
Treelike and Chordal Graphs:

Algorithms and Generalizations

Dissertation

for the Degree of

Doctor of Natural Sciences

(Dr. rer. nat.)

Frank Kammer

University of Augsburg

Faculty of Applied Computer Science

Theoretical Computer Science Group

May 2010

Referees:
Prof. Dr. Torben Hagerup
Prof. Dr. Rolf Niedermeier
Prof. Dr. Walter Vogler

Day of Defense:
October 22, 2010

Acknowledgements

The wish to write a thesis on treelike graphs arose from the point I took a
course called Algorithmen für NP-harte Probleme given by Torben Hagerup in
the summer of 2002. It is not hard to see that problems on trees can be solved
by using a divide-and-conquer approach. However, it was very surprising to me
that this approach can be generalized to general graphs by making them treelike.
Even if this generalization is known for about two decades, there are still new
results on this topic, which fascinate me and which—from my point of view—are
important in finding new algorithms for NP-hard problems. I want to thank my
supervisor, Torben Hagerup, for that inspiring course, for the guidance in the
first steps of my own research, the introduction of several open problems, and
the fruitful and interesting discussions.

I also want to thank my parents for making me curious such that I try to
get to the bottom of everything. Finally, special thanks go to Sabine Eschenhof
and Torsten Tholey. They supported me and helped me in countless ways to
write this thesis.

i

Contents

1 Introduction 1

1.1 Abstract . 1

1.2 Algorithms on Trees and Extensions 3

1.3 Trees versus Tree Decompositions 13

1.4 Large treewidth . 19

2 Tree Decompositions 24

2.1 An O(n log n)-Time Algorithm 24

2.2 Finding an X-separator . 27

2.3 Clique Trees . 35

3 Tree Decompositions on Planar Graphs 41

3.1 Introduction . 41

3.2 Peelings, Mountains, and Connectivity 42

3.3 Decomposition into mountains 50

3.4 Separators in Planar Graphs . 69

3.5 Special Tree Decomposition for Mountains 70

3.6 Shortcuts . 78

3.7 A Linear-Time Algorithm . 101

4 Outerplanarity Index 113

4.1 Another Complexity Parameter 113

4.2 Treewidth of ℓ-Outerplanar Graphs 114

4.3 Ideas of the Algorithm . 116

4.4 Extended Peelings . 117

4.5 Biconnected Graphs . 122

4.6 General Graphs . 124

5 Generalization of Trees 127

5.1 A Sketch of Monadic Second-Order Logic 127

5.2 Three Convex Coloring Variants 130

5.3 Hardness Results for Convex Coloring 134

5.4 MCRP on Trees . 139

5.5 MCRP on Graphs of Bounded Treewidth 141

5.6 MBRP and MRRP . 151

5.7 Approximation of MCRP and MRRP 156

ii

6 VDPP on Chordal Graphs 158
6.1 The ℓ-Vertex-Disjoint Paths Problem 158
6.2 A Simple Approach for the ℓ-VDPP 159
6.3 Shortest ℓ-Vertex-Disjoint Paths 161
6.4 A Speedup for the ℓ-VDPP . 162
6.5 Hardness of the VDPP . 166

7 Generalization of Chordal Graphs 169
7.1 Motivation . 169
7.2 New Complexity Parameters . 174
7.3 The 3 Complexity Parameters in Relation 177
7.4 Recognition Problems . 179
7.5 Algorithms on Intersection Graphs 180

Index 185

Bibliography 199

Curriculum Vitae 206

iii

Chapter 1

Introduction

1.1 Abstract

Many graph problems that are NP-hard on general graphs have polynomial-time
solutions on trees. Usually, one traverses a tree bottom-up in linear time and
thereby collects all necessary information such that an optimal solution is found
at the root of the tree. A key fact is that in a tree every vertex v is the only
connection between its descendants and the remaining vertices; in other words,
every vertex v defines a so-called separator {v}.

