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From atomistic to continuum theory

for brittle materials:

A two-dimensional model problem

Manuel Friedrich1 and Bernd Schmidt2
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Abstract

A two-dimensional atomic mass spring system is investigated for critical
fracture loads and its crack path geometry. We rigorously prove that in the
discrete-to-continuum limit, the minimal energy leads to a universal cleav-
age law and energy minimizers are either homogeneous elastic deformations
or configurations that are cracked along specific crystallographic hyper-
planes. Furthermore, we identify an effective continuum model through
Γ-convergence.
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many. bernd.schmidt@math.uni-augsburg.de

1



1 Introduction

The behavior of brittle materials is of great interest in applications as well as
from a theoretical point of view. Such materials show an elastic response to very
small displacements and develop cracks already at moderately large strains. In
particular, there is typically no plastic regime in between the restorable elastic
deformations and complete failure due to fracture. Major challenges in the ex-
perimental sciences and theoretical studies are to identify critical loads at which
such a body fails and to determine the geometry of crack paths that occur in the
fractured regime.

In variational fracture mechanics displacements and crack paths are deter-
mined from an energy minimization principle. Following the pioneering work
of Griffith [26], Francfort and Marigo [23] have introduced an energy functional
comprising elastic bulk contributions for the unfractured regions of the body and
surface terms that assign energy contributions on the crack paths comparable to
the size of the crack of codimension one. Subsequently these models have been in-
vestigated and extended in various directions. Among the vast body of literature
we only mention the work of Dal Maso and Toader [20]; Francfort and Larsen
[22]; Dal Maso, Francfort and Toader [19]. Determining energy minimizers of
such functionals leads to solving a free discontinuity problem in the language of
Ambrosio and De Giorgi [21] as the crack path, i.e., the set of discontinuity of
the diplacement field is not pre-assigned but has to be found as a solution to the
variational problem. In particular, these models also lead to efficient numerical
approximation schemes, cf., e.g., [4, 6, 28, 29, 32].

Due to the crystalline structure of matter, under tensile boundary loads frac-
ture typically occurs in the form of cleavage along crystallographic hyperplanes
of the atomic lattice. On the continuum side such behavior can be modelled by
anisotropic surface terms which are locally minimized for these crack geometries,
see e.g. [1, 15, 28]. A discrete model has been investiged by Braides, Lew and
Ortiz [13], who assume that fracture can only occur in these directions and then
calculate a limiting continuum energy: a cleavage law. This assumption leads
to an effective one-dimenional problem which is much easier to analyze. Indeed
in the one-dimensional setting, where discrete models describe the behavior of
atom chains, a number of results have appeared rather recently on the literature,
including [8, 9, 10, 11]. While by now for many atomistic models the passage
to effective continuum models is well understood in the regime of purely elastic
interactions, see [5, 14, 31], not much is known on discrete-to-continuum limits
for models allowing for fracture in more than one dimension. The farthest reach-
ing results in that direction seem to be due to Braides and Gelli [12], who prove
Γ-convergence results for scalar valued free discontinuity problems.

However, all these ansatzes fall short of rigorous arguments that indeed in
more than one dimension, if fracture occurs at all, then it is energetically favorable
to cleave the specimen along particular crystallographic hyperplanes. The main
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goal of this paper is to provide a rigorous and rather complete study of a two
dimensional model problem. We assume that the body is a rectangular strip
subject to uniaxial tensile boundary conditions. The atoms in their reference
configuration shall be given by the portion of a triangular lattice in that strip
that interact via next neighbor Lennard-Jones type potentials. This model seems
to be the simplest model problem which (1) is frame indifferent in its vector-valued
arguments in more than one dimension, (2) gives rise to non-degenerate elastic
bulk terms and (3) leads to surface contributions sensitive to the crack geometry
with competing crystallographic hyperplanes. Moreover, two-dimensional lattice
surfaces naturally appear in the analysis of thin structures. In particular we will
also discuss consequences of our analysis on the stability of brittle nanotubes
under interior expansive pressure.

Indeed we will prove that under uniaxial tension in the continuum limit the
energy satisfies a particular cleavage law with quadratic response to small bound-
ary displacements followed by a sharp constant cut-off beyond some critical value.
Moreover, we will see that any sequence of minimizers converges (up to sub-
sequences) to a homogeneous continuum deformation for subcritical boundary
values, while it converges to a continuum deformation which is cracked along a
crystallographic line and does not store elastic energy in the supercritical case,
whenever the optimal crystallygraphic line is unique. The model under investi-
gation leads, in particular, to configurations respecting the Poisson effect, which
would not be possible in scalar models. These results justify rigorously the afore-
mentioned assumptions in the derivation of cleavage laws as, e.g., in [13]. Finally
we relate the sequence of discrete energy functionals to a limiting functional
through a Γ-convergence result.

The paper is organized as follows. We first introduce our discrete model and
state our main results in Section 2. Here we already discuss different scalings of
the boundary data and find the interesting regime where both energy contribu-
tions, the elastic and the crack energy, are of the same order.

In Section 3 we collect some elementary properties of the cell energy. In
particular, we introduce a lower-bound comparison energy, called reduced energy,
providing the optimal cell energy in dependence of the cell expansion in the space
direction where tensile boundary conditions are imposed.

Section 4 is devoted to the derivation of cleavage laws for the limiting min-
imal energy. Using an elementary slicing argument we reduce the problem to
one-dimensional segments and show that the limiting energy has a universal
form independent of the interatomic potential. Our result is similar to the ef-
fective one-dimesional law discussed in [13]. We obtain that the crack energy is
anisotropic and depends explicitly on the lattice orientation. We then give finer
estimates on the limiting energy by deriving higher order terms for the discrete
minimal energies and show that in contrast to the limiting behavior anisotropic
contributions also occur in the elastic regime. Moreover, our proof illustrates the
typical behavior of brittle materials already seen in the continuum cleavage law
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also in a discrete framework: There is essentially no plastic regime besides the
elastic and the crack regime. More precisely, we see that for almost minimizer
the deformation is either

√
ε-close to the identity mapping (representing elastic

response) or springs between adjacent atoms are elongated by a factor scaling
like 1√

ε
(leading to fracture in the limit description) where ε denotes the typical

interatomic distance. In particular, here we can already see that homogeneous
deformations or cleavage along specific lines are asymptotically optimal.

In Section 5 we proceed to show that, under appropriate assumptions, in terms
of suitably rescaled displacement fields indeed all discrete energy minimizers con-
verge strongly to such continuum deformations. We provide a fine characteriza-
tion of the crack, i.e. of the number and position of largely elongated springs.
In the subcritical case the contribution of such springs is abitrarily small such
that the purely elastic theory applies. For supercritical boundary values largely
deformed springs lie in a small stripe in direction of the optimal cristallographic
line.

The last Section 6 finally contains our results on the limiting variational prob-
lem. We first show that the discrete energy functionals converge to an energy
functional defined on the continuum in the sense of Γ-convergence. We finally
analyze the continuum problem under the same tensile boundary values and in
that way we re-derive the results of Section 4 and Section 5.

2 The model and main results

The discrete model

Let L denote the rotated triangular lattice

L = RL

(
1 1

2

0
√

3
2

)
Z2 = {λ1v1 + λ2v2 : λ1, λ2 ∈ Z},

where RL ∈ SO(2) is some rotation and v1, v2 are the lattice vectors v1 = RLe1

and v2 = RL(1
2
e +

√
3

2
e2), respectively. We collect the basic lattice vectors in

the set V = {v1,v2,v2 − v1}. The region Ω = (0, l) × (0, 1) ⊂ R2, l > 0, is
considered the macroscopic region occupied by the body under investigation. In
the reference configuration the positions of the specimen’s atoms are given by
the points of the scaled lattice εL that lie within Ω. Here ε is a small parameter
defining the length scale of the typical interatomic distances.

The deformations of our system are mappings y : εL ∩ Ω → R2. The energy
associated to such a deformation y is assumed to be given by nearest neighbor
interactions as

Eε(y) =
1

2

∑
x,x′∈εL∩Ω
|x−x′|=ε

W

(
|y(x)− y(x′)|

ε

)
. (1)
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Note that the scaling factor 1
ε

in the argument of W takes account of the scaling
of the interatomic distances with ε. The pair interaction potential W : [0,∞)→
[0,∞] is supposed to be of ‘Lennard-Jones-type’:

(i) W ≥ 0 and W (r) = 0 if and only if r = 1.

(ii) W is continuous on [0,∞) and C2 in a neighborhood of 1 with α := W ′′(1) >
0.

(iii) limr→∞W (r) = β.

In order to obtain fine estimates on limiting energies and configurations we will
also consider the following stronger versions of hypotheses (ii) and (iii):

(ii’) W is continuous on [0,∞) and C4 in a neighborhood of 1 with α := W ′′(1) >
0 and arbitrary α′ := W ′′′(1).

(iii’) W (r) = β +O(r−2) as r →∞,

which is still satisfied, e.g., by the classical Lennard-Jones potential.
In order to analyze the passage to the limit as ε → 0 it will be useful to

interpolate and rewrite the energy as an integral functional. Let Cε be the set
of equilateral triangles 4 ⊂ Ω of sidelength ε with vertices in εL and define
Ωε =

⋃
4∈Cε4. By ỹ : Ωε → R2 we denote the interpolation of y, which is affine

on each 4 ∈ C. The derivative of ỹ is denoted by ∇ỹ, whereas we write (y)4
for the (constant) value of the derivative on a triangle 4 ∈ Cε. Then (1) can be
rewritten as

Eε(y) =
∑
4∈Cε

W4((ỹ)4) + Eboundary
ε (y)

=
4√
3ε2

∫
Ωε

W4(∇ỹ) dx+ Eboundary
ε (y),

(2)

where

W4(F ) =
1

2

(
W (|Fv1|) +W (|Fv2|) +W (|F (v2 − v1)|)

)
. (3)

(Note that |4| =
√

3ε2/4.) Here the boundary term is the sum of pair interaction

energies 1
4
W ( |y(x)−y(x′)|

ε
) over nearest neighbor pairs which form the side of only

one triangle in Cε.

Boundary values and scaling

We are interested in the behavior of the system when applying tensile boundary
conditions, say in e1-direction. In particular, we would like to investigate when
and how the body breaks, i.e.,
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(1) at which value of the boundary displacement energetic minimizers are no
longer elastic deformations but exhibit cracks and

(2) if indeed it is most favorable for the cracks to separate the body along
crystallographic lines.

In order to avoid geometric artefacts, we will therefore assume that l > 1√
3
, so

that it is possible for the body to completely break apart along lines parallel to
Rv1, Rv2 or R(v2 − v1) not passing through the left or right boundaries.

Due to the discreteness of the underlying atomic lattice we have to impose the
boundary conditions of uniaxial extension in small neighborhoods of {0} × (0, 1)
and {l} × (0, 1), respectively: For aε > 0 we set

A(aε) =
{
y = (y1, y2) : εL ∩ Ω→ R2 :

y1(x) = (1 + aε)x1 for x1 ≤ ε and x1 ≥ l − ε
}
.

Note that there is some arbitrariness in this implementation of boundary values
as one might, e.g., equally well ask that

y1(x) = x1 for x1 ≤ ε and y1(x) = x1 + aεl for x1 ≥ l − ε. (4)

Such different choices will, however, not change the results of the analysis.
Also note that there is no assumption on the second component of the bound-

ary displacement, i.e., the atoms may ‘slide along the boundary lines’. Besides
describing a basic experiment on elastic bodies, this assumption allows for a direct
application of our results to the stability analysis of nanotubes:

If the rotation RL and the length l are such that for a sequence εk → 0 the
translated lattice εkL+ (l, 0) concides with the original lattice εkL, we may view
the system as an atomistic nanotube with macroscopic region l

2π
S1×(0, 1). (Note

that for small εk the bending energy contributions when rolling up (0, l)× (0, 1)
into a cylinder are negligible as this mapping is an isometric immersion and thus
infinitesimally rigid.) Imposing periodic boundary conditions, for arbitrary l > 0
our system then models deformations of a nanotube subject to expansion of the
diameter.

There are two obvious choices for deformations satisfying the boundary condi-
tions: The homogeneous elastic deformation yel(x) = (1+aε)x and a cracked body
deformation ycr, which, up to a boundary layer of negligible energy, is the iden-
tity to the left and a translation by aεle1 to the right of some segment (or curve)
passing through Ω that connects a point on the lower boundary (ε, l − ε) × {0}
and a point on the upper boundary (ε, l − ε)× {1}. It is not hard to see that

Eε(y
el) ∼ ε−2W (1 + aε), Eε(y

cr) ∼ ε−1.

In particular, we are interested in the most interesting regime where both of these
energy values are of the same order, i.e., aε is small and

ε−2a2
ε ∼ ε−2W (1 + aε) ∼ ε−1 =⇒ aε ∼

√
ε.
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In order to obtain finite and nontrivial energies in the limit ε→ 0, we accordingly
rescale Eε to Eε := εEε.

Conceivable alternative implementations of the boundary conditions as al-
luded to above will then result in energy changes of order O(ε). We will account
for all such possibilities by characterizing not only energy minimizing configura-
tions, but more generally all configurations which are energy minimizing up to
an error term of order O(ε).

Limiting minimal energy and cleavage laws

We begin our analysis with an elementary argument which yields the limiting
minmal energy as ε → 0 when aε/

√
ε → a ∈ [0,∞]. We first establish a lower

bound for this energy by considering slices of the form (0, l)×{x2} for x2 ∈ (0, 1)
and using the reduced energy W̃ defined by

W̃ (r) = inf{W4(F ) : eT1 Fe1 = r}. (5)

In a second step we show that this bound is attained. In particular, it turns
out that the limiting minimal energy is given by elastic deformations up to some
critical value acrit of the boundary displacements and by cleavage along a specific
crystallographic line beyond acrit.

