigure components within an application at runtime (which requires
late binding).

Monitor Adapt

System

Figure 2.2: Abstract closed control loop

Consequently, there is a consensus in the research community that general so-
lutions, which separate and externalize adaptation mechanisms and control from
the application, are essential to achieve real self-adaptation (cf. [GCHT04]). "Ex-
ternalized” adaptation (exogenous self-management) supports a kind of closed loop
control system paradigm as depicted in Figure 2.2 (see also later Section 5.2 for
more details). In this paradigm, the system behavior is monitored and analyzed by
externalized mechanisms encapsulated in a controller outside the running system.
These mechanisms are responsible for (1) determining when a system’s behavior is
within the envelope of acceptable system parameters, and (2) when it falls outside
of those limits, adapting the system. To accomplish these tasks, the mechanisms
usually maintain one or more system models, which provide an abstract, global view
of the running system, and support reasoning about system problems and repairs.



A model can thereby be any abstract representation of the system, such as architec-
ture models, performance models, reliability models, etc. (see e.g. [KS99, GS02)).
Our approach for the efficiency improvement of self-organizing emergent systems at
runtime (see Chapter 6) is likewise based on the principle of externalized adaptation.

To summarize, self-adaptation is understood as exogenous self-management con-
sidering an individual system that is enhanced by an additional system element im-
plementing a control loop to evaluate and change the system’s behavior when better
functionality or performance is possible. Although the focus in the above paragraphs
has been primarily on self-adaptation on the application level, there also exist many
approaches for self-adaptive middlewares (see e.g. [MSKC04, GEL"06, Tru06]) and
self-adaptive operating systems (see e.g. [SS97]). However, for the purpose of this
thesis, we will maintain the focus on the application level.

2.3 Self-Organization and Emergence

Self-management through self-organization, i. e. endogenous self-management, is mo-
tivated by providing a variety of systems such as wired or wireless networks, P2P
systems, the computational Grid, as well as distributed and embedded systems and
applications with self-managing capabilities (cf. [JBL0O6]). But in contrast to self-
adaptation, to this day there exists no common understanding and generally ac-
cepted definition of self-organization that satisfies everyone, although or just because
this concept is not a product of modern times but has already a long history>.

2.3.1 History of Self-Organization

In 1637, Descartes was probably the first capturing the essence of self-organization
by noting a spontaneous, dynamically-produced organization [Des85]:

[Consider] what would happen in a new world, if God were now to
create somewhere in the imaginary spaces matter sufficient to compose
one, and were to agitate variously and confusedly the different parts of
this matter, so that there resulted a chaos as disordered as the poets ever
feigned, and after that did nothing more than lend his ordinary
concurrence to nature, and allow her to act in accordance with
the laws which He had established .... I showed how the greatest
part of the matter of this chaos must, in accordance with these laws,
dispose and arrange itself in such a way as to present the appearance
of heavens; how in the meantime some of its parts must compose an earth
and some planets and comets, and others a sun and fived stars.

This phenomenon was called self-organization not until the years after World
War II, primarily in research connected with cybernetics and computing machinery
[YC60, vFJ62]. The first appearance of the term at all seems to be in a paper

3The following historical sketch of self-organization is partly based on the work in [Sha01].



by Ashby [Ash47] in 1947. He gave a pretty clear explanation of what he meant
by ’organization’: to paraphrase, the organization of a system is the functional
dependence of its future state on its present state and its external inputs, if any.
That is, if the state space is S and the input space is I, the organization of the
system is the function f : S x I — S which gives the new state (see also [Ash60]).
Ashby understood a system to be self-organizing if it changed its own organization,
rather than being rewired by an external system.

The main research domains, in which the phenomenon of self-organization was
studied for the next decades, were physics, computer science, and systems the-
ory. In the physical sciences, self-organization was extensively applied from the
1970s onwards to pattern formation and spontaneous symmetry breaking [NP77] as
well as to cooperative phenomena [Hak77]. Within computer science, the primary
application areas have been learning [Sel59, YC60], especially unsupervised learn-
ing [HS99a] and memory [Koh84, Koh01], to adaptation [FLPW86, Hol92], and to
‘emergent’ or distributed computation [For90, Res94, Cru94a, CM95]. In the 1980s,
self-organization became also one of the ideas, models, and techniques bundled to-
gether as the ’sciences of complexity’ [Pag88]. This bundle has been successful at
getting itself adopted by researchers in essentially every science, so the idea of self-
organization is now used in a huge range of disciplines (cf. [Sha01]).

Thus, various definitions, formalizations, and examples of self-organization can
be found in diverse scientific disciplines today, e.g. in ecology [Wal90, CDF 01,
FCGO6], economics [Sch78, Kru96], mathematics [Len64], complexity [Sch97], in-
formation theory [Sha0Ol, SS03], cybernetics [vF60, Ash62, HJ01, Hey03], syner-
getics [Hak06], biology [BTD 97, BDT99], and not least computer science [PB01,
WSDGO01, HG03, GH03, DH04, SGK05, MMTZ06, MWJ*07, CMMS™07].

2.3.2 Shapes of Self-Organization

The abundance of appearances of self-organization indicates that the understanding
and definition of self-organization strongly depends on the discipline it appears in.
To illustrate this, we will focus on three different appearances of self-organization
observable in the natural world. These examples essentially enhance the fact that
there exist multiple shapes of self-organization, which are opposed to a general
definition.

2.3.2.1 Stigmergy

By studying the social behavior of swarms, in more detail insects (termites), Grassé
[Gra59] proposed in 1959 the theory of stigmergy. This theory can be summarized in
short as ”the work excites the workers”. The consequence of this theory is that direct
interactions and regulation by a central control are not necessary to coordinate a
group. To the contrary, coordination and regulation tasks are realized on the basis
of information deposited into the environment, without central control. In the case
of ants, termites, and honey bees, stigmergy is ensured by depositing a chemical



substance (stimulus) in the environment, called pheromone. Thus, self-organization
results from the behavior or response (of the insects) arising from inside the system,
so the elements of a swarm are themselves at the origin of the re-organization of the
whole system. The self-organizing behavior is however not limited to insects only.
Other collective behaviors of animals referred to as being self-organizing are flocks
of birds and schools of fish, for instance (see [CDFT01]). By following simple rules,
such as getting close to a similar bird (or fish) but not too much or getting away
from dissimilar birds (or fishes), they are e.g. able to collectively avoid predators.
Such a self-organizing behavior is commonly also referred to as swarm intelligence
[GGTOT7]. According to Bonabeau et al. [BDT99], self-organization in systems based
on swarm intelligence relies on four basic ingredients:

e Positive feedback: simple behavioral "rules of thumb” promote the creation
of structures (amplification). For example, in ant foraging, recruitment to a
food source is a positive feedback that relies on trail laying by pheromones and
trail following by other ants. Reinforcement is another positive feedback.

e Negative feedback: counterbalance to positive feedback that helps to stabi-
lize the collective pattern. In the example of ant foraging, the limited number
of foragers, saturation, food source exhaustion, and crowding at food source
are forms of negative feedback that hamper a refreshment of the pheromone
trail.

¢ Amplification of fluctuations: Randomness plays a crucial role, not only
for the emergence of structures but also for the discovery of new solutions. For
instance, ant foragers may get lost because they follow trails with some error.
However, thereby they can find new, unexploited food sources and recruit
nestmates to these sources.

e Multiple interactions: Individuals should be able to make use of the results
of their own activities as well as of other’s activities. For instance, ant trail
networks can self-organize and be used collectively if individuals use other’s
pheromones.

In general, there exist four different varieties of stigmergy (see Table 2.1 with
examples) that can be distinguished along two orthogonal dimensions regarding the
stimulus respectively the response (cf. [BDT99, TB99, CDF 01, And02]). The first
dimension considers whether the stimuli represent special markers, e. g. pheromones,
that individuals deposit in the environment (”marker-based stigmergy”) or whether
only domain-specific elements, e.g. dead ant bodies, are used for the stigmergic
effect ("sematectonic stigmergy”). The second dimension considers whether the
stimuli are a single scalar analogous to a potential field (”quantitative stigmergy”)
or whether they form a set of discrete options (”qualitative stigmergy”). In the
case of quantitative stigmergy, the stimulus varies in a quantitative manner, e.g.
the local pheromone concentration, altering the probability of eliciting the same



response from other individuals. In the case of qualitative stigmergy, the stimuli
differ from each other qualitatively, e.g. different types of pheromones, but not in
their quantity and as a result may elicit different responses, see e. g. nest construction
in Polistes wasps (see [BDT99, TB99, CDF'01]). This latter variety of stigmergy
usually does not explicitly require positive feedback, even though there may be cases
in which positive feedback is not required for certain quantitative examples, too (see
[And02]).

Marker-based Sematectonic
Stimuli inserted into | Domain stimuli only
the domain
Quantitative e.g. gradient follow- | e.g. ant cemetery
Scalar quantities | ing in a single phero- | clustering
mone field
Qualitative e.g. decisions based | e.g. wasp nest
Symbolic on combinations of | construction
differentiations pheromones

Table 2.1: Varieties and examples of stigmergy

Although a discrimination of quantitative and qualitative stigmergy is relatively
easy, most situations in which stigmergy plays a role are likely to involve both types
(cf. [CDF"01]). However, the discrimination between these two types will become
important for the DIC model presented in Chapter 4.

2.3.2.2 Decrease of Entropy

In the 1970s, the term self-organization itself has been established by later No-
bel Prize winner Ilya Prigogine and his colleagues through thermodynamics studies
[GPT71]. Basically, the idea is that open systems decrease their entropy, i.e. order
comes out of disorder, when an external energy is applied on the system. For in-
stance, matter organizes itself under this external pressure to reach a new state
where entropy has decreased. Prigogine and his colleagues have identified four nec-
essary requirements for systems exhibiting a self-organizing behavior under external
pressure:

e Mutual Causality: at least two elements of the system have a circular rela-
tionship, each influencing the other.

e Autocatalysis: at least one of the elements is causally influenced by another
element, resulting in its own increase.

e Far-from equilibrium condition: the system imports a large amount of en-
ergy from outside the system, uses the energy to help renew its own structures
(a kind of autopoiesis), and dissipates rather than accumulates the accruing



disorder (entropy) back into the environment. This fact, which goes back to
the second law of thermodynamics?, allows the system to produce ” dissipative
structures”, which maintain far from thermodynamic equilibrium [NP77].

e Morphogenetic changes: at least one of the elements of the system must
be open to external random variations from outside the system.

Compared to the concept of stigmergy, there is a fundamental difference here.
Whereas in the first case self-organization results from a behavior occurring from
inside the system, i.e. from the ants or termites themselves, in the second case,
self-organization is the result of a pressure applied from the outside on the system.

2.3.2.3 Autopoesis

In 1979, Varela [Var79] established the notion of autopoiesis (self-production) as
the self-maintenance of a system through self-generation of the system’s elements,
as for instance cells reproduction. Autopoiesis applies to closed systems made of
autonomous elements whose interactions self-maintain the system through the gen-
eration of system’s elements, such as organisms. Varela defined an autopoietic sys-
tem as being organized as a network of processes of production (transformation and
destruction) of elements that

1. through their interactions and transformations continuously regenerate and
realize the network of processes (relations) that produced them.

2. constitute it (the system) as a concrete unity in the space in which the elements
exist by specifying the topological domain of its realization as such a network.

In the case of autopoesis, self-organization is still different from the two examples
above. Autopoiesis applies to closed systems made of autonomous elements whose
interactions self-maintain the system through generation of system’s elements.

In general, nature provides a vast amount of diverse shapes of self-organization.
Further examples can be found in [Fla00, CDF*01, Nun06], for instance. Note,
Camazine et al. [CDFT01] also provide four alternatives to self-organization.

2.3.3 Characteristics of Self-Organization

If we narrow down to the disciplines closer related to computer science, we still
observe many different definitions. Several authors base their definition of self-
organization on the decrease of entropy. For instance, Shalizi and Shalizi [SS03]
propose a mathematical model based on Shannon’s entropy [Sha48]. In this con-
text, self-organization is characterized as the increase in the amount of information
needed for predicting the system dynamics in the future. Similarly, Heylighen and

4The second law of thermodynamics states that in an isolated system, entropy can only decrease,
not increase.



his colleagues [HJ01, Hey03] argue that the statistical entropy can be used in de-
termining the degree of self-organization of a given system. Parunak and Briickner
[PBO1] discuss an entropy model for self-organization based on the Kugler-Turvey
model [KT86]. Here, information entropy is used to determine the degree of self-
organization on the macro-level and the micro-level. Wright et al. [WSDGO1] define
a self-organized system to have an attractor, i. e. a preferred position for the system,
with an intermediate dimension value. For this purpose, they propose a method to
measure self-organization, which is based on the property that the entropy can be
shown as a function of the attractor’s dimension in the state space.

But there also exist other definitions of self-organization that are not based on
the notion of entropy but on characteristics of self-organization. For instance, Miihl
et al. [MWJ'07] define a self-organizing system a self-managing (i.e. the system
adapts to its environment without external control) and structure-adaptive system
(i.e. the system establishes and maintains a certain kind of structure, e.g. spatial
or temporal, providing the system’s primary functionality), employing a decentral-
ized control. Similarly, Di Marzo Serugendo et al. [SGKO5] refer to self-organization
as a process where a system changes its internal organization to adapt to changes
in its goals and the environment without explicit control. Additionally, they dis-
tinguish between strong self-organizing systems, where there is no explicit internal
nor external control, and weak self-organizing systems, where the re-organization
maybe under internal (central) control or planning (e.g. in the case of a termite
queen broadcasting information by pheromone gradients). In the same way Cakar
et al. [CMMS™07] distinguish between self-organization with central control and self-
organization without central control and discuss the amount of control input allowed
from the outside of the system. However, we will see by our approaches in Chapter
4 and Chapter 6 that even these broad definitions are still quite ambiguous and do
not cover all classes of self-organizing emergent systems, as they do not distinguish
different phases of a running system, which allow the latter e.g. to switch between
weak and strong self-organization. Also, the notion of weak self-organization over-
laps with the notion of self-adaptation, which indicates that these definitions and
classifications are still under way and not settled yet.

The above two categories of definitions, based on decrease of entropy respec-
tively characteristics of self-organization, have different backgrounds. Whereas the
purpose of the definitions of the first category is rather on the measurement of self-
organization, the purpose of the definitions of the second category is rather on the
design and the properties of self-organizing systems. For the purpose of this thesis,
the second category is naturally of more interest.

Based on a comprehensive analysis of related definitions in literature, De Wolf
and Holvoet [DHO04] have identified four characteristics of self-organization that are
considered to be most important throughout the literature:

e Increase in order: Organization can be described as the arrangement of se-
lected elements so as to promote a specific function. This restricts the behavior
of the system in such a way as to confine it to a smaller volume of its state



space (attractor). In essence, organization can be looked at as an increase in
the order of the system behavior which enables the system to acquire a spatial,
temporal, or functional structure.

e Autonomy: A self-organizing system needs to organize without interference,
i.e. without an external element imposing it from the outside. Input is still
possible as long as the inputs are no control instructions from outside the
system. For this purpose it is important to separate the inside from the outside,
i.e. to clearly define the boundary of the system.

e Adaptability or robustness w.r.t. changes: A self-organizing system is
expected to cope with changes in its environment and to maintain its organi-
zation autonomously. This requires an adaptive behavior that may take into
account past experiences. This also implies the need for the system to be able
to exhibit a large variety of behaviors.

e Dynamical, i.e. far-from-equilibrium: An essential property of self-
organization is that it is an dynamic process. In order to maintain the or-
ganized structure influenced by changes, there needs to be a constant dynamic
that handles them. In other words, the system needs to be far-from-equilibrium
in order to maintain the structure.

A concept tightly linked to self-organization is emergence. Briefly, emergence
refers to a process by which a system of interacting elements acquires qualitatively
new properties that cannot be understood as the simple addition of their individual
contributors. This phenomenon is commonly phrased as 'the whole is more than
the sum of its parts’, but ”it is unlikely that a topic as complicated as emergence
will submit meekly to a concise definition” [Hol98]. A proof of this statement is the

history of emergence®.

2.3.4 History of Emergence

Since the time of ancient Greeks, in more detail the writings by Aristotle in 350
BC [Ari24], conceptual constructs that resemble emergence, such as 'whole before
its parts’, i.e. to consider an explanation in terms of the global behavior more
important than explaining how the system works in terms of local behavior, and
"Gestalt’, i.e. a configuration or pattern of elements so unified as a whole that it
cannot be described merely as a sum of its parts, can be found in western thought.

In the last two centuries, there were two different schools for studying emergence:
the proto-emergentism at the end of the 19th century and beginning of the 20th cen-
tury and the neo-emergentism during the 20th century until just now (see [Gol99)).
For the proto-emergentists, the process of emergence always remained as a kind of
black box. They had few answers, when it came to understanding how emergence

5The following historical sketch of emergence is partly based on the work in [Gol99].



itself was at all possible. This means, one could only discern the inputs at the lower-
level and the outputs on the higher-level, but not how the input was transformed
to the output during emergence. This is exemplified by the notion of emergence
by Lewes [Lew75], an English philosopher and proponent of proto-emergentism, in
1875:

... although each effect is the resultant of its components, we cannot
always trace the steps of the process, so as to see in the product the mode
of operation of each factor. In the latter case, I propose to call the effect
an emergent. It arises out of the combined agencies, but in a form which
does not display the agents in action .. ..

The understanding of emergence (in this quote called ”emergent” as noun) is very
much like the modern usage, in which nonlinear interactivity leads to novel outcomes
that are not sufficiently understood as a sum of their parts. Other proponents of the
proto-emergentism school were the animal behaviorist Morgan [Mor26], the philoso-
phers Alexander [Ale90] and Broad [Bro25], the entomologist Wheeler [Whe26], and
the mathematician and philosopher Whitehead [Whi79].

As a movement, proto-emergentism died out during the 1930s, and from then
until just now a different perspective has been envisaged, called neo-emergentism
[Gol99]. This movement tries to open the black box of emergence and to under-
stand as well as to reproduce the process which leads to emergence, by means of
high-speed computers, the discovery of pertinent mathematical constructs, and new
research methods. As a result, the construct of emergence is acquiring a much surer
foundation and usefulness in scientific explanations (cf. [Gol99)]).

The neo-emergentism movement has produced various definitions, formalizations,
and examples of emergence, which can be found in diverse scientific disciplines today,
e. g. philosophy [0’C94, Bed97, BC00, Bed02] and cognitive sciences [Cla98, Ste06],
psychology [Gol99], biology [Cam74, BDT99, CDF*01], physics [And72, Cru94b,
CM95], cybernetics [Hey03], artificial life [Fai98, RSC99], complexity theory (with
its four central schools complex adaptive systems theory [Lan86, Kau96, Hol98],
nonlinear dynamical systems theory [New96], the synergetics school [Hak81], and far-
from-equilibrium thermodynamics [NP77]), and not least computer science [Bee95,
Dys98, PB01, DH04, SGK06, Abb06, MMS06].

2.3.5 Shapes of Emergence

Similar to self-organization, the abundance of appearances of emergence indicates
that the understanding and definition of emergence strongly depends on the disci-
pline it appears in. To illustrate this, we will focus on several different appearances
of emergence. Thereby we classify these shapes into three categories: emergent
shapes that have a desired causal effect on the system, an undesired causal effect, or
an insignificant effect, i.e. no causal effect. These examples essentially enhance the
fact that there exist multiple shapes of emergence, which are opposed to a general
definition.



2.3.5.1 Desired Emergence

Due to evolution, shapes of emergence in nature, in particular in biology, have
usually a desired causal effect on the emergent system.

Schools of Fish

Let us take up again the example of schools of fish in more detail. All members of
a school move in parallel in the same direction. When a school suddenly changes
direction, all its members rapidly respond, moving cohesively, almost in unison, as
flawlessly as if they were parts of a single organism. These behaviors suggest that
a school possesses special emergent properties on group-level. One such property
is the rapid transfer of information throughout the school that enables the entire
group to execute swift, evasive maneuvers, at the approach of predators (cf. [Par82]).
For instance, flash expansion is an evasive maneuver, in which the school rapidly
expands and bursts radically. Another maneuver is the fountain effect, in which
a school of small, slow-moving prey outmaneuvers a predator by splitting into two
groups, each of which moves in opposite directions and regroups behind the predator
(cf. [CDFT01]).

Ant Foraging

Let us also take up again the example of ant foraging in more detail: a moving ant
lays some pheromone (in varying quantities) on the ground, thus marking the path
by a trail of this substance. While an isolated ant moves essentially at random, an
ant encountering a previously laid trail can detect it and decide with high probability
to follow it, thus reinforcing the trail with its own pheromone. The collective be-
havior that emerges is a form of autocatalytic behavior where the more the ants are
following a trail, the more attractive that trail becomes for being followed. Thereby
a shortest route path from the ant colony to feeding sources and back emerges on
the global level (cf. [DG89)).

2.3.5.2 Undesired Emergence

Apart from nature, emergent behavior can have undesired causal effects on a system,
which is then termed emergent misbehavior. Even when emergent misbehavior is
not inherently bad, it is unpredictable due to the nature of emergence, and unpre-
dictability is bad in many systems — especially in computer systems when it comes
about performance. But examples of emergent misbehavior can be found in other
fields also (see [Mog06]).

Non-Computer World

When the Millennium Footbridge was opened to significant pedestrian traffic in mid
2000, ”[dJuring the opening day unexrpected excessive lateral vibrations occurred,”



which caused ”a significant number of pedestrians ...to have difficulty in walk-
ing” [DFBT01]. The bridge had to be closed for one and a half years until its
engineers analyzed and fixed the problem. The designers had failed to anticipate an
effect that could cause the synchronization of individual footfalls, both with each
other and with the bridge’s natural swaying frequency (cf. [DFB*01]). Another form
of emergent misbehavior in the non-computer world are traffic jams.

Hardware World

In huge enterprises or service providers, large numbers of disk drives are mounted
on racks. Whereas every single disk drive works fine outside the rack, it turned out
that the performance of a single drive can be adversely affected by the vibrations
caused by seek activity on neighboring drives in the rack [ADRO03].

Network World

The channel or Ethernet capture effect [RY94] is a phenomenon where one user of
a shared medium, such as a channel, ”captures” the medium for as long as it needs
before other users can use the medium. This effect was first recognized in networks
using the Ethernet protocol. It occurred in Ethernet links because of the way nodes
”backoft” from the link and attempt to re-access it. In the Ethernet protocol, when
a communication collision happens, i.e. when two users of the medium try to send
at the same time, each user waits for a random period of time before re-accessing the
link. However, a user will wait (”backoff”) for a random amount of time proportional
to the number of times it has successively tried to access the link. The Ethernet
capture effect happens when one user continues to "win” the link.

2.3.5.3 Insignificant Emergence

In a few cases, an emergent behavior can also have no causal effect on the system.
When we consider stones ordered by the sea, a kind of classification of the stones
occur over time. Small, lighter stones are close to the border, while heavy stones
are far from it. In this case, the ordering of the stones has no effect at all on the
whole system made of the stones and the sea (cf. [Ser06]).

To determine, whether an emergent behavior is desired, undesired, or insignificant,
the viewpoint of an observer plays an important role (cf. [GH03]). What under some
circumstances can be seen as insignificant, under others can be seen as desired, or
even undesired, depending on the purpose and the boundaries of the system, which
is ascribed to an observer. Consider the example of schools of fish mentioned above:
From the fish’s point of view, evasive maneuvers of the school apparently are a
desired emergent behavior (even though a fish is not aware of the maneuver of
the school). By contrast, from the predators’ point of view, evasive maneuvers of
schools represent an undesired emergent behavior. From an external viewpoint on
the ecosystem of schools of fish and predators, evasive maneuvers are insignificant
to the entire system.



2.3.6 Characteristics of Emergence

Similar to self-organization, we can observe a plenitude of approaches to capture
the phenomenon emergence in a definition or taxonomy, even if we narrow down to
definitions related to (intelligent) computer systems only. Again, the purpose of the
definitions and taxonomies depend on the background.

Bedeau [Bed02] distinguishes three kinds of emergence, to understand and explain
complex biological and psychological systems, which is essential for using analogies
in the computational world. Nominal emergence is the simplest and barest notion of
emergence, and refers to a macro-level property that is the kind of property that can-
not be a micro-level property. It does not explain which properties apply to wholes
and not to their parts, but it assumes that those properties can already be identified.
For instance, the function of a software system is an nominal emergent property of
the underlying code. Strong and weak emergence then add further conditions to
nominal emergence. Strong emergence adds the requirement that truths concern-
ing the macro-level property are not deducible even in principle from truths on the
micro-level. Strong emergence is thus based on the so-called thesis of irreducibility
and most closely corresponds to the notion of emergence during proto-emergentism.
For instance, Life is a strong emergent property of genes, genetic code, and nucle-
ic/amino acids, whereas Culture in general is a strong emergent property of language
and writing systems. Weak emergence is between strong and nominal emergence.
The central idea behind weak emergence is that emergent causal powers can be
derived from micro-level information but only in a certain complex way. In other
words, truths concerning the macro-level property are only unexpected given the
principles governing the micro-level properties. For instance, foraging behavior of
ant colonies as well as flocking behavior of fish and birds are shapes of weak emer-
gence. Weak emergence most closely corresponds to the notion of emergence that is
most common in recent scientific discussions of emergence (neo-emergentism), also
in computer science. Fromm [Fro05] specifies this basic taxonomy further and splits
some of the categories.

Abbott [Abb06] also discusses two kinds of emergence: static emergence and dy-
namic emergence. An emergent behavior is called static if its implementation does
not depend in time, e.g. hardness as a property of a material (and not a prop-
erty of isolated atoms). In contrast, an emergent behavior is regarded as dynamic
if it is defined ”in terms of how the model changes (or doesn’t change) over some
time”. Dynamic emergence can additionally be subdivided into non-stigmatic dy-
namic emergence (which can be defined by means of continuous equations) and
stigmatic dynamic emergence (which involves autonomous entities that may assume
discrete states and interact with their environments).

Miiller-Schloer and colleagues [MMS06] consider emergence from the analysis
viewpoint. They propose a notion of emergence based strictly on measurements,
which is called quantitative emergence. It is defined as the formation of order from
disorder based on self-organizing processes. This definition again builds on Shan-
non’s information theory, in particular on the information-theoretical entropy.



For the purpose of this thesis, again the characteristics of emergent systems are
to the fore. Based on a comprehensive analysis of related definitions in literature,
De Wolf and Holvoet [DHO04] have also identified eight characteristics of emergence
that are considered to be most important throughout the literature (see also Figure
2.3 for an illustration):

Micro-macro effect: The micro-macro effect refers to properties, behaviors,
structures, or patterns that are situated at a higher macro-level and arise from
the local (inter)actions at the lower micro-level of the system. This is the most
important characteristic of emergence mentioned in literature.

Radical novelty: The global behavior at the macro-level is novel w.r.t. to
the individual behaviors at the micro-level, i.e. the individuals at the micro-
level have no explicit representation of the global behavior at the macro-level.
As the macro-level behavior is not reducible to the micro-level behaviors of
the system, this is termed non-reductionism.

Coherence: Emergent behavior can be specifically identified at the higher
level, and consequently a coherence spans and correlates the separate lower
level elements into a higher level unity, i.e. correlations between elements are
needed to reach a coherent whole, which is also called 'organizational closure’.

Interacting elements: Without interactions, interesting macro-level behav-
iors will never arise. Simple parallelism is not enough to yield emergent be-
havior.

Dynamical: Emergent behavior arises as the system evolves in time. The
appearance of emergent behavior can be related to the appearance of new
attractors in dynamical systems.

Decentralized control: Whereas the actions of single elements are control-
lable, the whole system is not directly controllable. In particular, there is no
central control, i.e. no single element of the system directs the macro-level
behavior. This is a direct consequence of the radical novelty that is required
for emergence.

Two-way link: From the micro-level to the macro-level, the elements give
rise to an emergent structure. In turn, the emergent structure influences the
elements, i.e. higher level properties may have causal effects on the lower level.

Robustness and flexibility: The characteristic of decentralized control and
the fact that no single element can have a representation of the global emer-
gent behavior implies that such a single element cannot be a single point of
failure. Increasing damage will decrease performance, but with a ’graceful
degradation’, i.e. the quality of the output will decrease gradually, without
sudden loss of function.
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Figure 2.3: Micro-level, marco-level, and emergence

2.3.7 Self-Organizing Emergent Systems

To summarize, the essence of self-organization is an adaptable behavior that au-
tonomously acquires and maintains a structure, i.e. an increased order, statistical
complexity, etc. The essence of emergence is the existence of a global behavior that
is novel w.r.t. the constituent elements of the system. The main similarity between
the concepts is that self-organization and emergence are both dynamic processes
arising over time. The individual elements are all ”active” as well as locally inter-
acting and may have their own objectives and carry out their respective tasks. Both
are robust, in more detail, whereas self-organization is robust w.r.t. environmental
changes and is able to maintain the increased order, emergence is robust w.r.t. the
flexibility of the elements that cause the emergent behavior, i.e. the failure of one
single element will not result in a complete failure of the emergent behavior.

De Wolf and Holvoet [DH04] emphasize self-organization and emergence as differ-
ent characteristics of a system. According to the authors, both concepts can exist
in isolation or together. A self-organizing system without emergence controls itself
without external interference, but lacks central properties of an emergent system
such as radical novelty, micro-macro effect, flexibility w.r.t. the elements, and de-
centralized control. For example, a system where there is a single controlling element
that directs the global behavior (i.e. there is no decentralized control) needs an ex-
plicit plan in that controlling element. A (weak) self-organizing process can re-elect
a controlling element when other elements become more appropriate for the job, but
there is no radical novelty.

On the other hand, according to the authors, there are also systems exhibiting
emergence without self-organization. An example given is a gas material that has
a certain volume in space, which is an emergent property that results from the
interactions, i.e. attraction and repulsion, between the individual particles. The gas



is in a stationary state. The statistical complexity remains the same over time, i.e.
the particles can change their places but the amount of structure remains the same
over time. This is a system whose initial conditions are enough to exhibit emergent
properties but no self-organization is attributed to such a system, since the system
is stationary. Stones ordered by the sea are another example, as mentioned above.

While a separate discussion of the terms self-organization and emergence is def-
initely valuable, it is questionable whether emergence without self-organization is
actually relevant for computer systems. In most systems that are considered in lit-
erature, emergence and self-organization occur together. Thus, from the viewpoint
of computer science, in particular when considering self-organizing systems for self-
management, only natural or artificial systems of the latter category are of interest,
where we usually have decentralized control realized under self-organization leading
to emergent behavior. We take up this position in this thesis, too.

Future complex computer system often require to keep the individual elements
relatively simple, e. g. for scalability reasons. Simple individuals cannot direct such
a complex system, so the global coherent behavior should emerge from the self-
organizing interactions between the individuals. Similarly, because of the complex-
ity it is sometimes impossible to impose an initial structure on such a system that
results in an emergent property. The only possibility to get a coherent behavior
at the macro-level is to let that behavior arise and organize autonomously, which
implies self-organization. Thus, the combination of self-organization and emergence
is a promising approach to engineer a coherent, self-managing behavior for complex
computer systems. This leads us to the definition of self-organizing emergent sys-
tems in the context of self-management, as we will understand and use this term
throughout the rest of this thesis. The definition is partly based on the definitions
of self-organization and emergence found in [DHO04] and [SGKO05].

Definition 2.1 (Self-organizing emergent system)

A self-organizing emergent system dynamically acquires or maintains a structure
without external control. Local (inter)actions of system elements at the micro-level
result in emergent shapes at the macro-level that are novel w.r.t. the elements and
either desirable or undesirable w.r.t. the system.

This definition is consistent with the properties commonly considered to be rel-
evant for self-organization and emergence (see [DHO04]). In this definition, self-
organization refers to a dynamic process, which is far-from-equilibrium. The in-
tended ’structure’ can be of spatial, temporal, or functional nature and is acquired
or maintained w.r.t. dynamic changes in the system’s environment, which presumes
an adaptivity and robustness of the process. "Without external control’ refers to the
autonomy of the system and the absence of direction, manipulation, interference, or
involvement from outside the system.

The definition expressly underlines that ’emergent shapes’ at the macro-level,
which can be emergent properties, behaviors, structures, patterns, or functions, are
a result of self-organization, i.e. self-organization at the micro-level is the cause, as
e. g. considered in [CDF 01, Hey03, MMTZ06], but not an effect of self-organization,



i. e. self-organization is an emergent property, as e. g. considered in [PB01]. Because
the emergent shapes have to be novel w.r.t. the interacting elements, weakly self-
organizing systems having an internal central control cannot be referred to as self-
organizing emergent systems (even though they are still self-organizing). In order
to decide, whether the increase in order is produced on its own, i.e. ’self’, system
boundaries play an important role. Consequently, a self-adaptive system can be
considered as weakly self-organizing, if the subsystem executing the control loop is
within the defined system boundaries.

The definition also classifies the effects of emergent shapes w.r.t. the system. As
explained in Subsection 2.3.5, emergent shapes can be desired, e. g. evasive maneu-
vers in schools of fish, or undesired, e. g. unexpected vibrations on the Millennium
Footbridge (insignificant effects, e.g. stones ordered by the sea, are not of interest
and thus not included, as mentioned). We think that the importance of these ef-
fects to the design and operation of self-organizing emergent systems with regard to
self-management justifies their inclusion into the definition.

2.4 Multi-Agent Systems

In general, there exist different technologies to model and realize self-organizing
emergent systems as defined in the previous section, e.g. by cellular automata
[Gut91], neural networks [Hay98], or multi-agent systems [Woo09]. However, multi-
agent systems have been identified as the enabling technology for a plethora of
application domains (cf. e. g. [PB01, MRFT03, SKRZ04, BSKN05, SGK05, SGK06,
BSHZ06, BHJY07]), which is why we will base our approaches on this technology,
too. A multi-agent system (MAS) is a particular class of computer systems com-
posed of multiple interacting computing elements, called agents. The latter usually
have the following characteristics (cf. [JSW98]):

e Autonomy: Agents in a MAS are considered as autonomous or semi-autono-
mous hardware or software systems that operate in a asynchronous manner
without the direct intervention of humans or others.

e Local views: Agents only have local, subjective views of the entire system.
Usually, the systems are too complex for an agent to acquire or maintain a
global view, so it can only have incomplete information of the system.

e Decentralized control: As a direct consequence of the second characteristic,
in a MAS usually no agent has global control over the entire system.

e Decentralized data: Data is fully decentralized and distributed over the
agents of the system and the environment.

Due to these characteristics, MASs are generally considered as an eligible tech-
nology for accurately modeling and implementing self-organizing emergent systems.
The field of MASs has been studied since about 1980, and has only gained widespread



recognition since about the mid-1990s. Nonetheless, the debate on what constitutes
an autonomous agent and how to define it is still under way. Wooldridge and Jen-
nings [WJ95] attribute an autonomous agent with three essential properties:

e Social ability: Agents interact with other agents (and possibly humans) via
some kind of agent-communication language (ACL)

e Reactivity: Agents perceive their environment and respond in a timely fash-
ion to changes that occur in it.

e Pro-activeness: agents do not simply act in response to their environment,
they are also able to exhibit goal-directed behavior by taking the initiative.

Although these properties are cited very often in literature, they do not represent
a general characterization of an agent, because they require agents to interact using
an ACL, e. g. KQML [FMM94] or FIPA-ACL [FIP02b]. But there exist several types
of autonomous agents that only interact through the environment, not in need of
ACLs. A more general definition of an agent is given by Wooldridge [Woo09]: "An
agent is a computer system that is situated in some environment, and that is capable
of autonomous action in this environment in order to meet its design objectives.”
An agent is in possession of a repertoire of autonomous actions that it can execute
to modify the environment. Executed actions effect changes in this environment,
which can be sensed by sensors of an agent, either physical sensors (in the case of
physically embodied agents situated in a part of the real world) or software sensors
(in the case of computational agents such as simulated or software agents).

The field of MAS research did not emerge from a vacuum but has commonali-
ties and differences with other research fields. For a long time it was common to
refer to MAs as a subfield of Artificial Intelligence, namely Distributed Artificial
Intelligence, see e.g. [Wei99]. But it has become a common practice to define the
endeavor of Al itself as one of constructing an intelligent agent, see e.g. [RN02].
This is, Al is more concerned with the components of intelligence, i.e. the ability
to learn, to plan, to understand concepts, etc. In addition, classical Al has largely
ignored the social aspects of agencies [Woo09]. Another related research area is for
instance game theory. Tools and techniques of game theory have found many ap-
plications in computational MASs, see e.g. [SLB09], although many of the solution
concepts developed in game theory tend to be descriptive concepts without a view to
computation [Woo09]. Franklin and Graesser [FG97] discuss the differences between
agents and arbitrary computer programs, whereas Wooldridge [Woo09] in addition
discusses differences between MASs and distributed/concurrent systems, economics,
and social science.

2.4.1 Generic Agent Architectures

Based on the agent theory [WJ95], a spectrum of generic agent architectures have
appeared (see for instance [Oss99, Sch01]):



e Deliberative agents: A deliberative agent, on the one side of the spectrum,
maintains an internal representation of the world in which it lives, i.e. it has
an explicit mental state. Thus, this type of agent is also referred to as mental
or rational agent. The representation is an explicit symbolic model, which
can be modified by some kind of symbolic reasoning, i. e. a planner reasons on
this model and decides which actions to realize, while the agent uses sensor
data in order to update this model. One of the best known deliberative agent
architectures are BDI agents, which are based on the BDI (belief, desire and
intention) theory [RG95]. Beliefs represent the informational state of the agent,
i. e. its knowledge about the world, desires (or goals) represent the motivational
state of the agent, i.e. objectives or situations that the agent would like to
accomplish or bring about, and intentions represent the deliberative state of
the agent, i.e. what the agent has chosen to do. Even though they are not
a conceptual ingredient of the BDI theory, plans are essential, representing
sequences of actions that an agent can perform to achieve one or more of its
intentions.

¢ Reactive agents: A reactive agent, on the other side of the spectrum, works
in a hard-wired stimulus-response manner. Instead of any symbolic repre-
sentation of the world and any abstract reasoning, a reactive agent makes
its decisions directly based on the input of its sensors. Hence, the decisions
are usually based on a very limited amount of information along with sim-
ple situation-action (if-then) rules. The focus of this agent type is rather on
achieving robustness instead of optimality. One of the best known reactive
agent architectures is the so-called subsumption architecture [Bro86].

e Hybrid agents: In between the spectrum, a hybrid agent represents a unifica-
tion of deliberative and reactive agents in order to surmount their respective
weaknesses. Whereas reactive agents very seldom implement goal-directed
behavior, deliberative agents are mostly based on general-purpose reasoning
mechanisms, which are not tractable and much less reactive. Essentially, hy-
brid agents are steered by their simple routines reacting to basic stimuli. How-
ever, a deliberative module controls the reactive one when it wants to perform
stimulus-free actions (like reasoning) or to change long-term goals. An impor-
tant example is the hybrid architecture InterRAP [Miil96].

Apparently, these three agent architectures differ from one another in their view
of the intra-agent aspects. However, these agent architectures are idealized ones. In
practice, there exist much more architectures mixing different aspects of these ar-
chitectures. For example, the agent architecture used for our coordination approach
in Chapter 4 resides between purely reactive agents and hybrid agents, and comes
close to the notion of situated agents [WHO04]. In situated MASs the agents work
together locally to solve complex global problems. They are characterized by the
presence of an explicit spatial structure in which agents act, i. e. every situated agent
has an explicit position in the (distributed) environment. Situated agents live and



act in the presence and their decision making is not based on extensive reasoning
upon mental states. They do not use long-term planning to decide what action
sequence to execute next, but rather use computationally efficient behavior-based
action selection mechanism to select situated actions they will perform. Behavior-
based action selection is driven by stimuli perceived in the environment as well as
stimuli internal to the agent. The situated actions hence are selected on the basis
of an agent’s position in the environment, the state of the world it perceives, and
only a limited amount of its internal state. The internal state will only be employed
for decision making if it relates to (1) general static information of the system, e.g.
fixed priority rules, (2) dynamic information related to the agent’s current context,
e.g. a temporal agreement for collaboration with an agent on the same position, or
(3) issues internal to the agent, e. g. a threshold value used as a switch for changing
roles (cf. [Wey06]). Due to such an action selection mechanism a situated agent
is able to respond rapidly to dynamic and changing circumstances. In contrast to
deliberative agents, situated agents also do not emphasize an internal modeling of
the environment. Instead, they favor to employ the environment itself as a source
of information.

Also, a MAS has not to be based on a single agent architecture exclusively. As
we will see in Chapter 6, we use different types of agent architectures to realize a
self-managing systems combining self-organization with self-adaptation.

2.4.2 Formal Definitions

Due to the large range of agent types and architectures, various descriptions of
an agent have been proposed, without, however, reaching a commonly accepted
definition. A very general but concise definition of an agent that can be instantiated
to most of the views of agents in literature is provided by Denzinger and colleagues
(cf. [KDO6]):

Definition 2.2 (Agent)
An agent Ag is defined as a quadruple

Ag = (Sit, Act, Dat, fag)
where
e Sit is a set of situations Ag can be in
e Act is the set of actions Ag can perform
e Dat is the set of possible values that Ag’s internal data areas can have

o fag: Sit x Dat — Act is the decision function Ag uses in order to determine
its next action

Consequently, they define a MAS (see Figure 2.4) on a very high level as follows:



Definition 2.3 (Multi-agent system)
A multi-agent system M AS is defined as a pair

MAS = (A, Env)
where
e Ais a set of agents Agy, ... Agm

e Env is a common environment (or at least parts of it) the agent in A share in
order to interact with each other

The agents in A might all have different sets of situations, actions, and internal
data area values and they naturally can also have different decision functions. The
actions of the agents in A might change the environment (or it can change on its
own) and therefore Env consist of a set of environment states.

MAS

Env

Figure 2.4: Components of a multi-agent system

Based on these two definitions, the first three components of an agent can be more
structured by distinguishing between parts dealing with the agent in the environment
itself and parts dealing with other agents. More formally, an element sit of Sit has
the form sit = sitpp,sitay , where sitpy,, describes the environment the agent acts
in without the other agents and sit 44 provides the information about other agents.
Note, the set Sit of an agent can be just a view on the environment, i.e. an element
of Sit can contain less information than an element of Env. Act can be divided into
the sets Actown of the agent’s actions not dealing with other agents and Act., of its
communication and cooperation actions. Dat can be further structured into the set
of data areas that contain information about the agent itself (Datyyy), areas that
contain sure knowledge about other agents (Datgy), and areas that contain assumed
(and therefore unsure) knowledge about other agents (Dat,y).

For an external observer lacking initial knowledge about an agent, the agent’s de-
cision function appears to be a function g4, : Sit — Act, i. e. an observing agent can
only perceive actions and situations, but not the internal decision mechanisms that
drive an agent’s decision making. The extent of the difference between an actual
fag and apparent ga, distinguishes between reactive and deliberative (or proactive
respectively knowledge-based) agents. An agent Ag is reactive if its Dat has neg-
ligible influence on its decision making, and deliberative if its Dat has significant



influence on its decision making. Consequently, for situated agents Dat only has
limited influence. Finally, the realization of Ag’s actual fa, depends on the agent’s
architecture.

In contrast to e.g. [Syc98|, these very general definitions make no assumptions
about the way a MAS is controlled, the communication and interaction patterns,
or the information available to each agent. Due to this generality, these definitions
also apply to several classes of systems, not only artificial ones but also human or
animal systems. However, due to the abundance of proposed agent paradigms and
models, any stricter definition will automatically exclude some of them. Thus, we
will base our concepts presented in Chapter 4 and Chapter 6 on these definitions.

2.5 Related Research Areas

As mentioned in the previous sections, the tackled problems and challenges of this
thesis emanate from the areas of self-adaptive and self-organizing systems, respec-
tively. Although these classes of systems constitute separate research areas, which
may converge in the area of self-managing systems, they are related to other re-
search areas as well. In virtue of the tackled problems and challenges this thesis
is mainly related to two further research areas, which are Autonomic Computing
(Subsection 2.5.1) on the industrial side and Organic Computing (Subsection 2.5.2)
on the academic side.

2.5.1 Autonomic Computing

Autonomic Computing (AC) is a term as well as a paradigm coined and promoted
in the first instance by IBM since 2001 [Hor01]. The overarching goal of AC is to
realize computer systems and applications that can manage themselves in accordance
with high-level guidance from humans [PHO5]. The need and justification for AC
is based on the permanently increasing complexity of today’s computer systems
accompanied with the escalating costs for managing these systems and thus based
on the enduring validity of Moore’s law [Moo65]. Because the AC Initiative is driven
by an IT vendor, its focus is on enterprises and their respective needs in the first
instance, e. g. reducing TCO of data centers, efficient power management, etc.
More specifically, AC aims at designing and building systems that are self-mana-
ging, i.e. self-configuring, self-optimizing, self-healing, and self-protecting, forming
an autonomous and ubiquitous computing environment that completely hides its
complexity and provides the user with an interface that exactly meets her /his needs
[SPTUO05]. Although initially equipped with these four self-* properties® and addi-
tional major characteristics such as knowing itself and being context-aware, open,
and adaptive [Mur04], numerous additional self-* properties became attributed to
AC systems in the following years. A non-exhaustive list includes self-governing, self-

5Sometimes also referred to as self-CHOP properties (self-configuring, self-healing, self-optimizing,
and self-protecting)



adapting, self-organizing, self-recovering, and self-diagnosing of faults (cf. [SPTUO05)),
self-planning, self-learning, self-scheduling, self-evolving, self-regulating, self-correct-
ing, self-administering, self-monitoring, self-adjusting, self-tuning, self-aware, self-
modeling, self-assessing of risks (cf. [Tia03]), and self-assembling [TCWT04], for
instance. Summarizing these self-* properties, an AC system is expected to manage
itself on its own without conscious recognition or significant effort on the side of the
users, allowing the latter to concentrate on what they want to do without worrying
about how it has to be done.

This management paradigm is inspired by the human autonomic nervous system
(ANS), which is the part of the peripheral nervous system that acts as a control
system. As a silent guardian the ANS constantly regulates and controls the internal
organs and vegetative functions of the body such as breathing, heart beat adjusting,
body temperature control, digestion, fending off viruses, circulation of the blood,
or hormone production. The ANS monitors changes inside and outside the body,
integrates sensory inputs, and effects appropriate response without any conscious
recognition or effort by the human itself [Enc08]. In the same way the ANS manages
the human body, AC systems are intended to have the ability to manage, repair,
and protect themselves. Apparently, this approach corresponds to exogenous self-
management (see Section 2.2).

To support this vision of AC [KCO03], IBM provides an architectural blueprint for
AC [IBM06]. Although there exist other architectural approaches for AC as well, see
e.g. [WHW™T04], the blueprint by IBM is the best-known approach. It organizes an
AC system into several building blocks that are the architectural representations of
the components in an AC system working together to provide autonomic capabilities.
The building blocks can be composed in different ways. A possible topology for
composing these building blocks in a hierarchical way is represented by the generic
AC reference architecture (see Figure 2.5).

The lowest layer contains the different system components (servers, databases,
applications, etc.), called managed resources, that make up the IT infrastructure of
an enterprise or organization. Managed resources may already have embedded self-*
properties themselves. The next layer incorporates consistent, standard manageabil-
ity interfaces for accessing and controlling the managed resources, implemented by
so-called manageability endpoints or sometimes touchpoints. A particular resource
may have one or more resource autonomic managers or touchpoint autonomic man-
agers, each implementing a control loop. Figure 2.5 illustrates this by depicting a
touchpoint autonomic manager for every broad self-* property in the third layer.
The fourth layer contains orchestrating autonomic managers that orchestrate the
touchpoint autonomic managers to deliver system-wide autonomic capabilities by
incorporating control loops that have the broadest view of the overall IT infras-
tructure. The top layer illustrates a manual manager, which is the architectural
representation of the human activity typically involving a human administrator us-
ing a management console, collaborating with or orchestrating other autonomic or
manual managers. The various manual and autonomic manager layers can obtain
and share knowledge via knowledge sources. A knowledge source is an implemen-



Manual [FiSeeeeerT]
Manager E-
\?Vr_f:_estrating Orchestrating
/ithin a Across Disciplines
Orchestrating Discipline
Autonomic N]Z Knowledge
Managers oeo M M Sources
Self- Self- Self- Self- Self- Self- Self-
C i Ci i C i ConfiguringOptimizing Healing Protecting
Touchpoint Self-Configuring Self-Healing Self-Optimizing Self-Protecting
Autonomic
Managers w W W W -
S F=r= P o T Sy P o o
Touchpoint “_ ;«1 ‘ q —_— :]
Resources
Servers Storage Network Database / Application
Middleware

Q Intelligent
Control

Loop

Figure 2.5: Autonomic Computing reference architecture [IBMOG]

tation of a registry, dictionary, database or other repository that provides access
to knowledge such as management data with defined syntax and semantics. All of
these AC building blocks may be connected e.g. by an enterprise service bus that
directs the interactions between them.

Apparently, central to the provisioning of system-wide self-managing capabilities
in AC systems is the implementation of a feedback control loop by an autonomic
manager (AM). We will investigate this implementation in an AM later in Section 5.3
more specifically.

2.5.1.1 Levels of Autonomic Maturity

There is, however, a general consensus in industry that the creation of fully self-
managing systems will not happen overnight and will require considerable invest-
ment and cross-industry cooperation. Incorporating self-managing capabilities into
an IT infrastructure is more an evolution than a revolution. The alternative today
is between an automation of some management functions and fully manual manage-
ment [BFO03]. In the first architectural blueprint for AC [IBM03], IBM has defined
five autonomic maturity levels:

e Basic: point solutions provide management input to humans for their analysis,
action planning, and initiation.



e Managed: information is consolidated and filtered. Humans still determine,
plan, and execute management actions.

e Predictive: situations are detected automatically and recommended actions
are presented to humans for approval.

e Adaptive: performance parameters are adjusted automatically without hu-
man intervention. Security and failure actions may also be taken automatically.

e Autonomic: humans provide guidance to automatic systems in terms of busi-
ness objectives.

In the fourth architectural blueprint for AC, these levels have been refined to the
AC adoption model as depicted in Figure 2.6, which describes the evolution towards
more highly autonomic capabilities of an IT infrastructure. This model focuses on
businesses that want to calibrate and increase the degree of autonomic capability
that their current infrastructure and organization has. Thus, the model is spanned
by three dimensions: the ”functionality” dimension, the ”control scope” dimension,
and the "service flow” dimension. Whereas the functionality dimension characterizes
the extent of automation of the IT and business processes by five levels (which are
comparable to the five maturity levels mentioned above), the control scope dimension
characterizes what is being managed. Finally, the service flow dimension captures
the combination of IT management process activities that are being performed.

2.5.1.2 Application Areas

In recent years, the AC paradigm and its corresponding technologies was particularly
used for research in the following key applications areas (cf. [HMO0S]):

e Data Centers, Clusters, and Grid Computing Systems: Installing and
maintaining these kinds of distributed systems (which can potentially span to
worldwide) is very complex, because they are essentially high performance,
heterogeneous, distributed clusters of computers used to run anything from
scientific to business applications for various users. Hence it is an excellent
application area for AC solutions. The two key areas of autonomic research
in here are dynamic resource management, which has received the most at-
tention, and systems administration. Typically data centers, service centers,
or grids are described as a service-oriented architecture (SOA) and therefore
quality of service (QoS), which could be formalized in service level agreements
(SLA), determines the resource selection options (see [MBO7]). This is fur-
ther complicated by the fact that the dynamic nature of the system’s load,
up-times, uncertainties, etc. have to be taken into account not only when ini-
tially allocating resources, but while the application is using those resources.
Typically this has lead to a grading of service levels as Platinum, Gold, Silver,
and Bronze. However, what these levels actually mean depends on the sys-
tem in question and their users, and varies greatly throughout the literature
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(see e.g. [ACMS06]). For systems administration, in many examples (see e. g.
[BMLT05, ZYKO7]) a profile of the human operator behavior and its relation
to the system’s tuning constants or operator action, is obtained. Effectively,
from these profiles a set of actions and responses are obtained. Consequently,
a set of policies can be derived to drive the autonomicity. Thus, when a policy
rule is broken, an action is taken that is determined by what was learned by
the profile.

Power Management: It is estimated that power equipment, cooling equip-
ment, and electricity together are responsible for 63% of the TCO of the phys-
ical IT infrastructure of a data center [Ame03]. Such statistics served as a
motivation for self-adaptive systems that optimize the resource management
in data centers not only in terms of performance metrics but also in terms of
the power that a given algorithm or service will consume on a given infrastruc-
ture. Whereas earlier work focused on the processor’s power consumption for
individual server nodes [KAHO04] or power allocation of server clusters [FF05],
more recent work focuses on models that take memory, network, and IO con-
sumption [KH07, KHYO08] as well as heat management [MCRO6] into account.
It was demonstrated that such autonomic power and performance management



in e-business data centers is able to achieve 72% savings in power consump-
tion while maintaining performance as compared to static power management
techniques [KHYO08]. Autonomic solutions based on limited lookahead con-
trol were able to save on average 22% in power-consumption costs of a server
cluster over a twenty-four hour period when compared to a system operating
without dynamic control while still maintaining QoS goals [KKH"09]. Auto-
nomic solutions based on MASs can achieve power savings of more than 25%
in blade centers [DKLT08].

e Ubiquitous Computing: This area concerns the building of intelligent envi-
ronments from a number of, potentially, heterogeneous devices such as sensor
nodes, PDAs, PCs, etc. having small amounts of resources and power [Wei91].
The sheer complexity of installing and maintaining ubiquitous computing sys-
tems and keeping them running in a robust way, easily lends itself to AC. The
application areas for these systems range from monitoring vineyards [BBB04]
to looking after the elderly in the home [HMHO7]. The research concentrates
in particular on autonomic wireless sensor networks (WSN). This is motivated
by the key assumption that the main cost of WSNs lies in driving the wireless
equipment and not the sensors or CPUs. Thus, routing data from one node to
another has received much attention, where the aim is to minimize the time
to deliver a packet whilst minimizing the energy consumed in delivering it.
Depending on the resources and power of devices, either ”middleware” solu-
tions running a kind of AM have been investigated for higher end devices (e. g.
[HMO5, SBHT06, TSTNOG]), whereas more lightweight, ”emergent” solutions
have been investigated for lower end devices (e. g. [PMNO05, HMHO07]). In these
latter approaches, autonomicity is embedded into the core of the sensor nodes
thus providing for self-management from the lowest level.

2.5.1.3 Research Challenges

Before AC systems become a solution to the complexity problem, certain research
challenges have to be tackled (see also [Mur04, HMGO05]). Kephart [Kep05] divides
this research space into three basic parts:

e Autonomic elements: This part focuses on research directed towards im-
proving the self-managing capability of specific components, research on tech-
nologies that are generally applicable to autonomic elements, and research on
the internal structure of autonomic elements, as well as tools to create them.

e Autonomic systems: This part focuses on research on generic technologies
that entail interactions among multiple autonomic elements to achieve system-
level goals, research on system-level architectures that effectively govern inter-
actions among autonomic elements, and research on fundamental science of
large-scale autonomic computing systems, addressing questions of learning,
stability, control, and emergent behavior in multi-agent systems.



e Human-computer-interactions: This part focuses on research on present
and future interactions between human administrators and other users and
self-managing systems as well as research on methods for eliciting high-level
policies from people and representing and appropriately transforming those
policies within autonomic systems.

Apparently, the problems and challenges tackled by this thesis intersect with the
second part of the AC research space, namely research an autonomic systems. There
is an initial interest in the AC community to make AC systems more and more
decentralized and less deterministic, as well as to engineer, exploit, and control
emergent features (see e.g. [ERAT03, BJM04, ABI07]). This is why self-organizing
emergent systems in this community are sometimes also referred to as decentralized
AC systems.

2.5.1.4 Further Industrial Initiatives

Although IBM has certainly started the most well-known industrial initiative tack-
ling the management of IT complexity, other IT vendors have started similar pro-
grams with comparable objectives. However, in contrast to AC, none of them has
coined this research area such as IBM’s initiative.

Since 2003, Microsoft has been proposing its Dynamic Systems Initiative (DSI)
[Mic03]. For Microsoft, dynamic systems are systems designed to enable businesses
and the people in them to meet dynamic demands with a quick and effective response
[Mic07]. The DSI is Microsoft’s ten year strategy for developing and delivering
dynamic systems technologies that enable businesses and the people in them to
be more productive and to better adapt to dynamic business demands. The three
architectural elements of this strategy are design for operations (to capture the
diverse knowledge of people), knowledge-driven management (that enables systems
to capture desired states of configuration and health in models based on business
priorities and demands), and wvirtualized infrastructure (to achieve greater agility
and leverage existing infrastructure by consolidating system resources into a virtual
service pool) (cf. [Mic07]). Remaining challenges in this program are e. g. building up
a library of knowledge in management models and to deliver the benefits of dynamic
systems across heterogeneous environments.

Initially started in 2003 under the name of Adaptive Enterprise, Hewlett-Packard
(HP) has renamed its program into Adaptive Infrastructure [Hew08], focusing on
next-generation data centers. HP’s vision of a next-generation data center (NGDC)
is a 24/7 environment that is highly automated and establishes the data center
as a supply chain for IT services. The key methodologies/enablers of an adaptive
infrastructure are standardization (systems — including servers and storage — will
be standardized and simplified around pre-set configurations mapped to the main
types of service usage), management (through a ”single-view” IT services control
room that requires few people to manage the delivery of IT services following a
standard process), virtualization (separates the hardware owner from the applica-



tion owner allowing operations, configurations, monitoring operations, and tool sets
to be homogenized), automation (dynamical reallocation of resources to meet chang-
ing business needs), energy efficiency (focusing on chip efficiency and data center
cooling in a holistic manner), and a repeatable shared services pattern (a small num-
ber of shared IT resource configurations, whereby infrastructure, information, and
applications are delivered as services). HP has even defined an adaptive infrastruc-
ture maturity model comprising five stages of maturity (see [Hew07]).

In addition to these two programs, in the last few years there have been an-
nounced and sometimes partly abandoned some more programs or visions, more or
less successfully. Sun has started its N1 program [Sun02b] in 2002, which is part of
Sun’s management software focusing on enabling I'T managers to respond quickly to
changes in business requirements and customer needs, focusing on NGDCs as well.
Intel had the vision of Proactive Computing [Ten00, WPTO03] in 2000, aiming to
built computers that will anticipate our needs and sometimes take action on our
behalf.

In 2002, Forrester Research proposed the term Organic IT [Gil02] to describe all
the industrial efforts executed in this area. They defined Organic IT as ”comput-
g infrastructure built on cheap, redundant components that automatically shares
and manages enterprise computing resources — software, processors, storage, and
networks — across all applications within a data center.”

2.5.2 Organic Computing

Closely related to the objectives of AC is the Organic Computing (OC) initiative
[OCI05], which is by contrast an academia-driven research area and thus is not
covered by the umbrella of Organic IT, as one could assume. The term ’'Organic
Computing’ emerged from a workshop held in 2003 on ’Hot Topics in Computer
Engineering’ by a GI/ITG special interest group on computer engineering and archi-
tectures of computing systems. The results of the workshop have been summarized
in a position paper [VDE03], which built the basis for a priority program on Organic
Computing [Ger05] that started in 2005.

In general, OC is based on the intuition that in near future we will be surrounded
by large collections of autonomous elements, which are equipped with sensors and
actuators, aware of their environment, able to communicating freely, and capable of
organizing themselves in order to perform and fulfill the actions respectively services
that are required. In contrast to the business perspective of AC, OC claims to
have a strong orientation towards human needs, aiming to construct systems as
robust, safe, flexible, and trustworthy as possible. As these systems therefore are
expected to exhibit life-like properties, such as acting more independently, flexibly,
and autonomously, these systems are called ’organic’. Consequently, an OC system
is a technical system, which adapts dynamically to the current conditions of its
environment while satisfying humans needs. Example application areas are the
control of homes, e. g. with respect to energy consumption, assistance in driving and
maintaining cars, monitoring of health and alerts in case of dangerous conditions,



supervising children on their way to school, or organizing shopping lists (cf. [Sch05]).
Similar to AC systems, OC systems hence have emerged as a challenging vision
for future information processing systems, and are thus likewise attributed with
properties such as being self-organizing, self-configuring, self-optimizing, self-healing,
self-protecting, self-explaining, and context-aware.

2.5.2.1 Research Challenges

The OC community has identified several research challenges for OC systems, too
(see e.g. [MSvdMWO04, Sch05]). The challenges became part of the grand research
challenges of computer engineering [BBF 08| with regard to OC techniques. How-
ever, the boundaries of these challenges are not sharp and hence some of these
challenges overlap with each other, while some of them additionally overlap with
the research challenges for AC:

1. Control of self-organization and emergence: Because the effects of self-
organization and emergence can be positive as well as negative, these effects
have to be detected and controlled during the operation of OC systems. Mech-
anisms are required that prevent negative emergence (emergent misbehavior)
as well as at the same time produce positive emergence.

2. Organic Computing architectures: Standardized building blocks are re-
quired that monitor, analyze, and coordinate dynamic and adaptive system el-
ements, evaluate alternative configuration, cooperation, and conflict handling
processes, as well as execute reconfigurations. On the long run, these con-
trol bricks might be more complicated compared to he underlying productive
system.

3. Self-* properties: The requirements on self-configuration, self-optimization,
self-healing, and self-protection have to be implemented by a holistic architec-
ture to achieve the self-management of OC systems. This architecture has to
be completed by methods for self-monitoring and self-controlling.

4. Safety, robustness, and trustworthiness: Adherence to certain behavior
guarantees in safety-critical application areas, integrity of data in personal-
ized services, or reliability of behavior assertions are essential for OC systems,
despite their unforeseeable behavior due to the micro-macro gap.

5. Engineering methodologies, tools, and mechanisms: To engineer OC
systems in a reasonable way, new methodologies, tools, and mechanisms are
required that allow for a self-organizing, emergent, and adaptive behavior of
the system elements within certain boundaries or constraints.

6. Understandability for humans: Mechanisms and techniques for self-expla-
nation are required that put across the complex and dynamic organization of
a OC system for humans respectively provide abstractions to cover the aspects
of usability and trustworthiness.



7. Learning mechanisms: System optimization and failure predication require
learning mechanisms that operate at runtime. However, the learning space has
to be restricted to prevent unwanted or harmful system states.

8. Inspirations from brain research and bionics — activity, motivation,
and emotions: Some elements of a OC system have to be active and have
to pursue own goals, in order to achieve the self-CHOP properties. According
to the OC community, their behavior can be described with properties such
as motivation, desires, or self-confidence. Thereby, analogies from the human
brain or from bionics are expected to help.

9. Reduction of complexity: Using the reduction of complexity as a design
criteria may be an alternative approach. Thereby, a system is reduced to
the bare necessities to fulfill the required tasks with minimal interaction, in
order to keep the system simple and manageable. A combination of simple
subsystems to more complex systems is assumed to make the latter systems
more controllable.

10. Science of organization: This challenge deals with the analysis and iden-
tification of common principles in the organization of complex systems such
as companies, economic systems, societies, or natural systems. Among other
things, a balanced state of these organization is of interest as well as events
that throw them out of balance.

11. Application areas: The transformation of relevant research results into prac-
tice is essential. Application-specific solutions complemented with e.g. simu-
lators or demonstrators are required, for instance in areas such as automotive,
transportation systems, manufacturing automation, mechatronics, or power
management.

Due to the overlaps as well as the vague descriptions and boundaries of these
challenges — which mainly result from the individual interests of the variety of au-
thors of [BBFT08] — many links exist between the problems and challenges tackled
by this thesis and the challenges of the OC research area, in particular links to the
challenges 1, 2, 3, 5, 7, 10, and 11.

2.5.2.2 Further Academic Initiatives

Beside OC there exist a few more initiatives driven by academia that tackle the
management of future I'T complexity. The research umbrella Autonomic Communi-
cation [Aut04] focuses in particular on the improvement of the ability of networks
and services to cope with unpredicted changes. The latter include changes in topol-
ogy, load, task, the physical and logical characteristics of the networks that can
be accessed. In contrast to the pervasive perspective of OC, with focus on large
collections of devices or systems, as well as the business perspective of AC, with
focus rather on servers and databases, autonomic communication generally refers to



research thrusts involved in a deep foundational rethinking of communication, net-
working, and distributed computing paradigms to face the increasing complexities
in these domains. Hence, the vision of autonomic communication research is that
of a networked world in which networks and associated devices and services will be
able to work in a totally unsupervised manner, able to self-configure, self-monitor,
self-adapt, and self-heal (cf. [DDFT06]).

Amorpheus Computing [AACT00] aims on assembling systems incorporating vast
numbers of information processing units, such as micro-sensors, actuators, or com-
munication devices, that show a coherent global behavior. It thereby allows for
systems that comprise unreliable processing units interconnected in unknown ways.
The targeted processing units are in contrast to other initiatives very small, for
instance micro-fabricated particles that communicate via short-range radio or even
bio-engineered cells that communicate by chemical means, e.g. wave propagation.
An illustrative example application is a smart paint that senses and reports on wind
loads on bridges it coats or monitors their structural integrity. Similar to OC, the
challenge hence also amounts to how to engineer a pre-specified, coherent behavior
from the cooperation of vast numbers of system elements.

2.6 Conclusion

In this chapter we have presented the necessary background knowledge for this thesis.
More specifically, we have investigated the terms self-management, self-adaptation,
as well as self-organization and emergence and have pointed out their conceptual
relations, similarities, and differences more clearly. Based on that we have provided
a definition of self-organizing emergent systems and presented MASs as technology
to model and realize the former class of systems. At the end we have surveyed two
research areas related to the problems and challenges tackled by this thesis.

Due to these investigations it becomes evident that the meaning of the terms self-
management, self-adaptation, and self-organization is not clear-cut but depends very
often on the community they are used in. According to the conceptual descriptions
above, a self-managing system can be considered as a self-adaptive system as well
as a self-organizing system, however, a self-adaptive system can be considered as a
(weakly) self-organizing system too, whereas a self-organizing system is in general
adaptive but not always self-adaptive. Thus, it is no wonder that in the AC as well
as OC community the corresponding self-managing systems are often referred to as
being self-organizing, even though conceptually self-adaptive was meant.

Anyway, our approach for efficient decentralized coordination (see Chapter 4,
later) is based on the understanding of self-organization as presented in Section 2.3,
whereas our approach for the efficiency improvement at runtime (see Chapter 6,
later) is based on the understanding of self-adaptation as presented in Section 2.2.
However, as one will see by the combination of these two approaches, the same
system may be called strongly self-organizing as well as self-adaptive, subject to the
time of consideration. This time aspect is not covered by any terminology yet.
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Chapter 3

Designing Self-Organizing Emergent
Systems

While the last chapter has provided the basics for this thesis in general and for self-
organizing emergent (multi-agent) systems in particular, this chapter provides the
background for and state of the art in designing self-organizing emergent systems.
This will reveal in more detail, why the design process today is too complex, time-
consuming, and costly (cf. Problem 1). The background for and state of the art in
operating self-organizing emergent systems will be presented in Chapter 5.

For the design of self-organizing emergent MASs, two aspects play an important
role: interaction and coordination. If the agents are not able to interact with each
other, no global behavior will ever emerge. Moreover, to guide the global behavior
in order to achieve the required system requirements, the appropriate, decentralized
coordination of the agents’ interactions is today acknowledged as a key issue for the
design of self-organizing emergent MASs. Consequently, Section 3.1 provides the
corresponding background by explaining different viewpoints on the coordination of
interacting agents. By focusing on coordination models and languages, Section 3.2
then provides a comprehensive survey on the state of the art in coordinating com-
puter systems in general and MASs in particular. Subsequently, Section 3.3 focuses
on models and mechanisms for decentralized coordination, providing the state of the
art in coordinating self-organizing emergent MASs. Section 3.4 subsequently exam-
ines the design process of self-organizing emergent MASs in the context of existing
engineering methodologies. Finally, Section 3.5 concludes this chapter.

3.1 Subjective vs. Objective Coordination

Without doubt, everyone has an intuitive sense of the term coordination. When
we watch a winning soccer team or aircrafts arriving and departing at an airport,
we can notice obviously good coordination. However, we sometimes notice good
coordination most clearly when it is lacking, e.g. when we spend minutes waiting
on only one of a dozen elevators in a huge building, when we spend almost hours in
an aircraft on a runway waiting for a starting slot, or spend even days waiting for
our baggage that did not make it at an intermediate stop.

These examples indicate that the concept of coordination is not limited to MASs
or even computer science. In sociology, researchers observe the behavior of groups



of people, and try to identify particular coordination mechanisms and explain how
and why they emerge. In economy, researchers are concerned with the structure
and dynamics of the market as a particular coordination mechanism and attempt
to build coordination market models to predict its behavior. In biology, researchers
observe societies of simple animals demonstrating coordination without central in-
dividuals and attempt to build biologically-inspired coordination mechanisms useful
to other scientific disciplines. In organizational theory, the emphasis is on predict-
ing future behavior and performance of an organization, assuming the validity of a
certain coordination mechanism. But coordination also has its role in many other
disciplines, such as social sciences, anthropology, linguistics, law, or political science

(cf. [MC94]).
A simple but widely accepted definition of coordination in general was given by
Malone and Crowston [MC94]: ”Coordination is managing dependencies between

activities.” This definition is consistent with the simple intuition that, if there is no
interdependence, there is nothing to coordinate. Consequently, the definition is not
restricted to computer science, but also applies to many other disciplines. The fairly
inclusive sense of the definition also allows for specialized forms of coordination, such
as cooperation, collaboration, and competition. Cooperation usually implies shared
goals among different actors. Collaboration often connotes peers working together
on an intellectual endeavor. Competition usually implies that one actor’s gains are
another’s losses. However, all these terms describe different approaches to managing
dependencies between activities (cf. [MC94]).

In computer science, research on coordination has developed along two basically
separated fields, namely DAI and SE, respectively. In DAI, for a long time coor-
dination was interpreted as an individual, psychological activity, performed by a
agent trying to achieve its own goals in the context of a MAS. Here, the agents were
seen as the coordinating elements. In SE, coordination was basically regarded as
normative activity performed by some part of a multi-component system on behalf
of the system’s designer — typically, by a coordination medium provided by an in-
frastructure. Here, the components were seen as the coordinated elements. Whereas
the first approach seems to better suit systems whose components exhibit a high
degree of autonomy, the second approach often disregarded any capability of the
components in terms of autonomy or deliberation (cf. [ORVRO04]).

Schumacher [Sch01] was the first attempting to combine these different viewpoints.
He argued, that basically there are two ways to look at interactions between agents:
from the inside (agent-oriented viewpoint) and from the outside (MAS-oriented view-
point) of the interacting agents. Due to the definition of coordination, these two
different viewpoints result in two different ways of coordinating agents in a MAS
(cf. [Sch01, O003)):

e Subjective coordination refers to the coordination from the agent-oriented
viewpoint and deals with managing subjective dependencies between agents,
i.e. intra-agent dependencies towards other agents. It affects the way in which
individual agents behave and interact, focusing on the tasks, goals, plans, and



actions of an agent. The interaction space of an agent roughly amounts to
the observable behavior of other agents and the evolution of the environment
over time, filtered and interpreted according to the agent’s perception and
understanding. In other words, the agent monitors all interactions that are
perceivable and relevant to it, as well as their evolution over time, and devises
actions that could bring the overall state of the MAS (or the world) to better
coincide with one of its own goals or the goals of the agency.

e Objective coordination refers to the coordination from the MAS-oriented
viewpoint and deals with managing objective dependencies between agents,
i.e. inter-agent dependencies external to the agents. The latter include e.g.
the configuration of the system in terms of the basic interaction means, agent
generation/destruction, and organization of the environment. Objective coor-
dination acts directly on the dependencies in an environment and affects the
way in which interaction amongst the agents and the environment is enabled
and ruled and is hence mainly concerned with the organization of the world
of a MAS. The interaction space is given by the environment of a MAS, the
observable behavior of all the agents, and by all their interaction histories.

Roughly speaking, subjective coordination affects the way in which individual
agents behave and interact, focusing on the behavior of agents as (social) individu-
als immersed in a MAS. In contrast objective coordination affects the way in which
interaction amongst the agent and the environment is enabled and ruled, focusing
more on the behavior of a MAS as a whole. Not differentiating subjective and objec-
tive coordination leads to MASs that resolve objective coordination with subjective
coordination means, i.e. by using intra-agent aspects for describing system configu-
rations. This mixture is typically present in MASs composed of deliberative agents
using ACLs in order to communicate (cf. [Sch01]). For a more detailed differentia-
tion between subjective and objective coordination see [OO03], which use a simple
example scenario from the blocks world for better illustration.

Due to the differentiation between subjective and objective coordination, the role
of the environment of a MAS began to change. Traditionally, the environment of
a MAS has been very often associated with the infrastructure for a MAS (see e. g.
[HS99b]). The infrastructure is essential for a MAS, because it offers the MAS im-
portant functionalities, such as the communication infrastructure, network topology,
available physical resources, naming, life-cycle-management, etc. (cf. [OOR04]). In
other words, the environment has been viewed as a passive entity of a MAS con-
stituting the deployment context where agents are immersed in. With the notion
of objective coordination, however, the environment of a MAS became more than
a sole infrastructure, as it had not only to enable interactions but also to rule
it. Thus, it became the main place for objective coordination. The role of the
environment became even more crucial, when it came about the modeling of self-
organizing emergent MASs. The observation of self-organizing processes in natural
systems, for instance pheromone diffusion and evaporation in stigmergic systems



([BDT99, CDF*01]), as well as experience with respective artificial systems (see
e.g. [SMPBO05, GVOO07]) indicated that there is a class of self-organizing processes
that is best modeled as a part of the environment rather than expressed in terms of
agents [GVCOO08|. Hence, in recent years it became commonly acknowledged that
the environment is also a true design dimension of MAS applications [WPM™*05].
The environment can encapsulate a significant portion of the system’s complexity,
in terms of services, mechanisms, and responsibilities that the agents can fruitfully
be freed of [PMST07]. Consequently, Weyns et al. [WOOO07] define the environment
of a MAS as "a first-class abstraction that provides the surrounding conditions for
agents to exist and that mediates both the interaction among agents and the access
to resources.” The environment hence became an active entity of a MAS that regu-
lates particular activities of the system in addition to the mediation of interactions,
which enables agents to exploit the environment to coordinate their behavior.