In 1984, Robertson and Seymour [77] generalized this technique on trees
to general graphs by introducing so-called tree decompositions, which are—
intuitively speaking—packings of a graph into a tree such that almost every
node of the tree guarantees a separator in the graph. For a fast generalization
of an algorithm on trees, it is not enough to have several separators since the
performance of an algorithm depends strongly on the size of the separators used:
the smaller the separators are, the better the algorithm is. For measuring the
maximal size of a separator guaranteed by a tree decomposition, Robertson and
Seymour introduced a parameter called the width of a tree decomposition. The
so-called treewidth of a graph G measures the best possible packing of G into a
tree; to be more exact, it is the smallest width of a tree decomposition of G.1

The result of Robertson and Seymour was followed by a series of papers with
faster and faster algorithms for computing a tree decomposition [4, 5, 16, 79]. In
1996, Bodlaender [14] finally solved the problem of finding a tree decomposition
on n-vertex graphs with treewidth k in Θ(f(k) · n) time for some function f .
However, his algorithm is not practical already for very small values of k because
of an exponential factor depending on k in the running time. The author states
only that f a is very fast growing function; Röhrig [80] shows that f(k) = 2Θ(k3).
The problem of determining whether the treewidth of a given graph is at most
a given integer k is NP-complete [4]. Thus, it is not very surprising that the
running time is exponential with respect to the parameter treewidth.

One of the most efficient algorithms that computes for each graph G with
treewidth k a tree decomposition for G of width O(k) is Reed’s algorithm of
1992 [76], whose running time is O(cknmin(n, k! logn)) for some large c ∈ N.

1For the exact definitions see page 7.

1

After the introduction of tree decomposition and treewidth many results
were published describing a polynomial-time or even a linear-time algorithm
for solving an NP-hard graph problem on every graph class whose treewidth is
bounded by a constant. Linear-time solvable problems are for example maxi-
mum 3-coloring, maximum independent set, maximum triangle matching, mini-
mum edge dominating set, minimum dominating set, minimum maximal match-
ing, and minimum vertex cover. Thus, from the theoretical point of view, using
Bodlaender’s algorithm [14], we can solve many NP-hard problems in linear time
on every graph class with bounded treewidth. However, practical linear-time
algorithms for these problems on graphs of bounded treewidth do not exist be-
cause there are no practical algorithms for computing the tree decomposition.
But for planar graphs with n vertices and treewidth k, this thesis shows how
to find a tree decomposition of width O(k) in time O(kO(1)n) (Kammer and
Tholey [56])—moreover, the constants hidden in the O-notation are of moder-
ate size. On planar graphs all the problems mentioned above remain NP-hard
[36]. Thus, many problems that are NP-hard on planar graphs can be solved
in linear time if the given graph is planar and has constant treewidth. More
details about computing a tree decomposition on general and special graphs can
be found in Chapters 2 and 3, respectively.

In Chapter 4, we show a simple-to-implement algorithm to compute the
so-called outerplanarity index k and a so-called k-outerplanar embedding [53],
thereby improving the running time O(k3n2) of an algorithm of Bienstock
and Monma [12] on n-vertex planar graphs with outerplanarity index k to
O(n2). Moreover, we also describe a linear-time algorithm for computing a
4-approximation of the outerplanarity index and a 4k-outerplanar embedding.
Given such an embedding, a well known linear-time algorithm can be used to
find a tree decomposition for G of width 12k− 1. This is a second approach to
find a tree decomposition on planar graphs.

Note that we are still not able to solve NP-hard problems in general. The
parameter treewidth allows us to measure the complexity of a given graph
G = (V,E) not only in the size of the input |V | + |E|, but additionally in
the treewidth k of G. For many NP-hard graph problems, we obtain a so-called
fixed-parameter algorithm, i.e., for some function f , an algorithm with a run-
ning time of O(f(k)nO(1)). Then k is also called a complexity parameter. Note
that we already used the treewidth as a complexity parameter. The outerpla-
narity index can also be used as a complexity parameter. Baker [7] presented a
general technique to solve each of the NP-hard problems mentioned above and
many others on k-outerplanar n-vertex graphs G in O(ckn) time for a small
constant c if a k-outerplanar embedding of G is given. Combining [53] and [7]
we can solve all the NP-hard problems mentioned above and many others on
n-vertex graphs with outerplanarity index k in O(ckn) time.