Let γ = max{|v1 ·e2|, |v2 ·e2|, |(v2−v1)·e2|} and vγ ∈ V such that γ = |vγ ·e2|.
We note that γ takes values in [

√
3/2, 1] and that vγ is unique if γ >

√
3/2.

Theorem 2.1 Suppose aε/
√
ε → a ∈ [0,∞]. The limiting minimal energy is

given by

lim
ε→0

inf {Eε(y) : y ∈ A(aε)} = min

{
αl√

3
a2,

2β

γ

}
. (6)

As already motivated above, only one of the regimes is energetically favorable
if a ∈ {0,∞}. In the interesting case a ∈ (0,∞) we indeed will see that in terms
of the critical boundary displacement

acrit =

√
2
√

3β

αγl

the limit is attained for homogeneously deformed configurations if a ≤ acrit and
for configurations cracked along lines parallel to Rvγ, if a ≥ acrit. In the special
case that vγ is not unique the limit is also attained if the crack takes a serrated

course parallel to R(1
2
,
√

3
2

)T or R(−1
2
,
√

3
2

)T .
For the sake of simplicity we specialize to sequences aε =

√
εa. Without

loss of generality we assume that RL =

(
cosφ − sinφ
sinφ cosφ

)
for φ ∈ [0, π

3
), so that

γ = sin(φ + π
3
) = vγ · e2. If the assumptions (ii’) and (iii’) on W hold, we have

the following sharp estimate on the discrete minimal energies up to error terms
of the order of surface contributions.
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Theorem 2.2 For ε small the discrete minimal energy is given by

inf Eε = min

{
αl√

3
a2 +

[6α + 7α′ − 2(3α− α′) cos(6φ)]l

27
√

3

√
εa3,

2β

γ

}
+O(ε).

Thus, while the zeroth order contributions in the elastic regime are isotropic,
the higher order contributions as well as the fracture energy explicitly depend on
the lattice orientation angle φ.

Detailed proofs of these results will be given in Section 4.

Limiting minimal configurations

Our analysis of the limiting minimal energy so far showed that, depending on the
boundary data, homogeneous deformations or completely cracked configurations
are energy minimizing in the limit ε→ 0. However, it falls short of showing that
in fact these configurations are the only possibilities to obtain asymptotically
optimal energies. Indeed, if vγ is not unique, then we have already seen that
the crack path can become geometrically much more complicated. Our next
result shows that if vγ is unique, energy minimizing configurations converge to
a homogeneous continuum deformation for subcritical boundary values, while in
the supercritical case they converge to a continuum deformation which is cracked
along a crystallographic line and does not store elastic energy.

The basic idea behind our reasoning will be to ‘count’ the number of ‘broken’
springs, i.e. the springs intersected transversally by the crack path. We see that
the springs broken by a crack line (p, 0) + Rvγ do not overlap in the projection
onto the x2-axis and the length of the projection of two adjacent broken springs
equals εγ. This leads to a fracture energy of approximately 2β

γ
. If we assume that

the cleavage is not parallel to Rvγ we conclude that some springs in vγ direction
must be broken, too. If we consider the adjacent triangles of such a spring and
their neighbors we find that the projection onto the x2-axis of broken springs
overlap. A careful analysis of this phenomenon then shows that every broken
spring in vγ direction ‘costs’ an additional energy of ≈ 2εβ P (γ)

γ
, where P (γ) is

the geometrical factor

P (γ) =
1

2

(
1−
√

3

√
1− γ2

γ

)
. (7)

(Note that P (γ) = 0 if and only if γ =
√

3
2

in accordance to the above considera-
tions.)

In order to give a precise meaning to the convergence of discrete to continuum
deformations, to each discrete deformation y : εL → R2 we assign – as mentioned
above – the affine interpolation ỹ on each triangle 4 ∈ Cε. Accordingly, to the
rescaled discrete displacements u : εL → R2 with y = id +

√
εu (id denoting the
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identity mapping id(x) = x) we define ũ to be its affine interpolation on each
triangle 4 ∈ Cε.

In the cracked regime we may of course only hope for a unique limiting de-
formation up to translation of the crack path. However, without an additional
mild extra assumption on the admissible discrete configurations or their energy
even this cannot hold true, as apart from the crack, parts of the specimen could
flip their orientation and fold onto other parts on the body at zero energy. In
order to avoid such unphysical behavior we add a frame indifferent penalty term
χ ≥ 0 to W4 with χ ≥ cχ in a neighborhood of O(2) \ SO(2) and χ ≡ 0 in a
neighborhood of SO(2):

W4,χ = W4 + χ. (8)

We set

Eχε (y) =
4√
3ε

∫
Ωε

W4,χ(∇ỹ) dx+ εEboundary
ε (y),

for u ∈ A(aε). More generally than a sequence of minimizers we will consider
sequences (yε) of almost minimizers that satisfy

Eχε (yε) = inf{Eχε (y) : y ∈ A(aε)}+O(ε). (9)

For those deformations we will show in Section 5:

Theorem 2.3 Assume that W satisfies (i), (ii’) and (iii’). Let vγ be unique,
aε =

√
εa, a 6= acrit and suppose (yε) satisfies (9). Let uε such that yε = id+

√
εuε.

Then there exist ūε : Ω→ R2 with |{x ∈ Ωε : ūε(x) 6= ũε(x)}| = O(ε) such that:

(i) If a < acrit, then there is a sequence sε ∈ R such that

‖ūε − (0, sε)− F a · ‖H1(Ω) → 0,

where F a =

(
a 0
0 −a

3

)
.

(ii) If a > acrit, then there exist sequences pε ∈ (0, l), sε, tε ∈ R such that
(pε, 0) + Rvγ intersects both the segments (0, l)× {0} and (0, l)× {1} and,
for the parts to the left and right of (pε, 0) + Rvγ

Ω(1) := {x ∈ Ω : 0 < x1 < pε + (vγ · e1)x2} and

Ω(2) := {x ∈ Ω : pε + (vγ · e1)x2 < x1 < l} ,

respectively, we have – possibly after rotating yε by π on Ω(1) or Ω(2) –

‖ūε − (0, sε)‖H1(Ω(1)) + ‖ūε − (al, tε)‖H1(Ω(2)) → 0.

Note that a rotation by π on Ω(i), i = 1, 2, might be necessary as on each of
these sets there are, up to translation in x2-direction and a small correction in
a boundary layer of negligible energy, two deformations respecting the boundary
conditions that do not store elastic energy: y(x) = x and y(x) = −x in Ω(1),
respectively, y(x) = x+ aεle1 and y(x) = −x+ (2 + aε)le1 in Ω(2).
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The limiting variational problem

We finally address the more general question if not only the minimal values
or the minimizers but the whole energy functionals converge to a continuum
energy functional in a variational sense. Furthermore, we analyze the limiting
problem independent of its discrete approximations. The results announced here
are proved in Section 6.

Our convergence analysis applies to discrete deformations which may elongate
a number scaling with 1

ε
of springs very largely, leading to cracks of finite length in

the continuum limit. On triangles not adjacent to such essentially broken springs,
the defomations are

√
ε-close to the identity mapping, so that the accordingly

rescaled displacements are of bounded L2-norm. Note that the first of these
assumptions can be inferred from suitable energy bounds. By way of example,
however, we will see that this cannot be true for the displacement estimates in
the bulk: The sequence of functionals (Eε) is not equicoercive. Nevertheless,
it is interesting to investigate this regime in order to identify a corresponding
continuum functional which describes the system in the realm of Griffith models
with linearized elasticity. As a particular case of Theorem 2.3 we mention that
(Eε) is still mildly equicoercive.

Recall that the space SBV (Ω; R2), abbreviated as SBV (Ω) hereafter, of spe-
cial functions of bounded variation consists of functions u ∈ L1(Ω; R2) whose
distributional derivative Du is a finite Radon measure, which splits into an ab-
solutely continuous part with density ∇u with respect to Lebesgue measure and
a singular part Dju whose Cantor part vanishes and thus is of the form

Dju = [u]⊗ νuH1bJu,

where H1 denotes the one-dimensional Hausdorff measure, Ju (the ‘crack path’)
is an H1-rectifiable set in Ω, νu is a normal of Ju and [u] = u+ − u− (the ‘crack
opening’) with u± being the one-sided limits of u at Ju. If in addition∇u ∈ L2(Ω)
and H1(Ju) <∞, we write u ∈ SBV 2(Ω). See [3] for the basic properties of these
function spaces.

The sense in which discrete displacements are considered convergent to a
limiting displacement in SBV is made precise in the following definition.

Definition 2.4 Suppose uε is a sequence of discrete displacements such that the
corresponding deformations yε = id +

√
εuε are uniformly bounded in L∞. We

say that uε converges to some u ∈ SBV 2(Ω): uε → u, if

(i) χΩεũε → u in L1(Ω)

and there exists a sequence C∗ε ⊂ Cε with #C∗ε ≤ C
ε

for a constant C independent
of ε such that

(ii) ‖∇ũε‖L2(Ωε\∪4∈C∗ε4) ≤ C.

10



The main idea will be to separate the energy into elastic and crack surface
contributions by introducing a threshold such that triangles 4 with (y)4 beyond
that threshold are considered as cracked and ỹ is modified there to a discontinuous
function.

Consider the limiting functional

E(u) =
4√
3

∫
Ω

1

2
Q(e(u)) dx+

∫
Ju

∑
v∈V

2β√
3
|v · νu| dH1 (10)

for u ∈ SBV 2(Ω), where e(u) = 1
2

(
∇uT +∇u

)
denotes the symmetric part of

the gradient. Q is the linearization of W4 about the identity matrix Id (see
Section 4 for its explicit form). For the sake of simplicity we again suppose that
aε =

√
εa for all ε. We then have the following Γ-convergence result:

Theorem 2.5 Let aε =
√
εa and a ∈ [0,∞).

(i) If (uε) is a sequence of discrete displacements such that yε = id +
√
εuε ∈

A(aε) and uε → u ∈ SBV 2(Ω) with u1(0, ·) = 0 and u1(l, ·) = la (in the
sense of traces), then

lim inf
ε→0

Eε(uε) ≥ E(u).

(ii) For every u ∈ SBV 2(Ω) with u1(0, ·) = 0 and u1(l, ·) = la (in the trace
sense) there is a sequence (uε) of discrete displacements such that yε =
id +

√
εuε ∈ A(aε), uε → u ∈ SBV 2(Ω) and

lim
ε→0
Eε(uε) = E(u).

We note that the sequence (Eε) is mildly equicoercive in the sense that low energy
sequences (satisfying (9)) admit a subsequence converging in the sense of Defi-
nition 2.4 by Theorem 2.3 (the convergence is even stronger in this case). Due
to the frame indifference of W , (Eε) is not equicoercive as the following example
shows.

Example. Assume that the specimen satisfying the boundary conditions is bro-
ken into three parts by two even cracks where the middle part is subject to a
rotation R 6= Id so that

∇ỹε = R for p ≤ x1 ≤ q, 0 < p < q < l.

In particular, the energy of the configuration is of order 1. But for p ≤ x1 ≤ q

|∇ũε(x)| =
∣∣∣∣ 1√
ε

(R− Id)

∣∣∣∣→∞ for ε→ 0.

Thus, ∇ũε is not bounded in L1 and so uε does not converge.
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Finally, the limiting functional E can also be analyzed directly without re-
course to the approximating functionals. We determine the minimizers and prove
uniqueness up to translation of the specimen and the crack line for the boundary
conditions

u1 = 0 for x1 = 0 and u1 = al for x1 = l. (11)

Theorem 2.6 Let vγ be unique and a 6= acrit. Then min E = min
{
αl√

3
a2, 2β

γ

}
and all minimizers of E subject to (11) are of the following form:

(i) If a < acrit, then
uel(x) = (0, s) + F ax

for some s ∈ R

(ii) If a > acrit, then

ucr(x) =

{
(0, s) for x to the left of (p, 0) + Rvγ,

(al, t) for x to the right of (p, 0) + Rvγ,

for some s, t ∈ R and p ∈ (0, l) such that (p, 0) + Rvγ intersects both the
segments (0, l)× {0} and (0, l)× {1}.

An analogous result for nonlinear but isotropic energy functionals has been ob-
tained recently by Mora-Corral [27].

We close this introductory chapter emphasizing that all the optimal configura-
tions found in Theorem 2.3 and Theorem 2.6 by minimizing the energy without a
priori assumptions show purely elastic behavior in the subcritical case and com-
plete fracture in the supercritical regime. In particular, the elastic minimizer
uel shows elongation a in e1-direction and compression −a

3
in the perpendic-

ular e2-direction, a manifestation of the Poisson effect (with Poisson ratio 1
3
),

which cannot be derived in scalar valued models. On the other hand, the crack
minimizer ucr is broken parallel to Rvγ which proves that cleavage occurs along
crystallographic lines.

3 Elementary properties of the cell energy

We collect some properties of the cell energy W4 and the reduced energy defined
in (5) for W satisfying the assumptions (i), (ii) and (iii).

Lemma 3.1 W4 is

(i) frame indifferent: W4(QF ) = W4(F ) for all F ∈ R2×2, Q ∈ SO(2),

(ii) non-negative and satisfies W4(F ) = 0 if and only if F ∈ O(2) and

12



(iii) lim inf |F |→∞W4(F ) = β.

Proof. (i) is clear. For (ii) it suffices to note that vTF TFv = 1 for three vectors
v, no two of which are collinear, implies that F TF = Id. (iii) can be seen by
noting that if |F | → ∞, then for at least two vectors v ∈ V one has |Fv| → ∞.