To clarify the difference between the concept of an active environment and the
infrastructure on which a MAS is deployed, Weyns et al. [WVHO06] proposed a log-
ical three-layer model for MAS that considers agents as well as the environment as
first-order abstractions. Viroli et al. [VHR'07] modified this model slightly to em-
phasize the role of environment infrastructures superiorly (see Fig. 3.1). The model
is made up of three layers: the physical infrastructure (i.e. the hardware deployment
context), the execution platform (i.e. the software layer over which the MAS runs),
and the MAS application. Rectangles represent software and hardware tiers of the
system at different levels. Circles represent agents, boxes represent environment ab-
stractions. Solid arrows from agents to environment abstractions represent actions,
dashed arrows in the opposite direction represent perceptions. Arrows between
agents represent direct agent communications, while arrows between environment
abstractions represent intra-environment interactions. Vertical lines represent the
infrastructure supporting a concept at the MAS application level.

The physical infrastructure is divided into two parts: the physical world, which
refers to the physical parts of the MAS, and hardware & network, which contains
hosts, processors, network infrastructure, etc. The execution platform runs on top of
the physical infrastructure, which is generally divided into two parts again: the soft-
ware deployment context, which includes operating systems, virtual machines, and
other (non MAS-related) standard middlewares, and the MAS middleware layer. In
general, there can be two kinds of MAS middlewares: (1) an infrastructure for agents
providing agent life-cycle, management, and often some other core services like di-
rect communication (e.g. JADE [BPRO1], JACK [NRO1], FIPA platform [FIP02a],
Retsina [SPVGO03], Living Systems [Whi09], etc.), and (2) one (or more) environment
infrastructures, each providing some class of environment abstractions to agents for
creation, access and manipulation (e.g. TuCSoN [0Z98], AMELI [ERRAA04], etc).
Environment abstractions are entities that an agent might perceive and interact with
in order to achieve individual or social goals. From the design viewpoint, environ-
ment abstractions are seen as loci where the designer can enforce rules, norms, and
functions, regulating the agent social behavior [VHR07].

The part of the MAS middleware software layer dealing with the environment is
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therefore understood as an infrastructure providing some class of environment ab-
stractions at run-time. It is worth noting that agent and environment infrastructures
cannot be completely isolated. An intersection should exist that handles agent to
environment interactions, that is, agent actions and perceptions over environment
abstractions. On top of these layers, the MAS application is formed by application
agents living over the agent infrastructure, and environment abstractions in the
application environment provided by the environment infrastructures. Interactions
between agents and environment abstractions (actions/perceptions) necessarily cross
the agents and environment boxes. But interactions between agents respectively be-
tween environment abstractions can occur as well (cf. [WVH06, VHR07]).

Application Agents Application Environment
MAS Application
Application Specific Logic
/ A y MAS
Agent Middleware / Action /|- Enviironment Middlewares / .
Percep- Middleware
Infrastructure - Infrastructures
Layer
Execution
Platform
Software
Operating System, Virtual Machines, Other Middlewares Deployment
Context
Hardware & Network
. Hardware
Physical
Deployment
Infrastructure
. Context
Physical World

Figure 3.1: Three layer model for multi-agent systems (adapted from [VHR'07])

In the case of a self-organizing emergent MAS, an active environment (along
with its corresponding infrastructure) is in charge of facilitating the adaptive self-
organization of agents that act according to a matching decentralized coordination
mechanism. The environment therefore has to provide suitable means that support
the following basic requirements (cf. [MZ06, KG06, DDF*06, GVCO08]):

e Indirectness: For the coordination of agents in open and dynamic systems,
in which agents may leave or join the system at any time and any place,



indirect interactions among the agents, e.g. as in the case of stigmergy in
nature, are much more suited. Environments facilitating indirect interactions
hence uncouple the interacting agents and free them from the need for directly
knowing each other to interact, which promotes spontaneous interactions that
are essential to any self-organizing process.

e Context-awareness: In order to facilitate spontaneous indirect interactions
to take place among the agents in an adaptive manner, the agents must affect
the surrounding environment by their actions in a way that can be perceived
and exploited by other agents for their application purposes. In other words,
indirect interactions among the agents require the capability of affecting and
perceiving context information.

e Locality: For the purpose of effective and scalable coordination in large-scale
systems, the environment should also promote locality in both the interactions
and the acquisition of contextual information. Any approach that requires
global interactions in systems comprising large numbers of agents is doomed
to fail. Scalability and ease of management can only be properly supported by
an environment, in which most interactions between the agents occur at the
local level.

As a result, the environment as the coordination medium for indirect interactions
provides a kind of ”service”, which in turn is used by the coordination mechanism
that is engaged to ensure subjective coordination among the agents. In other words,
by choosing a certain coordination medium, a coordinated agent or MAS implicitly
commits to both the coordination model endorsed by the environment /infrastructure
providing the medium and the specific coordination rules embodied by the medium
(cf. [VOO06]). Consequently, subjective coordination is based on and supposes the
existence of objective coordination, because a coordination mechanism must have
access to the mechanisms of the coordination medium [SO06]. Vice versa, objec-
tive coordination will not give rise to a self-organizing behavior of agents of itself
without suitable mechanisms for subjective coordination. Thus, it is important that
subjective and objective coordination complement each other and that any attempt
to put subjective and objective coordination altogether should aim at providing a
uniform conceptual framework [ORVRO04].

While this section therewith has provided the necessary background for the co-
ordination of agents in self-organizing emergent MASs, the next section focuses
more on objective coordination, which mainly amounts to various existing coordina-
tion models and languages, whereas Section 3.3 but one focuses more on subjective
coordination, which mainly amounts to existing models and mechanism for the de-
centralized coordination of agents.



3.2 Coordination Models and Languages

In order to affect the way in which interaction amongst agents and their environment
is enabled and ruled, objective coordination requires a well-founded coordination
model. A coordination model comprises three ingredients (cf. [Weg96, Cia96]):

e Coordination elements (coordinables): the elements whose interactions
are ruled by the model, which can be agents, as of interest here, but in general
also processes, threads, concurrent objects, and even users.

e Coordination media: the media used to coordinate the elements, i.e. the
abstractions enabling the interactions, e. g. semaphores, monitors, channels, or
more complex media such as tuple spaces, blackboards, pipelines, etc.

e Coordination laws: the semantic framework the model adheres to, i.e. a
number of laws that define the behavior of the coordination media in response
to interaction events.

In general, a coordination model supports the clear separation between the com-
putation and the coordination aspects of programming, which is necessary to master
the complexity of large applications, to enhance software re-usability, and to ease
global analysis [GC92]. The importance of separating these aspects may also be
summarized by the statement that “interaction is more important than algorithms”
[Weg97] and is advocated by the following slogan [GC92]:

programming = computation + coordination

Consequently, a complete programming model can be build out of two separate
models: the computation model and the coordination model. Whereas the com-
putation model allows programmers to build a single computational activity, i.e. a
single-threaded, step-at-a-time computation, the coordination model serves as the
glue that binds separate activities into an ensemble [GC92]. In other words, a
coordination model provides a framework in which the interaction of active and
computational independent elements can be expressed [Cia96].

Whereas an ordinary computation language embodies some computation model,
a coordination language embodies a coordination model. The latter can be viewed
as the “linguistic embodiment of a coordination model” [GC92] that provides op-
erations to create computational activities and to support communication among
them. It offers syntactical means with which a coordination model can be used for
implementing an application. A coordination language consists of a small number of
mechanisms for communication and process management that are orthogonal to the
mechanisms used to describe the internal computations of each (sequential) process.
It offers facilities for controlling synchronization, communication, as well as creation
and termination of computational activities.



Over the last five decades, in more detail since the debut of the first distributed
systems — IBM’s SAGE computers and shortly after IBM’s SABRE reservation sys-
tem —, there have been huge strands of work on diverse coordination models and
languages for different technologies, mechanisms, and applications. Apparently, not
all coordination models since the 1960s have been developed for agents in the first
instance, even though many coordination models for MASs and later self-organizing
emergent MASs are based on earlier concepts. Thus, a huge spectrum of coordination
models has emerged, ranging from models that have not been developed to support
self-organizing and emergent phenomena in the first instance up to models that sup-
port at least a few if not all principles of self-organization and emergence, in which
elements gather relevant information on their own and decide for themselves what
actions and interactions to perform. Consequently, a taxonomy providing a clear
differentiation between coordination models for concurrent and distributed systems
in general and self-organizing emergent systems in particular is hard to establish.
For instance, Ossowski and Menezes [OMO6] propose the term dependent coordina-
tion models to distinguish from so-called emergent coordination models. However,
the proposed characteristics of dependent and emergent coordination models are
very restrictive and anything but clear-cut. Viroli et al. [VCO09] in contrast use the
term self-organizing coordination instead of emergent coordination, however, with
very different characteristics compared to Ossowski and Menezes.

Thus, instead of using or proposing a taxonomy, in this section we present existing
coordination models and languages that are the current standard for conventional
distributed systems. These models mainly rely on predictable coordination rules
whose impact on system interactions is known and fully re-producible. The coor-
dination models and mechanisms for decentralized coordination presented in the
next section are, however, to some extent based on these conventional models. But
even for conventional coordination models up to today different, partly overlapping
taxonomies have been proposed that aim to structure the variety of these mod-
els. Although none of these taxonomies provides an unambiguous classification that
covers all existing coordination approaches, we will use two of them to describe and
explain the main characteristics and differences between coordination models.

3.2.1 Data-driven vs. Control-driven Coordination

Papadopoulos and Arbab [PA98| proposed the first and still most cited taxonomy
of coordination models and languages with focus on concurrent and distributed
computations'. They distinguish between data-driven and control-driven (or task-
or process-oriented) coordination models, even though they stress the point that the
data- vs. control-driven separation is also by no means a clear-cut one.

! Arbab [Arb98] also proposed another classification by distinguishing coordination models and
languages between endogenous or exogenous. Endogenous models and languages provide prim-
itives that must be incorporated within a computation for its coordination, whereas exogenous
models and languages support coordination of entities from without. However, this taxonomy
did not prevail.



3.2.1.1 Data-driven Coordination

In data-driven coordination models, "the state of a program is defined in terms of
both the values of the data being received or sent and the actual configuration of
the coordinated components” [PA98]. This means that coordination entities are in
charge of handling the data and coordinating themselves with the other entities. In
almost all coordination models belonging to this category, the coordination media is
represented by a shared data space [RC90], which is a common, content-addressable
data structure shared between the coordination entities. All involved entities can
communicate among themselves only indirectly via this coordination medium. They
can post or broadcast information into the medium and also they can retrieve in-
formation from the medium either by actually removing this information out of the
shared medium or merely taking a copy of it.

The Linda coordination model respectively language [Gel85, Gel89] is a classic
example in this category. It is based on the so-called generative communication
paradigm: if two processes wish to exchange some data, then the sender generates
a new data object (referred to as a tuple) and places it in some shared data space
(known as a tuple space) from which the receiver can retrieve it. This paradigm
decouples processes in both space and time. Since its proposal, Linda has spawned
and inspired tens of variations. They extend Linda for instance by introducing mul-
tiple data space and meta-level-control rules (e.g. Bauhaus Linda [CGZ95], Bonita
[RW97], Objective Linda [Kie96], PoliS [Cia91], Shared Prolog [BC91], Ariadne/HO-
PLa [FBG96], and Sonia [Ban96]), by using logical operators (e.g. LogOp [SM02]),
by addressing open-distributed systems (e.g. LAURA [Tol96]), middleware-based
environments (e.g. Jada [CR97] and SHADE [CCR96|, which combine Java with
Linda for the Web) or mobility (e.g. KLAIM [dNFP98]).

Another model of this data-driven category is GAMMA [BM90], which is based
on the chemical reaction metaphor [BFMO01]. GAMMA is one of the first proposals
of models based on multiset rewriting. This coordination medium is composed of
multisets, i. e. sets whose elements can have multiple copies. A coordination model
is then concerned with the manipulation of these multisets, mostly defining rewrite
rules. Since its proposal, GAMMA has also spawned several extensions, e.g. CHAM
[BM93], TAM [ACP93], LO [AP91] and its extension COOLL [CC96].

Further models of this category are Concurrent Constraint Programming [Sar93],
MESSENGERS [FBDM96], and Opus [CHM " 97], which all have weak similarities to
the above models. More recent members of this category are PageSpace [CTV 98],
JavaSpaces [FHA99] (a component of the Jini reference architecture [Wal99]), and
EventHeap [JF02]. Even XMIDDLE [MCEO1], PeerSpaces [BMMZ03], and Lime
[MPRO6] belong to the category of data-driven models, although there the shared
data space is carried by mobile elements and dynamically merged with each other.



3.2.1.2 Control-Driven Coordination

Within control-driven coordination models, “the state of the computation at any
moment in time is defined in terms of only the coordinated patterns that the pro-
cesses involved in some computation adhere to” [PA98]. Therefore an application is
centered on the processing or flow of control. In control-driven coordination mod-
els, the coordination media is represented by a set of input/output communication
ports linking the coordination entities and enabling their interactions. Connections
between the ports are mostly of a channel nature. Contrary to the data-driven
category where the coordination entity ”sees” the manipulated data and directly
handles and examines data values, here the entities are treated as black boxes where
data handled within an entity is of no concern to its environment. The coordinated
framework evolves by means of observing state changes in processes and, possibly,
broadcast of events.

A typical control-driven model that defines a family of models is IWIM [Arb96].
It defines processes, ports, channels, and events. A process is considered as a black
box. To communicate, a process writes and reads units (data) on its ports, which
are named openings in the bounding wall of the process. Thereby the process is not
aware to whom information is transmitted to, as the communication is anonymous.
The established connections between ports are of a channel nature. A channel is
considered to be unidirectional, connecting a producer process (source side) to a
consumer process (sink side), and reliable, assuring that units are transferred with-
out loss, error, or duplication. Reading on a port blocks the corresponding port
until a unit is available. Writing on a port blocks as long as the port is not con-
nected. Events are used for information exchange. They usually indicate process
state information to other processes. An event is therefore a signal broadcast in the
environment, causing an event occurrence, composed of the identity of the event
and of its producer. Every process in an environment may capture an event occur-
rence and react to it. However an event is caught only by interested processes. A
coordination language that is based on IWIM is e. g. MANIFOLD [AHS93]. Other
coordination languages of the control-driven category are e.g. ConCoord [Hol96],
Durra [BWD93], Programmer’s Playground [GSM™95], RAPIDE [SDK'95], Dar-
win [MDK93], TOOLBUS [KB96], Contextual Coordination Model [BB97], CoLa
[HAK94], and Reo [Arb04].

3.2.1.3 Hybrid Coordination

Whereas the data-driven category tends to be used mostly for parallelizing compu-
tational problems, the control-driven category tends to be used primarily for model-
ing systems (cf. [PA98]). However, Ciancarini et al. [COZ99] argue that data-driven
models seem to better suit open systems, where a number of possibly a-priori un-
known and autonomous entities have to cooperate, as typical in the case of MASs.
A typical problem of data-driven coordinated systems is the built-in and fixed be-
havior of the shared data space used as the coordination medium: neither new



communication primitives can be added, nor can new behavior be defined in re-
sponse to standard communication events. To address this deficiency, Ciancarini
et al. [COZ00] propose a third category of coordination models, hybrid coordina-
tion models, which are meant to combine the cleanness and elegance of data-driven
models with the flexibility and power of control-driven ones.

A first group of work integrates the event mechanism of control-driven models
into shared data space models. Examples are ACLT [ODN95], TuCSoN [O0Z98],
and MARS [CLZ99]. Further hybrid models that combine control-driven elements
with a data-driven models are T Spaces [Pet98], Law-Governed Linda [ML95], and
IWIM-Linda [PA97]. All of these models center around the idea of programmable
coordination media [DNO97], i.e. when a communication operation is executed, a
reaction catching the event produced atomically executes a sequence of operations,
which usually have access to both the space and the information associated with the
event. The ECM coordination model [SCH99], along with its instantiating coordi-
nation languages STL, STL++, and Agent & Co., is also a hybrid model, because it
integrates shared data space functionalities in a process-oriented view (cf. [Sch01]).

3.2.2 Spatial and/or Temporal Coupled/Uncoupled Coordination

Around the turn of the millennium, agent technology and the Internet have attracted
widespread interest, which put forth new coordination models as well as taxonomies.
Papadopoulos [Pap01] surveys some of the most common models and technologies
that offer mechanisms for the coordination of Internet agents, which include sev-
eral of the above models and languages again. Bocchi and Ciancarini [BC03] also
present a review of many of the aforementioned coordination models and languages,
in particular in the context of web services and the semantic web.

Cabri et al. [CLZ00], however, proposed a new taxonomy for coordination models,
which is based on the degrees of spatial and temporal coupling induced by a coordina-
tion model. Although the focus of this taxonomy was primarily on mobile agents for
Internet applications, it also serves as a taxonomy for distributed systems in general,
as it became adapted by [TvS06]. According to this taxonomy, spatially coupled co-
ordination models require that the interacting entities share a common name space.
In turn, spatially uncoupled models enforce anonymous interactions. Temporally
coupled coordination models imply synchronization of the entities involved. In turn,
temporally uncoupled coordination models achieve asynchronous interactions. Cabri
et al. thus derive four main coordination model categories from the combinations
of these characteristics: direct, blackboard-based, meeting-oriented, and Linda-like
coordination (see Figure 3.2). Although this taxonomy provides no clear-cut cate-
gorization, it is more specific than e. g. the taxonomy proposed by Keil and Goldin
[KG03], who only distinguish direct coordination models vs. indirect coordination
models.
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Figure 3.2: Taxonomy of coordination models distinguishing spatial and /or temporal
coupled /uncoupled models (adapted from [CLZ00])

3.2.2.1 Direct Coordination

Direct coordination models usually imply spatial and temporal coupling of the
agents. The agents start a communication by explicitly naming the partners in-
volved. In the case of inter-agent coordination, two agents therefore must talk the
same language and thus have to agree on a communication protocol. This can be
handled on the one hand by client-server approaches using Remote Procedure Call
(RPC)-like or Remote Method Invocation (RMI)-like primitives (see e.g. the Jini
middleware [Wal99]) and on the other hand by asynchronous message passing (see
e.g. UPnP [UPn09] or JADE [BPRO1]). The majority of the Java-based mobile agent
systems [SARDSO01], particularly the most famous ones such as Aglets [LO98], Voy-
ager, [Gla98], Ajanta [TKA102], and GrassHopper [IKV98], belong to this category.
Also the Actors coordination model [Agh86] is based on direct coordination.

3.2.2.2 Meeting-oriented Coordination

In meeting-oriented coordination models, the agents interact in the context of meet-
ings without needing to explicitly name the partners involved, so they usually imply
spatial uncoupling of the agents but still a temporal coupling. Agents join either
explicitly or implicitly known meeting points; afterward, they can communicate
and synchronize with the other agents that participate in such meetings. However,
meeting-oriented coordination models cannot achieve the anonymity of full spatial
uncoupling, as the agents must share at least the common knowledge of the meeting
names. A typical example for meeting-oriented coordination is the Ara [PS97] imple-
mentation. A sophisticated form of meeting-oriented coordination was introduced by
the concept of event-based communication and synchronization or publish/subscribe
coordination (see below), e.g. implemented by Mole [BHRS98].

3.2.2.3 Blackboard-based Coordination

In blackboard-based coordination models, the agents interact via shared data spaces,
using them as common intermediary repositories to store and retrieve messages.



These models exploit the classic blackboard architecture [HR85]. In this sense,
interactions are fully temporally uncoupled, but, because agents must agree on a
common message identifier to communicate and exchange data via a blackboard,
they remain spatially coupled. This model is used by Ambit [CG98] and fIMAIN
[DLDI7]. However, there also exist some blackboard-based systems that do not have
a spatial coupling.

3.2.2.4 Linda-like Coordination

Linda-like coordination models use local tuple spaces as message containers similar
to blackboards. The system organizes information in tuples and retrieves it using
associative pattern-matching (see above). This approach enforces full uncoupling,
requiring neither temporal nor spatial agreement. Examples for Linda-like coordi-
nation are e.g. again PageSpace, TuCSoN, and MARS.

3.2.2.5 Publish/Subscribe Coordination

Although not explicitly mentioned in the taxonomy of Cabri, another important fam-
ily of coordination models are publish/subscribe (event-based) coordination models.
Eugster et al. [EFGKO03] provide a survey on this family, however in a very broad
sense. Based on their definition this family can be classified into the same cate-
gory as Linda-like coordination, i.e. temporally and spatially uncoupled. However,
there also exist subscription models, which presume a spatial and/or temporal cou-
pling, as e. g. some models based on meeting-oriented coordination, as mentioned. In
general, in publish/subscribe models agents coordinate through asynchronous pub-
lication and notification of events. In order to be notified by an event, an agent has
to subscribe to an event type; if an event of the subscribed event type occurs, the
agent will (potentially immediately) be notified. Publish/subscribe models enable
what can be regarded as active tuple spaces. Rather than expecting processes to
continuously poll for a given tuple in a tuple space, publish and subscribe strategies
enable processes to subscribe to specific patterns of messages or tuples, and to pub-
lish tuples with the expectation that all currently subscribed processes will receive
a copy of the tuple.

Depending on the subscription model, publish/subscribe systems can be clas-
sified into topic-based (or channel-based respectively subject-based) models, e.g.
Scribe [CDKRO02], content-based models, e. g. Siena [CRWO01] or REBECA [Miih02],
or type-based models, e.g. Hermes [PB02]. Further models that belong to one
or more of these classes include Elvin [SA97], Gryphon [SBCT98|, Le Subscribe
[PFLT00], Jedi [CNF01], WebFilter [PFJ*01], NaradaBrokering [PF03], IndiQoS
[CARO5], ECho [ESB06], GREEN [SBC05], REDS [CP06], and Cobra [RMP*07].

Whereas all these models are mainly research prototypes, commercial systems
and standards supporting the publish /subscribe model have appeared, too. Some of
the most popular systems include IBM WebSphere MQ (IBM MQSeries) [IBM09],
TIBCO Rendezvous [TIB09], and the ORACLE WebLogic Server [ORA09]. But



also industry standards related to publish/subscribe systems exist, such as the Java
Message Service (JMS) [Sun02a], the CORBA Event Service [OMGO04a], the CORBA
Notification Service [OMGO04b], and the OMG Data Distribution Service [OMGOT].

Note, shared data space models can be reduced to the publish/subscribe architec-
tures, whereas the vice versa holds only if a specific, global coordination operation
is provided among the shared data space operations (cf. [BZ01]).

3.2.3 Bottom Line

According to the requirements for the environment of a self-organizing emergent
MASS listed at the end of Section 3.1, conventional coordination models that are
based on direct message-passing, client/server models, or shared data spaces are
inadequate to deal with the requirements for decentralized coordination in self-
organizing emergent MAS systems (cf. Challenge 1). There are several reasons
for this inadequacy (cf. [DDF106, GVOO0T]):

1. They do not support indirect interactions between agents nor a strong notion
of the environment.

2. They do not account for context-awareness and meaningful interactions, which
forces system elements to operate in a kind of ”void”, where the only things
that exist are the other system elements.

3. They rely on static assumptions and a priori knowledge about a system, i.e.
a spatial-temporal coupling and referential awareness, which forces system
elements to operate in the same system at the same period as well as to know
each other.

As a consequence, most conventional coordination mechanisms for MASs devel-
oped by DAI research that are based on these conventional coordination models,
such as organizational structuring, multi-agent planning, negotiation, or contracting
(see [Jen93, Jen96, NLJ97, Oss99]), become inadequate for self-organizing emergent
MAS systems, too. These coordination mechanisms moreover typically consider co-
ordination as “the process by which an agent reasons about its local action and the
(anticipated) actions of others to try and ensure the community acts in a coher-
ent manner” [Jen96]. Thus, the coordination of agents is already decided in early
design time and does not account for open and dynamic systems. Although some
dynamic agent activity adjustments can be described, e. g. dynamic role assignment
[OPBS04], changing coordination mechanisms at run-time enforces considerable ef-
fort (cf. e.g. [ETJO4]).

However, there exist two conventional coordination models that are able to deal
at least with some of the requirements for decentralized coordination: publish/-
subscribe models as well as Linda-like models. Publish/subscribe models already
support certain flexible and uncoupled interactions, which are suitable for future
dynamic scenarios. Some modern approaches, e.g. Siena, even provide distributed



event-dispatching services in the context of mobile ad hoc networks, in which mobile
nodes engage a distributed algorithm to self-organize event-dispatching routes and to
maintain such routes despite network dynamics. However, publish/subscribe models
will support only a small number of decentralized coordination mechanisms effec-
tively, while several phenomena of self-organization can hardly be mapped in terms
of publish/subscribe patterns. Due to the coordination process in most Linda-like
coordination models, the latter achieve already some forms of context-awareness and
the possibility of interacting with unknown processes/agents in an uncoupled way.
In particular more recent approaches, e.g. Lime, exploit distributed or transiently-
shared tuple spaces, which forms a basis for programming interactions in dynamic
scenarios. However, the semantics of tuple-space interactions require extensive use
of synchronization, while these models can not be used to effectively program and
enforce phenomena of self-organization and emergence without further ado, in par-
ticular because the environment lacks any form of structuring (cf. [DDFT06]).

3.3 Decentralized Coordination

Due to these inadequacies, models and mechanisms for decentralized coordination
support principles of self-organization and emergence and hence are suitable for
application scenarios, where dynamic disturbances, unpredictability, openness, and
large-scaled systems are key properties. In most of these approaches there is no
"direct correspondence’ between the purpose of local interaction, and the global
functionality of coordination within a system. Thus, decentralized coordination as
understood here is very similar to the description of self-organizing coordination
proposed in [VCO09]: ”Self-organizing coordination is the management of system
interactions featuring self-organizing properties, namely, where interactions are lo-
cal, and global desired effects of coordination appear by emergence.” The addressed
global desired effects thereby correspond to the functionality a self-organizing emer-
gent solution is designed for to fulfill. Depending on the application scenario, cate-
gories of such functionalities are very often, but not exclusively, the following ones
(cf. [DHO7a]):

e Resource allocation: Certain application scenarios require that the self-
organizing emergent solution autonomously manages possibly limited resources,
which can be tasks, power, goods, bandwidth, space, (CPU) time, devices, ma-
chines, etc., by deciding which system element can use a resource or is assigned
to a resource.

e Group formation: Some application scenarios require groups or teams to
be formed autonomously. As such, these groups or teams can be adapted and
restructured based on specific changes that occur in the environment or the
system itself. Even clustering of items or data can be considered as a kind of
group formation.



e Role-based organizations: Several application scenarios require to enforce
so-called organizations, which in MASs comprise roles and their interrelations
that impose a formal structure on the system. Roles, e.g. master roles and
slave roles, thereby cluster certain types of behavior into meaningful units that
contribute to the groups overall goals. Role interrelations, e.g. hierarchical
or class-membership relations, provide communication paths among agents.
Together with certain interdependencies, e. g. temporal or resource dependency
relations, roles and their interrelations can be exploited for effective agent
coordination and communication.

e Self-protection: A growing number of application scenarios require from a
self-organizing emergent system to detect, identify, and protect itself against
various types of attacks (see also Section 2.1). In the first instance, this is to
maintain the overall system security and integrity. However, more than just
responding to failures or running periodic checks for symptoms, self-organizing
emergent systems need to remain on alert, anticipate threats, and take neces-
sary action, which can even imply a coordinated group-defense.

e Spatial structure: Many application scenarios require that a certain spatial
structure is constructed and maintained in the face of dynamic changes in
the environment or the system itself. Thereby, two different types of spatial
structure can be distinguished:

— Specific shapes: Specific spatial shapes, e. g. certain topologies or paths,
have to be constructed and maintained in a self-organizing manner.

— Spatial distribution: A specific spatial distribution, e.g. an equal dis-
tribution of system elements in a certain region of the environment, has
to be acquired and maintained in a self-organizing manner.

e Information dissemination?:
updated information, e. g. on specific system elements or the environment, to
be spread in order to be shared by all system elements. Upon the receiving
of new or updated information, a system element can update its own knowl-
edge on other system elements or the environment, whereby the elements may

acquire almost global knowledge.

Some application scenarios require new or

In regard to the design of self-organizing emergent solutions, two additional as-
pects play an important role for decentralized coordination:

e Indirect interaction: In order to support self-organizing and emergent phe-
nomena best, it is required to support indirect interactions between agents
as well as a strong notion of the environment. Indirect interaction is achieved
through coordination media spread over the topological environment, enacting
probabilistic and time-dependent coordination rules.

2This category was originally not covered by [DHO07a].



e Source of inspiration: In order to support engineers in specifying new coor-
dination mechanisms based on a specific decentralized coordination approach,
the latter inherently has to provide an (idealistically inexhaustible) source of
inspiration.

Because the family of decentralized coordination approaches is still in its growth,
a precise classification has not been provided yet, even though considerable effort
has been spend to compare and classify different coordination models and mech-
anisms (see e.g. [DH06, MMTZ06, SGK06, DHO7b, PMS*07, DDF06]). As a
consequence, today it is also unclear, which coordination approach(es) will prove
most suited for given problem domains, which naturally complicates the task for
an engineer to identify and probably integrate the most suited approaches for his
problem. Nonetheless, some main classes of decentralized coordination models and
mechanisms can be distinguished.

3.3.1 Market-based Coordination

Inspired by economics, in market-based coordination [Bre0l, DZKS06], computa-
tional systems are viewed as virtual marketplaces in which economic elements, such
as agents or robots for instance, interact by buying and selling. Although decision-
making by these elements is very often local, economic theory in most cases provides
means to generate and predict macroscopic properties. The most common decen-
tralized coordination mechanism used in market-based coordination approaches are
auctions (see [Wol96, WWWMMO01, HAO7] for a more detailed overview). In an
auction, a set of items is offered by an auctioneer in an announcement phase, and
the participants can make an offer for these items by submitting bids to the auction-
eer. Once all bids are received or a pre-specified deadline has passed, the auction
is then cleared in the winner determination phase by the auctioneer who decides
which items to award and to whom. Typically, the items for sale are tasks, roles,
or resources (see e.g. [GJVGI9]). The bid prices reflect the participants’ costs or
utilities associated with completing a task, satisfying a role, or utilizing a resource.
In theory, incorporation of several rounds in which bids are generated, reviewed,
and updated improves the negotiation outcome. Practically, several rounds are of-
ten not necessary as computational elements such as agents are able to compute the
compromise they will eventually reach and settle for it. The best known auction
type is the ascending-price open-cry or English auction, followed by the first-price
sealed-bid or Dutch auction, whereas the most frequently used auction type is the
second-price sealed-bid or Vickrey auction.

Similarly to auctions, the Contract Net Protocol (CNP) [Smi80] is an extensively
used protocol in particular for task assignment. This market-based coordination
mechanism, which is also included in a FIPA standard [FIP02c], is based on the
notion of call for bids, where managers request for bids and the bidders bid to
perform the task. In the first step, the manager sends a description of the task
to perform to all the bidders. In the second step, the bidders draw up a proposal



based on the description of the task and send it to the manager. Finally, in the
third step, after the manager has received a proposal from all the bidders or after
a deadline has expired, the manager evaluates the received proposals and assigns
the task to the best bidder. In the original specification of the CNP a bidder
is not allowed to place a bid for a new task before its current task was finished.
Since its initial introduction, the CNP has undergone a couple of improvements
and extensions, e.g. the ability for a bidder to place bids for multiple unassigned
tasks or to participate in cascading task assignments [KSF02], the ability of leveled
commitment contracts (agreements between agents that can be withdrawn) [SL02]
respectively decommitments [HP04], or the use of a pre-bidding phase before the
definitive bidding phase for the reconsideration of commitments in the first phase
[APS04].

Typically market-based coordination is used to achieve efficient resource alloca-
tion. However, the coordination approach may also support spatial distribution when
considered in a network in which system elements have to find resources (CPU, disk
storage) to complete an assigned task. High prices to purchase the resources nec-
essary to complete a task may connote congestion, forcing the elements to choose
other hosts with lower prices, which lets emerge an equal distribution. Usually,
market-based coordination mechanisms are based on coordination models favoring
direct interactions. However, the AMELI infrastructure [ERRAA04] for instance
can be considered as an approach that enables indirect interactions for a subgroup
of market-based coordination systems. AMELI is based on electronic institutions
that represent normative systems. These institutions include scenes that agents can
enter and thus provide a place where agents can meet and exchange messages in a
regulated way, where prohibited interactions are disallowed by the infrastructure.

3.3.2 Gossip-based Coordination

An approach for decentralized coordination inspired by social human behavior is
gossip-based or epidemic coordination [BJ08]. The basic idea is that at regular time
intervals, each individual in a population exchanges information with a randomly
selected individual from the population, followed by updating its local state based
on the information exchange. This is very similar to gossiping in social networks.
Such mechanisms allow for the aggregation of a global information inside a pop-
ulation through a periodic exchange and update of individual information among
the members of the population. Initially, gossip-based coordination has been used
for information dissemination, in more detail the propagation of updates among
replicas of a database [DGH'87]. More recently, a gossip-based protocol has been
used to achieve spatial shapes in the topology management in P2P systems [JB05],
achieving high robustness, scalability, flexibility, and simplicity.

Although gossip-based coordination is based on local interactions and provides
some context information to the agents, implementations very often assume that
the communication range of an agent covers all other agents and all nodes can
communicate with each other directly.



3.3.3 Tag-based Coordination

Another approach for decentralized coordination, inspired by social human behavior
as well, is tag-based coordination [Hol93|. Tags are labels, markings, or social cues,
which are attached to individual agents and are observable (and maybe addable or
adjustable) by other agents. Here, coordination emerges because agents can dis-
criminate based on the observed tags of others. An example is group formation
[Hal06]. Groups of agents can be formed around similar tags, presumed that agents
interact preferentially with other agents sharing the same tag. By using and adjust-
ing the right tags, a desired group cooperation can be achieved. Another example
is self-protection in terms of trust and reputation [Ser04], sometimes also known
as trust-based coordination, which can be implemented by tags. After each inter-
action, an agent updates its local trust value on the interaction partner and may
additionally also request or receive recommendations about other agents. Trust and
reputation can be enforced by excluding agents from interactions that are tagged
as badly behaving agents, presumed that tags on an agent can only be added and
adjusted by other agents. Thus, over time, trust evolves as a result of updating
and recommending and allows to adapt the behavior of agent in a self-organizing
manner. Trust calculation algorithms, e. g. EigenTrust [KSGMO03], then allow to cal-
culate a global emergent reputation from locally maintained trust values. Tag-based
interaction can be supported by an active agent environment [PSHO7].

3.3.4 Token-based Coordination

In general, tokens are objects that may encapsulate anything that needs to be shared
by a group of autonomous elements, including information, tasks, and resources
[XSYT05]. For each token type there exists a limited number of instances and the
element holding a token has exclusive control over whatever is represented by that
token. Hence, tokens provide a type of access control that can be used for e. g. task
and resource allocation as well as self-protection. An element holding a resource
token has exclusive access to the resource represented by that token and passes the
token to transfer access to that resource. If a token represents a certain role in the
group, token-based coordination can be used to achieve role-based organizations, as
by fixing the number of tokens the number of entities in a certain role can be limited
and an adaptive organizational structure can be enforced.

Although the coordination process itself is decentralized and in certain situations
minimizes communication effort compared to other decentralized coordination ap-
proaches, e.g. market-based coordination (cf. [XSSL06]), very often token-based
coordination mechanisms are still based on direct interactions and require that all
participating agents share a top level common goal (see e.g. [XSY05]), which con-
tradicts the principles of emergence.



3.3.5 Immunity-based Coordination

An approach for decentralized coordination inspired by the human immune system
is immunity-based coordination, which is based on the theory of immunological com-
putation [DNO08]. The human or in general biological immune system is constituted
by a collection of specialized and inter-related organs, cells, and molecules, which are
distributed throughout most parts of an organism. These constituents are in charge
of distinguishing ”self” from ”non-self”, i.e. normal and anomaly situations. The
human immune system is inherently distributed and fault-tolerant, and exhibits a
complex behavior while interacting with all of its constituents. The immune system
works on two levels: Innate immunity on the one hand is inborn and unchanging.
It provides resistance to a variety of antigens during their first exposure to a human
body. On the other hand, acquired immunity develops during the lifetime of a hu-
man. This immunity is specific to antigens and is activated during the first exposure
to antigens.

Similarly, in artificial immunity-based coordination systems, each immune ele-
ment (agent, robot, ...) has its own capabilities that determine its basic behavior
as well as specific behavior for a particular response to antigens (resources, tasks,
...). The elements identify antigens during random exploration of the dynamic en-
vironment using an affinity measure to verify their feasibility to tackle an antigen
(self-protection). The elements communicate within a limited range directly with
each other to exchange local information, to send cooperation signals (such as "re-
quest for” and ”respond to” help strategies), and to transfer capabilities, in order
to achieve common tasks.

3.3.6 Pheromone-based Coordination

A decentralized coordination approach inspired by nature, in more detail by ants,
is pheromone-based coordination [Brii00] (see also Subsection 4.5.2, later). This
approach utilizes the principle of quantitative stigmergy (see Subsection 2.3.2) to
design spatial shapes on the macroscopic level. The model is inspired by the mecha-
nism ants (among others) use to find food. A pheromone is a chemical substance an
ant can drop in the environment. The pheromone then propagates through the envi-
ronment, as well as evaporates over time. Following ants for example use aggregated
pheromones to build a path from the nest to a food source. In the computational
world, typically, digital (aka synthetic) pheromones are used for constructing paths,
which autonomous agents can follow. Therefore, spatial properties such as routing
and the optimization of those routes can be achieved. Pheromone-based coordina-
tion mechanisms are inherently adaptive because old and not reinforced pheromones
(i.e. old information) gradually disappear or evaporate, which constitutes an ongo-
ing truth-maintenance mechanism. Appropriate infrastructures such as PI [Brii00],
Anthill [BMMO02], or SwarmLinda [MT03, TMO04], fully support indirect interactions
between the agents, account for context-awareness and meaningful interactions, and
provide a spatial and temporal uncoupling of the agents.



3.3.7 Field-based Coordination

Another stigmergy-based coordination approach inspired by nature, however by
physics, in more detail by magnetic fields, is field-based coordination (or computa-
tional field respectively co-field coordination) [MZ04, MZ06]. The basic idea of this
decentralized coordination approach is that autonomous elements spread out com-
putational fields through the environment. The field forms a gradient map, which
conveys useful context information for the elements’ coordination tasks. The coordi-
nation policy is realized by letting autonomous agents move following the waveform
of these fields, e.g. uphill or downhill. Environmental dynamics and movement of
entities induce changes in the fields’ surface, composing a feedback cycle that influ-
ences how entities move. This feedback cycle lets the system adaptively self-organize.
This coordination mechanism is promising to guide spatial movement of agents and
as such construct spatial shapes and enforce spatial distributions. However, the co-
ordination approach apparently can be used for information dissemination as well.
Infrastructures such as TOTA [MZL03, MZ09] similarly fulfill the environment re-
quirements for decentralized coordination by indirect interaction in self-organizing
emergent MAS systems.

3.3.8 Bottom Line

Apparently, almost all decentralized coordination approaches got their inspiration
from existing paradigms in fields such as economics, social human behavior, biology,
or physics. This underpins the approach taken in this thesis, to observe an existing
paradigm that achieves some required criteria in nature and to try to reverse-engineer
its strategy. An exception of this approach is made by token-based coordination,
which is not based on a comparable paradigm and hence very often requires that all
participating agents share a top level common goal, contradicting the principles of
emergence. However, some token-based coordination approaches exist that do not
have this assumption, e.g. in P2P routing mechanisms.

3.4 Engineering Methodologies

Whereas appropriate decentralized coordination models and mechanisms respec-
tively objective and subjective coordination are key issues for the design of self-
organizing emergent MASs, the design phase itself is always embedded in an engi-
neering methodology. Consequently, any methodology for the engineering of self-
organizing emergent MASs should necessarily exploit both objective and subjective
coordination during the design phase (cf. [0003]). Apart from that, any method-
ology for the engineering of self-organizing emergent MASs should necessarily also
exploit both the (micro-scale) behavior on the local level, i.e. the agents along with
their internal rules, their interactions, etc., and the (macro-scale) emergent behavior
on the global level [ZO04].

Although the engineering of conventional MASs has put various methodologies



forth, e.g. MaSe [DWS01], SODA [Omi01], PASSI [CCGT02], MESSAGE [BC02],
GATIA [ZJW03], ROADMAP [JPS02], TROPOS [GKMP04], Prometheus [PW04],
INGENIAS [PGSFF05], or ADEM [Whi07], they are insufficient for engineering self-
organizing emergent MASs. The reason is that these methodologies mainly focus on
the engineering of the behavior on the local level without explicitly engineering the
required emergent behavior on the global level.

Bernon et al. [BGPP02] proposed one of the few exceptions, namely ADELFE,
which is an engineering approach explicitly exploiting emergence among a set of
cooperative agents, even if it is restricted to a specific class of MASs, in this case the
AMAS (Adaptive Multi-Agent Systems) theory [CGGGO03]. ADELFE uses Unified
Modeling Language (UML) and Agent UML (AUML) [BMOO1]| notations and is
based on the Unified Process (UP) [JBR99]. The UP is an iteration-based, incre-
mental software development process framework that may be customized for specific
organizations or projects. To be specific to the AMAS theory, some steps were added
to the classical UP workflows by ADELFE. Similar to MESSAGE, PASSI, and TRO-
POS, ADELFE covers the entire software engineering process, however, contrary to
e.g. GAIA or TROPOS, is not a general methodology but rather concerns applica-
tions in which self-organization makes the solution emerge from the interactions of
its parts. The three essential workflows of ADELFE are the requirements workflow,
the analysis workflow, and the design workflow.

The key part of the requirements workflow is the definition of an environment
model, which consists of determining the actors, defining the context, and charac-
terizing the environment. The analysis workflow mainly identifies agents and studies
interactions between them. The design workflow studies the interactions between
the agents and the environment and defines the agents’ behavior (skills, aptitudes,
etc.). The design workflow has been subsequently extended by a simulation stage,
to modify and improve the behavior of agents during the design [BGP06].

De Wolf and Holvoet [DHO05| similarly address the shortcomings of agent-
oriented software engineering methodologies and focus explicitly on the engineering
of macroscopic properties of self-organizing emergent MASs. They propose a way
— considered as a starting point to integrate future work — to define a full life cy-
cle methodology, which is also based on iterations defined by the UP. In contrast
to ADELFE, this methodology is not limited to the AMAS theory, but supports
the engineering of general MASs. Basically, each iteration includes the four pro-
cess disciplines requirements analysis, design, implementation, as well as verification
and testing. The focus of each discipline is on how to address the desired macro-
scopic properties. With each iteration the self-organizing emergent MAS becomes
successively refined, with cyclic feedback from verification and testing to design.

The requirements analysis emphasizes an investigation of the problem with func-
tional and non-functional requirements and pays attention to issues that typically
lead to self-organizing emergent MASs with macroscopic behavior, such as ongoing
and adaptively maintained requirements — the self-* properties. The design empha-
sizes a conceptual solution that fulfills the identified requirements and is split into
two phases: In the architectural design phase (early iterations) the focus is more



on the coarse-grained software architecture [SG96, CBB'02], exploiting knowledge
and experience (design principles, reference architectures, etc.) from existing best
practice in engineering self-organizing emergent MASs. In the detailed design phase
(later iterations) the architecture converges more and more to a fixed structure and
the more fine-grained design issues are resolved, i.e. mainly the microscopic behav-
ior of agents. The implementation realizes the previously specified (hardware and
software) design in code. This requires no special customizations for macroscopic
issues because the implementation is completely microscopic. In early iterations of
verification and testing the focus is more on the coarse-grained decisions with respect
to the architecture of the solution (analysis of non-functional and macroscopic per-
formance, comparison of coordination mechanisms, parameter tuning, etc.). In later
iterations the focus is more on the details of the solution, i.e. setting and changing
parameters to adaptively react to changing situations.

Gershenson [Ger(7] proposes a very general methodology for designing and con-
trolling self-organizing emergent systems developed to solve complex problems. In
contrast to the above approaches, the methodology aims to cover not only MASs
but any kind of self-organizing emergent system. The methodology includes the five
phases representation, modeling, simulation, application, and evaluation, which are
arranged similar to a waterfall model with feedback. The methodology is not to be
seen as a recipe that provides ready-made solutions, but rather as a guideline to
direct the search for them.

The goal of the representation phase is to develop a (possibly tentative) specifi-
cation of the components of the system. The designer should try to divide a system
into elements by identifying semi-independent modules, with internal goals and dy-
namics, and with few interactions with their environment. In the modeling phase,
an internal, distributed, and adaptive control mechanism is to be specified that will
ensure the proper interaction between elements of a system producing the desired
performance. The aim of the simulation phase is to build computer simulation(s)
that implement the developed model(s) and test different scenarios. Because the
precise behaviors of a complex system cannot be easily deduced from its model(s),
i.e. they are not reducible, simulation is a key phase. In other words, a model needs
to "run” before it can be understood. Based on the simulation results and insights,
the modeling and representation can be improved. The role of the application phase
is basically to use the developed and tested model(s) in a real system (which will
be not difficult, if the real system is a software system, because the software would
have been developed in the simulation phase already). In the evaluation phase, the
performance of the system should be measured and compared with the requirements,
while efforts should be continued to try to improve the system.

Serugendo et al. [SFRGOS8| present a framework for the engineering of de-
pendable self-adaptive and self-organizing systems. The framework assumes that
the later system will comprise autonomous components such as agents, however
wrapped by services in a Service Oriented Architecture [SHO5b]. For design time,
the framework uses the three phases analysis, design, and implementation. Dur-
ing the analysis phase, desired properties of the overall system are identified, i.e.



functional aspects and non functional aspects such as self-* requirements and prop-
erties (e.g. self-protection or self-healing) as well as QoS. Driven by the identified
properties, during the design phase the engineer first selects adequate architectural
patterns and identifies the coordination mechanisms that the system will adhere
to. Second, the chosen architectures and patterns are refined for the specific ap-
plication and the individual components (agents, services, etc.) are identified and
defined. During the implementation phase, the run-time infrastructure is developed,
together with the individual components and some other data (executable policies
and metadata sensing and monitoring capabilities).

Gardelli et al. [GVCOO08] provide a design approach that can be plugged be-
tween the analysis and the design phase of existing agent-oriented methodologies,
hence realizing an early-design phase. The approach is based on the A& A metamodel
[ORVO08], which describes a MAS in terms of agents and artifacts. For the approach
they assume that requirements have been collected and the analysis has been per-
formed. The early-design phase comprises the three phases modeling, simulation,
and tuning.

In the modeling phase an abstract specification of the system is developed, pref-
erentially by formal languages. In the simulation phase these specifications are used
to qualitatively and quantitatively investigate the dynamics of the system, i.e. the
global system behavior is tested in different environmental conditions that are rep-
resentative of expected or actual scenarios. In the tuning phase, the agents’ behavior
and working parameters are successively tuned until the desired dynamics are ob-
served. This may require backtracking the modeling choices and evaluating other
modifications or approaches until the performance of the system is satisfying. Crit-
ical systems may require an additional in-depth formal analysis before proceeding
to the actual design phase.

3.5 Conclusion

In this chapter we have provided the background for and state of the art in designing
self-organizing emergent systems. Although methodologies for the engineering of
these systems are scarce yet (see last section), a few major issues for the design
phase become quite evident.

Because a straight forward engineering of self-organizing emergent (multi-agent)
systems is not possible due to the fact that their precise macroscopic behavior can-
not be easily deduced from their microscopic models (cf. Problem 1), simulation has
become a key phase in the engineering of self-organizing emergent systems, either
before (see [GVCOO08]), during (see [BGP06]), or after (see [DH05, Ger(07]) the de-
sign phase. Edmonds [EdmO05] even argues that simulations and experiments are
strictly necessary in the design of self-organizing emergent systems, because their
performance (considered as macroscopic property) cannot be evaluated by purely
formal methods [EBO04]. Similarly, De Wolf [De 07] notes that although the macro-
scopic behavior can still be specified formally, it is practically infeasible to formally



verify or proof the correctness of the macroscopic behavior. Thus, if the simulation
results are not satisfying, the design of the systems can be adapted, either by back-
tracking (see [Ger07, GVCOO08]) or cyclic feedback (see [DHO05]), until the results
are satisfying. Emergence Engineering, which tries to utilize emergent phenomena
even within the engineering process, e.g. [ZW07], also depends fundamentally on
a simulation phase. As a direct consequence, appropriate simulation tools, such as
the one we will present in Section 8.1, are required. They can be integrated into
engineering methodologies for self-organizing emergent MASs and support engineers
in identifying and selecting the most suitable and efficient decentralized coordina-
tion approaches according to the required functional and non-functional criteria for
a system (cf. Challenge 3).

Table 3.1 compares the decentralized coordination approaches listed in Section 3.3
based on such criteria, as they are described at the beginning of that section. Al-
though all of these coordination approaches enable the design of self-organizing emer-
gent solutions for various application scenarios, the source of inspiration of most of
these approaches is ”exhausted”, i.e. it does not serve for the inspiration and spec-
ification of new coordination mechanisms based on these approaches. For instance,
whereas the principles of gossiping are captured in the gossip-based coordination
approach, the design of new coordination mechanisms based on this approach can
not be inspired from existing gossiping mechanisms in the human society, because
there are no more. Instead, they have to be designed from scratch in a complex
and time-consuming process to overcome these lacks, which also requires some kind
of expert knowledge in gossiping from engineers (cf. Challenge 2). An exception
is made by pheromone-based coordination, as the identification of new biological
paradigms using pheromones may be used for the specification of new decentralized
coordination mechanisms. A further, smaller exception is made by market-based co-
ordination, as new types of auctions could be adopted as decentralized coordination
mechanisms. However, waiting for new auction types to emerge in economics is not
appropriate for most problems.

Due to the comparison made in Table 3.1, it becomes apparent that an required
solution to a problem in hand may exceed the provided functionality of a single
decentralized coordination approach (cf. Challenge 1). For instance, de Wolf and
Holvoet [DHO7b] thus had to combine field-based coordination with market-based
coordination in order to achieve routing and dispatching of packets in a packet
delivery service application. Weyns et al. [WBHO06] developed a field-based coordi-
nation approach for adaptive task assignment, but had to combine this model with
a hand-made model for a collision avoidance mechanism for the agents.

Furthermore, very often the expressiveness of most coordination approaches is too
constraint and not sufficient to design efficient solutions (cf. Challenge 2), which very
often requires time-consuming hand-made extensions or variations. For instance,
pheromone-based coordination does not allow for different functions, dynamics, and
semantics of digital pheromones or even different types of agents. Thus, to improve
the performance of a pheromone-based coordination solution, Briickner and Parunak
[BP00] had to use multiple types of pheromones with differing dynamic character-



Pheromone-based
Infochemical-based

Gossip-based
Tag-based
Immunity-based
Field-based

+ | Market-based
+ | Token-based

Resource allocation
Group formation
Organizations
Self-protection +
Information dissemination +
Spatial shapes + +
Spatial distribution +

_|_
+ +
+ +

+ 4+ +

Indirect interaction (+) +
Source of inspiration (+) 4

+ o

Table 3.1: Comparison of decentralized coordination approaches

istics, e.g. different propagation radii, rates, and thresholds. Later, Parunak et al.
[PBS04] did not only experiment with pheromones having different dynamics but
also with pheromones having different semantics to increase system performance.
Similarly, Panait and Luke [PLO04], Sauter et al. [SMPBO05], as well as Briickner and
Parunak [BP05] had to use pheromones with different semantics to design a solution
of acceptable efficiency. Di Caro and Dorigo [DD98] in contrast had to use different
types of ant agents to design a working solution. Furthermore, they therefore had to
use a more general interpretation of a pheromone, as they considered routing tables
in a network as pheromones. Similarly, Valckenaers et al. [VKvBT01] designed a
solution, in which they updated loading profile data on workstations of a factory in
a pheromone style.

Due to these inadequacies, in the next chapter we present the infochemical-based
coordination approach that helps to overcome these drawbacks (see Table 3.1). The
IBC approach is based on the biological principles of coordination by infochemi-
cals, which are chemical stimuli used to mediate the indirect interactions between
organisms in nature. Because infochemical-based coordination is the most univer-
sally employed communication and coordination model between homogeneous and
heterogeneous organisms in biology, it provides a plethora of inspiring examples
for the identification of and inspiration for new decentralized coordination mecha-
nisms. Furthermore, the terminology and expressiveness of infochemicals comprises
pheromones as well as further types of chemical stimuli with different functions,
dynamics, and semantics, which allows for the combination of different types of in-
fochemicals within one coordination mechanism as well as a combination of quantita-



tive and qualitative stigmergy. This in turn allows for the design of better adaptable
and efficient solutions compared to existing decentralized coordination approaches
and only requires a single coordination approach to achieve a bigger functionality.






Chapter 4
Infochemical-based Coordination

The huge amount of different design aspects, which we have described in the last
chapter, illustrates, why the design process of efficient self-organizing emergent
MASSs today is too complex, time-consuming, and costly for their widespread appli-
cation in various areas (cf. Problem 1). Thus, in this chapter we present a couple
of artifacts in order to simplify the design process of these systems and to engineer
effective as well as efficient solutions for individual problems (cf. Objective 1). As
pointed out in the last chapter, the key issue that has to be tackled here is the
appropriate and efficient decentralized coordination of the interactions between the
system elements.

In general, the coordination of interactions between individuals is an omnipresent
problem that is not only pertinent to computational ones such as agents but also
to individuals of other disciplines, such as living organisms in nature for instance,
in more detail animals or plants. There, the purpose of coordination, by contrast,
is rather the selection of food, the selection of mates, competition, or the avoidance
of predators. Living organisms thereby effectively rely on different, well-elaborated
mechanisms of communication and coordination based either on radiational (light
perception or visual), mechanical (tactile or auditory), or chemical (gustatory or
olfactory) stimuli. These mechanisms are purely decentralized and consequently en-
able a high degree of scalability, robustness, flexibility w.r.t. changes in the popula-
tion, and adaptivity w.r.t. changes in the environment. Thus, the understanding of
the principles behind such mechanisms and, if applicable, their computational adap-
tation is of high importance to engineer effective self-organizing emergent systems.

In this chapter, we investigate in more detail the general principles behind the
communication and coordination by means of chemical stimuli, more precisely info-
chemicals [DS88]. Infochemical-based coordination is the most universally employed
communication mechanism in nature (cf. [Lew84]) providing a plethora of inspiring
examples for decentralized coordination. Basically, infochemicals in the natural con-
text mediate interactions between living organisms. They are divided into two broad
categories: pheromones that mediate intraspecific interactions, i.e. between organ-
isms of the same species, and allelochemicals that mediate interspecific interactions,
i. e. between organisms of different species. Whereas the principles behind intraspe-
cific coordination by means of pheromones have been already extensively studied and
used in the computational world (see e.g. [Brii00, VHGT07] as well as Paragraph
3.3.6), the principles behind interspecific coordination by means of allelochemicals,



e.g. between plants and insects, have been fairly neglected, yet. However, we will
see that the combination of different types of infochemicals within one single coor-
dination mechanism allows for the design of better adaptable and efficient solutions
compared to existing coordination approaches.

Section 4.1 investigates the general principles behind infochemical-based coordi-
nation in nature. Section 4.2 then presents the formal adaptation of these biolog-
ical principles by a coordination model for self-organizing emergent MASs. Based
on this adaptation, Section 4.3 presents a structured design pattern that supports
the systematical engineering of self-organizing emergent MASs, whereas Section 4.4
presents design guidelines how to use and instantiate the infochemical-based co-
ordination model according to specific needs. Section 4.5 then exemplary speci-
fies pheromone-based coordination as a specific instantiation of the more general
infochemical-based coordination. Finally, Section 4.6 mentions some related work
to infochemical-based coordination, before Section 4.7 concludes this chapter.

4.1 Principles

In general, three factors are necessary for the occurrence of communication between
two organisms: one of the organisms must emit a message, a medium must be
available through which the message is transmitted, and the other organism must
respond in some way when exposed to the message, which is then called a stimulus
[Sho73]. Communication and coordination by chemical stimuli, i.e. olfactory or
gustatory stimuli, is a universal feature of life that occurs at all levels of biological
organization, including the movement of cells or bacteria (called chemotaxis), the
regulation of organs within an individual’s body by hormones, as well as social
behavior and ecological interactions among individuals by so-called semiochemicals
or infochemicals. In the animal world, olfactory communication is probably one of
the oldest and, in some cases, the most efficient means of communication [RL68]. In
insects, it is even the most universally employed mode of communication [Lew84].
For example, odor can reveal much information about an individual, including its
sex, diet, social status, individual and group identity, reproductive condition, age,
health, fear, and other emotional states [Wya03].

The ecological understanding of the origin, function, and significance of the natural
chemicals that mediate interactions within and between organisms are main subjects
in chemical ecology. From the beginning of chemoecological research in the 1950s
until now, several attempts have been undertaken to create a unique terminology for
these chemicals. Reviews of the terminology can be found in [Duf76] and [Nor81],
for instance. Although the chemicals are classified according to their function or
effect in specific interactions [WE71], their functions are not mutually exclusive
[BEWT70]. Thus, a given chemical can have several biological functions within a
complex network of interactions, which makes its classification rapidly complicated.
In addition, the permanent progress in the identification of new chemical compounds
in ecological interactions exacerbates a clear classification.



4.1.1 Terminology

As already mentioned, chemically mediated interactions between organisms in biol-
ogy can be classified as intraspecific, i.e. between organisms of the same species, or
interspecific, i.e. between organisms of different species. In biology, a species can
be defined as a group of actually or potentially interbreeding populations that are
reproductively isolated from other such groups. As such, a species forms the basic
level of all main taxonomic ranks'.

Regarding the chemicals mediating these interactions, in 1971 Law and Regnier
proposed the term semiochemicals (Greek semeion, a mark or signal) and defined
them intuitively as “chemical signals for transmitting information between individ-
uals” [LR71]. However, the word ’signal’ presupposed that the chemical is pur-
posefully sent to a receiver, but as the receiving organism commonly acts as an
eavesdropper only, Nordlund and Lewis eliminated ’signal’ from the definition in
1976 and redefined a semiochemical as ”a chemical involved in the chemical in-
teraction between organisms” [NL76]. They subdivided semiochemicals into two
major categories: pheromones, for intraspecific interactions, and allelochemicals?,
for interspecific interactions. Allelochemicals can be further subdivided into three
subcategories: allomones, kairomones, and synomones. A distinction between these
subcategories is made, whether the emitting organism (allomones), the receiving
organism (kairomones), or both organisms (synomones) benefit in the interactions.
Originally, Nordlund and Lewis distinguished a fourth subcategory termed apneu-
mones, which is defined as ”a substance emitted by a nonliving material that evokes
a behavioral or physiological reaction adaptively favorable to a receiving organism,
but detrimental to an organism, of another species, which may be found in or on
the nonliving material.” [NL76]. However, this subcategory has not been used since
it was proposed, possibly because it is difficult to distinguish these chemicals from
allelochemicals that are produced by micro-organisms on the nonliving material.

The terminology by Nordlund and Lewis uses two criteria for the classification of
a chemical: (1) whether the emitter (the organism that is the origin of the chem-
ical) and the receiver are conspecific, i.e. from the same species, or not, and (2)
whether the emitter, the receiver, or both benefit in the interactions mediated by
the chemical. In this widely accepted terminology the origin of the chemical is of
central importance. However, as the investigation of the exact origin is difficult
(often micro-organisms living on an organism act as producer of a chemical, see e. g.
apneumones), the proposed distinction of semiochemicals often leads to ambiguities
and heterogeneous definitions. Furthermore, the cost-benefit analysis is limited to
allelochemicals only and no cost-benefit classification existed for pheromones on the
individual level. Thus, in 1988 Dicke and Sabelis [DS88] proposed to eliminate the
origin criterion and rather base the classification of the chemicals, therein called
infochemicals, on the cost-benefit criterion only.

!There exist eight hierarchically-organized, main taxonomic ranks: species, genus, family, order,
class, division, kingdom, and domain (cf. [Int99]).
2The term allelochemical has generally replaced the original term allelochemic used in [NLT76].



An infochemical is defined as ”a chemical that, in the natural context, conveys in-
formation in an interaction between two individuals, evoking in the receiver a behav-
toral or physiological response that is adaptive to either one of the interactants or to
both” [DS88]. Infochemicals are subdivided into the two categories pheromones and
allelochemicals as well (see Figure 4.1). Whereas the latter category is subdivided
into allomones, kairomones, and synomones too, the former category is analogously
subdivided into (+,-), (-,+), and (+,+) pheromones, in order to take cost and ben-
efits on the individual level of the emitter and the receiver into account. In the next
paragraphs we investigate each of these categories in more detail.

Mediate interactions between organisms

. Medlqte Infochemicals . Medla_te
interactions interactions

between organisms between organisms
of the same species of different species
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Figure 4.1: Classification of infochemicals

Pheromones

Originally, pheromones (Greek pherein, to transfer, and hormon, to excite) were
defined in 1959 by Karlson and Liischer as “substances which are secreted to the
outside by an individual and received by a second individual of the same species, in
which they release a specific reaction, for example, a definite behavior or a devel-
opmental process” [KL59]. At this time, the words ’to the outside’ were the most
important part, as they distinguish pheromones from hormones, which are chem-
icals produced by tissues or endocrine glands that cause specific reactions within
the producing organism. In 1976, the definition then was modified by Nordlund
and Lewis as “substances that are secreted by an animal or plant to the outside
that cause a specific reaction in a receiving individual of the same species” [NLT6].



Finally, in 1988 Dicke and Sabelis redefined a pheromone as ”an infochemical that
mediates an interaction between organisms of the same species whereby the benefit is
to the origin-related organism ([+,-] pheromone), to the receiver ([-,+] pheromone)
or to both ([+,+] pheromone)” [DS88]. As the term pheromone had been widely
accepted already, they qualified a pheromone with ’(+,-)’, ’(-,+)’, or ’(+,+)’ where
respectively the origin-related organism, the receivers, or both benefit.

Beside ant foraging, an example of pheromone-mediated interaction is demon-
strated by a special species of a cannibalistic snail: This snail produces a pheromone
that may be used to distinguish different sizes of conspecifics, i.e. members of the
same species. A snail moves toward conspecifics with a size smaller than its own
and away from conspecifics with a size larger than its own. For a large receiver snail
the infochemical involved is a (-,+) pheromone, as is the case for an interaction
where the large snail is the emitter and a small one the receiver. Another example
of pheromone-mediated interaction is the nest building in termite colonies.

Allelochemicals

The term allelochemic(al) (Greek allelon, one another, and hormon, to excite) was
originally proposed in 1970 by Whittaker [Whi70b, Whi70a] and defined as "a chem-
ical significant to organisms of a species different from its source, for reasons other
than food as such.” Whereas Nordlund and Lewis [NL76] extended and clarified this
definition by the introduction of the four subcategories mentioned above, Dicke and
Sabelis modified the definition of an allelochemical as ”an infochemical that mediates
an interaction between two individuals that belong to different species” [DS88] and
reduced the subcategories by one to the set allomones, kairomones, and synomones.

Allomones

The term allomone (Greek allos, another, and hormon, to excite) was first proposed
by Brown [Bro68] in 1968 and later defined by Nordlund and Lewis as "a chemical
substance, produced or acquired by an organism, which, when it contacts an individ-
ual of another species in the natural context, evokes in the receiver a behavioral or
physiological reaction adaptively favorable to the emitter” [NL76]. Dicke and Sabelis
then redefined an allomone as ”an allelochemical that is pertinent to the biology of
an organism (organism 1) and that, when it contacts an individual of another species
(organism 2), evokes in the receiver a behavioral and/or physiological response that
is adaptively favorable to organism 1 but not to organism 2”7 [DS88].

An example of allomone-mediated interaction is given by the black walnut tree. It
secretes juglone, a chemical that harms or kills some species of neighboring plants,
from its roots. By removing competition and allowing the tree access to greater
scarce resources, this interaction increases the fitness of the tree and harms the
fitness of the neighboring plants. Other examples are plants that emit chemicals
(toxins) to deter herbivores as well as skunks that emit chemicals to keep putative
predators away.



Kairomones

The term kairomone (Greek kairos, opportunistic) was first proposed in 1970 by
Brown et al. to describe ”a transspecific chemical messenger, the adaptive benefit of
which falls on the recipient rather than on the emitter” [BEWT70]. This definition
was modified by Nordlund and Lewis as ”a substance, produced, acquired by, or
released as a result of the activities of an organism, which, when it contacts an
individual of another species in the natural context, evokes in the receiver a behavioral
or physiological reaction adaptively favorable to the receiver but not to the emitter”
[NL76]. Dicke and Sabelis finally redefined a kairomone as ”an allelochemical that
is pertinent to the biology of an organism (organism 1) and that, when it contacts
an individual of another species (organism 2), evokes in the receiver a behavioral
and/or physiological response that is adaptively favorable to organism 2 but not to
organism 1”7 [DS88].

An example of kairomone-mediated interaction is given by bark beetles. These
beetles have evolved a pheromone that elicits behavior resulting in aggregation of
the population on a new host, e.g. living, recently killed, or fallen trees. However,
the pheromones, in this role then referred to as kairomones, in the same way also
attract predators and hence benefit natural enemies of the bark beetles. In the
same way chemical cues released from mammals affect the behavior of mosquitoes,
attracting them from a distance.

Synomones

In 1971, Whittaker and Feeny [WFT71] classified allelochemicals that benefit the re-
ceiver as well as the emitter as both allomones and kairomones. As this led to
ambiguities, Nordlund and Lewis introduced the term synomones (Greek syn, with
or jointly) and defined a synomone as ”a chemical substance produced or acquired by
an organism, which, when it contacts an individual of another species in the natural
context, evokes in the receiver a behavioral or physiological response adaptively favor-
able to both the emitter and the receiver” [NL76]. Dicke and Sabelis then redefined a
synomone as “an allelochemical that is pertinent to the biology of an organism (or-
ganism 1) and that, when it contacts an individual of another species (organism 2),
evokes in the receiver a behavioral and/or physiological response that is adaptively
favorable to both organism 1 and 2.” [DS88].

At the present time the number of examples of synomone-mediated interactions
is still low. An example however is given in the pollination process of plants. Plants
emit floral scents that attract insects and other pollinators to its location. While
plants benefit in this interaction by the receipt of pollen grains from other plants, the
pollinators benefit in this interaction by the collection of nectar or oils as a reward
for their visit (see also later Subsection 7.2.1).



4.1.2 Functions and Effects

Apart from their benefits to origin-related or receiving organisms, infochemicals are
also often divided by their function in the interactions between organisms. With
regard to the category of pheromones, these infochemicals in most cases function
by influencing other members of the same species, not the individual that produced
them. Because the functions of infochemicals in general are not mutually exclusive
but depend on the ecological context, various, partly overlapping, functional classes
of pheromones can be found in literature (see e.g. [Ago92, JM93, RL68, Sho76,
Wya03]). A non-exhaustive list of functional pheromone classes includes:

e Sex pheromones: The most thoroughly documented cases of long-range
chemical communication are those of sex substances used in signaling a mating
partner. For example, female moths release chemical stimuli into the air to
signal their availability, and thereby attract males over long distances.

e Alarm pheromones: Used primarily by social animals to warn other mem-
bers in the colony of impending danger or any threatening situation. The
behavior of most animals upon reception of an alarm signal is basically the
same. They initially orient osmotactically to the source at low pheromone
concentration and at high concentration go into frenzied activity, occasionally
attacking the pheromone source.

e Aggregation pheromones: Used for causing other members of the same
species to aggregate in a particular area, e. g. a food source or a suitable habi-
tat. The aggregations may be dense, e. g. thousands of bark beetles arriving at
a designated host tree, or not dense, e. g. a single male arriving at the vicinity
of a female that is signaling her readiness to mate (in terms of sex pheromones).
The behavioral response of an insect stimulated by the aggregation pheromone
is movement toward the pheromone source and/or cessation of locomotion, at
least temporarily, once the insect has arrived at the source.

e Dispersal or spacing pheromones: Used to increase the spacing between
conspecifics, and thus reduce intraspecific competition. They may be used to
prevent overcrowding of resources such as food, mates, egg-laying sites, and
refugia.

e Home range pheromones: Used to mark an area within which an organism
normally confines its activities. When this area or territory is defended against
other organisms, the pheromones are called territorial marking pheromones.

e Trail pheromones: Used by many insects, especially by ants, for orientation
to food sources or new nest sites. Wilson [Wil71] described the odor trail
system as the most elaborate of all known forms of communication in social
insects.



e Surface pheromones: Used in social insect colonies and allow recognition
of nest mates, kin, or even members of different castes. This broad class also
includes recognition pheromones, releasers of grooming behavior and secretions
that stimulate food exchange.

The perception of a pheromone may result in an immediate behavioral response
(releaser pheromones) or a complex set of physiological responses that are sim-
ply set in motion by the initial perception (primer pheromones) [WB63]. Primer
pheromones trigger physiological changes in the recipient, which then equip the
organism with a new behavioral repertory. Very often sex pheromones function
as primer pheromones for instance. The effect of primer pheromones is generally
long-term, without an obvious immediate response. Releaser pheromones in con-
trast cause an immediate and reversible change in behavior mediated directly by
the central nervous system. All above mentioned classes may function as releaser
pheromones.

With regard to the category of allelochemicals, a differentiation between releaser
and primer allelochemicals is also possible, although not all allelochemicals are fur-
ther subdivided. Ruther et al. [RMS02] have proposed a classification of kairomones
according to the function for the benefiting organism, i.e. the receiver. This clas-
sification comprises four main classes, whereas the first three classes attract the
receiving organism and the fourth class repels it:

e Foraging kairomones: Used by the benefiting organism in the context of
food location, e. g. volatiles used by herbivores, parasitoids, parasites, or fun-
givores to locate hosts or host plants.

e Sexual kairomones: Used by the benefiting organism for sexual purposes,
e. g. plant volatiles used to locate feeding mates or enhancing response toward
pheromones.

e Aggregation kairomones: Used by both sexes of the benefiting organism
to form aggregations, e.g. for optimal exploitation of food resources, mate
finding, or as defense reaction.

¢ Enemy-avoidance kairomones: Used by the benefiting organism to recog-
nize the presence of natural enemies, e.g. predator-borne volatiles inducing
escape reaction in potential prey.

Classified according to the effect on the benefiting organism, all classes can be
regarded as releaser kairomones. However, sexual as well as enemy-avoidance kairo-
mones may also be considered as primer kairomones [RMS02]. Sexual kairomones
may induce physiological reactions in the context of sexual behavior, e.g. plant
volatiles inducing pheromone production and release. Enemy-avoidance kairomones
may induce physiological reactions that reduce the negative impact of a natural
enemy, e. g. predator-borne chemicals causing the development of defensive morpho-
logical structures.



According to [RMS02], the classification of kairomones can be transferred on al-
lomones as well. Very often the term allomone is used in the context of typical
defense chemicals which hence are enemy-avoidance allomones. Scents emitted by
predacious organisms to lure their prey, e.g. in the aggressive chemical mimicry
shown by bola spiders mentioned above, may be classified as foraging allomones.
Those volatiles emitted by orchids mimicking the sex pheromones of their pollina-
tors may be interpreted as sexual allomones, since these plants do not reward their
pollinators and the responder does not benefit from this interaction. A differentia-
tion between primer and releaser allomones is principally possible, too.

In the case of synomones, the transfer of the kairomone classification is difficult.
In many cases, a synomone will have different ecological functions for the emitter
and for the receiver. Hence, the criterion for the classification can not be defined
unambiguously [RMS02].

4.1.3 Communication

From a chemical point of view, infochemicals are chemical compounds, which can
range from highly volatile to non-volatile. Most compounds are of relatively low
molecular weight and many are derivatives of fatty acids or terpenes. Slight genetic,
dietary, and environmental differences make it improbable that any two organisms
produce the same blend of volatile organic compounds. This probably accounts for
the fact that many animals are able to identify their young or members of their own
group in large assemblages of other individuals [RL6S].

4.1.3.1 Production and Release

The production of an infochemical by living organisms is regulated through hormones
and signal transduction pathways. In contrast to hormones, which are produced
in the endocrine glands, infochemicals are produced and discharged from exocrine
glands. They are either secreted onto a surface area (e.g. for trial marking) or in
most cases released into the surrounding air forming a cloud of vapor about the
releasing organism [BWG63]. In a few cases, infochemicals are also released into
aqueous systems.

4.1.3.2 Transmission

In general, the distance through which an infochemical may transmit information is
a function of the volatility of the compound, its stability in air, its rate of diffusion,
olfactory efficiency of the receiver, and wind currents [RL68]. Bossert and Wilson
[BW63] have derived a mathematical model, which predicts the diffusion behavior
of a volatile chemical in still air on the basis of these parameters. The concentration
of a chemical at various distances from a point of release may be calculated as a
function of time by the following equation:
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where
e U is the concentration of the chemical measured in molecules/cm?
e W is the emission rate of vapor from the source in molecules/sec

D is the diffusion coefficient of the chemical in air in cm? /sec

d is the distance from the emission source in cm

t is the time from the beginning of emission in seconds

e erfcis the complementary error function

Diffusion coefficients for most airborne pheromones are between 10~ and 1072
cm? /sec, while the same compounds have diffusion coefficients in the range of 10~°
cm? /sec in water [LR71]. Thus, long-distance communication of a mile or more must
be mediated by the use of stable compounds with high vapor pressures.