Many problems considered on graph classes of bounded treewidth have some-
thing in common: They can be formulated in so-called monadic second order
logic (MSOL). Courcelle [26] showed that all MSOL problems can be solved in
polynomial time on graphs with treewidth bounded by a constant. However,
his approach only works if the graph problem under consideration can be solved
on a tree in polynomial time. In Chapter 5, we consider three similar coloring
problems, where two of which can not be solved on trees up to now in polyno-
mial time. Thus, we introduce as a new complexity parameter the maximum
number of occurrences of one color and show that the same condition holds for

2

all three problems: Polynomial-time solvability with respect to this new param-
eter on trees generalizes to polynomial-time solvability on graphs of bounded
treewidth (Kammer and Tholey [54]). Bar-Yehuda, Feldman, and Rawith [9]
used a so-called local ratio technique to approximate one of the three coloring
problems on trees. By generalizing their approach, we present an approximation
algorithm for the same problem on graphs of bounded treewidth [54].

In Chapter 6, we consider so-called chordal graphs, which do not have small
treewidth in general, but they have a special tree decomposition called a clique
tree. Many NP-hard problems can be solved on chordal graphs by techniques
usually applied to graphs of bounded treewidth using this special tree decompo-
sition, e.g., Okamato, Uno, and Uehara showed that the number of independent
sets in a chordal graph can be counted in linear time [72]. We combine the tech-
niques on graphs of bounded treewidth with a so-called sparsification technique
and present, for fixed k ∈ N, the first linear time algorithm for the so-called
k-disjoint path problem on chordal graphs (Kammer and Tholey [55]). For gen-
eral k, there is not much hope to solve the disjoint path problem on chordal
graphs since we also show that the general disjoint path problem is NP-hard on
chordal graphs [55].

Although chordal graphs are already generalizations of trees by their clique
tree, new graph classes generalizing chordal graphs are introduced in Chapter
7. More precisely, three partly new complexity parameters measuring the simi-
larity to chordal graphs are used to construct new and simple polynomial-time
approximation algorithms with constant approximation ratios for many NP-
hard problems if they are restricted to graphs bounded with respect to one of
the new complexity parameters. One of these algorithms is a polynomial-time
approximation algorithm with constant approximation ratio for the dominating
set problem on the intersection graphs of a restricted set of possibly rotated
r-regular polygons. For further information, see also the paper of Kammer,
Tholey, and Voepel [57] as well as that of Ye and Borodin [95].

Parts of this dissertation are from publications written jointly with T. Tholey
and H. Voepel.

1.2 Algorithms on Trees and Extensions

Before defining trees exactly, we have to introduce some terminology on graphs,
which shall be more-or-less standard. A graph G is a tuple (V,E), where V is
a finite set of elements called vertices or nodes and E a finite set containing
so-called edges. We say that a vertex v (an edge e) belongs to G, is contained
in G, or is part of G if v ∈ V (e ∈ E). The size of G is then |V |+ |E|. If G is a
so-called undirected graph, an edge e is a set {u, v} of two vertices of G, which
are called adjacent or endpoints of e; we also say that e connects u with v as well
as v with u. If G is a so-called directed graph, e is a tuple (u, v) of two vertices
of G; we then say that e connects u with v, where u is the tail and v the head of
e. Then u is called adjacent to v and v is called adjacent to u. Unless explicitly
stated otherwise, we assume that a graph has no edge {v, v} or (v, v). Let us
define (∅, ∅) as the empty graph.

The neighbors NG(v) of a vertex v in a graph G are defined by the set of
vertices that are adjacent to v and the degree degG(v) = |NG(v)|. The index
G of NG and degG is omitted, if it is clear from the context. A subgraph of

3

G = (V,E) is a graph (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Then, G is the
supergraph of (V ′, E′). For a graph G = (V,E) and a set of vertices V ′, the
subgraph of G induced by V ′—also denoted by G[V ′]—consists of the vertices
in V ′ and all edges in E with both endpoints in V ′. A graph G′ is contained in
a graph G if G′ is a subgraph of G.