�

We compute the linearization about the identity matrix Id:

Lemma 3.2 Let F = Id +G for G ∈ R2×2. Then for |G| small

W4(F ) =
1

2
Q(G) + o(|G|2),

where Q(G) = 3α
16

(
3g2

11 + 3g2
22 + 2g11g22 + 4

(
g12+g21

2

)2
)

.

In particular, Q(G) only depends on the symmetric part
(
GT +G

)
/2 of G. Q

is positive semidefinite and thus convex on R2×2 and positive definite and strictly
convex on the subspace R2×2

sym of symmetric matrices.

Proof. Let v ∈ V and G ∈ R2×2 small. We Taylor expand the contributions
W (|Fv|) to the energy W4:

W (|(Id +G)v|) = W
(√
〈v, (Id +GT )(Id +G)v〉

)
=
W ′′(1)

2

〈
v,
GT +G

2
v

〉2

+ o(|G|2).

Now using the elementary identity

〈v1, Hv1〉2 + 〈v2, Hv2〉2 + 〈(v2 − v1), H(v2 − v1)〉2

=
3

8

(
2 trace(H2) + (traceH)2

) (12)

for any symmetric matrix H ∈ R2×2, we obtain by summing over v ∈ V

W4(F ) =
1

2
· α

2
· 3

8
·

(
2 trace

((
GT +G

2

)2
)

+

(
trace

GT +G

2

)2
)

+ o(|G|2)

=
1

2
Q(G) + o(|G|2).

As Q(G) ≥ 3α
16

(2g2
11 + 2g2

22 + (g12 + g21)2), Q is positive semidefinite on R2×2 and
positive definite on R2×2

sym. �

As a consequence, we have the following properties of the reduced energy W̃ .

Lemma 3.3 The reduced energy satisfies

13



(i) W̃ (r) = 0 ⇐⇒ |r| ≤ 1.

(ii) For r ≥ 1 one has

W̃ (r) = W4

((
r 0
0 4−r

3

))
+ o((r − 1)2) =

α

4
(r − 1)2 + o((r − 1)2).

(iii) lim|r|→∞ W̃ (r) = β.

Proof. (i) If r ≤ 1, then one can choose Q ∈ SO(2) with eT1Qe1 = r and
so 0 ≤ W̃ (r) ≤ W4(Q) = 0. If |r| > 1, then W̃ (r) > 0 for otherwise there
would be a sequence Fk ∈ R2×2 with eT1 Fke1 = r and W4(Fk) → 0. But then
dist(Fk, O(2)) → 0 by (ii) and (iii) of Lemma 3.1 and thus, up to subsequences,
Fk → F ∈ O(2) with eT1 Fe1 = r, which is impossible.

(ii) This discussion shows that in fact for any δ > 0 there exists η > 0 such
that W4(F ) > δ whenever dist(F,O(2)) ≥ η. Now since W̃ (r)→ 0 as r ↘ 1, we
obtain that, for sufficiently small r > 1 and δ > 0, any F with W4(F ) < W̃ (r)+δ
is contained in a small neighborhood of O(2). If in addition eT1 Fe1 = r holds, then

in fact, F must be close to Id or to P =

(
1 0
0 −1

)
. In particular, by continuity

of W , the infimum on the right hand side in the definition of W̃ is attained for
those r.

We now fix such an r > 1 near 1 and choose F = Id + G such that W̃ (r) =
W4(F ) and eT1 Fe1 = r. As W4 is invariant under the reflection P , we may
without loss of generality assume that G is small. Then Lemma 3.2 yields

W4(F ) =
3α

32

(
3g2

11 + 3g2
22 + 2g11g22 + 4

(
g12 + g21

2

)2
)

+ o(|G|2).

We find that g11 = r − 1, g12 + g21 = o(r − 1) and g22 = −1
3
g11 + o(r − 1) and F

satisfies
F T + F

2
=

(
r 0
0 4−r

3

)
+ o(r − 1)

with energy

W4(F ) = W4

(
F T + F

2

)
+ o((r − 1)2)

=
α

4
(r − 1)2 + o((r − 1)2).

(iii) This is immediate from Lemma 3.1(iii). �

Under strengthened hypotheses on W we have the following expansion:
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Lemma 3.4 If W in addition satisfies the assumptions (ii’) and (iii’), then for
r > 1 close to 1 we have

W̃ (r) =
α(r − 1)2

4
+

1

108

(
6α + 7α′ − 2(3α− α′) cos(6φ)

)
(r − 1)3 +O((r − 1)4),

where φ is such that RL =

(
cosφ − sinφ
sinφ cosφ

)
Proof. Let s = r − 1. By definition,

W̃ (r) = min {W4(F (s, x, y, z)) : x, y, z ∈ R} ,

where F (s, x, y, z) =

(
1 + s z + y
z − y 1 + x

)
. Due to the quadratic energy growth near

SO(2), we need to minimize only over x, y, z with |x|, |z|,
√
s|y| ≤ Cs for a

constant C large enough. Indeed, as W4(F (s, 0, 0, 0)) = O(s2), for a minimizer
one has without loss of generality dist(F (s, x, y, z), SO(2)) = O(s). But then√

(1 + s)2 + (z ± y)2 = 1 +O(s), which implies |z± y| = O(
√
s) and so |z|, |y| =

O(
√
s), and also

√
(1 + x)2 + (z ± y)2 = 1+O(s), which then implies ±(1+x) =

1 + O(s) and thus without loss of generality x = O(s). Finally using that the
scalar product (1+s)(z+y)+(1+x)(z−y) = 2z+O(s3/2) of the two columns of
F (s, x, y, z) in absolute value is also bounded by O(s), we obtain that |z| = O(s).

Set x = − s
3

+ sx1, y =
√
sy1, z = sz1 with |x1|, |y1|, |z1| ≤ C. Explicit

calculation gives

W4(F (s, x, y, z)) =
α

32

(
8 + 3x2

1 + 8y2
1 + 12z2

1 + 6(x1 + y2
1)2
)
s2 +O(s3).

Since α > 0, we thus obtain that this expression is minimized in x1, y1, z1 with
x2

1, y
2
1, z

2
1 = O(s) and we may set x1 =

√
sx2, y1 =

√
sy2 and z1 =

√
sz2 with

|x2|, |y2|, |z2| ≤ C for some C > 0. Explicit expansion in powers of s then yields

W4(F (s, x, y, z))

=
αs2

4
+

1

864

(
48α + 56α′ − 16(3α− α′) cos(6φ)

+ 3α
(
81x2

2 + 72y2
2 + 108z2

2

) )
s3

+
1

24

( (
9αy2 + α′ + (3α− α′) cos(6φ)

)
x2

+ 2(3α− α′) sin(6φ)z2)
)
s7/2 +O(s4)

=
αs2

4
+

1

108

(
6α + 7α′ − 2(3α− α′) cos(6φ)

)
s3

+
9α

32

(
x2

2 + 2A
√
sx2

)
s3 +

αy2
2s

3

4
+

3α

8

(
z2

2 + 2B
√
sz2

)
s3 +O(s4)
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for A and B bounded uniformly in s and so

W4(F (s, x, y, z))

=
αs2

4
+

1

108

(
6α + 7α′ − 2(3α− α′) cos(6φ)

)
s3

+
9α

32

(
x2 + A

√
s
)2

s3 +
αy2

2s
3

4
+

3α

8

(
z2 +B

√
s
)2

s3 +O(s4).

Minimizing with respect to x2, y2 and z2 we finally obtain that

W̃ (1 + s) =
αs2

4
+

1

108

(
6α + 7α′ − 2(3α− α′) cos(6φ)

)
s3 +O(s4).

�

The following lemma provides useful lower bounds for the energy W4 and the
reduced energy W̃ .

Lemma 3.5 For all T > 1 one has:

(i) There exists some c > 0 such that c dist2(F,O(2)) ≤ W4(F ) for all F ∈
R2×2 satisfying |F | ≤ T .

(ii) For δ > 0 small enough, there is a convex function V ≥ 0 with V (r) ≤ W̃ (r)
for r ≤ T and such that the second derivative V ′′+(1) from the right at 1 exists
and satisfies V ′′+(1) = α

2
− 2δ.

(iii) If in addition W satisfies assumptions (ii’) and (iii’), then there exists a
convex function V ≥ 0 with V (r) ≤ W̃ (r) ≤ V (r) +O((r − 1)4) for r ≤ T .

(iv) For ρ > 0 there is an increasing, subadditive function ψρ : [0,∞)→ (0,∞)
which satisfies ψρ(r) − ρ ≤ W (r + 1) for all r ≥ 0 and ψ(r) = β for all
r ≥ cρ for some constant cρ only depending on ρ.

Proof. (i) Let F ∈ R2×2 satisfying |F | ≤ T . By polar decomposition we find
R ∈ O(2) and U =

√
F TF symmetric and positiv definite such that F = RU . A

short computation yields |U − Id| = dist(F,O(2)). Assume first |U − Id| < η for
η > 0 small enough. Since W4(F ) is invariant under rotation and reflection we
obtain applying Lemma 3.2:

W4(F ) = W4(RTRU) ≥ 1

2
Q(U − Id) + o(|U − Id|2).

Noting that Q grows quadratically on R2×2
sym (see Lemma 3.2) we obtain a constant

c1 > 0 such that for |U − Id| < η

W4(F ) ≥ c1|U − Id|2 = c1 dist2(F,O(2)).
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Consider the compact set M := {F ∈ R2×2, dist(F,O(2)) ≥ η, |F | ≤ T}. W4
attains its minimum on M, which is strictly positiv by Lemma 3.1(ii). This
provides a second constant c2 > 0 such that for all F ∈M

W4(F ) ≥ c2|U − Id|2 = c2 dist2(F,O(2)).

Taking c = min{c1, c2} yields the claim.
(ii) We construct such a function directly applying Lemma 3.3.

V (r) =


0 for r ≤ 1,(
α
4
− δ
)

(r − 1)2 for 1 ≤ r ≤ 1 + η,(
α
4
− δ
)
η (2r − 2− η) for r ≥ 1 + η,

when η > 0 is sufficiently small.

(iii) With f(r) := α(r−1)2

4
+ 1

108

(
6α+7α′−2(3α−α′) cos(6φ)

)
(r−1)3−C(r−1)4

for sufficiently large C, Lemma 3.4 shows that we can choose

V (r) =


0 for r ≤ 1,

f(r) for 1 ≤ r ≤ 1 + η,

f(1 + η) + f ′(1 + η)(r − 1− η) for r ≥ 1 + η,

when η > 0 is sufficiently small.
(iv) We define

ψ̄(r) =

{
ηr for 0 ≤ r ≤ β

η
,

β for r ≥ β
η
,

for some η > 0 (depending on ρ) such that ψ̄ − ρ ≤ W . Then we set ψρ(r) =
ψ̄(r + 1). As ψρ is a concave function with ψρ(0) > 0, it is subadditive. �

4 Limiting minimal energy and cleavage laws

We now prove Theorems 2.1 and 2.2 on cleavage laws and fine energy estimates.

Limiting minimal energy

We can classify (or ‘color’) all triangles in Cε into two types, say ‘type one’ and
‘type two’, such that all triangles of the same type are translates of each other.
Then only triangles of different type can share a common side. Denote the sets
by C(1)

ε and C(2)
ε , respectively.

Proof of Theorem 2.1. We first show that the expression on the right hand side is
a lower bound for the limiting minimal energy. For every deformation y ∈ A(aε)
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we have by (2) and (3)

Eε(y) ≥ 4√
3ε

∫
Ωε∩(0,l)×(ε,1−ε)

W4
(
∇ỹ
)
dx.

Let 0 < δ < α
4

and choose R so large that W (r) > β − δ if r ≥ R. Define C̄(1)
ε

to be the set of those triangles 4 of type one for which at least one side in the
deformed configuration y(4) is larger than 2Rε. By I ⊂ (ε, 1− ε) we denote the
set of those points x2 for which there exists x1 ∈ (0, l) such that (x1, x2) lies in
one of these triangles.

We can then estimate the energy integral by splitting the x2-integration into
a first part where x2 /∈ I and a second part with x2 ∈ I.

1. If x2 /∈ I, then all sidelengths of y(4) for a triangle 4 whose interior
intersects the segment (0, l) × {x2} are less or equal to 4Rε. This is clear for
triangles of type one by construction. For triangles of type two it follows from
the fact that the two sides of4 intersecting (0, l)×{x2} are also sides of triangles
of type one and therefore bounded by 2Rε. The third side is thus less than 4Rε,
too.

It is elementary to see that for F ∈ R2×2

|eT1 Fe1| ≤ 8R, if |vTFv| ≤ 4R for all v ∈ V . (13)

Indeed, if λ1, λ2 are the eigenvalues of 1
2
(F T+F ), then by (12) one has 3

4
(λ2

1+λ2
2) =

3
4

trace
(

1
2
(F T + F )

)2 ≤ 3 · (4R)2 and thus |eT1 Fe1| ≤ max{|λ1|, |λ2|} ≤ 8R.
Consequently, for almost every x2 /∈ I we have eT1∇ỹ(x1, x2)e1 ≤ 8R for all
x1 ∈ (0, l).