4.1.3.3 Perception

Infochemical perception is usually considered to be an olfactory process, although
in some cases it may be gustatory, for example with infochemicals, which are trans-
mitted in aqueous media or which are non-volatile [RL68]. The perception of an
infochemical then triggers an immediate behavioral response (releaser effect) or a
delayed physiological response (primer effect), as described in Subsection 4.1.2. How-
ever, a behavioral response requires the concentration of an infochemical to be high
enough. This concentration, in molecules/cm?, is called the behavioral threshold
concentration K [BW63].

4.1.4 Advantages

As already mentioned at the beginning of this chapter, living organisms interact
by relying on different mechanisms of communication, more specifically visual, tac-
tile, auditory, or chemical stimuli. Although chemical stimuli on their journey to a
receiver have to pass through a highly variable environment affected by wind, tem-
perature, moisture, and physical obstructions such as plants, animals, and rocks,
the widespread use of chemical stimuli to interact with conspecifics as well as het-
erospecifics, i. e. members of different species, is indicative of the many advantages
of this way of information conveyance (cf. [Dot86]):

1. It is obvious that infochemicals can be used in situations where visual or
auditory signals are absent or difficult to discern, e. g. at night, in dark burrows,
or near loud sound sources.



2. Infochemicals can be easily distributed in both space and time, making them
uniquely suited to provide information about ’territoriality’ or space occu-
pancy. Thus, the distribution, concentration, and qualitative aspects of e. g.
scent marks presumably provide conspecifics with key information about the
resident(s) of an area, such as their stamina, physical condition, physical size,
reproductive state(s), mobility, energy level(s), motivational tendencies, group
constituency, and group size. The temporal aspects of infochemicals allow for
the sending of ’time-coded’ messages, such as the period of time since a given
area has been visited or occupied, or specific information about the reproduc-
tive state.

3. Relative to other sorts of sensory stimuli, infochemicals can remain in the en-
vironment for rather long periods of time without jeopardizing the immediate
safety of the signaling individual. If an animal released a continuous noise
or visual signal in a manner analogous to leaving a long-lasting infochemical,
not only would an inordinate amount of energy be expended, but predators
would have a field day (literally) in locating it. This long-lasting property of
infochemicals allows a dominant male, for example, to make his odor more or
less continuously present in the social environment.

4. The sender and receiver need not be in close proximity for the communication
to take place. This permits a resident to communicate to an intruder or ri-
val that a given space is occupied, or that he or she is reproductively active,
even though they are outside the range of hearing or sight. Such communi-
cation minimizes the physical harm, expenditure of energy, and exposure to
predation, which can result from direct physical encounters or inappropriately
directed mating advances.

These advantages are also represented by the comparison of the characteristics of
different modes of communication (see Table 4.1, according to [Lew84]).

Feature of mode Type of signal

Visual Tactile Auditory Chemical

Range Medium  Short Long Long
Rate of change of signal Fast Fast Fast Slow
Ability to circumvent obstacles Poor Poor Good Good
Locatability High High Medium Variable
Energetic cost Low Low High Low

Table 4.1: Characteristics of different modes of communication



4.2 Coordination Model

In order to employ the aforementioned beneficial properties of infochemical-based
coordination for the efficient decentralized coordination of agents in self-organizing
emergent MASs, in this section we formally capture the general biological princi-
ples behind infochemical-based coordination in an decentralized coordination model.
Such a coordination model represents a design artifact and will help to simplify the
design of efficient self-organizing emergent MAS solutions. Please note that the
purpose of biologically-inspired solutions in general is not to copy the exact natu-
ral functionality, but rather to utilize the principles of the biological paradigms (cf.
e.g. [OZ05]), which is why we make some abstractions in the specification of the
infochemical-based coordination model compared to the biological pendant.

As described in Section 3.2, a coordination model for MASs provides a formal
framework in which the interaction of the agents can be expressed. It is composed
of the coordination elements (coordinables), the coordination media, and the co-
ordination laws. The coordination elements obviously are the agents themselves,
whereas the coordination media provides abstraction for enabling and controlling
the interactions among the agents. The coordination laws define how the events are
handled by the coordination media when agents interact.

4.2.1 Coordination Elements

In the infochemical-based coordination model, an agent reflects a living organism,
able to interact indirectly by means of (digital) infochemicals.

Definition 4.1 (Infochemical)
An infochemical ¢ is defined as a quintuplet

L= (7,777 6,6 )

where

e v € R is the concentration of ¢
o ythesh ¢ R is the threshold concentration of ¢

6 € R is the diffusion coefficient of ¢

€ is the emitter of ¢

1 are individual information encapsulated by ¢

For the definition of a digital infochemical, we explicitly decided not to reuse the
symbols used in the natural context (see Subsection 4.1.3.2), in order to prevent
unnecessary confusion due to different measuring units or calculations. Thus, -y
reflects the dynamically changing concentration of diffusing biological infochemicals,



referred to a U in the natural context (see Subsection 4.1.3.2). ~!7esh reflects

the behavioral threshold concentration of living organisms (K) regarding specific
infochemical types. Admittedly, according to the object-oriented paradigm, this
attribute thus should be ideally modeled as an attribute of an agent itself. However,
whereas in biology the diffusion of infochemicals proceeds up to the last molecule,
this has no practical effect in the computational world, in particular not from an
object-oriented perspective. Thus, if the current concentration of an infochemical
falls below this threshold, i.e. v < ~v*"7¢" it will not be propagated any further
but removed immediately. ¢ reflects the chemical diffusion coefficient (D) and thus
allows for a very fine-tuned propagation radius and evaporation time specific to each
infochemical. e reflects the biological fact of an infochemical to reveal information on
the emitter. 1 reflects the biological role of an infochemical as a dynamic information
carrier and depends on the used coordination mechanism respectively the application
domain the solution has been designed for.

A set of infochemicals is denoted as Z = {t1,...,t,}. We furthermore adopt the
terminology of infochemicals (see Subsection 4.1.1), i.e. a pheromone is denoted as
@ € P with P C Z, an allomone is denoted as a € A with A C Z, a kairomone is
denoted as k € K with K C Z, and a synomone is denoted as ¢ € S with S C Z.
In contrast to the subcategories of allelochemicals, we do not explicitly model each
subcategory of pheromones, i.e. (+,-), (-,4), (+,+) pheromones, but assume these
subcategories to be included in P. An agent, which is able to emit and perceive
infochemicals, is defined as an infochemical-processing agent, extending the basic
definition of an agent (see Definition 2.2).

Definition 4.2 (Infochemical-processing agent)
An infochemical-processing agent Ag™/ is defined as an extension of an agent Ag
such that

Agmf = (Sit, Dat™ | Act™ fzzf, 0, emr)
where

e Sit is the set of situations Ag™f can be in
e Dat™/ is the extension of Dat with infochemicals

Act™f is the extension of Act with the actions

[ ]
— emit that emits an infochemical to the current locations of Ag™™/
— perceive that perceives all infochemicals stored at the current location of
Aginf
° Z;f is the extension of f4, for processing infochemicals
e 0 is the type of Ag™/



e emr is the emission rate (W in the natural context), by which Ag™/ regularly
emits infochemicals

The explicit extension of an agent Ag by a type allows for the precise coordination
of homogeneous and heterogeneous types of agents within the same coordination
media and mechanism. The types may be hierarchically composed to higher types,
reflecting the taxonomic ranks in biology, as well as being linked to other types,
reflecting interspecific relationships in biology.

4.2.2 Coordination Media

In contrast to biology, in this formal coordination model we assume space to be
finite as well as discrete and time to be infinite as well as discrete (¢ € N). Instead of
'point in time’, we will furthermore use the more specific term iteration, indicating
a discrete succession of points of time or events that can be numbered starting from
0 respectively 1. Thus, an iteration represents a synchronized point in time. This
does not limit the applicability of the coordination model, because a succession
of iterations can easily be constructed from a conventional time measure, e.g. by
transforming time information to milliseconds since the start of the system.

The coordination media (space) in infochemical-based coordination is represented
by an infochemical environment, which enhances the execution infrastructure of the
agents, providing them with an active environment where they may share informa-
tion.

Definition 4.3 (Infochemical Environment)
An infochemical environment Env™/ is defined as

Env™ = (L,0)
where

o L={l,...,l,} is a set of discrete locations

o CC{(li;ly)|li;l; € L Ni## j}is aset of directed connections

By this definition, Env™ introduces a spatial structure to the MAS in which the
agents may emit and perceive digital infochemicals at discrete locations. From the
viewpoint of a location, a directed connection can be inbound or outbound.

Definition 4.4 (Inbound connection)
Let l;,1; € L and (l;,1;) € C. Then (l;,1;) is called inbound connection of I;.

Definition 4.5 (Outbound connection)
Let l;,1; € L and (l;,1;) € C. Then (1;,1;) is called outbound connection of [;.



Consequently, the set {(;,1;)|({;,1;) is inbound connection of ;} is called inbound
connections of l;, whereas the set {(1;,1;)|(l;,1;) is outbound connection of I;} is called
outbound connections of l;. Furthermore, [; € L is called inbound neighbor of l; € L,
if 3(15,1;) € C : ((l5,1;) is inbound connection of [;). I; € L is called outbound neigh-
bor of l; € L, if 3(l;,1;) € C : ((I;,1;) is outbound connection of [;).

In order to store infochemicals at locations, while maintaining the information
on the direction the infochemical was propagated from, an infochemical buffer is
associated with each connection. An infochemical buffer is a data structure, able to
store infochemicals of different types.

4.2.3 Coordination Laws

The action emit(t) € Actfffgf performed by an agent Ag emits an infochemical ¢ at

the current location of the agent into the infochemical environment Env™™f. The
propagation of ¢ in Env™™ | in more detail between two locations in L, occurs based
on a propagation function (see Definition 4.6).

Definition 4.6 (Propagation function)
prop: L, L, L -1

The propagation function is only defined abstractly in the coordination model
and has to be instantiated by a concrete coordination mechanism. The instantiation
thereby has to consider t¢’s current concentration ~,, its threshold concentration
ythresh its diffusion coefficient d,, as well as optionally an propagation factor pf and
a propagation rate pr defined for the type of ¢. Thereby, pf € [0;1] specifies the
fraction of ¢+ that is propagated equally among all the neighbors of a location. pr
specifies the rate (counted in iterations) by which ¢ is propagated. The factor by
which the concentration changes due to a propagation between two locations depends
on the used coordination mechanism. However, ¢ has only a chance of being stored at
a neighboring location, if its concentration is still above its threshold concentration,
ie. " > ,thresh'

Assuming that the concentration of ¢ is still above its threshold concentration,
an aggregation function (see Definition 4.7) defines the storing of ¢ at a location
in L in consideration of already present infochemicals. Again, the instantiation of
this abstract aggregation function depends on a concrete coordination mechanism
as well.

Definition 4.7 (Aggregation function)
aggr : L, L, L - T
An evaporation function (see Definition 4.8) defines the evaporation of ¢ stored

at an location in L. Its instantiation similarly depends on a concrete coordination
mechanism and has to consider ,, v*#7¢" §,, as well as optionally an evaporation



factor ef and an evaporation rate er defined for the type of v. ef € [0;1] specifies
the fraction of ¢+ that remains after an evaporation. er specifies the rate (counted in
iterations) by which ¢ is evaporated.

Definition 4.8 (Evaporation function)
evap: L, L - T

Any concrete instantiations of the above three functions will depend on the appli-
cation domain at hand as well as the solution to realize. This allows for functions
that may model the biological transmission of infochemicals (see Equation 4.1) as
well as any other propagation, aggregation, and evaporation behavior. The action
perceive € Actffg performed by an agent Ag™f provides the agent with a view of
all infochemicals stored at the current location of Ag. However, the infochemicals
remain stored at the location and are not influenced by this action. In particular,
an agent Ag™/ is not able to remove any infochemicals from Env™/.

4.3 Design Pattern

For a more systematical engineering of efficient self-organizing emergent MASs based
on the principles of infochemical coordination (see Section 4.1) and the adopted co-
ordination model (see Section 4.2) it is important to capture both in a way that is
more intuitively to software engineers and easily transferable for autonomous solu-
tions to their problems. In software engineering, this is mostly done by structured
design patterns that can be instantiated and used by the engineers according to
the specific needs of their problems. Patterns in general were first introduced by
Alexander [Ale77] for architectural design in 1977. The concept of design patterns
in computer science has become popular in 1994 with the object-oriented paradigm
[GHJV94]. In its most general sense, a design pattern is a “recurring solution to
a standard problem” [SJF96]. The use of design patterns offers several advantages
such as reducing design-time by exploiting off-the-shelf solutions, promoting collab-
oration by providing a shared ontology, and lowering the number of errors in the
development, to name a few.

Design patterns have also found their way into the engineering of MASs. Early
contributions in this area were mostly concerned with the life-cycle of agents, pro-
viding solutions related to resource access, mobility, and basic social skills, see e. g.
[AL98, KKPS98, DWKO01], but primarily did not focus on the engineering of self-
organizing emergent MASs. However, after defining a first taxonomy for various
self-* properties in self-organizing emergent systems [DH07a], De Wolf and Holvoet
[DHO7b, DHO6] started to describe design patterns also for decentralized coordina-
tion mechanisms such as market-based coordination (see Subsection 3.3.1), tag-based
coordination (see Subsection 3.3.3), token-based coordination (see Subsection 3.3.4),
pheromone-based coordination (see Subsection 3.3.6), or field-based coordination
(see Subsection 3.3.7). On a higher level of granularity, Gardelli et al. [GVOO0T7]



have described basic patterns common to various biological systems, such as repli-
cation, collective sort, evaporation, aggregation, and diffusion. On a similar level of
abstraction, Babaoglu et al. [BCD'06] have described further patterns of biologi-
cal coordination, including plain diffusion, replication, stigmergy, chemotazis, and
reaction-diffusion. A proper combination of some of these patterns may produce
more complex patterns for self-organizing emergent systems, e. g. in the case of stig-
mergy the basic patterns are evaporation, aggregation, and diffusion (propagation).
In [GNO™08] a so-called organic design pattern® is presented for self-* systems that
consist of a set of independent agents interacting with each other and where recon-
figuration/adaptation can be expressed as a reallocation of roles.

An important issue that has to be taken into consideration for the capturing of
the principles of infochemical coordination in a design pattern is, however, that
only a very few people are software engineers and biologists together, aware of the
complex meanings of the different infochemical types that may be used for an effec-
tive and efficient coordination. Thus, to promote the usage of the design pattern,
again meaningful abstractions have to be made that allow on the one hand of course
biologically-inspired instantiations of this pattern, but on the other hand also in-
stantiations apart from biological background knowledge using neutral terms.

Although there exist different formats and structures for describing design pat-
terns (see e.g. [GHIJV94, Lin03, CSCO04]), it is generally agreed that the following
sections are mandatory [MD97]: A pattern name, providing a clear, distinguishable
identifier for the pattern. A context section, describing a situation when the pattern
would apply. A problem section, giving a precise statement of the problem to be
solved, in this case several problem characteristics. A forces section, describing items
that influence the decision for the pattern, indicating trade-offs that might be made.
A solution section, describing how the problem is being solved, balancing the forces.
For a more detailed description, we additionally add three optional sections: A ratio-
nale section, explaining why the solution is appropriate for the problem along with
its achieved (self-*) properties. An examples/known uses section, presenting a non-
exhaustive list of examples/references that illustrate the application of the pattern.
A related patterns section, mentioning other decentralized coordination mechanisms
that may be also of interest for the solution of the problem. Because this format is
well known in software engineering, e.g. [GHJV94] uses a similar format, the usage
of the pattern is promoted.

4.3.1 Context

The problem to be solved demands an autonomous solution that requires the de-
centralized coordination of multiple homogeneous and/or heterogeneous, more or
less autonomous elements in order to achieve a common and globally coherent goal.
The elements are situated in a physical or logical environment, which can be ex-
tended with an appropriate infrastructure, whereas the environment structure may

3 Although labeled as pattern, the organic design pattern is rather a conceptual model, as a struc-
tured description of the model is not available



represent a part of or even the entire problem to be solved. Some kind of spatial
movement of the elements may be required or information about the spatial location
of the elements has to be exchanged. The only possible way to coordinate are local
estimates of global information. The desired solution has to be robust, flexible, and
scalable in the face of frequent dynamic changes in the environment or the system.

4.3.2 Problem

The problem to be solved is characterized by the following items:

Spatial routing: Autonomous elements have to move or route themselves
adaptively and as optimal as possible through the environment or problem
structure. Elements may have to be attracted to certain locations or in a
certain direction and be deterred from certain locations or directions, respec-
tively.

Spatial awareness: Autonomous elements have to be provided with abstract,
simple, yet effective contextual information, i.e. spatial information such as
distance and/or direction to a location, facilitating the coordination process.

Homogeneity and heterogeneity: Homogeneous and heterogeneous au-
tonomous elements with different capabilities regarding their mobility, ability
to communicate, or functionality have to be taken into account and are part
of the problem or the solution.

Robustness and adaptiveness: Autonomous elements have to move appro-
priately and achieve or maintain the globally coherent goal in face of dynamic
changes in the environment, e. g. obstacles, failures, emerging/vanishing loca-
tions, emerging/vanishing pathways.

Openness and scalability: Autonomous elements may leave or join the
coordination process at any time and any location without affecting the overall
performance negatively. In case of leaving, a graceful degradation is expected.
In case of joining, a smooth and seamless integration is expected.

Various information sources: Various sources can produce various types of
information that have to be considered. The information has to be processed
in a completely distributed and decentralized environment.

4.3.3 Forces

The decision for the pattern is influenced by the following items, which may indicate
trade-offs that have to be made:

Centralization vs. decentralization: In relation to a centralized approach,
a decentralized approach usually causes a communication as well as coordi-
nation overhead, except the information to control the system is intrinsically



distributed or every element has almost global knowledge about the system
state. However, the global state usually can not be obtained without any fur-
ther assumptions or restrictions. In return, in very dynamic environments a
decentralized approach has no bottleneck or single point of failure.

e Optimality vs. robustness/flexibility: In an adaptive approach without
central means to optimize its efficiency an optimal solution to a problem can
not be guaranteed. On the other hand, in face of frequent dynamic changes
in the environment or in the system itself, a durable optimal solution does
not exist at all. In these instances, a robust and flexible approach may be
preferable to an optimal but inflexible approach.

e Exploration vs. exploitation: In contrast to only exploit already known
information, new information has to be explored sufficiently in order to have an
adaptive solution. This prevents the autonomous elements from being trapped
in local optima and supports finding new pathways or sources. On the other
hand, a too high level of exploration may result in inefficient solutions.

e Responsibility of the environment vs. the elements: Effective coor-
dination often requires intensive information processing and communication,
which can be accomplished by the elements themselves or the environment
they are situated in. In the former case, the elements may explicitly reason
about the information and control which and when information is distributed.
However, this may require complex reasoning algorithms and communication
capabilities and is not recommended in dynamic environments. If in con-
trast the environment itself represents the needed coordination information by
transparently processing and distributing it toward the elements, the elements
will be able to use that information as a kind of ”"red carpet”, which, when
followed, achieves the global goals and avoids complex processing within the
elements. Such coordination can be more dynamic and adaptive.

e Greediness vs. purposefulness: In decentralized approaches, the need for
adaptive and flexible coordination usually rules out globally informed and pur-
poseful decisions by the autonomous elements. Thus, the elements act ”greed-
ily” and try to exploit any information immediately, instead of disregarding
some information in order to receive a greater benefit later.

4.3.4 Solution

The description of the appropriate solution to the problem, balancing the aforemen-
tioned forces, is manifold. For a more detailed structure, this section is subdivided
into a conceptual description of the solution, a parameter tuning subsection describ-
ing the essential parameters that can be tuned in this solution, and an infrastructure
subsection that describes the functionality that is required from an infrastructure
to realize the solution.



4.3.4.1 Conceptual Description

The solution is inspired by the principles behind infochemical-based coordination
in nature (see Section 4.1). To make these principles usable for decentralized coor-
dination in computer systems, they have to be meaningfully adopted into a com-
putational model. Figure 4.2 illustrates the description of this model by an UML
diagram. In this model, a living organism is seen as an autonomous Agent, situated
in a spatial Environment consisting of multiple Locations the agent may be situ-
ated on. Connections between the locations define the possible ways an agent may
choose from in order to move between the locations, whereupon the connections may
be directed or undirected as well as of different length, depending on the physical
conditions.

An agent belongs to at least one Type, which in turn may be hierarchically com-
posed to higher types, reflecting the taxonomic ranks in biology, as well as being
linked to other types, reflecting interspecific relationships in biology. This allows
for homogeneous as well as heterogeneous agents situated in the same environment
interacting with each other. An agent acting as emitter is able to emit digital
Infochemicals, i.e. [+,], [-,+], or [+,+] Intra-type infochemicals respectively
Inter-type infochemicals, according to a specific emission rate into the environ-
ment, in order to communicate and coordinate with other agents indirectly. The
abstraction of the biological terms pheromones and allelochemicals in the model by
the terms intra-type and inter-type infochemicals allows on the one hand still the
use of certain pheromone or allelochemical types in biologically-inspired instantia-
tions of this pattern, but on the other hand also instantiations apart from biolocigal
background knowledge using neutral terms. A digital infochemical basically contains
four attributes:

e Individual information, which reflects the biological role of an infochemical
as a dynamic information carrier. The content of this attribute may vary
between different applications, whereas at least the type of the emitting agent
is included in this information.

e Its current concentration, which reflects the dynamically changing concen-
tration of diffusing biological infochemicals.

e A threshold concentration, which reflects the behavioral threshold concen-
tration of living organisms regarding specific infochemicals.

e Its diffusion coefficient, which reflects its biological pendant and thus
allows for a very fine-tuned propagation radius and evaporation time specific
to each infochemical.

An agent emits an infochemical to the environment by handing it over to the
location it is currently situated on. All locations in the environment are in charge
of providing a stigmergic functionality to the agents. So every location is able
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to execute three different Infochemical Actions, each governed by a respective
Infochemical Policy:

1. A location may propagate an infochemical to its neighboring locations ac-
cording to an infochemical-specific Propagation Policy. The amount that
is propagated is governed by a propagation factor and the infochemical-
specific diffusion coeffcient, both affecting the decrease of the infochemical
concentration. The rate is governed by a propagation rate. Propagation as
such supports information diffusion and spreading.

2. A location may aggregate different infochemicals according to an infochemical-
specific Aggregation Policy, such that separate infochemicals are perceived
as one. Aggregation in general is a mechanism of reinforcement and supports
information fusion.

3. A location may evaporate infochemicals according to an infochemical-specific
Evaporation Policy. An individual evaporation rate governs the speed
of evaporation, whereas the infochemical’s diffusion coefficient as well as its
evaporation factor govern the amount that is evaporated. Evaporation in
general serves to forget old information that is not refreshed or reinforced by
new infochemicals, which supports truth maintenance of information in the
environment.

Due to these infochemical actions and policies an infochemical emitted by an
agent diffuses across the neighboring locations in the environment. Every location
affected by this diffusion stores a certain quantity of the infochemical, as long as the
infochemical has not to be removed. The diffusion will produce a kind of infochem-
ical field around the emitting agent. The location with the highest infochemical
concentration of a field is the one the emitting agent is currently situated on.

An agent acting as perceiver is able to perceive infochemicals contained at its
current location, possibly emitted by itself, by agents of its own type, or by agents
of another type, in case that the relevant types are linked together. The perception
of an infochemical by an agent may set in motion an Action Chain executed by the
agent, reflecting the individual function of a given infochemical on a living organism.
An action chain consists of at least one Action, which can be of the following types:

e Move: The agent moves from its current location to a neighboring location,
depending on the perceived infochemical field. The movement can be in the
direction of the perceived infochemical, in the opposite direction, or equal to
the concentration of the infochemical field, depending on the desired behavior
of the agent and the coordination to achieve.

e Location-specific Action: This action can have different shapes. On the
one hand, triggered by the perception of e.g. an alarm pheromone, an agent
may response by emitting alarm pheromones in turn. On the other hand, if



its current location has a special meaning to the agent, the agent may also
execute a well-defined action at this location. For example, an ant picks up
food at its destination location and drops food at its source location, while it
emits pheromones at every location in between.

e Direct Interaction: The agent directly interacts with one or more other
agents. Direct interaction is only possible, if the interacting agents are sit-
uated on the same location. The reasons for direct interactions can e.g. be
information exchange, reflecting the direct exchange of pheromones between
ants or between bees in the case of surface pheromones, or resource exchange,
reflecting the exchange of resources, e.g. pollen grains between flowers and
bees for instance, but also any other act of communication or negotiation.

Independent of a perceived infochemical triggering a reactive action, an agent
may also execute certain action chains proactively, e. g. if no infochemicals can be
perceived on the current location or infochemicals are to be emitted due to other
reasons.

4.3.4.2 Parameter Tuning

The parameters that may be tuned in IBC for an efficient coordination are the
following:

e Emission concentration: The initial concentration of an infochemical when
it is created by an agent and emitted into the environment. Even though
more than one type of infochemical is used for the coordination, the emission
concentration value applies to all types.

e Threshold concentration: The minimal concentration of an infochemical.
If the concentration of an infochemical falls below this value due to its propaga-
tion and evaporation, the infochemical will be removed from the environment.
If there are different types of infochemicals used for the coordination, every
infochemical type may have its own threshold concentration. A higher thresh-
old concentration value narrows the diffusion area of an infochemical, a lower
threshold concentration widens the area.

e Emission rate: The rate by which an infochemical is emitted by an agent.
If there are different types of agents participating in the coordination process,
every agent type may have its own emission rate. A high emission rate should
be used, if information changes frequently or other agents have to be noticed
of information changes, a lower emission rate should be used, if information is
rather static.

e Diffusion coefficient: If there are different types of infochemicals used for the
coordination, every infochemical type may have its own diffusion coefficient,
allowing for fine-tuned information diffusion areas. While some information



may be required to be spread over a greater distance, other is not. Thus, an
unnecessary communication overhead can be reduced. Note, agents could also
be allowed to change the diffusion coefficient of their emitted infochemicals
dynamically, in order to adapt to possible changed situations.

e Propagation factor/rate and evaporation factor/rate: Together with
the diffusion coefficients, these parameters control the information spreading
and truth maintenance individually for each participating type of infochemical.
The settings may depend on the application-specific propagation/evaporation
functions, which may be linear, degressive, distance-dependent, etc. In general,
if evaporation proceeds very fast, information will be forgotten more rapidly.
If evaporation is too slow, too many agents will be attracted into the wrong
direction.

A proper tuning of these parameters has significant impact on the efficiency of
the system. However, it is recommended to keep the amount of variable parameters
as small as is necessary.

4.3.4.3 Infrastructure

The application of this solution requires a kind of infochemical infrastructure to be
provided by the locations composing the environment. Every location therefore has
to provide a certain functionality:

e It has to accept and store infochemicals emitted by an agent situated on it.

e It has to propagate, aggregate, and evaporate infochemicals according to the
respective infochemical policies.

e It has to provide access to locally stored infochemicals for an agent situated
on it.

The realization of this infrastructure usually depends on the application domain.
In case of a MAS running on a single machine, for example, the implementation will
be simply a piece of software. In case of a distributed manufacturing system, for
example, a kind of distributed middleware will be required.

4.3.5 Rationale

The appropriateness of the solution along with its achieved (self-*) properties is
explained by the following items:

e Routing: In general, following the increasing concentration of an infochemical
field is the shortest path to the emitter. Attracting agents to specific locations
and to move in a specific direction according to an infochemical’s concentra-
tion is supported as well as repelling an agent from a location or direction.
Obstacles are bypassed adaptively.



e Feedback: Feedback is given by the fact that infochemicals can change when
changes occur in the environment, when the agent that emits the infochemical
decides to move, or is required to change the individual information, which
is included in the infochemical. Other agents can then take the perceived
change into account and react on it by, for example, emitting corresponding
infochemicals on their own or changing the individual information of their
own infochemicals according to the observed information (positive feedback).
As outdated information is not refreshed anymore and gradually evaporates,
negative feedback occurs. As such feedback cycles are established enabling
self-organization.

e Environment topology: The structure of the environment reflects a part
or even the entire problem to be solved. The distribution of the infochemicals
along with their concentration guides the agents to the current solution of that
problem.

e Decentralized control: Local decisions are made without requiring central-
ized reasoning or control. This way a global self-organized motion pattern
emerges due to the related effects of agents emitting infochemicals and moving
according to other observed infochemicals. The goals that are accomplished
are not due to single agents, but due to the system as a whole without any
central controller.

e Information diversity: Various types of information from various sources
are supported. Coordination can be based on multiple types of infochemicals,
even on multiple types of the same infochemical type, e.g. different types of
pheromones.

e Dynamic situations: The environment in general is able to incorporate dy-
namic changes immediately, enabling the agents to react in a flexible way. New
information is quickly integrated, while outdated information is quickly forgot-
ten. Concepts such as exploration, information refreshment, and evaporation
result in an adaptive coordination process. Agents thus can join and leave the
system without significant disturbances to the global goal. This openness of
the coordination process makes the mechanism extremely robust. Due to the
intrinsically decentralization, the entire mechanism is scalable in problem size.

e Information spreading/distribution: Infochemicals are dynamic informa-
tion carriers holding spatial information (direction to or distance to emitter)
as well as individual information. The environment represents the distribu-
tion mechanism for this information and participates actively in the system’s
dynamics.

e Processing complexity: The agents are responsible for which information
is emitted where and when into the environment. The environment is then re-
sponsible for storing, propagating, and evaporating this information. As such,



the environment makes sure that not too much computational and communica-
tion burden is imposed on the agents themselves by automatically providing a
dynamically adapting and propagating coordination structure that is immedi-
ately usable by agents. The context is represented expressively as infochemical
fields, i.e. a kind of "red carpet”, which represents how to achieve a coordi-
nation task by simply following the field. The coordination is achieved with
very little effort and without complex reasoning by the agents. The latter in-
dicates that the problem solving power resides in the local interactions instead
of inside the agents’ reasoning.

e Self-* properties: According to the characteristics of self-* properties in
decentralized AC systems [DHO07a], the solution usually achieves smoothly
evolving, ongoing, macroscopic, and adaptation-related self-* properties with
possible functionalities in resource allocation, group formation, spatial shaping,
or load balancing, to name a few. The inherent adaptiveness, flexibility, and
robustness of the coordination process yield to some extend self-configuring
and self-healing properties.

4.3.6 Examples/known uses

Examples, known uses, and references of the DIC pattern can be found in different
problem domains. A non-exhaustive list illustrating the application of the pattern
includes the following:

e Multiple types of pheromones with varying propagation rates and thresholds
have been used in [BP00] to coordinate agents of two species on a hexag-
onal grid in a military scenario. Evaluations have verified the performance
improvements that were achieved due to the different pheromone configura-
tions. Similarly, in [PL04] multiple types of pheromones have been used for
self-optimizing trail behaviors by agents in domains which have obstacles, dy-
namically changing target locations, and multiple waypoints.

e In [KBDO8] a self-organizing emergent system was developed for the solu-
tion of Pickup and Delivery Problems (PDPs) in manufacturing systems. It
was demonstrated that a combination of both intraspecific and interspecific
interactions by different types of chemicals in the same system yields more
powerful and efficient solutions. Experiments executed on the same system in
[KDB09] show that infochemical-specific diffusion coefficients along with in-
dividual propagation and evaporation policies result in a significant message
reduction with a simultaneous performance increase.

e Based on the DIC pattern, in [DDKB10] a self-organizing emergent system
was developed for the real-time control of water distribution networks. Tanks
and pumps of water distribution networks were equipped with infochemical-
processing agents that coordinate by means of two to three different infochem-



icals. The decision making in the agents based on these infochemicals was able
to outperform human decision making in certain situations.

e The idea of dropping information on specific locations that are picked up by
other agents can even be found in search problems. In [YK96] a state-space
search problem is solved concurrently by multiple cooperative agents, whereby
the agents exchange information they found during their search, which can
then be used by other agents arriving at these logical locations.

4.3.7 Related patterns

IBC is naturally related to other mechanisms in charge of coordinating multiple au-
tonomous agents in a self-organizing manner, in particular field-based coordination
(see Subsection 3.3.7) and of course pheromone-based coordination (see Subsection
3.3.6). Field-based coordination is similarly to IBC an instantiation of classical gra-
dient field-based coordination, but inspired from magnetic fields. However, there
the gradient parts do not evaporate over time but have to be removed explicitly
by the environment. The strength of the gradient parts usually increases with in-
creasing distance to the gradient initiator, which sometimes leads to the problem
of local minima when gradient fields are combined for the coordination of agents.
Pheromone-based coordination can be readily considered as a specialization of IBC,
as it supports only the coordination of homogeneous autonomous agents by means
of digital pheromones. Also, there all pheromones are propagated and evaporated
equally without the possibility to differentiate between various types, which limits
its general applicability.

4.4 Design Guidelines

Once an engineer has determined that the IBC design pattern presented in the
last section is applicable to his particular situation as well as to its desired self-*
properties, the next step is to find respectively design an appropriate decentralized
coordination mechanism that instantiates the pattern respectively the coordination
model. If such a mechanism has not be designed for the problem in hand yet,
the engineer consequently has to design a new one. However, without any further
support this process may be complex, time-consuming, and costly again, because
the appropriate utilization and combination of different types of infochemicals along
with their inter-related effects on the local (microscopic) as well as on the global
(macroscopic) level is hard to understand due to the micro-macro gap.

Therefore, as a further artifact, in this section we present design guidelines that
support engineers in specifying new coordination mechanisms based on IBC. More
precisely, the guidelines provide an indication which types of infochemicals to use
for the agents’ interactions on the local level in order to achieve certain required
effects on the global level. Fur this purpose, we again take advantage of biology:
Any local interactions between living organisms or species in an ecosystem establish



a global relationship between the interacting organisms. These relationships can be
considered as macroscopic effects emerging from the microscopic behavior, i.e. the
emitting of infochemical types, of the organisms.

As mentioned in Section 4.1, one distinguishes two different types of interactions
between living organisms: intraspecific interactions between organisms of the same
species and interspecific interactions between organisms of different species. Both
types result in different relationships between the interacting organisms and have ei-
ther beneficial, neutral, or harmful effects on the organisms or species involved. The
level of benefit or harm however is continuous and not discrete [Lid79]. Intraspecific
relationships can be classified along the degree of sociality exposed, ranging from
nonsocial to social:

e Nonsocial relationships emerge from the tendency of organisms to avoid the
association with others and to disregard the welfare of the own species. The
reason may be a negative or positive egoistic behavior of an organism. Negative
egoistic behavior refers to forms of selfish interactions, if the outcome is harmful
to the general welfare of the own species or detrimental to other organisms.
Positive egoistic behavior instead refers to forms of selfish interactions, if the
outcome is self-interested but not harmful to the general welfare of the own
species or detrimental to other organisms.

e Social relationships emerge from the tendency of organisms to associate with
others and to form social groups. The reason may be a reciprocal altruistic,
altruistic, or selfless behavior of an organism. Reciprocal altruistic behavior
refers to the conversion of egoistic interactions into altruistic interactions. It
describes social or cooperative forms of interactions, in which one organism
provides a benefit to another organism of the same species without expecting
any payment or compensation immediately (”tit for tat”). For example, vam-
pire bats feed regurgitated blood to those who have not collected much blood
themselves, having in mind that they themselves may someday benefit from
this same donation. Altruistic behavior refers to social forms of interactions
that increase the fitness of another organism of the same species without any
immediate or later increase of the own fitness. For example, dolphins sup-
port sick or injured animals, swimming under them for hours at a time and
pushing them to the surface so they can breathe. Selfiess behavior refers to
social forms of interactions that increase the fitness of another organism while
decreasing the own fitness. The organism therefore follows a course of action
that has a high risk or certainty of suffering or death, which could otherwise be
avoided. For example, vervet monkeys give alarm calls to warn fellow monkeys
of the presence of predators, even though in doing so they attract attention to
themselves, increasing their personal chance of being attacked.

Having these relationships in mind, the guidelines provided in Table 4.2 can be
read in two ways: If an engineer knows about the macroscopic intraspecific rela-
tionships he wants to achieve, he may look up the corresponding pheromone types



that have to be used for the interactions between homogeneous agents (agents of the
same type) on the local level therefore. If an engineer by contrast knows about the
microscopic effects he wants to achieve between homogeneous agents, he may look
up the corresponding pheromone types as well. The effects on the interacting agents
are denoted by '+’ (positive case), 0’ (neutral case), or '—’ (negative case). The
meaning of these effects depends on the addressed problem domain, e. g. for solutions
that require a spacial movement or routing of agents a '+’ may indicate an attrac-
tion toward the direction of the perceived pheromone, whereas a ’—’ may indicate a
repellent effect into the opposite direction, provided that the microscopic behavior

of the agents reflects the corresponding biological behavior of the organisms.

Macroscopic Effect on  Effect on  Corresponding
intraspecific source of  sink of type of
relationship stimulus stimulus pheromone
Nonsocial
- Negative egoistic + - Territorial pheromone
- Positive egoistic + 0 Home range pheromone
Social
- Reciprocal altruistic + + Dispersal, trail, sex,
surface pheromone
- Altruistic 0 + Aggregation pheromone
- Selfless - + Alarm pheromone

Table 4.2: Macroscopic intraspecific relationships with corresponding microscopic ef-
fects and pheromone types

Interspecific relationships that emerge between organisms or populations of dif-
ferent species range from antagonistic to mutualistic:

e Antagonistic relationships emerge from the interactions between (organisms
of) different species, in which one species benefits at the expense of another
species. There are two types of antagonism: predation and parasitism. Pre-
dation describes a relationship where a predator organism feeds on another
living organism. Parasitism describes a relationship, in which one species, the
parasite, benefits from the interaction with the other species, the host, which
is harmed.

e Amensal relationships emerge from the interactions between (organisms of)
different species, in which one species impedes or restricts the success of the
other without being affected positively or negatively by the other. Amensalism
sometimes is further divided into competition and antibiosis. For example some
higher plants, e. g. the already mentioned black walnut, secrete substances, e. g.
juglone, that inhibit the growth of — or kill outright — nearby competing plants.



e Commensal relationships emerge from the interactions between (organisms of)
different species, in which one species benefits and the other species is neither
benefited nor harmed. For example, whereas a small crab enters the shell of
a oyster as a larva and receives shelter while it grows, once fully grown it
is unable to exit through the narrow opening of the two valves and remains
within the shell, snatching particles of food from the oyster but not harming
its unwitting benefactor.

e Mutualistic relationships emerge from cooperative interactions between (or-
ganisms of) different species that normally benefit both species. They can be
thought of as a form of biological barter in which species trade resources, such
as carbohydrates or inorganic compounds, or services, such as protection from
predators. For example, plants are hosts for insects that visit and pollinate
them or eat their fruit.

Analogously to Table 4.2, the guidelines provided in Table 4.3 can be read in the
same two ways, however for the interactions between heterogeneous agents (agents
of different types).

Macroscopic Effect on  Effect on  Corresponding
interspecific source of  sink of type of
relationship stimulus stimulus allelochemical
Antagonistic
- Predatory + - Foraging, enemy-
avoidance allomone
- Parasitic - + Foraging, enemy-
avoidance kairomone
Amensal
- Competitive/antibiotic 0 - Allomone (in general)
Commensal
- Inwards directed + 0 Sexual allomone
- Outwards directed 0 + Sexual, aggregation
kairomone
Mutualistic
- Resource-resource coupled  + + Synomone
- Service-resource coupled + + Synomone
- Service-service coupled + + Synomone

Table 4.3: Macroscopic interspecific relationships with corresponding microscopic ef-
fects and allelochemical types

There also exist relationships that apply to both types of interactions, in which
the fitness of one organism or species has absolutely no effect on that of the other
organism or species (neutral relationships) or the fitness of both is decreased (termed



synnecrosis). However, true neutralism is very unlikely and impossible to prove,
whereas synnecrosis is a rare and necessarily short-lived relationship as evolution
selects against it.

4.5 Exemplary Instantiation

As mentioned in Subsection 4.3.7, pheromone-based coordination (PBC) can be
considered as a specialization respectively instantiation of the DIC model, as it
supports the coordination of homogeneous agents by means of one single type of
digital infochemical, namely pheromones. In order to show that the specification of
the DIC model generalizes the specification of PBC, as e.g. used in [Brii00, DS04,
HVKBO04, SHO5a, VHGT07], in this section we exemplary instantiate the DIC model
for this specific decentralized coordination mechanism in its original formulation. We
will use the same specification structure later for the instantiation of the DIC model
for PIC (see Subsection 7.2.2, later).

4.5.1 Biological Inspiration: Ant Foraging

Although many species in nature coordinate their local activities indirectly by means
of pheromones (e.g. ants, bees, termites, etc.), PBC was inspired by the stigmer-
gic communication of ants in the first instance. To be more specific, because ants
utilize different shapes of marker-based and sematectonic stigmergy (see Subsec-
tion 2.3.2.1), e. g. foraging, division of labor, brood sorting, and cooperative trans-
port, PBC is inspired by the local behavior of ants during foraging.

Foraging in social ant colonies, such as the Lasius niger or the Argentine ant
Iridomyrmez humilis, is based on pheromones rather than on visual cues [GADPS89,
HW90]. Thereby, the local behavior of a single ant is very simple. At its cur-
rent location, the ant observes the local concentration and the local gradient of
the concentration of pheromones. Due to the releaser effect of pheromones, in this
case trail pheromones (see Subsection 4.1.2), the ant changes its behavior, i.e. it
tends to walk, probabilistically, in the direction with the highest concentration of
pheromones. When the ant finds a food source, it deposits a certain amount of
pheromones on the ground itself, while it heads back to the nest. Thereby, multiple
deposits of a pheromone at the same location aggregate in strength. Other ants that
perceive this pheromone trail then similarly tend to walk, probabilistically, in the
direction with the highest concentration of pheromones. If they still find food, they
will similarly head back to the nest, while depositing own pheromones, which again
reinforce the trail. The more food is found, the more ants will follow the trail, the
stronger the concentration of the trail.

The trail thus emerges as the shortest path between the nest and the food source
solely from the actions and interactions of the individual ants. Even if obstacles
such as rocks or pieces of wood change the environmental conditions, the ants will
be able to find their way and to maintain the pheromone trail (see [DAGP90]).



Consequently, once the food source is exhausted, the trail will not be reinforced but
will disappear due to the evaporation of the pheromones.

4.5.2 Pheromone-based Coordination

To specify PBC, in Subsection 4.5.2.1 we first describe the conceptual model of PBC
as an instance of the IBC approach. Subsection 4.5.2.2 subsequently specifies the
objective coordination in PBC, i.e. the coordination between the agents, whereas
Subsection 4.5.2.3 specifies the subjective coordination in PBC, i. e. the coordination
within an agent.

4.5.2.1 Conceptual Model

Based on the aforementioned inspiration, Figure 4.3 depicts a conceptual model of
the PBC mechanism as an instantiation of the DIC model (see Figure 4.2). An Agent
in PBC, which represents an ant in nature, instantiates an agent of the DIC model
and is situated on a Location part of an Environment the agent is situated in. An
agent can emit Trail Pheromones and perceive pheromones emitted by other agents
or itself. The emission of a pheromone is always a Location-based Action. The
pheromones are affected by Infochemical Actions executed by a location, in more
detail the locations propagate, aggregate, and evaporate the pheromones. These
actions are governed by respective Infochemical Policys. Due to the pheromones
stored by the locations, pheromone trails may emerge, which an agent may follow
from its Source to a Destination and vice versa, where it can in turn perform a
Destination Action respectively a Source Action.

4.5.2.2 Objective Coordination

In indirect coordination mechanisms such as PBC, the objective coordination, i.e.
the coordination between the agents, is specified by defining the behavior of the
coordination environment in response to a message, in this case the behavior of the
infochemical environment in response to a pheromone. Therefore, we first specify a
pheromone in PBC more formally. The behavior of the infochemical environment is
then defined by specifying the behavior of a location part of the environment.

Trail Pheromone

A trail pheromone ¢ emitted by an agent Ag is specified as

o = (7,77 (4.2)

where

e v € R is the concentration of ¢

o ~thresh ¢ R is the threshold concentration of ¢
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In PBC, trail pheromones are usually not required to comprise any individual
information. This is because PBC only utilizes quantitative stigermgy, so that only
the amount (concentration) of pheromones at a certain location plays a role. By
contrast, PIC (see later Subsection 7.2.2) utilizes quantitative and qualitative stig-
mergy for coordination, where individual information included in the infochemicals
is essential.

Behavior of a Location

Every location part of the infochemical environment is able to execute three dif-
ferent actions affecting an infochemical. In more detail, a location can propagate,
aggregate, and evaporate an infochemical, depending on specific infochemical poli-
cies. To specify these policies, we will instantiate the propagation, aggregation, and
evaporation function defined by DIC.

Propagation Function Equation 4.3 instantiates the propagation function de-
fined in Definition 4.6 for the PBC mechanism. While a pheromone ¢ is propagated
from a location [y to a location [o, its concentration is decreased depending on the
distance dj,;, between the two locations (measured in e.g. in meters, hops, etc.),
the propagation factor pf, and the propagation rate pr of ¢. If the concentration of
@ at the location lo would be below the threshold concentration 'yf;hre‘*h defined for
pheromones, ¢ will not be stored at ls.

Pl if 7@12 > fyfphreSh where ’74,012 = ’ylpll - dlllz : pftp * Py

thresh _
resih where Yeor, = Yo, — dii, Dfp - Pry

) (4.3)
0 if g, <9

prop - @i, — {

Aggregation Function Equation 4.4 instantiates the aggregation function de-
fined in Definition 4.7. In PBC, two pheromones ¢ and s present at location
[ are aggregated to a single pheromone ¢, whose concentration is the sum of the
concentrations of 1 and ;.

aggr : p1, w2, = o1 With 75, = Yo, + Ve, (4.4)

Evaporation Function Equation 4.5 instantiates the evaporation function de-
fined in Definition 4.8. In PBC, a pheromone ¢ stored at location [ decreases its
concentration 7, between iteration ¢ and ¢ + 1 depending on the evaporation factor
ef and the evaporation rate er defined for a pheromone. If the concentration of
@ at iteration ¢ + 1 would be below the threshold concentration ’yfah’"“h defined for
pheromones, ¢ will be removed from I.

: thresh _
evap : oy Pt+1,1 if Yeors1, > Yo where Yorr1, = Vo ef@ " €Ty (4 5)
' ) : thresh _ !
0 if Yorr1n < Vo where Yory1r = Vo efp - €ry



4.5.2.3 Subjective Coordination

The subjective coordination, i.e. the coordination within an agent, is specified by
defining the simple local behavior of an agent Ag part of the PBC mechanism (see
Algorithm 4.1). If Ag is currently not situated on a location but is moving between
two locations on a connection, it will proceed moving to the next location (see
lines 1-2). If Ag is situated on a location, which is its current destination, e.g. the
food source, and it has not performed its destination action so far, e. g. pickup food,
it will perform its destination action (see lines 3-4). If the location Ag is situated on
is a location, which is its source, e. g. the nest it originated from, and Ag is returning
from its destination as well as has not performed its source action so far, e. g. drop
food, it will perform its source action (see lines 5-6). Otherwise, Ag perceives from
every outbound connection the current pheromone strength (see lines 8-10) and
moves based on a probabilistic or stochastic decision making in the direction of
the pheromone with the strongest concentration (see line 12). If no pheromone is
perceived, Ag chooses a random outbound connection to move on (see line 14). If
Ag is returning from its destination, it will emit fixed amounts of pheromones at a
constant emission rate (see lines 15-16).

Algorithm 4.1 Local behavior of an agent in PBC

if | =) then
2: do proceed moving

else if | = destination N\ — destination action performed then
4: do destination action

else if | = source A returning A — source action performed then
6: do source action

else
8: for all c,: €1 do

do perceive ¢

10: Pperceived - Pperceiued U %)
if Pperceived # 0 then

12: do move on cout of ¢ € Pperceived With v, = max
else

14: do move on random Cout
if returning then

16: do emit ¢

4.6 Related Work

Because the DIC model explicitly allows for the specification of different functions,
dynamics, and semantics of digital infochemicals as well as the usage of different
types of agents all within one single decentralized coordination mechanism, it pro-
vides an enhanced expressiveness and efficiency in particular compared to the PBC
mechanism as described in the last section. The experiments described in Section 8.3
will underpin this statement by resilient results.



Furthermore, the general biological principles of infochemical-based coordination
in nature adapted by the DIC model provide an increased functionality that can be
realized by one single coordination approach (see Table 4.4). For instance, by the
PIC mechanism specified in Subsection 7.2.2 below, we will demonstrate an instan-
tiation of the DIC model that uses indirect interaction to fulfill resource allocation
as well as a spatial distribution of agents within one single coordination mechanism.
Furthermore, due to the inclusion of individual information into digital infochemicals
and their propagation via the environment, information dissemination is provided
by the DIC model as well. The construction of spatial shapes is exemplary realized
by the PBC mechanism, considered as an instantiation of the DIC model.
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Resource allocation + + +

Group formation + +
Organizations +

Self-protection + + + +

Information dissemination + + | +

Spatial shapes + IR

Spatial distribution + 4+ |+

Indirect interaction (+) + o+ |+

Source of inspiration (+) + +

Table 4.4: Comparison of decentralized coordination approaches

The DIC model in principle can be used for group formation as well, if the agents
are allowed to change the type of other agents (similar to tag-based coordination).
Also, similar as in nature, the DIC model provides a form of self-protection, as long
as the agents only react on the perception of infochemicals emitted by agent types
that are linked to the own agent type. However, these two criteria have not been
experimentally tested, yet.

Due to the plethora of examples of IBC in biology, the DIC model inherently pro-
vides a nearly inexhaustible source of inspiration for the design of new decentralized
coordination mechanism. Apart from PIC, an example is given by a DIC-based
decentralized coordination mechanism, called indirect defense coordination, used for
the realization of a self-organizing emergent MAS for the real-time control of water
distribution systems [D6t10]. This mechanism is inspired by an infochemical-based
strategy certain plants apply in biology in order to deter herbivores (see [DvPdB03]).



4.7 Conclusion

In this chapter, we have presented several design artifacts that can be used for the
systematic engineering of effective and in particular more efficient self-organizing
emergent MAS solutions. The artifacts simplify the design, save development time,
and thus reduce development costs as well as TCO (see Objective 1).

In more detail, we have investigated the general principles behind infochemical-
based coordination in biology and adopted them in the DIC model. On the one
side, the DIC model thus allows for the efficient coordination of homogeneous and
heterogeneous agent types by different types of infochemicals within one single, ver-
satile, and coherent model (see Challenge 1). On the other side, the DIC model thus
furthermore allows for the identification and specification of a vast amount of new
and efficient, biologically-inspired coordination mechanisms (see e.g. later Subsec-
tion 7.2.2), which are based and guided by the expressiveness of the DIC model (see
Challenge 2). In addition to the DIC model, we have provided a corresponding de-
sign pattern as well as design guidelines that help to identify and adapt decentralized
coordination mechanisms (see Challenge 3).

Even though the design pattern and the design guidelines can not repudiate their
biological origin, they do not force an engineer to be a biological expert and to
understand the complicated relationships in nature. Once an engineer in charge of
designing a self-organizing emergent MAS solution has identified an appropriate set
of agents, which can even be done based on conventional agent-oriented software
engineering (AOSE) techniques (see Section 3.4), the engineer first looks at the con-
text, problem, and solution sections of the design pattern description. Once he has
determined that the pattern is of interest, he looks at the forces and rationale sec-
tions for guidance on determining whether the pattern is applicable to his particular
situation and to his desired self-* properties. The next step is to find respectively
design an appropriate decentralized coordination mechanism that instantiates the
design pattern respectively the DIC model. If such a mechanism has not been iden-
tified respectively designed for the problem in hand yet, the engineer consequently
has to design a new one. Therefore, the design guidelines provide an indication,
which types of infochemicals to use for the agents’ interactions on the local level in
order to achieve certain required effects on the global level. When using an iterative
engineering process, as e. g. done in [KBDO08], the design guidelines moreover help to
adapt and improve the coordination mechanism in each iteration, as they support
the engineer in adding or changing infochemicals or even the agents’ reactions to
certain infochemicals.

The experimental results described in Section 8.3 will demonstrate the enhanced
efficiency that can be achieved when designing self-organizing emergent MASs by
the artifacts described in this chapter. However, one has to be aware of the fact that
when using decentralized coordination approaches for a solution to a dynamic opti-
mization problem, no approach in general will be able to guarantee the optimality
of the solution nor a required degree of efficiency during operation on its own. In
other words, the agents in a self-organizing emergent MAS will always tend to make



"suboptimal’ local decisions during operation that may result in global inefficiencies.
In the next part of this thesis, we will describe and analyze reasons for this drawback
in more detail and present an appropriate approach to overcome such inefficiencies
during operation.
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Chapter 5

Operating Self-Organizing Emergent
Systems

While in the previous part of this thesis we have provided the background for and
state of the art in designing self-organizing emergent systems as well as presented
several artifacts that can be used for the systematic engineering of effective and
in particular efficient self-organizing emergent systems, in this part we provide the
background for and state of the art in operating these systems as well as present an
approach to improve the efficiency of these system at runtime.

As already indicated, there exist several reasons why self-organizing emergent
systems (constituting a form of endogenous self-management) are neither able to
guarantee optimal solutions to dynamic problems nor to guarantee a required de-
gree of efficiency during operation on their own (cf. Problem 2). In Section 5.1, we
elaborate on these reasons in more detail. As a consequence, higher level approaches
(constituting a form of exogenous self-management) are required that assess the be-
havior of these systems at runtime and change their behavior or structure when the
assessment indicates that a more optimal or efficient solution would be possible.
To realize this form of self-adaptation for conventional computer systems, usually a
controller is added to the basic system (see also Section 2.2). This concept has its
roots in the area of control theory. Section 5.2 hence provides the necessary founda-
tions on control theory as well as different types of control systems. Subsequently,
Section 5.3 describes several reference models how to adapt computer systems based
on the foundations of control theory. However, with regard to the adaptation of
self-organizing emergent systems, the specific characteristics of these systems (see
Subsection 2.3.3 and 2.3.6) have to be respected, which complicate the application of
these reference models to this special class of computer systems (cf. Challenges 4—6).
Thus, Section 5.4 surveys existing approaches for adapting self-organizing emergent
systems. Finally, Section 5.5 concludes this chapter.

5.1 Runtime Insufficiencies

Self-organizing emergent (multi-agent) systems, as already mentioned, in general
are an eligible candidate for solutions to dynamic optimization problems. However,
a perfect decentralized coordination with regard to the optimality and efficiency
of these solutions is hard to achieve, independent of the efficiency measure and



decentralized coordination approach applied. But in particular industrial settings
call for the achievement and maintenance of a certain degree of efficiency by these
systems, in order to reduce OPEX. This efficiency should even be maintained in face
of the high dynamics, complexity, and unpredictability of the problems to solve.

Approaches that aim to (partly) guarantee this efficiency already in advance,
i.e. at design time, are mostly based on extensive simulations prior to the deploy-
ment (e.g. [BGP06, GVCO08, SHWO08]) but also on elaborated design methodolo-
gies [DHO5], interactive verification [HRS91], model checking [CGP99], or formal
modeling [RS06]. However, these approaches are mainly insufficient, because self-
organizing emergent systems are expected to function in open and very dynamic
environments with unforeseeable contingencies, i.e. changes may be too complex or
too frequent to be completely constrained or predicted in advance. A major issue
thereby is the fact that the problems, in more detail the tasks that have to be ful-
filled by the system elements respectively agents in a self-organizing manner, usually
change dynamically.

Therefore, solving such dynamic problems by self-organizing emergent MASs op-
timally and efficiently requires as optimal local decisions by the agents as possible
with regard to the global solution. However, the agents usually tend to make sub-
optimal local decisions that result in global inefficiencies of the entire solution. This
has the following reasons:

e Reactiveness of agents: Because the agents in a self-organizing emergent
MAS are usually based on a reactive or hybrid agent architecture (see Subsec-
tion 2.4.1) and kept relatively simple, they mainly work in a stimulus-response
manner. Instead of any symbolic representation of the world and any ab-
stract reasoning, they make their decisions directly based on the input of their
sensors. However, without any perceivable input, the agents may either do
nothing or may explore the environment randomly, which both may lead to a
suboptimal behavior, depending on the applied solution quality measure.

o Greediness of agents: The agents in a self-organizing emergent MAS at
every point of time try to make the most optimal decision, however, due to their
limited reasoning capability, only with regard to the local level. Unfortunately,
this does not necessarily result in an optimal solution to a problem with regard
to the global level. In many cases, it might be even better for an agent to make
a more suboptimal decision with regard to the local level in order to produce
a more optimal solution with regard to the global level.

e Absence of global knowledge: In order to make optimal local decisions
(with regard to the global level) on its own, an agent would have to be in
possession of an abundance of relevant information. This includes information
about the environment topology (e.g. networks, machines, customers, etc.),
the current and future state of the environment, in particular the problem-
relevant tasks, as well as the current and future intended behavior of other
agents. This would force an agent to quickly gather real-time information



from a large number of (possibly unknown) entities. Because self-organizing
emergent MASs are usually too complex in order to acquire or maintain such
a global knowledge, the agents usually only have their own local, subjective
view of the entire system, which depends on their perceived situations and
performed actions. In particular, the agents neither know about all tasks of a
problem to fulfill nor the behavior or position of other agents. Thus, an agent
always tends to make suboptimal local decisions, as it might never know, if
another agent would be better suited to fulfill a given task.

e Inability to ’look into future’: In order to create an optimal solution, the
agents not only have to be able to find a solution quickly, but also would have
to be able to ’look into the future’, so that a dynamically appearing task can be
assigned to the best agent with respect to the global optimality of the solution,
while other tasks are already executed by the agents. But as the agents in a
self-organizing emergent MAS are not able to know about future tasks, it is
in most cases impossible to solve the entire, dynamically developing problem
optimally.

In Subsection 7.3.2 we identify global inefficiencies in environment-mediated self-
organizing emergent MAS solutions to PDPs that result from these reasons. Please
note that this list of reasons does not claim to be exhaustive. Due to the nature
of emergence (see Subsection 2.3.6) it is even not clear, if the identification of all
possible reasons resulting in global inefficiencies is possible. However, already this
number of reasons clarifies, why the agents in self-organizing emergent MASs are
not able to guarantee a certain degree of efficiency on their own, and why higher
level control approaches are required, which assess the runtime behavior of these
systems and possibly change their behavior or structure to influence the quality of
the system output.

5.2 Control Theory Foundations

An area that deals with assessing and influencing the output of dynamic systems
in general is control theory — originally an interdisciplinary branch of engineering
and mathematics — and in particular control engineering [Bur01, Oga09]. The focus
of the latter is on the explicit design and engineering of control systems (see e.g.
[Nis07]). In the broadest sense of the term, control systems are what make machines,
plants, or systems function as intended (cf. [DFT90]). Thus, a control system can
be seen as a device or set of devices to manage, command, direct, or regulate the
desired output of a system (cf. [DB07]).

5.2.1 History

The use of control systems has a rather long history (see [Bur01l, DB07, Oga09]
for more detailed overviews). The first known control system dates back to 270



B.C., in more detail to the water clock of Ktesibios in Greece, which was using
a float regulator to keep the water level in a tank at a constant depth. The first
control system of modern times, a temperature regulator for a furnace, was developed
around 1624 by Cornelis Drebbel. The first automatic control system, i.e. a control
system that does not involve a continuous manual control of humans, was invented
by James Watt in 1767 by the all-mechanical fly-ball governor. Its purpose was
to control the speed of steam engines used in industrial processes. Only around
1868, many years after Watt’s invention, Maxwell [Max68] developed a theoretical
framework for such governors by means of differential equation analysis relating to
the performance of the overall system. With this work the theory of control systems
was firmly established. Other significant work in the early stages of control theory
were due to Minorsky [Min22], who developed a three-term controller for the steering
of ships, Nyquist [Nyq32], who developed a theory for the design of stable repeater
amplifiers in the telecommunication area, and Hazen [Héz34], who coined the term
servomechanism, which has became widely used as a name to describe many types
of control systems that imply a master/slave relationship.

Because the theory of automatic control was not much developed until the 1940s,
for most systems the design of appropriate control systems was indeed an art. Due
to the World War II and the need for automatic aircraft pilots, gun positioning
systems, or radar tracking systems, mathematical and analytical models were devel-
oped and practiced so that since the 1940s control engineering has been established
as an engineering discipline in its own rights. In particular work by Bode [Bod40],
who developed the so-called frequency-response method, and Evans [Eva48], who
developed the so-called root-locus analysis, build the core of classical control theory.

Since the late 1950s the systems to control have become more and more complex
and therewith classical control theory powerless. With the advent of digital com-
puters, thus, modern control theory [Bro90] has been developed since about 1960.
This theory started with the work by Kalman [KB60a, KB60b] and is based on time-
domain analysis and the synthesis using state variables. This is why it requires an
exact state-space model of the system to be controlled. From then on control en-
gineering has enjoyed tremendous growth and highly sophisticated control systems
have been devised and implemented, for instance automatic aircraft landing sys-
tems, rocket autopilot systems, or boiler-generator systems. From the 1960s to the
1980s optimal control [Kir04] of both deterministic and stochastic systems has been
fully investigated. From the 1980s to the 1990s, the developments in modern control
theory then were centered around robust control theory [Dor87]. It blends the best
features of classical and modern techniques, by incorporating classical frequency-
domain techniques into modern control systems to improve their stability.

An appealing research field in control theory up to today is adaptive control
[AW94]. It involves techniques for modifying the models or control laws used by the
controller to cope with slowly occurring changes of the uncertain or time-varying
parameters of the controlled system (see e.g. [DH02]), such as adaptive dual control
[FU00], Model Identification Adaptive Control (MIAC) [SS88], or Model Reference
Adaptive Control (MRAC) [AW94]. Adaptive control is different from robust con-



trol in the sense that it does not need a priori information about the bounds on these
parameters. In other words, whereas robust control guarantees that if the parameter
changes are within given bounds the control laws need do not have to be changed,
adaptive control is precisely concerned with the changes of the control laws.

5.2.2 Diagrammatic Representation of Control Systems

For the diagrammatic representation of control systems, in control engineering an
application-independent block diagram is used. A block within such a diagram in
general may represent an element, a device, a system, etc., whose inner details are
not further indicated (black box principle). Each block has inputs (commands) and
outputs (controlled variable(s)), whose relationship is characterized by the block.
The signal flow through a block is unidirectional.

The most general block diagram of a control system is shown in Figure 5.1. On
this abstract level, it consists of a controlled system' and a controller, which influ-
ences the operational conditions of the controlled system in a top-down manner. The
controlled system consists of everything that is fixed at the start: actuators that gen-
erate inputs to the system, sensors that measure certain variables, analog-to-digital
and digital-to-analog converters, etc.. The exogenous inputs comprise references
(the desired output of the controlled system), external disturbances, sensor noises,
etc.. The system outputs include all the variables that have to be controlled, such as
tracking errors between references and system outputs, signals, whose values must
be kept between certain limits, etc.. All sensor outputs are sent to the controller,
whereas all control inputs are sent to the controlled system. In general, when one
or more output variables of a system need to follow a certain reference over time,
the controller manipulates the inputs to a system to obtain the desired effect on the
output of the system. The next two subsections will instantiate this abstract control

system.

Controlled inputs Sensor outputs

Controlled
- system

Exogenous inputs System outputs -

Figure 5.1: Generic control system

Tn control engineering, the system or object to be controlled is mostly termed plant, no matter
what it is. But for the purpose of this thesis, we will refer to this system as controlled system.



5.2.3 Non-Feedback Control Systems

In general, two major types of control systems can be distinguished: non-feedback
control systems and feedback control systems. In non-feedback control systems, also
called open loop control systems, the output of a controlled system has no effect on
the controller respectively on the control action (see Figure 5.22). In other words,
in non-feedback control systems the system output is neither measured nor fed back
for comparison with the reference. Thus, to each reference input there corresponds
a fixed operating condition of the controlled system. However, in the presence of
external disturbances to the controlled system, an open loop control system will not
produce the desired output but the actual output may vary from the desired output
in an uncontrolled fashion. Consequently, this type of control system can only be
used in practice, if such fluctuations can be tolerated or if the relationship between
the input and output of the controlled system is known — i.e. the controller has
perfect knowledge of the controlled system, e.g. by exact models — and if there are
neither internal nor external disturbances. Open loop control systems are often used
for simple basic systems because of its simplicity and low-cost, especially in systems
where feedback is not critical (cf. [Oga09]).

External disturbance

Reference Control action |  Controlled System output
o system o

Figure 5.2: Non-feedback control system

An example of an open loop control system is a washing machine. Soaking, wash-
ing, and rinsing in the washer operate on a time basis. The washing machine,
however, does not measure the system output, that is the cleanliness of the clothes.
Another example is an irrigation sprinkler system. The sprinkler system is pro-
grammed to turn on at set times. However, it does not measure soil moisture as a
form of feedback. Even if it rains, the sprinkler system will activate on schedule.

5.2.4 Feedback Control Systems

To obtain a more accurate control system, in general, it is necessary to feed the
system output of the controlled system back to the inputs of the controller. Thus,
such feedback control systems, also called closed loop control systems, provide a
generic mechanism for self-adaptation. They play an important role in modern
systems engineering, because they have the possibility for being adopted to perform
their assigned tasks automatically. Thereby, two types of feedback are distinguished:

2The non-feedback control system fits in the generic control system depicted in Figure 5.1 by
defining the sensor outputs to be always constant.
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positive feedback and negative feedback. Positive feedback occurs when an initial
change in the controlled system is reinforced, which leads toward an amplification
of the change. By contrast, negative feedback triggers a response that counteracts
a perturbation in the controlled system.

The most elementary feedback control system can be represented as depicted in
Figure 5.3 (cf. [DET90]). This control system is composed of three basic elements:
the controlled system, the controller, and a sensor to measure the output of the
controlled system. In control engineering, actuators are usually lumped in with the
controlled system, whereas sensors are considered as elements in their own rights.
Obviously, each of these three basic elements has two inputs, one internal to the
system and one coming from outside the system (called exogenous input), as well as
one single output.

External disturbance

Reference o Control action |  Controlled System outpt&
o system
Sensor output ~ Measured signal

Sensor noise

Figure 5.3: Feedback control system

The objective of this elementary feedback control system in general can be sum-
marized by the statement that the system output respectively the measured signal
should approximate some specified reference — even in presence of external distur-
bances, sensor noise, as well as uncertainty in the controlled system. This should
be accomplished by a minimum number of control actions, also known as actuating
signals. Very often, it makes also sense to describe this objective in terms of the
sensor output rather than the system output, since often the only knowledge of the
system output is obtained from the sensor output. Therefore, the controller usu-
ally comprises a kind of error detector that compares the sensor output with the
reference and determines from this difference the control action(s) to be taken (cf.
[DFT90]). For further aspects of control systems and the activities of a controller
from the control engineering perspective, we refer the reader to [DFT90, FPEN09].

Apart from the engineering branch, such feedback control loops can be found in a
variety of other fields. For instance, in economics, the vicious price-wage inflationary
cycle, which consists of wages, product costs, and costs of living, forms a kind of



positive feedback control loop as well. As the wages increase, the product costs and
therewith the costs of living increase as well. Due to a resulting dissatisfaction of
the people, the wages will increase further, resulting in higher production costs, and
so on. Another example is for instance present in human societies. There, epidemics
in human beings form a kind of negative feedback control loop. In a healthy society,
humans have a normal rate of daily contacts. When an epidemic disease affects these
humans, infectious contacts actually produce the disease. Due to the isolation of sick
people and the medical immunization, however, the infectious contacts are reduced.
Another example of negative feedback control can be found in human beings itself.
A rise in blood glucose level following the ingestion of food triggers the release of
insulin and results in a drop in the glucose level.

In nature, of course, a variety of feedback control examples can be found. For
instance, the dropping of pheromones by ants during foraging is a kind of positive
feedback control, resulting in ant trails between a food source and a nest (see also
Subsection 4.5.1). Even in software engineering feedback control loops can be found.
For instance, the design phases in both the extended waterfall model and the unified
process are based on feedback from e. g. the test phases.

5.3 Reference Models for Self-Adaptive Systems

As explained in the last section, control theory and control engineering provides
excellent descriptions of closed systems whose components and desired outputs are
known. Consequently, the adoption of the concepts and approaches, in particular
feedback control loops, is considered to be advantageous for the area of computer
science as well, more specifically for the engineering of self-adaptive respectively
(exogenous) self-managing systems (see e. g. [KBE99, HDPT04, DHP 05, CGI*09)]).

From the perspective of software engineering, feedback control loops typically
involve four key activities (cf. [BDGT09]): collect, analyze, decide, and act (see
Figure 5.4). These activities are consequently arranged in a closed loop, also called
feedback cycle. The main focus of the depicted feedback control loop is rather on
the activities that realize the feedback cycle than on the properties of the control
and data flow around the cycle. Please note that this generic model of a feedback
control loop represents a refinement of the AI community’s sense-plan-act approach
of the early 1980s to control autonomous mobile robots (cf. [RN02]).

The feedback cycle starts with the collection of relevant data from environmen-
tal sensors and other sources that reflect the current state and the context of the
controlled system. Essential factors for this activity are the sample rate and the
reliability of the sensor data with regard to the sensor noise. Furthermore, the data
format used by the sensors influences this activity as well as the completeness of the
information provided by the sensors for system identification.

Subsequently, the controller analyzes the collected data. Therefore the collected
data first is cleaned, filtered, pruned, and, finally, stored for future reference to
portray an accurate model of past and current states. Then, the diagnosis analyzes
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Figure 5.4: Activities of a feedback control loop [DDF*06]

the stored data to infer trends and identify symptoms, e. g. by using models, theories,
equations, or rules. Essential factors for this activity are the amount of past states
that may be needed in the future, the archiving of data for validation and verification,
the adequateness and faithfulness of the model compared with the real world, and
the stability of the model over time.

Third, the future must be predicted, e. g. by off-line simulation, utility/goal func-
tions, or system identification, and a decision must be made about how to adapt
the system in order to reach a desired system response or state. Approaches such
as risk analysis help in choosing among various alternatives.

Finally, to implement the made decision, i.e. to adapt the executing system and
possibly its context, the controller must act via available actuators or effectors. Es-
sential factors for this activity are the time when the adaptation can be safely per-
formed. The impact of the decisions respectively adaptations can then be collected
again to inform the next feedback cycle.

Instances of this generic feedback control loop model can be found in different
self-adaptive solution approaches to various problems, e.g. selected resource man-
agement problems such as task scheduling in real-time [CEBAOQ, LSST02, HSM*07]
and embedded systems [SKST08], bandwidth allocation and QoS adaptation in web
servers and applications [ASB02, DHP'06], load balancing and throughput regula-
tion in email and file servers [LAW02, PGH"02], network flow control [Mas99, Sri00],
and power management [LHH'02, SBG04].

Although control theory provides well-established mathematical models, tools,
and techniques to analyze system performance, stability, sensitivity, or correctness —
which in principle can be used and are used to adapt the parameters of a controlled



computer system — self-adaptive systems also have to be able to make structural
changes in the controlled computer system in forms of compositional adaptation (cf.
Section 2.2). This may require rather different forms of feedback loops, which go
beyond classical, robust, or adaptive control theory. As a consequence, very often,
multiple, intertwined feedback loops will be involved in a practical self-adaptive sys-
tem. Good engineering practice, however, calls for reducing multiple control loops to
a single one or making control loops independent of each other [BDGT09]. Another
typical scheme, which originates from control engineering, is to organize multiple
feedback loops in the form of a hierarchy. Then, due to employed different time
periods, unexpected interferences between the hierarchy levels might be excluded
(cf. [HGB10]).

Due to the occurrences of feedback loops in various fields mentioned in the last sec-
tion, especially in nature, there already exist a couple of approaches for self-adaptive
systems, which implicitly exhibit one or more feedback loops due to their biological
inspiration (see e.g. [AACT00, Brii00, CR03]). However, the feedback behavior of
a self-adaptive system, which is realized with feedback loops, is a crucial feature
for the proper engineering of these systems. The properties of the feedback loops
affect the systems’ design, architecture, and capabilities. Thus, the self-adaptive
systems community advocates to elevate feedback loops to a first-class entity in the
modeling, design, implementation, validation, and operation of self-adaptive systems
(cf [CGIT09]). Similarly, Brun et al. [BDGT09] advocate to make feedback loops
as well as the properties of feedback loops explicit, whereas Miiller et al. [MS08]
advocate in more detail to make feedback loops explicit in design and analysis and
either explicit or clearly traceable in implementation. Garlan et al. [GCS03, CGS05]
additionally advocate to make self-adaptation external, as opposed to internal or
hard-wired, in order to separate the concerns of system functionality from the con-
cerns of self-adaptation (see also Section 2.2). Consequently, in the following we will
only consider influential reference models and architectures for self-adaptive systems,
which incorporate feedback loops in an explicit manner.

The general foundation for self-adaptive systems in the sense of exogenous self-
management is provided by Shaw [Sha95]. She introduced a new software organiza-
tion paradigm based on process control loops with an architecture that is dominated
by feedback loops and their analysis.

Oreizy et al. [OGTT99] propose an architecture-based approach to self-adaptive
systems. The idea behind this approach is based on two simultaneous processes:
system evolution, i.e. the consistent application of change over time, and system
adaptation, which is responsible for detecting changing circumstances and planning
and deploying responsive modifications. This approach is the first that highlights
the possibility of an explicit system representation in the form of software architec-
tures, which can be used by the adaptation mechanisms. In such approaches, see
e.g. [CGST02a, CGST02b, KLST03] in the following years, software architectures
are used to describe, understand, and specify the software artifacts, their interrela-
tionships, as well as principles and guidelines governing their design and evolution
over time. Thus, software architectures, on the one side, provide a global perspec-



tive on the systems, and on the other side explicitly express constraints and hence
help to ensure the validity of adaptation. Furthermore, they are separated from the
applications, which supports the required separation of concerns for self-adaptation.