Moreover, a path P is a graph G whose vertex set can be ordered in a list
L = (v1, . . . , vℓ) (ℓ ∈ N) and whose edge set connects exactly the consecutive
vertices of L, i.e., the edges of L are {v1, v2}, . . . , {vℓ−1, vℓ} if G is an undirected
graph, and (v1, v2), . . . , (vℓ−1, vℓ) otherwise. We then also say that v1, . . . , vℓ is
the order of the vertices of P . The tail and the head of P are the first and last
vertex of L, respectively, and P is called a path from v1 to vℓ or a v1-vℓ-path. v1
and vℓ are also called the endpoints of P . The vertices of a path different from
its endpoints are called internal. An undirected cycle is an undirected graph
that consists of a path P with at least 3 vertices and an edge connecting the
endpoints of P . A directed cycle is a directed graph that consists of a path P
and an edge connecting the head of P with the tail of P . The length of a path or
a cycle is given by the number of its edges. Two vertices u and v are connected if
they are endpoints of a path contained in G. Otherwise, they are disconnected.
A graph G is connected if each pair of vertices is connected. Otherwise, G
is disconnected. Two edges are called incident in a graph G if they are part
of a path that has length 2 and that is contained in G. The distance of two
vertices is the length of a shortest path that contains both. A weighted graph G
is a graph with a so-called weight-function that assigns a rational value to the
vertices or the edges of G. A weight-function is called positive if the image set of
it contains only positive numbers. Unless denoted otherwise, a graph is always
an undirected graph in this thesis. A tree is a connected graph that contains
no cycle. Consequently, between each pair of vertices in a tree there exists a
unique path. A forest is a graph consisting of several trees.

Asymptotic O-notations, complexity classes (mainly P and NP), standard
notions from elementary set theory, and propositional logic are used without
further explanation; necessary information for understanding this thesis are ob-
tainable from almost any textbook on elementary computer science or mathe-
matics. For clarity, in this thesis a collection is similar to a set, N = {1, 2, 3, . . .}
are the natural numbers, and N0 = N ∪ {0}.

For describing a bottom-up traversal on a tree, some further notation is
necessary. The root r in a tree T is a designated vertex of T usually drawn as
the top-most vertex—denoting the top vertex as root is the usual name, but
admittedly from the biological point of view a confusing name. If T is a tree
and if r is the root of T , we call T also an (r-)rooted tree. Let v 6= r be a vertex
in an r-rooted tree T . Then, the parent of v is the only vertex u with being
both adjacent to v and part of the path P from v to r. All vertices of P are
called ancestors of v, and v is called child of u. If v is an ancestor of a vertex
w, then w is a descendant of v. If v 6= w, v is also called a proper ancestor of
w, and w is called a proper descendant of v. The leaves of T are the vertices
in T with no children; the remaining vertices of T are the inner vertices of T .
The depth of a vertex v in a tree T with root r is the length of the path from
v to r, and the height of v is the length of a longest path from v to one of its
descendants. A subtree of T is a subgraph of T being a tree. For a vertex w of
T , the subtree Tw is the subtree of T induced by all descendants of w. T is a
binary tree if each vertex has at most 2 children: possibly a left and possibly a

4

right one. Finally, let us define the union of ℓ ∈ N given graphs Gi = (Vi, Ei)

(i = 1, . . . , ℓ) as the graph (
⋃ℓ
i=1 Vi,

⋃ℓ
i=1Ei).

How can we traverse a tree bottom-up? For answering this question let us
consider the following example: Assume that we are interested in a biggest set of
soccer teams that do not have played pairwise against each other. The Summer
Olympics event in 1912 was the first international soccer contest with several
teams such that each team represented a different country. The winner of the
gold medal was decided by a knockout tournament that is shown in Fig. 1.2.1.
For our concern, the representation of the tournament by a graph T—as shown
in Fig. 1.2.2—is more useful, where each node corresponds to a participant and
a pair of vertices is adjacent if and only if the corresponding participants played
a match against each other. Note that T is a tree. Searching for the biggest set
of teams not having played against each other during the knockout tournament
in 1912 is then equivalent to finding a so-called maximum independent set in T .
Given a graph G = (V,E) an independent set in G is a set V ′ ⊆ V such that no
pair of vertices in V ′ is adjacent. A maximum independent set—abbreviated by
MIS—is an independent set that among all these sets has maximum cardinal-
ity. Practical applications of MIS are for example scheduling [38], information
retrieval [6], signal transmission [8], clustering in pattern recognition [27], and
stereo vision correspondence [48]. See also [18] for further applications of MIS.