By Lemma 3.5(ii) choose a convex function with V (r) ≤ W̃ (r) for r ≤ 8R
and V ′′+(1) = α

2
−2δ. For x2 ∈ (ε, 1−ε) define Ωx2

ε ⊂ (0, l) such that Ωx2
ε ×{x2} =

Ωε ∩ (0, l)× {x2}. Then for the first part one obtains, if a <∞, by convexity of
V

4√
3ε

∫
(ε,1−ε)\I

∫
Ω
x2
ε

W4
(
∇ỹ
)
dx1 dx2 ≥

4√
3ε

∫
(ε,1−ε)\I

∫
Ω
x2
ε

V
(
eT1∇ỹ e1

)
dx1 dx2

≥ 4√
3ε

∫
(ε,1−ε)\I

|Ωx2
ε |V (1 + aε) dx2

=
2√
3ε

(1− 2ε− |I|)(l − 2ε)(V ′′+(1)a2
ε + o(ε))

→ 2√
3

(1− |I|)lV ′′+(1)a2

(14)

as ε → 0. It is not hard to see that this asymptotic estimate remains true also
for a =∞.
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2. On the other hand, the energy of the second part can be estimated by the
energy of all springs lying on the side of a triangle in C̄(1)

ε , which yields

4√
3ε

∫
I

∫
Ω
x2
ε

W4
(
∇ỹ
)
dx1 dx2 ≥ 2(β − δ)ε#C̄(1)

ε , (15)

as the length of at least two springs in each of these triangles is larger than Rε in
the deformed configuration. Now the projection of any triangle onto the x2-axis
is an interval of length εγ, and so εγ#C̄(1)

ε ≥ |I|, i.e.,

4√
3ε

∫
I

∫
Ω
x2
ε

W4
(
∇ỹ
)
dx1 dx2 ≥ 2(β − δ)γ−1|I|. (16)

Summarizing (14) and (16) we find

lim inf
ε→∞

min{Eε(y) : y ∈ A(aε)}

≥ min

{
2√
3

(α
2
− 2δ

)
la2(1− |I|) + 2(β − δ)γ−1|I| : |I| ∈ [0, 1]

}
= min

{
2√
3

(α
2
− 2δ

)
la2,

2(β − δ)
γ

}
.

Now δ → 0 shows

lim inf
ε→∞

min{Eε(y) : y ∈ A(aε)} ≥ min

{
αl√

3
a2,

2β

γ

}
.

This establishes the lower bound.
It remains to prove that the right hand side in Theorem 2.1 is attained for some

sequence of deformations. In order to do so, we consider two specific sequences
of deformations. First, for a <∞ let

yel
ε (x) = (Id + F aε)x =

(
1 + aε 0

0 1− aε
3

)
x. (17)

By Lemma 3.3(ii) we have that W4(F ) = α
4
a2
ε + o(ε) and so

lim
ε→0
Eε(yel

ε ) =
αl√

3
a2

by (2).
To define ycr we choose any line (s, 0) + Rvγ intersecting both the segments

(0, l) × {0} and (0, l) × {1} (as in Theorem 2.6). This is possible since l > 1√
3
.

Let a > 0 and set

ycr
ε (x) =

{
x for x to the left of (s, 0) + Rvγ,

x+ aεle1 for x to the right of (s, 0) + Rvγ
(18)
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for atoms x with ε < x1 < l − ε. Except for a negligible contribution from the
boundary layers, the energy of this configuration can be estimated as in Step 2
of the proof of the lower bound: It is given by the energy of springs intersecting
(s, 0) + Rvγ, i.e., by the two springs lying on the boundary of the triangles of
type one which are intersected by (s, 0) + Rvγ. These springs are elongated by a
factor scaling with aε/ε, thus yielding a contribution β in the limit ε→ 0. �

Fine estimates on the limiting minimal energy

Assume now that W in addition satisfies assumptions (ii’) and (iii’). In order to

investigate a deformation y again we let C̄ε and C̄(1)
ε denote the set of triangles

4 (of type one respectively) for which at least one side in y(4) is larger than
2Rε, where now the threshold value R > 1 is chosen in such a way that cR :=
inf{W (r) : r ≥ R} ≥ β

2
. According to Lemma 3.5(iii) we may choose a convex

function V such that

0 ≤ V (r) ≤ W̃ (r) ≤ V (r) +O((r − 1)4) for r ≤ 8R. (19)

As in (13) we observe that |eT1 (y)4e1| is bounded by 8R on triangles with bond
length not exceeding 4Rε and thus lies in the convex regime of V . Moreover, we
find that every triangle in C̄ε provides at least the energy 4√

3ε

∫
4W4(∇ỹ) ≥ cRε.

For given 0 < η < a we also define Rε,η = a−η√
ε

as a threshold for triangles we
consider ‘essentially broken’:

C̄ε,η =
{
4 ∈ C̄ε, |∇yεv| > Rε,η for at least two v ∈ V

}
. (20)

The minimal energy contribution of all the springs on such a triangle in C̄ε,η is
given by

2βηε = 2 inf

{
W (r) : r ≥ a− η√

ε

}
ε = (2β +O(ε))ε

by the assumption (iii’) on W . By I ⊂ (ε, 1 − ε) we denote the set of points x2

for which the segment (0, l) × {x2} intersects a broken triangle (of type one) in

C̄(1)
ε . In addition, we say x2 ∈ Iη ⊂ I if one of the intersected triangles lies in
C̄ε,η ∩ C̄(1)

ε .
With these preparations we can now proceed to prove Theorem 2.2:

Proof of Theorem 2.2. Let Eε(y) = inf Eε + O(ε). Inspired by (14) and (15) we
establish a lower bound for the energies additionally taking the set I \ Iη into
account. Since the sidelength of any triangle whose interior intersects (0, l)× (I \
Iη) is bounded by 4Rε,η, we find

|eT1∇ỹ(x1, x2) e1| ≤ 8Rε,η
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for all (x1, x2) ∈ (0, l) × (I \ Iη) as in (13). Let k = k(x2) count the number of
triangles in C̄ε on the slice (0, l) × {x2}, x2 ∈ I \ Iη and define C̄x2

ε ⊂ (0, l) such
that ((0, l)× {x2}) ∩

⋃
4∈C̄ε4 = C̄x2

ε × {x2}. Then∫
C̄x2
ε

eT1∇ỹ(x1, x2) e1 dx1 ≤ 8kεRε,η.

and so ∫
Ω
x2
ε \C̄

x2
ε

eT1∇ỹ(x1, x2) e1 ≥ (1 +
√
εa)(l +O(ε))− 8kεRε,η

=

(
1 +
√
ε

(
a− 8k(a− η)

l
+O(

√
ε)

))
l.

A convexity argument as in the proof of Theorem 2.1 on slices (0, l)× {x2} with
x2 ∈ (ε, 1− ε) \ I and on the unbroken part

(
Ωx2
ε \ C̄x2

ε

)
× {x2} of slices with x2

in I \ Iη then shows that

Eε(y) ≥ 4(l − 2ε)√
3ε

V (1 +
√
εa)(1− 2ε− |I|) +Gη,ε|I \ Iη|+

2βη

γ
|Iη|+O(ε),

(21)

where

Gη,ε = min
k∈N

(
4l√
3ε
V

(
1 +
√
ε

(
a− 8k(a− η)

l
+O(

√
ε)

))
+
kcR
γ

)
.

We note that this minimum exists and can be taken over 1 ≤ k ≤ K0 for some
K0 ∈ N large enough and independent of η as kcR

γ
→ ∞ for k → ∞. We choose

0 < η < a large enough such that

lα√
3
a2 < min

1≤k≤K0

(
αl√

3

(
a− 8k

l
(a− η)

)2

+
kcR
γ

)
.

Recalling that, by (19) and Lemma 3.3, 4l√
3ε
V (1+

√
εr) = 4l√

3ε
W̃ (1+

√
εr)+O(ε)→

lα√
3
r2 uniformly in r on bounded sets in R, we see that thus Gη,ε exceeds the elastic

term 4l√
3ε
V (1 +

√
εa) for ε sufficiently small. So from (21) we obtain

Eε(y) ≥ 4l√
3ε
V (1 +

√
εa)(1− 2ε− |Iη|) +

2βη

γ
|Iη|+O(ε). (22)

As 4l√
3ε
V (1 +

√
εa) → lα√

3
a2 and βη → β for all η > 0, for ε small enough we

thus obtain inf Eε ≥ 4√
3
l
ε
V (1 +

√
εa)(1− 2ε) +O(ε) = 4√

3
l
ε
W̃ (1 +

√
εa) +O(ε) or

inf Eε ≥ 2β+O(ε)
γ

(1− 2ε) = 2β
γ

+O(ε), respectively, depending on a.

Applying (17) and (18) we then get indeed inf Eε = 4√
3
l
ε
W̃ (1 +

√
εa) + O(ε)

or inf Eε = 2β
γ

+O(ε), respectively. The claim now follows from Lemma 3.4 . �

Remark. From the proof of Theorem 2.2, especially taking (17) and (18) into
account, it follows that Theorem 2.2 still holds if Eε is replaced by Eχε .
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5 Limiting minimal energy configurations

Throughout this section we will assume that aε =
√
εa, yε is a sequence of

deformations satisfying (9), the threshold value R is chosen as above Equation
(19) and that C̄ε is defined accordingly.

For a rescaled displacement ũ we denote by Dµ ⊂ (0, 1) for µ > 0 the

set of x2 such that there is precisely one triangle 4x2 ∈ C̄
(1)
ε with int(4x2) ∩

((0, l)× {x2}) 6= ∅ and ∫
Ω
x2
ε \C̄

x2
ε

eT1∇ũ(x1, x2)e1 dx1 ≤ lµ. (23)

Note that Dµ ⊂ Iη for µ small enough: For x2 ∈ Dµ we have∫
C̄x2
ε

eT1∇ỹ(x1, x2)e1 dx1 ≥
√
εl(a− µ) +O(ε)

and using the arguments in (13) we see that for given η we can choose µ small
enough such that 4x2 ∈ C̄ε,η and thus x2 ∈ Iη. We also define C̄µε,η ⊂ C̄ε,η as the
set of those essentially broken triangles 4 for which there exists some x2 ∈ Dµ

such that int (4) ∩ ((0, l)× {x2}) 6= ∅. The projection of a triangle 4 onto the

linear subspace spanned by v⊥γ is an interval of length
√

3
2
ε. We denote the center

of this interval by m4.
The following lemma gives sharp estimates on the number of broken triangles

and their position.

Lemma 5.1 Let vγ be unique and a 6= acrit. Let ũε be a minimizing sequence
satisfying

Eε(id +
√
εuε) = inf Eε +O(ε).

(i) If a < acrit, then ε#C̄ε = O(ε).

(ii) If a > acrit, then |Iη| = 1 − O(ε) for 0 < η < a. Furthermore, for µ
sufficiently small, ε#

(
C̄ε \ C̄µε,η

)
= O(ε) and

sup
{
|m41 −m42|,41,42 ∈ C̄µε,η

}
= O(ε).

Proof. (i) Using (21) we find

Eε(yε) =
4l√
3ε
W̃ (1 +

√
εa) +O(ε)

≥ 4(l − 2ε)√
3ε

W̃ (1 +
√
εa)(1− 2ε− |I|) + min

{
Gη,ε,

2βη

γ

}
|I|+O(ε)

=
4l√
3ε
W̃ (1 +

√
εa)(1− |I|) + min

{
Gη,ε,

2βη

γ

}
|I|+O(ε).
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An elementary computation yields, whenever ε is small enough,

|I| ≤
(

min

{
Gη,ε,

2βη

γ

}
− 4l√

3ε
W̃ (1 +

√
εa)

)−1

·O(ε)

=

(
min

{
Gη,ε,

2β

γ

}
− αl√

3
a2 + o(1)

)−1

·O(ε) = O(ε),

(The argument leading to (22) together with a < acrit shows that the term in
parentheses is bounded from below by a positive constant independent of ε).
Then the elastic energy is 4l√

3ε
W̃ (1 +

√
εa) + O(ε) and consequently, the crack

energy coming from triangles in C̄ε is of order O(ε). As every broken triangle in

C̄ε provides at least energy εcR we conclude ε#C̄(1)
ε = O(ε). But then, possibly

after replacing R by 2R, also ε#C̄(2)
ε = O(ε) as those triangles are neighbors of

broken triangles of type 1.

(ii) Using (22) we find after without loss of generality choosing η sufficiently
large

Eε(yε) =
2β

γ
+O(ε) ≥ 4l√

3ε
W̃ (1 +

√
εa)(1− 2ε− |Iη|) +

2βη

γ
|Iη|.

So for ε small enough we obtain

1− |Iη| ≤
(
αl√

3
a2 + o(1)− 2β

γ

)−1

·O(ε) = O(ε)

since a > acrit. Consequently, the crack energy from triangles in C̄ε,η is given by
2β
γ

+O(ε) and thus the energy contribution from C̄ε \ C̄ε,η is of order O(ε). As in

(i) we find ε#
(
C̄ε \ C̄ε,η

)
= O(ε). A convexity argument yields that the energy

of a slice in Iη \Dµ is larger or equal to

2β

γ
+ min

{
cR,

4l√
3ε
W̃ (1 +

√
εµ)

}
+O(ε) =

2β

γ
+ min

{
cR,

αl√
3
µ2

}
+ o(1).

It follows |Iη\Dµ| = O(ε). We conclude |Dµ| = 1−O(ε), whence the crack energy
from triangles in C̄µε,η is given by 2β

γ
+O(ε) and then also ε#

(
C̄ε \ C̄µε,η

)
= O(ε).

Finally, we concern ourselves with the projected distance of triangles in C̄µε,η.
We first note that it suffices to show

sup
{
|m41 −m42| : 41,42 ∈ C̄µε,η ∩ C̄(1)

ε

}
= O(ε)

since for a suitable η̃ ≥ η for any 4 ∈ C̄µε,η ∩ C̄
(2)
ε there is a 4̃ ∈ C̄µε,η̃ ∩ C̄

(1)
ε with

|m4−m4̃| ≤ ε. Let x2, z2 ∈ Dµ, x2 < z2 with z2−x2 ≤ Cε and |m41−m42| > 0

for the corresponding broken triangles41,42 ∈ C̄(1)
ε . We may assume if a triangle
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intersects (0, l) × {z2} or (0, l) × {x2} then its interior does so, too. Denote by
d̄ = γ−1|m41−m42| the distances of the centers in vγ-projection onto the x1-axis.