Garlan et al. [GS02, GCH'04] similarly focus on the idea of an abstract system
representation by introducing an explicit layer for model management. This layer
can then be used by high-level adaptation mechanisms. Dashofy et al. [DvdHT02]
show that the idea of an abstract system representation can be expanded to an
integrated approach, in which an architectural description language (ADL) offers
explicit support for self-adaptation.

Kramer and Magee [KMO07] describe a reference architecture for self-adaptive sys-
tems by proposing a component-based architectural approach for self-management
(see Figure 5.5). In the style of robot architectures [Gat98], this high-level layered
software architecture comprises three layers: component control as the bottom layer,
change management as the middle layer, and goal management as the top layer. The
bottom layer consists of the set of interconnected components that accomplish the
application function of the system. It must of course include facilities to report
the current status of components to higher layers and also include the capability
to support component creation, deletion, and interconnection. The change manage-
ment layer reacts quickly to changes in state reported from the bottom layer and
executes pre-specified plans, which are activated in response to the state change,
that select new control behaviors and set new operating parameters for existing
control layer behaviors. This layer can introduce new components, recreate failed
components, change component interconnections, and change component operating
parameters. If a situation is reported for which a plan does not exist then this layer
must invoke the services of the goal management layer. This upper layer consists of
time consuming computations such as planning, which takes the current state and
a specification of a high-level goal and attempts to produce a plan to achieve that
goal. It produces change management plans in response to requests from the change
management layer and in response to the introduction of new goals by users. The
change management layer is then responsible for effecting changes to the underly-
ing component architecture in response to new states reported by that layer or in
response to new objectives required of the system.

One of the most well-known reference models for self-adaptive respectively self-
managing systems is described in the IBM architectural blueprint [IBMO6] (see Sub-
section 2.5.1). There, the Autonomic Manager (AM) realizes an autonomic (feed-
back) control loop (see Figure 5.6) to control multiple managed elements, such as
processors, databases, or servers. The AM thereby features the feedback control
loop as a central architectural component.

Similar to the generic model of a feedback control loop depicted in Figure 5.4,
the reference model provided by IBM dissects the autonomic control loop into four
functions sharing common knowledge. The monitor function provides the mecha-
nisms that filter, aggregate, and report details collected from a managed resource.
These details are collected through a sensor provided by the manageability endpoint
allocated to the managed resource. Based on these details, the analyze function pro-



36 Chapter 5 Operating Self-Organizing Emergent Systems

Goal
Management

* Chang(la Plans

' v

Plan Request
Manage
P1 P2
Management
9 * Change Actions
|

v

I
Status
Component
Control C1 c2

Figure 5.5: Three layer architecture model for exogenous self-management [KMO07]

c
o A ||P A ||P A ||P A ||P
g N
=
]
2 Monitoring Analyzing Planning Executing
Sensor | | Effector Policy
Request for
Autonomic
Symptom
Manager

\LI Sensor | | Effector

Figure 5.6: Reference model for autonomic control loops [IBMO6]



vides the mechanisms that correlate and model complex situations, e. g. time-series
forecasting and queuing models. These mechanisms allow the AM to learn about the
IT environment and help to predict future situations. The plan function provides
the mechanisms that construct the actions needed to achieve goals and objectives.
Therefore, the planning mechanism uses policy information provided from the out-
side by a human administrator to guide its work. The execute function provides
the mechanisms that control the execution of a plan by communicating instructions,
parameter changes, or updates through a effector provided by the manageability
endpoint to the managed resource. Note, in the same manner as manageability end-
points, AMs provide sensor and effector interfaces for other autonomic or manual
managers and other components in the distributed infrastructure to use.

The more of the four functions of a control are automated, the more self-managing
capability is provided, although a human administrator may decide to delegate only
portions of the potential automated functions to the AM, as illustrated in 5.6. Due
to the functions, this control loop is sometimes also called MAPE-K loop (Monitor,
Analyze, Plan, Execute, Knowledge). The reference model of this control loop is
being used more and more to communicate the architectural aspects of AC systems.
Likewise, it is a clear way to identify and classify much of the work that is being
carried out in the field (see [Ste05, SPTU05, HMO08] for more detailed information).
In literature, various instantiations of this generic reference model can be found
in different application areas, e.g. power management [KHYO08] or service centers
[MBO7], to mention just a few.

5.4 Adapting Self-Organizing Emergent Systems

Despite the achievements of the reference models described in the previous section to
realize self-adaptive systems, their application for the adaptation of self-organizing
emergent (multi-agent) systems is complicated. In contrast to conventional systems,
the latter class of systems exhibits specific characteristics (see Subsection 2.3.3 and
Subsection 2.3.6) that have to be respected for their adaptation, more specifically,
when using principles of self-adaptation in order to compensate for the runtime insuf-
ficiencies of self-organizing emergent systems listed in Section 5.1. These character-
istics result in the following general constraints for the adaptation of self-organizing
emergent systems (cf. Challenges 4 — 6):

e Low observability and poor controllability: Controllers for conventional
computer systems, for instance the AM proposed by IBM (see previous sec-
tion), depend fundamentally on the assumption that they can be equipped
with the corresponding capabilities to observe and control the activities of all
subsystems or lower level system elements at any time and, in case of mobile
systems, any place. This becomes feasible due to the inherently high observ-
ability and good controllability of conventional computer systems. By contrast,
this assumption in general is not applicable to self-organizing emergent sys-
tems. In these systems, which usually consist of a multitude of possibly mobile



elements, communication might be very costly (in terms of required communi-
cation resources), locally forbidden (e.g. in certain application domains such
as hospitals), globally restricted (e.g. when using indirect communication),
structurally infeasible (e.g. in ultra large scale systems), or only temporally
possible (e.g. in space missions). Thus, the information flow between an el-
ement of the controlled system and a controller (as well as vice versa) might
not be possible at any time or any place. The information flow is rather only
possible at distinct or random points in time or places. Furthermore, because
in these systems every element in general is exposed to incomplete information
only, gathering all required information to control or adapt the entire, possibly
large scale, system in real-time is a complex endeavor.

e Capability for self-organization and emergence: The beneficial proper-
ties of self-organizing emergent systems, such as their scalability, robustness,
flexibility, and adaptivity, are in contrast to conventional computer systems
a result of their capabilities to self-organize their actions and interactions as
well as to build emergent properties. As a consequence, any controller for
these systems is not supposed to limit these capabilities. This implicates that
any controller may neither become a processing bottleneck nor a single point
of failure, but has to preserve the basic behavior of the controlled system. In
particular, a controller may not act as an omnipotent supervisor that strictly
guides and determines all actions and/or interactions in the controlled system.
In particular, the basic behavior of the controlled system has to be preserved
and all problem solving decisions still have to be made locally by the system
elements themselves.

e Openness and autonomy: Self-organizing emergent systems are intended
to operate autonomously in previously (i.e. at design time) unknown or unex-
pected situations. Furthermore, the number of elements in these systems are
subject to a continuous change, for instance due to unexpected breakdowns of
some elements or new elements joining the system. Similarly, any controller
for these systems has to be able to cope with such open situations as well.
This implicates that the assessment of the controlled system’s behavior has to
consider the actual (current and past) situations, while the behavior or struc-
ture of the system has to be adapted depending on these possibly unforeseen
situations. Furthermore, in order to achieve the overall objective to achieve a
high degree of autonomy, not only the controlled system but also the adapta-
tion process realized by a controller has to exhibit a high degree of autonomy
as well. Furthermore, if the controller crashes, the system elements still have
to function properly, i.e. they have to solve the problem at least as good as
without any adaptation.

Please note that these constraints apply to self-organizing emergent system in
general, even though there may be systems defined for which only parts of them
apply. For instance, if an engineer is able to guarantee a reliable communication



between the system elements and a controller at any time and place, and the system
elements are equipped with sufficient communication resources, the first constraint
will be weakened to some extent. Likewise, if an engineer assumes the number of
elements in a self-organizing emergent system to be fixed in all possible situations,
or all possible situations are known already at design time, the last constraint will
be weakened to some extend.

Nonetheless, in general these constraints have a strong impact on each of the four
key activities of a feedback control loop that has to be realized by an appropriate
controller (see Figure 5.4). Because the analyze and decide activities depend on the
collect and act activities, the description of the requirements starts with the latter:

e Collect: Due to the low observability and the openness of the controlled
system, a controller in general is not able to observe every (inter)action of
(possibly unknown) system elements at the time of occurrence, if ever. Due
to the openness of the controlled system a controller is rather dependent on
the information provided by the system elements to the controller. In other
words, instead of a pull strategy to collect information, a push strategy is
more appropriate. Because the information flow between the system elements
and a controller in any case can only happen when communication is possible
(with regard to the communication constraints) or the system is small enough,
a controller usually cannot collect enough information to determine the con-
trolled system’s current state and context. By contrast, a controller is rather
only able to collect enough information to determine the controlled system’s
past state(s) and contexts. However, even this amount of information might
not be complete, e.g. if some system elements were not able to provide their
information (yet).

e Act: Due to the low observability (and the associated complexity to determine
the current state of a controlled system) and poor controllability of the con-
trolled system, a controller cannot send specific control actions to dedicated
system elements as soon as these actions are provided by the decide activity.
By contrast, a controller has to wait until the communication constraints, if
any, allow for the transfer of this information to the specific elements. Thus,
a controller in general is not able to adapt or influence (control) the behav-
ior, intention, or upcoming action of any system element yielding immediate
effects.

e Analyze: Because the controlled system in general cannot be influenced or
controlled by a controller yielding immediate effects, a controller in general
is forced to adapt, i.e. to change, the local behavior of system elements in
order to yield future effects. In other words, the local behavior of the sys-
tem elements has to be adapted in a way such that the elements are able to
autonomously behave more optimally in future situations themselves, because
in these future situations no immediate control actions by a controller will be



available. Therefore, in the analyze activity, a controller is required to au-
tonomously predict possible future situations, in which the controlled system
will exhibit certain runtime inefficiencies. For this prediction some kind of
online learning is required, because the controller has to take into account the
actual problem, which the controlled system is intended to solve, but which is
in general previously unknown to the controller.

e Decide: Instead of determining control actions that immediately influence
the system output, the decide activity rather has to determine appropriate
adaptations of the local behaviors of the system elements for the future situa-
tions predicted by the analyze activity. Due to the openness of the controlled
system and the dynamics of the problem to solve, a controller however has
to consider the fact that any predicted situation in principle may occur, but
not necessarily must occur. This fact makes very rigid adaptations by the
controller useless and underpins the constraint that each problem solving de-
cision still has to be made locally by the system elements themselves in order
to preserve the basic self-organizing and emergent capabilities. Furthermore,
it is important to note that a controller can only adapt the system elements
of the controlled system but in general not the environment of the controlled
system, which is usually not controllable.

Apart of several approaches to adapt (self-organizing emergent) MASs, which are
restricted to certain problem or application domains (see e.g. later Subsection 7.1.3
for the PDP domain), up to today, there only exist a few general approaches to
assess the behavior of a self-organizing emergent system and — if necessary — to
provide regulatory feedback to control and adapt its dynamics. However, all of these
approaches make certain assumptions to the controlled system and the controllers’
capabilities, which do not respect all of the above constraints and consequences.
Again, we only consider approaches that make the feedback control loop explicit.

5.4.1 Observer/Controller Architecture

In the area of OC (see Subsection 2.5.2), a very general approach is presented by
the generic observer/controller (O/C) architecture [RMBT06] (see Figure 5.7).

Approach

On an abstract level, this instantiation of a feedback control system consists of three
components: (1) a self-organizing emergent controlled system, termed system under
observation/control (SuOC), (2) an observer, which is in charge of identifying and
characterizing the nature of an (emergent) phenomenon representing the current
state of the SuOC as well as predicting the future state of the SuOC, and (3) a con-
troller, which takes appropriate actions to influence the SuOC. On the one side, this
generic architecture can be mapped to the reference model of an AM provided by
IBM (see Figure 5.6), that is the observer component encapsulates the monitor and



analyze functions whereas the controller component encapsulates the plan and eze-
cute functions. On the other side, it can be mapped to the generic feedback control
loop model (see Figure 5.4) as well, that is the observer component realizes the col-
lect and analyze activities whereas the controller component realizes the decide and
act activities. In contrast to these two abstract models, the generic O/C architec-
ture however recommends more specifically, which functions should be implemented
in order to realize a feedback control loop for adapting self-organizing emergent sys-
tems. In particular, it emphasizes the necessity of online-learning (to quickly react
on changing situations) and offline-learning (to identify optimal parameter sets).
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Figure 5.7: Generic observer/controller architecture [BMMS™06]

In more detail, the authors provide the following recommendations for the real-
ization: the observer in an O/C architecture performs an aggregation of available
information on the SuOC in form of indicators to give a global description of the
current state and the dynamics of the controlled system. The observer is guided
by an observation model, which is responsible for selecting observable attributes,
selecting appropriate analysis tools with regard to the purpose given by the con-
troller, and selecting appropriate prediction methods. The observation process then
consists of several steps: the monitoring step samples raw data coming from the
SuOC to generate time series, which reflect the current state of the SuOC as well as
its history. All measured data is stored in a log file for every loop of observing/con-



trolling the SuOC. From the raw data, some derived attributes can be computed by
a pre-processing step. The pre-processing of the raw data also includes a selection
of relevant data, which is required to compute aggregated system-wide parameters.
Based on this data, a data analyzer applies a set of detectors, e. g. for the computa-
tion of clustering, the detection of emergence, or some mathematical and statistical
values. At the end of this step a system-wide description of the current state is
provided. The predictor process uses this description, e. g. by own methods or some
methods of the data analyzer combined with prediction methods taken from tech-
nical analysis, to predict the future behavior of the SuOC in order to reduce the
reaction time of the controller (online learning). All results are then handed on to
an aggregator, which delivers a set of filtered current and previous values to the
controller. This constitutes an abstract description of the current state and the
dynamics of the SuOC.

According to the recommendations of the authors, the purpose of the controller
component can be manifold: (1) to influence the SuOC such that a desired emergent
behavior appears, (2) to disrupt an undesired emergent behavior by the SuOC as
quickly and efficiently as possible, and (3) to construct the SuOC in a way such
that no undesired emergent behavior can develop. To guide the self-organization
process between the elements, but to interfere only when necessary, the controller
in principle may influence the basic SuOC by (1) influencing the local decision rules
of the SuOC elements, (2) the system structure including e.g. the communication
between the SuOC elements or the number of elements, or (3) the environment,
which will indirectly influence the system by changing the data observed by the
SuOC elements through their local sensors. For the influence, three feedback control
loops are distinguished: for a quick reaction in real-time, the first loop simply applies
the most appropriate action out of a (previously created) set of actions for the
current situation and forwards the chosen action to the SuOC. The second loop
proceeds concurrently to the first one and keeps track of history data. It measures
the situation at a specific time later in order to evaluate the impact and success
of a control action, which are updated in the situation-action mapping. The third
loop generates completely new rules and modifies existing rules, e. g. by evolutionary
algorithms, using a simulation module to predict the success of control actions before
applying them to the real SuOC (offline learning).

Obviously, the description of the generic O/C architecture is kept very general as
it only provides recommendations for functions that have to be realized in order to
implement a feedback control loop on top of self-organizing emergent systems. Thus,
the observation model, the observer component, and the controller component have
to be customized for each individual application domain. In the following, we hence
investigate various existing customizations of the generic O/C architecture.

Instantiations

In [MRBT'07], a customized instantiation of the generic O/C architecture is used
to control the self-organizing behavior of robot swarms, in more detail of chickens



(which are considered to be autonomous robots or agents with simple rules and local
goals). Because densely packed chickens in cages exhibit a collective cannibalistic
behavior, when a chicken is wounded, other chickens chase this chicken and pick on it
until it dies. In order to minimize the number of killed chickens, the customized O/C
— in a simulation — permanently collects data from the SuOC at a fixed sampling
rate, in order to determine based on the current state in real-time, if a problematic
clustering of chickens starts to emerge at a certain place. If an emerging cluster is
predicted (the predication is based on Shannon’s information theory), a noise signal
with fixed intensity and fixed duration is applied by the environment around the
computed cluster centroid to frighten the chickens and disperse the cluster. Thus,
in this instantiation, the SuOC is controlled indirectly by the centralized O/C in
order to disrupt an undesired emergent behavior.

In [BMMS™06], and more specifically in [PRT*08], the generic O/C architecture
is customized for the control of an urban traffic network. In this scenario, the goal is
to minimize the average delay per vehicle passing an intersection. Therefore, every
traffic light controller for an intersection in the network is equipped with its own
O/C for parameter adaptation, i.e. every O/C unit is only in charge of adapting
one single system element. While in this decentralized approach every observer
component is responsible for analyzing the current traffic situation at its intersection
(and possibly predicting trends in the traffic development), every controller decides
when and how to change the parameter set for the traffic light controller. Thereby,
the controller maps traffic situations to parameter sets and keeps track of how well
each parameter set performs. Alternative parameter sets are generated by offline
learning, using an evolutionary algorithm and a simulation of the traffic network
as testbed, adjusted to the traffic situation in question. To learn good control
strategies for these situations, the controller makes use of a learning classifier system.
To manage the complexity, the input space in terms of different traffic situations is
partitioned, which limits the openness of the system. Thus, in this instantiation, the
local decision rules of the elements of the SuOC are influenced directly to optimize
the solution locally, even though the basic behavior is not preserved but changed
completely. Therefore, all problem-solving decisions are made by each O/C unit.
However, no global optimization of the entire urban traffic network takes place, as
a coordination between all O/C units is missing.

For an intersection without any traffic lights, in [CHMS08] a fully decentralized
instantiation and a centralized instantiation of the generic O/C architecture are pre-
sented and compared. In this scenario, the goal of each vehicle similarly is to cross
over an intersection as soon as possible, which consequently produces competition
situations, since two (or more) vehicle may want to occupy the same position at
the same time. The O/C architecture thus is used to create a collaborative group
behavior in order to avoid traffic jams. In the decentralized instantiation, each ve-
hicle is endowed with its own O/C unit. Based on local rules and the observation of
neighboring vehicles, every O/C unit sends either a ’stop’ or a 'go’ signal to its cor-
responding vehicle. In the centralized instantiation, a central O/C unit can interact
with all vehicles in an intersection in the same way, having unlimited observation



and control over all vehicles. The authors demonstrate experimentally that their
centralized instantiation does not scale with an increasing number of conflict situ-
ations between the vehicles. Although both O/C instantiations optimize the entire
solution, they do not consider the autonomy of the vehicles nor adapt their local
behavior but control every action at every time.

In [RRS08], an instantiation of the generic O/C architecture is presented in order
to control and prevent bunching of a set of elevators in a large building. The latter is
an emergent misbehavior, in which different elevators synchronize and behave like a
huge, single elevator with the capacity equal to the sum of the individual elevators.
To disrupt this undesired emergent behavior, the set of elevators is augmented by a
single, centralized O/C unit. Thereby, the observer component monitors the current
state of the set of elevators in real-time. If a measured situation exceeds a certain
threshold, the controller component will then indirectly influence the set of elevators
by either hiding all calls for all or even a subset of elevators or by hiding specific calls
only from specific elevators. This influence accelerates certain elevators and thus
prevents bunching. In this instantiation, the SuOC again is controlled indirectly by
the centralized O/C unit, able to observe the entire SuOC at any time and place, as
well as able to control the environment.

In [BAUT10], an instantiation of the generic O/C architecture is presented for
controlling in-house electrical appliances with respect to energy efficiency. In this
scenario, each considered household appliance is equipped with a local O/C unit.
The observer component of each unit monitors the current state of its appliance
and based on the measured data generates a specific energy demand set. This data
is then communicated to a central management component, also equipped with a
O/C unit. Obviously, all O/C units together form a kind of hierarchy. The central
observer component of this O/C unit generates a global demand set prediction for
the entire smart-home. Based on that, the central controller component then decides
to individually re-schedule the demand sets of each appliance, if possible, based on
the demand prediction from the central observer component and the received load
prediction of the energy provider. The aim is to re-schedule demand sets to time slots
with a low overall energy demand, thus balancing energy supply and demand. After
this re-scheduling, a set of rules is generated and sent to the controller component of
each appliance’s local O/C unit. These rules contain instructions for an appliance, in
which time slot it should start or break its operation. The local controller component
therefore contains a simple set of static rules to interact with the appliance, that is
to turn it on or off.

5.4.2 Management-By-Exception

In the area of DAI respectively MASs (see Subsection 2.4), another realization of a
feedback control loop is presented by the management-by-exception (MBE) approach
[SLTO08].



Approach

The idea behind management by exception in economics is that the management
devotes its time to investigating only those situations in which actual results differ
significantly from planned results. By transferring this idea to the control of MASs,
it should allow the controlled MAS as much flexibility as possible by keeping the
time of central control as short as possible. The MBE approach is intended to tackle
the performance of MASs for dynamic optimization problems.

Instantiation

Up to today, there only exists one instantiation of the MBE approach, which is
applied to job shop scheduling problems [Pin08]. By monitoring the finished jobs in
fixed intervals, the manager agent, which realizes the controller in this instantiation,
is able to measure a violation of the mean flow time of a job, i.e. an exception. In
these cases, the manager agent takes over central control and orders all shop agents
(machines) to work with a fixed dispatching strategy that is known to perform well.
Due to this strategy, all agents are ordered not to optimize their local goals but
to work cooperatively optimizing the overall system’s performance. As soon as the
mean flow time reaches an acceptable range again, the central control is released
and all entities can perform their local optimization based on their regular behavior
again.

5.5 Conclusion

In this chapter we have provided the background for and state of the art in operating
self-organizing emergent systems. We have analyzed reasons, why these systems are
neither able to guarantee optimal solutions to dynamic problems nor to guarantee
a required degree of efficiency during operation on their own. Furthermore, we have
explained several constraints (Challenges 4—6) and requirements for the assessment
of the behavior of these systems at runtime and the adaptation of their behavior
or structure when the assessment indicates that a more optimal or efficient solution
would be possible. At the end, we have described existing, general approaches for
the adaptation of self-organizing emergent systems.

Table 5.1 compares these approaches respectively instantiations based on the
aforementioned constraints and requirements. Apparently, all approaches take a
high observability of the controlled system for granted, i. e. the respective controllers
are able to observe any element of the controlled system at any time and any place
in the environment, which contradicts the general constraints. Thus, all controllers
are able to determine the current state of the entire system in real time. In regard
to the controllability, all but one approach likewise takes a good controllability of
the controlled system for granted, i. e. the respective controllers are able to influence
any upcoming action or perception of any element of the controlled system at any
time and any place in the environment, which contradicts the general constraints



again. Only in [MRB107] the authors regard a limited controllability of the system
elements, which is why they take a good controllability of the system environment
for granted. Consequently, almost all approaches aim at influencing the current
state of the controlled system achieving immediate effects. Only in [BAUT10], the
influence of future states of the controlled system is considered.
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Table 5.1: Comparison of approaches for adapting self-organizing emergent systems

The way how the controlled system is influenced varies. This is either accom-
plished indirectly by controlling the environment [MRB'07, RRS08], by using a
separate controller for each system element that strictly prescribes every action
[CHMS08, BAUT10], or by actually adapting the local rule set of the system ele-
ments [PRTT08, SLT08]. However, these adaptations then are very rigid and consist
either of changing the entire parameter set [PRT08] or the entire rule set [SLT08].

In [PRTT08, CHMS08, BAU10] the problem-solving decisions are made on the
controller level, whereas only in [MRB"07, RRS08, SLT08] they are made on the ele-
ment level. In the latter three approaches, however, only in [MRB"07] and [RRS08]
the basic self-organizing and emergent behavior is preserved, while in [SLT08] a
completely different behavior is prescribed by the controller, which is no more self-
organizing and emergent. Please note that the preservation of the basic behavior in
[MRBT07] and [RRS08] only results from the fact that the local element behavior
is not changed by these approaches in order to influence the system behavior, but
the system behavior is influenced indirectly (see above).

Whereas the focus of two instantiations is to disrupt an emergent misbehavior
[MRB*07, RRS08] in the controlled systems, most approaches focus on the perfor-
mance of the latter. However, the approach in [PRTT08] is only able to achieve a
locally optimized solution, whereas the decentralized approach in [CHMSO08] disre-



gards the global optimality of the solution entirely. This results from the decen-
tralized instantiations of the O/C architecture, whereas the other approaches are
realized centrally or hierarchically.

The openness of self-organizing emergent systems with regard to unknown situa-
tions and a changing number of system elements to be controlled by one controller
is considered by most approaches [MRB107, CHMS08, BAUT10, SLT08]. Only in
[RRS08] a fixed number of system elements is supposed, while [PRT*08] additionally
limits the number of situations the system can be in.

If the respective controller crashes, most approaches will be able to continue work-
ing properly, i.e. to achieve a performance that is as least as good as without any
adaptation. Apart from the two approaches intended for the disruption of undesired
emergent behavior [MRBT07, RRS08], where the chance of an undesired emergent
behavior becomes very likely as soon as the controller is crashed, in [BAU'10] a
crash of any O/C unit will only reduce the system performance to some extent,
at the worst case to a level similar to no adaptation. If in [SLTO08] the controller
crashes in the phase of central control, the agents might not be able to switch back
to a self-organizing emergent behavior. However, they will continue to work with a
known good performance, although they will lack the beneficial properties of self-
organization and emergence. If a O/C unit crashes in [PRTT08], the respective
traffic light controller will continue to work as well, however, maybe with a signifi-
cantly reduced performance, in case that the actual parameter set does not fit the
current traffic situation. By contrast, in [CHMS08] the controlled system will stop
working, if the controller crashes.

Learning is generally neglected in most approaches. Whereas online learning is
applied in [PRTT08] respectively [BAU'10] to learn different traffic situations re-
spectively demand patterns, offline learning is only applied by [PRT*08] to identify
optimal parameter sets.

Because none of the existing approaches is able to consider all general constraints
for the adaptation of self-organizing emergent systems (see Section 5.4), in the next
chapter we present the Efficiency Improvement Advisor (EIA) approach that helps
to overcome these drawbacks (see Table 5.1). This approach does not take a high ob-
servability and good controllability of the controlled system for granted, but assumes
that the EIA, as a form of controller, due to various communication constraints is
only able to observe a subset of elements of the controlled system (which may be all
elements as well) only at distinct points in time and distinct places in the environ-
ment. Consequently, the EIA can only determine past states of the system, but not
the entire current state. Therefore, the EIA is able to adapt the local behavior of the
system elements for future situations. In contrast to existing approaches, the EIA
approach adapts the local behavior of the system elements by only giving advice,
how to behave more optimally in future situations. If these situations do not occur
in future, all problem-solving decisions are still made by the system elements with
their regular local behavior, which is preserved. As the name implies, the primary
focus of the EIA approach is to improve the efficiency of the global solution, even
though other foci might be conceivable as well. The EIA approach considers the



openness of self-organizing emergent systems with regard to unknown situations as
well as a changing number of system elements. If the EIA crashes, the controlled
system will continue to work at least as good as without any adaptation. The ETA
furthermore applies online learning to provide a high degree of autonomy, whereas
offline learning is reserved for future work (see Section 9.3).



Chapter 6

Efficiency Improvement Advisor

As described in the last chapter, the absence of global knowledge, the inability to
"look into the future’, as well as the reactiveness and greediness of the agents in self-
organizing emergent MASs do not facilitate guarantees on the runtime efficiency of
these systems when solving dynamic problems (cf. Problem 2). The low observabil-
ity and poor controllability of these system, their basic self-organizing and emergent
behavior, as well as their openness and autonomy, however (cf. Challenges 4-6),
complicate the integration of a closed feedback control loop on top of these sys-
tem to provide regulatory feedback to control their dynamics. However, because
in particular industrial settings call for the achievement and maintenance of a cer-
tain degree of efficiency by these systems in order to reduce OPEX, in this chapter
we formally present an approach that autonomously adapts the local behavior of
agents in self-organizing emergent MASs in order to improve the efficiency of the
global solution in certain situations.

Therefore, Section 6.1 explains the terminology used for this approach, i.e. basic
definitions about the general problem setting the agents in a self-organizing emer-
gent MAS are supposed to solve. Based on these definitions, Section 6.2 presents
the generic model of an EIA, which is independent of any application domain, agent
model, and coordination model. Because thus the model can be realized and cus-
tomized in different ways, Section 6.3 mentions some aspects of the generic model
that are of worth to think about before its realization. Finally, Section 6.4 mentions
related work to the ETA approach, before Section 6.5 concludes this chapter.

6.1 Terminology

In order to improve the efficiency of self-organizing emergent MASs at runtime, we
assume that these systems were designed to solve certain problems, more specifically
problem classes, which share a common representation and require certain capa-
bilities from the agents. A problem instance is then one specific instantiation of a
problem. The general structure of the problems we are interested in consists of tasks
out of a set of tasks T', which are given to the set of agents A of a self-organizing
emergent MAS within a given time interval Time. A task denotes the smallest unit
of work within a problem.

Definition 6.1 (Task)
A task ta € T is defined as a triple



ta = (P?”Opta, tstart tend)

where

e Propy, is a set of properties of ta
e tla" ¢ Time is the point in time from that on ta may be executed

e t5"% ¢ Time is the point in time at which ta must be fulfilled at the latest

Prop:, depends on the given problem, i.e. a task can have different properties
that represent the information necessary to execute and fulfill the task. Exemplary
properties are the kind of the task, the place of its occurrence, the amount of work
to perform, or the costs of this task. #;£7¢ respectively t‘md may remain unspecified,
which means that ta may be executed from the start of the solution of the problem
respectively fulfilled until its end. /%" is not to be mixed up with the point in time
ta is announced to the system respectively becomes available, denoted by Ve ¢
Time. This is the point in time when the agents in A get possibly informed about
the presence of the task, which usually is before or at the latest at 517t more
formally Vta € T : tgvail < gstart,

If all information on the tasks of a problem is assumed to be deterministic and
known a priori, i.e. Vta € T : t‘wa“ = 0, the problem may be called static. If
this information is gradually revealed over time, i.e. Elt““”l : tt”‘”l < t‘“"”l for
i # j (usually there are more than just one such t‘w‘”l ), the problem may be called
dynamic. If some of the data is random variables whose distributions are usually
known, the problem may be called stochastic.

An instantiation of an abstract task ta for a specific problem P is denoted as
ta”. A particular problem instance then includes a set of tuples (ta” ,t‘w‘“l), also
called events, of instantiated tasks along with the corresponding times at which
they become available to the agents. A run instance consists of several, interwoven
problem instances. For example, a run instance may represent all the problem
instances respectively tasks A has to solve respectively fulfill at a particular day.
Consequently, a run instance is bounded by a maximal execution time in which the
tasks have to be fulfilled.

Definition 6.2 (Run instance)
A run instance run is defined as a sequence

runP,Time _ ((tal ’tavazl) (ta2 ’tavazl)’ el (taP tcw:il))
where

e P denotes the problem to be solved

e Time is the maximal execution time in which run has to be solved



° tajP € TP is a instantiation of a task for P

° t?:g” € Time is the point in time tal” becomes available to the agents, with

1
tavgzl < ta'v]cjnl
ta; - tai+1

The sequence of the tasks in a run instance is ordered according to the t?:g”. This

may lead to different sequences if at least two tasks become available at the same

time, i.e. if 3(ta) , t2°8"), (tal, t9%8") € run : 081 = 19981 i # j. However, this fact

can be disregarded as defining an equivalence relation on the sequences that puts
those sequences into the same equivalence class is simple. For the sake of readability,
we will use a more simplified notation of a run instance.

Notation 6.1 (Run instance)
A run instance is notated as

run = ((tai,t1), (tag, t2), ..., (tan,ty))

Usually, there will be a sequence of run instances that A has to solve. Such a
sequence of run instances may represent all the problem instances A has to solve
over several days, e.g. a week or a month. Based on the simplified notation of a run
instance, a sequence of run instances of length k is then described as

(runy,...,rung) = (((tai1,ti1), (tazi,t21), ..., (tam 1, tmi1))s
((ta12,t12), (tage, taz), . . ., (tams2, tms2)),

ey

((tark, tik), (tagk, tog), - - -, (tamk, tmp k)

A solution for one particular run instance consists of several assignments of tasks
to agents that handle these tasks.

Definition 6.3 (Assignment)
An assignment of a task ta; to an agent Ag; is defined as a triple (ta;, Agj, ty), where
the task ta; will be started by Ag; at the point in time t;, € Time.

The set of all possible assignments is denoted as Assign. Please note that fulfilling
a task ta; might require a sequence of actions by an Ag;. Furthermore, depending
on the application domain there may be additional restrictions, for instance that not
every type of agent can perform every type of task. By the definition of assignments,
we now can define a solution for a run instance.

Definition 6.4 (Solution)
A solution sol generated by a set of agents A for a particular run instance that
consists of several tasks {tai,tas,...,tay,} is defined as



SOZ(A7 (tal’ tag,. .. 7tam)) = ((talla Agia tll)v ceey (ta"lma Ag;nm t;n))

where

o ta, € {tai,tag, ... tap},Vi # j: ta, # ta;-
. Agl,- cA
o t; <t; ., t; € Time

Please note that {tai,tas,...,tay,} and {ta),ta,, ... tal,} do not have to be re-
lated in any way, i.e. task do not have to be immediately started by one of the
agents when they become available. This allows at least theoretically for the possi-
bility that the agents in A can be more than purely reactive. The set of all possible
solutions is denoted as Sol.

Usually, a solution is expected to be of a certain quality, regarding e. g. costs, time,
used resources, etc., which is dependent on the particular problem of an application
domain as well as on the agents in A solving the problem.

Definition 6.5 (Solution quality)
The quality qual of a solution sol € Sol is defined as a function

qual : Sol — R™

This is, if qual(soli(A, (tai,...,tap))) > qual(sola(A, (tar,. .., tay))), the solu-
tion sol; will solve a run instance consisting of tasks {ta,...,tam} better than the
solution sols.

We assume that the agents that solve a problem respectively run instance behave
according to an appropriate decentralized coordination mechanism (see Section 3.3).
Usually, such a coordination mechanisms is realized in form of an algorithm, which
is executed by each agent, or implemented by a set of simple local rules, which define
the behavior of the agents, or as a mixture of both. The algorithms and rules may
be specific to an agent, i.e. each agent may behave differently by e.g. following a
different set of rules. Together, all the behaviors of the agents generate the emergent
solution to a problem?!.

Therefore, the approach to change the overall behavior of the system in order
to improve the efficiency of a solution, is to make changes to the local rule set of
the agents, so that their local behavior can be adapted slightly. In particular, if an
agent is only guided by an algorithm, as it is e. g. the case for IBC-based agents, it
will be required to be capable of evaluating rules while it decides on the next steps
to perform. These changes are made in terms of so-called exception rules, which
extend the local rule set of an agent and apply only for specific situations.

If the behavior of an agent is described by rules only, the application of the rules even creates the
emergent behavior. But as this is part of the implementation details of the agent system, this
aspect will not be regarded more thoroughly in this chapter.



Basically, exception rules may be realized as Event-condition-action (ECA) rules.
ECA rules can be subsumed as reaction rules, which are in turn a special subclass
of general rules. They automatically perform actions in response to events provided
that the stated conditions hold. ECA rules allow an agent’s reactive functionality
to be defined and managed within a single rule base rather than being encoded in
diverse algorithms, thus enhancing the modularity and maintainability of the agent’s
local rule base. An ECA rule has the general syntax

on event if condition do action(s)

The event part specifies when the rule should be triggered, the condition part is
a logical test that has to be satisfied, and the action part states the action(s) to be
performed automatically if the condition holds. Executing a rule’s action(s) may in
turn trigger further ECA rules, and the rule execution proceeds until no more rules
are triggered.

Definition 6.6 (Exception Rule)

An exception rule r for an agent Ag; is defined as triple r = (sit, dat, act), where
sit € Sit; represents the event, dat € Dat; specifies a condition and act € Act; is
the action the agent has to perform in case that the condition holds.

The set of all possible rules is denoted as Rule. The evaluation of exception
rules in turn implies an agent model in which the agents are capable of processing
sensory information and choosing an action based on this information as well as the

exception rules. This requires an extension of the agent definition (see Definition
2.2).

Definition 6.7 (Rule-applying agent)
A rule-applying agent Ag" is defined as an extension of Ag such that

Ag" = (Sit, Dat", Act, fi,,cr'sg)
where
e Sit is the set of situations Ag” can be in
e Dat" is the extension of Dat with rules
o [l g 18 the extension of f4, for applying rules

° iy, 2ftule . Act is a conflict resolution mechanism that decides which rule(s)

to apply in case more than one rule is applicable

Exception rules are influencing the agent’s decision making process by changing
the action fzg generates. The decision function of a rule-applying agent hence has
the form



fag(sit,dat) if =3r € Dat" : eval(sit, dat) = true
criyy (1,72, .. r)  Vri € Dat” : eval(sit, dat) = true otherwise
(6.1)
where eval evaluates the occurrence of an event along with a respective condition
to true or false.

fhg(sit,dat) = {

6.2 Generic Advisor Model

Admittedly, there exist some instances of the general problem and run structure
described in the previous section for which it is easy or at least possible to generate
optimal solutions, for example in the case of static problems. But for most instances,
in particular in the case of dynamic problems, which we are interested in, it is very
difficult or even impossible. For example, finding an optimal solution might be an
NP-complete problem for a particular application. If a task ta; € T can arrive at
any point in time within T%me, the requirement that all tasks need to be started
within T%me, which is usually accompanied with the additional requirement that all
tasks need also to be fulfilled within T'ime, will often lead to non-optimal solutions.
Reasons for this non-optimality are listed in Section 5.1. As a consequence, the
design of self-organizing emergent systems focuses rather on beneficial properties
such as flexibility, scalability, and robustness than on optimality and predictability
(see also Chapter 3 and 4). Nevertheless, the quality of the solution, in particular
in industrial settings, remains of high importance, too.

In this section, we therefore present an approach that enhances a self-organizing
emergent MAS for the stated type of problems by the concept of an EIA. The EIA
allows for a better solution quality over a sequence of run instances, while preserving
the beneficial properties of the basic system. Due to the characteristics of self-
organizing emergent systems as well as the resulting constraints and requirements
for their adaptation (see Section 5.4), there are three premises that must hold for
the application of the EIA concept:

1. Each agent in A must be able to collect data about its local behavior, i.e. its
sensory input and its actions, and must be able to "dump” this history to a
central collection unit at least once during a run instance.

2. Each agent in A participating in the self-organizing emergent solution to a
problem can be extended to a rule-applying agent, i.e. the decision function
fag of each agent can be extended to deal with rules, which will be stored in
the agents’ internal data areas.

3. A sequence of run instances must have a (sub)set of similar tasks in (nearly)
each run instance of the sequence.



The first premise is required to account for the low observability and poor con-
trollability of a self-organizing emergent system. Because due to these constraints a
pull strategy applied by the EIA in order to collect enough information is in general
not possible, this premise allows for a push strategy to be applied. Usually, this
information transfer may happen at one designated location or point in time, e.g.
at the end of a run instance or when a moving agent returns to a central location.
At the same time, the agents’ rule sets may be updated.

The second premise is required to allow an adaptation of the local behavior of an
agent by the EIA. An agent is not required to act based on rules only but arbitrary
algorithms may be used for fa, as well, as long as the integration and evaluation of
rules is supported. If the local behavior of an agent is already based on rules, this
premise will not be required.

While the first two premises can be achieved very easily, the third premise seems
to be very restrictive. However, in everyday life there are many problems that
fulfill this premise. For instance, delivery companies usually have daily recurring
tasks together with one-of-a-kind tasks. This premise enables the EIA to focus its
attention to recurring problems that can be observed repeatedly and allows the EIA
to "look into the future’ as well as to optimize the agents to work under these relevant
conditions. Of course, recurring tasks are allowed to change over time.

Based on these premises, the EIA may be realized as an agent as well, however
with extended capabilities compared to the agents of the basic controlled system.
Consequently, an advised MAS can be defined as an extension of a MAS (see Defi-
nition 2.3), which is under the control of a special advisor agent Agrra.

Definition 6.8 (Advised multi-agent system)
An advised multi-agent system advM AS is defined as

advMAS = (AU {Aggra}, Env)

where

e A is a set of basic agents Agy,...,Agm
e Aggpra is an advisor agent

e Env is a common environment (or at least parts of it) the agents in A share
in order to interact with each other

In general, the advisor is not an element of the agent set A of the basic MAS
itself, but rather an additional element (see Figure 6.1) and hence does not behave
according to the applied coordination mechanism of the basic MAS. This allows the
basic MAS to run with or without the advisor, maintaining the reliability of the
overall solution.

The EIA is able to act autonomously, i.e. it improves the efficiency of the basic
MAS without any user interaction. Basically, the advisor therefore implements the
four activities of a closed feedback control loop (see Figure 5.4), however, separated



Advisor {

Advised MAS

Basic MAS

Figure 6.1: An advised multi-agent system

into six distinct functions, which are connected by one data model (see Figure 6.2).
All of these functions will be described in more detail in the subsequent subsections:

1. Receive local agent histories: The advisor collects the local histories of the
advised agents, i.e. mainly the situations they have perceived and the actions
they have performed as well as information about the environment, at least
once during a run instance or at its end. This is essential, as due to the low
observability of the system the advisor usually is neither aware of the tasks
that have to be fulfilled during a run instance nor the actions executed by the
agents of the system. The advisor stores the collected local history of each
agent in its data model. The interaction between the advisor and the agents
only occurs when communication is possible and does not interfere with the
fulfillment of the agents’ tasks (see Subsection 6.2.1).

2. Transform local agent histories into global history: Based on the re-
ceived local agent histories the advisor then creates the global history of the
system (and the system environment as far as possible). This provides the
advisor with a global view on the past sequence of run instances the agents
had to solve so far (see Subsection 6.2.2).

3. Extract recurring tasks from global history: Based on the global sys-
tem history, more specifically the sequence of run instances, the advisor then
identifies recurring tasks in these run sequences. Because in general tasks may
slightly change over time, i. e. between two or more run instances, the advisor
not only identifies tasks that are identical in all run instances but also tasks for
which similar tasks exist in all or at least most of the run instances. This set of
recurring tasks apparently constitutes a core problem that appears repeatedly
in the system (see Subsection 6.2.3).

4. Optimize solution of recurring tasks: The advisor then calculates a
(nearly) optimal solution for the set of recurring tasks by means of standard



optimization algorithms. An optimization of the solution of all tasks that
occur in the run instances is not necessary, because usually not all of these
tasks will occur in future run instances again. By contrast, it can be supposed
that at least the recurring tasks (or similar ones) will still occur in future (see
Subsection 6.2.4).

5. Derive rules from the optimal solution: If the emergent solution for the
set of recurring tasks is much worse than the calculated optimal solution for
the set of recurring tasks, the advisor will derive rules (advices) for the agents
that do not behave optimally with regard to this optimal solution. Therefore,
the advisor first identifies and extracts the solution the emergent system has
generated for this set of recurring tasks, determines differences between the
emergent solution and the optimal solution, and, if applicable, creates from
these differences rules for the misbehaving agents (see Subsection 6.2.5).

6. Send derived rules to the agents: Finally, the advisor transfers newly
created rules to the agents the next time it can exchange information with
them. From the moment the agent has stored the new rule, the rule will
be incorporated into the agents’ decision mechanism and improve the overall
quality of the solution (see Subsection 6.2.6).

Apparently, concrete realizations of these functions depend on the application at
hand and on the realization of the basic MAS including their coordination principles.
In order to support these functions, the data model of the EIA fulfills the following
requirements:

e It covers all basic events that can occur in the basic system. Furthermore,
it describes the environment in a way that contains all knowledge needed by
any of the above functions. Thus, the data model covers tasks as well as more
simple, low-level building blocks.

e It provides input to all functions, because all functions store their intermediate
results in the data model. Thereby, the representation of data is an important
aspect, in particular for the functions extract and optimize. Thus, the tasks
and the assignments of the agents to these task are represented carefully.

Figure 6.3 shows the general interaction schema between an agent Ag; of the basic
MAS and the advisor agent Aggra. As presumed, the advisor agent has to be able
to communicate with each Ag; for both receiving local histories and sending derived
rules. An agent Ag; is able to proceed its work during the calculations of Aggra,
i.e. it is not blocked until the update of its rule set. The figure might be a little
bit deceiving with regard to the time Aggpra requires to perform each function as
well as how much time can be between the derivation of rules and their sending to
Ag;. This depends significantly on the complexity of the problem to be solved, the
instantiation of the functions, and the capabilities of the hardware infrastructure.
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More formally, the advisor agent Agrra can be defined as an instantiation of an
abstract agent (see Definition 2.2):

Definition 6.9 (Efficiency Improvement Advisor)
The efficiency improvement advisor (EIA) is defined as a special agent

Agpra = (Sitpra, Actera, Datera, fagg,a)

where

e Sitpra is a set of situations describing possible messages and included data
received from the agents in A

e Actpra is the set of actions Agpra can perform?, more specifically receive,
transform, extract, optimize, derive, and send

e Datgpra contains the set of possible states of the Agrra’s knowledge about
the advised agents and the environment they operate in, a set of rules Aggra
can create, and structures for all intermediate results that are created by the
actions of Agpra

® fagpia : SttEra X Datgra — Actgra is the decision function Aggra uses to
determine its next action

The actions receive, transform, extract, optimize, derive, and send are all part
of a super-action advise. This super-action performs these actions in a sequential
order. Because each of the actions is able to store the results of its computation in
the data model Datgy 4, the intermediate results are available to subsequent actions.
Advise may be performed either when the Aggra’s situational description contains
a new local history from one of the agents of the basic MAS or at distinct points in
time, e. g. at the end of a run instance when histories of several agents are received.

Subsequently, in the next six subsections we will describe each of the actions in
more detail, whereas Subsection 6.2.7 provides more details about the data model

of AgE[A.

6.2.1 Receive Local Agent Histories

The main task of the action receive € Actgra is to collect the local histories of the
agents and to store them in the internal data structure Datgra of the Agpra, so
that the data included in the histories can be used by subsequent actions. The latter
require mainly knowledge about two different types of data:

e Environment data: Data about the environment, i.e. a map of the envi-
ronment structure, can be either available to Agrpra already at its start or
extracted from the histories of the agents in A, which depends mainly on the

2Most actions of Aggrra are composed of smaller sub-actions, which are again part of Actgra.



constraints of the given problem. If the environment structure is already well
known a priori, the agents in A as well as Aggra might be equipped with a
sufficient representation of the environment even before they start to work.
An exemplary representation might be a directed graph, which contains edges
between discrete points. Apparently, a detailed representation of the envi-
ronment is more advantageous because it enables Agpra to leverage specific
features of the environment better. If a representation of the environment
is not available a priori, e.g. in dynamic problems in which even the environ-
ment structure may change over time, the agents will have to create an internal
representation themselves.

The local history of an agent Ag; € A thus has to include information about
all situations sit € Sit; it has perceived during its work, because according
to the definition of an element sit of Sit (see Subsection 2.4.2) information
about the environment states s.,, can be extracted from it. Data about the
environment will be stored in dat%7, € Dat%%.

e Agent data: Data about the local behaviors of the basic agents, i.e. their
perceptions and the actions they have performed at each point in time, has
to be initially collected by the agents themselves during the execution of the
system. Thus, beside information on Sit; the history of an agent Ag; also
has to include information on all actions act € Act; the agent has performed,
ordered by the point in time they have been performed, as well as information
about the corresponding states of Dat;. This information will allow to deduce
a global view on the system history.

Based on these two types of required data, the local agent history can be defined.

Definition 6.10 (Local agent history)
The history hist of an agent Ag; € A is defined as

hist; = ((sit}, datl, actl), (sit! ™ datt™ act!™), ... (sit! ™, dat'™ act! ™))
where

° sité € Sit; is the agent’s situation at the point in time [
° daté € Dat; is the data stored in the agent at the point in time [
° actﬁ € Act; is the action the agent performed at the point in time [

e ¢ — 1 is the point in time at which the history of Ag; was made available to
Agpra for the last time respectively the point in time before the system has
started



The set of all possible histories that can be received from an agent Ag; is denoted
as Hist;. All histories received from Ag; are stored in dat%’fﬁ, that is

dat}gfﬁ = ((sit}, dat}, act}), (sit?, dat?, act?), ..., (sit?, dat?, act?)) (6.2)

where o denotes the last point in time included in a history of Ag;, which possibly
may be the current point in time. The set of all possible values for datlg‘;ﬁ is
denoted as Datg}‘ji. A 7?dump” of the history hist; € Hist;, i.e. a message from
an agent Ag; to Aggra including hist;, is part of the situations Sitgra the advisor
Agpra can perceive. The history becomes part of dat}gffi by invoking the action

receive € Actpra.

Definition 6.11 (Receive)
The reception of a local history of an agent Ag; and its storage in the internal data
structure is a function defined as

; . ot Hist; Hist;
receive : Hist; X Datp " — Datpry

where

e Hist; is the set of all possible histories that can be received from an agent Ag;

° Datg;ji is the set of all possible histories received from an agent Ag; stored
in Datgra

The action receive chooses a value from dat%fi{ € Datgﬁfi that represents the
histories received from Ag; so far combined with the history hist; just received and
stores this value in the internal data structure again. The set of all possible histories
that can be received from all agents in A with m = |A| is denoted as Hist 4, that is

Histy C Histy x Histo X ... x Histy, (6.3)

All histories received from the agents in A are stored in dat}gﬁ(‘, that is

dat}gﬂ"‘ = (dat%f}, dat%ffﬁ, .. ,dat%ﬁm) (6.4)
= sith, dat}, act}), (sit?, dat?, act?), ..., (sit®', dato, act")),
1 1 1 1 1 1 1 1 1
sits, dats, actd), (sit2, dat?, act?), . . ., (sit%?, dat3?, act®?)),
2 2 2 2 2 2 2 2 2
sity,, dat,. , act, ), (sits , dats.  acts ), ..., (sitd™ dat’™  acto™
itl datl actl), (sit?,, dat?,, act?, tom dat®m  actor
where m = |A| and 01,09, ..., 0., denote the last points in time included in the

corresponding histories. The set of all possible values for dat%fﬁ(‘ is denoted as

Hist g
Dat 3"



6.2.2 Transform Local Agent Histories into Global History

The main task of the action transform € Actgra is to deduce the global history of
the system out of the received local histories of the agents, in order to provide Agpra
with a global view on the past run instances. Thereby, not a full reproduction of the
ordered system events is done, but rather certain details of the occurred problems
and their solutions are of importance. More specifically, the subsequent actions of
Aggra require knowledge about the tasks that had to be solved during the run
instances and the assignments of these tasks to the agents of the basic system.

Thus, the starting point for Aggra is the deduction of the global history of single
agents first. The global history of a single agent is deduced from a combination of
its perceptions and actions included in the local history of the agent®. The global
history consists of a sequence of tasks that has been handled by the agent during
the run instances so far.

Definition 6.12 (Global agent history)
The global history ghist of an agent Ag; is defined as a sequence

ghist; = (tay,tag, ..., tay)

where ta; € T and k is the number of tasks Ag; has handled.

The global history of agent Ag; is stored in dat%ﬁti € Datg?ft", where G Hist;
denotes the set of all possible tasks in each possible run instance for an agent Ag;.
An assignment of an agent Ag; to a task ta; at time ¢; exists, if and only if ta; is
an element of the global agent history, i.e. the agent Ag; performed ta; in any run
instance. Distinguishing in which run instance a task appeared is not necessary at
this point. The global agent histories will be used to extract recurring tasks and this
process uses all the tasks identified so far as input, regardless of the run instance
they appeared in.

Definition 6.13 (Deduce)
The deduction of the global agent history ghist; out of the received local agent
histories of an agent Ag; is a function defined as

. Hist; GHist;
deduce : Daty " — Datpgyy,

where

° Datg}'fji is the set of all possible histories received from an agent Ag; stored
in Datgra

° Dat%ﬂ‘qti is the set of all possible tasks in each possible run instance for an
agent Ag; stored in Datgra

3Depending on the representation of data in the agent system, further transformations may have
to be applied first.



The deduction of the global agent history is a necessary sub-action of transform.
However, because a single agent usually did not perceive or handle all tasks on its
own, e.g. due to its positions or capabilities, the global histories of all agents are
required to generate the global history of the system.

Definition 6.14 (Global history)
The global history GHist of a set of agents A = Agy, ..., Agm is defined as

GHisty C GHisty x GHisty X ... x GHist,,

where GHist; is the set of all possible tasks in each possible run instance for an
agent Ag;.

Whenever Aggr4 has the possibility to optimize the efficiency of the basic system,
the action transform € Actgra transforms these global agent histories into a global
system history and stores the latter in its internal data model.

Definition 6.15 (Transform)
GHisty N DatG’Histm

The transformation of the global agent histories Dat ;4 A ™ withm =

|A| to the global history of the system Datg?ft“ stored in Datgra is a function

defined as

. G Histy GHistg GHistm, GHist 4
transform : Datp; "' x Daty 272 X ... x Datg; )™ — Dat g,

The process of transformation may be complicated, dependent on the collected
histories and the needs of the later actions of the advisor. The result of this process
essentially contains the sequence of run instances (runi,...,runy), see page 151,
the system has solved so far, i.e. the tasks the agents have handled.

6.2.3 Extract Recurring Tasks from Global History

The main task of the action extract € Actpra is the identification of recurring
tasks in the sequence of run instances the previous action has reconstructed. In
principle, there are several ways to find recurring tasks in a sequence of run instances.
Unfortunately, for many applications the problem is more complicated than just
finding tasks that appear in each run instance. Aggy4 not only has to identify tasks
that are identical in all run instances but also tasks for which similar tasks exist
in all or at least most of the run instances. Thus, data from several run instances
has to be used for the extraction. In general, differences between tasks can occur
in each of the attributes of a task. For instance, the task of delivering a parcel to a
particular house in a street at midday is usually not very different from delivering
it to a neighboring house in the early afternoon, so that having one delivery each
day to one of the two houses should put this task into the sequence of recurring
tasks. Apparently, the possibility of finding a recurring, totally identical tasks in
such scenarios is very small.



The extraction of recurring tasks in a sequence of run instances thus requires two
steps: first, to find task patterns, i.e. tasks that appear in the run instances and that
are very similar. Second, to identify and distill those tasks that appear repeatedly,
indicating that they are of higher importance, which makes the solution of these
tasks worthwhile to optimize. An intuitive approach to identify tasks patterns would
be to apply a pattern recognition algorithm on the tasks of each run instance and
to accumulate afterwards the identified patterns of several run instances to find
recurring tasks within all those patterns. Unfortunately, pattern recognition and
accumulation are very time intensive. Moreover, to specify an appropriate algorithm,
to compare the resulting task patterns, and to identify relevant recurring tasks, the
representation of tasks plays a major role. However, it is neither obvious, what the
representation has to be like for a sequence of tasks, how the representation can be
stored for subsequent actions of the advisor, nor how it can be used to calculate
other relevant data. To use a sequence of tasks in subsequent actions, an identified
sequence has to be taken apart and split into single tasks again.

Thus, a more reasonable approach to identify task patterns is clustering [JMF99].
The goal of clustering is to separate a finite, unlabeled set of data into a finite,
discrete set of "natural”, hidden data structures [XW05]. Thus, tasks that are very
similar should be combined to the same task pattern respectively cluster of tasks.

Definition 6.16 (Cluster of tasks)
A cluster of tasks Cl = (T, ce) consists of a set of tasks TF C T and a centroid ce
over these tasks.

A centroid is the mathematical median of the elements of a cluster, but has not
to be an element of the cluster itself. The centroid is required in order to determine,
if a task is similar enough to become part of a given cluster. The determination of
the centroid itself depends on the description of the tasks and is accomplished by a
centroid function.

Definition 6.17 (Centroid function)
Let T be the set of tasks. The centroid of a cluster of tasks is determined by a
function cent : 27 — T.

In order to determine, if a task is similar enough to another task, which may be a
centroid as well, a measure of proximity becomes important. Almost all clustering
algorithms are explicitly or implicitly connected to some definition of proximity,
which is a generalization of similarity and dissimilarity. We base the proximity of
tasks on their similarity.

Definition 6.18 (Similarity function)
Let T be the set of tasks. The similarity of two tasks is determined by a function
stm: T xT — R.

Apparently, the similarity again depends on the description of the tasks and the
problem to solve. It has to ensure that tasks that are very similar with regard to



their attributes have a high similarity value, while tasks that differ greatly have a
lower similarity value. Based on the two functions cent and sim defined above, the
clustering of a set of tasks can now be defined in general.

Definition 6.19 (Clustering of tasks)
Given a set of tasks T" = {tai, ..., tan, } with ta; € T, the clustering of T” is defined
as the partitioning of 7" in x clusters Cly, ..., Cl, with z < |T’| such that

1L Cli#0,ie{l,... z}
2. Uy, ,Cli=T

3. CLinCly=0,i,je{l,...,z} and i # j

The concrete clustering of tasks by Aggpra starts as soon as a sufficient amount of
data has been received and transformed, i. e. after a predefined number of runs have
passed that serve as learning time. For the clustering, a clustering algorithm is re-
quired that clusters the tasks included in the global history of the system Dat%ﬁ““.

The clustering is hence a necessary sub-action of extract.

Definition 6.20 (Cluster) A
Let T be the set of tasks and Dat%ﬁsm the global history of the set of agents A
stored in Datgra. The clustering of tasks is a function defined as

. GHist a oT
cluster : Datgy =" — 2

Assuming that Cly,...,Cl; is the result of the clustering function respectively
algorithm, the next step is to determine all clusters that are big enough to indicate
that they contain recurring tasks. Having k£ run instances, these are all clusters Cl;
with |Cl;| > minocc - k. minoce is a given user determined threshold parameter,
with 0 < minocc < 1, which defines the minimum number of runs a task has to
occur in to be recurring. If C1y, ..., Cly are all clusters fulfilling this condition, then
all cli € Clj with sim(cl}, ce;) is maximal will be distilled and put into the set of
recurring tasks 77°¢. These cl; are called medoids. A medoid is similar in concept to
a centroid, but in contrast to a centroid, a medoid is always an element of a cluster.

Definition 6.21 (Medoid)
The medoid cl; of a cluster of tasks Cl; with centroid ce; is a task such that Vel; €
C : sim(clj, ce;) > sim(cly, ce;).

If there are C} with |Cl;| > (1+minocc)-k, the cluster will represent a task pattern
that occurs more than once during a run instance, maybe even several times. In this
case also the cl’ € Cl;\ {cl’} with sim(cl}, ce}) is maximal will be distilled and put
into 77¢. This process continues for |Cl;| > (2 4+ minocc) - k, etc. This distillation
of medoids into the set of recurring tasks, which are stored in the data structure
datii4 € Dat%‘}i{“ , is the second necessary sub-action of extract.



Definition 6.22 (Distill)
Let T be the set of tasks and DatL%5Fs the set of of all possible sets of recurring
tasks stored in Datgra. The distillation of tasks is a function defined as

distill : 22" — Datbasks

The set of distilled recurring tasks 77 is then sorted according to the time the
tasks started. The result is hence a sorted sequence of recurring tasks.

In summary, the action extract € Actgra is composed of two sub-actions: First,
applying a clustering algorithm to the reconstructed tasks in Dat%ﬁsm to identify
recurring task patterns, and second, distilling the medoids as the most relevant

recurring tasks from these clusters and storing them in the data structure datf,.

Definition 6.23 (Extract)
The extraction of recurring tasks is a function defined as

extract : Datg?ft“ — Datrg‘}ffs
where
. Dat%’[q éstA is the set of all possible global histories of a set of agents A stored
in DatE[A

° Dat%‘}if“ is the set of all possible sets of recurring tasks stored in Datgra

Thus, instead of identifying relevant tasks and clustering them, the tasks are
clustered first and relevant tasks are then distilled from these clusters. These re-
curring tasks constitute a core problem that appear repeatedly in the system and
serves as input for the optimization process. It should be noted that for applica-
tions where the recurring tasks may change over time, this approach for realizing
extract should not use all k run instances from the beginning of A’s work, since
most probably after some time the set of recurring tasks will become very small
or even empty. In such cases, a parameter k., should be defined and only the
run instances rung_g,, .., TUNE—k, ..+1s - - - » Tung should be used for the clustering.
Moreover, k.. should also be used in the conditions using minocc for identifica-
tion. While a change in the recurring tasks obviously will not immediately be noticed
(which would require to really being able to look into the future), at the latest Kz
run instances after the change Aggra will be aware of the change and will create
new advice for the agents in A. Naturally, if the recurring tasks change faster than
kmaz TUn instances, Aggpra will not be able to detect recurring tasks very well and
A will have to rely on the basic decision making of its agents without advice.

6.2.4 Optimize Solution of Recurring Tasks

The main task of the action optimize € Actgra is to calculate a (nearly) optimal
solution for the set of recurring tasks extracted by the previous action. Optimizing



the solution of all tasks that occur in the run instances is needless, because we cannot
assume that all these tasks will occur in future again. However, we can assume that
at least the recurring tasks identified by the previous action will still occur in future.

Please note that at this time all data of the problem, i. e. the set of recurring tasks,
is known. Thus, the problem shifted from a dynamic one (as it was at runtime) to a
static one. This requires Aggra to have an integrated optimization algorithm that
optimizes the solution to the static optimization problem representing the dynamic
problem that A tries to solve.

Definition 6.24 (Solution optimization)
Let T € 27 be a set of tasks forming a problem P, sol a solution to P, and qual a
solution quality function. The optimization of sol is a function defined as

opt : 2T — 25¢

such that the following conditions hold for every Sol’ € 259
1. Vsol' € Sol',¥sol" € 259\ Sol’ : qual(sol") > qual(sol")
2. Vsol', sol” € Sol' : qual(sol’) = qual(sol”)

Although such an optimization algorithm does not have to look into the future, the
static optimization problem still can be very difficult to solve. An optimal solution
s0lopt is then one of the elements of the set of optimal solutions calculated by opt.
The optimal solution soly7f for a set of recurring tasks (tay, taz, ..., tay) handled by

a set of agents A is stored in dat?}"jt. The set of all possible optimal solutions for
a set of recurring tasks and a set of agents is denoted as Dat%oll;”t. This allows for

the definition of the action optimize.

Definition 6.25 (Optimize)
The optimization of a solution to a problem described by a set of recurring tasks is
a function defined as

. . S lo
optimize : Datig‘}i{“ - DatE(}Apt
where

° Dat%‘}ﬂ“ is the set of all possible sets of recurring tasks stored in Datgra

° Dat%}lj{t is the set of all possible optimal solutions for a set of recurring tasks

and a set of agents stored in Datgya

The proximity of the calculated solution to a really optimal solution depends
mainly on the quality of the optimization algorithm, the computational complexity
of the problem, and the time for computation. If the time for computation is too
short, only searching for a nearly optimal solution for the set of recurring tasks
instead of the optimal one may be more appropriate. However, we will only speak
of an optimal solution, even if this notion may not be correct for all instances.



6.2.5 Derive Rules from Optimal Solution

The main task of the action derive € Actgra is the derivation of rules from the
optimal solution for the set of recurring tasks calculated by the previous action,
which can then be sent to the agents for improving their solution, if necessary.
Therefore, Agpra has to perform four essential steps, constituting sub-actions of
derive:

1. Identify the solution of the emergent system for the set of recurring tasks
2. Assess the quality of the emergent solution

3. Determine differences between the emergent solution and the optimal solution,
if the emergent solution is much worse than the optimal solution

4. C'reate rules for the agents that do not behave optimally

6.2.5.1 Identification of Emergent Solution

The sub-action identify € Actgra is used to identify from the global history of the
system GHists generated by the action transform the solution solemerg € Sol?
the emergent system has produced for the set of recurring tasks stored in dat'{f,
at last. The action yields unordered assignments for all of the tasks in the set of
recurring tasks of the form ((ta1, Agi, t1), (tas, Aga,ta),. .., (tak, Agk,tr), which can

then be put together to create the emergent solution.

Definition 6.26 (Identify)
The identification of the emergent solution solemery for a set of recurring tasks is a
function defined as

. . L S l mer
identify : Dat%ﬂsm x Datbst® — Datpy "
where

° Dat%ﬁsm is the set of all possible global histories of a set of agents A stored
in Datgra

° Dat%cﬁfs is the set of all possible sets of recurring tasks stored in Datgra

° Dat%}lﬁm”g is the set of all possible sets of emergent solutions of a set of agents

stored in Datgra

However, identifying the emergent solution created by A for the recurring tasks is
not trivial. Very often, there will be other tasks mixed into fulfilling the recurring
tasks, or in the last run instance not all of the recurring tasks might have occurred,
as the size of the clusters representing the recurring tasks can be smaller than k. The
fact that the agents fulfill other tasks while fulfilling the recurring tasks means that
Aggra cannot determine the quality based on measuring what really happened. For



example, between fulfilling two tasks of the recurring task set in a transportation
domain, a vehicle agent might have to drive to a far off location to fulfill a not
recurring task in a particular run instance. Adding the traveled distance of this agent
between the two recurring tasks to the travel cost (if this is the quality criterion)
would worsen the emergent solution, although in other run instances the recurring
tasks are solved well.

But for such an application a lower bound for the costs that would emerge can
be provided, if there were no additional tasks, which is the distance the agent has
to travel after the first recurring task to start performing the second one. Such
lower bounds are possible to be determined for many applications and many quality
criteria. If the quality of such a lower bound is far from the optimum, then advice
from Aggra will be useful for many run instances.

Given that the last solemerg and its quality are already an approximation, the
problem of a recurring task not occurring in the last run instance can now be solved,
too. Aggra determines, which agent fulfills the task in the solepmerg by going back
one more run instance (or several). This also allows to determine the correct position
of the task in the sequence of tasks the agent performs.

6.2.5.2 Assessing the Solution Quality

In order to determine, if an optimization of the emergent solution is necessary and
worthwhile, the sub-action assess € Actgra compares the qualities of both the emer-
gent solution and the optimal solution. If the emergent solution is of an acceptable
quality compared to the optimal one, i.e. qual(s0lemerg)/qual(soloyt) > qualthresh
for a user defined quality threshold 0 < qualthresh < 1, an optimization of the
emergent solution is not worthwhile, e.g. if the emergent solution is within 90%
of the optimal one, and the work of Aggra is done until new information arrives.
Otherwise, Agpra has to optimize the emergent solution. qualthresh depends on
the concrete application domain and should be carefully evaluated.

6.2.5.3 Determination of Differences Between Solutions

In case that an optimization of the emergent solution is necessary, the sub-action
determine € Actpra compares the differences between both the emergent and the
optimal solution. Therefore, the identified assignments in both solutions are sorted
by the order in which the tasks are performed in the solution. This sorting yields
the solutions soly,,, and solg,,..,- The sorted solutions are then compared sequen-
tially to find the first assignment that differs in both solutions. Given that sol;,,, =
((tal, Agl,th),. .., (tall), Ag}), t}])) and sol’,,,., = ((ta?, Ag?,1?), ..., (ta%, Agﬁ, tg)) then
Agpra identifies the assignment j : ta} #* ta? Vv Agjl- #* Ag? such that Vi < j : ta} =
ta? A Agl = Ag?. Since both solutions are sorted according to the t;-values, this
is essentially the first assignment of a task to an agent for which the agents in A
deviated from the optimal solution for the recurring tasks.

Please note that the t;-values are currently not incorporated in the comparison due



to several reasons: First, the order of the optimal solution is usually not completely
different from the order of the actual solutions. In many cases, the order is really only
different because the tasks were served by different agents (a suboptimal behavior)
and therefore will be correct as soon as the advice that changes the assignment is
adapted by the agents. Second, the order is highly sensitive to noise tasks that
are not part of the recurring tasks. The order can therefore change spontaneously
without real impact on the recurring tasks. Third, exception rules that for instance
let agents ignore tasks are not in all cases fit to establish a certain order. Exception
rules that for instance boost tasks let the agents prefer the tasks that should be
serviced before the others.

6.2.5.4 Rule Creation

To force the emergent system to behave in a similar way as the optimal solution
in future, the sub-action create € Actgrs instantiates based on the determined
difference of the assignments a new exception rule (see Definition 6.6) for agent
AgJQ- to change its behavior when it encounters a situation that was leading to the
suboptimal behavior.

Definition 6.27 (Rule creation)
The creation of a rule is a function defined as

create : Assign x Assign — Rule

where
e Assign is a set of assignments
e Rule is a set of rules

The event and conditions specified by sit’ respectively dat’ of an exception rule
r’ are derived from the descriptions of the assigned tasks. For determining sit’ and
dat', Aggra looks up the assignment (sit, dat, act,,2) € GHist Ag?, Which represents

J J

in the history of Ag]2. the point in time when it choses to perform actyy>. (sit’, dat")
is then an abstraction of sit and dat. This tuple is application dependent and tries
to cover not only ta?-, but the whole cluster of tasks from the action extract of which
tajz is a member of. The types of exception rules that are able to change the behavior
of an agent depends on the application domain and the basic MAS. However, the
action of the exception rule has to change the sequence of actions an agent performs
when the predicate for its current situation is true.

The exception rules created for an agent Ag; are stored in the data structure
dat?ﬁfi. The possible rule set for this agent is denoted as Datﬁ}‘lji. Consequently,

the possible rules sets for all agents in A with m = |A| are denoted as

Rule g Ruley Rules Rule
Datyyx* C Datygys' x Datgys? x ... x Datgim (6.5)

Based on the four sub-actions, the action derive can be defined fully.



Definition 6.28 (Derive)
The derivation of rules and is a function defined as

. . GHiStA Tasks SOlopt SOlemerg RUZEA
derive : Daty 4~ X Datgy® X Daty; 3" x Datyy — Datyr 4
where

° Dat%ﬂsm is the set of all possible global histories of a set of agents A stored

in Datgra

° Dat?}i{“ is the set of all possible sets of recurring tasks stored in Datgra

° Dat%}l;’ft is the set of all possible optimal solutions for a set of recurring tasks
and a set of agents stored in Datgra

° Dat%}lj{"”g is the set of all possible emergent solutions for a set of recurring
tasks and a set of agents stored in Datgra
Rulep

e Datp;,* is the set of all possible rule sets for a set of agents A stored in
Datgra

6.2.6 Send Rules to Agents

The main task of the action send € Actgra is to transfer a newly created exception
rule for an agent Ag;, the next time Agrra can exchange information with this
agent.

Definition 6.29 (Send)
The sending of a set of rules Rule; by the agent Aggra to an agent Ag; is a function
defined as

. Rule; Rule
send : Datp; 4" — Dat;

The agent will receive the exception rule and store it in its internal data structure
dat?. From this moment on, the rule will be incorporated into its decision mechanism
as described in Definition 6.1.

6.2.7 Data Model

Based on the aforementioned actions and defined functions, the super-action advise €
Actgra and the required data model Datgra can now be defined.

Definition 6.30 (Advise)
The advise for a set of agents A by an agent Agrra is a function defined as

advise : Hist4 — Ruley



Based on the received local agent histories, the action advise provides advises to
the agents in A in form of exception rules. The data model Datgy 4 therefore contains
all necessary values and intermediate results for the actions receive, transform,
extract, optimize, derive, and send.

Definition 6.31 (Data model)
The data model of Aggra is defined as

Datpra € Dat2¥y x Datfisia « DatSHista « Dattasks x Dat3dly x Datfylea

where

6.3

Dat%}ﬁ is the set of all possible representations of the environment of the
System

Dat%ﬁ“ is the set of all possible local agent histories

Dat%ﬂsm is the set of all possible global histories
Dat}g‘}i{“ is the set of all possible recurring tasks

Dat39, is the set of all possible (optimal/emergent) solutions for a set of
recurring tasks

Datﬁ%ﬁf“ is the set of possible rule sets for all agents

Realization Aspects

The generic advisor model described in the previous section can be realized and
customized in different ways for various application domains, agent models, as well
as coordination models (see for instance later Section 7.3). However, there are some
aspects of the generic model that are of worth to think about before it is instantiated
for a certain application:

e Functional distribution: As described in the last section, the advisor usually

is not an element of the agent set of the basic self-organizing emergent MAS
itself, but rather an additional element. Nonetheless, it is also conceivable
that the advisor can be a role of one of the agents, or even all agents in the
basic system can share performing the functions of the advisor. However, this
requires extensive communication between the agents and might require more
computing power in an agent than is possible in a particular application. A
dedicated agent with lots of computing power and occasional communication
with the agents is a more reasonable extension to many existing systems for
the problems one is usually interested in.



e Rule specification: There are several ways to specify the situation of an ex-
ception rule’s condition an agent can be in at runtime. For certain applications,
the specification of concrete situations may be appropriate, which describe a
situation in a very exact way and are therefore only valid if the situation is
exactly as described. For other applications, prototypical situations may be
more appropriate. As they are not concrete, a notion of similarity for such
situations has to be established before. An agent then compares the perceived
situation with the specified prototypical situation and if the similarity is higher
than a certain threshold, it will perform the action of the exception rule. The
way in which the action of exception rules is specified depends largely on the
adaptability of the agents and the parameters that can be changed.

e Rule lifetime: To keep the local rule base of an agent clear and light, in par-
ticular for applications in which agents are equipped only with little memory
or processing capacities, exception rules may be attributed with a certain time
to live. Agents thus may ”forget” exception rules of the advisor if they were
not applied for a certain amount of time. This ensures that exception rules
that are no longer applicable due to changed environmental constraints don’t
clutter the rule base.

e Persistence of the data model: For certain applications it is not necessary
to store the data of the advisor to a database system or another persistent
storage. The only important aspect is that the data of several run instances
is available to the advisor. Nevertheless, for other applications it can be more
appropriate to access historical data to facilitate analysis and simulation. If
the data model is designed in a way that allows it to be stored, the data
collected during the execution of a run instance can be stored persistently, so
that it can be retrieved at a later point in time, e.g. for analysis or further
optimization.

e Correctness of data: The described concept of an advisor assumes that the
data collected by the agents, i.e. their local histories, is exact and correct.
For certain applications, both assumptions may be loosened, depending on
the reliability and trustworthiness of the agents respectively their sensors in
the first instance. For applications with possibly unknown agents, the action
transform will have to take into account the uncertainty of each piece of
information.

e Usage of data: The proposed approach of an advisor currently uses higher-
level data in the form of global agent and system histories as well as tasks. This
allows the advisor to adapt the assignment of agents to tasks and to influence
the system based on this very high-level view. Depending on the application
domain and concrete basic systems, the lower-level agent data might contain
additional data that can be used in the optimization process. Even though
this data is not used in the current model, the advisor already contains the



infrastructure necessary to create rules from all data that was collected by the
agents. There is no limitation in how the data is used, processed, and applied
to the agent system.