In the following, a description of an algorithm is given for finding an MIS
on a tree T . In addition, the algorithm is illustrated on the tree of Fig. 1.2.2.
First, choose as the root r of T an arbitrary node of T , say GB. For each node
w of T , compute for the subtree Tw two different biggest independent sets S+

w

and S−
w such that w is contained in S+

w but not in S−
w . A computation for our

Great Britain

Hungary

Italy
Finland

2
3

Russia

Denmark

Netherlands
Sweden

4
3

Norway

Austria
Germany

5
1

Great Britain
Hungary

7
0

Finland
Russia

2
1

Denmark
Norway

7
0

Netherlands
Austria

3
1

Great Britain
Finland

4
0

Denmark
Netherlands

4
1

Great Britain
Denmark

4
2

Figure 1.2.1: Knockout tournament in 1912.

5

GB

Hu

It

Fi

Ru

De

No Ne

SwAu

Ge

Figure 1.2.2: Knockout tournament in 1912 represented by a graph.

example is shown in Table 1.2.3. Starting with the leaves of T , for each leaf
w, set S+

w = {w} and S−
w = ∅. Then continue stepwise with a vertex w whose

children are already processed. Compute S+
w as the union of {w} and of S−

w̃

over all children w̃ of w. Compute S−
w by first defining, for each child w̃ of w,

Qw̃ as either S+
w̃ or S−

w̃ such that Qw̃ has as many vertices as possible. Then,
compute S−

w as the union of Qw̃ over all children w̃ of w. Note that by the
construction the computed sets S+

w and S−
w are indeed independent and as big

as possible under the condition that w ∈ S+
w \S−

w . At the end, return as an MIS
a biggest set among the two sets S+

r and S−
r computed at the root of T . For

our example, a possible MIS is Hu , De , Ge , Sw , It , and Ru .

w S+
w S−

w s+w s−w
Hu Hu 1 0
No No 1 0
Ge Ge 1 0
Sw Sw 1 0
It It 1 0
Ru Ru 1 0

w S+
w S−

w s+w s
−
w

Au Au Ge 1 1
Ne Ne , Ge Ge , Sw 2 2
De De , Ge , Sw No , Ne , Ge 3 3
Fi Fi It , Ru 1 2
GB GB , No , Ne , Ge , It , Ru Hu , De , Ge , Sw , It , Ru 6 6

Table 1.2.3: Computation of an MIS in the graph of Fig. 1.2.2.

If we want to make the algorithm above more efficient, we do the following:
For each node w of the tree T , compute during the bottom-up traversal only
the cardinalities s+w and s−w of S+

w and S−
w , respectively. If w is a leaf, s+w = 1

and s−w = 0. Otherwise, if C(w) denotes the set of children of w, we simply
have to compute s+w = 1 +

∑

w̃∈C(w) s
−
w̃ and s−w =

∑

w̃∈C(w) max(s+w̃ , s
−
w̃). The

cardinality of an MIS in T is then max(s+r , s
−
r). Since the time for computing

the cardinalities of a leaf is constant and of a non-leaf w is linear in the number
of children of w, the whole computation of the cardinality of an MIS can be
done in a time linear in the number of nodes of T .

An MIS can be obtained, if, for each node w of T and each child w̃ of w, we
keep track during the computation of s−w , which of the two values s+w̃ and s−w̃ is
the larger one. Processing the nodes finally in reverse order with respect to the

6

bottom-up traversal, i.e., traversing the tree in a so-called top-down direction,
we can combine—again in linear time—all sets that make a contribution to the
obtained cardinality. In our example, we obtain 6 as the size of an MIS. We can
now find MIS by computing the 6 ’backwards’ as follows:

6 = s−
GB

= 0 + 1 + 3 + 2 = 0 + s+
Hu

+ s+
De

+ s−
Fi

= 0 + | Hu | + [| De | + s−
No

+ s−
Ne

] + [0 + s+
It

+ s+
Ru

]

= 0 + | Hu | + [| De | + 0 + (0 + s−
Au

+ s+
Sw

)] + [0 + | It | + | Ru |]
= 0 + | Hu | + [| De | + 0 + (0 + (0 + s+

Ge
) + | Sw |)] + [0 + | It | + | Ru |]

= 0 + | Hu | + [| De | + 0 + (0 + (0 + | Ge |) + | Sw |)] + [0 + | It | + | Ru |],

i.e., also by this approach we are able to obtain the already known MIS Hu , De ,
Ge , Sw , It , and Ru .