Let x1, z1 ∈ (0, l) be the points on the slices (0, l) × {x2} and (0, l) × {z2}
satisfying πv⊥γ

(x1, x2) = m41 and πv⊥γ
(z1, z2) = m42 , respectively, where πv⊥γ

denotes the orthogonal projection onto the linear subspace spanned by v⊥γ . Let
w = e1 · vγ|x2 − z2|/γ. Then the vγ-projection of z = (z1, z2) onto the x-slice is
given by (z̃1, x2) with z̃1 = z1−w. Then d̄ = |x1− z̃1| and without restriction we
may assume x1 > z̃1.

Let sε =
√

3ε
4γ

. We now consider the area bounded by the parallelogram with

corners (z̃1 + sε, x2), (x1 − sε, x2), (z1 + d̄ − sε, z2), (z1 + sε, z2). It is covered

by 2γd̄√
3ε
− 1 stripes of width

√
3

2
ε in vγ-direction consisting of lattice triangles

intersecting the parallelogram, the first of these stripes touching 41, the last
one touching 42 (note that if γd̄ =

√
3

2
ε the parallelogram is degenerated to a

segment). For the intermediate stripes (23) shows that

y1(t, x2) ≤ t+
√
εlµ ∀ t < x1 − sε and

y1(t, z2) ≥ t+
√
εl(a− µ) ∀ t > z1 + sε.

This shows that if (t, x2) and (t+w, z2), x1− d̄+sε < t < x1−sε lie in the bottom
and top triangles of some intermediate stripe, respectively, which are unbroken
by construction of Dµ, then

|y(t+ w, z2)− y(t, x2)| ≥ y1(t+ w, z2)− y1(t, x2) ≥ w +
√
εl(a− 2µ) ∼

√
ε.

Consider the 2γd̄√
3ε

atomic chains in vγ direction that lie on the boundary of these

stripes. They are of length γ−1(z2−x2)+O(ε) ≤ Cε�
√
ε. So there is a constant

c > 0 such that each of these chains contains at least one spring elongated by
a factor of more than c√

ε
. By passing, if necessary, to a lower threshold η̃ ≥ η,

we obtain that the triangles sharing such a spring are broken and additionally
one neighbor of each. As broken triangles for such springs on neighboring chains
might overlap, we only consider every second atom chain and denote the set of
type one triangles adjacent to such a spring on atom chains of odd numbers by
C̄(1)
vγ (41,42). We note that

γd̄ ≤
√

3ε#C̄(1)
vγ (41,42). (24)

The projection onto the x2-axis of the spring in vγ-direction is an interval J
of length γε. Counting broken springs, it is elementary to see that the energy
contribution 4√

3ε

∫
(ε,l−ε)×JW4(∇ỹε) of the part of these broken triangles that lies

in the stripe (0, l)× J is bounded from below by

2ε(1 + P (γ))β η̃, (25)

where P (γ) is the projection coefficient from (7) satisfying P (1) = 1
2

and in

particular P (γ) = 0 if and only if γ =
√

3
2

. On the other hand, the energy within
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stripes (0, l)× J ′ when J ′ is the projection of an arbitrary broken triangle is still
bounded from below by 2εβ η̃.

Now let 4i, i = 1, . . . ,Mε, denote all triangles 4 in C̄µε,η̃ ∩ C̄
(1)
ε such that

there exists x
(i)
2 ∈ Dµ with (0, l)×{x(i)

2 } intersecting with the interior of 4. The

numbering shall be chosen so as to satisfy x
(1)
2 < . . . < x

(Mε)
2 . As 1−|Dµ| = O(ε),

there exists a constant C > 0 such that x
(i+1)
2 − x

(i)
2 < Cε, i = 1, . . . ,Mε − 1.

We define the subset {x(ij)
2 }j=1,...Nε of {x(i)

2 }i=1,...,Mε such that x
(i)
2 = x

(ij)
2 for

a j = 1, . . . Nε if and only if |m4i − m4i+1
| > 0. According to our previous

considerations, if I η̃vγ is the projection of C̄(1)
vγ :=

⋃Nε
j=1 C̄

(1)
vγ (4ij ,4ij+1) onto the

x2-axis, then
|I η̃vγ | ≤ γε#C̄(1)

vγ . (26)

As before using (25) and (26) we see that the total energy is greater or equal to

#C̄(1)
vγ 2ε(1 + P (γ))β η̃ + |I η̃ \ I η̃vγ |

2β η̃

γ
+O(ε)

= |I η̃|2β
η̃

γ
+ 2#C̄(1)

vγ εP (γ)β η̃ + 2#C̄(1)
vγ εβ

η̃ − |I η̃vγ |
2β η̃

γ
+O(ε)

≥ 2β

γ
+ 2#C̄(1)

vγ εP (γ)β η̃ +O(ε),

and so #C̄(1)
vγ = O(1). As every4 ∈ C̄(1)

vγ is in at most two different C̄(1)
vγ (4ij ,4ij+1),

this also yields
∑Nε

j=1 #C̄(1)
vγ (4ij ,4ij+1) = O(1).

Applying (24) we find that

O(1) =
Nε∑
j=1

#C̄(1)
vγ (4ij ,4ij+1) ≥

Nε∑
j=1

γd̄ij√
3ε
≥ c

ε

Nε∑
j=1

|m4ij −m4ij+1
|

for a constant c > 0, when d̄i = γ−1|m4i −m4i+1
|. This concludes the proof. �

Remark. We recall that the last claim in Lemma 5.1 does not hold if vγ is not

unique (γ =
√

3
2

) as the crack can take a serrated course. Indeed, if P (γ) vanishes,

we cannot conlude that #C̄(1)
vγ = O(1) in the above proof.

The above Lemma 5.1 shows that for a sequence of almost minimizers (ỹε)
satisfying (9), the number #C̄ε of largely deformed triangles is bounded indepen-
dently of ε for a < acrit, while in the supercritical case there are two subsets

Ω(1)
ε := {x ∈ Ωε : 0 ≤ x1 ≤ pε − cε+ (vγ · e1)x2} ,

Ω(2)
ε := {x ∈ Ωε : pε + cε+ (vγ · e1)x2 ≤ x1 ≤ l} ,

(27)

c > 0 independent of ε and pε to be chosen appropriately, such that the number
of triangles in C̄ε intersecting Ω

(1)
ε ∪Ω

(2)
ε is bounded uniformly in ε. The following
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lemma shows that broken triangles in these sets can be ‘healed’. In order to treat
these cases simultaneously in the following we will call these sets the ‘good set’

Ωgood =

{
Ωε for a < acrit and

Ω
(1)
ε ∪ Ω

(2)
ε for a > acrit.

Lemma 5.2 There exists ȳε ∈ W 1,∞(Ωgood; R2) with ∇ȳε bounded in L∞(Ωgood)
uniformly in ε such that

|{x ∈ Ωgood : ȳε(x) 6= ỹε(x)}| = O(ε2)

and ∫
Ωgood

dist2(∇ȳε(x), SO(2)) dx ≤ C

∫
Ωgood\

S
4∈C̄ε 4

dist2(∇ỹε, SO(2)) dx.

Proof. For notational convenience we drop the subscript ε in the following proof.
We can partition the area covered by the (closed) triangles in C̄ intersecting Ωgood

into connected components C1, . . . , CN such that⋃
4∈C̄:4∩Ωgood 6=∅

4 = C1∪̇ . . . ∪̇CN ,

where N is bounded uniformly in ε. Then the maximal diameter of each sets Ci
is bounded by a term O(ε). For each i, the largest connected component Di of
the complement Ωgood \Ci lying in the same component of Ωgood is unique (with
area of the order 1 while all the other components of the complement are of size
O(ε2)). Let Vi be the union of triangles whose interior is contained in Di that
touch the boundary of Ci.

We now proceed to define ȳ by modifying ỹ on all the triangles not contained
in Di, successively for i = 1, . . . , N . For each i this modification is done iteratively
on triangles4 which share at least one side with a triangle that has been modified
previously or with a triangle lying in Vi in such a way that ȳ is continuous along
such sides and ȳ|4 is affine and minimizes dist((ȳ)4, SO(2)).

In order to estimate dist(∇ȳ, SO(2)) we recall the following geometric rigidity
result proved in [24]: If U ⊂ Rd is a (connected) Lipschitz domain, then there
exists a constant C = C(U) such that for any f ∈ H1(U,Rd) there is a rotation
R ∈ SO(d) with∫

U

|∇f(x)−R|2 dx ≤ C

∫
U

dist2(∇f(x), SO(d)) dx. (28)

The constant C(U) is invariant under rescaling of the domain. For later use we
mention that if dist2(∇f(x), SO(d)) is equiintegrable, then R can be chosen in
such a way that also |∇f(x)−R|2 is equiintegrable, cf. [25].
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Consider a single step in the modification process, when ỹ is modified to ȳ
on 4, and let U be the union of triangles that have been modified previously or
lie in Vi. By the geometric rigidity estimate (28), there is a rotation R ∈ SO(2)
such that (28) holds for f = ȳ. Since ∇ȳ is piecewise constant, this means∑

4′⊂U

|(ȳ)4′ −R|2 ≤ C
∑
4′⊂U

dist2((ȳ)4′ , SO(2)).

It is not hard to see that there exists an extension w of ȳ from U to U ∪4 such
that

|(w)4 −R|2 ≤ C
∑
4′⊂U

|(ȳ)4′ −R|2.

(If there is only one side of 4 on the boundary of U , say adjacent to 4′ ⊂ U ,
then one can take w with (w)4 = (ȳ)4′ . If at least two sides, say in v1 and
v2 direction, are shared by triangles 41,42 ⊂ U , respectively, then these sides
have a common corner and the unique extension w satisfies (w)4vi = (ȳ)4ivi =
Rvi + ((ȳ)4i −R)vi, i = 1, 2.) Now by construction of ȳ on 4 we see that

dist2((ȳ)4, SO(2)) ≤ C
∑
4′⊂U

|(ȳ)4′ −R|2

and so ∫
U∪4

dist2(∇ȳ(x), SO(2)) dx ≤ C

∫
U

dist2(∇ȳ(x), SO(2)) dx.

Iterating this estimate we finally arrive at∫
Ωgood

dist2(∇ȳ(x), SO(2)) dx ≤ C

∫
Ωgood\

S
i Ci

dist2(∇ỹ, SO(2)) dx.

Here the constant C can be chosen independently of ε. This is due to the facts
that the number of modification steps is bounded uniformly in ε and – after
rescaling the shapes U with 1

ε
– there is also only a uniformly bounded number

of shapes U involved in the previous rigidity estimates. Moreover, each triangle
is covered by no more than three of the sets Vi.

The uniform boundedness of the number of modification steps also shows that
|{x ∈ Ωgood : ȳ(x) 6= ỹ(x)}| = O(ε2) and, by definition of C̄ and construction of
ȳ, that ‖∇ȳ‖L∞(Ωgood) = O(1). �

Note that up to a set of small size ȳε satisfies the same boundary conditions
as ỹε on the lateral boundary. More precisely, there are Γ

(i)
ε ⊂ (0, 1), |Γ(i)

ε | =

O(ε), i = 1, 2, such that ȳε and ỹε coincide on (0, ε) × ((0, 1) \ Γ
(1)
ε ) and (l −

ε, l)× ((0, 1) \ Γ
(2)
ε ). With these boundary conditions and the geometric rigidity

estimate (28) we can now derive strong convergence results for ȳε and even the
corresponding rescaled displacement ūε = 1√

ε
(ȳε− id) on Ωgood. We first consider

the supercritical case.
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Lemma 5.3 If a > acrit, then – possibly after a rotation by π on the components
of Ωgood – there exist sequences sε, tε ∈ R such that

‖ūε − (0, sε)‖H1(Ω
(1)
ε )

+ ‖ūε − (al, tε)‖H1(Ω
(2)
ε )
→ 0.

Proof. We again drop the subscript ε. Applying the geometric rigidity estimate
(28) to Ω(1) and to Ω(2), we obtain rotations R(1), R(2) ∈ SO(2) such that

‖∇ȳ −R(i)‖
L2(Ω

(i)
ε )
≤ C‖ dist(∇ȳ, SO(2))‖

L2(Ω
(i)
ε )
, i = 1, 2.

Here C can be chosen independently of ε as all the possible shapes of Ω(i) are
related through bi-Lipschitzian homeomorphisms with Lipschitz constants of both
the homeomorphism itself and its inverse bounded uniformly in ε, cf. [24]. Now
using that∇ȳ is uniformly bounded in L∞, we obtain from Lemmas 5.2 and 3.5(i)

2∑
i=1

‖∇ȳ −R(i)‖2

L2(Ω
(i)
ε )
≤ C

∫
Ωgood\

S
4∈C̄ε 4

dist2(∇ỹ, SO(2)) dx

≤ C

∫
Ωgood\

S
4∈C̄ε 4

dist2(∇ỹ, O(2)) + χ(∇ỹ) dx

≤ C

∫
Ωgood\

S
4∈C̄ε 4

W4,χ(∇ỹ) dx.

But, as seen before,

4√
3ε

∫
Ωgood\

S
4∈C̄ε 4

W4,χ(∇ỹ) dx ≤ Eχ(y)− 2βη

γ
|Iη| = O(ε)

by Lemma 5.1, and so

2∑
i=1

‖∇ȳ −R(i)‖2

L2(Ω
(i)
ε )

= O(ε2).