6.4 Related Work

The overall functionality of the EIA approach at a first glance has certain similarities
to Model Predictive Control (MPC) [CB04]. In contrast to feedback control, which
considers the controlled system as a kind of black box, MPC is a form of control
that makes explicit use of a linear model of the controlled system. The model is
used to predict the system output at future time instants (prediction horizon). The
current control action is then obtained by minimizing an objective function, i.e. at
each sampling instant a finite horizon open loop optimal control problem is solved,
using the current state of the controlled system as the initial state. The optimization
yields an optimal control sequence and the first control action in this sequence is
applied to the controlled system. At each time instant the prediction horizon is
displaced towards the future, which involves the application of the first control
action calculated at each instant. This process is repeated whenever a new system
state is available. For instance, in the area of AC, in [AKO07] an MPC framework is
presented that uses ’limited lookahead control’ to optimize the forecast behavior of
the controlled system over a limited prediction horizon. Based on a stochastic model,
the controller within the framework predicts from the current state all possible (or
at least a set of) future system states up to a certain prediction horizon and based on
that choses the first control action of a sequence that optimizes the given constraints.
This framework is applied to processor power management and distributed signal
classification.

Similar to the EIA approach, MPC yields high performance control systems capa-
ble of operating without expert intervention for long periods of time. However, MPC
is mainly used in the process industry and as a consequence the controlled system
very often is considered to by a chemical or energetic process. In particular, the
controlled system is not supposed to solve any dynamic optimization problem. Self-
organizing emergent systems, by contrast, which in particular are supposed to solve
dynamic optimization problems, are moreover characterized by non-linearity (see
Subsection 2.3.7), which complicates the application of linear models. Even though
Nonlinear Model Predictive Control (NMPC) explicitly takes account of nonlinear
systems by the use of nonlinear models, the availability of nonlinear models (either
from experimental data or formal theory) is still an open issue (cf. [CB04]), in par-
ticular for self-organizing emergent systems. Even if nonlinear models in general
could be obtained via supervised learning, where the system is first simulated for
various environmental inputs, the openness of self-organizing emergent systems op-
erating in unknown situations prevents the accurate determination of such models
for this class of systems. Consequently, the EIA cannot predict the future output
(efficiency) of self-organizing emergent systems based on their current state using



MPC techniques. It rather learns respectively uses a model of the problem to solve
and determines based on the solution of this problem by a static optimization al-
gorithm control actions to be applied to the individual elements of the controlled
system. A specific model of the controlled system is even not required, because
the EIA only presumes that an agent participating in the self-organizing emergent
solution is extended to deal with exception rules. As a consequence, the EIA does
not consider the entire self-organizing emergent system as a back box but only the
agents to advice.

In order to advice the agents, an EIA realizes a feedback control loop. As a
consequence, the EIA approach is related to the approaches for the adaptation of
self-organizing emergent systems listed in Section 5.4. Due to the very general de-
scription of the generic O/C framework [RMB™06], on an abstract level the functions
of the EIA can be mapped to this framework as well. The functions receive, trans-
form, and extract constitute the observer function, whereas the functions optimize,
derive, and send constitute the controller function. However, when comparing the
EIA approach to the existing instantiations of the O/C architecture, it becomes
apparent that the EIA functionality exceeds their capabilities with regard to the
general adaptation constraints (see Table 6.1). In particular, the EIA approach as-
sumes that due to various communication constraints an EIA is able to observe the
elements of the controlled system only at distinct points in time and distinct places in
the environment, which respects the general characteristics of self-organizing emer-
gent systems. Therefore, an EIA is able to adapt the local behavior of the system
elements for future situations, instead of controlling and influencing the current
system output. In contrast to O/C instantiations that adapt the local behavior
of system elements as well, an EIA only gives advice to the system elements, but
does not change their entire behavior or parameter set (as e.g. in [PRTT08]). An
EIA respects the autonomy of the adapted system elements, as the advice can be
ignored by the elements. Furthermore, the EIA approach considers the openness
of self-organizing emergent systems with regard to unknown situations as well as
a changing number of system elements. In contrast to most O/C instantiations as
well as the MBE approach [SLT08], the EIA approach incorporates online learning
to identify the reccuring task of the problem.

Due to the very general description of the reference model of an AM [IBMO06] in
the area of AC, on an abstract level the functions of the EIA can be mapped to this
framework as well. The function receive can be mapped to the function monitor,
the functions transform and extract can be mapped to the function analyze, the
functions optimize and derive can be mapped to the function plan, and the function
send can be mapped to the function act. However, similar to all other adaptation
approaches, an AM assumes to have a high observability and good controllability of
the controlled system. Although an AM might be used to adapt the behavior of a
managed element, in contrast to an EIA, an AM — due to its business background —
is intended to perform a very strong regulation and thus limits the autonomy of the
managed elements to a minimal level.

On a very abstract level, a big difference to most other approaches lies in the
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Table 6.1: Comparison of approaches for adapting self-organizing emergent systems

level of operation. In [NORO03], three levels of behavior in animals and humans are
described and then transferred to artificial systems: reaction, which deals with prede-
fined, undeliberated responses to sensory input (see e. g. [CHMS08, RRS08, SLT08]);
routine, the level on which learned behavior is executed and the consequences of ac-
tions are assessed (see e.g. [PRTT08, BAUT10]); and reflection, the level on which
a system deliberates about itself, its past, and future behavior. According to this
categorization, the EIA operates on the third level (reflection), as it analyzes the
actions of the system and adapts its constituent parts to increase the system’s ef-
ficiency. However, to be really able to compare self-adaptation approaches on an
abstract level more thoroughly, some kind of commonly agreed formalization of the
respective functionalities is required, as e.g. suggested and started in [WMA10].

6.5 Conclusion

In this chapter we have presented the EIA approach, which is able to adapt at
runtime the local behavior of elements (agents) in self-organizing emergent systems
solving dynamic optimization problems with recurring tasks. Due to these adap-
tations, the EIA approach facilitates a more efficient operation of self-organizing
emergent systems (see Objective 2).

In more detail, the EIA represents an approach that implements the principles
of self-adaptation in order to compensate for the runtime insufficiencies of self-
organizing emergent systems. Thereby, the approach considers the general con-
straints for the adaptation of self-organizing emergent systems, which result from
their specific system characteristics compared to conventional computer systems (see



Section 5.4). In particular, the ETA approach takes into account the low observability
and poor controllability of self-organizing emergent systems (see Challenge 4 ), which
— in comparison to existing approaches — facilitates the adaptation of self-organizing
emergent systems in a wider range of application domains, in which communication
may be very costly, locally forbidden, globally restricted, structurally infeasible, or
only temporally possible. The adaptation of the individual local behaviors of sys-
tem elements is accomplished by providing the elements with advice, how to behave
more optimally in predicted future situations. The advice is provided in the form
of exception rules, which are derived from a calculated optimal solution. All ad-
vices preserve the basic self-organizing and emergent behavior of the systems as well
as their beneficial properties scalability, robustness, flexibility, and adaptivity (see
Challenge 5). Moreover, all problem-solving decisions are still made by the system
elements themselves. Thereby, the advices can be ignored by the elements and in
particular will be ignored, if they have not been applied for a certain amount of
time, e.g. if a predicted situation did not occur in future. This is a tribute to the
openness and autonomy of these self-organizing emergent systems (see Challenge 6).

The advices provided by an EIA, i.e. the exception rules, help the system ele-
ments to make more optimal local decisions with regard to the global efficiency of
the produced solution. Dependent on the application domain and the controlled
basic MAS, the exception rules are able to change the local behavior of an agent
respectively the sequence of actions an agent performs when the predicate of the
exception rule for the current situation is true. This compensates for the runtime
insufficiencies of self-organizing emergent MASs (see Section 5.1). In particular, the
reactiveness and greediness of agents can thus be influenced very effectively. More-
over, the exception rules provide the agents with a limited capability to 'look into
the future’, such that a dynamically appearing task is assigned to the best agent
with respect to the global optimality of the solution. The experiments described in
Section 8.4 will demonstrate these capabilities by resilient results for a concrete ap-
plication domain. The next chapter introduces this application domain and provides
a customized instantiation of the EIA approach for this domain.
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Chapter 7

Application Domain: Pickup and
Delivery Problems

While the chapters of the first and the second part of this thesis dealt with the
design respectively the operation phase of self-organizing emergent systems in theory,
the chapters of the third part of this thesis deal with a concrete application of
the developed concepts to a problem domain including its experimental evaluation.
More specifically, this chapter presents the instantiations of the IBC approach (see
Chapter 4) and of the EIA approach (see Chapter 6) as well as their application to
the problem domain of vehicle routing [CLSV07], in more detail to the Pickup and
Delivery Problem (PDP) [DDET02].

Roughly spoken, the PDP concerns the service of a set of customers in a given
time period by a set of vehicles, which are located in one or more depots and perform
their movements by using an appropriate road network (even though PDPs can be
extended to air, water, and rail networks as well). A solution of a PDP calls for the
determination of a set of routes, each performed by a single vehicle that starts and
ends at its own depot, such that all requirements of the customers are fulfilled, all
the operational constraints are satisfied, and one or more global optimization ob-
jectives are reached (cf. [TV02]). Practically, the PDP is an omni-present problem
that is faced each day by thousands of companies and organizations engaged in the
delivery and collection of goods or people. It appears in various domains, such as
courier services, manufacturing control, aircraft sharing, dial-a-ride transportation,
container terminals, distribution of heating oil, taxi cab services, emergency vehicle
dispatching, or even patient transportation in hospitals, to name only a few. For
example, the world’s largest package delivery company, UPS, every day transports
15.1 million packages and documents worldwide from 1.8 million pick-up customers
to 6.1 million delivery customers by almost 100.000 package cars, vans, tractors,
motorcycles and more than 500 aircrafts [UPS10]. Apparently, such companies con-
tinuously seek to improve their transportation network performance in order to tap
the full potential of possible OPEX reduction, which requires flexible and efficient
solutions able to cope with high dynamics.

The remainder of this chapter is thus organized as follows: Section 7.1 provides the
background and terminology of vehicle routing and pickup and delivery problems,
including an appropriate formal problem definition and existing solution methods.
Section 7.2 presents the instantiation of the IBC approach for the solution to PDPs,



more specifically a flexible and efficient, decentralized coordination mechanism uti-
lizing a biological paradigm. Subsequently, Section 7.3 presents the instantiation of
the EIA approach for the efficiency improvement of the IBC-based solution. Based
on these instantiations, Section 7.4 discusses several aspects, how to extend these
instantiations in future in order to improve the overall efficiency further. Finally,
Section 7.5 concludes this chapter.

7.1 Pickup and Delivery Problems

The PDP, which is sometimes also referred to as Transportation on Demand (TOD)
[CLPSO07], is a generalization of the VRP [TV02, GRWO08], which is itself a general-
ization of the well-known Traveling Salesman Problem (TSP). Hence, PDPs are in
general NP-hard [GJ79]. Research in the field of vehicle routing, whether involving
pickups and deliveries or not, originally started with the so-called truck dispatching
problem introduced by Dantzig and Ramser [DR59] in 1959. The objective was to
find the “optimum routing of a fleet of gasoline delivery trucks between a bulk termi-
nal and a large number of service stations supplied by the terminal”. The solution
at that time consisted of 4 vehicles operating 12 routes. Over the past 50 years,
extensive research, mainly in the fields of Operations Research (OR) and Mathe-
matical Programming, has then been dedicated to the domain of vehicle routing. In
particular vehicle routing involving both, pickups and deliveries, has received con-
siderable attention and the abundance of research results have paved the way for
many practical real-world applications, as demonstrated by the UPS example.

7.1.1 Problem Classification

The long time of research in this field, however, has also led to a somewhat confus-
ing terminology used to describe the various problem types arising in this context.
Because an exhaustive overview on all terms used is out of the scope of this thesis,
we only present some widespread classification schemes that illustrate the various
types of problems.

Savelsbergh and Sol [SS95] provide an abstract classification scheme by the formal
definition of the General Pickup and Delivery Problem (GPDP). This was the first
attempt to provide an unified notation for all versions of the PDP. In the GPDP, a
set of routes for a fleet of vehicles has to be constructed in order to satisfy trans-
portation requests. A transportation request is specified by the size of the load to be
transported, the locations where it is to be picked up (the origins) and the locations
where it is to be delivered (the destinations). Each load has to be transported by
one vehicle from its set of origins to its set of destinations without any transship-
ment at other locations. Each vehicle has a given capacity, a start location, and
an end location. The authors subdivide the GPDP into three main classes: the
classical VRP, in which either all the origins or all the destinations are located at
the depot, the classical PDP, in which each transportation request specifies a single
origin and a single destination and all vehicles depart from and return to a central



depot, and the Dial-A-Ride Problem (DARP) [CL03, CL07], in which the loads to
be transported represent people (then called clients). The difference between PDPs
and DARPs is usually expressed in terms of additional constraints or objectives that
explicitly take client (in)convenience into account.

Berbeglia et al. [BCGLO07] use a more fine-grained three-field classification scheme
for pickup and delivery problems, which is [structure|visits|vehicles]. The first field
(structure) specifies the number of origins and destinations of the goods to be trans-
ported. In so-called many-to-many (M-M) problems, any customer can serve as a
source or as a destination for any good. According to the authors, many-to-many
problems are, however, not frequently encountered in practice. In so-called one-to-
many-to-one (1-M-1) problems, the goods are initially available at the depot and
are transported to the customer locations [GL08]. In return, goods available at the
customers are transported to the depot. Finally, in so-called one-to-one (1-1) prob-
lems, each good has a given origin and a given destination [CLRO08]. The second
field (wisits) provides information on the way pickup and delivery operations are
performed at customer locations, i.e. either each customer is visited exactly once
for a combined pickup and delivery operation, denoted as PD, the two operations
may be performed together or separately, denoted as P-D, or either a pickup or a
delivery operation is performed at each customer, but not both, denoted as P/D.
The third field (vehicles) provides the number of vehicles used in the solution to
the problem. The entry ’1’ stands for a single-vehicle problem, *m’ for multi-vehicle
problem, and ’— for an undefined number of vehicles.

Parragh et al. [PDHO08a, PDHO08b] provide a more detailed classification scheme
in order to clarify the various problem types. Figure 7.1 depicts a mapping of this
classification scheme to the two aforementioned schemes. Basically, they subdivide
pickup and delivery problems into two main problem classes, the Vehicle Routing
Problem with Backhauls (VRPB) and the Vehicle Routing Problem with Pickups
and Deliveries (VRPPD). In VRPBs, all goods delivered have to be loaded at one
or several depots, and all goods picked up have to be transported to one or several
depots. Thereby, the authors denote delivery customers as linehaul customers and
pickup customers as backhaul customers. The VRPB is then further subdivided
into four minor subclasses. In the first two subclasses, customers are either delivery
or pickup customers but never both. In the last two subclasses, each customer
requires a delivery and a pickup. In the Vehicle Routing Problem with Clustered
Backhauls (VRPCB) all linehauls have to be served before the backhauls. The
Vehicle Routing Problem with Mixed linehauls and Backhauls (VRPMB) permits, by
contrast, any sequence of linehauls and backhauls. In the Vehicle Routing Problem
with Divisible Delivery and Pickup (VRPDDP) customers demanding delivery and
pickup service can be visited twice, whereas in the Vehicle Routing Problem with
Simultaneous Delivery and Pickup (VRPSDP) customers demanding both services
have to be visited exactly once. By contrast, in the second major subclass, the
VRPPD, goods respectively passengers have to be transported between pickup and
delivery customers respectively points. The VRPPD is then also further subdivided
into two minor subclasses. The first subclass refers to problems where pickup and



delivery locations are unpaired. Therefore, a homogeneous good is considered so that
each load picked up can be used to fulfill the demand of any delivery customer. This
problem class is denoted as Pickup and Delivery Vehicle Routing Problem (PDVRP).
The second VRPPD subclass comprises the classical PDP and the classical DARP.
Both classes consider transportation requests, each associated with an origin and a
destination, resulting in paired pickup and delivery points.

Transportation from/to a depot Transportation between
(VRPB) customers (VRPPD)

| I

[ | :

[ |
VRPSDP : | PDVRP : : PDP DARP :
[ : : [ !
____________________________ I L ___3 L_____________1

one-to-many-to-one many-to-many one-to-one
(1-M-1) (M-M) (1-1)

Figure 7.1: Different classification schemes of pickup and delivery problems

Without doubt, every of these three mentioned classification schemes helps to
clarify the terminology of pickup and delivery problems. However, most problem
classes additionally have a couple of further dimensions. Almost all classes can
be distinguished between full-truck-load problems and less-than-truck-load problems.
Full-truck-load problems are a special case in which each good has to be transported
directly from its origin to its destination. Less-than-truck-load problems may in
contrast also comprise other pickup or delivery stops between the fulfillment of a
specific request. Another dimension considers the number of vehicles. This leads
to a differentiation between single-vehicle-problems and multi-vehicle-problems (see
also the classification scheme of Berbeglia et al.). A further dimension regards time
constraints. In a pickup and delivery problem with time windows (PDPTW), a time
interval is associated with each customer [DDS91, CDSS02]. Also, the time step in
which the vehicles leave the depot, a travel time, and an additional service time for
each customer are given. The service of each customer must then start within the
associated time window and the vehicle must stop at the customer for the respective
service time. In case of early arrival at the location of the customer, the vehicle is
allowed to wait until the time window opens up, i.e. until the service may start.

In general, pickup and delivery problems can also be differentiated according to
the availability of information. In static problems (see e.g. [BCGL07]), all informa-
tion relevant to a problem (usually the transportation requests, travel times, etc.) is



known before the routes for the vehicles are constructed. This is a realistic assump-
tion in contexts where users specify transportation requests one or two days in ad-
vance, as it is often the case in a DARP. However, more often the arrival time of new
transportation request, the location of the new requests, and the travel time between
customers are not known a priori, or other unexpected events occur, such as vehi-
cle breakdowns, crashes, traffic congestions, withdrawn transport requests, drivers
calling sick, early arrivals, and imprecise load sizes. Thus, in dynamic problems (see
e.g. [Psa88, GP98, BCL10]), some of the relevant information is revealed or may be
updated during the period of time in which operations take place. Consequently, in
a dynamic problem, when a new transportation request becomes available, at least
one route has to be changed in order to serve this new request. In contrast to a static
problem, the planning horizon of a dynamic problem may be unbounded. However,
even in dynamic problems some transportation requests may be already available at
the start of planning. By contrast, in stochastic problems (see e.g. [GLS96]), some
relevant information is also present a priori, whereas some relevant information is
however only random variables, whose distributions are usually known.

7.1.2 Problem Definition

In order to define the PDP more formally, we reuse existing definitions from the
OR community (see [DDS91, DDE*02, SS95, BCGL07, BCL10, CLPS07, FHK 07,
PDHO08a, PDHO8b]). In a PDP, usually z pickup customers (pickup stations) and 2z
delivery customers (delivery stations) together form a set of transportation requests
R that are to be served by a fleet of y vehicles. Because the PDP (as well as the
DARP) consider settings in which pickup and delivery stations are paired, z = Z.
Thus, the set of pickup stations is denoted as PS = {si,...,s.} and the set of
delivery stations is denoted as DS = {S,41,...,S.+2}. It is however possible that
different stations represent the same geographical location. Consequently, S = PSU
DS is the set of stations where goods can be picked up or be delivered to, while
the set Sy = S U {0} additionally includes a depot. A depot is characterized by
the number and types of vehicles associated with it. A vehicle v is characterized at
least by its initial location, which is usually the depot, its capacity cap (expressed
as the maximum weight, volume, or number of packages the vehicle can load), and
possibly its type or compartment comp (characterized by the type of goods that can
be carried). The set of vehicles is denoted as V' = {v1,...,v,}. Sometimes, the
st pickup station is denoted by st and the associated delivery station by s~. ¢s
denotes the demand respectively supply of a station s. Pickup stations are thereby
associated with a positive value, delivery stations with a negative value. At the
depot the demand/supply is zero. Moreover, sts denotes the service time at station
s, i.e. the time required to collect or deliver goods at the station.

Sp is placed on a map, which is represented as a graph M = (L, C') that contains a
set of locations L, which correspond to junctions, customer locations, the depot, or
other relevant points, i.e. Sy C L, as well as a set of connections C' = {(l;,{;) | l;,1; €
L,i # j} that connect these locations. For the purpose of this thesis, M is defined



as a directed graph. d;; denotes the distance from location i to location j, tj; the
travel time for vehicle v from ¢ to j, and ¢j; the nonnegative travel costs!? for vehicle

v from i to j3. In a PDPTW, the interval [t5t% 1¢"] additionally specifies the time
window on a pickup or delivery station s. The parameter ¢51%"t is called the release
time of station s, while t¢"? is called the deadline, where ¢3¢ "4 € Time, Vs € S.
Furthermore, some decision variables are required:

1, if vehicle v travels from location 7 to location j
Y 0, else
e QY is the load of vehicle v when leaving station s

o 29"V i5 the beginning of the service of vehicle v at station s

For the purpose of this thesis, we can now define a transportation request as a
task in a PDP in the sense of Definition 6.1.

Definition 7.1 (Transportation request)
A transportation request is defined as a task in a PDP ta”’PF such that

taPDP — ( tiiart tend tstart tend)

51,5259, ylsy Hlsy olsy
where

e 51 € PS is the pickup station

e 59 € DS is the delivery station

q is the supply of s; respectively demand of ss, generally called loadsize

start ystart . : :
g4, 15,0 € Time are the release times of s1 respectively so

tg?d, ti;‘d € T'ime are the deadlines of s respectively s

The definition of a task now allows the definition of PDPs for the purpose of this
thesis.

Definition 7.2 (Pickup and Delivery Problem)
A Pickup and Delivery Problem is defined as a quadruple

PDP = (M, Sy, R,V)

!The cost is defined as the Eucledian distance between the two locations and therefore satisfies
the triangle inequality: cjj, + ci; > ¢, Vi, 5,k € L,Yv € V.

2The costs are usually associated with the distance or the travel time between the two locations.

3The literature in the field of OR often transforms the original road graph into a complete graph
(see e. g. [SS95, TV02, PDHO08b]), whose vertices are the vertices of the road graph corresponding
to the customers and the depot. The costs between vertices ¢ and j are then given by the shortest
path starting from vertex ¢ and arriving at vertex j. The travel time is computed as the sum
of the travel times of the connections belonging to the shortest path. For the purpose of this
thesis, however, we use the original road graph for the definition.



where

e M is the environment map
e 5 is the set of pickup and delivery stations including a depot
e R is the set of transportation requests

e 1/ is the set of vehicles

A solution sol”PF (see Definition 6.4) to a PDP then consists of assignments (see
Definition 6.3) of the vehicles in V' to all transportation requests in R such that

1. every vehicle starts a route at the depot and returns to the depot at the end
of its route:

doag=1LWweV (7.1)
J:(0,5)eC

Z rio=1,YveV (7.2)
:(4,0)eC

2. every vehicle’s capacity is not exceeded throughout its tour:

vy, = 1= QF, = QF +as,,Vs1,520 € So, Vv eV (7.3)

5152

max{0,qs} < QY < min{cap’, cap’ + qs},Vs € Sy, Vv € V (7.4)

3. all time constraints are satisfied:

al,, = 1= theomy > (ghegimv ot 4t Nl Vs, s2 € S, Yo eV (T.5)

5182 §182/7781827

4. a pickup and its associated delivery are served by the same vehicle (pairing
constraint):

Z x;’+j— Z x;’,j:O,VsES,UEV (7.6)
ji(st,j)eC j:(s—,j)eC

5. a pickup is always made before its associated delivery (precedence constraint):

thooimy < P s e Slu e v (7.7)

6. one or more objectives are fulfilled



Because conditions vary from one setting to the next, different objectives, ordered
hierarchical or equal, can be found in literature. In most cases, the total travel costs
have to be minimized:

mznz Z CiiTy; (7.8)

veV (i,j)eC

Other objectives that can be found are to minimize the travel time of each vehicle,
the number of vehicles required, the duration of a route, or the total completion time.
For some settings, vehicles can even operate more than one route in the considered
time period. For instances of the PDPTW in addition to the above constraints all
time windows have to be satisfied:

tztart < tgegin,v < tind,vs c qu) cV (79)

Thereby, the deadline can be a hard or a soft constraint. In the latter case, a
vehicle is allowed to arrive late, but a penalty is incurred in the objective. If a
vehicle arrives too early, it has to wait without any penalty (neglecting any other
costs such as driver costs or opportunity costs). Furthermore, a vehicle is allowed
to wait at its initial location.

In OR literature, the solution to the PDP often includes further constraints, which
simplify the calculation of a solution but are, however, not used in this thesis due
to different reasons:

e Each station is served exactly once respectively each transportation
request is assigned to one vehicle only: Even though this constraint may
be useful for certain PDP settings, e.g. longhaul courier services, for other
settings it is not. For example, consider a situation in which a pickup station
continuously produces a certain type of good. If two vehicles, each loaded only
half full, pass by this station, no one would be allowed to serve this station
and a third vehicle might be required or one of the two vehicles would have
to return to this station. Without this constraint, the solution becomes more
flexible, as each vehicle possibly could load half of the goods, which saves time
and costs.

e All vehicles leave the depot at the point in time 0: This constraint is
only useful for static PDP(TW)s, where all requests are already known at time
step 0. In dynamic versions of these problems, this constraint is not useful.

¢ Routes may not contain subtours: This constraint requires that all routes
are connected to the depot and no tours that are not connected to the de-
pot occur during a route. Again, this constraint may be useful for static
PDP(TW)s, but dynamic and flexible solutions require to react immediately
to new requests, without returning to the depot every time.



Assigning transportation requests to vehicles in the PDP is in general much more
difficult than assigning transportation requests to vehicles in the VRP. In the VRP,
all the origins of transportation requests are located at the depot. Therefore, trans-
portation requests with geographically close destinations are likely to be served by
the same vehicle. In the PDP, geographically close destinations may have origins
that are geographically far apart. Thus, it is hard to conclude that they are likely
to be served by the same vehicle.

The measurement of the performance or quality qual of a solution (see Defini-
tion 6.5) to dynamic PDPs, in which we are interested in, is complicated due to the
different shapes of these problems. In order to better distinguish dynamic PDPs,
Lund et al. [LMR96] have defined a degree of dynamism (dod) as the ratio of the
number of dynamic requests |Rgy,, | to the number of total requests |R|, i. e. the sum
of static requests |Rsiq¢| and dynamic requests:

|Rdyn‘ |Rdyn|
|R’ ’Rstat‘ + ’Rdyn|

(7.10)

where 0 < dod < 1. Apparently, dod = 0 indicates a pure static PDP, whereas
dod = 1 indicates a pure dynamic PDP. However, the performance of a solution
to dynamic PDPs is assumed to be dependent not only on the number of dynamic
transportation requests, but also on the time %% when these requests actually
become available. Because the absolute measure proposed by Lund does not take
the availability times of the dynamic transportation requests into account, Larsen
[Lar01] extended this measure to the effective degree of dynamism (edod):

R tavail
Esiﬁn ( fime )
|R|

edod = (7.11)

where 0 < edod < 1. The edod represents an average of how late the requests
become available compared to the latest possible time the requests could become
available.

In PDPTWs, a further important issue is the reaction time. It is defined as the
temporal distance between the time a request becomes available to the system and
the latest possible time (deadline) at which the service of the request should begin at
a station s, i.e. t"@ —t@ail  According to [Lar01], the effective degree of dynamism
measure can then be extended to:

edod-tw =

R . ;
1 T - 7fend o tafuazl
Z( me ( s s )) (712)
s=1

@ — Time

Apparently, the shorter the reaction time, the more dynamic is the PDPTW. The
actual reaction time is, by contrast, the time a customer has to wait until his request
becomes served, i.e. the waiting time. In general, minimizing the waiting time of
customers is sometimes an objective of the solution to a PDP as well, but is usually
more common to DARPs. The lower the waiting time, the higher is the degree of



service. However, the higher the effective degree of dynamism, the harder it is to
achieve shorter waiting times.

7.1.3 Existing Solution Methods

The valuation of the nature of problems that can be encountered in practice has
changed over the years. Whereas in 1959, Dantzig and Ramser [DR59] took static
VRPs as a starting point, in 1995, Savelsbergh and Sol [SS95] stated that while
most VRPs are static, most PDPs are dynamic. Psaraftis [Psa95], by contrast,
argued in the same year that most real-world VRPs are dynamic, too. Powell et al.
[PJO95], however, already recognized in 1995 that dynamic and stochastic problems
will undoubtedly represent the "wave of the future”. Today, it is widely accepted that
both the VRP and the PDP are by nature stochastic problems, but are in practice
generally dynamic problems (cf. [FHK07]), as significant relevant information will
typically emerge as the routing plan is being executed, which may render a current
routing plan infeasible or sub-optimal.

Consequently, during the last 50 years, plenty of solution methods to the var-
ious types of the PDP have emerged, emanating mainly from fields like OR and
in recent years also MASs (respectively DAI). The primary difference between the
methods of these fields is the level of control: centralized or decentralized. Whereas
the focus of OR is due to its long history rather on centralized solution methods,
the focus of research in MASs is on decentralized solution methods in the first in-
stance. The question of which level of control is more appropriate is, however, not
easy to answer. Thus, because both approaches have their advantages, in recent
years more and more hybrid solution methods were proposed that combine both
centralized and decentralized approaches to achieve better solutions. In the fol-
lowing, we give a brief overview on all three classes of solution methods, starting
with classical, purely centralized solution methods (Subsection 7.1.3.1), proceeding
via purely decentralized solution methods (Subsection 7.1.3.2), to hybrid solution
methods (Subsection 7.1.3.3) at the end, along with their advantages and disadvan-
tages. This forms a basis for the classification of the solution methods grounded on
the IBC approach (see Section 7.2) and the EIA approach (see Section 7.3).

7.1.3.1 Centralized Solution Methods

Centralized solution methods can be physically embodied as a person or be virtu-
ally present due to high-levels of data aggregation in a central database. Recent
overviews on centralized solution methods for static PDPs, i.e. the classical OR
techniques, can e. g. be found in [BCGL07, PDH08b, CLR08]. Commonly, these so-
lution methods are divided into three main classes: exact methods, heuristics, and
metaheuristics.

Exact methods are divided into (1) tree-search methods, like branch-and-bound,
branch-and-cut, branch-and-price, or branch-and-bound-and-price algorithms, (2)
dynamic programming, and (3) integer-programming-based methods, such as col-



umn generation methods. Although exact methods produce optimal solutions, they
are usually computationally expensive, even for relative small problem instances.
The largest static PDP problem instance solved to optimality within a state-of-the-
art exact method comprises 205 transportation requests [SPS04]. However, this
instance was an only tightly constrained problem. Evidently, the problem size is
not always a good indicator for the quality of a solution method. Today’s well-
balanced exact methods for static PDPs usually are only able to handle up to 75
transportation requests (cf. [PDHO8b]).

In contrast, heuristics can solve problems with larger scales in less computation
times than exact methods. However, heuristics usually lack robustness and their
performance is very much problem-dependent. For instance, Fisher [Fis95] states
that ”it’s not uncommon that a heuristic developed for a particular geographic region
of a company’s operation will perform poorly in another region served by the same
company”. Commonly, solution heuristics are divided into (1) construction heuris-
tics, (2) improvement heuristics, and (3) hybrid heuristics. Construction heuristics
are further divided into pure constructions heuristics, such as insertion or savings
heuristics, and two-phase heuristics, such as cluster-first-route-second or route-first-
cluster-second heuristics. Hybrid heuristics integrate fast heuristics into the opti-
mization framework of exact methods, in order to provide solution methods that
are as robust as exact methods but also are capable of finding good solutions within
acceptable computation time. For example, the largest static PDP instance solved
by a heuristic within acceptable computational time comprises up to 500 requests
[XCRAO3]. The solution method was a hybrid heuristic based on column generation.

In contrast to heuristics, metaheuristics define abstract steps that at least theoret-
ically can be applied to arbitrary application domains. Thereby, most metaheuristics
are based on principles of physical or biological processes (see e.g. [Yan08]). Proba-
bly the most popular examples for metaheuristics in the PDP domain are Simulated
Annealing and Tabu Search. Other metaheuristics include evolutionary algorithms,
in particular genetic algorithms, neural networks, ant colony optimization [DS04],
particle swarm optimization, or artificial immune systems, for instance, or hybrid
mixtures of them as well. The solvable problem instance size is comparable to
heuristics up to 500 transportation requests within acceptable time.

Whereas there is no commonly agreed benchmark data set to assess the perfor-
mance of heuristics and metaheuristics for static PDPs, the benchmark data set most
often used in literature for static PDPTWs is the one described in [LLO1, LL02],
which is based on the wide-spread benchmark instances proposed in [Sol87]. Ac-
cording to [PDHO8b], the best results for these benchmarks have been presented in
Ropke and Pisinger [RP06] and Bent and van Hentenryck [BHO06], two metaheuristic
solution methods.

In contrast to all these centralized solutions methods for static PDPs, the result of
centralized solution methods to dynamic PDPs obviously cannot be a static output
in the form of a set of routes. It rather entails devising a solution strategy that will
adjust a current solution in the light of new relevant information [MMLO04] respec-
tively a policy that prescribes how the routes should evolve as a function of those



inputs that evolve in real-time [Psa88]. In other words, the solution strategy uses the
revealed information and specifies, which actions must be performed as time goes
by. A basic and commonly used strategy for solving a dynamic PDP is to adapt an
algorithm that solves the static version of the problem (cf. [BCL10]). Overviews on
centralized solution methods to dynamic as well as stochastic PDPs can be found in
[Psa88, Psa95, GGLMO03, PDHO08b, BCL10]. Two approaches can be distinguished.
The first one consists of solving a static problem each time new information (such
as a new transportation request or a cancellation) is revealed. One important draw-
back of this approach is that performing a complete re-optimization every time new
information is revealed is too time consuming, and therefore inadequate for real-
time settings where a fast response is required. In the second approach, which is
the one generally used, a (relatively simple) static solution approach is applied only
once at the beginning of the planning horizon to obtain an initial solution with the
available information. When new information is revealed, the current solution is
updated with heuristic methods such as insertion heuristics, deletion heuristics, or
interchange moves, sometimes coupled with a local search algorithm (cf. [GGLMO3]).
In the intervals elapsed between the time instants at which new information is re-
vealed, some more robust optimization methods are sometimes applied to improve
the current solution.

Heuristics for (multi-vehicle) dynamic PDPs have been proposed amongst oth-
ers by Savelsbergh and Sol [SS98], Popken [Pop06], as well as Fabri and Recht
[FRO6]. Metaheuristics have been proposed amongst others by Shen [SPRR95],
Potvin [PSD95], Gutenschwager [GNV04], Mitrovié-Mini¢ et al. [MML04, MMKLO04],
Branke [BMNDO5], Montemanni [MGRDO05], Pankratz [Pan05], Gendreau [GGPS06],
Séez [SCNO8], and Ghiani [GMQT09]. Bio-inspired metaheuristics for static as well
as dynamic PDPs have also been reviewed in [PT09]. In some cases up to 1000
transportation requests were considered in these heuristics and metaheuristics re-
spectively, however, always with the option that some requests may be refused if they
could not been handled within an acceptable time. Unfortunately, the heuristics and
metaheuristics cannot be directly compared since no standardized simulation envi-
ronment has been used in literature yet. Exact methods have not been used to solve
dynamic or stochastic PDPs, so far.

Apparently, the biggest advantage of centralized solution methods is their produc-
tion of an optimal or nearly optimal solution. It is commonly agreed that in settings
where all or even most of the information is known in advance, i.e. static PDPs,
OR techniques outperform agent-based approaches. Moreover, a centralized view
increases the understanding of the problem to be solved and can be used to offer
transparency in decisions. However, centralized solution methods entail a couple of
disadvantages (cf. [Mvv07, DPH07]):

e In most cases they require a lot of information in advance.

e They can be very sensitive to information updates, i.e. a minor modification
in information may have impact on the routes of many vehicles.



e The time required for the planning of the solution may not permit timely
response to unexpected events such as vehicle breakdowns or the arrival of
rush orders.

e They are not applicable to all problems because customers may not be willing
to share all their critical information such as their cost structure, current
vehicle locations, or current schedules.

e They are not always able to work with the real problem, i.e. many constraints
that are soft in nature, are modeled as being hard constraints, or cannot be
modeled at all. As a consequence, the modeling is either imprecise or makes
wrong assumptions.

e They will fail (at least today) in very complex (high number of transportation
requests) or/and dynamic (high degree of uncertainty about future transporta-
tion requests) problems

e They do not provide good scalability, flexibility, robustness, and adaptivity.

7.1.3.2 Decentralized Solution Methods

Modeling and solving problems by a set of coordinating agents implies a number
of advantages that can overcome the aforementioned disadvantages of classical OR
techniques. Such decentralized solution methods can be physically embodied as well,
e. g. in vehicles or robots making decisions in the field, or virtually embodied in terms
of multiple software components operating autonomously on the same server. Decen-
tralized, agent-based solution methods in general are able to handle complexity and
dynamism better than centralized approaches, in particular in settings where infor-
mation becomes available at a very late timing. Whereas OR techniques may need
too much time to re-optimize a solution when a sudden change occurs, agent-based
solutions can be very reactive to such new events. Mahr et al. [MSAdWdWO08] have
shown that agent-based approaches outperform OR techniques for settings in which
less than 50% of the transportation requests are known in advance. Further ad-
vantages are the possibility for distributed computation, the ability to react quickly
on local information, and the ability to deal with proprietary data from multiple
companies, i.e. a MAS can support quick decision-making by producing a feasible
solution to the problem at hand without revealing critical internal information of a
company at any moment in time (cf. [FMPS95, BEV00]).

A key issue, however, again is how to design and configure agents in an easy,
timely, and inexpensive manner such that their local, possibly self-interested behav-
ior yields a near-optimal global solution to a PDP(TW) (cf. Problem 1 at page 6).
Thus, existing solution methods are based on models and mechanisms for decen-
tralized coordination (see Subsection 3.3). A large part of solution approaches is
grounded on market-based coordination, using auctions or negotiations (see Sub-
section 3.3.1). For instance, Boucke et al. [BWHMO04] propose an extension of the



CNP by a negotiation protocol for flexible and decentralized allocation of tasks in
dynamic PDPs, where the agents continuously reconsider the situation in the en-
vironment and adapt the assignment of tasks when circumstances change, in order
to handle delayed commencement of tasks. Similarly, [ZL1.09] propose another ex-
tension of the CNP that tries to reduce the number of messages required to solve a
static PDPTW. Mes et al. [MvdHvHO8] propose a decentralized solution to dynamic
PDPs in an industrial bakery based on auctions, where automated guided vehicles
(AGVs) are used in the dough making process.

Farinelli et al. [FINZ05] present an approach grounded on token-based coordina-
tion (see Subsection 3.3.4). They describe an example from robotics, in which the
robots drive around and perceive objects (tasks) in the environment. For the trans-
portation of an object from one location to another, two robots have to collaborate.
Therefore, two roles are associated with a task: a helper role and a collector role.
The coordination among agents is then based on the exchange of tokens, which are
associated with the roles of a task. The tokens can be exchanged between agents
and whoever owns a token can participate in the task in the associated role. Lau
et al. [LWLO7] present an approach grounded on immunity-based coordination (see
Subsection 3.3.5), using a fleet of AGVs for material handling in an automated ware-
house, where the AGVs are considered as immune cells that handle and complete
the tasks, considered as antigens.

Valckenaers et al. [VKvBT01, VHG"07] present an approach for manufacturing
control systems grounded on pheromone-based coordination (see Subsection 3.3.6),
which uses resource agents corresponding to physical parts, order agents representing
tasks in the underlying system, and product agents holding the process and prod-
uct knowledge to assure the correct making of a product. Weyns et al. [WBHO6]
present an approach grounded on field-based coordination (see Subsection 3.3.7).
They describe an AGV system where loads have to be transported in a warehouse.
In this approach, new transportation requests emit fields into the environment that
attract idle AGVs. To avoid multiple AGVs driving towards the same pickup lo-
cation, AGVs emit repulsive fields. The AGVs combine the received fields and
follow the gradient of the combined fields, that guide them towards pickup loca-
tions of transportation requests. Due to the fields the AGVs also continuously
reconsider the situation of the environment and task assignment is delayed until
the load is picked, which improves the flexibility of the system. Based on the ex-
periments made in [WBHO0S8] the authors show that in their settings field-based
coordination outperforms market-based coordination. Similar to pheromone-based
coordination approaches and field-based coordination approaches, our decentralized
solution method based on infochemical-based coordination (see later Section 7.2),
makes use of the advantages of environment-mediated coordination using stigmergy.

Unfortunately, the advantages of all decentralized agent-based solution methods
grounded on decentralized coordination models do not come without disadvantages.
Apparently, the biggest disadvantage of these solution methods is the lack of an opti-
mal solution, as one can never be sure how optimal a MAS solution is (see Problem 2
at page 7). Furthermore, because agents make their own decisions autonomously at



runtime, a deep understanding of the problem or transparency of decisions made is
not always present so that one cannot control the actions of a MAS, which is one rea-
son that has hindered the adoption of MAS in industry. Because the agents have to
coordinate their local activities and decisions, they are also not a good choice when
communication is very expensive. Moreover, unexpected emergent (mis)behavior
may occur that could cause further troubles.

7.1.3.3 Hybrid Solution Methods

Due to the advantages and disadvantages of both purely centralized as well as purely
decentralized solution methods, a couple of hybrid solution methods have been pro-
posed that combine and integrate the principles of both classical OR techniques and
agent-based solution methods. However, the literature on these approaches shows
that the combination and integration of centralized and decentralized solution meth-
ods may occur in different ways at different levels. Thus, we classify these hybrid
solution methods according to their degree of decentralization, starting with dis-
tributed OR optimization approaches, which only distribute classical methods over
a group of agents, to fully embedded optimization approaches, in which every agent
runs its own optimization algorithm:

e Distributed OR optimization: The most centralized way of combining
classical OR techniques and agent-based solution methods is to only distribute
the classical centralized solution methods over a group of agents, by decompos-
ing the overall optimization problem into subproblems that have to be solved
by an agent. For instance, Hirayama [Hir06] solves the Generalized Mutual
Assignment Problem, another formulation of the distributed task assignment
problem, by a distributed solution protocol using Lagrangean decomposition
and distributed constraint satisfaction, where the agents solve their individual
optimization problems and their locally optimized solutions are coordinated
through a distributed constraint satisfaction technique. In [HPD09] Holmgren
et al. distribute the principles of the Dantzig-Wolfe decomposition, a classical
optimization technique, for the solution of an integrated production, inven-
tory, and distribution routing problem. They propose a coordinator agent
that corresponds to the master problem and planner agents that represent
the subproblems and assist the coordinator agent in its search for the global
optimal solution. However, by distributing classical OR techniques, in the ma-
jority of cases there has to be made a tradeoff between the quality of a solution
and the cost of finding the solution, while such approaches may even fail to
find an optimal solution at all (cf. [Hir06]). Furthermore, these approaches are
in general only suited for static PDPs again.

e Centralized agent-based optimization: A very similar way of combina-
tion, however with a more agent-oriented view, is to exploit the beneficial
properties of the agent technology for a centralized optimization. An example
is given by the approach proposed by Dorer and Calisti [DCO05] for dynamic



transportation problems. This approach clusters the available vehicles accord-
ing to their geographical regions and allocates one manager agent for the plan-
ning of all vehicles in a region. Based on an insertion heuristic, dynamically
arriving requests are then in a first phase assigned to these manager agents
by a centralized dispatcher agent. In a second phase, the manager agents use
cyclic transfers [TP93] — a class of neighborhood search algorithms — to further
optimize the initial, valid solution, before assigning the requests finally to the
vehicles. Agents embedded in the vehicles, if any, are only used to provide
sensory information to the dispatcher agent, such as information on the traffic
situation or real-time tracking information, so that the latter can re-optimize
the plan, if necessary. However, vehicle agents do not participate actively in
the solution or optimization process.

Similarly, the approach proposed by Leong and Liu [LLO06] in the first phase
uses a centralized push forward insertion heuristic [Sol87] executed by a global
planner agent to obtain an initial, valid solution. In a second phase, agents
representing customers and vehicles are only used to jump out of local optima
and to increase the probability of reaching a global optimum. However, the
global planner agent is always in possession of global knowledge and is able to
coordinate the operations of the other agents. Because this approach produces
a static output, it is not able to cope with any dynamic requests or events.
Approaches of this class moreover are not scalable w. r. t. an increasing number
of requests and will fail if the centralized planner crashes.

A priori optimization with operational re-planning: This class of ap-
proaches still uses classical OR techniques for a coarse planning, while agents
are used for operational re-planning, i.e. for performing local adjustments of
the initial plan in real-time to handle the actual conditions when and where
the plan is executed. In most cases the a priori optimization is for a longer
time period. For instance, Davidsson et al. [DPH07] rudimentary describe an
approach for the solution to an inventory routing problem, in which a cen-
tralized agent solves a predicted problem every n-th time step by a CPLEX
algorithm (which is based on a branch-and-bound algorithm). During oper-
ation, vehicle agents are however allowed to deviate from the initial plan, if
necessary, to better react on dynamic events. However, the authors state that
when the degree of predictability is too low, i.e. dynamic events occur not as
predicted for the optimization, a purely decentralized approach is superior.

Hierarchical optimization: In hierarchical optimization approaches, opti-
mization of the solution takes place at different hierarchical levels. Usually,
the aim of such approaches is to have a balanced mixture of the advantages
of both centralized and decentralized solution methods. The objective is to
construct a more flexible and faster solution compared to a fully centralized
method but also an improvement of the solution constructed by fully decen-
tralized methods. Fischer et al. [FKM94, FMPS95, Fis96] were one of the first



who have proposed such a hierarchical system by the MARS system. The sys-
tem consists of two agent types on different levels, namely truck agents on the
lower one and shipping company agents on the higher one. Shipping company
agents are responsible for the allocation of incoming dynamic transportation
requests to the truck agents by an extended CNP. As this allocation may be-
come sub-optimal with the incoming of new requests, in times when no new
requests arrive a truck agent runs a Simulated Trading heuristic [BHM96] with
the other truck agents in order to improve the global solution. Shipping com-
pany agents on the higher level are additionally equipped with some global
knowledge in order to further optimize the overall solution by cooperating
horizontally with other shipping agents applying a market-based coordination
model again. The TeleTruck approach presented in [BEV00] is an extension of
the MARS system, incorporating heterogeneous agent types as well as more
realistic constraints. Perugini et al. [PLSP03] improve the extended CNP
by Fischer et al., to allow truck agents to place multiple possibly-conflicting
bids for partial routes, which also helps to overcome the eager bidder problem
[SKF02] to some extent. Leveled commitments [SL0O2] and decommitments
[HP04] improve this solution further.

Mes et al. [Mvv07] present an approach consisting of four different types of
agents. On the one hand vehicle agents on the lower level and fleet manager
agents on the higher level, on the other side job agents (representing requests)
on the lower level and shipper agents on the higher level. Vehicles are assigned
to jobs based on market-based coordination using Vickrey auctions. The fleet
manager agents collect and analyze auction and processing time data of all its
vehicles and distribute the results to their associated vehicles when needed,
which thus have access to more information than their own history only. The
same applies to the shipper agents for all the requests issued by the shipper.
Thus, the role of the higher level agent is rather to centralize information
essential for the agents on the lower level agents, which may improve the coor-
dination between agents. However, based on their global knowledge, shipper
agents can also reallocate the transport capacity that has been acquired by
the job agents or switch the execution order. Similarly, fleet manager agents
can reassign vehicles to jobs to improve the profit of the fleet. Vehicle agents
are also allowed to trade requests, if they have not been started already.

Embedded Optimization: In contrast to all other approaches, the optimiza-
tion can even be embedded only in the vehicle agents, without any centralized
or a priori optimization. Kohout and Erol [KE99] present an approach, in
which the vehicle agents compute their overcosts for inserting a dynamically
arriving transportation request based on an adopted version of Solomon’s in-
sertion heuristic. The vehicle agents send their costs as quotes to the customer
agents demanding a service, which in turn selects the vehicle with the lowest
bid, implementing the CNP. If the vehicle can still serve this request at the
quoted price, the customer is inserted to the vehicles route and the contract is



accepted. Otherwise, the customer agent tries to make such a contract with the
next cheapest vehicle agent. In contrast to [FMPS95], there is no further real
post-optimization in form of cooperation between the vehicle agents. However,
as a kind of post-optimization, customer agents are allowed to stochastically re-
quest removal from a vehicle schedule and to search for a better contract. In its
centralized version, this technique is generally known as ’swapping’ [CDSS02],
which yields significant improvements in this distributed implementation.

A similar but less sophisticated approach was taken by Bertelle et al. [BNOT09],
even though their vehicle agents only use a standard insertion heuristic for
computing the overcosts. The vehicle agent then, by contrast, broadcasts the
overcosts to the other vehicles and determines based on a kind of leader election
mechanism the vehicle with the minimal overcosts as winner. However, they
make no performance comparisons to existing approaches, but the approach is
expected to run poorly.

Again, Davidsson et al. [DPH07] rudimentary describe an approach for the
solution to their inventory routing problem, in which every vehicle agent now
executes a CPLEX algorithm for optimization for n time periods itself, before
making decision for the current time period. Their experiments proved that
the solution quality improved compared to a purely decentralized approach,
however again, only if the prediction of future events is not too bad. A similar
approach is presented in [BJ09]. Dynamic transportation requests are assigned
to the vehicle agents based on the CNP, but the vehicle agent subsequently not
only aim to optimize the global solution by exchanging requests, but also by
optimizing their own routing costs by a 2-opt algorithm. If static requests are
known a priori, the approach allows for a centralized assignment to the vehicle
agents by a sweep heuristic [GM74]. Equally, [BJ09] use CNP for initial task
allocation as well, whereas the vehicles use the Clarke-Wright savings algo-
rithm [CW64] for the optimization of their local routes and an inter-opt local
optimization method for exchanging requests with other vehicles to optimize
the overall solution.

Apparently, the main advantage of such solutions is in its fine granularity and
high scalability, while its main disadvantage stems from a considerable over-
head in computation time and resource usage. The overhead in computation
time is mostly due to more expensive agent communications when compared
to a fully centralized solution, while the overhead in resource usage depends
on the memory and processing footprint of an agent.

All of the hybrid approaches mentioned above prove experimentally (some also
theoretically) that the combination of centralized and decentralized solution methods
into hybrid solution methods outperforms purely centralized respectively decentral-
ized solution methods in their considered application domains and for their assumed
constraints. Thus, hybrid solution methods are estimated to achieve the best results
with regard to dynamic PDPs (cf. [MSdWZ10]).



7.2 Instantiating the IBC Approach for the Solution to
PDPs

By instantiating the IBC approach (see Chapter 4) in this section as well as the EIA
approach (see Chapter 6) in the next section, we are able to realize a hybrid solution
method to PDPs, which in its entirety can be classified as an hierarchical optimiza-
tion approach. Whereas the decentralized coordination mechanism grounded on IBC
is inspired by a biological paradigm and hence realizes an efficient self-organizing
emergent solution to dynamic PDPs, the instantiation of the EIA approach improves
the solution efficiency for dynamic (and stochastic) PDPs with recurring tasks, while
respecting the challenges and constraints present for self-organizing emergent sys-
tems (see Challenges /-6 at page 8). Thus, the entire solution on the one hand is
able to take dynamically emerging events efficiently into account as well as on the
other hand works efficiently in case that the distributions of the recurring tasks are
not known a priori, but are only revealed as the routing plan is being executed.

A biological paradigm that self-organizingly solves similar natural transportation
problems as defined by PDPs is the pollination of flowers by honey bees (see Sub-
section 7.2.1). Based on this paradigm, we instantiate the IBC approach to the
so-called Pollination-inspired Coordination (PIC) approach (see Subsection 7.2.2),
which represents a decentralized coordination mechanism applicable for the solution
to PDPs. At the end of this section (see Subsection 7.2.3), we present related work
with regard to this biological paradigm.

7.2.1 Biological Inspiration: Pollination by Honey Bees

While in economy a PDP refers to the transfer of goods from pickup stations to
delivery stations, in botany, pollination (cf. [PYL9I6]) refers to the transfer of pollen
(grains) — the male gametes — from the anther — the pollen releasing part of the
stamen — to the stigma — the sticky, pollen receiving part of the pistil — of flowering
plants (see Figure 7.2). Transferring pollen is, however, only possible during the
blooming period of flowers, representing natural time windows. While in economy
the vehicles housed in a depot are the essential elements for the transfer of goods,
in botany, honey bees housed in a hive are the essential elements for the transfer of
pollen. Honey bees thereby solve the biological analog of a PDP in a self-organizing
emergent manner. Thus, in the following, we investigate the principles behind pol-
lination by honey bees in more detail and identify the function of infochemicals in
this coordination process, in order to draw inspiration from this biological paradigm
for the design of a decentralized, IBC-based coordination mechanism applicable in
a self-organizing emergent MAS solution to PDPs.

7.2.1.1 Pollination

For a better understanding of the biological background, the stamen is the male
sexual organ of a flower, the pistil is the female one that additionally contains the
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Figure 7.2: Main parts of a mature flower [Mic08]

ovary with an ovule, which in turn contains the female gametes (see Figure 7.2).
The stigma is connected to the ovary by a style, through which a pollen tube may
grow from a pollen grain to the ovary transporting the male gametes to the ovule,
provided that the pollen grain lodges on the stigma and that pollen grain and flower
are from the same species. When fertilized, the ovule eventually becomes a seed
respectively a fruit.

A successful pollination is an important prerequisite for the reproduction of plants.
In general, there exist two different types of pollination:

e Self-pollenization/Self-pollination (autogamy): The pollination of a (her-
maphroditic) flower by its own pollen is called self-pollenization. If no external
means are required for this act, the pollination process is called self-pollination.
There exist certain plant species, for which this type of pollination is very fre-
quent and volitional, whereas other plant species exhibit diverse mechanisms
that make self-pollination improbable, e. g. different adolescences or chemical
suppression substances (hormones). Autogamous plants are often located on
islands or extreme sites such as desserts or the Artic, at which either sparse
individuals exist or external means are naturally variable.

e Cross-pollination (allogamy): The pollination of a flower by the pollen
of another flower either of the same plant (geitonogamy) or of another plant
(zenogamy) is called cross-pollination. The intention of xenogamy is to in-
crease the probability of new combinations of genotypes as well as to prevent
inbreeding. Consequently, most plants are designed for cross-pollination, which
is also why we draw inspiration from this type of pollination.



Cross-pollination usually requires a pollinator. A pollinator is an agent that
transfers the pollen, whereas the plant that provides the pollen is called pollenizer.
Over the years of convergent evolution, pollenizers have developed a couple of so-
called pollination syndromes that resulted from the adaptation to their pollinators
[FAWT04]. Thereby, one has to distinguish between biotic pollination syndromes,
such as zoophily, and abiotic pollination syndromes, such as anemophily and hy-
drophily (cf. [FP79]):

e Zoophily refers to a biotic pollination syndrome by plants that is associated
with the pollination by animals, which can be flying, crawling, or hopping
insects, mammals, or even birds. Zoomophilous plant species often have some
typical features or traits, such as stamina and pistils within the same flower,
showy colors, sweet odors, or memorable structures (petals or sepals) that
attract pollinators, as well as useful resources for pollinators, such as nectar,
fats, oils, resins, or dosses, that serve as a kind of reward for their visit. Dur-
ing the collection of these resources by a pollinator, pollen grains from the
flower’s anther cling to the body of the pollinator, often due to sticky pollen
appendages or a structured topology of the outer pollen layer. The pollinator
then unconsciously transfers these pollen grains to the stigma of the same or
another flower, which accomplishes pollination.

e Anemophily refers to an abiotic distribution of pollen by wind. Anemoph-
ilous plant species are for instance grass species, ragweed, conifers, or sweet
chestnuts. These plants often have feathery stigmas in order to catch as much
pollen as possible, whereas the pollen grains often are small and lightweight
or equipped with airbags. Anemophilous plant species do not need showy
features. Thus, their flowers often are unimpressive, numerous, small, and
densely crowded.

e Hydrophily refers to the abiotic distribution of pollen by water. This type of
pollination is quite rare and mainly used by water plants living in both fresh
water and salt water. One distinguishes between pollen transfer under or on
the water respectively above the water.

Pollination syndromes increase the specialization of a plant species regarding its
pollination, which has two important benefits. On the one hand, the efficiency of
pollination is increased. The reward provided to (living) pollinators may be very
”expensive” to produce. Thus, plants take a proactive interest in maximal pollen
transfer with minimal reward effort. Different pollinator species however display
different pollen transfer efficiency, due to their size, shape, or behavior. Thus, spe-
cialized syndromes have a critical influence on the pollinator species selection and
consequently on the overall pollination efficiency. On the other hand, specialized
pollination syndromes increase the selective foraging behavior of pollinators, known
as 'flower constancy’. To achieve an efficient pollen transfer, plants also require
pollinators that only visit one flower type while bypassing other equally rewarding



flower types. Otherwise, pollen grains would lodge uselessly on stigmas of flowers
of incompatible types. But the pollinators’ primary aim is not pollination but the
maximization of the success in their own reproduction by optimal foraging. The
latter is measured by (1) energy gains per time unit, which requires the detection of
essential nutrients (nectar, fats, oils), (2) minimal time for flower detection, and (3)
short handling time during the flower visits. Surprisingly, many pollinator species
show a high flower constancy. Although this flower constancy was first described by
Aristotle, the reason why pollinators show flower constancy still remains unclear.
The most accepted explanation for flower constancy invokes some sort of cogni-
tive limitation on the pollinators’ ability to effectively search for and/or remember
multiple combinations of floral traits at the same time [GL05].

7.2.1.2 Honey Bees as Pollinators

About 80% of all plant pollinations are biotical [BN97]. From the remaining 20%
abiotically pollinated plants, about 98% are pollinated by wind and only 2% percent
by water. The reason for this unequal distribution for the benefit of biotical pol-
lination is the huge amount of pollen needed for the pollination by wind or water,
whereas there is only a small chance for a successful pollination. As this ratio is not
quite efficient, most plants rely on biotic pollination, primarily by insects.

It is estimated that one third of the human food supply depends on insects, thereby
mostly on bees [CWO91]. From all bee species, the honey bee is classified as the
most ecological one. This bee species reaps this reputation first of all due to its
production of honey and bee wax, but the major value of the honey bee is the
pollination of agricultural crops such as fruit trees, vegetable, and forage plants, as
well as many wild growing plants that prevent soil erosion, for instance. Honey bees
have an extremely high flower constancy and pollen preference compared to other
insects. In an experiment [Zan36], 91% of all tested pollen baskets contained only
pollen from one flower type. Furthermore, honey bees either collect only pollen or
only nectar during a flight.

In contrast to the vast majority of all bee species, honey bees are eusocial insects
and live in colonies, such as ants. A single bee is not able to survive on its own,
but only as a member of a collective. This collective is organized optimally and
always consists of one breeding female queen, a large seasonally variable population
of sterile female workers, and seasonally up to a few thousand male drones:

e Queen: The queen is the only breeding female in the colony and thus mother
of all drones, workers, and future queens. The queen is lacking the ’tools’ of
the workers, such as a pollen basket, wax emitting glands, and a well developed
honey craw. The food of a queen solely consists of a secretion named ’royal
jelly’ produced by the head grands of the workers.

e Workers: The female workers take over all tasks within a hive necessary for a
smooth flow of life in the hive, but are not able to pair with each other and to
breed. In contrast to ants, which do the same task their whole life, bees fill out



different functions in their short life (about 45 days). This contains cleaning
the hive and honeycomb cells (day 1-4), feeding the larvae (day 5-10), stowing
of pollen and nectar in the hive as well as ventilating the hive (day 11-13),
building of honeycomb cells (day 14-17), guarding the hive (day 18-21), and
finally from day 22 until their death the collection of food (particularly nectar
and pollen) for the hive.

e Drones: The drones of the honey bee do not have a sting and are harmless;
they also do not exhibit pollen baskets or wax glands and are not able to
secrete royal jelly. In numbers, they are smaller than the female workers and
it is their only job to pair with new queens. Immediately after pairing, which
always occurs outside the hive while flying, the drones die.

Honey bees possess an extremely perfected communication system. On the one
hand, all essential information for the organization of the hive is propagated by
pheromones, secreted by the queen or the workers. These pheromones are used by
the bees for the identification of locations such as food sources, swarming, recognition
of the queen at its marriage flight, emission of warning signs, control of food stock,
birth control in the colony by regulation of the lay activities of the queen, as well
as temperature and humidity control within the hive (cf. [Fre87]). On the other
hand, the bees are executing so-called bee dances. A bee dance is performed by the
female workers when they return from food collection having discovered a fruitful
food source (about 10% of the bees). By this dancing several types of information
on the food sources are communicated. Firstly, the existence of an plentiful food
source is announced, secondly, the odor of the food source is communicated, and
thirdly, the location of the food source may be communicated. Two different types
of dances are distinguished (cf. [See96]):

e Round dance: The round dance indicates a food source close to 100 me-
ters. Thereby the walk of the bee describes a circle alternating clockwise and
counter-clockwise. The more plentiful the food source, the more agile and
longer is the dance. By the round dance no information on the direction is
communicated. When the bees have learned that the food source is not far
away and what odor it is of, they leave the hive and fly in wide circles un-
til they find the food source. Honey bees determine their flight distance by
orientating at passed environment elements.

e Waggle dance: The waggle dance is performed for food sources more far-
off, sometimes up to 10 kilometers from the hive. Thereby the bee seems to
walk a short way straight ahead and to return to its starting point by an arc.
Actually, during the waggle phase the bee stands with its feet directly on the
ground, as revealed by a slow-motion analysis. The return arc is performed
alternating clockwise and counter-clockwise. The angle of the straight to the
vertical corresponds to the angle to the sun the bees have to adhere to in order
to arrive at the food source. The plentifulness of the food source is indicated by



the waggle fortitude the bee performs by waggling with its body. The distance
to the food source finally is determined by the time span of the waggle phase.

Bees observing the waggle dance learn the distance, direction, and odor of these
flowers and can convert the information into a flight to the specified flowers [CS91].
This complicated bee dance has been already described by Aristotle, but has not
been exactly explained until von Frisch [vF67]. More recent research results (see
[RGST05]), however, extend the results of von Frisch and proof that the bee dance
on its own is not enough to guide bees from the hive to the right food source.
Indeed the bees are guided to the right food area by the waggle dance, but upon
their arriving in this area they start to search for the odors of the flowers, to locate
and approach their target exactly.

Because the odors of flowers benefit the flowers as well as the honey bees, from the
chemoecological point of view, they are classified as synomones (cf. Subsection 4.1.1).
These synomones enable honey bees to efficiently identify and approach appropriate
flowers, whereby they unconsciously transfer pollen grains between flowers of the
same species. Thus, these synomones ensure the fulfillment of this biological PDP.
This biological paradigm furthermore demonstrates how the simple local behavior
of the two species results in a global behavior — the reproduction of plants and bees
— beneficial to both.

7.2.2 Pollination-inspired Coordination

The purpose of drawing inspiration from this biological paradigm is not to copy the
exact behavior of both species plants and honey bees, but rather to adapt the simple
but beneficial coordination principles grounded on IBC to realize self-organizing
emergent MASs able to solve PDPs in economy. Thus, the pollination of flowers
by honey bees represents beside foraging in ant colonies (see Subsection 4.5.1) the
second fruitful inspiration for decentralized coordination by means of infochemicals
that is used for the solution of computational problems. Even though honey bees
use pheromones for intraspecific interactions in order to organize life in the hive,
the essential infochemicals in the pollination process are the synomones emitted by
flowers, mediating the interspecific interactions between the flowers and the honey
bees and enabling the latter to efficiently identify and approach the former. However,
some aspects of the pollination process become apparent, which in the nature usually
carry no weight, but, transferred to the solution to PDPs in economy, have an
essential impact on the solution efficiency or solution design:

e Misdirection of pollinators by outdated synomones: Synomones guide
pollinators to appropriate flowers that provide and usually also need pollen
grains from other flowers. However, not until a synomone is completely evap-
orated, i.e. its current concentration in the air has fallen below the thresh-
old concentration of the specific pollinators (see Subsection 4.1.3.3), it will
cease guiding pollinators to its emitting flower, even if the emitting flower is



already pollinated. Transferring this aspect to the solution to PDPs in econ-
omy, vehicles representing pollinators would be attracted to pickup or delivery
stations representing pollenizers, although they do not provide or desire any
more goods, which deteriorates the solution efficiency significantly.

e Attraction of multiple pollinators to the same flower: Often crowds
of pollinators attracted by the same synomones converge on a single flower,
although only one pollinator would suffice to pollinate the flower respectively
has enough space to pollinate the flower. Thus, only the pollinator arriving
first will be successful in pollinating the flower, while the rest has to go away
empty-handed or has to remain waiting on other parts of the plant. Trans-
ferring this aspect to the solution to PDPs in economy, this kind of undesired
swarm movement greatly reduces the solution efficiency, as superfluous routes
or waiting vehicles may generate high costs.

e Guidance of pollinators to the hive: A further aspect, which does not
concern the solution efficiency but rather the design of the solution, represents
the guidance of pollinators to their hive. Whereas in botany honey bees ex-
actly remember the position of their hive in the environment by remembering
their flight distance and passed environment elements?, the guidance of vehi-
cles to their depot representing the hive would require sophisticates routing
mechanisms and high computational resources at every vehicle as well as fixed
environment structures. However, for a simple design of self-organizing emer-
gent solutions a coherent coordination model is required (cf. Challenge 1 on

page 6).

In order to cope with the potential inefficiencies and design difficulties, in the
computational world we extend the coordination between pollinators and pollenizers
by three additional types of infochemicals using the design guidelines proposed in
Section 4.4:

e Foraging allomones: In order to avoid a misdirection of the computational
pollinators (vehicles) by outdated digital synomones of already pollinated pol-
lenizers (pickup stations), the pollenizers have to keep further pollinators off
from visiting. As depicted in Table 4.3 on page 114, this requires a kind of
predatory antagonistic relationship between these two types of agents in such
situations. The design guidelines thus recommend to use foraging allomones,
which are emitted by the flowers and immediately propagated through the en-
vironment having a detaining effect on the pollinators. Thus, an approaching
pollinator perceiving the outdated synomones of this flower will be kept away
due to the additionally perceived allomones and look for other pollenizers to
visit.

“Even this property can be detrimental, if the hive is moved for instance only by one meter, as
then returning honey bees will not find the hive any more!



e Territorial pheromones: In order to avoid an attraction of multiple pollina-
tors to the same flower, a pollinator approaching a flower has to keep further
pollinators off from visiting the same flower. As depicted in Table 4.2 again,
this requires a kind of negative, egoistic, nonsocial relationship between agents
of this type in such situations. The design guidelines thus recommend to use
territorial pheromones, which are emitted by the pollinators and immediately
propagated through in a small area around the emitting pollinator, including
the information which flower it intends to visit. Thus, pollinators following in a
similar direction to the same flower perceiving these pheromones will instantly
switch to another flower.

e Aggregation kairomones: In order to guide pollinators the way back to the
hive (depot), the hive has to attract the pollinators. As depicted in Table 4.3
on page 114, this requires a kind of outwards directed commensal relationship
between these two agent types in such situations. The design guidelines thus
recommend to use aggregation kairomones, which are emitted by the hive and
propagated through the environment having an attracting effect on the polli-
nators. Thus, pollinators that do not perceive any suitable synomones in the
environment any more, may return to the hive by following the gradient of the
kairomones.

The experiments will demonstrate that the coordination by means of four different
types of infochemicals significantly improves the solution efficiency. Therefore, in
Subsection 7.2.2.1 we describe the conceptual model of PIC with all the used types
of infochemicals as an instance of the IBC approach. Subsection 7.2.2.2 subsequently
specifies the objective coordination in PIC, i.e. the coordination between the three
types of agents, whereas Subsection 7.2.2.3 specifies the subjective coordination in
PIC, i. e. the coordination within each of the three agent types.

7.2.2.1 Conceptual Model

Based on the inspiration and the aforementioned extensions, Figure 7.3 depicts a
conceptual model of the PIC mechanism as an instantiation of the DIC model (see
Figure 4.2). A Pollenizer Agent, a Pollinator Agent, and a Hive Agent in-
stantiate an agent of the DIC model and are situated on a Location in a com-
mon Environment. The agents belong to separate types (Pollenizer Type and
Pollinator Type respectively), linked in such a manner that pollinator agents can
observe Synomones as well as Foraging Allomones emitted by the Flowers of pol-
lenizer agents. Synomones and allomones guide a pollinator agent from its cur-
rent location to suitable locations of a pollenizer agent. Territorial Pheromones
emitted by pollinator agents themselves additionally support this guidance. Fur-
thermore, Aggregation Kairomones emitted by hive agents support the guidance
of the pollinator agents to the hive agents. The emission of infochemicals is always
a Location-based Action.



executes

stores

connected with

* 1 1
g Q Location | * 1

1

situated in
situated on

*

N
Q Agent

| Flower

1
provides

*

Q Reward

depends on

N Q Location-based Action

=] Environment

Q Propagate

governs
1. 1.*
] Aggregate governs
1.* 1.*
] Evaporate
governs
1.x 1.*

Q Infochemical Action affects Q Infochemical depends on

* 1r 1> 1*

Q Allelochemical

*

Q Pollenizer Type 1> 1 Q Pollinator Type

linked to

collects

*

Q Pollenizing Action

Q Move

Figure 7.3: Conceptual model of PIC

Q Propagation Policy

Q Aggregation Policy

g Evaporation Policy

Q Infochemical Policy

perceives

[E] Pheromone

Q Foraging All Q Y Q Aggreg Kairomone Q Territorial Pheromone
N « * N
emits emits emits emits
1 1 1 1
1 [=] Pollenizer Agent 1 [=] Hive Agent |- Pollinator Agent *
== capacity
B * -
1 1
belongs to involves belongs to belongs to executes | sets in motion
1 1 1 1 * *

Q Action Chain

1%

Q Action



Due to this bouquet of different Infochemicals, which are affected by several
Infochemical Actions executed by the locations in the environment, pollinator
agents now are able to Move efficiently through the environment according to the
specific needs of pollenizer agents. The biological pollination shows us the need for
having a chain of Pollenizing Actions in order to fulfill these needs, namely a
pollinator agent needs to visit at least one more pollenizer agent after the initial
visit to the first pollenizer agent. In our instantiation of the DIC model to PIC,
we also use the concept of an Action Chain that mainly represents an intended
sequence of interactions with pollenizer agents that all need to be performed to
execute a task the system developer wants to achieve. An agent can be involved
in several Action Chains, but we usually limit the number of "open” chains by a
capacity. A flower provides a Reward (representing the estimated value of a reward
for a pollinator in biology) for each pollenizing action performed.

7.2.2.2 Objective Coordination

In indirect coordination mechanisms such as PIC, the objective coordination, i.e.
the coordination between the agents, is specified by defining the behavior of the
coordination environment in response to a message, in this case the behavior of
the infochemical environment in response to an infochemical. Therefore, we first
have to specify the four different types of infochemicals in PIC more formally. The
behavior of the infochemical environment is then defined by specifying the behavior
of a location part of the environment.

Synomone

A synomone ¢ emitted by a flower fI of a pollenizer agent Ag,,. is specified as

hresh
, 0,

s = (Ve o, €, f1,ppg, dpg,rc) (7.13)

where

® . € N is the current concentration of ¢

'yg”"“h € R is the threshold concentration of ¢

0. € R is the diffusion coefficient of ¢

€ is the emitting agent Agy,,. the flower fI belongs to

ppg is the number of pollen grains provided by fI

dpg is the number of pollen grains desired by fI

e rc is the concentration of the reward provided by fI

In the case of a synomone in PIC, fl, ppg, dpg, and rc together make up the
individual information 1 encapsulated by an infochemical (see Definition 4.1).



Foraging Allomone

A foraging allomone o emitted by a flower fI of a pollenizer agent Ag,,. is specified
as

a = (Yo V4" 0as €as 1) (7.14)
where
e 7, € R is the current concentration of «
o ylhresh ¢ R is the threshold concentration of «
e 0, € R is the diffusion coefficient of «

® ¢, is the emitting agent Ag,,. the flower fI belongs to

In the case of a foraging allomone in PIC, only fI makes up the individual infor-
mation ¢ encapsulated by an infochemical (see Definition 4.1).

Territorial Pheromone
A territorial pheromone ¢ emitted by a pollinator agent Ag,, is specified as
0 = (Yo, YL 5, €00, X) (7.15)
where
e 7, € R is the current concentration of ¢
. yfahres}b € R is the threshold concentration of ¢
e ), € N is the diffusion coefficient of ¢

® ¢, is the emitting agent Agy,o

e X is the infochemical Agyy, is following at the time of emission

In the case of a territorial pheromone in PIC, x (which can be both a synomone or
a kairomone) makes up the individual information ) encapsulated by an infochemical
(see Definition 4.1).