If we additionally take the soccer matches of 1912 under consideration that
are played to figure out the rankings of the remaining countries, the graph of
Fig. 1.2.2 modifies to the graph shown in Fig. 1.2.4, which is not a tree.

GB

Hu

It

Fi

Ru

De

No Ne

SwAu

Ge

Figure 1.2.4: All matches of 1912 represented by a graph.

Let us now state how a graph G can be packed into a tree by defining tree
decomposition exactly. Note that we want to traverse G somehow bottom-up—
as if G is a tree—however, we have to find a way to handle the cycles of G. The
idea is to map subgraphs of G to nodes of T .

Definition 1.2.1 (tree decomposition, bag). A tree decomposition for a graph
G = (V,E) is a pair (T,B) with T = (W,F) being a tree and B being a
mapping W → {V ′ | V ′ ⊆ V } such that the following properties are satisfied:

(TD1)
⋃

w∈W G[B(w)] = G.

(TD2) For each vertex v ∈ V , (TD2)v holds:

The nodes w with v ∈ B(w) induce a subtree in T .

For each node w ∈W , B(w) is called the bag of w.

7

The width and the size of a tree decomposition is the maximal size of a
bag minus one and the sum of all cardinalities of its bags, respectively. The
treewidth of a graph G is the smallest width of any tree decomposition for G,
and the treewidth of a graph class G is the smallest existent k ∈ N ∪ {∞} such
that each G ∈ G has treewidth at most k. A class G of graphs is of bounded
treewidth if there exists a constant c such that the treewidth of G is at most c
for every G ∈ G. A tree decomposition (T,B) is called rooted and binary if T is
a rooted and binary tree, respectively. For a better understanding, if (T,B) is
a tree decomposition, the vertices of T are always called nodes and are usually
denoted by the character w. Moreover, for set W ′ of some nodes of T and a
subtree T ′ of T , let us define B(W ′) and B(T ′) as the union of B(w) over all
nodes w in W ′ and T ′, respectively. For an arbitrary set Z, let us end these
definitions by calling two sets X and Y to be Z-conform if X ∩ Z = Y ∩ Z.

An MIS in a graph G can be found as follows—we can choose G for an
example as the graph shown in Fig. 1.2.4. First construct a rooted, binary tree
decomposition (T,B) for G such that the number of nodes of T is bounded by
the number of vertices of G; for details how to find such a tree decomposition
see the end of Section 2.2. Similar to our last algorithm, we traverse the tree T
bottom-up. For the graph in Fig. 1.2.4, a tree decomposition (T,B) is shown
in Fig. 1.2.5. As the root we choose an arbitrary node of T , say node B.
Property (TD1) guarantees that all vertices and all edges are considered. We
next compute, for each node w of T , the subgraph G[B(Tw)] and, for each
independent set Y ⊆ B(w)—a non independent set can not be extended to an
independent set in G—an MIS SYw such that Y = SYw ∩B(w). This construction
might seem to be complicated, however, at a second glance this is the canonical
generalization of the algorithm on trees. Having a simpler notation we define,
for each node w of T , I(B(w)) as the collection of all sets Y ⊆ B(w) being
independent in G.

Starting with the leaves of T , for each leaf w and each Y ⊆ B(w), check
if Y is an independent set in G. Only if this is the case, i.e., if Y ∈ I(B(w)),
define SYw = Y . (Otherwise leave SYw undefined.) Then continue stepwise with
a node w whose children are already processed. For each Y ⊆ B(w), check
if Y ∈ I(B(w)). Only in this case continue with the computation of SYw as

Ge Au

GBHu

Ge Au

FiGB

RuFi

Ge

De Au

FiGB

De Au

FiNe

Au Sw

FiNe

Sw It

FiAuAuDe

No

A B C D

E F G H

Figure 1.2.5: A tree decomposition for the graph of Fig. 1.2.4.