By Poincaré’s inequality we then deduce that there are ζ(i) ∈ R2 such that

2∑
i=1

‖ȳ −R(i) · −ζ(i)‖
H1(Ω

(i)
ε )

= O(ε). (29)

We extend ȳ as an H1 function from Ω
(i)
ε to Ω(i) (as defined in Theorem 2.3),

i = 1, 2, such that (29) still holds and ȳ1(0, x2) = 0 for x2 ∈ (0, 1)\Γ(1)
ε , ȳ1(l, x2) =

l(1+aε) for x2 ∈ (0, 1)\Γ(2)
ε . The trace theorem for Sobolev functions with x1 = 0

or x1 = l according to i = 1 and i = 2, respectively, gives

2∑
i=1

‖ȳ(x1, ·)−R(i)(x1, ·)− ζ(i)‖L2(0,1) = O(ε).
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In particular, setting ζ̃(1) = ζ(1) and ζ̃(2) = ζ(2) − laεe1, the first components
satisfy

2∑
i=1

‖x1 −R(i)
11x1 −R(i)

12 · −ζ̃
(i)
1 ‖L2((0,1)\Γ(i)

ε )
= O(ε). (30)

But then also the constant function

1

2
R

(i)
12 =

(
x1 −R(i)

11x1 −R(i)
12

(
· − 1

2

)
− ζ̃(i)

1

)
−
(
x1 −R(i)

11x1 −R(i)
12 · −ζ̃

(i)
1

)
is of order ε in L2((0, 1

2
)\Γ(i)) and thus R

(i)
12 ≤ Cε. An elementary argument now

yields
|R(i) − Id| = O(ε) or |R(i) + Id| = O(ε)

and, possibly after rotating by π, we may assume that |R(i) − Id| = O(ε).

Returning to (30) and (29), it now follows that |ζ̃(i)
1 | = O(ε) and then

‖ū− (0, ζ
(1)
2 )‖

H1(Ω
(1)
ε )

+ ‖ū− (al, ζ
(2)
2 )‖

H1(Ω
(2)
ε )

= O(
√
ε).

�

Strong convergence in the subcritical case can be shown along the lines of the
proofs of the main linearization results in [30] and [31]. We include a simplified
proof adapted to the present situation here for the sake of completeness.

Lemma 5.4 If a < acrit, then there is a sequence sε ∈ R such that

‖ūε − (0, sε)− F a·‖H1(Ωgood) → 0.

where F a =

(
a 0
0 −a

3

)
.

Proof. We again drop subscripts ε if no confusion arises. With the help of the
geometric rigidity estimate (28) we find by arguing as in the proof of Lemma 5.3
that

‖∇ȳ −R‖2
L2(Ωε)

≤ C

∫
Ωε\

S
4∈C̄ε 4

W4,χ(∇ỹ) dx = O(ε)

for a suitable rotation R ∈ SO(2) with

|R± Id| = O(
√
ε) (31)

and

‖ȳ ± id− ζ‖H1(Ωε) = O(
√
ε)
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for some ζ ∈ R2 with ζ1 = O(
√
ε) and thus, due to the boundary conditions,

‖ū− (0, ζ2)‖H1(Ωε) = O(1).

In particular, ūε−(ζε)2e2 converges – up to passing to a subsequence – weakly. It

now suffices to prove that ‖e(ūε)−F a‖L2(Ωε) → 0, where e(u) = (∇u)T+∇u
2

denotes
the symmetrized gradient, for then the assertion follows from Korn’s inequality.

To this end, we let Vε(F ) = 1
ε
W4(Id +

√
εF ) and Vε,χ(F ) = Vε(F ) + 1

ε
χ(Id +√

εF ), so that Vε,χ(F ) → 1
2
D2W4(Id)[F, F ] = 1

2
Q(F ) uniformly on compact

subsets of R2×2. Then by frame indifference (see Lemma 3.1)

W4,χ(Id +
√
εF ) = W4,χ

(√
(Id +

√
εF )T (Id +

√
εF )

)
= εVε,χ

(
F T + F

2
+

1√
ε
f(
√
εF )

) (32)

with f(F ) =
√

(Id + F )T (Id + F )−Id−FT+F
2

, so that |f(F )| ≤ C min{|F |, |F |2}.
Then by Lemma 3.5(i) and (32) Vε,χ satisfies

Vε,χ

(
F T + F

2
+

1√
ε
f(
√
εF )

)
≥ c

ε
dist2(Id +

√
εF,O(2)) +

1

ε
χ(Id +

√
εF )

≥ c

ε
dist2(Id +

√
εF, SO(2))

≥ c

ε

∣∣∣∣√(Id +
√
εF )T (Id +

√
εF )− Id

∣∣∣∣2
= c

∣∣∣∣F T + F

2
+

1√
ε
f(
√
εF )

∣∣∣∣2 .
(33)

In the sequel we set Aε(F ) = FT+F
2

+ 1√
ε
f(
√
εF ). Choose convex functions

ψk : R2×2 → R with linear growth at infinity such that ψ1 ≤ ψ2 ≤ . . . and
ψk(F )→ 1

2
Q(F ) uniformly on compact subsets of R2×2. The previous quadratic

estimate on Vε,χ(Aε(F )) from below and the fact that Vε,χ → 1
2
Q uniformly on

compacts then shows that we can also choose δ > 0 and a sequence rk →∞ such
that

Vε,χ (Aε(F ))− δχ{|Aε(F )|≥rk}|Aε(F )|2 ≥ ψk (Aε(F ))− 1

k
,

whenever ε (depending on k) is sufficiently small.
With (32) we now obtain that

1

ε

∫
Ωε

W4,χ(ȳ) dx =

∫
Ωε

Vε,χ (Aε(∇ū)) dx

≥
∫

Ωε

ψk (Aε(∇ū)) dx+ δ

∫
Ωε

χ{|Aε(∇ū)|≥rk}|Aε(∇ū)|2 dx− 1

k
.
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As ψk has linear growth at infinity and 1√
ε
f(
√
ε∇ūε) ≤ C min{|∇ūε|,

√
ε|∇ūε|2},

∇ūε bounded in L2, by splitting the integration into two parts according to
|∇ūε| ≤M or |∇ūε| > M and eventually sending M to infinity, we find

lim inf
ε→0

∫
Ωε

ψk (Aε(∇ūε)) dx = lim inf
ε→0

∫
Ωε

ψk (e(ūε)) dx.

When ūε − (ζε)2e2 ⇀ u in H1, by Theorem 2.1 it then follows that

αla2

√
3

= lim
ε→0

4√
3

∫
Ωε

Vε,χ (Aε(∇ūε)) dx

≥ lim inf
ε→0

4√
3

∫
Ω

χ{dist(x,∂Ω)≥k−1}ψk (e(ūε)) dx

+ lim sup
ε→0

4δ√
3

∫
Ωε

χ{|Aε(∇ūε)|≥rk}|Aε(∇ūε)|
2 dx− 4√

3k
.

Using that by convexity of ψk the first term on the right hand side is lower
semicontinuous in∇ūε and that χ{dist(·,∂Ω)≥k−1}ψk → 1

2
Q monotonically, we finally

find by letting k →∞

αla2

√
3
≥ 2√

3

∫
Ω

Q (e(u))

+ lim
k→∞

lim sup
ε→0

4δ√
3

∫
Ωε

χ{|Aε(∇ūε)|≥rk}|Aε(∇ūε)|
2 dx.

(34)

A slicing and convexity argument similar to (14) now shows that 2√
3

∫
Ω
Q(e(w)) ≥

αla2
√

3
for all w ∈ H1 subject to w1(0, x2) = 0 and w1(l, x2) = al and thus

lim
k→∞

lim sup
ε→0

4δ√
3

∫
Ωε

χ{|Aε(∇ūε)|≥rk}|Aε(∇ūε)|
2 dx = 0,

or, in other words, |Aε(∇ūε)|2 is equiintegrable. By the estimate |Vε,χ(F )| =
|1
ε
W4,χ(Id +

√
εF )| ≤ C(1 + |F |2), (33) shows that also

c

ε
dist2(∇ȳε, SO(2)) ≤ Vε,χ(Aε(∇ūε))

is equiintegrable, so that by the discussion following Equation (28) in fact we
may assume that 1

ε
‖∇ȳε−R‖2

L2(Ωε)
is equiintegrable, too, and |R− Id| = O(

√
ε)

by (31). But then also |∇ūε|2 is equiintegrable and this together with (34) yields

lim
ε→0

2√
3

∫
Ωε

Q(e(ūε)) =
2√
3

∫
Ω

Q(e(u)) =
αla2

√
3
.
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For some δ > 0 small enough we finally obtain that

αla2

√
3

=
2√
3

∫
Ω

Q(F a) dx

= inf

{
2√
3

∫
Ω

Q(e(w))− δ|e(w)− F a|2 dx :

w ∈ H1(Ω), w(0, x2) = 0, w(l, x2) = al

}
≤ lim inf

ε→0

2√
3

∫
Ωε

Q(e(ūε))− δ|e(ūε)− F a|2 dx

=
αla2

√
3
− δ lim sup

ε→0
‖e(ūε)− F a‖2

L2(Ωε)

and therefore limε→0 ‖e(ūε)− F a‖2
L2(Ωε)

= 0 indeed. �

After all these preparatory lemmas, the proof of our main limiting result
Theorem 2.3 is now straightforward.

Proof of Theorem 2.3. Choose pε as in (27) and sε, respectively, sε and tε, as in
Lemmas 5.4, respectively, 5.3. By Lemmas 5.4 and 5.3, ūε can be extended as an
H1-function from Ωε to Ω, respectively, from Ω

(i)
ε to Ω(i), i = 1, 2, such that still

‖ūε − (0, sε)− F a·‖H1(Ω) → 0,

respectively,

‖ūε − (0, sε)‖H1(Ω(1)) + ‖ūε − (al, tε)‖H1(Ω(2)) → 0.

This completes the proof as by Lemma 5.2 we also still have |{x ∈ Ωε : ūε(x) 6=
ũε(x)}| = O(ε). �

6 The limiting variational problem

Convergence of the variational problems

We first address the question of Γ-convergence of Eε. The main idea in the proof
is a separation of the discrete energy into bulk and surface contributions. The
treatment of the elastic part draws ideas from [31] and [24]. To derive the crack
energy, one could use a slicing technique, see, e.g., [12]. Although also possible in
our framework, we follow a different approach here: We carefully construct crack
shapes of discrete configurations in an explicit way which allows us to directly
appeal to lower semicontinuity results for SBV functions in order to derive the
main energy estimates.

As a preparation we modify the interpolation ỹ on triangles with large defor-
mation: We fix a threshold explicitly as R = 4

√
2 and let C̄ε be the set of those
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triangles where |(ỹ)4| > R. We introduce another interpolation y′ which leaves ỹ
unchanged on 4 ∈ Cε \ C̄ε and replaces ỹ on 4 ∈ C̄ε by a discontinuous function
with constant derivative satisfying |(y′)4| ≤ R. In fact, by introducing jumps we
achieve a release of the elastic energy. Note that y′ ∈ SBV (Ω).

More precisely, note that on 4 ∈ C̄ε we have |(ỹ)4 v| ≥ 2 for at least two
springs v ∈ V . Indeed, for F ∈ R2×2 with 32 < |F |2 = |F TF | using (12) we
find 3

4
|F TF |2 = 3

4
trace(F TF )2 ≤

∑
v∈V〈v, F TFv〉2 and so 322

4
< maxv∈V |Fv|4.

Hence, |Fv| > 4 for at least one v ∈ V and at least two springs are elongated
by a factor larger than 2. For m = 2, 3 let C̄ε,m ⊂ C̄ε be the set of triangles
where |(ỹ)4 v| ≥ 2 holds for exactly m springs v ∈ V . Set v3 = v2 − v1. For
i, j, k = 1, 2, 3 pairwise distinct let hi denote the segment between the centers of
the sides in vj and vk direction and define the set Vi = hj ∪ hk.

We now construct y′ ∈ SBV 2(Ωε). On 4 ∈ Cε \ C̄ε we simply set y′ = ỹ. On
4 ∈ C̄ε,2, assuming |(ỹ)4 vi| ≤ 2, we choose y′ such that∇y′ assumes the constant
value (y′)4 on 4 with (y′)4 vi = (ỹ)4 vi and |(y′)4 v| = 1 for v ∈ V \ {vi}.
Moreover, we ask that y′ = ỹ at the three vertices and on the side orientated
in vi direction. This can and will be done in such a way that y′ is continuous
on int(4) \ hi. We note that the definition of (y′)4 is unique up to a reflection,
unless (ỹ)4vi = 0. We may and will assume that

dist ((y′)4, SO(2)) ≤ dist ((y′)4, O(2) \ SO(2)) . (35)

For 4 ∈ C̄ε,3 we set (y′)4 = Id and y′ = ỹ at the three vertices such that y′ is
continuous on int(4) \ Vi. Here, the set Vi can be taken arbitrarily at first.

We define the interpolation u′ for the rescaled displacement field by u′ =
1√
ε
(y′− id). For future reference we define y′Vi as ‘variants’ of y′ satisfying that for

the jump set in some 4 ∈ C̄ε,3 we always choose Vi. We note that by construction
also on an edge [p, q] ⊂ ∂4 for 4 ∈ C̄ε jumps may occur. There, however, the
jump height |[uε]| can be bounded by

|[u′ε](x)| ≤ ε ‖∇u′ε‖∞ ≤ ε · cε−
1
2 = c

√
ε (36)

for a constant c > 0 independent of ε and x ∈ [p, q]. This holds since the
interpolations are continuous at the vertices.

The following lemma shows that we may pass from ũε to u′ε without changing
the limit.

Lemma 6.1 If uε → u in the sense of Definition 2.4 and E(uε) is uniformly
bounded, then χΩεu

′
ε → u in L1(Ω), χΩε∇u′ε ⇀ ∇u in L2(Ω) and H1(Ju′ε) is

uniformly bounded.