Aggregation Kairomone

An aggregation kairomone x emitted by a hive agent Agy, is specified as

R = ('7%7 %l;hresh’ 5m 6%) (716)

where



v € R is the current concentration of x

ythresh ¢ R is the threshold concentration of &

0, € R is the diffusion coefficient of k

€ 18 the emitting agent Agyp,

In the case of an aggregation kairomone in PIC, no additional individual informa-
tion is required.

Behavior of a Location

Every location part of the infochemical environment is able to execute three dif-
ferent actions affecting an infochemical. In more detail, a location can propagate,
aggregate, and evaporate an infochemical, depending on specific infochemical poli-
cies. To specify these policies, we will instantiate the propagation, aggregation, and
evaporation function defined by DIC.

In general, these actions are combined as follows: If an agent situated at a location
[ emits an infochemical ¢ as an instance of any of the aforementioned infochemical
types, [ will first clone ¢ by the number of neighboring locations connected by an in-
bound connection and then start to propagate these clones to each such neighboring
location (see Equation 7.17). Upon the reception of a clone, a neighboring location
aggregates the clone with its already stored infochemicals (see Equation 7.18). If
the aggregation process is successful, i. e. the clone could be stored, this location will
similarly start to clone and propagate the clone to all of its neighboring locations
connected by inbound connections and so on. This will produce a kind of gradient
field spanned around the emitter of the infochemical. Independently of the propa-
gation and aggregation of infochemicals, at every time step a location additionally
evaporates every infochemical currently stored.

Propagation Function Equation 7.17 instantiates the propagation function de-
fined in Definition 4.6 for the PIC mechanism. While an infochemical ¢ is propagated
from a location I to a location [y, its concentration =, is decreased depending on
the distance dj,;, between the two locations (measured in e. g. in meters, hops, etc.)
and the diffusion coefficient §,. If the concentration of ¢ at the location Iy would be
below the threshold concentration v*7¢5" defined for this type of infochemical, ¢ will
not be stored at lo. The propagation function in PIC does neither make use of an
propagation factor nor a propagation rate.

v, if > Athresh where = —dp, -0
prop : u, s l2 ‘ ,.)/le el 7;hT€Sh 7Ll2 ’YLll l1l2 L (7'17)
0 iy, <9 where v, =y, — diy1, 0,



Aggregation Function Equation 7.18 instantiates the aggregation function de-
fined in Definition 4.7. In PIC, two infochemicals ¢; and to of the same emitting
agent € present at location [ will be aggregated to ¢1, if the concentration of ¢ is
higher than the concentration of t5. In case that both infochemicals are allomones,
additionally the emitting flower fI has to be the same. Otherwise, ¢1 will be dis-
carded and ¢y remains at the location {. Infochemicals of different emitters as well
as different infochemical types of the same emitter, such as a synomone and an al-
lomone, can be stored in parallel at one location. In other words, there is always
at most one instance of a certain infochemical type of a certain emitter stored at a
certain location. Thus, a pollinator agent following a certain synomone will always
be guided to the synomone’s emitter on the shortest path, without the comparison
of identical synomones.

L1, if (Ll,la 11,2 € {P7 ]C7S} A Veay > Yooy A € = €L2)
V(Ll,l7 L1,2 S A A ’YLU > ’YLQ,[ A €1 = €p A flL1 = flLQ)
L2 if (LlJv t1,2 € {73’ IC?‘S} N Yer, < Ve, A€y = ebz)

V(Ll,h t1,2 € AN Ver < Ve N€,; = €4 N flLl = flLQ)
(7.18)

aggr i, teg =

Evaporation Function FEquation 7.19 instantiates the evaporation function de-
fined in Definition 4.8. In PIC, an infochemical ¢ stored at location [ decreases its
concentration v, between iteration ¢ and ¢t + 1 depending its diffusion coefficient 9,
and on the evaporation factor ef defined for the type of ¢. If the concentration of
L at iteration ¢ + 1 would be below the threshold concentration y/*"¢s" defined for
this type of infochemical, ¢ will be removed from .

. 1y if Vergr,g = thr%h where Veer1n = Vg ” o, ef,
evap : Ly — ) hresh (7.19)
0 iy, < where v, ., = Vi, -0 €f,

The concrete values for the evaporation factor ef, the diffusion coefficient §, and
the threshold concentration 7**¢" of an infochemical have a significant influence on
the entire solution. As higher ef for a given ¢, as longer the lifetime of ¢. Similarly, as
higher é,, as longer the lifetime of ¢, but as smaller its propagation range. As higher
thresh - as shorter the lifetime of ¢ as well as smaller the propagation range. Please
note, PIC does neither make use of an evaporation rate, i.e. in PIC an evaporation
occurs in every iteration, nor a propagation factor, i.e. in PIC not only a fraction of
an infochemical is propagation but always the entire infochemical, nor a propagation
rate, i.e. in PIC the propagation of an infochemicals takes places immediately.

7.2.2.3 Subjective Coordination

The subjective coordination, i.e. the coordination within an agent, is specified by
defining the local behavior of each agent type part of the PIC mechanism.



Specification of Hive Agents

Algorithm 7.1 specifies the simple local behavior of a hive agent Agp,, which the
latter executes in every iteration t. Agp, will emit a kairomone &, if the time since the
last emission of a kairomone, measured by a counter t;,4, has reached the specified
emission rate emry,, of hive agents. If a kairomone is emitted, ;.5 Will be reset to
zero. In any case, tj,s+ is incremented in every iteration.

Algorithm 7.1 Local behavior of a hive agent
Input: ¢
Output:
if t45¢ > emry, then
2:  emit(k)
tiast < 0
4: tiast < tiast + 1

Specification of Pollenizer Agents

Algorithm 7.2 specifies the simple local behavior of a pollenizer agent Agyy., which
the latter executes in every iteration ¢. Basically, Agp,. checks for every flower fi
of its set of associated flowers F'l, if fl has been already pollinated, i.e. the number
of pollen grains desired (dpg) by fl and the number of pollen grains provided (ppg)
by fl is zero, so that it can be removed from the set of associated flowers (see lines
2-3). Otherwise, and if fI is currently in its blooming period representing the time
windows of a task, fl is encouraged to bloom further on (see lines 4-5).

Algorithm 7.2 Local behavior of a pollenizer agent
Input: ¢
Output:
for all fl € Fl do
2:  if |dpgsi| = 0 and |ppgyi| = 0 then
Fl+ FI\{fl}
4: else if t > tjctl‘"t and t < t;?d then
bloom( fl)

Algorithm 7.3 specifies the behavior of a flower fl during its blooming period. It
first checks, if a visitor, i.e. a pollinator agent Ag,,, is present at its own location.
In case that an appropriate visitor is present (see lines 2-5), an allomone « will
be emitted, if it has not been emitted so far and if the number of pollen grains
requested by the pollinator agent (rpg) are at least as much as the number of pollen
grains provided by the flower (ppg), or the number of pollen grains offered by the
pollinator agent (opg) are at least as much as the number of pollen grains desired by
the flower (dpg). In other words, the flower will emit an allomone in order to deter
other pollinator agents, as soon as a visiting pollinator agent completely fulfills the
flower’s needs. In any way, the flower will receive respectively provide the pollen
grains pg offered respectively requested by the pollinator agent.



In case that no appropriate pollinator agent is currently present (see lines 7-10),
a synomone ¢ will be emitted, if the flower still desires or provides pollen grains
and if the time since the last emission of a synomone t;,4 has reached the specified
emission rate emrp,. of pollenizer agents. If a synomone has been emitted, ¢, is
reset to zero. In any case, t;,5 is incremented in every iteration.

Algorithm 7.3 Local behavior of a flower (BLOOM)

Input: 0
Output: 0
if lfl M lAgpto 76 @ then
if —allomonesEmitted and (|rpgag,..| > |ppgsi| or |opgag,.,| > |dpgyi)| then
emit(a)
allomonesEmitted <— true
5: receive(opg) or provide(rpg)
else
if (|dpgsi)| > 0 or |ppgsi| > 0) and tiase > emrppn. then
emit(s)
tiast < 0
10: tiast < tiast +1

Specification of Pollinator Agents

Algorithm 7.4 specifies the local behavior of a pollinator agent Agp,, which the latter
executes in every iteration t. If Agp, is currently not situated on a location but is
moving between two locations on a connection, it will proceed moving to the next
location (see line 2). If Agy, is situated on a location and is currently pollinating
a flower, it will consequently proceed with the pollination (see line 5). Otherwise,
i.e. if Agp, is situated on a location and does not pollinate a flower, and if even
no pollenizer agent Agy,. is situated on this location, Agy, will start to inspect [
for appropriate infochemicals to follow (see line 8), i. e. it will perceive infochemicals
possibly stored at this location that guide it the way to the next pollenizer or hive
agent (see later Algorithm 7.5).

However, in case that an Agp,. is situated on the same location, Agy,, checks
for every flower fl of Agpy., if it is currently pollinated by another pollinator agent
or if it can pollinate the flower itself (see lines 10-11). If Agy,, was following the
infochemical (synomone) y and fI is the emitting flower of this infochemical (see
lines 12-14), Agp, has reached its target and will stop checking the flowers but
start to pollinate its targeted flower flirger (see line 19). If Agp, was currently not
following any infochemical x, however, it will also pollinate fI, if this lower matches
the pollination criteria by chance (see lines 15-17), i.e. the pollenizer super type of
flis linked to its pollinator type®, it has not visited fI yet, and either Agy, has not

5A pollenizer super type represents a genus as a main taxonomic rank in nature, whereas a pol-
lenizer type represents a species. Due to evolution and the pollination syndroms (see Subsec-
tion 7.2.1), a pollinator of a certain species (pollinator type) is not able to pollinate flowers of
every genus.



started an action chain Ac of the pollenizer type of fl yet, while fl provides pollen
grains, or Agp, has started an action chain of the pollenizer type of fI already, while
f1 desires pollen grains. If none of the flowers of Agpy,. fulfills these criteria, Agpto
will start to inspect [ for appropriate infochemicals to follow as well (see line 21).

Algorithm 7.4 Local behavior of a pollinator agent
Input: ¢
Output:
if lag,,, = 0 then
do proceed moving
else
if pollinating then
5: do proceed pollinating
else
if VAgpn- € A:lag,,. Nlag,, =0 then
do inspect(lag,,,)
else
10: for all fl € Flag,,. do
if VAgpto € A : lAgptD Nlp = 0 then
if x # 0 and fl = fl,, then
flta,rget — fl
break for
15: else if x = ) and 057" N{04;*"} # 0 and fI ¢ FIYy;'1*" and (A% =0

Agpto Agpto Agpto

and |ppgyi| > 0 or |Acifglpm| =1 and |dpgsi| > 0) then
fltarget — fl
break for
if flta'rget 7é @ then
pollinate( fliarget)
20: else
do inspect(lag,,,)

The inspection of a location [ along with the local decision making, which info-
chemical to follow, is very critical for an efficient coordination. Agy, has to decide
very quickly, based only on the locally observable information, which infochemical
to follow in order to act efficiently for itself but also for the entire system. This is
exacerbated by the fact that Ag,, is allowed to handle multiple action chains Ac in
parallel up to its capacity, i.e. |Acag,,,| < cap, but only one action chain of a certain
pollenizer type 6 in parallel, i.e. ]Ac%gpm] = {0,1}. Note, the pollenizer type of any
action chain is determined by the type of the flower the first pollenizing action was
executed with.

Thus, we base the local decision mechanism of a pollinator agent Agy, on the
estimated utility of following an infochemical to its emitter. Basically, the calculation
of this utility in general is governed by the following policies, similar as in nature:

e The nearer an agent is to the location of the emitter of an infochemical, the
higher is the utility of this infochemical. Thus, nearer emitters are privileged
compared to emitters more far off, which promotes flexibility.

e The longer the time an agent follows an infochemical, the higher is the utility



to follow this infochemical further. This is in contrast a tribute to the effort
that resulted from following the gradient of this infochemical up to the current
location, which promotes stability.

In case of a synomone ¢ emitted by a flower fl of type 0, the utility u(s) addi-
tionally depends on a couple of further policies:

o If Agpi, has not started an action chain Ac?{glpw, yet:

— If Agpio perceives a foraging allomone o emitted by fI, which indicates
that the information included in ¢ is already outdated, the moving to
fl will have no more utility for Ag,:, and ¢ can be excluded from the
decision making.

— If Agpio perceives a territorial pheromone ¢ of a pollinator agent Ag;to
with Agpio 7 Agpto, Which indicates that Agy,, is already approaching f1,
the moving to fI will have similarly no more utility for Ag,:, and ¢ can
be excluded from the decision making as well.

o If Agys, has already started an action chain Aci‘f;pw:

— Following ¢ has to be given priority. This favors the processing or even

closing of action chains in contrast to the starting of new action chains.

These policies are incorporated into different utility functions a pollinator agent
will use for its decision making. Definition 7.3 defines the utility of following a given
synomone ¢. According to the aforementioned policies, the utility u of following
¢ is calculated based on the sum of the current concentration . and the follow
time ft., i.e. the time Agp, was already following ¢ up to the current location,
adjusted by a given factor n. However, the utility will only be positive, if Agp, has
not opened an action chain of the type 6, the number of opened action chains is
smaller than the capacity cap of Agpo, and ¢ includes the individual information
that fl provides pollen grains. Otherwise, the utility of following ¢ will be zero.
The utility function furthermore assumes that inappropriate synomones are already
excluded from decision making and do not have to be evaluated.

Definition 7.3 (Utility of synomones)

Let ¢ be a synomone, fl its emitting flower, 6 the pollenizer type of fI, and ft,
the follow time. The utility v for a pollinator agent Agy, of following ¢ is defined
as

. 0
u(s) = {% +n- fto, if [Acf) | =0A]Acag,,| < cap Alppgp| >0
0, else

In case that Agp, has already opened an action chain of the type 6y and ¢
includes the information that fI desires pollen grains, following ¢ is given priority.



However, the calculation of the utility of prioritized synomones remains the same
(see Definition 7.4). In other words, this utility function assumes that if a prioritized
synomone is present, it will be followed, regardless of other present synomones.

Definition 7.4 (Utility of prioritized synomones)
Let ¢ be a synomone, fI its emitting flower, 6 the pollenizer type of fI, and ft.
the follow time. The utility u for a pollinator agent Agy, of following ¢ is defined
as
u(s) = {’yg +n- fte, if |Acif£jpw| = 1A |dpgpu| >0
0, else

Finally, Definition 7.5 defines the utility of kairomones, which is calculated very
simply.

Definition 7.5 (Utility of kairomones)
Let x be a kairomone and ft, the follow time. The utility u for a pollinator agent
Agpo of following k is defined as

u(k) =y + 1 ftx

Based on these policies and definitions, Algorithm 7.5 specifies the entire inspec-
tion process, by which Ag,, identifies, which infochemical, i.e. which synomone or
kairomone, to follow from its current location I. First, Ag,:, perceives from every
outbound connection ¢y of I, more specifically, the infochemical buffer of such a
connection, all available infochemicals and stores them internally grouped by their
type (see line 6), i.e. pheromones P, ,,, allomones A.,,,, kairomones K., and
synomones S, .. Subsequently, Agpy, checks for each synomone ¢ € S, if the
pollenizer super type of ¢, more specifically of the emitting flower of ¢, is linked to
its own pollinator type so that it would be able in general to pollinate the emitter of
¢ (see lines 9-10). Otherwise, ¢ will be not considered for evaluation in this iteration.
Then, Agpto checks if no pheromone ¢ € P.,,, exists, which indicates that another
pollinator agent is already approaching the emitting flower fI of ¢ (see lines 12-13),
and if no allomone a € A,,,, exists, which indicates that < is already outdated (see
lines 14-15). In both cases, ¢ will not be considered for evaluation in this iteration

out )

as well. Furthermore, if Agp,, has already opened an action chain Aci{;;to of fl’s
pollenizer type, has not visited fl yet, and fI desires pollen grains, it will add ¢ to
the set of prioritized synomones S, ,, prio (see lines 16-17). Agy, also checks for all
perceived kairomones x € K., if its pollinator type is linked to the type of s, more
specifically the emitting hive agent of x (see lines 18-20). Otherwise, x will be not
considered for evaluation in this iteration.

Subsequently, Agp, evaluates the validated sets of prioritized synomones, (regu-
lar) synomones, and kairomones based on the utility functions defined above, and
adds the results of these evaluations to the sets of evaluated prioritized synomones
Seval prios evaluated synomones Seyq, and evaluated kairomones K.pq, respectively



Algorithm 7.5 Inspection algorithm (INSPECT)

Input: [
Output: 0
Seval,prio — @
Se'ual — @
Keval — @
Xold < X
5: for all cour €1 do
do perceive Pe, s Acouss Keows s Seous fTOM Cout
Scout,p'rio — @
for all¢ e S.,,, do
if 07,7 No4gec? = ) then
10: Seour Scout\{g}
else
if 3p: p € Pe,,, and fl; = fly, then
Scour ¢ Seour \{}
if 3o € A.,,, and fl. = fl, then

15: Scour ¢ Scour \{s}
if [Acls, | =1 and fl ¢ FIY < and |dpgs.| > 0 then

Scout,prio — Scout,prio @] {§}
for all x € K¢,,, do
if 0, NO47 " = then
20: Keoue ¢ Keoue \{K}
Seval,prio — Seval,p'riou evaluate(scout,prio)
Seval + SevarU evaluate(Se,,.,, )
Kevai  KevalU evaluate(Ke,,,,)
if Seval,pm’o 75 @ then
25: X < ¢ with ¢ € Seval,prio and u(s) is maximal
do followPrioritizedSynomone(x)
else if Scya1 # 0 then
X < ¢ with ¢ € Sevar and u(s) is maximal
do followSynomone(x)
30: else
X0
ft+<0
ut < ut + 1
if ut > it then
35:  if [Nlag,, =0 then
if Kepar # 0 then
X < k with K € Kepar and u(k) is maximal
do followKairomone(x)
else
40: X+ 0




(see lines 21-23). Thus, at the end of this step, these three sets include triples
consisting of an infochemical, its utility, and the outbound connection it has been
perceived on, ranked by the evaluated utility of the respective infochemical.

Agpito subsequently checks, if the set of evaluated prioritized synomones is not
empty. If this set is not empty, Agp, will identify the infochemical to follow x by
selecting the synomone ¢ with u(<) is maximal out of the set of evaluated priori-
tized synomones (see lines 24-26). If the set of evaluated prioritized synomones is
empty but the set of evaluated (regular) synomones is not empty, Agp, similarly
will identify the infochemical to follow x by selecting the synomone ¢ with wu(s) is
maximal out of the set of evaluated synomones (see lines 27-29). If both sets are
empty, Agpt, apparently will not follow any synomone, reset the follow time ft, and
augment the counter for unsuccessful inspection time ut (see lines 31-33).

If the unsuccessful inspection time ut exceeds a given threshold, specified by the
idle time it, i.e. Agpi, has not perceived any appropriate synomones to follow for a
certain amount of time, Agp, checks, if there are appropriate kairomones to follow
back to its hive, i.e. if the set of evaluated kairomones is not empty. Apparently,
Agpto only checks for kairomones, if it is not already at its hive. If the set of evaluated
kairomones is not empty, Agp, will identify the infochemical to follow x by selecting
the kairomone s with u(k) is maximal out of the set of evaluated kairomones (see
lines 34-38). In all other cases, there will be no infochemical to follow (see line 40).

Algorithm 7.6 specifies the following of a prioritized synomone x. In order to
follow x, Agpto first checks, if the end location I’ of the connection ¢,y on that x has
been perceived is not blocked®, i. e. if no other pollinator agent is currently situated
on this location (see lines 1-3). If I’ is not blocked, Agy, will augment the ft, pre-
sumed it was already following this synomone before, and moves to I’ (see lines 4-8).
If " is blocked (see lines 9-10) and Agy, sticks already for a while, i.e. a counter
measuring a possible deadlock time dt exceeds a given threshold dtp,esn, Agpto PeT-
forms an evasion maneuver (see later Algorithm 7.9). Whereas honey bees in nature
usually have plenty of space in order to avoid collisions in the air or congestions in
front of a flower, in the computational world the pollinator agents are permanently
confronted with these problematic or inefficient situations. This requires the capa-
bility of performing an appropriate evasion maneuver by the pollinator agents, in
case that the next location they intend to move to is blocked, i.e. already occupied
by another pollinator agent. If the moving to any location has been successful, Agp,
will reset both the deadlock time dt and the unsuccessful inspection time ut (see
lines 11-13). Otherwise, the deadlock time will be augmented (see line 15).

Algorithm 7.7 specifies the behavior of an agent Agy:, when following of a syn-
omone Y. Following a synomone is very similar to the following of a prioritizes
synomone, except that Agy, emits a pheromone ¢ in case that it intends to move
to a location !’ (line 8). Thus, other pollinator agents in the vicinity are informed
about the intention of Ag,:,. When Agy,, follows a prioritized synomone, emitting a

5This functionality has to be provided by the infochemical environment



Algorithm 7.6 Follow prioritized synomone (FOLLOWPRIORITIZEDSYNOMONE)

Input: x
Output: 0
get connection cout of X
get end location I’ from cCout
if VAgp, € A: Lagy,, N " =0 then
if x = Xo1da then
5: ft+— ft+1
else
ft+1
do move(l)
else if EIAg;,to € A: lAg;m NI'# 0 and dt > dtipresn then
10: do evasion
if moved then
dt <0
ut < 0
else
15: dt < dt+1

pheromone is not necessary. Because the following of a kairomone does not require
the emission of pheromones as well, the process of following kairomones is the same
as following prioritized synomones and thus not explained here.

Algorithm 7.7 Follow synomone (FOLLOWSYNOMONE)
Input: x
Output: 0
get connection cCoyt of b%
get end location I’ from cous
if VAgy, € Atlay, NI =0 then
if X = Xold then
5: ft— ft+1
else
ft+1
do emit ¢
do move(l)
10: else if JAg,,, € A : lAQ;m NI' # 0 and dt > dtinresn then
do evasion
if moved then
dt <0
ut < 0
15: else
dt < dt+1

Algorithm 7.8 specifies the moving of Agp, from a location [ to a neighboring
location I’. If I’ is currently blocked, the agent will remain at its current location
(see line 7). Otherwise, the agent locks !’ such that no other agent can move to
this location, unlocks [ such that other agents now can move to its old location, and
finally moves to I’ (see lines 2-5). The mechanism reports about the successfulness
of moving to I’. The functionality of locking and unlocking an location by an agent



has to be provided by the infochemical environment. This, however, allows the
infochemical environment to provide information if a location is blocked by an agent.

Algorithm 7.8 Move algorithm (MOVE)

/

Input: [
Output: moved
if VAg,:, € A lAg;m NI =( then
2:  lock(l')
unlock(l)
4: 1+« 1" // Represents the moving from [ to I’
moved ¢ true
6: else
moved < false

Algorithm 7.9 finally specifies an evasion maneuver. Because a pollinator agent
always follows the (prioritized) synomone respectively kairomone with the highest
utility, in case of a required evasion the evasion mechanism first removes this ele-
ment from the respective list of evaluated infochemicals. Algorithm 7.9 exemplary
describes this process for evaluated synomones (see line 1). As long as a move has
not been successful, i.e. the agent was not able to move to another location, and
the set of evaluated synomones is not empty, Ag,, will identify the next infochem-
ical to follow x by selecting the synomone ¢ with u(s) is maximal out of the set
of evaluated synomones (see lines 2-3). Similarly to the behavior described in Al-
gorithm 7.7, Agpto tries to follow this synomone (see lines 4-12). If this is again
not successful, Ag,i, removes this synomone from the set of evaluated synomones as
well (see line 14) and tries to use the next one, until this set is empty or a move has
been successful. The last chance for an evasion maneuver finally is to use a random
outbound connection, in order to escape a deadlock situation (see lines 15-18). If
all neighboring locations are however blocked by other agents, there is apparently
no chance to move and Agy, will remain at its current location at least until the
next iteration.

Due to this general, problem-independent modeling, PIC is applicable for a wide
field of problem classes that require the self-organizing coordination between multi-
ple autonomous components of homogeneous and heterogeneous agent types. PIC
enables robust and flexible solutions in the face of dynamic changes. The agents
therefore have to be situated in a logical or physical environment, which may be ex-
tended with the needed infrastructure (for propagation, evaporation, etc.), whereas
the environment structure may represent a part of or even the entire problem that
has to be solved. Spatial movement of the components is supported, whereas infor-
mation about their spatial locations is indirectly exchanged.

7.2.3 Related Work

The decentralized PIC mechanism presented in the last subsection is based on the
DIC model but takes its biological inspiration originally from the pollination of
flowers by honey bees. This emphasizes the DIC model as a versatile and coherent



Algorithm 7.9 Evasion mechanism (EVASION)
Input: [
Output: 0
Seval  Sevar\{s} with u(¢) is maximal
while I; = l;+1 and Seyar # 0 do
X < ¢ with ¢ € Sevar and u(s) is maximal
get connection cout of ¢
5: get end location I’ from cout
if VAg,., € A Lagy,, N I =( then
if X = Xold then
ft+ ft+1
else
10: ft+1
do emit ¢
do move(l)
else
Seval < Sevar \{s} with u(s) is maximal
15: if —=moved then
get random cout
get end location I’ from cout
do move(l’)

model for efficient decentralized coordination (see Challenge 1) providing a high
expressiveness (see Challenge 2). The DIC design pattern and the corresponding
design guidelines furthermore allow for a fast adaptation of the design in order
to engineer efficient solutions (see Challenge 3), by using four different types of
infochemicals within the same coordination mechanism. This will be proven by the
experiments made in Section 8.3.

The elaborated communicative and evaluative methods and procedures of honey
bees, however, have already served as a source of inspiration for a couple of other
computational solution methods apart from PDPs. In recent years, especially the
natural foraging behavior of honey bees, in more detail the waggle dances (see Para-
graph 7.2.1.2), have inspired the development of new metaheuristics for the solution
of combinatorial and numeric optimization problems, for instance the Virtual Bee
Algorithm (VBA) [Yan05], the Bees Algorithm (BA) [PGKT06], the Honey Bee
Colony Algorithm (HBCA) [CSLGO6], the Artificial Bee Colony (ABC) algorithm
[KBOT7], or the Bee Colony-inspired Algorithm (BCiA) [HD09]. The essence and
main inspiration of these algorithms is the communication and broadcasting abil-
ity of a bee to some neighborhood bees so that they can ’know’ as well as follow
a bee to the best source, locations, or routes to complete the optimization task.
However, in contrast to the PIC mechanism, these metaheuristics all suffer from the
same problems as the metaheuristics mentioned in Subsection 7.1.3, such as their
strict centralization, their limitation to a bounded problem size, and their limited
capability to cope with highly dynamic events.

Inspired in a similar way by the waggle dances but with focus on telecommunica-
tion networks, Wedde et al. [WFZ04] present a routing algorithm for this problem



domain, called BeeHive. In this algorithm, bee agents travel through network re-
gions called foraging zones. On their way their information on the network state
is delivered for updating the local routing tables. This algorithm was extended in
[Far09]. Inspired by the waggle dances as well, Nakrani and Tovey [NT04] present
an algorithm for dynamic server allocation in Internet hosting centers.

In parallel to our first publications of PIC (see [KB06a, KB06b, KB06¢]), the pol-
lination of flowers by honey bees has also been used as a biological paradigm for an-
other solution methods, in more detail for a swarm clustering algorithm [KRLMO06].
This algorithm, however, uses two other natural facts of pollination: Firstly, the
growth of a plant species depends on the region it grows in such that in very ap-
propriate regions an agglomeration of these species can be observed. Secondly, the
natural selection process selects better fitted plants in a region to survive. In the
adopted clustering algorithm, each artificial bee thus is a simple agent as well. The
bees will pick up the pollen of flowers with lowest growth and transport the pollen
to a source where it will grow better. Each pollen grows in proportion to its neigh-
boring flowers and after some iterations the natural selection will select the flower
with the best growth of one species to survive and will sear others.

Decentralized autonomous solutions to the VRP and the PDP respectively are,
however, not only subject of research to MASs. Also in the field of multi-robot
research, decentralized autonomous solutions to similar problems are investigated
(see e.g. [AKOS09]). For instance, in multi-robot routing, the problem consists
of routing collaborating robots over available paths between target locations for
some purpose, e.g. search-and-rescue in areas hit by disasters, surveillance of a
facility, placement of sensors, delivery of parts, or localized measurements. Similar
to the VRP, the objective is also to find a route for each robot, so that each target
location is visited exactly once by exactly one robot (no waste of resources), all target
locations are eventually visited by some robot (mission completeness), and the entire
routing mission is accomplished successfully in the best possible way (optimization
of certain performance measures). The most widely used coordination model in
this area is, however again, market-based coordination, in particular auctions (see
e.g. [LMKT05]). Also the coordination under limited communication constraints is
investigated (e.g. [MMLO09]).

7.3 Instantiating the EIA Approach for Improving
Solutions to PDPs

Even though the decentralized PIC mechanism presented in the last section enables
flexible, robust, and scalable solutions to various instances of the dynamic PDP, we
know from Section 5.1 and Subsection 7.1.3 that decentralized solution methods in
general are not able to produce a solution of an optimal quality to a dynamic problem
on their own. The main reason is that due to the absence of global knowledge the
system elements tend to make suboptimal local decisions that result in globally
inefficient solutions. In this section, we therefore instantiate the generic advisor



model presented in Section 6.2 for the use with and the efficiency improvement of
PIC-based solutions to PDPs.

In Subsection 7.3.1 we first define a measure of efficiency, i.e. the quality of the
solution, which we aim to improve by an EIA. This provides the foundation for all
further improvement efforts. In Subsection 7.3.2 we then identify and analyze sit-
uations, in which local decisions of single agents lead to inefficiencies in the global
behavior of the system with regard to the defined quality measure. These situations
are not restricted to PIC-based solutions to PDPs only, but are common to decen-
tralized solutions based on environment-mediated coordination mechanisms. Most
of these situations may even appear in arbitrary self-organizing emergent solutions
as well. For these situations, we present and classify a number of exceptions rules
in Subsection 7.3.3, which an EIA can employ to provide advice to specific agents
in certain situations for the improvement of the global solution. Finally, in Subsec-
tion 7.3.4 we instantiate the generic actions of the EIA defined in Section 6.2 for
PIC-based solutions to PDPs.

7.3.1 Solution Quality

For PDPs, very often the quality of a solution is based on a single measure, such
as minimizing the total/average travel costs of the transportation agents, minimiz-
ing the completion time, minimizing waiting times, balancing the workload over
all transportation agents, maximizing the throughput, or minimizing time window
violations. However, in this thesis we decided to use a quality function that in par-
ticular aims to combine energy use related measures, like the traveled distance, with
other measures of interest. Thus, the quality qual of a solution sol to a PDP is
defined with regard to the improvements by the EIA as

w
A - qualgise(sol) + p - qualyrger (sol) + v - qualyy, (sol)

qual(sol) = (7.20)

where

e w, \, u and v are weight parameters

o qualgist(sol) is the (costs for the) total distance traveled by all Ag; according
to sol

\.as(sol)|

o qualyrger(sol) =Y ;5" order; is the penalty accumulated by sol for fulfilling
tasks in a different order than their announcement to the system. Therefore,
the difference between the start times of all pairs of tasks ta; and tas is summed
up, if the start time of ta; is before tas but in sol tas is finished before taq,
i.e.

start __ y4start  :r pstart start served served
order: = {ttail ttai lf ttai,1 < ttai A ttai,l > ttai
P =

0 otherwise



o qualy,(sol) = ZL‘SI(SOZ)‘ tw; is the penalty for sol for all tasks that are not
completed within the time window for the task. Therefore, the difference
between the finishing time for a task ¢*¢"*¢¢ and t**? is summed up, if the

finishing time is later than t*"¢, i.e.
o — tfg:’ved _ tfgid if tfgrved > tfgd
1 - .
0 otherwise

e as: Sol — 2T is an assignment function that returns the set of tasks that are
already assigned in a given solution defined as

as(sol) = {tay,tas, ..., tay}

where (ta;, Agi,t;) € sol with ta; € T"¢, Ag; € A, and t; € Time.

Obviously, the three measures of interest are not aligning well with each other, so
that many solutions have rather similar qual-values, which makes improvement by
the EIA even harder, since it is less likely to have a big difference in quality between
the emergent solution and the optimal solution. Please note that penalizing for
tasks not performed in order also favors making decisions based on local information,
favoring the self-organizing emergent system, again. Note also that for this quality
function higher values represent better solutions.

7.3.2 Inefficiencies in Solutions Based on Environment-Mediated
Coordination

With regard to the efficiency measure presented above, we have extracted and an-
alyzed several types of situations, in which local decisions of single agents lead to
inefficiencies in the global solutions to dynamic PDPs. These situations are not
restricted to PIC-based solutions only, but are common to decentralized solutions
based on environment-mediated coordination mechanisms in general, as for instance
also the one presented in [WBHO06|, which is grounded on field-based coordination
(see Subsection 7.1.3.2). Most of these situations may even appear in arbitrary self-
organizing emergent solutions as well. Reasons for the suboptimal local decisions
are listed in Section 5.1. The EIA in general is designed to be able to detect these
situations and to improve the local decision making by the agents.

7.3.2.1 Requests Handled by Inappropriate Agents

Due to their greediness, vehicle agents (called pollinator agents in PIC, but vehicle
agents in general) try to serve any request right upon the perception of the cor-
responding synomones respectively attracting field, assumed that no allomones or
pheromones respectively repelling fields hinder the agents. Because the agents in
particular cannot reject or defer a request, usually, the idle vehicle agent, which is



closest to a pickup request, will try to serve it, disregarding other requests in the
vicinity and without regard for requests that might appear at the agent’s initial lo-
cation or its vicinity in the near future. This results in unnecessary long routes and
thus in an increase of total travel costs, as other vehicle agents might be in a much
better position to serve the request. It also results in a violation of time windows,
as another vehicle agent has to approach from a location more far off to serve the
likely future request.

7.3.2.2 Attraction of Multiple Vehicle Agents

Due to their greediness, in many cases, two or more vehicle agents may initially
start to approach the same station agent (called pollenizer agent in PIC, but station
agent in general) to serve a pickup request. Even though all vehicle agents leave
a pheromone trail respectively emit a repelling field that keeps other agents from
approaching to the same target, this trail respectively field is restricted to a limited
area around the emitting agent and can therefore only be perceived by other vehicle
agents that are close by. If the vehicle agents approach from different directions to
the same station agent, the trails respectively fields have obviously only a late effect,
which results in unnecessary movements and consequently increases total travel costs
as well as may violate time windows of subsequently appearing requests.

7.3.2.3 Overcrowding of Pathways

Due to their greediness, in small environments or environments including bottle-
necks with regard to certain pathways, the announcement of a huge amount of
transportation requests within a short period of time may instigate a huge number
of vehicle agents to leave the depot immediately. In particular if the amount of
requests exceeds the amount of vehicle agents, all agents will start to follow a dif-
ferent synomone respectively attracting field, because the pheromones respectively
repelling fields emitted by each agent indicate different targets. Due to the service
times at pickup stations, which depend on the load sizes of the requests, as well as
the waiting times of the following agents, congestions emerge and the vehicle agents
stand in each others way, which results in the violation of many time windows.

7.3.2.4 Oscillation of Vehicle Agents

Due to their greediness, vehicle agents may repeatedly shuttle between the depot
and pickup stations, if the transportation requests appear at these stations with an
adverse interval. In other words, the period of time between the occurrence of the
transportation requests is higher than the period of time the vehicle agents require
to move from a delivery station back to the depot. This results in an increase of
total travel costs and sometimes to a violation of time windows.



7.3.2.5 No Consideration of Stochastic/Static Requests

Due to their reactiveness, vehicle agents will only start to move to a station agent,
if the latter has emitted appropriate synomones respectively an attracting field.
However, in stochastic PDPs or PDPs with a mixture of static and dynamic requests,
a certain amount of requests have to be taken into account that are already known
a priori. In particular for tasks with tight time windows, this results in a violation
of the latter, because the vehicle agents first have to spend the time for moving to a
station agent demanding the service of a stochastic/static request, which they could
have saved, if they would have started prior to the perception of the corresponding
synomones respectively attracting field.

7.3.2.6 Undetected Requests

Due to their reactiveness, vehicle agents situated at the depot that do not perceive
any appropriate synomones respectively attracting fields (e.g. due to a too short
propagation range) will remain in the depot, even if appropriate synomones respec-
tively fields could be found in the immediate vicinity of the depot. The same holds
for vehicle agents situated out of the depot that do not perceive any appropriate
synomones respectively attracting fields, which in such cases will (after a given pe-
riod of time) return to the depot. Thus, requests at worst may remain undetected,
or will be detected at some remote period, which increases travel costs and violates
time windows.

7.3.2.7 Unserved Requests

Due to their reactiveness, vehicle agents following a synomone respectively attract-
ing field to a station agent in order to serve a pickup request, may decide to follow
another perceived synomone respectively attracting field, assumed that its utility is
higher respectively computational-field value is smaller. Thus, due to this reconsid-
eration of the environment, the original request may remain unserved, in particular
if other vehicle agents have already stopped following the synomones respectively
attracting field to the original request, as they have perceived the pheromones re-
spectively repelling field of the switching agent. This not only results in an increase
of total travel costs, but also in a violation of time windows.

7.3.3 Classification of Exception Rules

The identified types of insufficiencies emerge from the local behavior of vehicle agents
in the first instance. Thus, exception rules have to be identified that are able to ad-
vice the local behavior of these agents in order to improve the efficiency of the global
system. Therefore, the underlying coordination principles of the used coordination
model/mechanism have to be taken into account to find the best way to formulate
the exception rules. Each coordination mechanism has different parameters and dif-
ferent starting points that have to be considered (see [DHO06]). Of course, in any
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Figure 7.4: Exception rules to adapt the local behavior of agents in PIC

case, the agent model has to incorporate the application of exception rules during
the evaluation of the agents’ next actions. The exception rules defined below fit the
DIC model tailored for the PIC mechanism and show exemplary how the formula-
tion of rules can be approached. However, an application of these exception rules to
other environment-mediated coordination mechanisms is conceivable, too.

In general, we distinguish three classes of exception rules derivable by an EIA in
order to advice the local behavior of agents (see Figure 7.4): task-triggered rules,
time-triggered rules, and neighborhood-triggered rules. As the name implies, task-
triggered rules become activated in the rule base of an agent by the perception of a
certain task, in the case of PIC by the perception of a certain synomone referring
to a transportation request. In other words, a task must be present first in order
to activate an exception rule of this class. By contrast, time-triggered rules do not
require the presence of tasks but become activated due to the passing of a certain
point in time or after a certain period of time. Apparently, these rules require the
agents to have a common notion of time, e.g. the time measurement may start at
the beginning of a day or the beginning of a run. Finally, population-triggered rules
become activated neither by the presence of tasks nor the passing of a point in time,
but only by the behavior of the other agents acting in the same environment, which
is in the case of PIC recognized by the perception of pheromones. All three classes
of exception rules are distinguished in a couple of more detailed rule types for PIC.

Task-triggered exception rules can be distinguished into the following three types:

e Ignore rules: This rule type forces an agent to ignore for a given period
of time a perceived infochemical that is sufficiently similar to an abstracted
infochemical. Thus, the utility of following this infochemical is set to zero.
When the period of time has passed, the rule is no longer applied and the
perceived infochemical is evaluated as it would normally have been. Ignore
rules are very powerful and may be used by the EIA to deter an inappropriate
or superfluous agent from serving a task (see 7.3.2.1 and 7.3.2.2, respectively),
or to prevent the agent from oscillating (see 7.3.2.4). The structure of an
ignore rule looks as follows:

If [perceived infochemical] is similar to [abstracted infochemicall
then ignore [perceived infochemical] for [period of time]



e Boost rules: This rule type forces an agent to boost for a given period of
time and by a given percentage the utility of a perceived infochemical that is
sufficiently similar to an abstracted infochemical. If the percentage is set to
a value lower than 100%, the infochemical utility will be lowered accordingly.
Consequently, ignore rules may be considered as a subclass of boost rules, in
which the utility of an infochemical is boosted by 0%. When the period of
time has passed, the rule is no longer applied and the perceived infochemical
is evaluated as it would normally have been. Because boost rules increase the
chance for an agent to follow a specific infochemical compared to other ones,
they may be used by the EIA to guide an agent to a more optimal task in the
vicinity (see 7.3.2.1) or to prevent an agent from changing its mind too often
(see 7.3.2.7). The structure of a boost rule looks as follows:

If [perceived infochemicall] is similar to [abstracted infochemicall
then boost [perceived infochemical] by [percentage] for [period of time]

e Wait rules: This rule type forces an agent to wait for the perception of an
infochemical that is sufficiently similar to an abstracted infochemical. In other
words, the agent ignores all infochemicals that are not sufficiently similar to
the abstracted infochemical. However, the rule does not induce the agent to
follow the infochemical it has waited for, but only to wait upon its perception.
At this time the agent evaluates again the utility of every infochemical. In
addition, a deadline has to be given, as otherwise the agent would wait until
the end of the run instance and remain unproductive, if the task the abstracted
infochemical refers to is not part of the run instance. Wait rules may be used
by the EIA to deter an inappropriate agent from serving a couple of tasks (see
7.3.2.1) or to prevent an agent from leaving a location, e.g. the depot, too
early (see 7.3.2.4). The structure of a wait rule looks as follows:

If [perceived infochemical] is not similar to [abstracted infochemicall
then ignore [perceived infochemical] until [point in time]

In contrast to the EIA, an agent has no notion of a task, as this is a high-level con-
cept used only by the EIA. Instead, an abstracted infochemical has to be constructed
by the EIA as an extraction from an identified task. This infochemical differs from
a normal infochemical as it does not include complex objects such as the emitter
of an infochemical, but rather simplified representations such as the location of the
emitter. The similarity between a perceived infochemical and an abstracted info-
chemical can then be determined by an appropriate distance or similarity function,
which may be similar to the one used in Section 6.2.3. Because in PIC the way the
basic system reacts to its environment is based on the evaluation of infochemicals
perceived by the agents, rules that influence the way the infochemicals are evaluated
prove to be a very good starting point to influence DIC-based solutions in general.



Due to the fact that the basic movement capabilities of agents essentially require
the presence of infochemicals stored at locations, in contrast to task-triggered rules,
time-triggered rules additionally require the presence of a global environment map
stored in each agents’ data model, along with an appropriate routing algorithm that
has to be incorporated by the agents. Otherwise, the agents will not be able to
navigate to a given location or according to a given strategy. Time-triggered rules
can be distinguished into two types:

e Forecast rules: This rule type forces an agent to move to an abstracted
location or area, as soon as a given point in time is reached. However, the
rule does not induce the agent to follow a specific route or to serve a specific
task, which is still up to the agent’s decision. As soon as the agent has arrived
at the abstracted location, it has to wait for a given period of time. Thus,
forecast rules may be used by the EIA to send an agent into an area, where
the occurrence of a stochastic/static request is very likely at a specific time
(see 7.3.2.5). Without the waiting constraint, the effect of the rule will get
lost, if the dedicated request has not appeared yet, because the agent might
then decide to serve another request instead. The structure of a forecast rule
looks as follows:

If [current point in time] is equal to [point in time]
then move to [abstracted location] and wait for [period of time]

e Detection rules: This rule type forces an agent to move according to a given
strategy, if the agent does not perceive any useful infochemical for a given
period of time. A strategy may either include a couple of abstracted locations
the agent has to visit or describe a certain movement pattern. Detection rules
may be used by the EIA to let the agent search for yet undetected requests
(see 7.3.2.6). The structure of a detection rule looks as follows:

If [perceived infochemical] is [null] for [period of time]
then move according to [strategy]

Finally, neighborhood-triggered rules can be distinguished into two types as well:

e Idle rules: This rule type forces an agent to remain idle for a given period
of time, if the perceived amount of infochemicals, e.g. pheromones, exceeds
a given threshold. Idle rules thus can be used by the EIA to prevent an
overcrowding of pathways or to limit the number of agents currently acting
in the environment, assuming that the agent is still in the depot (see 7.3.2.3).
The structure of an idle rules looks as follows:

If [perceived amount of infochemicals] is higher than [threshold]
then idle for [period of time]



e Path rules: This rule type forces an agent to move according to a given
strategy, which may again include a couple of abstracted locations the agent
has to visit successively or describe a certain movement pattern, if the amount
of perceived infochemicals exceeds a given threshold for a given period of time.
Path rules may be used by the EIA in similar cases as idle rules (see 7.3.2.3),
however, these rules are better suited for situations in which the agents are out
of the depot. Thus, instead of idling and possibly blocking other agents, the
agent may be advised to use an alternative path in order to avoid congestions.
The structure of path rules looks as follows.

If [perceived amount of infochemicals]
is higher than [threshold] for [period of time]
then move according to [strategy]

Although possible, a combination of different rule types has to be used carefully.
For example, advising a vehicle agent to search for undetected requests by a detection
rule may in turn result in an attraction of multiple vehicle agents to the same station
agent (see inefficiency described in Subsection 7.3.2.2). Similarly, even though some
rule types are more or less conflict free taken by itself, e. g. ignore rules, other rule
types, in particular time-triggered rules, or a combination of different rule types may
require some kind of deliberation. On the other hand, by a purposeful combination
of different rule types the advice for an agent can be more specific. For example, by
letting an agent ignore a certain infochemical and boost the utility of another one,
the reaction of an agent may be anticipated very well. This emphasizes again the
importance of simulating the set of derived rules by the EIA before it is send to the
agents (see Section 6.3).

The instantiation of the EIA proposed in the next subsection will however only
deal with one specific rule type, in more detail ignore rules, because handling re-
quests by inappropriate agents has one of the highest potentials for optimization.
Advising the system to let the best agent with regard to the global system optimal-
ity handle a request is already enough to reach a significant efficiency improvement
for many scenarios. All other inefficiencies and exception rules are left for future
optimization.

7.3.4 Instantiating the Generic Actions

The last step finally requires the instantiation of the generic actions receive, trans-
form, extract, optimize, derive, and send of the EIA for PIC-based solutions to PDPs.
Whereas this subsection provides the formal instantiation of the EIA actions, the
technical realization of these actions is provided in Subsection 8.1.4.

7.3.4.1 Receive Local Agent Histories

As defined in Subsection 6.2.1, the main task of the action receive is to collect the
local agent histories and to store them in the internal data structures of the advisor.



Two different types of data are principally of interest: environment data and agent
data. Information about the environment in which the agents act has to be known
in order to calculate the quality of solutions. Basically, this type of information
can be reduced to the map of the environment as described in Subsection 7.1.2.
Although we have assumed that each agent of the basic system must be able to
collect data about its local behavior (see Section 6.2), i.e. its sensory input and its
actions, an advisor not necessarily has to be interested in all basic actions an agent
has performed during a run instance. For the purpose of advising the agents by
ignore rules, the EIA is only interested in a few selected basic actions, which will
naturally decrease the amount of data to be processed:

e Choose an infochemical to follow: The agents constantly re-assess the
infochemicals they perceive and decide every time anew, which infochemical
to follow. Switches in the infochemical to follow may lead to changes in the
movement direction of the agent or even of other agents.

e Service a station: Whenever an agent reaches a station, it either picks
up or delivers goods. Information about these actions together allows the
identification of the individual tasks performed by each agent.

e Move back to depot: When an agent has been idle long enough, i.e. all
perceived synomones during a certain period of time were not of interest or
even no synomones have been perceived, it decides to move back to the depot.

As assumed in Section 6.2, there has to be a predefined point (place or time) at
which the EIA must have access to the recorded agent data. Because in real world
transportation scenarios the trucks or vehicles involved in a PDP return to the depot
after all the work is done, in this instantiation this predefined point is at the end
of each run. As soon as a run is completed, thus, the agent data is available in the
EIAs situational knowledge and the action receive stores the data into the internal

data structure Datg}‘jf‘ of the EIA.

7.3.4.2 Transform Local Agent Histories into Global History

At the end of each run, the collected agent data is analyzed and transformed. As
defined in Subsection 6.2.2, the transformation creates a global history of the form
(runq,...,rung). This requires no more formal definition, as this action strongly
depends on the realization of the basic system.

7.3.4.3 Extract Recurring Tasks from Global History

After a sufficient amount of data has been collected by the action receive, more
specifically after a predefined number of run instances that serve as a learning time,
and transformed by the action transform, recurring tasks are extracted by the action
extract. Apparently, the instantiation of this action requires data of the current
and from previous run instances. Having the run instances available in the form



(runi,...,rung), recurring task patterns can be identified using a similarity function
for PDP tasks, sim” PP, which instantiates the abstract similarity function defined
in Definition 6.18. As already mentioned in Subsection 6.2.3, differences between
recurring tasks can occur in each of the attributes of a task, which has an influence on
the concrete specification of the similarity function as well as the centroid function
later. Thus, in the case of PDPs, all the specific attributes of a transportation
request (see Definition 7.1) have to be considered:

1. Localities of the request, i.e. Spickup and Sgelivery
2. The supply/demand q of spickup/Sdetivery

3. Time windows, i.e. 5t and t5%%t  as well as t¢"¢  and "¢
Spickup Sdelivery Spickup Sdelivery

Definition 7.6 (Similarity function for PDP tasks)
The similarity sim of two PDP tasks taj, tas € T is determined by a function defined
as

. PDP
s1m (tala ta?) = : Ed(spickup,tal ) Spickup,tag) +

: Ed(sdelivery,mla Sdelivery,tag) +
. ‘qtaq - qta2’ +
. (’tstart _ tstart’ + ‘tend o tend )

tai tay tay tay

€ < 23 9

where

e 7, v, and w are constant weight factors

e Fd:SxS — Rt isthe euclidean distance between the locations of two stations
on an euclidean plane

The centroid of a task pattern respectively a cluster of PDP tasks is calculated
by determining the center of the path between the locations of the euclidean plane,
more specifically an average on each of the coordinates of the location, as well as
the average of the loadsizes and time windows. The centroid function for PDP tasks
instantiates the abstract centroid function in Definition 6.17.

Definition 7.7 (Centroid function for PDP tasks)
The centroid ce of a cluster of PDP tasks TFPP C T is determined by a function

CentPDP (TPDP) — (ZtaETPDP Spickup,ta ZtuETPDP Sdelivery,ta
|TPDP| 9 , |7;PDP| 9 ;
Y taerPDP Qta I yqecrPDP """ Y iierPDP Y
‘TPDP‘ 9 |TPDP| ) ‘TPDP‘ )

In general, there exist numerous classes of clustering algorithms (see e. g. [XWO05]).
An appropriate class of algorithms for the clustering of tasks, which consist of a



sequence of attributes (see Definition 6.1), in a sequence of run instances is sequential
clustering. In this class of algorithms the tasks will be sequentially considered, i. e.
one after the other, and inserted in one of the clusters. The advantage of sequential
clustering compared to some other classes, e.g. hierarchical clustering, is that the
clustering process can be performed even before the full data is present. Thus, the
identification of task patterns can already start even if some data is still missing,
which may speed up the clustering process.

Again, there exist numerous algorithms for the class of sequential clustering. Most
of them require to be given initially the number of clusters it should produce, which is
not appropriate for the clustering problem at hand. Additionally, many of them are
not efficient enough in terms of memory and computation time [JMF99]. Sequential
Leader Clustering (SLC) [Har75] constitutes an exception. It runs in linear time
and does not require the designer to define how many clusters have to be built, as it
dynamically adds new clusters, if necessary, and therefore does not limit the number
of clusters a priori.

In more detail, in SLC the clustering of PDP tasks in a sequence of run instances
runi,...,run; works as follow: If the clustering process has produced the clusters
Cly,...,Cl,, with ce; € Cl; being the centroid of the cluster Cl;, up to task ta in
one of the run instances run;, the similarity sim?”??(ta,ce;) is calculated for all
clusters Cly, ..., Cl,, in order to put ta in one of the clusters Cly, ..., Cl,. If cluster
Cl, has the highest similarity to ta, the task will be added to Cl,, provided that
sim?PF (ta, ceq) > clustthresh for a given cluster threshold parameter clustthresh.
The cluster threshold parameter controls the number and size of the clusters. A small
threshold value will lead to a small number of large clusters, while a large threshold
value will lead to a large number of small clusters. In the event of ta is added to
Clg, it has to be checked, if the present centroid of Cl; has to be changed. If ta is
not similar enough to any of the clusters, i.e. sim” P (ta, ce;) < clustthresh Vee; €
Cl; | ce; is centroid A Cl; € {Cly,...,Cly}, a new cluster Cl,11 = {ta} will be
created and added to the list of clusters. A sequential leader clusterer is then a
component performing SLC by a clustering function (see Definition 7.8).

Definition 7.8 (Sequential Leader Clusterer for PDP tasks)
The sequential leader clusterer for PDP tasks is defined as a tuple

SC = (LC, centt PP simTPP clustthresh, cf)

where

e L(C is a list of clusters

e centP’PP is a centroid function for PDP tasks

o sim?PP is a similarity function for PDP tasks

e clustthresh is a constant threshold



e cf : Cl xT — Cl is a clustering function that adds a task ta € T to a list of
clusters Cl with

((Cly,...,Cly,...,Cl,) with Cl, = (Cl, Uta, cent" PP (Cl, U ta))
if Vp,0 < p < x,p # q: simPP( PDP(

cf(Cl ta) — AsimPPP (ta, ce,) > clustthresh

ClUClyyq with Clyy1 = ({ta}, ta)

otherwise

ta,ceq) > sim ta, cep)

The distillation of the medoids as most significant recurring tasks proceeds as
described in Subsection 6.2.3.

7.3.4.4 Optimize Solution of Recurring Tasks

The instantiation of the action optimize requires to create a (nearly) optimal solution
for the identified set of recurring tasks, which can then be used in comparison with
the emergent solution of the basic MAS. An essential component for this job thus
is a powerful optimizer that calculates optimal solutions for PDPs. Although the
PDP is rather well researched, we were not able to find an efficient public-domain
optimizer, which is why we had to implement a more simple branch-and-bound-
based optimizer [LMSK63, Dak65] for the proof-of-concept. Because at the time
of the optimize action all data about the tasks and the agents of the system is
known due to the actions described before, the problem is no longer a dynamic PDP
but has become a static PDP. Thus, a centralized branch-and-bound algorithm can
be applied to compute exact solutions (see Subsection 7.1.3.1). Even though the
proposed algorithm creates optimal solutions for the PDP, it is essentially not very
sophisticated and as a result the size of PDPs it can tackle in an acceptable time
is limited (< 10 recurring tasks). However, the experiments in Subsection 8.4 will
show that the optimizer was good enough to demonstrate the improvement abilities
of the EIA approach.

Role of the Goal Function

An essential part of any branch-and-bound algorithm is the goal function to evaluate
the goal value of a (partial) solution. If a good goal function is available that punishes
bad solutions early on by assigning a bad value to them, the bounding can occur at
an earlier stage and the calculation becomes much faster because fewer branches of
the tree have to be explored. On the other hand, potentially good solutions must
be rewarded with a higher quality value to make sure that they are not bounded at
an early stage and thus get lost.

Obviously, the optimality of a solution always depends on the goal function that is
used. Different goal functions will yield different optimal solutions. Therefore, it is
possible to optimize a basic system for different parameters by exchanging the used
goal function or by changing the weighting factors used in the function. This allows



for instance to punish solutions in which the vehicles travel a long distance, prac-
tically forcing all vehicles of the system to travel minimal routes. By changing the
goal function it is also possible to create optimal solutions in which as few vehicles
as possible leave the depot. Other examples are the optimization for low energy con-
sumption, avoidance of routes that are used by other vehicles, emphasizing shorter
distances over correct order, and so on. For the branch-and-bound-algorithm imple-
mented for this thesis we have used the quality function defined in Equation 7.20 as
goal function.

The Branch-and-Bound Optimization Algorithm

The branch-and-bound algorithm implemented for this thesis works as follows”: An
initial, partial solution with no assigned tasks, i.e. as(sol) = 0, is created as the
root of the tree. As a next step, new solutions for each of the agents in A are
branched from the root, which assigns one of the tasks of 77 to one of the agents
with the order 0. After that, the goal value of each of these partial solutions is
calculated based on the goal function. For the best solution so far, the branching
step is repeated and another task of 77°¢ is assigned to the agents with order 1.
This process is repeated until a complete solution is found as a leaf of the tree,
i.e. as(sol) = T". A complete solution is required to compare the optimal and the
actual solution. With it, also a lower bound for all other solutions is found, as we are
only interested in solutions that are better than the one we already have. As a next
step, the bounding is performed: Each partial solution, whose goal value is less than
or equal to the goal value of the complete solution, is deleted. This way, solutions
that are known to be worse than what was already discovered are not explored any
further, which reduces the amount of branches, the memory consumption, and the
computational complexity. As soon as no new branches can be created any more —
because every branch has either been bounded or ends in a complete solution — the
solution with the highest goal value is chosen as the optimal one.

To facilitate the calculation of optimal solutions, the developed branch-and-bound
algorithm imposes certain conditions on the way the system works:

e The number of vehicles is known and constant.
e A distance of 1 can be covered by a vehicle in exactly 1 iteration.

e A pickup station starts to distribute synomones as soon as a task becomes
valid, i.e. a task can be perceived only if its time window is already open.

e Each task can be handled by a single vehicle.

e Once a pickup has taken place, the goods are delivered immediately, i.e. a
vehicle does not pickup goods of another task before delivering the ones it
already loaded?®.

"For a more formal definition please refer to [LMSK63] and [Dak65)
8Technically, this means that there is no need to open more than one ActionChain at once.



All of these conditions are met in the current model of PIC and the EIA. If one of
these constraints has to be alleviated, it is most likely that the goal/quality function
defined at the beginning of this section will have to be changed.

As an And-Tree-Based search algorithm, the branch-and-bound algorithm deals
with partial solutions for the problem instance, as described above. These partial
solutions only include assignments for some of the tasks that are part of 77¢¢. The
goal function ensures that a partial solution is never evaluated to a value worse than
any of its derivatives including more assignments by simply ignoring the fact that
some tasks have not been assigned to a vehicle yet. Values for qualg;s:, qualorger,
and qualy, are of course only calculated for tasks with assignments and the fraction
ensures that the goal value of a partial solution is always an upper bound for any
solution that contains the partial one. Therefore, the goal value of a child is always
less than or equal to the parent.

Performance Considerations

The developed branch-and-bound algorithm is not very efficient and requires a lot
of time and memory for larger problem instances (> 10 recurring tasks). The main
factor that currently influences the performance of the algorithm is the number of
nodes that have to be created in the search tree. This number depends on the
number of tasks and the number of vehicles. Unfortunately, no better optimization
algorithm was available and the development of such an algorithm is beyond the
scope of this thesis. Nonetheless, future implementations of the EIA might use a
better optimization algorithm, because there are some chances to reduce the number
of nodes significantly.

As already mentioned above, a good goal function will enable the algorithm to
apply bounds early. If potentially good partial solutions have a high goal value while
poorer solutions are assigned a lower goal value, the bounding will prune a lot of
low-value nodes as soon as the first solution is found resulting in less created nodes.
Due to the definition of the algorithm the evaluation may never underestimate the
potential of a partial solution.

A very easy way to improve the performance of the algorithm is to apply a simple
heuristic that would allow for earlier bounding. The heuristic would be applied to
partial solutions and establish a lower bound. Based on this lower bound, the prun-
ing could be performed. An alternative for such a heuristic would be to add twice the
minimal distance between two nodes in the environment for each unassigned task in
the solution to the distance totally covered by the vehicles. Surely, no vehicle could
reach the nodes where the requests for the task are located in less than twice this
minimal distance.

Even though such optimizations allow for a better algorithm and thus enable the
EIA to be used with larger problem instances as well, they were not incorporated
as they are not within the research focus of the thesis.



7.3.4.5 Derive Rules from Optimal Solution

The instantiation of derive has to be able to detract an agent from a particular task
respectively all similar tasks by ignore rules, if the optimal solution is sufficiently
better than the emergent solution. To determine the qual-value of the emergent so-
lution, we compute qualg;s; by using the direct distances between the emitter agents
for the recurring tasks. The qual, qer- and qualy,-values are directly available out
of the last run instance containing the particular recurring tasks, but as mentioned
in Paragraph 6.2.5.1, qualy, can be heavily influenced by the non-recurring tasks of
this run instance.

For the PIC-based system, we add the ignore rules to the synomone utility com-
putation performed by an agent: any synomone, which is sufficiently similar to an
abstracted synomone ab given in the condition of an exception rule, is not consid-
ered, respectively its utility is zero. ab consists of the elements sp;crup e, Gap and
5197 of the task that should not be taken by the agent. To determine the similar-
ity of a synomone representing a concrete task ta; to the abstracted synomone ab,
Agpra computes the value

disteyn(ab,tar) = Ed(Spickup,abs Spickup,tas )+
|Qab — Qtaq |+
i — i
If the distance to the abstracted synomone dists,, is below a given threshold
synthresh, then the associated exception rule will be applied and the utility of the
synomone representing ta; will be set to zero, effectively letting the agent ignore
the perceived synomone. As mentioned in the last subsection, each exception rule is
only applied for a limited time, which prevents tasks being ignored for too long, if
the agent the EIA designated to serve the ignored task fails or is busy with servicing
other tasks.

7.3.4.6 Send Rules to Agents

The derived ignore rules are stored in the internal data structure dat?}f"‘ that
associates the rules with the respective agent. The next time a communication with
the agent is possible, i.e. at the latest when the agent visits the depot again at the
end of the next run, the rules are send to the agent.

7.4 Extension Aspects

Apart from the instantiation of the IBC approach by the PIC mechanism presented
in Subsection 7.2.2 and the instantiation of the EIA approach presented in Sub-
section 7.3.4, a few aspects are conceivable, how to extend these instantiations in
order to improve the overall efficiency of PIC-based self-organizing emergent MAS
solutions to PDPs:



e Incorporation of a re-optimization phase: A central property of existing
solution methods using hierarchical and embedded optimization (see Subsec-
tion 7.1.3.3) is the incorporation of a re-optimization phase. Thereby, an ex-
isting valid solution is further improved with regard to the global optimality,
either by trading already assigned but not executed tasks between the vehicle
agents, or by changing the execution sequence of assigned tasks within a single
vehicle agent. The motivation for such a re-optimization results from the low
flexibility of existing solution methods when dealing with tasks that can not
immediately be started upon their assignment to vehicle agents — a drawback
of direct communication, as e.g. employed by the CNP. In PIC-based solu-
tions using indirect communication, tasks are only assigned to vehicle agents,
if the vehicle agent has reached the pickup station and is able to immediately
start the execution of the task. This preserves a high flexibility of the overall
solution. Thus, a 're-optimization’ of the solution would have to occur before
this point in time. For instance a vehicle agent might evaluate the information
included in pheromones indicating the presence of other agents approaching
the same target, and come to the conclusion that this agent is better suited to
fulfill the task, according to a quality measure that would have to be defined.

e Variable reward concentration: In its current specification, the PIC mech-
anism does not allow for the consideration of prioritized tasks. However, in
real-world applications of PDPs, very often tasks with a higher urgency ap-
pear, for instance, food with a high perishableness, such as fresh fish or meet,
has to be transported with a higher priority than packaged food. In order to
introduce a priority concept, flowers can be equipped with the capability to
variate the concentration (not the amount!) of the reward depending on the
priority of the task. Synomones with a higher concentrated reward included
could then be evaluated to a higher utility by a pollinator.

A similar priority concept is even indirectly incorporated in the biological
paradigm itself. The sugar concentration of pollen grains increases as longer
the sun shines on them, by vaporizing the water molecules. Thus, pollen grains
that have been neglected for a while by honey bees will be at the end more
attractive than pollen grains that are collected immediately. Such a priority
concept could also be used by the EIA, as it could advice a pollenizer agent to
raise its offered reward concentration to become more attractive to pollinator
agents, thus being served earlier.

e Variable synomone emission concentration: In its current specification,
the PIC mechanism defines the initial concentration of an infochemical at the
time of emission to be the same for all agents. However, flowers could be
allowed to increase this emission concentration individually, if their provided
or desired pollen grains are not picked up or delivered for a certain amount
of time. Thus, the synomones would be propagated in a wider range having
a higher utility, which possibly attracts more pollinator agents. Please note,



however, that due to such a variation the design of the global behavior of the
system is much more complicated and unpredictable, while a starvation of the
system might become possible.

Flexible synomone evaluation: Even with the incorporation of a priority
concept the utility for a pollinator agent to follow a specific synomone depends
in the first instance on the information included in this synomone, along with
the presence of specific allomones and pheromones. However, the utility of fol-
lowing a specific synomone could also be dependent on the presence of further
synomones perceived at the current location. For instance, a pollinator then
might not move in the direction of the synomone with the highest utility but
in the direction with the highest aggregated utility of several synomones of
different emitters, indicating an area with a lot of tasks to fulfill.

Another option would be to take into account the delivery location of a task
before moving to a pickup station, assumed that the corresponding synomones
are already perceivable. Thus, more optimal local decisions could be made by
pollinator agents, as they can calculate the optimality of following a synomone
to a pickup station, giving them again a limited capability ”to look into the
future”. A flexible synomone evaluation does not require deliberation capabil-
ities by the agents but only to use more available information for their decision
making, while remaining reactive.

Congestion detection: Using more available information, more specifically
information included in pheromones, can also be used for congestion detection.
For instance, a pollinator agent could evaluate the amount of pheromones
perceivable at its current location coming from a certain direction, in order
to determine, if a congestion is likely to occur in this direction and another
direction might be better in order to approach a target. To avoid congestions
optimally, pollinators could be additionally equipped with an environment
map. Congestion avoidance could also be advised by the EIA, for instance by
path rules, which are triggered by the neighborhood (see Subsection 7.3.3).

Incorporation of further pollinator pheromones: In the same way as
pollenizer allomones inform pollinator agents that a task has been already
assigned, even though synomones not yet evaporated are still perceivable, [-
,4] pheromones emitted by a pollinator could inform other pollinators from
a change in its mind with regard to its currently pursued target. Thus, the
other pollinator agents could react more quickly to this change compared to
the time the outdated pheromones with the old target require to evaporate. As
the DIC model allows for the combination of different types of infochemicals,
even of multiple instances of the same type, the additional pheromone could
increase the overall flexibility of the system.

Realization of further exception rules: Whereas in the last section only
one type of task-triggered exception rules, more specifically ignore rules, has



been employed by the EIA, the realization and incorporation of further excep-
tion rule types and classes for the adaptation of the local behavior of agents
will improve the performance of the global solution further. In particular with
regard to problems incorporating tasks patterns with time windows, we expect
time-triggered rules to achieve high efficiency improvements as well.

e Consider pollenizer and pollinator types: The notion of action chains
is used to allow a pollinator agent to pickup goods from different pollenizer
agents, more particularly from pollenizer agents of different species. The action
chains separate these goods logically within the pollinator. A pollinator can
therefore pickup several different goods on route (as long as its maximum
capacity is not exceeded) and deliver them in an arbitrary order. So far,
this ability is not used by the EIA, as it is unaware of different species and
therefore assumes that a good is picked up and delivered right away. A more
sophisticated implementation could make use of the concept and create advice
that lets the pollenizers travel routes on which they mix pickup and delivery
of different goods.

A very similar concept the EIA is currently unaware of are pollinator types.
A pollinator in nature is of a certain species and not all species of pollinators
may be able to serve or visit all species of pollenizers. similar as in nature,
some vehicle agents might not visit some of the station agents. The EIA would
have to be augmented by letting the goal function sort out solutions, which
assign agents of the wrong type to the tasks to accommodate this concept.

All of these options, however, are left for future optimization and have not been
subject to the experimental evaluation presented in the next chapter.

7.5 Conclusion

In this chapter we have presented an instantiation of the IBC approach as well as the
EIA approach in order to provide an efficient self-managing solution approach to dy-
namic (and stochastic) PDPs. Taken by itself, the instantiation of the IBC approach,
i.e. the PIC mechanism, represents a decentralized solution method to PDPs. In
contrast to existing decentralized solution methods, which are grounded either on
market-based coordination (see [BWHMO04, MvdHvHO08, ZLL09]), token-based co-
ordination(see [FINZ05]), immunity-based coordination (see [LWLO07]), pheromone-
based coordination (see [VKvBT01, VHG"07]), or field-based coordination (see
[WBHO06]), PIC is grounded on infochemical-based coordination and thus inherits
all the beneficial advantages of IBC (cf. Table 4.4). In particular, the experiments
regarding the IBC approach respectively the PIC mechanism made in Section 8.3
will demonstrate that the PIC mechanism allows for both a high solution efficiency
as well as a high solution process efficiency. Due to the fact that there neither exist
any commonly agreed benchmark data sets nor any commonly available simulation
tools, we cannot compare these efficiencies to the efficiencies provided by existing



solutions. However, similar to all other decentralized solution methods, the runtime
insufficiencies remain the same, i.e. the optimality of the solution cannot be guar-
anteed. For the improvement of the solution, hence, higher level approaches such as
an EIA are required.

The instantiation of the EIA approach, taken by itself, does not represent a cen-
tralized solution method. It rather encapsulates a centralized solution method, in
this instantiation a branch-and-bound algorithm. The centralized solution method
is used to derive individual exception rules for the adaptation of the vehicle agents
in order to improve the PIC-based self-organizing emergent MASs. Consequently,
the EIA approach adopts the advantages and disadvantages of centralized solution
methods. Although the EIA thus is able to calculate (nearly) optimal solutions,
it usually takes a long time to compute this solution, while the complexity of the
problem to solve is rather limited. This is one of the reasons, why the EIA only
focuses on the set of recurring tasks for the optimization, which reduced the problem
complexity.

Taken as a whole, the the IBC approach and the EIA approach together combine
the principles of self-organization and self-adaptation. With regard to the PDP, it
thus can be classified as a hybrid solution method, in more detail as a hierarchi-
cal optimization approach (see Subsection 7.1.3.3). Similar to all other hierarchical
optimization approaches, the aim of our approach is to have a balanced mixture
of the advantages of both centralized and decentralized solution methods, i.e. a
more flexible and faster solution compared to the one constructed by a fully cen-
tralized method but also a more efficient solution compared to the one constructed
by a fully decentralized method. In contrast to existing hierarchical optimization
approaches (see [FMPS95, Mvv07]), our instantiation of the EIA approach is not
in possession of global knowledge per definition, but learns the problem it has to
optimize. Furthermore, it considers the low observability and poor controllability of
self-organizing emergent MASs and is therefore able to adapt the local behavior of
the vehicle agents.






Chapter 8
Experimental Evaluation

In order to prove that the models, mechanisms, and architectures developed in
the previous chapters enable the design and operation of efficient self-organizing
emergent systems, we have evaluated them experimentally in realistic case studies.
Apparently, experiments with real self-organizing emergent systems for application
domains such as PDPs would have been very time-consuming and costly, which
again underlines the importance of a simulation tool in the design of these systems
(cf. Challenge 3). Even though there exist plenty of simulation tools appropriate
for the simulation of self-organizing emergent systems in general, simulation tools
that in particular focus on the realization of environment-mediated, decentralized
coordination models and mechanisms as well as their efficiency are (publicly) not
available. This forced us to develop our own simulation tool, called Simulator for
EfficieNt Self-Organizing Emergent Systems (SENSES).

Section 8.1 describes the software architecture of SENSES and explains the run-
ning of experiments as well as the realizations of the IBC and EIA approaches
customized for PDPs in more detail. Subsequently, Section 8.2 describes two PDP
case studies from the field of intralogistics, to which we have applied our concepts.
Section 8.3 and Section 8.4 then describe the experiments we have executed regard-
ing the two approaches, as well as present and analyze the experimental results.
Overall, this will demonstrate the ability of our concepts to improve the efficiency
of self-organizing emergent systems. Finally, Section 8.5 concludes this chapter.

8.1 Simulator for Efficient Self-Organizing Emergent
Systems

Without doubts, there exist plenty of simulation tools, which are able to simu-
late self-organizing emergent systems. A non-exhaustive list of widely used simula-
tion tools includes for instance Swarm [Swa08], [Rep08], SeSAm [SeS08], MASON
[MASO08], Ascape [Asc08], StarLogo [Sta08], NetLogo [Net08], MadKit [Mad08],
JADE [JADO8a], JADEX [Jad08b], Agentsheets [Age08], AnyLogic [Any08], breve
[Bre08], CORMAS [CORO08], ECHO [Hol02], and XRaptor [XRa08]. Whereas tools
such as Agentsheets and AnyLogic are only commercially available, other tools are
not platform independent, such a breve (Phyton/steve), CORMAS (SmallTalk),
ECHO (C), or XRaptor (C++), and thus are excluded from the choice of tools.



Although the rest of these tools is mostly based on agent technology, they all
have certain conceptual or architectural drawbacks, which is why we could not use
or extend them for our purposes. Most of these simulation tools do not provide a
clear separation between the problem/application model, the coordination model,
and the solution model, respectively between objective and subjective coordination
(see Section 3.1). However, this is essential for the development and testing of
coordination models and in particular coordination mechanisms, as the latter have
to be easily switched or adapted without changing other models. Also, most existing
simulation tools rather only focus on the effectiveness of agent-based solutions but
completely neglect the efficiency aspect of these solutions. These facts forced us to
design and implement SENSES.

Please note that the purpose of SENSES in the first instance is to support the
design and evaluation of efficient decentralized coordination models and mechanisms
for different application domains. Thus, SENSES is designed to simulate the essen-
tial real-world aspects characterizing a given application domain. However, SENSES
is not designed for a single application domain only simulating all of its aspects in
full detail, even if it could be extended for that. The latter case would have forced
us to use and extend a state-of-the-art commercial simulation tool for the focused
application domain.