8

described next. (Otherwise leave SYw again undefined.) Note that property
(TD2) guarantees that B(w) contains all vertices that are contained in two or
more graphs G[B(Tw̃)] with w̃ being a child of w. Thus, as long as we fix the
vertices of B(w) that are part of SYw , for each child w̃ of w, we can independently
search for a largest contribution Qw̃ to SYw of independent vertices in G[B(Tw̃)]
as follows.

After setting initially Qw̃ = ∅, consider all sets X ∈ I(B(w̃)). For the
vertices in Z = B(w̃) ∩ B(w), check if X is Z-conform with Y . If so and if
furthermore |SXw̃ | > |Qw̃|, update Qw̃ = SXw̃ .

After the iteration over all children C(w) of w define SYw = Y ∪⋃

w̃∈C(w)Qw̃.
After processing the root r of T , return finally as an MIS of G a biggest set
among all sets SYr with Y ∈ I(B(r)). The computation on the graph of Fig.
1.2.4 is shown in Table 1.2.6—however, the computation on the leaves of T is
skipped. As a solution, we can take for example GB, Ru , Ne , No , and It .

For a more efficient algorithm—similar to the algorithm on trees—we com-
pute during the bottom-up traversal only the cardinalities sYw of SYw for each
node w of T and each Y ∈ I(B(w)) as follows. If w is a leaf, set sYw = |Y |. If w
has children C(w), compute:

sYw = |Y | +
∑

w̃∈C(w)

max
X∈I(B(w)) being

(B(w)∩B(w̃))−conform with Y

(
sXw̃ − |X ∩ Y |

)

The cardinality s of an MIS of G can be obtained at the root r of T by
taking the maximum of sYr over all Y ∈ I(B(r)). It is easy to see that the size
sYw for each node w and each set Y ∈ I(B(w)) can be computed by using only
the cardinalities computed at the children of w. If k is the width of (T,B), the
time to spend at a node w with ℓ ∈ N children is thus bounded by O(2k+1 ·((k+
1)2 + ℓ2k+1)), where the first factor bounds the number of subsets Y ⊆ B(w)
and the second factor bounds the time for checking if Y is an independent set
and the time for the computation of the cardinalities |Qw̃1 |, . . . , |Qw̃ℓ

| for the
children w̃1, . . . , w̃ℓ of w.

By a subsequent top-down traversal of T a maximum independent set I of
G can be found as follows: Fix v ∈ I or v /∈ I for each v ∈ V in such a way
that these restrictions do not decrease the cardinality of I. Since T has no more
nodes as G has vertices and since each node of T has at most two children,
i.e., ℓ ≤ 2, the algorithm above runs on n-vertex graphs in time O(n · f(k)) for
some simple-exponential function f . In other words, if k is a small constant,
the algorithm runs in time linear in the number of vertices of the given graph.

As good as the algorithm above is for small k, the algorithm is not practicable
for large k: Let X be the k + 1 elements of a bag of largest cardinality. Then
we have to check the independence of each set Y ⊆ X in G, i.e., we have to
check 2k+1 sets. As a consequence, our algorithm described at last runs in
polynomial time if we use it only on a graph class G where every n-vertex graph
G in G has treewidth bounded by O(log n), in other words, on a graph class
with logarithmically bounded treewidth.

For some special graph classes, we can obtain a polynomial or even a linear
time algorithm for the MIS problem even if the graph class has no logarithmi-
cally bounded treewidth. If we return to our examples of finding a biggest set
of teams that did not play against each-other during a soccer competition, e.g.,