Proof. We first note that there is some M > 0 such that

#C̄ε ≤
M

ε
(37)
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for all ε > 0. To see this, we just recall that every triangle 4 ∈ C̄ε provides at
least the energy ε inf {W (r) : r ≥ 2}. In fact we may assume that C∗ε = C̄ε in
Definition 2.4 as for ∆ ∈ C∗ε \ C̄ε we have |(ũε)4| ≤ C√

ε
|(ỹε)4 − Id| ≤ C√

ε
and so

‖∇ũε‖L2(Ωε\∪4∈C̄ε4) ≤ ‖∇ũε‖L2(Ωε\∪4∈C∗ε4) + ‖∇ũε‖L2(∪4∈C∗ε\C̄ε4)

C +

(
#(C∗ε \ C̄ε)

√
3ε2

4
· C
ε

) 1
2

≤ C.

It follows that χΩε∇u′ε is bounded uniformly in L2 and, in particular, equiinte-
grable. Finally, the jump lengths H1(Ju′ε) are readlily seen to be bounded by
Cε#C̄ε ≤ C. But then Ambrosio’s compactness Theorem for GSBV [2, Theorem
2.2] shows that indeed χΩε∇u′ε ⇀ ∇u in L2(Ω). �

Proof of Theorem 2.5. (i) Let ε−
1
2aε = a ∈ [0,∞) for all ε. Let u ∈ SBV 2(Ω) and

consider a sequence uε ⊂ SBV 2(Ωε) with yε = id +
√
εuε ∈ A(aε) converging to

u in SBV 2 in the sense of Definition 2.4. We split up the energy into bulk and
crack part neglecting the contribution εEboundary

ε from the boundary layers:

Eε(uε)≥ε
∑
4/∈C̄ε

W4((ỹε)4) + ε
∑
4∈C̄ε

W4((ỹε)4)

=
4√
3ε

∫
Ωε

W4
(
Id +

√
ε∇u′ε

)
+ ε

∑
4∈C̄ε

∑
v∈V,

|(ỹε)4 v|>2

1

2
W (|(ỹε)4 v|)

=: Eelastic
ε (uε) + Ecrack

ε (uε).

(38)

We note that by contruction of the interpolation u′ε we may take the integral over
Ωε. As both parts separate completely in the limit, we discuss them individually.

Elastic energy. We first concern ourselves with the elastic part of the energy. We

recall W4(Id +G) = 1
2
Q(G) +ω(G) with sup

{
ω(F )
|F |2 , |F | ≤ ρ

}
→ 0 as ρ→ 0. Let

χε(x) := χ[0,ε−1/4)(|∇uε(x)|). Note that for F ∈ R2×2, r > 0 one has Q(rF ) =
r2Q(F ). We compute

Eelastic
ε (uε) ≥

4√
3

∫
Ωε

χε(x)

(
1

2
Q(∇u′ε) +

1

ε
ω
(√

ε∇u′ε(x)
))

dx.

The second term of the integral can be bounded by

χε|∇u′ε|2
ω (|
√
ε∇u′ε|)

|
√
ε∇u′ε|2

.

Since ∇u′ε is bounded in L2 and χε
ω(
√
ε∇u′ε)

|
√
ε∇u′ε|2

converges uniformly to 0 as ε→ 0 it
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follows that

lim inf
ε→0

Eelastic
ε (uε) ≥ lim inf

ε→0

4√
3

∫
Ωε

χε(x)
1

2
Q(∇u′ε(x)) dx

≥ lim inf
ε→0

4√
3

∫
Ω

1

2
Q(χΩεχε(x)∇u′ε(x)) dx.

By assumption χΩε∇u′ε ⇀ ∇u weakly in L2. As χε → 1 boundedly in measure
on Ω, it follows χΩεχε∇u′ε ⇀ u weakly in L2(Ω). By lower semicontinuity (Q
is convex by Lemma 3.2) we conclude recalling that Q only depends on the
symmetric part of the gradient:

lim inf
ε→0

Eelastic
ε (uε) ≥

4√
3

∫
Ω

1

2
Q(e(u(x))) dx.

Crack energy. By construction the functions u′ε have jumps on destroyed triangles
4 ∈ C̄ε. We now write the energy of such a triangle in terms of the jump height
[u] = u+ − u−. We first concern ourselves with some 4 ∈ C̄ε,3. For the variant
u′ε,Vi , i = 1, 2, 3 we consider the springs in vj,vk direction for j, k 6= i. We see
that the two parts of the jump set, hvj , hvk do not overlap in the projection onto
the one-dimensional hyperplanes spanned by v⊥j and v⊥k , respectively. Thus, we
compute

ε(ỹε)4 vj = ε(y′ε)4 vj + [y′ε,Vi ]hvk = εvj +
√
ε[u′ε,Vi ]hvk , (39)

where [u′ε,Vi ]hvk denotes the jump height on the set hvk . Here and in the following
equations, the same holds true if we interchange the roles of j and k. We claim
that

|(ỹε)4 vj| ≥ ε
1
4

∣∣∣∣ 1√
ε

[u′ε,Vi ]hvk

∣∣∣∣+ 1. (40)

Indeed, for | 1√
ε
[u′ε,Vi ]hvk | ≤ ε−

1
4 this is clear since |(ỹε)4 vj| ≥ 2. Otherwise,

applying (39) we compute for ε small enough:

|(ỹε)4 vj| =
∣∣∣∣ 1√
ε

[u′ε,Vi ]hvk + vj

∣∣∣∣ ≥ ∣∣∣∣ 1√
ε

[u′ε,Vi ]hvk

∣∣∣∣− 1

≥ ε
1
4

∣∣∣∣ 1√
ε

[u′ε,Vi ]hvk

∣∣∣∣+
(

1− ε
1
4

)
ε−

1
4 − 1 ≥ ε

1
4

∣∣∣∣ 1√
ε

[u′ε,Vi ]hvk

∣∣∣∣− 2 + ε−
1
4

≥ ε
1
4

∣∣∣∣ 1√
ε

[u′ε,Vi ]hvk

∣∣∣∣+ 1.

Let ρ > 0 sufficiently small. Applying Lemma 3.5(iv) there is an increasing
subadditive function ψρ with ψρ(r − 1) − ρ ≤ W (r) for r ≥ 1. We define ψ̃ρ =
ψρ − ρ. The monotonicity of ψρ and (40) yield

W (|(ỹε)4 vj|) ≥ ψ̃ρ(|(ỹε)4 vj| − 1) ≥ ψ̃ρ
(∣∣∣ε− 1

4 [u′ε,Vi ]hvk

∣∣∣) . (41)
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Now for 4 ∈ C̄ε,3 we may estimate the energy as follows:

W4 ((ỹε)4) =
1

2

3∑
l=1

W (|(ỹε)4 vl|)

≥ 1

4

3∑
i=1

{
ψ̃ρ
(
ε−

1
4 |[u′ε,Vi ]hvk |

)
+ ψ̃ρ

(
ε−

1
4 |[u′ε,Vi ]hvj |

)}
=: W4,3 ((ỹε)4) ,

where i, j, k = 1, 2, 3 are pairwise distinct. With ν
(i)
u = νu′ε,Vi

we can also write

W4,3 ((ỹε)4) =
1

4
·2
ε
· 2√

3

3∑
i=1

∫
hvj∪hvk

ψ̃ρ
(
ε−

1
4 |[u′ε,Vi ]|

) (
|vj · ν(i)

u |+ |vk · ν(i)
u |
)
dH1.

The factors in front occur since H1(hvj) = ε
2

and, letting νj be a normal of

hvj , one has |νj · vj| = 0 and |νj · vk| =
√

3
2

. Consequently, defining φρi (r, ν) =

ψρ(r) (|vj · ν|+ |vk · ν|) and φ̃ρi (r, ν) = ψ̃ρ(r) (|vj · ν|+ |vk · ν|), respectively, we
get

W4,3 ((ỹε)4) =
1√
3ε

3∑
i=1

∫
Ju′
ε,Vi

∩int(4)

φ̃ρi (ε
− 1

4 |[u′ε,Vi ]|, ν
(i)
u ) dH1,

on every 4 ∈ C̄ε,3. For 4 ∈ C̄ε,2 we proceed analogously. Assuming |(ỹε)4 vi| ≤ 2
we compute for the springs in vj,vk direction (abbreviated by vj,k) as in (39)

ε(ỹε)4 vj,k = ε(y′ε)4 vj,k +
√
ε[u′ε]hvi . (42)

Note that in this case we do not have to take a special variant of u′ε into account.
Repeating the steps (40) and (41) we find

1

2
(W (|(ỹε)4 vj|) +W (|(ỹε)4 vk|)) ≥ ψ̃ρ

(
ε−

1
4 |[u′ε]hvi |

)
=: W4,2 ((ỹε)4) .

Noting that |vj · νi| = |vk · νi| =
√

3
2

, |vi · νi| = 0 and that every of these terms
occurs twice in the sum of the right hand side of the following formula, it is not
hard to see that this energy satsifies the same integral representation formula as
W4,3:

W4,2 ((ỹε)4) =
1√
3ε

3∑
i=1

∫
Ju′
ε,Vi

∩int(4)

φ̃ρi (ε
− 1

4 |[u′ε,Vi ]|, ν
(i)
u ) dH1.

Let σ > 0. Then for ε sufficiently small the crack energy can be estimated by

Ecrack
ε (uε) ≥

1√
3

∑
i

∫
Ju′
ε,Vi

∩Ωε

φ̃ρi (ε
− 1

4 |[u′ε,Vi ]|, ν
(i)
u ) dH1 − Eρ

ε,∪∂4 (ỹε)

≥ 1√
3

∑
i

∫
Ju′
ε,Vi

∩Ωε

(
φρi (σ

−1|[u′ε,Vi ]|, ν
(i)
u )− ρ

)
dH1 − Eρ

ε,∪∂4 (ỹε) ,
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where Eρ
ε,∪∂4 (ỹε) compensates for the extra contribution provided by jumps lying

on the boundary of some 4 ∈ C̄ε. We will show that this term vanishes in the
limit.

Now by construction the φρi (r, ν), i = 1, 2, 3, are products of a positive, in-
creasing and concave in function in r and a norm in ν. Moreover, u′ε and its
variants converge to u in L1 with ∇u′ε bounded in L2 and thus equiintegrable.
By Ambrosio’s lower semicontinuity Theorem [2, Theorem 3.7] we obtain

lim inf
ε→0

Ecrack
ε (uε) ≥

1√
3

∫
Ju

∑
i

φρi (σ
−1|[u]|, νu) dH1 − CMρ− lim sup

ε→0
Eρ
ε,∪∂4 (ỹε) ,

where we used that supεH1(Ju′ε) ≤ CM for a constant C > 0 by (37). We recall
that ψρ(r)→ β for r →∞. Passing to the limit σ → 0 this yields

lim inf
ε→0

Ecrack
ε (uε) ≥

1√
3

∫
Ju

2β
∑
v∈V

|v · νu| dH1−CMρ− lim sup
ε→0

Eρ
ε,∪∂4 (ỹε) . (43)

Taking (36) and (37) into account we compute

lim sup
ε→0

∑
4∈C̄ε

∫
∂4
|ψ̃ρ
(
ε−

1
4 |[u′ε]|

)
| ≤ lim

ε→0
CM sup

{
|ψρ (r)− ρ| : r ≤ ε−

1
4 · cε

1
2

}
= CMρ.

This proves lim supε |E
ρ
ε,∪∂4 (ỹε) | ≤ C̃Mρ for some C̃ > 0. We let ρ→ 0 in (43).

This finishes the proof of (i).

(ii) The basic tool for the proof of the Γ-limsup-inequality is a density result
for SBV functions due to Cortesani and Toader [17]. We suppose W(Ω,R2) is
the space of all SBV functions u ∈ SBV (Ω,R2) such that Ju is a finite, disjoint
union of segments and u ∈ W k,∞(Ω \ Ju,R2) for all k. Then W(Ω,R2) is dense
in SBV 2(Ω,R2)∩L∞(Ω,R2) in the following way: For every u ∈ SBV 2(Ω,R2)∩
L∞(Ω,R2) there exists a sequence uε ∈ W(Ω,R2) such that ‖uε‖∞ ≤ ‖u‖∞ and

(i) uε → u strongly in L1(Ω,R2), ∇uε → ∇u strongly in L2(Ω,R2),

(ii) lim supε→0

∫
Juε

φ(νuε)dH1 ≤
∫
Ju
φ(νu)dH1 for every upper semicontinuous

function φ : S1 → [0,∞) satisfying φ(ν) = φ(−ν) for every ν ∈ S1.

In the following a problem arises as we cannot control the boundary values of such
an approximating sequence. To overcome this difficulty, similar to the implemen-
tation of boundary values for the discrete configurations, we consider functions
attaining the boundary data in small stripes at the boundary.