8.1.1 Software Architecture

SENSES is a Java-based simulation tool. Its two-tier software architecture comprises
a presentation tier and an application tier. The latter is composed of a couple of
components encapsulated in packages (see Figure 8.1), in order to provide a good
extensibility for future simulation or evaluation demands. In particular, SENSES
can be extended to simulate a variety of different emergent coordination models
and mechanisms. This allows an engineer to switch between different problem mod-
els, coordination models, and corresponding coordination mechanisms without huge
efforts. In more detail, the application tier of SENSES comprises the following
components:

e Core component: This component comprises interfaces, abstract classes and
information containers that are used by almost all other components. The
core component does not use any other component and represents the core of
SENSES.

e Models component: This component includes the Java realization of coor-
dination models. Any coordination model used in SENSES, such as DIC, has
to be included as a subcomponent in order to provide the basic functionality
for the corresponding coordination mechanisms.

e Mechanisms component: Consequently, the mechanisms component is based
on the models component. The mechanisms component includes the Java re-



alization of coordination mechanisms. Any coordination mechanism used in
SENSES, such as PIC, has to be included as a subcomponent.

e Problems component: The problems component includes the Java realiza-
tions of problems that have to be solved by a self-organizing emergent solution.
Any problem solved in SENSES, such as problems of the PDP domain, has
to be included as a subcomponent. This component does not use any other
components.

e Solutions component: The solutions component combines a coordination
mechanism with a specific problem model. It manages the environment and the
scenario that has to be simulated in an experiment. Beside the core component,
the solutions component hence uses the models, mechanisms, and problems
components.

e Main component: The main component is required to start and execute
experiments in SENSES. The component uses the core, mechanisms, and so-
lutions components and basically parses the configuration of an experiment,
controls simulations, and gathers the experimental results.

e EIA component: The EIA component realizes the EIA to improve the basic
solution to a problem. Apart from the problems component, the EIA com-
ponent uses all other components, but in turn is not used by any of them.
This shows even on the architectural level that the EIA is not required for a
self-organizing emergent solution.

8.1.2 Running Experiments

SENSES is available as an executable jar-file. The syntax to run' SENSES is
java -jar SENSES.jar [options] [file]. In order to run an experiment in
SENSES, the experiment first has to be specified, which can be accomplished by
two different ways:

1. By means of the configurator provided by the GUI of SENSES: This way is
recommended for users with little experience in the coordination mechanism of
interest and when the visual representation of the experiment is of importance.
The GUI will be started, if the option to skip the GUI (-n) is not specified.
By taking this way, several experiment parameters can be adapted as time
goes on, while the effects of these adaptations can be understood visually at
every time step. Beside this advantage one has to be aware of the fact that
the visual representation naturally slows down the experiment execution.

2. By means of an experiment configuration file: This way is recommended for
users that are more familiar with the coordination mechanism of interest as

'SENSES requires Java 6 or higher.
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Figure 8.1: Components of SENSES

well as the effects of certain parameters and when the results of the experi-
ment are what one is interested in. If the option -n is specified, the visual
representation is skipped, which will speed up the experiment execution. The
results of the experiment are aggregated by a result file. Nonetheless, the vi-
sual representation of the experiment execution can be used for this way as
well, if required.

As a possible third way, an experiment configuration file may also be loaded after-
wards via the GUI. However, this requires the specification of such a configuration
file by one of the two ways described above. Thus, in the following, we focus on the
experiment specification by an configuration file in XML (see Subsection 8.1.2.1), as
this way is usually used for evaluation purposes. Consequently, environments (Sub-
section 8.1.2.2), scenarios (Subsection 8.1.2.3), and result files (Subsection 8.1.2.4)
are specified in XML files as well. The structure of every XML file in turn is defined
by corresponding XML Schema files.

8.1.2.1 Specification of an Experiment Configuration File

The XML Schema for an experiment configuration file is split into three parts on
the highest level (see Listing A.1): one part deals with parameters for the experi-
ment to run (ezperiment specification), one part deals with the logging behavior of
SENSES during the experiment execution (logging specification), and one part deals



with default parameters (default parameters specification). One or more of these
parts may be omitted in a configuration file, which allows for different variations of
configuration files.

Experiment Specification

The specification of an experiment, i.e. the major part of a configuration file, first
requires an experiment name, an experiment type (either single-scenario, i.e.
the same scenario is simulated in one or more run(s), or multiple-scenarios, i.e.
different scenarios are simulated in two or more run), and a specification

if the solution has to be optimized by the means of an EIA

if the experiment results have to be recorded, which will generate an XML
file listing different measures at the end of a run

if a protocol of the experiment has to be generated, which will store the
experiment configuration as well as all the possibly randomly generated tasks
that had to be fulfilled in the experiment, in order to be able to load and rerun
the same experiment later again

of the number-of-runs the experiment consists of

of the number-of-runs-learning, which defines the number of runs the EIA
learns before it starts to apply exception rules, if any.

Every run of an experiment is specified by a run setup, run settings, and
run parameters. The run setup contains the following parameters:

problem-domain: This parameter specifies the problem or application domain
in which the self-organizing emergent MAS has to act.

environment: The environment is a description of the world, more specifi-
cally of the map the agents are situated in and on which they can move. It
hence contains information on the locations and the connections between the
locations that make up the environment (see Paragraph 8.1.2.2 below for the
specification of an environment).

scenario: The scenario specifies the problem that has to be solved in more
detail. It contains general information on the sequence of tasks that have to be
fulfilled, such as the location where and the time when a task becomes avail-
able, the type of the task, the location where and the time when it has to be
fulfilled at the latest, its probability to occur in the run, and domain specific
properties, such as e.g. the capacity required to fulfill the task. Furthermore,
the scenario includes general information on the participating agent types and
number of agents that have to fulfill the sequence of tasks, their starting loca-
tion, as well as domain specific information again, such as e. g. their provided



capacity or their speed (see Paragraph 8.1.2.3 below for the specification of a
scenario).

e coordination-mechanism: This parameter specifies the coordination mecha-
nism employed by the agents to solve the problem scenario, in more detail to
fulfill the tasks in a self-organizing emergent manner. The available mecha-
nisms are dependent on the chosen problem domain.

The run settings contain the following parameters:

e iteration-limit: This parameter specifies the number of iterations (time
steps) that will be simulated in the run. If the limit is reached, the simulation
of the run will be stopped.

e number-of-agents: This parameter specifies the number of (mobile) agents
that will participate in the run. If the scenario configuration file specifies a
higher number, this number will be decreased to the value specified here.

e task-generation-number: This parameter specifies the number of tasks that
have to be generated randomly. These tasks may be also generated in addition
to tasks specified by the scenario configuration file.

e task-generation-limit: If tasks are to be generated randomly, this parame-
ter specifies the iteration (time step) in which the last task may be generated.
In contrast to the iteration limit, the simulation of the run will not be stopped
at the task-generation limit but proceed further until all tasks are fulfilled
respectively the iteration limit is reached.

e task-generation-probability: If tasks are to be generated randomly, this
parameter specifies the probability, by which a randomly generated task is
deployed to the system. For instance, in case of a task generation probability
of 0.5, a randomly generated task is deployed to the system with a probability
of 50%.

The run parameters contain information regarding a coordination mechanism
and thus have to be specified depending on the coordination mechanism specified in
the run setup. In case of PIC, the run parameters specify the following parameters:

e emission-concentration: The concentration of an infochemical at the time
of emission.

e reward-concentration: The concentration of a reward provided by a flower.

e reward-concentration-variation: In case that the concentration of the re-
ward may vary, the factor by which the concentration varies.



e idle-time: In case a pollinator agent does not perceive any synomones, this
parameter specifies the time after which the agent starts following hive kairo-
mones back to the hive.

e emission-rates: The rate by which an agent emits infochemicals according
to its specified behavior. This parameter has to be specified for every agent
type participating in PIC, i. e. pollinator agents, pollenizer agents, hive agents.

e cvaporation-factor, threshold-concentration, diffusion-coefficient:
for each type of infochemical participating in PIC, i. e. pheromones, allomones,
kairomones, and synomones, these three parameters specify the propagation
and evaporation behavior of an infochemical.

Because the maximum number of runs is unbound, an experiment may consist of
more than one run, possibly with different setups, settings, and parameters. This
functionality is in particular necessary for experiments with respect to the EIA
approach, in which several runs respectively run instances have to be simulated that
require scenarios with different configurations regarding the tasks (multiple-scenarios
typed experiments). In case that the run setup, settings, and parameters have to
be the same for all runs or have to represent a default configuration for all runs, a
global run setup, setting, and parameters can be specified.

In case that an efficiency improvement of the solution by an EIA is required,
additionally some eia parameters have to be specified:

e rules: This parameter regulates if the EIA will load already existing rules for
the experiment optimization from a specified file. If load-rules is set to true,
the EIA will load the rules in run on-run from the file specified in filename.

e output: This parameter regulates if the statistics of the experiment will be
saved to a file. If the output is enabled, the statistics will be saved to the file
specified in filename.

e precalculated-distances: This parameter regulates if the calculated dis-
tances between locations of the environment are loaded or saved from or to a
file. If load-values is set to true, the precalculated distance values will be
loaded from the file specified in filename. if save-values is set to true, the
distance values calculated in the experiment will be saved to the specified file.
The loading of precalculated distance value will in particular accelerate the
optimization process.

Logging Specification

The second part of an experiment configuration file deals with the logging behavior
of SENSES. SENSES allows to specify different loggers to log various system events.
A logger is specified by a name, if it has to log system events or not (logging), and
if the logs have to be written to a corresponding log file or not (log-to-file).



Default Parameters Specification

The third part of an experiment configuration file deals with default parameters
for SENSES. This part may include information on general parameters, such as
record, protocol, and logging (see above), but also information on run settings,
coordination mechanism parameters, or EIA-related parameters. Even a mixture
of these parameter configurations can be specified.

8.1.2.2 Specification of an Environment

Listing A.2 shows the XML Schema for an environment configuration file. The speci-
fication of an environment requires an environment name, width, height, scale, and
type. The scale defines the factor by which the environment has to be ”stretched”,
the type distinguishes between individual environment layouts or grid layouts.
The environment configuration further has to specify a number of locations, each
identified by its id and its coordinate represented by an x-position and a y-position,
as well as a number of connections, each identified by its id and its endpoints rep-
resented by a from location and a to location.

8.1.2.3 Specification of a Scenario

The specification of a scenario strongly depends on the specified problem domain
defined in the run setup. In case of a PDP domain, Listing A.3 defines the XML
Schema for a PDP scenario configuration file. According to the definition of a PDP
(see Subsection 7.1.2), a PDP scenario configuration file consequently has to de-
fine request-types, vehicle-types, depots, stations, vehicles, and requests.
A request type requires the specification of sub-types and super-types. The
same holds for vehicle types, however, they additionally require the specification
of linked request types. A depot is specified by its vehicle types, its id, and
either a position or a coordinate represented by an x-position and a y-position.
A station is specified by the request types that can occur at the station, its
id, and either a position or a coordinate represented by an x-position and a
y-position. The type of a station can be either pickup, deliver, or universal,
which indicates that the station may be used for both pickup and delivery. In
addition to its id, position, x-position and y-position, a vehicle is specified
by a capacity, speed, and vehicle type, of course. Finally, a request is speci-
fied by its pickup-station and delivery-station along with the corresponding
time windows specified by an earliest and a latest iteration, its id, loadsize,
service-time, and probability to occur, as well as its request type.

8.1.2.4 Specification of a Result File

The result file of an experiment depends on the coordination mechanism as well as
the problem domain. In case of PIC for PDPs, the XML Schema for a PDP result
file is shown in Listing A.4. The result file specifies the name of the experiment and



then lists the results of every run of the experiment, i.e. all the measures of interest
for PDPs and PIC, along with its run number.

8.1.2.5 Experiment Processing

If an experiment configuration file is specified as described in Subsection 8.1.2.1 and
made available to SENSES as a start parameter respectively loaded from the GUI,
SENSES will parse this file and generate an internal Experiment object. Otherwise,
i.e. if the experiment is specified by means of the configurator provided by the
GUI, the latter is in charge of generating the Experiment object. In any case,
the Experiment object is passed to the Experiment Manager, which is located in
the main component of SENSES and which is responsible for the execution of the
experiment.

For the preparation of a run of the Experiment, the Experiment Manager del-
egates among other things the parsing of the environment configuration file (see
Subsection 8.1.2.2) specified in the experiment to an Environment Manager, as
well as the parsing of the scenario configuration file (see Subsection 8.1.2.3) to a
Scenario Manager. The Environment Manager isin charge of generating Location
objects and Connection objects according to the specified elements in the config-
uration file, the Scenario Manager is in turn in charge of generating Agents and
Tasks, which possibly may have to be generated randomly, depending on the prob-
lem domain. At the end of the preparation of a run, the environment, agents, and
tasks are ready for simulation.

When the execution of the experiment has started (see Figure 8.2), the first run is
passed to the Simulation Engine, which then starts simulating the scenario of this
run (see Figure 8.3). The simulation can be paused and resumed as well as stopped
by the user, if the GUI has been started. If the simulation of a run has finished,
which in the case of PDP means that all transportation requests are fulfilled and all
vehicles are returned to the depot again, the next run of the experiment, if available,
will be prepared as described above and then simulated as well. Otherwise, i. e. if all
runs of the experiment have been simulated, the experiment will be finished and the
result file (see Subsection 8.1.2.4) will be generated, if required. If the simulation of
any run is stopped before, e. g. by the user, the execution of the overall experiment
is stopped as well, i.e. all remaining runs will not be simulated any more. In both
cases, however, the experiment can be reset to its initial state for another simulation
or be cleared, which removes the Experiment from the Experiment Manager.

8.1.3 Realization of the IBC Approach

The realization of the IBC approach (see Chapter 4) in SENSES comprises in the
first instance an appropriate realization of the DIC model (see Section 4.2), but also
a realization of the instantiating coordination mechanisms, in this case PIC.
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8.1.3.1 Realization of the DIC Model

The realization of the DIC model as formally defined in Section 4.2 was accom-
plished in the models component of SENSES. It turned out that a critical aspect
with regard to the simulation speed and memory usage was the implementation
of the infochemical propagation. According to the formal model, an infochemical
emitted at a given location by an agent is propagated to neighboring locations until
its current concentration falls below its threshold concentration. To simulate this
propagation behavior, three alternatives are imaginable:

e Concurrent propagation: This alternative requires infochemicals to be re-
alized as threads. An emitted infochemical first clones itself by the number
of inbound locations at this location. Then, all cloned threads propagate
”in parallel” to the neighboring locations, clone themselves again accordingly,
propagate along the inbound connections at their respective locations, and
so forth. If a cloned thread reaches a location already storing a similar info-
chemical with a higher concentration (because there is a shorter route to the
initial location), the newly arriving infochemical will not be cloned any more
and its propagation will stop at this location. However, the problem is that
if the infochemical reaches a location already storing a similar infochemical
with a lower concentration, it will replace this infochemical, because now a
shorter route to the initial location has been identified. Unfortunately, the
prior thread has already cloned itself so that now the routing information at
all following locations has to be updated again by cloning and propagating the
actual thread with the higher concentration and so forth. This may result in
a high amount of unnecessarily created threads, which makes this alternative
not very appropriate.

e Depth-first propagation: In this alternative, an infochemical is realized as
a regular object. Similar to a depth-first search in a tree, the infochemical
is first cloned for one of the inbound connections at its initial location and
then propagated over this connection to the neighboring location. There, the
infochemical again is cloned for one of the inbound connections and so forth.
If a propagation is not possible any more, the infochemical is cloned and prop-
agated over a second inbound connection at the last location and so forth.
Apparently, this alternative suffers from the same problem as the alternative
described above with regard to the unnecessarily created objects. Moreover,
this alternative in addition takes much more simulation time because the prop-
agation is not parallelized, which makes this alternative not very appropriate
as well.

e Breadth-first propagation: This last alternative turned out to be the best
with regard to simulation speed and memory usage. Thereby, an infochemi-
cal, realized as a regular object as well, first is cloned at its initial location by
the number of inbound connections of this location. Similar to a breadth-first



search in a tree, every cloned infochemical is then propagated only over the
respective inbound connection. If the propagation was successful, i.e. if no
similar infochemical with a higher concentration has been already stored at
the neighboring location, the infochemical is not only stored at its destination
but its reference is also put into a waiting queue at the initial location. After
all cloned infochemicals have been propagated to the neighboring locations of
the initial location, the first infochemical contained in the waiting queue is
removed and then cloned at its respective location according to the number of
inbound locations of this location. If a propagation of such a cloned infochem-
ical has been successful, its reference is similarly put at the end of the waiting
queue at the initial location. In case that any location has already stored a
similar infochemical with a lower concentration, the infochemical will not only
be removed from the infochemical buffer, but the reference of this infochem-
ical will be also removed from the waiting queue, if necessary, so that it will
not be propagated any further. Thus, the number of unnecessarily created
objects remains as low as possible. This propagation process continues until
the waiting queue is empty.

Another critical aspect with regard to simulation speed and memory usage has
been the number of infochemical instances that had to be created and stored in
the memory. Because larger scenarios require the simulation of some millions of
infochemical instances, we have realized a central pool of infochemicals that functions
as a resource pool and stores any created infochemical instance. If the instance is
no longer used by the simulation (e. g. in case of evaporation), it thus can be reused,
which saves simulation time for object creation and garbage collection.

8.1.3.2 Realization of the PIC Mechanism

The realization of the PIC mechanism as formally defined in Section 7.2 was accom-
plished in the mechanisms component of SENSES. According to the specification,
the PIC mechanism requires a couple of ”active” elements and agents, including
the locations, the hive agents, the pollenizer agents, and the pollinator agents. In
many agent-based simulation tools, these elements and agents are realized as sepa-
rate threads to conform to the used paradigm. However, for evaluation purposes it
has to be guaranteed that in every iteration any element or agent receives enough
processing time to accomplish its actions. In general, this requirement is not fulfilled
for threads, which is why we have realized these simulation elements as ”regular”
objects.

An important aspect with regard to the solution performance then is the order
in which these simulation elements receive processing time in an iteration. A bad
order might worsen the overall solution, because some simulation elements might
not have the necessary information for their actions only because this information
is generated some time later in this iteration. The order in which the simulation
elements receive processing time in each iteration is thus realized as follows:



1. Locations: Every location evaporates all infochemicals stored at its outbound
connections and, if the current concentration of an infochemicals is below its
threshold concentration, removes the infochemical.

2. Hive agents: Every hive agent emits kairomones that guide pollinator agents
on their way back to this hive. All kairomones are propagated within one
single iteration.

3. Pollenizer agents: Every pollenizer agent will emit synomones, if it provides
or demands pollen grains. It will emit allomones, if a pollinator just fulfilled its
demand, respectively. Synomones and allomones respectively are propagated
within one single iteration.

4. Pollinator agents: If a pollinator agent is currently situated on a location, it
will perceive all infochemicals stored at its current location, calculate the utility
of all synomones, and move along the outbound connection storing the syn-
omone with the highest utility, while emitting pheromones. The pheromones
are propagated within one single iteration. If a pollinator agent is currently
located on a connection, it will further move along the connection. If a pol-
linator is situated on a location with an appropriate pollenizer agent, it will
start respectively continue the exchange of pollen grains.

8.1.4 Realization of the EIA Approach

The realization of the EIA approach (see Chapter 6) focuses mainly on the realization
of the instantiation of the EIA customized for PDPs (see Section 7.3). The focus
in this section is mainly on the reception of the local agent histories and their
transformation to a global system history, along with the implementation of the
agent advisement.

8.1.4.1 Receive Local Agent Histories

As already mentioned in Subsection 7.3.4.1, two different types of data are of interest
for this action: environment data and agent data. In the given realization, the
environment data is collected by the EIA at the beginning of each run. Therefore,
the EIA is able to directly access the map of the environment used by the basic MAS
in SENSES. Technically, an aspect [FECA04], which is part of the EIA realization,
is used to tap into the Scenario Manager, more precisely the method that creates
the map according to the information specified in the scenario configuration file that
is parsed (see Subsection 8.1.2.3). Thus, the EIA receives a complete view of the
environment structure. In turn, the agents of the basic MAS do not explicitly have
to collect data about the environment in their local histories, which brings along
the advantage that the agents do not have to be augmented with such an additional
functionality and appropriate data structure. Admittedly, this is only possible in
systems that do allow accessing the agents data structures by an aspect directly.



Because the representation of locations and connections for the realization of the
PIC mechanism is quite complex, as e. g. locations handle the evaporation, propaga-
tion, and aggregation of infochemicals, the representation of locations and connec-
tions in the internal data structure of the EIA is simplified. Therefore, the entire
original graph is transformed by the EIA into a simpler form by traversing the graph
and creating Simplified Locations and Simplfied Connections, respectively. If
this operation is performed repeatedly on all locations created by SENSES and the
result of each operation is added to the current result, a complete graph will be cre-
ated. To avoid unnecessary work, only locations not touched before are transformed.
After this operation the graph is represented by a list of Simplified Locations.
To calculate shortest routes in the resulting graph, an A*-algorithm [HNRG68] is
employed.

In order to collect the data about the agents, technically again an aspect as part
of the EIA realization is used to record these actions instead of using a log file for
each agent, which results in the same advantage as described above. For each agent,
every basic action of interest is recorded in an AgentAction, along with the iteration
and the location at which they appeared, as well as the infochemical that the agent
was following at that point in time:

AgentAction = (Iteration, Location, Infochemical, AgentActionType)

According to the list of basic actions of interest (see Subsection 7.3.4.1), the
parameter AgentActionType hence can be one out of of the following possible val-
ues: CHANGE_INFOCHEMICAL, SERVICE_STATION, or MOVE_TO_DEPOT. Location and
Infochemical are the respective references to the PIC mechanism realization.

An element of a local agent history thus consists of a list of AgentActions ordered
by the iteration in which the action was performed. The action receive adds this
list to the internal data structure of the EIA, which is essentially a map where the
respective agent is the key and a list of the agent actions is the value. At this point,
the data structure for the agent is the original agent system’s representation with
no simplification.

8.1.4.2 Transform Local Agent Histories into Global History

The global history, which is created by the action transform, is represented as a
container, named SimulationDataContainer, that subsumes all relevant global in-
formation of a single run as well as information about the map and the location of
the depot (see Figure 8.4). The collected local agent histories are transformed into
Tasks and Vehicles. A Vehicle represents one of the basic agents fulfilling the
Tasks and consists of an identifier, its capacity, and the initial location where the
vehicle was located at the beginning of the run. A Task is the minimal unit of work,
i.e. a pickup and a delivery. It has an identifier, the number of goods that have to be
transported (loadsize), timestamps that show when the task became valid and when
the time to perform the task was over, as well as the locations of the pickup station



and the delivery station. A TaskVehicleAssignment contains information about
which vehicle performed which task and the order in which the task was performed
in the system. To simplify the optimization process, the SimulationDataContainer
only contains identifiers for tasks and vehicles instead of references to them.
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Figure 8.4: Representation of a global history in the EIA realization

Technically, the transformation of agent data is a simple rule based process. As
mentioned above, there exists a list of AgentActions ordered by the iteration for
each agent. Applying rules to this list allows for the derivation of several types of
data of interest. To derive that an agent has serviced a task, the following conditions
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If all of the above conditions are true, a Task can be constructed as follows:



Task : pickuplocation = 12
deliverylLocation = 13
load = il.numberOfProvidedPollen
validFrom = il.flower.bloomingBegin
validTo = i2.flower.bloomingEnd
id = new Id

Each infochemical contains attributes for the provided load or for the supply
respectively demand (number0fProvidedPollen and numberOfDesiredPollen re-
spectively). Additionally, an infochemical carries a time stamp bloomBegin that
indicates when the pollenizer agent, in more detail the flower, first emitted an info-
chemical that described this transportation request. The flower itself is referenced
in the field flower and contains an attribute bloomEnd that indicates the iteration
at which the agent wants the request to be performed at the latest. By using the
value of the agent to which the goods have to be transported, it is ensured that this
value really shows the end of the acceptable time window for the entire task.

If it is the first time an agent a has been encountered by the EIA, a Vehicle is
instantiated as well:

Vehicle: initiallocation = 11
capacity = a.capacity
id = new Id
basicId = a.pollinatorId

The Vehicle contains two identifiers: One (id) that is unique in the EIA and
is used e. g. to locate the vehicle in internal arrays and one (basicID) that is used
to identify the agent in the basic system. Please note that the assignments of the
location variables really imply a conversion between the original environment model
used by the basic system and the one used by the EIA.

Furthermore, the EIA can infer that the vehicle serviced the task. Therefore, a
TaskVehicleAssignment is created. Asin Definition 6.3, this construct also contains
an additional parameter ¢ € N that designates the order in which the tasks were
performed within the system based on the iteration when an agent arrived at the
pickup location of the task. This additional variable allows to order the assignments
according to the times they were executed by the agents.

Because only the global history is used by the further actions, the local agent his-
tories are only relevant until the global history has been extracted from it. Therefore,
the given realization does not save the local agent histories after the transformation
has been performed.

8.1.4.3 Advising the Agents of the Basic System

In order to influence the local behavior of the agents of the basic system by ignore
rules, we implemented a mechanism to make the agents aware of the advice created
by the EIA and to incorporate it in their decision process. Therefore, we augmented



the pollinator agents by a rule engine that applies rules within the decision function
of the pollinators (see Definition 6.7). At the beginning of each simulation run,
the rules are made available in the agents situational data and registered with the
agent’s rule engine. From a technical point of view, an aspect is used again. It
instruments the constructor of a PollinatorAgent and sets the list of rules.

When a pollinator agent evaluates the utility of the perceived synomones at its cur-
rent location, the rule engine compares each synomone to the abstracted synomone
that is part of the rule. If the synomone is similar to the abstracted synomone, i.e.
distsy, < synthresh, the rule is applied by changing the utility of the synomone by
multiplying the utility with a factor that is part of the rule’s action a:

Rule’

u() = [T alr)-ul)

where Rule’ C datf%i and Vr € Rule' : eval(r) = true.

Effectively, this changes the action the agent chooses to perform. If several rules
match the infochemical, all of them are applied, i.e. all factors are multiplied with
the utility.

8.2 Case Studies: PDPs in Intralogistics

Whereas the last section has described the simulation tool used to execute experi-
ments, this section describes two case studies from the PDP domain, which provide
the basis for the experiments. Even though PDPs can be found in various areas
(see Section 7.1), the primary application area of PDPs is without doubts logistics.
However, due to the long history of logistics as well as different products, companies,
and systems involved in the processes, there exists no true or unique definition of
logistics [RCB06]. A very general approach to describe logistics is provided by the
seven-rights-definition (cf. [Plo64]): logistics means to deliver the right product, in
the right quantity and the right condition, to the right place at the right time for
the right customer at the right price.

However, when combining the terms PDP and logistics, most people immediately
will think of external logistics, i. e. trucking companies transporting goods between
different landmarks. But PDPs also appear in the growing field of internal logistics,
which has similarly a high potential for cost-reduction and savings. Internal logistics,
which is also referred to as intralogistics or in-house material handling, describes the
internal flow of materials as well as the corresponding flow of information between
different logistics points inside a company. Internal logistics is present in many
companies of various industries, such as automotive, print, chemical, hospital, food
and beverage, newspaper, pharmaceutical, paper, manufacturing, or warehouses and
distribution centers. Hence, in-house material handling may stretch from basic or
raw materials over work in progress to complete products.

In contrast to the transportation of goods between companies by trucks with
drivers, the transportation of goods within a company today is more and more



accomplished by so-called automated guided vehicle (AGV) systems [Vis06]. An
AGYV system in general consists of several parts, namely the AGVs, a transporta-
tion network, physical interfaces between the storage or production system and the
transportation system, as well as the control system, which typically contains a
vehicle manager (central server) connected to the management system of the com-
pany. AGVs are custom-made, unmanned vehicles able to transport different kinds
of goods. There exist various types of AGVs, e.g. forked AGVs as typically present
in warehouses and distribution center, unit load AGVs as typically present in man-
ufactures, or tug/tow AGVs as well as more specialized AGVs dependent on the
customers’ needs. In addition to floor pickups and drops, AGVs can be designed
to interface with other (types of) AGVs as well as many types of stationary equip-
ment, including conveyors, racking, machines, or stands. At these stations, pickup
and delivery points are installed that operate as interfaces between the storage or
production system and the AGVs. At these points, goods are transferred to or
from an AGV. The transportation network connects all stationary equipments. The
AGVs can move on this transportation network, guided by a laser navigation system
or following a physical path on the factory floor that is marked by magnets or cables
that are fixed in the floor. AGVs use batteries as energy source, which are typically
charged at opportunity at dedicated zones.

Today, transportation is either initiated by a human operator that scans goods for
identification and formulates a transportation request, or the requests are initiated
automatically by sensors or supervisory computer systems. A transportation request
is traditionally communicated to the vehicle manager of the AGV system that is then
responsible for selecting an available AGV to carry out the transport request based
on a predefined assignment strategy, e. g. nearest vehicle strategy, longest idle vehicle
strategy, etc. (see [Vis06] for an overview). The vehicle manager communicates the
request to a PC-based on-board vehicle controller, which lets the AGV move to
the appropriate pickup station. After arrival and pickup, the AGV receives its
destination. The AGVs constantly communicate their location, their battery status,
their current destination, and whether they are loaded or empty to the central vehicle
manager or the latter polls this data from the AGVs itself.

Consequently, a vehicle manager is in charge of numerous complex and time-
consuming tasks, such as transportation request management, vehicle routing, col-
lision avoidance, deadlock avoidance, and system control, whereas the AGVs have
only a limited degree of autonomy. In recent years, this centralized architecture has
been successfully deployed in numerous practical installations yielding many advan-
tages such as efficiency, configurability, and predictability. However, especially in
highly dynamic environments, where the situation changes frequently and numerous
AGVs are engaged, problems with this centralized architecture have been experi-
enced (cf. [Vis06]). This fact together with the evolution of the market puts forward
new requirements for AGV systems (cf. [WSHLO05]):

e AGVs should be able to exploit opportunities, e.g. when an AGV is assigned
a transportation request and moves toward the pickup station, it should be



possible for this AGV to switch tasks along the way if a more interesting
transport request pops up.

e AGVs should be able to cope with particular situations, e. g. when new goods
arrive in the environment, the AGVs should be able to reorganize themselves
smoothly.

e The AGV system should be able to deal with AGVs leaving the system, e.g.
for maintenance or charging their batteries, as well as AGVs (re-)entering the
System.

e AGVs should also be able to anticipate possible difficulties themselves, e. g.
when the battery level of an AGV decreases.

To summarize, modern in-house material handling in future requires a higher
flexibility and openness of AGV systems, which necessarily requires decentralized
solutions. In the following, we exemplary describe two case studies from the field of
internal logistics in more detail, to whom we have applied our developed concepts
for evaluation purposes (see Section 8.3 and 8.4).

8.2.1 Tire Warehouse

The first case study covers in-house material handling in a tire warehouse. In such
a warehouse, tires constantly arrive from the manufacturing system in the — usually
directly affiliated — receiving area of the tire warehouse and have to be transported
by AGVs to dedicated locations in the storage area. In order to maximize the use
of the available space, most tire warehouses utilize narrow aisles with high racking
or block stacking to store the tires. Some time later the tires again have to be
picked up by AGVs at the storage area and have to be delivered to dedicated floor
positions in the shipping area, in preparation for shipment. Finally, the tires have
to be moved from the floor positions in the shipping area into different trailers for
customer delivery, which can be accomplished by AGVs or human workers by means
of sack trucks or forklifts as well.

For the evaluation, however, we only consider the transportations between the
storage and the shipping area of the tire warehouse. The transportation of tires
between the receiving and the storage area as well as between the shipping area and
the trailers are masked out, because conceptually there is no difference compared
to the transportations between the storage and shipping area, it only makes the
evaluation more confusing. We also presume that the tire manufacturer at this site
only produces tires for a certain type of vehicle, e. g. only for cars but not for buses
or trucks as well. This means that all AGVs are able to transport all types of tires
in the warehouse, which requires only AGVs of one single type. However, tires may
still vary in their rubber compound, width, diameter, tread, etc.



8.2.2 Automotive Manufacturing

The second case study covers in-house material handling in automotive manufactur-
ing. Advanced and adaptive assembly of cars will be essential to reduce production
costs to a minimum and to yield higher levels of energy efficiency across the entire
manufacturing process. According to the European Council for Automotive R&D
(EUCAR), the identification and development of smart and flexible manufacturing
processes will be fundamental to ensure the competitiveness of the European au-
tomobile industry [EUCO09]. This requires flexible manufacturing systems, which
guarantee performance and robustness despite highly variable production volumes,
flexible assembly equipment to easily adapt to market variations, and highly recon-
figurable assembly operations in order to enhance production flexibility. The vision
of such self-adaptive plants that accommodate diversified customer needs is also
pursued within the EU Integrated Project 'MyCar’ [EU 10].

The production of a car in general starts in the press shop, where components
such as roofs, doors, side frames, front and rear lids, etc. are built out of sheet
metal, proceeds to the bodyshop, where up to 500 stamped parts are welded, glued,
riveted, and bolted to form the body of the car, up to the paintshop, where painting
machines apply several layers of paint on to the car body. This painted body is
then queued into an assembly line, where pre-assembled components such as the
engine, axles, doors, bumpers, as well as the interior such as the dashboard or seats
are assembled just in sequence. After a final quality check the produced car leaves
the plant for shipping. During these processes, up to 20.000 individual parts are
assembled to form one single car. In this ways, for example, the BMW production
plant in Dingolfing produces more than 1.200 cars of the 5, 6, and 7 Series every
day?.

For the purpose of this thesis we are not interested in the entire manufacturing
process but only in one single section, namely the transportation of certain stamped
parts from the press shop to the bodyshop. In contrast to the first case study, this
second case study therefore involves five different types of parts: roofs, doors, side
frames, floor plates, as well as front and rear lids. Each type of parts is delivered
from the press shop bundled in racks, each consisting of a certain amount of parts,
whereby the amount depends on the size of the parts. These racks have to be
transported from central gates by AGVs to different assembly lines, each comprising
five delivery points, i.e. one delivery point for one specific type of parts at a time.
Because the racks have different dimensions depending on the included parts, in this
second case study three different types of AGVs are required for transportation: one
AGYV type can handle racks with roofs or lids, one type can handle racks with doors
or side frames, and one type can handle racks with floor plates. Thus, the amount
of parts in each rack is of no importance to an AGV, but only the dimension of a
rack. Usually, an AGV of any type can only transport one rack at the same time.

2Figures taken from http://www.bmw-werk-dingolfing.de
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8.3 Experiments Regarding the IBC Approach

Based on the two case studies described in the previous section, this section docu-
ments the experimental evaluation that we have performed regarding the IBC ap-
proach, i.e. the application of the PIC mechanism to these PDP case studies. This
includes the description of the experiment preparation and execution as well as the
presentation and analysis of the corresponding experimental results. The hypothe-
sis, which has to be proven by the experiments, is that the coordination by means
of different types of infochemicals, i.e. infochemicals with different functions, dy-
namics, and semantics as provided by the DIC model, will yield both more efficient
solutions to PDPs as well as more efficient solution processes compared to the co-
ordination by means of only one single type of infochemicals, as e.g. provided by
pheromone-based coordination. The experimental evaluation of the EIA approach
is described in the next section.

Unfortunately, we cannot provide any benchmarking data in comparison to ex-
isting solution methods by the OR community. This has several reasons: (1) Ap-
propriate benchmark instances for such dynamic PDPs do not exist. (2) Possibly
existing solution methods by the OR community for PDPs of such a huge size and
complexity as we have experimented with, are publicly not available. (3) We have
specified experiments with more realistic constraints than specified by the OR com-
munity. In particular, we do not assume that only unloading goods at the delivery
station requires time, but also the loading of goods at the pickup stations. We
furthermore do not assume that there always exists a direct connection between
two stations, but allow for junctions and intermediate points. Moreover, we do not
assume that one pickup/delivery station occurs only once in a PDP, but allow for
multiple occurrences of stations.

8.3.1 Experiment Preparation

To test and evaluate the capabilities of the IBC approach respectively the PIC
mechanism, we have created two kinds of scenarios:

e Scenarios requiring one type of AGVs: The first kind of scenarios, which
are based on the tire warehouse case study, only require one single type of
AGVs for the solution. We will use four different environments of different
size, which due to the case study exhibit a quite symmetrical layout.

e Scenarios requiring multiple types of AGVs: The second kind of sce-
narios, which are based on the automotive manufacturing case study, require
multiple types of AGVs for the solution. Here, we only use one type of envi-
ronment, which, however, exhibits a quite unsymmetrical layout.

For the purpose of evaluation, in both kinds of scenarios we have performed five
different series of experiments based on the PIC mechanism:



1. Coordination by means of synomones (S): In this experiment series, the
coordination between pickup/delivery stations and AGVs is accomplished by
means of synomones only, i.e. the agents are not able to emit allomones or
pheromones. In other words, the coordination between the agents takes place
based on infochemicals without different functions and semantics. This series
consequently represents the baseline for all further improvements.

2. Coordination by means of synomones and allomones (SA): In this ex-
periment series, the basic coordination by synomones is additionally extended
by allomones emitted by pickup stations to keep further AGVs off from visit-
ing.

3. Coordination by means of synomones and pheromones (SP): In this
experiment series, the basic coordination by synomones is in contrast addi-
tionally extended by pheromones emitted by AGVs to distract the attention
of subsequent AGVs from the intended target pickup station.

4. Coordination by means of synomones, allomones, and pheromones
with general parameter settings (SAPg): In this experiment series, syn-
omones, allomones, and pheromones are used for the coordination, however,
all types of infochemicals are configured with the same parameter settings, i. e.
they have the same dynamics.

5. Coordination by means of synomones, allomones, and pheromones
with individual parameter settings (SAPi): In this experiment series,
synomones, allomones, and pheromones are used as well for the coordination,
however in contrast, every type of infochemical is configured individually. This
experiment series utilizes the full potential of the DIC model having infochem-
icals with different functions, semantics, and dynamics.

Please note that kairomones emitted by a depot are used in every experiment
series, as otherwise AGVs would not be able to return to the depot. However, as the
use of kairomones has the same effects on the efficiency in every experiment series,
we have not mentioned them in every series again. If the environment map is made
available to every AGV prior to the solution process, kairomones could be replaced
by an appropriate A*-algorithm or any other routing algorithm. In the following,
we explain the created scenarios in more detail, starting with the scenarios requiring
one type of AGVs and afterwards scenarios requiring multiple types of AGVs.

8.3.1.1 Scenarios Requiring One Type of AGVs

As mentioned above, the scenarios requiring one type of AGVs are performed on four
tire warehouse environments of different size (T'W-Env-1 to TW-Env-4, see Figures
8.5 to 8.8). Figure 8.5 exemplary illustrates such an environment. The thicker black
dots correspond to the considered pickup/delivery points in the warehouse, i. e. high
racks in the storage area, floor positions in the shipping area, and the depot of
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Figure 8.5: Tire warehouse environment TW-Env 1

the AGVs, respectively. The black circles connected by directed arrows correspond
to the transportation network. Each circle thereby corresponds to a junction or
another relevant network point. The direction of an arrow indicates the possible
driving direction for an AGV for the respective connection. The depot, with ID=0,
at which idle AGVs may charge their batteries and/or wait for new transportation
requests, is located in the middle of the environment. Stations 1-8 on the left side of
the depot represent high racks in the storage area, i.e. the pickup stations, whereas
stations 9-16 on the right side of the depot represent floor positions in the shipping
area, i.e. the delivery stations.

Figures 8.6 to 8.8 depict the three additional tire warehouse environments. The
structure of these three environments remains the same, i.e. the depot is always
located in the middle of the environment, whereas the pickup stations in the storage
area are located at the left side and the delivery locations in the shipping area are
located at the right side. The environments however all vary in their amount of
locations and connections. Table 8.1 presents a more detailed overview on these
numbers. The table illustrates that the locations as well as the connections nearly
reduplicate in every environment.

Table 8.2 gives an overview of the different created scenarios performed on these
environments as well as the other properties of these scenarios. On every envi-
ronment, scenarios with three different amounts of randomly generated tasks are
performed, starting from 100 tasks over 250 tasks up to 500 tasks. The number
of pickup and delivery stations in the scenarios varies according to the size of the
respective environment. In the smallest scenarios, 8 pickup stations and 8 delivery
stations are used, whereas in the biggest scenarios 64 pickup and 64 delivery stations



Figure 8.7: Tire warehouse environment TW-Env 3

Environment Locations Connections

TW-Env 1 81 108
TW-Env 2 161 212
TW-Env 3 369 488
TW-Env 4 721 952

Table 8.1: Environment sizes for scenarios requiring one type of AGVs
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Figure 8.8: Tire warehouse environment TW-Env /

are used. The number of AGVs used in every scenario varies from 10 to 100. The
table reveals that these scenarios also allow for the evaluation of the scalability of
the PIC mechanism in three different dimensions: (1) the number of tasks, (2) the
number of pickup and delivery stations, and (3) the number of AGVs.

All parameters of a task are generated randomly, more specifically the pickup
station and pickup time, the delivery station, and the loadsize. The latter varies
randomly between 1 and 20 tires. An AGV may transport up to 20 tires at the same
time, so that each request can be fulfilled by a single AGV, although an AGV may
fulfill more than one request at the same time. All requests are available to the agents
within the first 500 iterations. As a consequence, whereas in the scenarios with 100
tasks a request appears only every fifth iteration on average, in the scenarios with 500
tasks a request appears in every iteration on average. The degree of dynamism (see
Subsection 7.1.2) of all PDP scenarios is 100%, i. e. we only experimented with highly
dynamic scenarios with no static requests known in advance. The effective degree
of dynamism of all PDP scenarios is in terms of figures 50%, where the planning
horizon is assumed to be 500 iterations. Due to these figures, the PDP considered
here is categorized according to [BCGL07] as a [1-1 |P/D |-] problem respectively
dynamic, less-than-truck-load, multi-vehicle PDP (see Subsection 7.1.1).



Scenario Tasks Stations Depot AGVs Environment
pickup delivery

tw-env1-100 100 8 8 1 10 - 100 TW-Env 1
tw-env1-250 250 8 8 1 10 - 100 TW-Env 1
tw-env1-500 500 8 8 1 10 - 100 TW-Env 1
tw-env2-100 100 16 16 1 10 - 100 TW-Env 2
tw-env2-250 250 16 16 1 10 - 100 TW-Env 2
tw-env2-500 500 16 16 1 10 - 100 TW-Env 2
tw-env3-100 100 32 32 1 10 - 100 TW-Env 3
tw-env3-250 250 32 32 1 10 - 100 TW-Env 3
tw-env3-500 500 32 32 1 10 - 100 TW-Env 3
tw-env4-100 100 64 64 1 10 — 100 TW-Env 4
tw-env4-250 250 64 64 1 10 - 100 TW-Env 4
tw-env4-500 500 64 64 1 10 - 100 TW-Env 4

Table 8.2: Properties of tire warehouse scenarios

8.3.1.2 Scenarios Requiring Mulitple Types of AGVs

In contrast to the previous scenarios, the following scenarios focus on the transporta-
tion of different types of goods by different types of AGVs. Thus, in these scenarios
we only use one environment layout of an automotive manufacturing plant, which
is shown in Figure 8.9. The size of this environment in terms of locations and
connections is in between TW-FEnv 2 and TW-Env 3.

Due to the required three types of AGVs, in this environment, there are three
depots with ID 0, -1, and -2, even though all AGVs in general could be housed
in one single depot as well. Stations 1-5 are the receiving gates, i.e. the pickup
stations, where the racks with the welded or stamped parts arrive (either from
third-party vendors or more usually from the welding and stamping machines). The
gates are bound to a specific type of rack. Station 1 is the dedicated pickup station
for racks with front doors, station 2 is dedicated to racks with back doors, station
3 is dedicated to racks with fenders, station 4 is dedicated to racks with hoods,
and station 5 is dedicated to racks with trunk lids. There are four assembly lines
composed of the stations 6-10, 11-15, 16-20, and 21-25, i.e. the delivery stations.
These stations are bound to a specific type of rack as well. The first station of each
assembly line (the one with the lowest number of an assembly line) is always the
dedicated delivery station for racks with front doors, the second station for racks
with back doors, the third for racks with fenders, the fourth for racks with hoods,
and the fifth for racks with trunk lids. The capacity of every AGV is 1, so an AGV
may only fulfill one transportation request at the same time.

Table 8.3 gives an overview of the different created scenarios performed on the
environment as well as the other properties of these scenarios. Here, scenarios with
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three different amounts of randomly generated tasks are performed as well, again
starting from 100 tasks over 250 tasks up to 500 tasks. The number of pickup and
delivery stations in the scenarios remains the same, having 5 pickup stations and
20 delivery stations. The number of AGVs used in every scenario varies again from
10 to 100. However, because these scenarios require multiple types of AGVs, the
distribution of available AGVs on these types was nearly balanced, i. e. the difference
between the size of all groups of agents varies by 1 at a maximum. Similarly,
the distribution of transportation requests on the available types has been nearly
balanced as well.

Scenario Tasks Stations Depots AGVs Environment
pickup delivery

am-env-100 100 5 20 3 10 — 100 AM-Env

am-env-250 250 ) 20 3 10 - 100 AM-Env

am-env-500 500 5 20 3 10 — 100 AM-Env

Table 8.3: Properties of automotive manufacturing scenarios

Again, the parameters of a task are generated randomly, i.e. for this case study
the pickup station and pickup time as well as the delivery station. The loadsize
is set to 1 rack. An AGV may transport 1 rack at the same time, so that each
request can be be fulfilled by a single AGV such that an AGV may fulfill only one
request at the same time. All requests are available to the agents within the first 500
iterations. The degree of dynamism (see Subsection refsec:ProblemDefinition) of all
PDP scenarios is 100% again. The effective degree of dynamism of all PDP scenarios
is in terms of figures 50%, where the planning horizon is assumed to be 500 iterations.
Due to these figures, the PDP considered here is categorized according to [BCGL07]
as a [1-1 |P/D |-] problem respectively dynamic, full-truck-load, multi-vehicle PDP
(see Subsection 7.1.1).

8.3.2 Experiment Execution

To evaluate the solutions to the above PDP scenarios, we were interested in different
measures, which are usually of interest with regard to AGV systems (cf. [Vis06]):

e Total travel costs (TTC): This measure represents the total distance of all
AGV movements and is an essential factor for the operational expenditures of
an AGV system. Longer routes require a higher energy consumption by the
AGVs as well as higher maintenance costs. The minimization of TTC thus is
important to reduce the TCO of these systems.

e Completion time (CT): This measure represents the time required to com-
plete all tasks, i.e. the makespan. This measure is in particular important for
AGYV system operators, as a smaller CT e. g. helps to achieve higher produc-
tion rates. It is also required for the determination of the solution efficiency,



as the TTC may be reduced on the costs of the CT, whereas the CT can be
increased on the costs of TTC.

e Throughput (TP): Similar to the CT, the throughput of an AGV system, i. e.
number of goods handled per iteration, is very essential e. g. for the production
rate of an AGV system operator. As higher the throughput, as better the
solution.

e Total rate of infochemicals (TRI): This measure represents the amount of
infochemical objects that have to be generated for the coordination process, i. e.
the coordination costs. The TRI is in particular required for the determination
of the solution process efficiency, as a solution may be improved on the costs
of the communication, whereas the communication costs may be reduced on
the costs of the solution performance.

Furthermore, we were interested in two more measures in order to interpret the
experimental results more thoroughly.

e Average travel costs (avgTC): This measure represents the average costs
for the movement of one AGV participating in the solution, i.e. the average
travel costs per AGV that has at least once left the depot. In certain scenarios
this measure provides more detailed insight into the solution.

e Average workload (avgWL): This measure represents the average work-
load of one AGV participating in the solution, i.e. the average number of
goods transported per AGV that has at least transported one good during the
solution. Similarly, in certain scenarios this measure provides more detailed
insight into the solution.

Another interesting measure is the minimal amount of vehicles required for the
solution to a PDP scenario, as the purchase costs for a single AGV are extremely
high. However, this number cannot be directly measured in the experiment settings.
The above measures, however, give an indication, which experiment series require
the less number of vehicles for the solution.

Table 8.4 lists the most important parameters and values that were used for the
experiment execution. Obviously, there are quite a number of parameters that can
be changed in PIC. Depending on the respective environment of the PDP scenarios
these parameters have been set manually in a kind of best practice, based on the
experiences we have made with PIC. However, subtle changes in these parameters
also change the solutions significantly. Unfortunately, the non-linearity in the results
of self-organizing emergent solutions prevents the application of adequate optimiza-
tion approaches such as evolutionary algorithms. The optimality of the parameters
depend significantly on the number and the location of the tasks, the number of
vehicles, and the size of the environment. Optimizing these parameters thus is left
for future work. Please note, in the SAPg series all infochemicals have been config-
ured similar to the configuration of synomones in the respective environment, while



the emission rate of all agents has been configured similar to the configuration of
pollinator agents in the respective environment.

Name Description Environment
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conc infochemical emission concentration 35 45 55 75 60
re reward concentration of flowers 10 10 10 10 10
id idle time of pollinator agents 1 1 1 1 1
A utility adjustment factor 106 106 105 105 106
Emission rates
eMTpto emission rate of pollinator agents 5 5 5 5 5
eMTpnz emission rate of pollenizer agents 10 10 10 10 10
emnriy emission rate of hive agents 100 100 100 100 100
Pheromones
ef evaporation factor 0.30 0.30 0.26 0.30 0.20
coef diffusion coeflicient 3.00 3.00 3.50 3.00 4.00
concipresh,  threshold concentration 6.00 5.00 5.00 5.00 5.00
Allomones
ef evaporation factor 0.35 0.35 0.35 0.45 0.75
coef diffusion coefficient 2.50 2.00 2.00 2.00 1.00
concipresh,  threshold concentration 0.50 6.00 6.00 1.00 0.15
Kairomones
ef evaporation factor 0.96 0.96 0.96 0.95 0.98
coef diffusion coefficient 1.00 1.00 1.00 1.00 1.00
concipresh, threshold concentration 0.30 0.30 0.30 0.40 0.50
Synomones
ef evaporation factor 0.71 0.71 0.71 0.68 0.75
coef diffusion coefficient 1.00 1.00 1.00 1.00 1.00
concipresh,  threshold concentration 0.50 0.50 0.50 0.10 0.15

Table 8.4: Parameter values for the evaluation of the PIC mechanism

Due to these values, pheromones and allomones are configured to have a short
lifetime only, synomones have a medium lifetime, whereas kairomones have a long
lifetime. The propagation range of pheromones is configured to be small, allomones
have a medium propagation range, whereas synomones and kairomones have a wide
propagation range (except for the SAPg series). To overcome statistical anomalies
and to account for the randomness used in the scenarios, we have executed every
scenario 100 times and averaged the results at the end.



8.3.3 Experimental Results

Figures 8.10 — 8.21 depict the experimental results for each of the PDP scenarios
of the first case study (see Table 8.2), starting with 100 transportation requests on
the TW-Env 1 environment up to 500 transportation requests on the TW-Env 4
environment. Figures 8.22 — 8.27 depict the experimental results for each of the
PDP scenarios of the second case study (see Table 8.3), starting from 100 up to 500
transportation requests on the AM-FEnv environment. In all figures, the black line
represents the results of the experiment series S, the purple line the results of the
SA series, the blue line the results of the SP series, the red line the results of the
SAPg series, and the green line the results of the SAPi series. Due to the huge size
and high dynamics of our PDP scenarios, there exist no suitable solution approaches
able to determine the optimal solution, e. g. in terms of TTC or CT, nor the optimal
number of vehicles required for the solution (cf. Subsection 7.1.3). Consequently,
appropriate benchmark instances and results do not exist as well. However, the
black lined S series series can be considered as a kind of benchmark for the state
of the art, as this series uses only one type of infochemical, whereas all other series
make extensions to this series based on the IBC approach.

8.3.3.1 Environment TW-Env 1 with 100 Transportation Requests

Figure 8.10 depicts the experimental results for the scenario tw-envi-100 having 100
transportation requests (tasks) on the smallest environment TW-Env 1. The total
travel costs (TTC) of this PDP scenario are shown in Figure 8.10(a). Whereas the
TTC permanently increase for the S and SA series, they remain nearly constant for
the SP, SAPg, and SAPi series starting with 20 vehicles and higher. These results
clearly demonstrate that due to the use of multiple types of infochemicals for this
specific number of tasks in this specific environment, the TTC can be significantly
reduced. Apparently, in particular the use of pheromones (in SP/SAPg/SAPi)
for the coordination between vehicles improves the overall solution significantly. By
contrast, the use of allomones in SA improves the solution only marginally compared
to the use of synomones only (in ). The reason for the marginal improvement is that
due to the missing coordination between the vehicles too many vehicles are present
in this small environment, so that the effect of allomones very often fizzles out. Due
to the random generation of the transportation requests and the random choosing
of locations, the solution in a few instances is even more worse. However, the use of
allomones in SAPg/SAPi compared to the solution of synomones and pheromones
only (in SP) demonstrates a clear improvement. Because in these two series already
a coordination between the vehicles takes places, allomones additionally improve the
coordination. Apparently, as more frequent the information exchange between the
vehicles (in SAPg), as better the result with regard to TTC.

A similar result is shown by Figure 8.10(b) depicting the completion time (CT)
of this PDP scenario. Whereas a minimum CT is achieved by around 20 vehicles
for all experiment series, the CT in the S and SA series from then on start to
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Figure 8.10: Experimental results for 100 transportation requests in TW-Env 1



increase moderately, from 70 vehicles on even quite strongly, whereas the results of
the other series remain nearly constant again. This gives another indication that the
coordination between the vehicles in the S and SA series is not so good, so that too
many vehicles are present in the environment (which results from the reactiveness
of the agents as a runtime insufficiency). On the other side, the results indicate that
for this specific parameter configuration this PDP scenario cannot be solved faster
by the current specification of the PIC mechanism.

Figure 8.10(c) depicts the average travel costs (avgTC) of a single vehicle. In
this figure, the avgTC in the S and SA series are lower compared to the other
series starting with 50 vehicles and higher. At a first glance, this result seems
to worsen the overall solutions when more types of infochemicals are used. On a
closer inspection, however, this figure proves the indication provided by the first
two measures: due to the better coordination in the SP, SAPg, and SAPi series,
vehicles that are not required for the solution to a PDP are able to remain in the
depot, which in the end generates less TTC of all vehicles but as a consequence
higher avgTC for a single vehicle participating in the solution. Moreover, these
unused vehicles do not unnecessarily congest the environment, which in particular
in such small environments as TW-Env 1 is the reason for the higher CT of the
S and SA series at the end. Consequently, the avgTC of the SAPg series are the
highest starting with 44 vehicles and higher but remain constant, as the number of
vehicles required for the solution does not change. The results of the avgTC measure
between 10 and 44 vehicles have to be interpreted the other way round. The better
the coordination between the vehicles respectively the pickup/delivery stations and
the vehicles, the less unnecessary movements are generated, which reduce the avgTC
of a single vehicle.

Figure 8.10(d) depicts the results of the average workload (avgWL) of a single
vehicle. Again, the better the coordination between the agents, the less vehicles
are being used respectively leave the depot unnecessarily, the higher the avgWL
of the vehicles participating in the solution. This becomes even more apparent by
the results of the throughput (TP) measure depicted in Figure 8.10(e). Whereas in
particular up to the point of 20 vehicles the results are nearly the same for all series,
the throughput results for the S and SA series begin to worsen again as the number
of available vehicles increases. This is another indication that the environment in
these series becomes congested by superfluous vehicles.

Figure 8.10(f) depicts the total rate of infochemicals (TRI) generated during the
solution, in other words the communication costs to produce the solution. Appar-
ently, the costs for producing the solution by the SA Pg series is considerably higher
than the costs for producing the solution of the SP and SA Pi series. This is a result
of the high frequency of information exchange. The costs of the S and SA series are
even for a short period the lowest but towards the end increase steadily and quite
strongly again.



8.3.3.2 Environment TW-Env 1 with 250 Transportation Requests

With regard to the results depicted in Figure 8.11 for the scenario tw-envi-250, it
becomes apparent that the coordination by more types of infochemicals is again
able to produce better results, even for 250 transportation requests. The CT (Fig-
ure 8.11(b)), the TP (Figure 8.11(e)), and the TRI (Figure 8.11(f)) are at their
minima respectively maxima around the value of 42, which indicates that this is a
preferable number of vehicles for the solution. As soon as more vehicles are available,
the coordination however is not sufficient enough to prevent unnecessary movements
by the vehicles and an overcrowding of pathways, indicated by the increasing CT
and TRI as well as the decreasing TP. Also, around the value of 42, the slopes of
the TTC lines (Figure 8.11(a)) of the SP, SAPi, and SAPg series are lower. The
avgTC (Figure 8.11(c)) steadily decrease for all series, but have a buckling in their
negative slope around this value as well. The avgWL results (Figure 8.11(d)) in
contrast are nearly similar for all series. Due the lower TTC in particular of the
SP, SAPi, and SAPg series, however, the avgWL results indicate that these series
require less vehicles for the solution as in the S and SA series. The effect of using
pheromones again is significant in all results, whereas the effect of the additional use
of allomones is only marginal in all results.

8.3.3.3 Environment TW-Env 1 with 500 Transportation Requests

The results for 500 transportation requests in the scenario tw-env1-500 (depicted
in Figure 8.12) have the same trends as for 250 transportation requests. Again,
using different types of infochemicals results in better TTC, CT, and TP, but the
coordination again is not sufficient enough for avoiding unnecessary movements by
the vehicles as soon as more than 42 vehicles are available. When comparing the
absolute results with the results for 100 respectively 250 transportation requests, it
becomes apparent that the TTC nearly increase by the same factor as the trans-
portation requests. Similarly, the CT increases as well, however, by a lower factor.
The TP results indicate that a higher throughput than 0,31-0,32 goods per iteration
is not to achieve in this small environment due to the bottleneck around the depot.
For 100 transportation requests, however, this throughput can not be achieved due
to the lower number of tasks to fulfill. The congestion of the environment is again
documented by the TRI, as they increase very strongly with an increasing amount
of transportation requests.

8.3.3.4 Environment TW-Env 2 with 100 Transportation Requests

Figure 8.13 depicts the experimental results for the scenario tw-env2-100 having
100 transportation requests (tasks) in the environment TW-Env 2. With regard
to the TTC, CT, avgTC, avgWL, and TP the absolute results are quite similar to
the results for the fulfillment of 100 transportation requests in the smaller environ-
ment TW-Env 1 (see Figure 8.10). Only the TRI is higher for this environment,
mainly due to the higher amount of locations in the environment. Because in this
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environment the vehicles have more space available, in particular there are more
locations available than vehicles participating, congestions in the environment only
arise around the depot, but do not have such significant effects as in the smaller
environment. Thus, for the S and SA series the TTC, CT, and TRI do not exhibit
such a strong increase with an increasing amount of vehicles any more, while the TP
of these series do not decrease so strongly. However, all of these measures are not
able to remain constant again, as it is the case for the SP, SAPg, and SAPi series.
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Figure 8.13: Experimental results for 100 transportation requests in TW-Env 2




8.3.3.5 Environment TW-Env 2 with 250 Transportation Requests

Figure 8.14 depicts the results for the scenario tw-env2-250 having 250 transporta-
tion requests on the environment TW-Env 2. Compared to the results of the smaller
environment (see Figure 8.11), again several similarities in the trends can be ob-
served. Although the environment has twice as many locations as the smaller en-
vironment, which forces the vehicles to travel slightly longer distances (see TTC
in Figure 8.14(a)), the minima of the CT of all experiment series are lower (see
Figure 8.14(b)) respectively the maxima of the TP are higher (see Figure 8.14(e))
compared to the corresponding results in the smaller environment. This again in-
dicates that the vehicles have more space available, which reduces congestions and
improves the solutions in all experiment series. The most obvious difference between
these results is however, that from a specific number of vehicles on (around 45) only
the SAPg series is able to achieve nearly constant results for all measures, which
indicates that the configurations of the other series are not good enough to prevent
from inefficiencies in this bigger environment.

8.3.3.6 Environment TW-Env 2 with 500 Transportation Requests

Figure 8.15 depicts the results for the scenario tw-env2-500 having 500 transporta-
tion requests on the environment TW-FEnv 2. As the number of transportation
requests increase in this second environment, even the SAPg series is not able to
produce constant results any more, although again the coordination by means of
different typed infochemicals achieves better results than the coordination by only
one type of infochemical. Compared to the results of the smaller environment (see
Figure 8.12), the scenarios again are solved faster by all series (see CT), while gen-
erating a higher TP. The trends of the resulting graphs, however, now allow an
easier conclusion on the minimal amount of vehicles required for the solution of this
scenario (around 50).

8.3.3.7 Environment TW-Env 3 with 100 Transportation Requests

Figure 8.16 depicts the results for the scenario tw-env3-100 having 100 transporta-
tion requests on the environment TW-Env 3. Again, most of the experiment series
are able to achieve nearly constant results, starting around 20 vehicles and higher.
Even though the environment has about twice as many locations as the environment
TW-Env 2 and four times as many locations as the environment TW-Env I (which
is the reason why the TTC and the TRI are higher compared to the TTC and TRI
in those environments), the avgTC and avgWL as well as in particular the CT and
TP are nearly the same as in the smaller environments.

8.3.3.8 Environment TW-Env 3 with 250 Transportation Requests

Figure 8.17 depicts the results for the scenario tw-env3-250 having 250 transporta-
tion requests on the environment TW-Env 3. It becomes obvious, that the larger
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Figure 8.14: Experimental results for 250 transportation requests in TW-Env 2
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Figure 8.16: Experimental results for 100 transportation requests in TW-Env 3
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the size of the environment, the more experiment series are able to produce nearly
constant results. Whereas in the environment TW-Env 1 none of the experiment
series were able to do so, in TW-Env 2 only the SAPg series was able to do so.
However, in TW-Env & also the other series finally reach a constant level in almost
all measures. An exception is however made by the TTC, where all but the SAPg
series reach this constant level very late. Furthermore, these levels are quite high
compared to the level of the SAPg series. In particular the CT for all series is better
than in the environment TW-Env 2, despite the large size of TW-Env 3.
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Figure 8.17: Experimental results for 250 transportation requests in TW-Env 8
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8.3.3.9 Environment TW-Env 3 with 500 Transportation Requests

Figure 8.18 depicts the results for the scenario tw-env3-500 having 500 transporta-
tion requests in the environment TW-Env 3. When considering Figure 8.18(a) it
becomes obvious for the first time that the increase of TTC in all series is nearly
linear with an increasing amount of vehicles. Furthermore, because no real minima,

maxima, or constant levels appear within the range of 10 to 100 vehicles, this in-
dicates that on the one side no significant congestions arise and on the other side

every additional vehicle improves the solution. Of all solutions the SA Pg series again
achieves the best results except for the TRI.
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Figure 8.18: Experimental results for 500 transportation requests in TW-Env 8




8.3.3.10 Environment TW-Env 4 with 100 Transportation Requests

Figure 8.19 depicts the results for the scenario tw-env4-100 having 100 transporta-
tion requests on the environment TW-Env 4. Surprisingly, although this environ-
ment has about nine times (890%) the size of the environment T'W-Env 1, the TP
for 100 transportation requests reduces only by 5% on average for all series. Simi-
larly, the CT e.g. for the SAPg series only increases by 11% on average compared
to the smallest environment, whereas the TTC only increase by 93%. However, the
TRI for the SAPi series, for instance, increases by the factor 16. Although this
value is considerable higher, it could possibly be reduced by an optimzation of the
parameters of the infochemicals.

8.3.3.11 Environment TW-Env 4 with 250 Transportation Requests

Figure 8.20 depicts the results for the scenario tw-env4-250 having 250 transporta-
tion requests on the environment TW-Env 4. The results again indicate that con-
gestions are reduced compared to the environment TW-Env 1, which is the reason
for the increase of the TP compared to the TP in the environment TW-Env 1 (see
Figure 8.20(e)). However, as the TTC of all experiment series do not increase lin-
early and the TRI of the SP and SAPi series have a change in the slope, unnecessary
movements of superfluous vehicles occur, starting from 50 vehicles and higher.

8.3.3.12 Environment TW-Env 4 with 500 Transportation Requests

Figure 8.21 depicts the results for the scenario tw-env4-500 having 500 transporta-
tion requests on the environment TW-Env 4. Similar to the results on the smaller
environment TW-Env 3, the TTC increase linearly with an increasing amount of
vehicles, whereas the TP increases more slowly. At the same time, the CT, avgTC,
avgWL, and TRI decrease with an increasing amount of vehicles. Thus, in this
big environment with this big number of tasks to fulfill, every additional vehicle
improves the solution (based on 10 to 100 vehicles).

8.3.3.13 Environment AM-Env with 100 Transportation Requests

With regard to the second case study, Figure 8.22 depicts the results for the sce-
nario am-env-100 having 100 transportation requests on the environment A M-FEnuv.
Concerning the TTC (Figure 8.22(a)), the trends of all experiment series are very
similar to the trends of 100 transportation requests in the corresponding environ-
ments of the first case study. However, the improvements of each experiment series
compared to the S series now becomes very apparent, whereas the differences be-
tween the SAPg and the SAPi series are only very small any more. With regard to
the CT (Figure 8.22(b)), however, one significant difference compared to the prior
results of the first case study becomes explicit: the SAPg series requires more time
to complete the scenario than all other series (at least for more than 33 vehicles).
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Figure 8.19: Experimental results for 100 transportation requests in TW-Env 4
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Figure 8.20: Experimental results for 250 transportation requests in TW-Env 4
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Figure 8.21: Experimental results for 500 transportation requests in TW-Env 4




Consequently, also the TP of this series is the poorest from that point on. The rea-
son is embedded in the structure of the environment combined with the propagation
range and the evaporation factor of pheromones in SAPg. Because the pheromones
are propagated over a longer distance but evaporate slower than e.g. in the SAPi
series, pheromones emitted by a vehicle that later switches its targeted pickup lo-
cation, remain for a longer time in the environment. Because all vehicles have only
one to two options to approach a pickup location, they become confused and ne-
glect the respective locations for a long time, which increases the CT. Even though
non-evaporating pheromones have confused the vehicles in the first case study as
well, there the vehicles had more options to approach a pickup location, which re-
duced the confusion. The results of the avgTC, avgWL, and TRI measure are rather
similar to the prior results, while the series trends have only different intersections.

For a better interpretation of the results as well as an illustration of the benefits
of IBC, we have additionally measured two values for the second case study:

e Blocking vehicles (BV): This measure represents the number of vehicles
that leave the depot but do not fulfill any transportation request. In other
words, these vehicles block the pathways and yield congestions in the environ-
ment.

e Superfluous vehicles (SV): This measure represents the number of vehi-
cles that do not even leave the depot. Consequently, they do not block the
environment, but are superfluous for the solution.

Figure 8.23(a) and Figure 8.23(b) depict the number of blocking and superfluous
vehicles, respectively, for 100 transportation requests on the environment AM-FEnwv.
Whereas in the § and SA series the numbers of blocking vehicles increase with an
increasing number of available vehicles, the SP and in particular the SAPi and SAPg
series were able to limit these numbers to a nearly constant level. The best results
have been achieved by the SAPg series, where the number of blocking vehicles did
not exceed 1. In addition, the SAPg series has the highest number of superfluous
vehicles, whereas in the S and SA series almost all vehicles have fulfilled at least
one transportation request, congesting the environment. However, even though the
SAPg series has the best results in terms of BV and SV — and as a consequence in
terms of TTC as well — the CT and TP measures relativize these results. In other
words, in particular because the blocking and superfluous vehicles were enabled /-
forced to stay in the depot due to the high propagation range and evaporation time
of (outdated) pheromones, they did not fulfill any other available transportation
requests in this time.

8.3.3.14 Environment AM-Env with 250 Transportation Requests

Figure 8.24 depicts the results for the scenario am-env-250 having 250 transporta-
tion requests on the environment AM-Env. Although the curves are slightly shifted
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Figure 8.22: Experimental results for 100 transportation requests in A M-Env
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Figure 8.23: Extended results for 100 transportation requests in A M-Env

to the upper right, the trends of all series look fairly the same as for 100 transporta-
tion requests. However, in contrast to prior results, the curves of the CT and TP
measure exhibit at least for a limited range a steplike behavior. This is a result of
the distribution policy for agents and transportation requests, i.e. the balancing of
vehicles and transportation requests on the available types. Because in these sce-
narios there have been three types available, the width of a step is ’three vehicles’
as well. In other words, from the viewpoint of one group of vehicles of the same
type, the number of vehicles of this group increases only after all other groups of
vehicles have reached the same size. As a consequence, only then the same number
of transportations request could be handled by more vehicles, which results in the
increase of TP respectively the decrease of CT.

In contrast to the results of 100 transportation requests, however, the results for
the BV (see Figure 8.25(a)) measure look different to some extent. Whereas the
number of blocking vehicles is again the lowest for the SA Pg series, it is now higher
for the SP series and in particular the SAPi series, even higher than for the S and
SA series. Although only up to 4% respectively 9% of the vehicles are blocking, this
shows that a decentralized coordination is not able to produce a perfect coordination
in all situations (see the runtime insufficiencies in Section 5.1). However, with regard
to the good other results (TTC, CT, etc.) of the SAPi series, these blocking vehicles
carry no special weight.

By contrast, the results for the SV (see Figure 8.25(b)) relativize the weakness
of the SAPi series. Only the SAPi and the SAPg series were able to fulfill all 250
transportation requests with a reduced amount of vehicles, whereas the insufficient
coordination in the SP, SA, and S series required almost all vehicles.

8.3.3.15 Environment AM-Env with 500 Transportation Requests

Figure 8.26 depicts the results for the scenario am-env-500 having 500 transportation
requests on the environment AM-FEnv. For all measures, all series are able to improve
the solution considerably compared to the benchmarking S series, while for this
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Figure 8.24: Experimental results for 250 transportation requests in A M-Env
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Figure 8.25: Extended results for 250 transportation requests in A M-Env

number of transportation request for the first time the SAP1i series achieves the best
results for all measures. In particular in the TP measure (where the steplike behavior
now is even more distinctive) the performance differences become apparent.

Due to the high number of transportation requests compared to the number of
available agents, nearly all agents were required to fulfill the tasks, which results
in a negligible number of blocking and superfluous vehicles (see Figure 8.27(a) and
Figure 8.27(b), respectively). Only for some scenarios, two vehicles at a maximum
were blocking, respectively one agent was superfluous (in the SAPg series).

8.3.4 Analysis of Results

In order to prove that the IBC approach represented by the DIC model and instan-
tiated by the PIC mechanism allows for the design of more efficient self-organizing
emergent solutions as well as solution processes, we have to analyze the experimen-
tal results described in the last subsection in more detail. In particular, we have
to evaluate the two dimensions of efficiency mentioned in the introduction (see Sec-
tion 1.1): The efficiency of the solution produced by the self-organizing emergent
system coordinating by means of PIC, i.e. mainly the required costs and time, and
the efficiency of the solution process itself, i.e. the costs for producing the solution
in terms of messages sent respectively infochemicals generated. Equation 8.1 defines

an absolute measure for the solution efficiency ef ;ﬁ’ls in an experiment series es.

CT L (es)

ef 24 (e9) = e (8.1)

This measure correlates the two measures TTC and CT. Analyzing only one of
the two is not enough to make a point regarding the solution efficiency. For instance,
although in all experiment series that coordinate by means of more than one type of
infochemical the TTC are lower than the TTC in the S series, this could be achieved
at the cost of higher CTs, e.g. if only one vehicle is used for the solution. In turn,

a lower CT could be achieved at the cost of higher TTC, e.g. if more vehicles are
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Figure 8.26: Experimental results for 500 transportation requests in A M-Env
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Figure 8.27: Extended results for 500 transportation requests in A M-Env

abs

used for the solution. Thus, ef f&7° is defined by the relation of the reverse CT to
the TTC of the solutions in an experiment series. Apparently, a higher CT will
decrease the efficiency, whereas lower TTC will increase the efficiency. Because
we are interested in a relative measure, Equation 8.2 defines the solution efficiency
ef fso1 by correlating ef gobf with the respective absolute solution efficiency of the S
series. This provides us with a percentage, how efficient the coordination by means
of different types of infochemicals is compared to the coordination by means of only

one type of infochemical.

ef fsol(es) = ef figi (es) - ef fear (S) ™ = 1 (8.2)

However, the solution efficiency taken by itself does not give an indication on the
costs of producing this solution, i.e. how many infochemicals have to be generated
in order to produce an efficient solution. Thus, Equation 8.3 defines the measure for

. . b . . .
the absolute efficiency of the solution process ef f;’0 in an experiment series.
e abs es
ef I‘}fj(es) - M (8.3)
TRI(es)

This measure correlates the absolute solution efficiency e f fgfls with the respective
TRI measure. Again, because we are interested in a relative measure, Equation 8.4
defines the solution process efficiency ef fpr, by correlating ef fgfg with the respec-
tive absolute solution process efficiency of the S series. This provides us with a
percentage, how efficient the solution process by means of different types of info-
chemicals is compared to the efficiency of the solution process by means of only one

type of infochemical.

ef foro(es) = ef forales) - ef oy (S) ™" =1 (8.4)

Figures 8.28 — 8.42 depict both the solution efficiency and solution process effi-
ciency for each of the PDP instances we have experimented with.



According to Figure 8.28(a), solutions based on multiple infochemicals, in partic-
ular in the SP, SAPi, and SAPg series, are much more efficient (up to 837%) for 100
transportation requests in the smallest environment TW-Env 1 than the solutions
based on synomones only in the § series, which represent the base line. Whereas
the additional use of allomones (in SA) achieves only marginal improvements com-
pared the the S series, the additional use of pheromones (in SP, SAPi, and SAPg)
in contrast improves the efficiency of the solution significantly. The reason is that
allomones only improve the existing interaction between station agents and vehi-
cle agents, whereas pheromones in contrast allow for new interactions between the
vehicles themselves, which improves the efficiency. Furthermore, whereas the coor-
dination by different types of infochemicals using the same dynamics (such as in
SAPg) is able to achieve the best efficiency of all solutions, mostly because infor-
mation is exchanged more frequently, this relation changes for the solution process
efficiency (see Figure 8.28(b)). Here, the efficiency of the SAPg series is up to 51
vehicles actually inferior to the efficiency of the S series. Only then, the efficiency of
this solution process is better than the S and SA series. However, the best solution
process efficiency can be achieved with the individual configuration of different types
of infochemicals (in SAPi, up to 8119%), in other words infochemicals with different
functions, dynamics, and semantics as provided by the DIC model.
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Figure 8.28: Efficiency evaluation for 100 transportation requests in TW-FEnv 1

When considering 250 respectively 500 transportation requests in the same envi-
ronment (see Figure 8.29 respectively Figure 8.30), the results are quite similar. The
SAPg series predominantly provides the best solution efficiency (see Figure 8.29(a)
respectively Figure 8.30(a)), even though the achieved improvement is lower than
for 100 transportation requests (up to 159% respectively 86%). However, for 250
transportation requests, the SAPi series achieves a better solution efficiency for up
to 31 vehicles, for 500 transportation requests the solution efficiency is even better
for up to 51 vehicles. Whereas the solution process efficiency of the SAPi series
is again the best for almost all numbers of vehicles, the SAPg series improves the
solution process efficiency of the S series only for 76 vehicles and higher in the case
of 250 transportation requests, while the efficiency is not improved at all for 500



transportation requests. The reason for this worsening with an increasing amount
of transportation requests is the huge number of infochemicals that has to be gener-
ated, if the dynamics of all infochemicals are the same. A similar reason justifies the
rare peaks in which the SP series outperforms the SAPi series. For some PDP in-
stances the coordination by synomones and pheromones is already sufficient enough,
so that the additional emission of allomones generates only communication overhead.
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Figure 8.29: Efficiency evaluation for 250 transportation requests in TW-Env 1
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Figure 8.30: Efficiency evaluation for 500 transportation requests in TW-FEnv 1

Whereas the trend lines of the relative solution (process) efficiency provided by
the SP, SAPi, and SAPg series in the environment TW-Env 1 are nearly steadily
increasing, for the larger environments TW-Env 2 (see Figure 8.31, Figure 8.32,
and Figure 8.33), as well as later TW-Env 3 and TW-Env 4, we begin to observe
local maxima in these series, after which the efficiency improvements decrease for
a certain number of vehicles. The reasons for these maxima are obviously located
in the TTC, CT, and TRI results. In more detail, the number of vehicles for that
the CT or the TRI are minimal, is not the same number of vehicles for that the
TTC reach a constant level respectively change their slope. Furthermore, the SP,
SAPi, and SAPg series have no linear relationship to the S series. For instance, as



depicted in Figure 8.13(b) the S series achieves the lowest CT with 34 vehicles, the
SP, SAPi, and SAPg series have reached their constant level already at around 22
vehicles. Thus, apart of the TTC, the CT of the S series improves the efficiency
between 22 and 34 vehicles compared to the SP, SAPi, and SAPg series, which is
why the latter series have a negative slope around these numbers of vehicles.
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Figure 8.31: Efficiency evaluation for 100 transportation requests in TW-FEnv 2

The SP series is able to generate mostly the highest solution process efficiency
at least for 100 and 250 transportation requests (see Figure 8.31(b), and Fig-
ure 8.32(b)), whereas it is nearly equal to the process efficiency of the SAPi series
for 500 transportation requests (see Figure 8.33(b)). Again, for some of these PDP
scenarios the coordination by synomones and pheromones is sufficient enough.
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Figure 8.32: Efficiency evaluation for 250 transportation requests in TW-Env 2

Whereas these two series never worsen the solution process efficiency compared to
the S series, the SA Pg series does. Only for 250 transportation requests the SAPg
series improves the efficiency significantly starting with 55 vehicles and higher. The
reason is that the SAPg series is able to achieve nearly constant TTC and CT for
this PDP scenario compared with all other series (see Figure 8.14).

For the environment TW-Env 8 the experiment series produce a quite similar
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Figure 8.33: Efficiency evaluation for 500 transportation requests in TW-Env 2

efficiency result compared with the environment TW-Env 2 (see Figure 8.34, Fig-
ure 8.35, and Figure 8.36). However, an interesting phenomenon can be observed
in Figure 8.34(b) and Figure 8.35(b). Although the solution efficiency of the SAPi
and SP series for 100 and 250 transportation requests is better than in the S series,
the solution process efficiency in the SAPi and later in the SP series as well for a
certain period is lower than in the § series. In other words, the communication costs
for producing a more efficient solution in these periods are very high.
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Figure 8.34: Efficiency evaluation for 100 transportation requests in TW-Env 3

With regard to the solution process efficiency for 500 transportation requests (see
Figure 8.36(b)) we cannot observe this phenomenon anymore. Here, the solution
process efficiency of the respective two series never worsens the efficiency of the S
series. However, we again observe this phenomenon for 100 and 250 transportation
requests even in the largest environment TW-Env / (see Figure 8.37(b) and Fig-
ure 8.38(b)). Similarly, the solution efficiency (see Figure 8.37(a) and Figure 8.38(a))
can be improved but the solution process efficiency worsens for a certain period. For
500 transportation requests (see Figure 8.39) again both the solution efficiency and
solution process efficiency is improved by these series as well.
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Figure 8.35: Efficiency evaluation for 250 transportation requests in TW-Env 3
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Figure 8.36: Efficiency evaluation for 500 transportation requests in TW-FEnv 3
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Figure 8.37: Efficiency evaluation for 100 transportation requests in TW-Env 4
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With regard to the second case study, the solution efficiency was improved at most
by the SAPi series, followed for almost all scenarios by the SAPg, SP, and SA series
(see Figure 8.40(a), Figure 8.41(a), Figure 8.42(a)). Only for 500 transportation
request, the improvements by the SA series are better then by the SP and SAPg
series. Similarly, the solution process efficiency could be improved at most by the
SAP1 series as well (see Figure 8.40(b), Figure 8.41(b), Figure 8.42(b)), whereas the
solution process efficiency improvement of all other series varies.
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Figure 8.38: Efficiency evaluation for 250 transportation requests in TW-FEnv 4
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Figure 8.39: Efficiency evaluation for 500 transportation requests in TW-FEnv 4

8.4 Experiments Regarding the EIA Approach

To evaluate the usefulness of the EIA approach, we have performed several ex-
periments with the instantiation of the EIA described in Section 7.3. Creating
experimental instances of a PDP(TW), in more detail sequences of run instances,
that allow an appropriate evaluation is not a straightforward task, since the evalu-
ation requires sequences that on the one hand include some recurring tasks, but on
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Figure 8.40: Efficiency evaluation for 100 transportation requests in A M-Env
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Figure 8.41: Efficiency evaluation for 250 transportation requests in A M-Env
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Figure 8.42: Efficiency evaluation for 500 transportation requests in AM-Env



the other hand also have enough randomness to allow the argument that the EITA
approach will work for many problem instances.

8.4.1 Experiment Preparation

To test and evaluate the capabilities of the EIA approach, we thus have created
three kinds of scenarios:

e Crafted scenarios: The first kind of scenarios was crafted (indicated by
scenario names starting with ”craft-...” see Table 8.5), i.e. the layout of the
stations and the order of the tasks were intended to provoke a situation in
which the solution of the basic system coordinating by means of PIC without
any advice by the EIA is known to be suboptimal.

e Random scenarios: The second kind of scenarios contains a randomly cre-
ated set of recurring tasks (indicated by scenario names starting with ”rand-
..”7), in order to validate the EIA approach also for scenarios that have not
been devised to explicitly provoke bad behavior. Even the distribution of the
pickup/delivery stations over the environment was random. These scenarios
were created by an application that outputs randomized scenarios with given
input parameters (such as the number of stations, the size of the environment,
and number of tasks).

e Changing scenarios: Because an important aspect of real world PDPs is that
the set of recurring tasks may change over time, the third kind of scenarios
contains changing recurring tasks (indicated by scenario names starting with
"chang-...”), i.e. the set of recurring tasks is not constant as in the previous
two kinds of scenarios, but changes over time. This continuously forces the
EIA to adapt its advice to new situations.

Scenarios of any of the three kinds may additionally contain fixed time windows
(indicated by scenario names ending with ”...-TW”), in which the tasks have to be
fulfilled. If a solution violates the time windows, the goal function will punish this
behavior severely. Thus, in a good solution, the tasks are either fulfilled within the
time windows or shortly after in case that it is not possible to stay within the time
windows. In the following, we explain the created scenarios in more detail, starting
with the scenarios with not-changing sets of recurring tasks, i.e. crafted scenarios
and random scenarios, and afterwards scenarios with changing recurring tasks.

8.4.1.1 Scenarios with Not-Changing Recurring Tasks

Table 8.5 gives an overview of the properties of the different created scenarios with
not-changing recurring tasks regarding environment factors. The smaller scenarios
contain 4 respectively 6 recurring tasks (also indicated by the Arab number in the
scenario names) and a total of 7 pickup/delivery stations. They were performed on



an environment consisting of a grid of 11 x 11 locations, where each location has
connections to its direct neighbor (see for instance Figure 8.43). The scenarios with
8 recurring tasks were performed on an environment of 21 x 21 locations with a
total of nine stations. All scenarios contain two vehicles to fulfill the tasks and one
depot, at which the vehicles are housed. The depot is always set in the middle of
the environment.

Scenario Recurring tasks Stations Depot Vehicles Map size
total probability
craft-4-1 4 1.00 7 1 2 11x11
craft-4-I-'TW 4 1.00 7 1 2 11x11
craft-6-1 6 0.95 - 1.00 7 1 2 11x11
craft-6-1-TW 6 0.95 - 1.00 7 1 2 11x11
rand-6-1 6 0.95 7 1 2 11x11
rand-6-11 6 0.95 7 1 2 11x11
rand-8-1 8 0.95 9 1 2 21x21
rand-8-11 8 0.95 9 1 2 21x21
craft-8-1 8 0.95 9 1 2 21x21

Table 8.5: Properties of scenarios with not-changing recurring tasks regarding envi-
ronment factors

The essential key for the creation of generally valid scenarios was the introduction
of randomness. Just as in real world PDPs, there are various influences that alter
the set of recurring tasks to be fulfilled every day. Even though most tasks of the set
of recurring tasks do appear every day, there may be days at which the one or the
other task does not appear. This is modeled by a probability that is assigned to each
task. As depicted in Table 8.5, each of the recurring tasks (or a slight modification
of it within sim) appears in each run instance of the corresponding scenario with
a given probability of at least 95%, except for the craft-4-I-...scenarios, where the
probability was 100%. In addition, there was “noise” in each run instance, i.e.
randomly generated tasks that can occur at any point in time during a run instance.
These two factors make even predefined scenarios very general and realistic.

Table 8.6 gives an overview of the properties of the different created scenarios
with not-changing recurring tasks regarding runs and tasks. The length of the
sequence of run instances that forms a scenario depends on the number of intended
recurring tasks, namely 10 run instances for scenarios with 4 recurring tasks, 20 run
instances for scenarios with 6 recurring tasks, and 40 run instances for scenarios with
8 recurring tasks. To give the EIA the chance to identify the these recurring tasks,
a number of training runs are necessary, after which the optimization can start.
The concrete number of training runs varies between 3 and 12 for the scenarios.
The number of noise tasks was chosen randomly from between 10 to 30 percent of



the number of intended recurring tasks. Please note, that the displayed values for
the tasks are rounded average values from three instances of each scenario. In the
following we explain each of the scenarios listed above in more detail.

Scenario Runs Tasks Noise
total training total noise (in percent)
craft-4-1 10 3 53 13 25.00%
craft-4-I-TW 10 3 54 14 26.38%
craft-6-1 20 6 150 35 23.50%
craft-6-I-TW 20 6 159 43 26.89%
rand-6-I 20 3 131 17 13.01%
rand-6-11 20 3 131 15 11.73%
rand-8-1 40 12 409 91 22.33%
rand-8-11 40 12 393 89 22.71%
craft-8-1 40 12 393 73 18.59%

Table 8.6: Properties of scenarios with not-changing recurring tasks regarding runs
and tasks

e craft-4-1: This scenario defines a basic set of tasks that is solved poorly by
the basic system on its own and that hence forms the set of recurring tasks the
EIA should identify. Most of the following scenarios, in particular all crafted
scenarios, are based on this minimal set and are augmented with additional
tasks that repeat this pattern again. Table 8.7 lists the tasks that appear in
this scenario, whereas Figure 8.43 exemplary illustrates the distribution of the
pickup/delivery stations and the depot in this scenario over the environment.

Pickup Delivery Load size Probability
station time station time
Task 1 4 25 6 30 20 1.00
Task 2 3 25 5 25 20 1.00
Task 3 2 50 7 55 20 1.00
Task 4 1 50 7 55 20 1.00

Table 8.7: Tasks of the scenario craft-4-1

According to the task set listed in Table 8.7, both vehicles first move to the
lower right corner to perform tasks 1 and 2. Subsequently, they move to the
upper left corner of the environment to perform tasks 3 and 4. Thus, both
vehicles move almost across the entire environment, generating high travel
costs. Additionally, tasks 3 and 4 can not be serviced right away as the vehicles
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Figure 8.43: Distribution of stations and depot over an 11 x 11 environment for the
scenario craft-4-1

first have to move there after they perceived them in iteration 50. A better
strategy with regard to TTC would have only one vehicle go down into the
lower right corner performing tasks 1 and 2, while the other vehicle waits in the
depot until tasks 3 and 4 are announced and then performs those two tasks.
This is exactly the solution the EIA will create.

e craft-4-1I-TW: Employing the same tasks as in the craft-4-I scenario above,
this scenario additionally enforces time windows in which the tasks have to be
fulfilled. As mentioned above, this in turn limits the number of good solutions
severely as only those solutions that stay within the time windows yield good
evaluations.

e craft-6-1: Two additional tasks were added to the recurring tasks of scenario
craft-4-1 that cause the basic system to perform in a suboptimal way twice
during a run. In addition to the problem instance described above, the vehicles
now have to move back to the lower right corner of the environment and do
so — when unadvised — in the wrong order. The EIA’s advice will cause the
vehicle that solved the tasks in the lower right corner to serve the tasks that
are appearing at a later point in time as well.

e craft-6-I-T'W: Again, the same tasks are employed as in the craft-6-1 scenario
described above but with enforced time windows. However, in this scenario the
first four tasks appear in every run instance, whereas the last two only appear
with a probability of 95%. The time windows are relatively small, forcing the
EIA to create a solution that accomodates the times. Table 8.8 lists the tasks
of this scenario.



Pickup Delivery Load size Probability
station time station time

Task 1 4 0-8 6 0-14 20 1.00
Task 2 3 0-8 ) 0-12 20 1.00
Task 3 2 25-41 7 30-41 20 1.00
Task 4 1 25-41 7 30-41 20 1.00
Task 5 6 50-56 4 50-60 20 0.95
Task 6 5 52-58 3 52-62 20 0.95

Table 8.8: Tasks of the scenario craft-6-1-TW

e rand-6-I: This purely randomly generated scenario has an even distribution
of seven nodes on a 11 x 11 environment and requires the vehicles to serve six
tasks that are created randomly as well. That means that the locations for
pickup and delivery as well as the starting times and the load sizes are random
values that were assigned at the time the scenario was created. The only
constraint was that the timing of the pickup and the delivery are reasonably
close together as not to have vehicles pick up goods and not let them see where
they have to be brought to.

e rand-6-II: A scenario that uses the same environment as the one above but
incorporates different, randomly generated tasks.

e rand-8-I: This scenario distributes eight tasks on an environment of 21 x 21
locations. As with the smaller randomly generated scenarios, the tasks are
random with regard to their location, load size, and timing.

e rand-8-II: This scenario was created with the same input to the randomizer
as rand-8-1 but with other, randomly generated tasks. While the environment
is the same, this scenario shows different characteristics with regard to timing
and location of tasks.

e craft-8-I: This scenario is based on the random task set of scenario rand-8-1
but has been manually altered so that two tasks are very similar to each other,
thus being put into the same cluster when identifying the recurring tasks. This
will demonstrate the ability of the EIA to cope with situations in which very
similar tasks occur in the system that are part of the set of recurring tasks but
not distinguished by the clustering algorithm.

8.4.1.2 Scenarios with Changing Recurring Tasks

In contrast to the aforementioned scenarios where the recurring tasks do not change,
in the subsequent scenarios the recurring tasks change at some point in time. Please
note, only the transportation requests change, while the distribution of the stations



and the layout of the environment remains the same. In these scenarios, the EIA
initially has to create advice for the recurring tasks it identifies in a first block of run
instances. Then, the recurring tasks change in the following block of run instances,
forcing the EIA to adapt to the new situation and to create advice for the basic
system. Usually, there is again a learning phase in which the recurring tasks are
extracted from the agent data over a couple of run instances. After this learning
phase, the EIA starts to create advice for the new set of recurring tasks. If the
situation changes again, the EIA has to adapt again and so forth.

Table 8.9 gives an overview of the properties of the different created scenarios
with changing recurring tasks regarding environment factors. All created scenarios
contain 6 recurring tasks and again a total of 7 pickup/delivery stations. They are
again performed on an environment consisting of a grid of 11 x 11 locations with
two vehicles to fulfill the tasks and one depot, set in the middle of the environment.
Each of the recurring tasks (or a slight modification of it within sim) appears in
each run instance of the corresponding scenario with a given probability of at least
95% as well.

Scenario Recurring tasks Stations Depot Vehicles Map size
total probability

chang-6-1 6,6 0.95 - 1.00 7 1 2 11x11

chang-6-11 6,6 0.95 - 1.00 7 1 2 11x11

chang-6-1I1 6,6,6  0.95- 1.00 7 1 2 11x11

Table 8.9: Properties of scenarios with changing recurring tasks regarding environ-
ment factors

Table 8.10 gives an overview of the properties of the different created scenarios
with changing recurring tasks regarding runs and tasks. Contrary to the scenarios
with not-changing recurring tasks, the length of the sequence of run instances that
forms a scenario now is different. The number of training runs remains constant
at 6 for all scenarios. The number of noise tasks was chosen randomly around 11
percent of the number of intended recurring tasks. Please note again, that the
displayed values for the tasks are rounded average values from three instances of
each scenario. In the following we explain each of the scenarios listed above in more
detail.

e chang-6-1: This scenario starts with 20 run instances using one set of 6 re-
curring tasks. The instances were created with additional random tasks and
probabilities for the recurring tasks as described before. Then follow 12 run
instances created using a different randomly created set of 6 recurring tasks,
again with random influences during runtime, after which follow another 20
run instances with the first set of recurring tasks. The number 12 was chosen,
because it is just too small to allow for a change in advice by the EIA.



Scenario Runs Tasks Noise
total training total noise (in percent)

chang-6-1 52 6 344 43 12.61%
chang-6-11 64 6 417 53 12.70%
chang-6-111 60 6 377 37 9.72%

Table 8.10: Properties of scenarios with changing recurring tasks regarding runs and
tasks

e chang-6-11: For this scenario, the same sets of recurring tasks have been used
as in scenario chang-6-1, but now having 24 instead of 12 run instances before
changing "back”. This should allow for a change in advice by the EIA.

e chang-6-111: This scenario is completely different from the first two and has
been randomly generated. It has three blocks of run instances using three
different (random) sets of 6 recurring tasks, each set for 20 run instances.

8.4.2 Experiment Execution

Admittedly, the scenarios that were created for the evaluation of the ETA approach
are quite simple compared to the scenarios created for the evaluation of the IBC
approach. However, they clearly show the potential of the EIA approach. More
advanced scenarios could not be used due to the simple nature of the optimization
algorithm within the EIA that was employed to calculate optimal solutions. With
a more sophisticated optimization algorithm, solutions for larger problems could be
calculated in an acceptable time.

To be able to compare the results of the system running without advice and
with advice by the EIA, the first step was to prepare a repeatable execution of
the created scenarios, which allows for a direct and fair comparison of the system
performance with and without the EIA. Therefore, for each of the created scenarios,
an environment and a scenario configuration file were created as described in Section
8.1.2. Then a simulation of each scenario was performed and recorded, in which
noise tasks were created and the task occurrence probability was considered. The
recording generates a new scenario configuration file that can then be used to rerun
the simulation exactly the way it was at the time of recording, i.e. all the tasks
appear with a probability of 100% and no additional noise tasks are created. To
overcome statistical anomalies resulting from the incorpoprated randomness, each
of the scenarios defined in the last subsection has been simulated and recorded three
times, resulting in three different scenario configuration files. Every recording was
then replayed, once without the EIA and once with it, while both replays generate
exactly the same tasks.

The number of parameters that can be changed in the EIA is relatively small.
Most of the parameters have been set to sensible default values, which turned out to



be sufficient in all of the regarded cases. One important exemption are the penalty
multipliers of the quality function of the optimization algorithm, which have been
carefully evaluated. Subtle changes in these factors can change the solutions the
algorithm creates and may lead to later bounding and therefore longer runtime.
The values presented here reflect a good compromise that let the algorithm generate
solutions that are both reasonable to an experienced human observer and keep the
runtimes in check. Table 8.11 shows the most important parameters and the values
that were used in the evaluations. The infochemical parameters were left untouched.

Name Description Value

Clustering and Optimization

knax time window for clusterer 20
qualthresh  threshold to determine if emergent solution 95%
should be optimized

minocc runs a task has to appear in to be recurring 0.7
clustthresh  threshold to determine if a task belongs to a cluster 20
Distance function for clustering of tasks

T weighing factor for locations 0.3
v weighing factor for goods 0.1
w weighing factors for time windows 0.3

Application of rules

synthresh ~ maximal distance of abstracted synomone 20
to perceived synomone
iterations for which a rule is applied consecutively 100
Quality function of optimization algorithm
w weight parameter to end up values higher than 1 10°
A penalty multiplier for distance covered by agents 1
7 penalty multiplier for incorrect order in solution 15
v penalty multiplier for violations of time window, if any 3
when no times windows are present 0

Table 8.11: Parameter values for the evaluation of the EIA approach

To get a performance measure for the solutions, the quality function of the EIA
was used. Its value depends on the distance traveled by the vehicles, the task order,
and the violation of time windows (see equation 7.20). The system that performed
better according to this quality function got a higher value for this run than the
other system.

To compare the solutions for the entire scenario, the solutions of all runs are
averaged. Table 8.12 gives an example of the data collected during the simulation
of scenario craft-4-1. As defined in Table 8.6, a total of three training runs were
performed first before the optimization process started. Additionally, the example



shows that the solution of the recurring tasks continuously converges towards the
optimum. A thorough examination of the data collected and an explanation of the
data is given in Subsection 8.4.4.

Run Unoptimized Enhanced Optimal Rule
solution solution solution created
(all tasks) (all)  (recurring) (recurring)
1 1315.79 1315.79 1315.79
2 1388.89 1388.89 2127.66
3 2083.33 2083.33 2083.33
4 943.400 943.400 2083.33 2777.78 TRUE
5 1265.82 1333.33 2083.33 2777.78 TRUE
9 1086.96 1315.79 2777.78 2777.78
10 1282.05 1851.85 2777.78 2777.78

Table 8.12: Shortened example of simulation data for craft-4-1

8.4.3 Experimental Results

Table 8.13 clearly shows that the EIA, even in its current, simple form, enhances
the performance of the basic, self-organizing emergent system at runtime in each
of the scenarios. Even those scenarios, which were created randomly, show an im-
provement. The results were compiled by averaging the results of all runs of all
the experiments for the same scenario. The change between utilities is expressed
in percent where a positive value means that the advised system performed better
than the unadvised one.

As expected, the EIA is able to improve the solutions for the scenarios that were
crafted to contain a set of recurring tasks that provokes suboptimal behavior. The
solutions for the recurring set are often even optimal. The results clearly show
that it is a valid assumption that optimization of a small recurring set leads to
improvements even if the set itself is mixed with random tasks. Scenarios that
only showed minimal improvements (such as rand-8-II') have already been solved
in a very good way by the unadvised system. The impact of the EIA is therefore
hardly noticeable. However, it is important to note that the EIA did not cause any
deterioration — on the contrary, it even improved these near-optimal solutions.

While the improvements for scenarios that contain a set that is known to be solved
in a suboptimal way are already promising, the improvements in the completely
random scenarios are even more interesting. They show that the solutions of the
basic system can also be improved under circumstances where such optimizations are
not obvious for human observers. This promising result makes the ETA applicable to
real world scenarios that consist of situations that are similar every day but contain
additional, more or less random tasks interwoven in the recurring pattern.



Scenario without EIA with EIA Improvement

craft-4-1 1319.37 1415.51 7.29%
cratf-4-1-TW 210.94 240.31 13.92%
craft-6-1 704.06 797.63 13.29%
craft-6-1-TW 140.46 170.41 21.32%
rand-6-1 627.26 737.41 17.56%
rand-6-11 566.05 726.69 28.38%
rand-8-I 177.96 186.05 7.49%
rand-8-11 181.08 185.41 2.39%
craft-8-1 24417 250.90 2.76%
chang-6-1 836.45 956.74 14.38%
chang-6-11 800.74 936.90 17.00%
chang-6-111 728.74 874.22 19.96%

Table 8.13: Overall experimental results for the EIA approach

Additionally, the adaptability of the approach can be observed in the results for
the scenarios with a changing task set. The EIA is capable to adapt to new scenarios
even if these are fundamentally different from the ones before if given enough time
to learn about the new scenario. In case the scenarios are not completely different
and the rules that have previously been learned can still be applied, an advised
system will perform even better as the existing advise improves the solution during
the learning time for the new set.

Overall, the experimental evaluation shows that the EIA approach is able to pro-
vide the agents with good advice, without undermining the important and useful
properties of the underlying self-organizing emergent system necessary to deal with
the dynamic nature of the problem.

8.4.4 Analysis of Results

To show how the results were compiled, the process is illustrated by two simula-
tions of the scenarios craft-6-1 and chang-6-1I1. Table 8.14 shows a summary of the
simulation of the scenario craft-6-I with and without the ETA. 151 tasks had to be
executed during 20 runs. 37 of these tasks were noise tasks, i.e. were created ran-
domly during the recording phase. This means that 114 tasks were part of recurring
tasks in the respective runs. The optimal solution for the set of recurring tasks is
1449. This solution was reached for the recurring tasks within 12 runs, while 6 runs
were attributed to the learning phase of the EIA and 6 rules were created. The un-
optimized average solution for all tasks in a run was 711 while the average solution
of the system with the EIA enabled was 812. This is an improvement of 14.25%.
There are several interesting things to note about these results. First of all, they
show how the EIA optimizes the system for the recurring tasks. The system uses



Total number of tasks: 151

Number of noise tasks: 37
Noise percentage: 24.50%
Number of runs: 20
Optimal solution: 1449
Converged in runs: 12
Training runs: 6
Created rules: 6
Unoptimized solution (average): 711
Improved solution (average): 812
Improvement: 14.25%

Table 8.14: Results of an experiment for the scenario craft-6-1

the optimal solution for these tasks in the 12" run. As the EIA did only start to
optimize the system after the 6! run, this means that it only required five runs to
change the behavior of the agents in a way that lets it solve the set of recurring
tasks in an optimal manner. Second of all, it becomes obvious that the optimization
of the set of recurring tasks also leads to improvements in the overall solution if a
lot of tasks that are not part of this set and even disturb the set are part of the
runs. Almost one quarter of the tasks that were recorded were not part of the set
of recurring tasks. Still, the advice created by the EIA had a significant positive
impact on the results for all tasks.

The detailed data of the craft-6-1 experiment is presented in Table 8.15. The data
for the unoptimized and the improved solutions of the above table is deducted by
averaging the second or third column respectively. The improved solution for the
recurring tasks can be seen in the fourth column. A comparison with the fifth column
— the optimal solution for this set of tasks — shows how the advice created by the
EIA lets the agents perform better for this set and even reach the optimal solution in
many cases, the first time in run 12. The fluctuations of the improved solutions are
due to the random tasks that may change the order in which the recurring tasks are
executed and the probabilities with which the recurring tasks are part of a run. To
prevent the system from trying to optimize after runs that showed a great difference
to the ones before due to interference by random noise (a form of over-optimization),
solutions that are significantly worse than previous ones are not regarded (as in run
13 and 18). The table also shows that the improved solution is not always better
than the unoptimized one, especially during the phase in which the EIA converges
to the optimal solution for the recurring tasks (see e.g. run 10). Nonetheless, when
regarded over several runs, the enhancements are significant and can be found in
almost every run, even in those in which the set of recurring tasks was severely
disturbed by random tasks (again runs 13 and 18).

Another interesting example is depicted in Table 8.16, which shows the data col-



Run Unoptimized

solution

(all tasks)

Improved
solution

(all)

(recurring)

Optimal
solution
(recurring)
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created
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568.1818182
1000.000000
581.3953488
694.4444444
1388.888889
343.6426117
543.4782609
427.3504274
645.1612903
751.8796992
588.2352941
602.4096386
952.3809524
800.0000000
1000.000000
613.4969325
769.2307692
1020.408163
609.7560976
316.4556962

568.1818182
1000.000000
581.3953488
694.4444444
1388.888889
343.6426117
543.4782609
467.2897196
636.9426752
617.2839506
806.4516129
699.3006993
1136.363636
980.3921569
1449.275362
884.9557522
1123.595506
1136.363636
826.4462810
358.4229391

568.1818182
1000.000000
1000.000000
1000.000000
1111.111111
1219.512195
909.0909091
909.0909091
980.3921569
1250.000000
1282.051282
1449.275362
101.0101010
1010.101010
1449.275362
1449.275362
1449.275362
102.0408163
1449.275362
1449.275362

1449.275362
1449.275362
1449.275362
1449.275362
1449.275362
1449.275362

1449.275362
1449.275362
1449.275362
1449.275362

1449.275362
1449.275362

TRUE
TRUE
TRUE
TRUE
TRUE

TRUE

Table 8.15: Detailed results of an evaluation run for the scenario craft-6-1



lected during a simulation of scenario chang-6-11I. The first 20 runs show a normal
optimization process. Advice is created to accommodate the recurring tasks and
the system reaches the optimal solution for the set of recurring tasks. In run 21
however, a completely different set of recurring tasks is presented to the system.
The recurring tasks as seen by the EIA has not changed yet as the clusterer’s time
window still takes into account the previous runs. This situation changes after run
24 when the clusters are getting to small and the first old tasks are no longer part
of the recurring tasks. Instead, the EIA either ignores the run due to an assumed
statistical anomaly (run 24) or sees a significantly shortened set of recurring tasks
(runs 25-27) with accordingly higher goal values. In runs 28-33 no set of recurring
tasks could be found any more and the EIA therefore does not calculate the goal
value of the emergent and optimal solutions. In run 34 there is finally enough data
again to deduce a set of recurring tasks. However, as the goal value of the solution in
run 27 was so high, the emergent solutions are still ignored as statistical anomalies.
Finally, in run 36, the ETA has identified the recurring tasks again.

Run Unoptimized Improved Optimal Rule
solution solution solution created
(all tasks) (all) (recurring) (recurring)

1 465.1162791  465.1162791 465.1162791

2 757.5757576  757.5757576  757.5757576

3 746.2686567  746.2686567  1000.000000

4 549.4505495  549.4505495 1000.000000 1449.275362  TRUE

5 1265.822785  1265.822785  1000.000000  1449.275362  TRUE

6 641.0256410  653.5947712 1010.101010  1449.275362 FALSE

7 598.8023952  613.4969325 1000.000000 1449.275362  TRUE

8 602.4096386  602.4096386 101.0101010

9 574.7126437  724.6376812 1282.051282  1449.275362 TRUE

10 1000.000000  1250.000000 1250.000000 1449.275362 TRUE

11 781.25.0000 1149.425287 1449.275362  1449.275362

12 763.3587786  869.5652174 101.0101010

13 1388.888889  1694.915254  1449.275362  1449.275362

14 666.6666667  909.0909091  1449.275362  1449.275362

15 549.4505495  757.5757576  1449.275362  1449.275362

16 364.9635036 487.804878  1449.275362  1449.275362

17 854.7008547  1052.631579 1204.819277 1449.275362 FALSE

18 609.7560976  724.6376812 1449.275362  1449.275362

19 568.1818182  613.4969325 101.0101010

20 1388.888889  1694.915254  1449.275362  1449.275362

21 751.8796992  826.4462810 97.37098345  1449.275362 FALSE

22 751.8796992  826.4462810 1000.000000 1449.275362 FALSE

23 990.0990099  1075.268817 877.1929825 1449.275362 FALSE

24 869.5652174  840.3361345 168.6340641



Run Unoptimized

solution

(all tasks)

Improved
solution

(all)

(recurring)

Optimal
solution
(recurring)

Rule
created

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
57
58
59
60

869.5652174
751.8796992
751.8796992
751.8796992
751.8796992
990.0990099
534.7593583
751.8796992
751.8796992
751.8796992
751.8796992
689.6551724
990.0990099
751.8796992
751.8796992
990.0990099
531.9148936
074.7126437
487.8048780
574.7126437
662.2516556
574.7126437
543.4782609
574.7126437
662.2516556
574.7126437
606.0606061
1176.470588
1176.470588
574.7126437
074.7126437
346.0207612
574.7126437
574.7126437
574.7126437
800.0000000

840.3361345
826.4462810
826.4462810
826.4462810
826.4462810
1176.470588
621.1180120
826.4462810
826.4462810
826.4462810
826.4462810
826.4462810
1176.470588
763.3587786
854.7008547
1176.470588
531.9148936
074.7126437
487.8048780
574.7126437
662.2516556
574.7126437
543.4782609
574.7126437
662.2516556
574.7126437
606.0606061
1176.470588
1562.500000
719.4244604
952.3809524
378.7878788
833.3333333
833.3333333
833.3333333
1204.819277

1612.903226
4166.666667
16666.66667

1538.461538
1052.631579
826.4462810
787.4015748
763.3587786
854.7008547
787.4015748
826.446281
826.446281
787.4015748
1176.470588
1123.595506
1123.595506
12500.00000
5555.555556
5555.555556
5555.555556
8333.333333
5555.555556
8333.333333
4166.666667
2077777778
1298.701299
1149.425287
1149.425287
1149.425287
1149.425287

4166.666667
4166.666667
16666.66667

854.7008547
854.7008547
854.7008547
854.7008547
854.7008547
854.7008547
854.7008547
854.7008547
1176.470588
1176.470588
1176.470588
12500.00000

8333.333333
8333.333333
8333.333333
4545.454545
4545.454545

1298.701299
1298.701299

FALSE

TRUE
TRUE

FALSE

FALSE

TRUE

TRUE
TRUE

FALSE
TRUE

Table 8.16: Detailed results of an evaluation run for the scenario chang-6-I11



The runs after run 40 show the same behavior. First, the EIA does not realize
something has changed and still considers the old set of recurring tasks. Then, as the
clusters contain less and less tasks, the set of recurring tasks gets smaller and goal
values spike before the EIA has not enough data any more. This time however, the
system identifies a part of the new recurring tasks in run 51 and starts optimizing
for it. In run 54, another task is added to the new set of recurring tasks. The
gaps in runs 56 — 58 can again be explained by the drastic change in goal values
— interpreted as a statistical anomaly — as the EIA adds another task to the set of
recurring tasks. It is only in run 59 that the EIA has finally found the correct 6
recurring tasks.

The reason the advised system performs so good in this scenario (an improvement
of 14.23% in this simulation instance) is that the agents keep the rules the entire
time. A rule that has been created for another set of recurring tasks can still be
beneficial for another one. Additionally, the optimizations for the partial solutions
in runs 52 — 55 enhance the solution of the emergent system already in an early
stage of adaptation. The improvements would be even greater if the time window
for the clusterer was narrower (allowing faster adaptation to a changing set) or each
of the three blocks would be used for a longer time.

8.5 Conclusion

In this chapter we have proven that the models, mechanisms, and architectures
developed in the previous chapters enable the design and operation of efficient self-
organizing emergent systems. We have evaluated them experimentally in two real-
istic PDP case studies from the field of intralogistics, for which we have developed
a simulation tool.

The experimental results and their analysis regarding the IBC approach have
demonstrated that the decentralized coordination by means of multiple digital info-
chemicals with different functions, dynamics, and semantics within one coordination
mechanism — as provided by the DIC model and instantiated by the SA Pi experiment
series of the PIC mechanism — is able to achieve a better solution regarding various
quality measures. In particular with regard to the total travel costs (TTC), the
completion time (CT), the throughput (TP), and the communication costs (TRI),
which represent the most relevant quality measures, the improvements in compari-
son to the benchmarking S experiment series become very apparent. The significant
reduction of TTC as well as TRI in various environments saves high operational ex-
penditures for the operator of the self-organizing emergent system. The reduced CT
as well as the increased TP at the same time increment the profit for the operating
company. Furthermore, because the improved coordination in SAPi is able to adapt
the number of used vehicles to the number of transportation requests to fulfill, it
makes the use of a specific amount of vehicles superfluous, which additionally saves
capital expenditures. In addition, the improved coordination reduces the number



of blocking vehicles, which is in particular necessary for small environments such as
TW-Env 1, in which these vehicles congest the environment and thus worsen the
solution. All in all, the experimental results thus not only have shown that the
PIC mechanism scales with the number of vehicles, but also with the number of
transportation requests to fulfill as well as the size of the environment.

The IBC approach furthermore allows for the design of self-organizing emergent
system exhibiting both a high solution efficiency as well as a high solution process
efficiency. The solution efficiency results of the SAPg series suggest the conclusion
that if the communication costs are negligible (and therewith the solution process
efficiency), all types of infochemicals should have to be propagated very frequently
in a broadcast style over the entire environment to achieve the best efficiency. In
particular the wide-range propagation of pheromones and their slow evaporation
yields the highest solution efficiency in almost all TW-Env environments of the
first case study, which underpins this conclusion. However, as we have seen by
the experiments in the AM-Env environment of the second case study, this can
be a wrong conclusion, because outdated pheromones may cause a lot of confusion.
Especially when only a few routes are available and the vehicles approach the pickup
stations nearly by the same routes, an individual configuration of different types of
infochemicals (as in the SAPi series) achieves a much better solution efficiency.
Particularly, when the communication costs cannot be neglected, which is usually
the case, the best solution efficiency and solution process efficiency can be achieved
with individually configured infochemicals.

However, the experimental results regarding the IBC approach have also re-
vealed some of the runtime insufficiencies of self-organizing emergent MASs (see
Section 5.1). The reactiveness, the greediness, the absence of global knowledge, as
well as the inability to ’look into the future’ of the agents result in several inefficien-
cies (see for instance the results on the number of blocking agents). But the exper-
imental results and their analysis regarding the EIA approach have demonstrated
that this approach is actually able to improve the efficiency of such self-organizing
emergent systems at runtime. We have evaluated the capabilities of the approach in
crafted scenarios (in which the layout of the stations and the order of the tasks were
intended to provoke a situation in which the solution of the basic system coordinat-
ing by means of PIC is known to be suboptimal), random scenarios (which have not
been devised to explicitly provoke bad behavior), and changing scenarios (in which
the set of recurring tasks changes over time). The results have shown that the EIA
approach is able to enhance the performance up to 28% of the basic solution, even
in those scenarios, which were created randomly. Thus, the solutions of the basic
system can also be improved under circumstances where such optimizations are not
obvious for human observers. The adaptability of the approach can be observed in
the results for the scenarios with a changing task set.

Despite these good results of the IBC approach and the EIA approach, admit-
tedly, both approaches have their limitations and hence can be further improved in
future. Thus, in the next chapter, we will summarize all conclusions, discuss these
limitations, as well as provide an outlook on future work.






Chapter 9
Conclusions and Outlook

In this thesis we have developed various models, mechanisms, and architectures
that simplify the design of efficient self-organizing emergent systems as well as facil-
itate their efficient operation. Section 9.1 summarizes these results and emphasizes
their contributions with regard to the problems and challenges introduced at the
beginning of this thesis. Section 9.2 critically discusses certain characteristics and
limitations of the contributions as well as comments on certain decisions. Based on
this discussion, Section 9.3 lists different aspects, how to extend and improve the
developed approaches by future work.

9.1 Summary

The starting situation of this thesis was that self-organizing emergent systems are
required by many companies in order to enable agile, flexible, scalable, robust, and
adaptive computer systems, which generate only minimal operational expenditures
due to their high degree of autonomy. However, several challenging problems prevent
these systems from being practically applicable for the effective and efficient usage
in industrial settings. This thesis has tackled two of these problems.

First, the design of effective but yet efficient self-organizing emergent systems was
too complex, time-consuming, and costly (see Problem 1). To tackle this problem,
we have provided a versatile and coherent model that allows for an efficient de-
centralized coordination of system elements (see Challenge 1). Therefore, we have
investigated the general principles behind IBC in biology and adopted them leading
to the DIC model. The developed model enables an effective but efficient coordi-
nation of homogeneous and heterogeneous system elements by means of different
types of digital infochemicals within one single coordination mechanism. Due to the
expressiveness of the model and the plethora of inspiring examples yet not adopted,
we were able to specify an efficient DCM inspired by the pollination of flowers by
honey bees, which fulfills the solution requirements of PDPs (see Challenge 2).
Moreover, we have provided a design pattern, which allows for a time-saving and
cost-effective, systematic engineering of self-organizing solutions grounded on IBC,
design guidelines, which support engineers in identifying, specifying, and adapting
new DCMs grounded on IBC, as well as a simulation tool, which supports engineers
in identifying and selecting the most suitable and efficient coordination model(s)
and mechanism(s) according to the system requirements (see Challenge 3). All of



these developed artifacts simplify the design of more efficient self-organizing emer-
gent systems and reduce development time and costs. The conducted experiments
regarding the IBC approach have proven the increased efficiency of these systems.

Second, due to several runtime insufficiencies the efficiency of self-organizing emer-
gent systems during their operation could not be guaranteed in all situations (see
Problem 2). Therefore, we have developed the EIA approach, which implements the
principles of self-adaptation in order to compensate for these runtime insufficiencies.
The EIA approach considers in particular the general constraints for the adaptation
of self-organizing emergent systems, which result from their specific system charac-
teristics compared to conventional computer systems. That is, the EIA approach
takes into account the low observability and poor controllability of self-organizing
emergent systems (see Challenge /). This facilitates the adaptation of self-organizing
emergent systems in a wider range of application domains, in which communication
may be very costly, locally forbidden, globally restricted, structurally infeasible, or
only temporally possible. The individual adaptation of the local behavior of sys-
tem elements is accomplished by providing the elements with advice in the form of
exception rules, how to behave more optimally in predicted future situations. All
advices preserve the basic self-organizing and emergent behavior of the system el-
ements as well as the resulting beneficial properties such as scalability, robustness,
flexibility, and adaptivity (see Challenge 5). That is, all problem-solving decisions
are still being made by the system elements themselves. Therefore, advice can be
ignored by the elements and in particular will be ignored, if it has not been applied
for a certain amount of time, e. g. if a predicted situation did not occur from some
time on any more. This is a tribute to the openness and autonomy of self-organizing
emergent systems (see Challenge 6). The conducted experiments regarding the EIA
approach have proven the achieved improvement of the efficiency of these systems.

To demonstrate the capabilities of the developed concepts and the perfect com-
plement to each other, we have instantiated both approaches for the efficient self-
organizing emergent but at the same time also self-adaptive solution to dynamic
PDPs. As a result, we have achieved a balanced mixture of the advantages of de-
centralized and centralized solution methods, i.e. a more flexible and faster solution
compared to the one constructed by a fully centralized method but also a more
efficient solution compared to the one constructed by a fully decentralized method.
The experimental evaluation has underpinned this achievement as well.

9.2 Discussion

Despite having moved forward substantially in solving the two key problems around
efficient self-organizing emergent systems, in this section we fairly discuss the devel-
oped approaches and concepts. For better readability, we separate this discussion
up into two parts according to the respective approach.



IBC Approach

Without any doubt, the artifacts developed in this thesis with regard to the IBC
approach simplify the design of efficient self-organizing emergent systems. However,
one has to be aware of the fact that designing these systems in general remains more
complicated than designing conventional computer systems, as the vague coherence
between the microscopic and the macroscopic level of these systems in general still
exists. But if the context and the solution requirements of a problem in hand align
with the functionality provided by the DIC model (which can be checked by the
developed design pattern), the artifacts developed in this thesis will reduce this
‘micro-macro gap’ to some extent and consequently will reduce the design com-
plexity, save development time and development costs. Even if we can prove this
reduced complexity qualitatively by the verifiable efficiency results of the designed
systems (see Subsection 8.3.3), the effectiveness of existing engineering methodolo-
gies (cf. Section 3.4) does not allow us to prove this achievement quantitatively, yet.
Moreover, some other aspects of the IBC approach have to be discussed as well:

e Applicability: As indicated, the IBC approach provides by no means an
all-in-one coordination model suitable for all purposes and all domains. It
rather is suitable for solutions that require e.g. the allocation of resources,
group formation, information dissemination, indirect interaction, or spatial
shapes and distributions, while providing a high degree of flexibility, robust-
ness, scalability, adaptivity, and autonomy. To identify if such a decentralized
solution is applicable to a problem in hand, an engineer has to consider the
context, problem, forces, and solution sections of the developed design pattern
(see Section 4.3). Please note that despite the discussed limitations of cen-
tralized solutions, for certain problems they still remain favorable compared
to decentralized solutions, e.g. due to their higher observability and better
controllability.

e Design guidelines: If the IBC approach has been identified as being suit-
able for solving a complex dynamic problem, the design guidelines developed
in this thesis provide a good starting point for the identification, development,
and adaptation of a new DCM grounded on IBC. Although the design guide-
lines therefore do not force an engineer to be a biological expert at the same
time, they cannot entirely repudiate their biological origin. Thus, some basic
knowledge in biology is still required to use the guidelines effectively.

e Runtime inefficiencies: One has to be careful not to construe the general
runtime insufficiencies of environment-mediated MASs (see Subsection 7.3.2)
as specific weaknesses of the DIC model or any instantiating DCM such as the
PIC mechanism. In order to develop a decentralized coordination approach
that compensates for these insufficiencies without any additional controller,
one has to ensure that the agents (1) have enough processing power to com-
pensate for their reactiveness and greediness on their own, (2) are able to share



all their knowledge immediately to gain global knowledge, and (3) are able to
"look into the future’ to assign a dynamically appearing task to the best agent
with respect to the global optimality of the solution. For a self-organizing
emergent MAS, this constitutes quite a complex endeavor.

Apart from the inherent runtime insufficiencies, a few aspects of the PIC mecha-
nism are worthwhile to discuss as well:

e Scalability: The more than 680.000 experiments regarding the PIC mecha-
nism (see Section 8.3) were executed using several Windows Server 2008 R2
machines in parallel, each equipped with multiple Quad-Core Intel Xeon X5550
(2,67 GHz) processors. The execution time of a single PDP scenario on these
machines took between less than a second for the smallest scenario with an ef-
ficient solution (SAPi series) up to almost ten minutes for the largest scenario
with an inefficient solution (S series). Thereby, the experimental results have
proven that the PIC mechanism scales not only with the number of partici-
pating agents, but also with the number of tasks to fulfill and the size of the
environment. Measuring the computation time within a single agent or loca-
tion of the environment with an increasing amount of information to process,
however, would have required some hundreds of independent processors and
machines, which were not available.

e Deadlocks and starvation: For environments with directed connections be-
tween two locations, the evasion mechanism (see Algorithm 7.9) integrated
in the PIC mechanism usually prevents the vehicle agents from falling into a
deadlock or starvation. By contrast, for environments with undirected con-
nections, similar to any other coordination mechanism, deadlocks cannot be
excluded. However, these environments are very unlikely for the considered
application domain.

e Fairness: Because fairness contradicts the inherent flexibility of self-organizing
emergent solutions, the current specification of the PIC mechanism does not
guarantee fairness, i. e. a task that appears prior to another task not necessar-
ily will be served in the same order. Moreover, the specification even does not
guarantee weak fairness, i.e. an appeared task may not be served ever.

e Benchmarking: The insufficiencies of existing centralized (OR) solution
methods (see Subsection 7.1.3.1) for very dynamic and complex PDPs, which
we were interested in in this thesis, do not allow for the calculation of optimal
solutions to these problems. As a consequence, this fact does not allow for a
comparison between the performance of a decentralized solution produced by
the PIC mechanism and an optimal solution. Moreover, as commonly agreed
benchmarking sets do not exist as well, a comparison to many existing de-
centralized (see Subsection 7.1.3.2) or hybrid (see Subsection 7.1.3.3) solution
methods is not possible either.



EIA Approach

Some aspects of the EIA approach have to be discussed as well:

e Applicability: Any instantiation of the EIA approach requires three premises
to be fulfilled by the controlled system (see Section 6.2). That is, each agent
of the controlled system must be able (1) to collect and dump its local history,
and (2) to incorporate exception rules in its local decision making. Usually,
an agent is not required to reason about these rules. As a consequence, these
two premises do not require an extensive amount of resources for data storage
or computation and hence can be fulfilled by most applications. Furthermore,
the EIA approach thus can be applied to a wide range of DCMs (see e.g.
Section 3.3). The third premise, that is a sequence of run instances must have a
(sub)set of similar tasks in (nearly) each run instance of the sequence, is usually
fulfilled by most problems in everyday life as well. For all other problems, in
which consequently no prediction is possible, no adaptation approach will be
successful and the agents of the system e.g. really would have to be able to
"look into the future’.

e Scalability: The scalability of any EIA instantiation depends significantly
on the capabilities of the optimization algorithm used within the instantiation
to optimize the solution to the set of recurring tasks. However, as already
mentioned, adequate OR solution methods for very complex problems, even
static ones, are very rare and usually not publicly available (cf. Section 7.1.3).
In the EIA instantiation presented in this thesis for the solution to PDPs, we
thus have implemented our own branch-and-bound algorithm for a proof of
concept. As a consequence, the set of recurring tasks as well as the number
of agents that could be adapted by this instantiation was limited. Even if it
can be expected that the EIA approach scales well for larger problems with
a larger set of recurring tasks, this claim cannot be verified experimentally at
the moment. Nonetheless, the question remains (even in the self-adaptation
community), if the scalability in terms of thousands or millions of agents will be
an issue for real-world application domains, or can we assume to split such big
problems into several hierarchical subproblems only requiring some hundreds
of agents to participate at most?

e Efficiency guarantees: Although an instantiation of the EIA approach is
able to improve the efficiency of self-organizing emergent systems at runtime,
strict guarantees on the efficiency that can be achieved or maintained by the
advised system cannot be provided, yet. For instance, due to the generally
low observability of these systems, the efficiency might decrease before the
EIA was ever able to learn about the problem and based on that to adapt the
system. Furthermore, even though an adaptation might improve the solution
efficiency of the advised system in certain situations, it cannot be guaranteed,
yet, that for other, possibly unexpected situations these exception rules are
counterproductive and thus will even worsen the solution.



9.3 Outlook

Based on the summary and discussion of the IBC and the EIA approach in the last
section, several aspects to investigate in future are conceivable for each approach.
Please note that the aspects mentioned in this section refer largely to the general
approaches, whereas the aspects mentioned in Section 7.4 refer to the corresponding
application domain specific instantiations.

IBC Approach

The experimental results and their analysis regarding the IBC approach have demon-
strated that the decentralized coordination by means of multiple digital infochemi-
cals with different functions, dynamics, and semantics allows for the design of more
efficient self-organizing emergent systems. Despite these substantial achievements,
a few aspects remain for future work:

e Identification of further DCMs grounded on IBC: Because IBC is the
most universally employed communication and coordination model between
organisms in biology, it provides a plethora of inspiring examples that have
not been adopted as DCMs for self-organizing emergent solutions yet. Apart
from the pheromone-based coordination and PIC mechanism, thus, the IBC
approach developed in this thesis has laid the foundation for the investigation
of a new source of inspiration and consequently the DIC model serves for a
variety of future instantiations also for other application domains apart from
PDP. One example not further explained in this thesis is the indirect defense
strategy applied by a specific species of plants [DvPdB03]. In order to get
rid of herbivores, these plants emit certain scents (synomones) that attract
natural enemies of these herbivores, which upon their arrival deter or destroy
the attacking herbivores but not the plants. This inspiration has e.g. been
used for the realization of a self-organizing emergent MAS based on the DIC
model for the real-time control of water distribution systems [DDKB10].

¢ Extension of design guidelines: Because the design guidelines cannot en-
tirely repudiate their biological origin, they may be enhanced in future. In
particular, the biological knowledge required to develop new DCMs should be
reduced to a minimum. Furthermore, the guidelines in future should provide a
more detailed step-by-step support, how to identify a new DCM based on the
solution requirements. This in turn requires the integration of the guidelines
into an engineering methodology. However, today it is not yet clear which
methodology is most appropriate for the engineering of self-organizing emer-
gent systems in general (cf. Section 3.4).

e Continuous parameter optimization: Because environment-mediated co-
ordination mechanisms in general are quite parameter sensitive, the proper



tuning of parameters has significant impact on the solution quality. How-
ever, the optimal configuration of the parameters depends significantly on the
number and the distribution of the tasks to fulfill, the number of vehicles
participating in the solution, and the size of the environment (as shown by
the experimental analysis in Subsection 8.3.4). Thus, a kind of continuous
optimization not only of the system behavior but also of certain parameters
regarding the used DCM is required. It has to be evaluated, if this optimiza-
tion can be handled by the EIA as well, or if additional control approaches are
required.

EIA Approach

The experimental results and their analysis regarding the EIA approach have shown
that the concept of an EIA as well as its instantiation for PDPs is powerful enough to
improve the efficiency of self-organizing emergent systems at runtime. Nevertheless,
some aspects remain for future work as well:

e More sophisticated optimization algorithms: As the scalability of any
EIA instantiation significantly depends on the applied optimization algorithm,
the application and integration of more sophisticated optimization algorithm
will consequently increase the scalability of an EIA instantiation as well as its
provided solution quality. Because in many cases the exact optimal solution
is not always required, algorithms that do not claim to generate the optimal
solution might come up with a sufficient solution much faster than e.g. the
branch-and-bound algorithm applied in this thesis. Because the application
of an optimization algorithm also depends on the problem domain, the use of
meta-heuristics such as genetic algorithms, which can be applied to arbitrary
application domains, is recommended.

e Conflict resolution mechanism: Since the definition of a rule-applying
agent includes a conflict resolution mechanism that decides which exception
rule(s) to apply in case that more than one exception rule is applicable, a
similar concept has to be included in an EIA. Because in the presented instan-
tiation an EIA derives only one type of exception rules (ignore rules), this was
not necessary so far. However, as soon as more types of exception rules can be
derived by an EIA, the latter has to decide, which type(s) of exception rule(s)
to derive for the adaptation of the controlled system. So, it has to be investi-
gated, if existing conflict resolution mechanisms from the rule community are
applicable for the EIA requirements.

e Decentralized /hierarchical EIA architectures: In the current specifica-
tion, an EIA is designed as an independent agent that runs centrally along with
the agents of the advised system. However, other architectural alternatives are
conceivable as well. For instance, every system element can be attributed with



its own EIA unit, while these units similarly then have to coordinate their ac-
tions and interactions to achieve a certain functionality. Likewise, these local
EIA units could also be advised by an additional central EIA unit, which then
represents a hierarchical architecture. For both architectural alternatives it
has to be proven, however, in which application domains they are more appro-
priate, which additional functionality can be provided to the advised system,
and which communication overhead such architectures generate!

Design guidelines for an EIA: In the same way as the design guidelines for
the IBC approach help to instantiate the DIC model, design guidelines for the
EIA approach will be required in order to instantiate the abstract functions of
the EIA model. In particular for new problem domains, engineers for instance
have to be supported in answering questions like: which local information
of agents has to be collected by an EIA, how to identify recurring tasks in
the global history, and how to identify exception rules that will improve the
efficiency of the controlled system?

Handle uncertainty and noise: In various application domains, informa-
tion does not necessarily need to be reliable. When the information the agents
collected is outdated (e. g. because the environment changed in the meantime)
or the sensors can not guarantee 100% accuracy, the EIA will have to deal
with these limitations and work around them, e.g. by applying a probability
factor to every piece of information. Storing such data and working with it
might be very different from the way it is done now and might require new
solutions that were not thought of yet.

Simulation of derived exception rules: For certain application domains,
the reaction of the agents to a new set of exception rules must not necessarily be
simulated before the exception rules are sent to the agents. In such cases, the
next run instance can be used to evaluate and learn, if the exception rules have
helped the system to perform better and to derive further optimizations. Due
to the possible diversity of exception rules, for certain application domains,
however, an EIA has to be capable of evaluating the effects of an exception
rule (set) first, to identify the most appropriate rule (set) to apply in a specific
situation, before deploying the rule (set) to the basic agents. This allows an
EIA to test in advance, how the agents will behave to a new exception rule
(set) before it is communicated to the agents. This kind of self-reflection is
usually achieved with simulations on a model of the system [Ste05]. If the
simulation result is still too bad, the rule creation step can be repeated until
the simulated solution is satisfactory. Only then all derived exception rules
will be sent to the real agents. Another option works similar to the function
of dreams in humans. [BIRB04] defines a ”dreaming” state for applications in
which operations can be executed and evaluated on the system itself but data
modified by the actions is not persisted. This resembles a simulation on the
real system with current, real data. However, one has to be aware of the fact



that such simulations can be computationally prohibitive due to an almost
infinite state space and may require quite a lot of time.

e Incorporation of risk analysis: In order to provide certain efficiency guar-
antees, it is not only useful to know, which degree of efficiency can be achieved
due to an adaptation of the system, but also, how worse a solution might
become in unexpected situations in particular due to the adaptation. This
requires an online test system that tests based on the last known state of the
advised system and of the EIA in an integrated simulation environment the
adaptations by the EIA to certain provoked situations as well as the corre-
sponding reaction of the adapted system. Based on the results the test system
can identify possibly awkward situations in advance. As a consequence, it can,
for instance, ’advice’ the EIA not to perform certain adaptations, when such
an awkward situation is detected in the real system. Such a test system could
even more advice the EIA to reverse certain prior adaptations of the system,
i.e. to adapt or delete certain exception rules already communicated to the
agents, as these rules may potentially worsen the global solution in these awk-
ward situations. Furthermore, the test system could inform the user of the
entire system, which potential risk in terms of worsening the solution exists
for the system at any point of time. On the other side, this potential risk
could also be utilized by the EIA in a conflict resolution mechanism for the
derivation of different types of exception rules. That is, the EIA sends exactly
this type of exception rule to the agents, which exhibits the lowest risk.

Even though (advised) self-organizing emergent solutions will hardly achieve the
efficiency of centralized solutions, their acceptance and application in particular in
industrial settings will become more profitable in future, if the design of efficient
solutions becomes easier and the benefits of adaptivity, flexibility, robustness, and
scalability compensate during operation for certain efficiency drawbacks. The con-
tributions of this thesis represent a major step towards this objective.
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Appendix A
XML Schemas

Listing A.1: XML Schema for main configuration files for SENSES

1| <?xml version="1.0" encoding="UTF-8"7>

<schema xmlns="http://www.w3.o0org/2001/XMLSchema"
targetNamespace="http://pvs.informatik.uni-augsburg.de/senses-data"
xmlns:senses="http://pvs.informatik.uni-augsburg.de/senses-data"

5 elementFormDefault="qualified">

<element name="configuration" type="senses:configuration" />

<complexType name="configuration">

10 <sequence>

<element name="default" type="senses:default" maxOccurs="1"
minOccurs="0" />

<element name="experiment" type="senses:experiment"
maxOccurs="1" minOccurs="0" />

15 <element name="logging" type="senses:logging" maxOccurs="1"

minOccurs="0" />

</sequence>

</complexType>

20 <complexType name="experiment">
<sequence>
<element name="global" type="senses:global" maxOccurs="1"
minOccurs="0" />
<element name="run" type="senses:run" minOccurs="1"
25 maxOccurs="unbounded" />
<element name="eca" type="senses:eca" maxOccurs="1"
minOccurs="0" />
</sequence>
<attribute name="name" type="string" />
30 <attribute name="type" type="string" />
<attribute name="optimize" type="boolean" />
<attribute name="record" type="boolean" />
<attribute name="protocol" type="boolean" />
<attribute name="number-of-runs" type="int"></attribute>
35 <attribute name="number-of-runs-learning" type="int" />
</complexType>

<complexType name="default">
<sequence >
40 <element name="settings" type="senses:settings" maxOccurs="1"
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minOccurs="0" />
<element name="parameters"

max0ccurs="1" minOccurs="

<element name="optimization"

max0Occurs="1" minOccurs="
<element name="general"
minOccurs="0" />
</sequence>
</complexType >

<complexType name="global">
<sequence>
<element name="setup"
minOccurs="0" />
<element name="settings"
minOccurs="0" />
<element name="parameters"
maxOccurs="1"
</sequence>
</complexType >

minOccurs="

<complexType name="run">
<sequence>
<element name="setup"
minOccurs="0" />
<element name="settings"
minOccurs="0" />
<element name="parameters"
maxOccurs="1"
</sequence>
</complexType >

minOccurs="

<complexType name="setup">
<sequence >

<element name="problem-domain"

minOccurs="1" />
<element name="environment"
maxOccurs="1"
<element name="scenario"
max0Occurs="1"

minOccurs="

minOccurs="

<element name="coordination-mechanism"

max0ccurs="1" minOccurs="
</sequence>

</complexType >

<complexType name="environment"
<simpleContent >
<extension base="string">

type="senses:general"

type="senses:setup"

type="senses:settings"

type="senses:setup"

type="senses:settings"

type="senses:parameters"

o" />

type="senses:optimization"

o" />

maxOccurs="1"

maxOccurs="1"
max0ccurs="1"

type="senses:parameters"
On />

max0Occurs="1"
maxOccurs="1"

type="senses:parameters"
Ou />

type="string" maxOccurs="1"

type="senses:environment"

i />
type="senses:scenario"
i />
type="string"
i />
>

<attribute name="path" type="string"></attribute>

</extension>
</simpleContent >
</complexType >

<complexType name="scenario">
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<simpleContent >
<extension base="string">
<attribute name="path" type="string"></attribute>
</extension>
</simpleContent >
</complexType >

<complexType name="settings">
<sequence>
<element name="iteration-limit" type="int" maxOccurs="1"
minOccurs="0" />
<element name="number-of-agents" type="int" maxOccurs="1"
minOccurs="0" />
<element name="task-generation-number" type="int" maxOccurs="1"
minOccurs="0" />
<element name="task-generation-limit" type="int" maxOccurs="1"
minOccurs="0" />
<element name="task-generation-probability" type="float"
max0Occurs="1" minOccurs="0" />
</sequence>
</complexType >

<complexType name="parameters">
<all>
<element name="PIC" type="senses:picParameters" />
</all>
</complexType >

<complexType name="optimization">
<sequence>
<element name="optimize" type="boolean" maxOccurs="1"
minOccurs="0" />
<element name="number-of-runs" type="int" maxOccurs="1"
minOccurs="0" />
<element name="number-of-runs-learning" type="int" maxOccurs="1"
minOccurs="0" />
</sequence>
</complexType >

<complexType name="general">
<sequence>
<element name="record" type="boolean" maxOccurs="1"
minOccurs="0" />
<element name="protocol" type="boolean" maxOccurs="1"
minOccurs="0" />
<element name="logging" type="boolean" maxOccurs="1"
minOccurs="0" />
</sequence>
</complexType >

<complexType name="picParameters">
<sequence>
<element name="emission-concentration" type="float" />
<element name="reward-concentration" type="float" />
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<element
<element
<element
<element
<element
<element
<element

</sequence>

</complexType

<complexType
<sequence>
<element
<element
<element

</sequence>

</complexType

<complexType
<sequence>
<element
<element
<element

</sequence>

</complexType

<complexType
<sequence >
<element
<element
<element

name="reward-concentration-variation"

name="idle-time" type="float" />

name="emission-rates"

name=
>
name="emissionRates">

type="float" />

name="pollenizer-agents" type="float" />
name="hive-agents" type="float" />

name="pollinator-agents"

>

name="infochemicalParameters">
name="evaporation-factor" type="float" />
name="diffusion-coefficient" type="float" />
name="threshold-concentration" type="float" />
>

name="eca">

name="rules" type="senses:rules" />

name="output" type="senses:output" />
name="precalculated-distances"

type="senses:precalculated-distances" />

<element

</sequence>

</complexType

<complexType
<attribute
<attribute
<attribute

</complexType

<complexType
<attribute
<attribute

</complexType

<complexType
<attribute
<attribute
<attribute

</complexType

<complexType

name="ga" type="senses:ga" />

>

name="rules">

name="load-rules" type="string" />
name="on-run" type="int" />
name="filename" type="string" />

>

name="output">
name="enabled"
name="filename"
>

type="boolean" />
type="string" />

name="precalculated-distances">
name="load-values" type="boolean" />
name="save-values" type="boolean" />
name="filename" type="string" />

>

name="ga">

type="float"

type="senses:emissionRates"
name="pheromones" type="senses:infochemicalParameters"/>
name="allomones" type="senses:infochemicalParameters"/>
name="kairomones" type="senses:infochemicalParameters"/>
="synomones" type="senses:infochemicalParameters"/>

/>

/>




<sequence>
<element name="heap" type="senses:heap" />
205 <element name="benchmark" type="senses:benchmark" />
<element name="population" type="senses:population" />
<element name="social-collapse" type="senses:social-collapse" />
</sequence>
<attribute name="run-length" type="string" />
210 <attribute name="use-cache" type="boolean" />
</complexType >

<complexType name="heap">

<attribute name="min-heap" type="int" />
215 <attribute name="max-heap" type="int" />
</complexType >

<complexType name="benchmark">
<attribute name="enabled" type="boolean" />
220 <attribute name="eval" type="double" />
<attribute name="times" type="int" />
</complexType >

<complexType name="population">

225 <attribute name="new-random" type="int" />
<attribute name="mut-over-cross" type="int" />

</complexType >

<complexType name="social-collapse">

230 <attribute name="enabled" type="boolean" />
<attribute name="after" type="int" />
<attribute name="perc-keep" type="int" />

</complexType>

235 <complexType name="logging">
<sequence >
<element name="logger" type="senses:logger"
max0Occurs="unbounded" minOccurs="0" />
</sequence>
240 </complexType >

<complexType name="logger">
<attribute name="name" type="string" />
<attribute name="logging" type="boolean" />

245 <attribute name="log-to-file" type="boolean" />
</complexType >

</schema>

Listing A.2: XML Schema for environment configuration files for SENSES

1/ <?7xml version="1.0" encoding="UTF-8"7>

<schema xmlns="http://www.w3.o0org/2001/XMLSchema"
targetNamespace="http://pvs.informatik.uni-augsburg.de/senses-data"
xmlns:senses="http://pvs.informatik.uni-augsburg.de/senses-data"

5 elementFormDefault="qualified">
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<element name="environment" type="senses:environment" />

<complexType name="environment">
<sequence maxOccurs="1" minOccurs="0">
<element name="locations" type="senses:list-of-locations" />
<element name="connections" type="senses:list-of-connections" />
</sequence>
<attribute name="name" type="string" />
<attribute name="width" type="int" />
<attribute name="height" type="int" />
<attribute name="scale" type="int" />
<attribute name="type" type="string" />
</complexType >

<complexType name="list-of-locations">
<sequence >
<element maxOccurs="unbounded" minOccurs="0"
name="location" type="senses:location" />
</sequence>
</complexType >

<complexType name="list-of-connections">
<sequence>
<element maxOccurs="unbounded" minOccurs="0"
name="connection" type="senses:connection" />
</sequence>
</complexType >

<complexType name="location">
<attribute name="id" type="int" />
<attribute name="x-pos" type="int" />
<attribute name="y-pos" type="int" />
</complexType >

<complexType name="connection">
<attribute name="id" type="int" />
<attribute name="from" type="int" />
<attribute name="to" type="int" />
</complexType >

</schema>

Listing A.3: XML Schema for PDP scenario configuration files for SENSES

<?7xml version="1.0" encoding="UTF-8"7>

<schema xmlns="http://www.w3.o0org/2001/XMLSchema"
targetNamespace="http://pvs.informatik.uni-augsburg.de/senses-data"
xmlns:senses="http://pvs.informatik.uni-augsburg.de/senses-data"
elementFormDefault="qualified">

<element name="scenario" type="senses:pdpScenario" />

<complexType name="pdpScenario">
<sequence>
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<element name="request-types" type="senses:listOfRequestTypes" />
<element name="vehicle-types" type="senses:listOfVehicleTypes" />
<element name="depots" type="senses:listOfDepots" />

<element name="stations" type="senses:listOfStations" />

<element name="vehicles" type="senses:list0OfVehicles" />

<element name="requests" type="senses:listOfRequests"

minOccurs="0" maxOccurs="1" />
</sequence>
</complexType >

<complexType name="listO0fVehicleTypes">
<sequence>
<element name="vehicle-type" type="senses:vehicleType"
minOccurs="1" maxOccurs="unbounded" />
</sequence>
</complexType>

<complexType name="listOfRequestTypes">
<sequence >
<element name="request-type" type="senses:requestType"
minOccurs="1" maxOccurs="unbounded" />
</sequence>
</complexType >

<complexType name="1listOfDepots">
<sequence>
<element name="depot" type="senses:depot"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType >

<complexType name="listOfStations">
<sequence>
<element name="station" type="senses:station"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType >

<complexType name="list0fVehicles">
<sequence >
<element name="vehicle" type="senses:vehicle"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType >

<complexType name="listOfRequests">
<sequence>
<element name="request" type="senses:request"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType >

<complexType name="vehicleType">
<sequence>
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<element name="sub-types" type="senses:listOfVehicleTypes"
minOccurs="0" maxOccurs="1" />
<element name="super-types" type="senses:list0fVehicleTypes"
minOccurs="0" maxOccurs="1" />
<element name="request-types" type="senses:listOfRequestTypes"
minOccurs="0" maxOccurs="1" />
</sequence>
<attribute name="name" type="string" />
</complexType >

<complexType name="requestType">
<sequence>
<element name="sub-types" type="senses:listOfRequestTypes"
minOccurs="0" maxOccurs="1" />
<element name="super-types" type="senses:listOfRequestTypes"
minOccurs="0" maxOccurs="1" />
</sequence>
<attribute name="name" type="string" />
</complexType>

<complexType name="depot">
<sequence >
<element name="vehicle-types" type="senses:list0OfVehicleTypes"
</sequence>
<attribute name="id" type="int" />
<attribute name="position" type="int" use="optional" />
<attribute name="x-pos" type="int" use="optional" />
<attribute name="y-pos" use="optional" />
</complexType >

<complexType name="station">
<sequence>
<element name="request-types" type="senses:listOfRequestTypes"
maxOccurs="1" minOccurs="0"/>
</sequence>
<attribute name="id" type="int" />
<attribute name="position" type="int" use="optional" />
<attribute name="x-pos" type="int" use="optional" />
<attribute name="y-pos" use="optional" />
<attribute name="type" use="optional">
<simpleType>
<restriction base="string">
<enumeration value="pickup" />
<enumeration value="delivery" />
<enumeration value="universal" />
</restriction>
</simpleType>
</attribute>
</complexType >

<complexType name="vehicle">
<attribute name="id" type="int" />
<attribute name="position" type="int" use="optional" />
<attribute name="x-pos" type="int" use="optional" />

/>
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<attribute name="y-pos" use="optional" />

<attribute name="capacity" type="int" />

<attribute name="speed" type="int" />

<attribute name="type" type="string" />
</complexType >

<complexType name="request">
<sequence>
<element name="pickup-station" type="senses:requestStation" />
<element name="delivery-station" type="senses:requestStation" />
</sequence>
<attribute name="id" type="int" />
<attribute name="loadsize" type="int" />
<attribute name="service-time" type="int" />
<attribute name="probability" type="float"
use="optional" />
<attribute name="type" type="string" />
</complexType >

<complexType name="requestStation">
<attribute name="id" type="int" />
<attribute name="earliest" type="int" />
<attribute name="latest" type="int" />
</complexType >

</schema>

Listing A.4: XML Schema for PDP result files for SENSES

<?xml version="1.0" encoding="UTF-8"7>

<schema xmlns="http://www.w3.o0org/2001/XMLSchema"
targetNamespace="http://pvs.informatik.uni-augsburg.de/senses-data"
xmlns:senses="http://pvs.informatik.uni-augsburg.de/senses-data"
elementFormDefault="qualified">

<element name="result" type="senses:pdpResult" />

<complexType name="pdpResult">
<sequence>
<element name="run" type="senses:run"
maxOccurs="unbounded" minOccurs="1" />
</sequence>
<attribute name="experiment" type="string"></attribute>
</complexType >

<complexType name="run">
<sequence>

<element name="iterations" type="int"/>
<element name="tasks-upcoming" type="int"/>
<element name="tasks-announced" type="int"/>
<element name="tasks-in-process" type="int"/>
<element name="tasks-finished" type="int"/>
<element name="agents-on-the-move" type="int"/>
<element name="throughput" type="float"/>
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<element
<element
<element
<element
<element
type="
<element
<element
<element
<element
<element
<element
<element
<element
<element
<element
<element
<element
</sequence
<attribute

name="total-travel-costs" type="float"/>

name="total-tolerated-waiting-time" type="int"/>
name="total-non-tolerated-waiting-time" type="int"/>
name="average-tolerated-waiting-time" type="float"/>

name="average-non-tolerated-waiting-time"
float"/>

name="delayed-pickups" type="int"/>
name="delayed-deliveries" type="int"/>
name="total-infochemicals" type="int"/>
name="total-pheromones" type="int"/>
name="total-allomones" type="int"/>
name="total-kairomones" type="int"/>
name="total-synomones" type="int"/>
name="emitted-infochemicals" type="int"/>
name="emitted-pheromones" type="int"/>
name="emitted-allomones" type="int"/>
name="emitted-kairomones" type="int"/>
name="emitted-synomones" type="int"/>

>

name="number" type="int"/>

</complexType >

</schema>
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