Let η > 0. We first construct a recovery sequence for u ∈ W(Ω) with
u1(x1, ·) = 0 for 0 < x1 < η and u1(x1, ·) = al for l − η < x1 < l. We de-
fine uε(x) = u(x) for x ∈ Lε ∩ Ω and let yε(x) = id +

√
εuε(x). Then yε ∈ A(aε)
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for all ε (here in the sense of (4)). By ũε, u
′
ε we again denote the interpolations

on Ωε.
Ju is the union of disjoint segments. Up to considering the translated lattice

Lε + (ξε, 0) for appropriate ξε → 0 and passing to a slightly smaller η, we may
assume that Ju ∩ Lε = ∅. Let δ > 0 and define Jδu = {x ∈ Ju, |[u](x)| ≥ δ}. Let
Dε and Dδε be the sets of triangles where Ju and Jδu, respectively, cross at least
one side of the triangle (i.e., Ju (Jδu respectively) and the side have nonempty
intersection). Then

#Dδε ≤ #Dε ≤
CH1(Ju)

ε
+ C#(Ju) (44)

for a constant C > 0 independent of u ∈ W(Ω,R2) and ε, where #(Ju) denotes
the (smallest) number of disjoint segments whose union gives Ju. From now on
for the local nature of the arguments we may assume that Ju consists of one
segment only. We show

Dδε ⊂ C̄ε ⊂ Dε. (45)

for ε small enough. Let 4 ∈ Dδε. We see that, if Jδu crosses a spring v at point
x∗, say, then a computation similar as in (42) together with ∇u ∈ L∞ shows

|(ỹε)4 v| =
∣∣∣∣ 1√
ε

[u(x∗)] +O(1)

∣∣∣∣ ≥ δ√
ε

+O(1) (46)

Thus, 4 ∈ C̄ε for ε small enough. On the other hand, if we assume 4 /∈ Dε, then
for at least two springs v ∈ V we have |(ỹε)4 v| ≤ ‖Id +

√
ε∇u‖∞ < 2 for ε small

enough leading to 4 /∈ C̄ε. In particular, it is not hard to see that C̄ε = C̄ε,2.
We claim that

|(u′ε)4| = O(1) for 4 /∈ Dε \ C̄ε. (47)

This is clear for 4 /∈ Dε as ∇u ∈ L∞. For 4 ∈ C̄ε = C̄ε,2 there is a v ∈ V such
that (y′ε)4 v = (ỹε)4 v = v+O(

√
ε). By Lemma 3.5(i) and (35) we get a rotation

Rε ∈ SO(2) such that

|Rε − (y′ε)4|2 = dist2((y′ε)4, SO(2)) = dist2((y′ε)4, O(2)) ≤ CW4((y′ε)4) = O(ε).

This yields |(y′ε)4 − Id| = O(
√
ε) and thus |(u′ε)4| = O(1).

We note that χΩεũε → u in L1 as u and thus every ũε is bounded uniformly
in L∞ and, u being smooth away from Ju, ũε → u uniformly on Ωε \

⋃
4∈Dε4,

where |
⋃
4∈Dε4| ≤ Cε. Letting C∗ε = Dε this shows that uε → u in the sense

of Definition 2.4 recalling (44) and the fact that |(ũε)4| = O(1) for 4 /∈ Dε. We
next establish an even stronger convergence of the derivatives. Consider ∇ũε on
triangles in Cε \ Dε. As u is smooth there, the oscillation on such a triangle,
osc4ε (∇u) := sup {‖∇u(x)−∇u(x′)‖∞ , x, x′ ∈ 4}, tends uniformly to zero (i.e.,
not depending on the choice of the triangle). We thus obtain∫

Ωε\∪4∈Dε4
‖∇ũε −∇u‖2

∞ ≤
∫

Ωε\∪4∈Dε4
(osc4ε (∇u))2 → 0
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for ε → 0, so that even χΩε\∪4∈Dε4∇ũε → ∇u strongly in L2(Ω). Note that in
fact χΩε∇u′ε → ∇u in L2(Ω). Indeed, on the set of broken triangles we get∫

S
4∈Dε 4

|∇u′ε −∇u|2 ≤
∫

S
4∈C̄ε 4

|∇u′ε −∇u|2 +

∫
S
4∈Dε\C̄ε 4

|∇u′ε −∇u|2

≤ C#C̄εε2 + C#(Dε \ C̄ε)ε2 · ( C√
ε

)2

Using (47), (45) and #Dε ≤ Cε−1 this leads to

lim sup
ε→0

∫
S
4∈Dε 4

|∇u′ε −∇u|2 ≤ lim sup
ε→0

C#(Dε \ Dδε)ε ≤ CH1(Ju \ Jδu)

and letting δ → 0 yields the claim.
We now split up the energy in bulk and crack parts

Eε(uε) = Eelastic
ε (uε) + Ecrack

ε (uε) +O(ε)

as defined in (38) (Note that the contribution εEboundary
ε is of order O(ε)). Re-

peating the steps in the elastic energy estimate in (i), applying χΩε∇u′ε → ∇u
strongly in L2(Ω) and Q(F ) ≤ C|F |2 for a constant C > 0 we conclude that

lim sup
ε→0

Eelastic
ε (uε) =

4√
3

∫
Ω

1

2
Q(e(u(x))) dx. (48)

It is elementary to see that Ju crosses

H1(Ju)
2|νu · v|√

3ε
+O(1) (49)

springs in v-direction for v ∈ V . It is not restrictive to suppose that Jδu consists
of only one segment. Indeed, by the continuity of [u] in Ju we see that Jδ(u)
is the union of open intervals. Thus, up to a set of arbitrarily small size, Jδ(u)
consists of a finite number of open intervals and then it suffices to consider one of
these intervals. Consequently, (49) also holds for the subset Jδu replacing H1(Ju)
by H1(Jδu). Recalling (46), the crack energy may be estimated by

lim sup
ε→0

Ecrack
ε (uε)

≤ lim sup
ε→0

(
H1(Jδu) sup

{
W (r) : r ≥ δε−

1
2 +O(1)

}
+H1(Ju \ Jδu) max {W (r) : r ≥ 1}

) 2√
3

∑
v∈V

|νu · v|+O(ε)

=

(
H1(Jδu) β +H1(Ju \ Jδu) max

r≥1
W (r)

)
2√
3

∑
v∈V

|νu · v|.
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We finally pass to the limit δ → 0 to obtain

lim sup
ε→0

Ecrack
ε (uε) ≤

∫
Ju

∑
v∈V

2β√
3
|νu · v| dH1. (50)

Applying (48) and (50) then shows that uε is a recovery sequence for u ∈ W(Ω)
with u1(x1, ·) = 0 for 0 < x1 < η and u1(x1, ·) = al for l − η < x1 < l. Now
let u ∈ SBV 2(Ω) ∩ L∞(Ω) satisfying the boundary conditions u1(0, ·) = 0 and
u1(l, ·) = la. Define uη ∈ SBV 2(Ω) by

uη(x) =


(0, u2(2η − x1, x2)) for 0 < x1 < 2η,

u( l
l−4η

x1 − 2lη
l−4η

, x2) for 2η ≤ x1 ≤ l − 2η,

(la, u2(2l − 2η − x1, x2)) for l − 2η < x1 < l.

We approximate uη with a sequence uη,j ∈ W(Ω) such that lim supj→∞ E(uη,j) ≤
E(uη). Due to the proof of the density result in [17] the approximating sequence
can be chosen in such a way that uη,j1 equals uη1 in (0, η)×(0, 1) and (l−η, l)×(0, 1)
as uη1 is constant in (0, 2η)× (0, 1) and (l− 2η, l)× (0, 1). Consequently, we may
assume that uη,j1 (x1, ·) = 0 for 0 < x1 < η and uη,j1 (x1, ·) = al for l − η < x1 < l
for j large enough.

Let (εi)i be an arbitrary null sequence. According to the above compu-
tation for j large enough let (uη,jεi )i be a recovery sequence for uη,j satisfying
uη,jεi ∈ A(aεi) for εi � η. In particular, we have χΩεi

(ũ)η,jεi → uη,j in L1 and
χΩεi
∇(u′)η,jεi → ∇u

η,j in L2 for i→∞ (as before, (ũ)η,jεi and (u′)η,jεi denote the dif-

ferent interpolations of uη,jεi ). Choose j(i) for i ∈ N such that u∗i := u
η,j(i)
εi ∈ A(aεi)

satisfies χΩεi
(ũ)∗i → uη in L1, χΩεi

∇(u′)∗i → ∇uη in L2 for i→∞ and in addition

H1(Juη,j(i)) ≤ CH1(Juη) and #(Juη,j(i)) ≤ C
εi

. Observing that (ũ)∗i 6= (u′)∗i only on
a set of triangles D∗i with

#D∗i ≤
CH1(Juη,j(i))

εi
+ C#(Juη,j(i)) ≤

CH1(Juη)

εi
+
C

εi
≤ C

εi
(51)

by (44) we conclude that χΩεi
(ũ)∗i → uη in the sense of Definition 2.4. Since

lim sup
i→∞

Eεi(u∗i ) ≤ E(uη)

u∗i is a recovery sequence for uη. Repeating the above arguments we can find a

sequence ηi → 0 with εi � ηi such that u∗∗i := u
ηi,j(i)
εi ∈ A(aεi) and u∗∗εi → u in

the sense of Definition 2.4 (in particular, we choose ηi such that H1(Juηi,j(i)) ≤
CH1(Juηi ) ≤ CH1(Ju) holds and therefore the argument in (51) can be applied).
Moreover, it is not hard to see that E(uη)→ E(u) for η → 0 as H1(Juη ∩ (0, 4η)×
(0, 1)) +H1(Juη ∩ (l − 4η, l) × (0, 1)) → 0 for η → 0 due to the construction of
uη. Then

lim sup
i→∞

Ei(u∗∗i ) ≤ E(u).

40



This together with the arbitrariness of (εi)i shows the existence of a recovery
sequence for u ∈ SBV 2(Ω)∩L∞(Ω). Finally, we may drop the hypothesis u ∈ L∞
by applying a truncation argument and taking Q(F ) ≤ C|F |2 into account. �

Analysis of the limiting variational problem

We finally give the proof of Theorem 2.6, i.e., we determine the minimizers of the
limiting functional E directly. An analogous result for isotropic energy functionals
has been obtained in [27]. We thus do not repeat all the steps of the proof provided
in [27] but rather concentrate on the additional arguments necessary to handle
anisotropic surface contributions.

Proof of Theorem 2.6. Let vγ be unique and thus P (γ) 6= 0, P (γ) as in (7). We
first establish a lower bound for the energy E . An elementary computation yields

∑
v∈V

|v · ν| ≥ |vγ · ν|+
√

3|v⊥γ · ν| = |vγ · ν|+
√

3

∣∣∣∣∣±1

γ
e1 · ν ±

√
1− γ2

γ
vγ · ν

∣∣∣∣∣
≥
√

3

γ
|e1 · ν|+ 2P (γ)|vγ · ν|

for ν ∈ S1. In the first step we used that
∑

v∈V\{vγ} v = ±
√

3v⊥γ . Thus, we get

E(u) ≥ 4√
3

∫
Ω

1

2
Q(e(u(x))) dx+

∫
Ju

2β

γ
|e1 · νu|+

4β√
3
P (γ)|vγ · νu| dH1.

Using the slicing method (see, e.g., [3, Section 3.11]) and applying properties of
the reduced energy proved in Lemma 3.3 we get

E(u) ≥
∫ 1

0

(∫ l

0

α√
3

(
eT1∇u(x1, x2)e1 ∨ 0

)2
dx1 +

2β

γ
#Sx2(u)

)
dx2 + Eγ(u),

where #Sx2 denotes the number of jumps on a slice (0, l)× {x2} and

Eγ(u) =

∫
Ju

4β√
3
P (γ)|vγ · ν| dH1.

It is easy to see that the energy of a slice is larger or equal to min
{
αla2/

√
3, 2β/γ

}
leading to inf E ≥ min

{
αla2/

√
3, 2β/γ

}
. Testing with uel and ucr depending on

a, we see that this bound is attained and that uel and ucr, respectively, is a
minimizer. It remains to prove uniqueness:

(i) Let a < acrit and u be a minimizer of E . Then u has no jump on a.e.
slice (0, l) × {x2} and satisfies a.e. eT1∇u e1 = a by the strict convexity of the
mapping t 7→ (t ∨ 0)2 on (0,∞). Thus, if Ju 6= ∅, the crack normal must satisfy
a.e. νu = ±e2. Taking Eγ(u) into account, we then may assume Ju = ∅ up to
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an H1 negligible set, i.e., u ∈ H1(Ω). We find u1(x1, x2) = ax1 + f(x2) a.e. for
a suitable function f , and the boundary condition u1(0, x2) = 0 yields f = 0
a.e. In particular, eT1∇u e2 = 0 a.e. Applying strict convexity of Q on symmetric
matrices (Lemma 3.2) we now observe eT2∇u e2 = −a

3
and eT1∇u e2+eT2∇u e1 = 0

a.e. So the derivative has the form

∇u(x) =

(
a 0
0 −a

3

)
for a.e. x.

Since Ω is connected, we conclude u(x) = (0, s) + F ax = uel(x) a.e.
(ii) Let a > acrit and u be a minimizer of E . We again consider the lower

bound for the energy E and now obtain that on a.e. slice (0, l)×{x2} a minimizer
u has one jump and a.e. eT1∇u e1 = 0. The arguments in (i) show that ∇u is
antisymmetric a.e. Now the linearized rigidity estimate for SBD functions of
Chambolle, Giacomini and Ponsiglione [16] yields that there is a Caccioppoli
partition (Ei) of Ω such that

u(x) =
∑
i

(Aix+ bi)χEi and Ju =
⋃
i

∂∗Ei,

where ATi = −Ai ∈ R2×2 and bi ∈ R2. (See [3] for the definition and basic
properties of Caccioppoli partitions.) As Eγ(u) = 0, we also note that νu ⊥ vγ
a.e. on Ju. Following the arguments in [27], in particular using regularity results
for boundary curves of sets of finite perimeter and exhausting the sets ∂∗Ei with
Jordan curves, we find that

Ju =
⋃
i

∂∗Ei ⊂ (p, 0) + Rvγ

for some p such that (p, 0)+Rvγ intersects both segments (0, l)×{0} and (0, l)×
{l}. We thus obtain that (Ei) consists of only two sets: E1 to the left and E2 to
the right of (p, 0) + Rvγ, say. Due to the boundary conditions we conclude that
A1 = A2 = 0 and b1 = (0, s), b2 = (al, t) for suitable s, t ∈ R. �
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