9

w Y SYw \ Y contribution of the children sYw
A Hu , Ru QE = { Hu }, QF = { Ru} 2
A GB Ru QE = { GB}, QF = { Ru} 2
A Fi Hu QE = { Hu }, QF = { Fi } 2
A Ge QE = { Ge }, QF = { Ge } 1
A Au Ru QE = { Au }, QF = { Ru} 2
A GB , Ge QE = { GB , Ge }, QF = { Ge } 2
A GB , Au Ru QE = { GB , Au }, QF = { Fi , Ru} 3
A Fi , Ge QE = { Ge }, QF = { Ge } 2
A Fi , Au QE = { Au }, QF = { Fi } 2
D It QH = { It } 1
D Ne It QH = { It } 2
D Fi QH = { Fi } 1
D Au QH = { Au } 1
D Sw QH = { Sw } 1
D Fi , Au QH = { Fi , Au } 2
D Fi , Sw QH = { Fi , Sw } 2
D Au , Sw QH = { Au , Sw } 2
D Fi , Au , Sw QH = { Fi , Au , Sw } 3
C No , It QG = { No }, QD = { It } 2
C Ne No , It QG = { No }, QD = { Ne , It } 3
C Fi No , Sw QG = { No }, QD = { Fi , Sw } 3
C De It QG = { De }, QD = { It } 2
C Au Sw QG = { Au }, QD = { Au , Sw } 2
C Fi , De Sw QG = { De }, QD = { Fi , Sw } 3
C Fi , Au Sw QG = { Au }, QD = { Fi , Au , Sw } 3
C De , Au Sw QG = { De , Au }, QD = { Au , Sw } 3
C Fi , De , Au Sw QG = { De , Au }, QD = { Fi , Au , Sw } 4
B Hu , Ru , Ne , No , It QA = { Hu , Ru }, QC = { Ne , No , It } 5
B GB Ru , Ne , No , It QA = { GB , Ru }, QC = { Ne , No , It } 5
B Fi Hu , No , Sw QA = { Fi , Hu }, QC = { Fi , No , Sw } 4
B De Hu , Ru , It QA = { Hu , Ru }, QC = { De , It } 4
B Au Ru , Sw QA = { Au , Ru }, QC = { Au , Sw } 3
B GB , Au Ru , Sw QA = { GB , Au , Ru}, QC = { Au , Sw } 4
B Fi , Au Sw QA = { Fi , Au }, QC = { Fi , Au , Sw } 3
B Fi , De Hu , It QA = { Fi , Hu }, QC = { De , It } 4
B De , Au Ru , Sw QA = { Au , Ru }, QC = { De , Au , Sw } 4
B Fi , De , Au Sw QA = { Fi , Au }, QC = { Fi , De , Au , Sw } 4

Table 1.2.6: Computation of an MIS in the graph of Fig. 1.2.4.

10

the first Soccer World Cup in 1930, then we have a graph of such a special graph
class, where the running time does not depend exponentially on the treewidth.

In 1930, the teams were drawn into four groups. All teams in a group played
pairwise against each other, and the winner of each of the four groups qualified
for a knockout tournament. See the left side of Fig. 1.2.7 for the representation
of the tournament in 1930 by a graph.

Be

Fr

Ju

Ru

Ar

BrBo

Ch

Pa

PeUr

Me

Us

BrBo

Ju

Me Fr

ArCh

Ur

Ju

Us

PaBe

Ar

Us

UrAr

Ur

Ru

Pe

Figure 1.2.7: Soccer World Cup in 1930 represented by a graph G (left side) and
a tree decomposition for G (right side). The participants of the tournament in
1930 are Argentina Ar , Belgium Be , Bolivia Bo , Brazil Br , Chile Ch , France Fr ,
Jugoslavia Ju , Mexico Me , Paraguay Pa , Peru Pe , Rumania Ru , Uruguay Ur , and
U.S.A. US .

Definition 1.2.2 (chord, chordless, chordal graph). A chord of a path X or
a cycle X in a graph G is an edge e of G connecting two vertices of X such
that e does not belong to X . Moreover, X is called chordless in G if no edge
of G is a chord of X . A graph G is chordal if each of its cycles of length at
least 4 has a chord.

Definition 1.2.3 (clique, clique tree). A clique in a graph is a set of vertices
that are all pairwise adjacent. A clique C in a graph G is maximal if no other
vertex of G is adjacent to all vertices of C. Moreover, let us call an ℓ-clique
a clique with ℓ vertices. A clique tree for a graph G is a tree decomposition
(T,B) for G with the additional property:

(TDC) The vertices contained in each bag induce a maximal clique in G
different to all maximal cliques induced by other bags.

It is easy to verify that the graph G on the left side of Fig. 1.2.7 is chordal
and that the tree decomposition shown on the right side is a clique tree for G.
An example of a clique is shown in Fig. 1.2.8.

11

Ur
Br

Pa

Ar
Ch

Figure 1.2.8: In every tournament of the South American Championship of Na-
tions all participants play against each other. The number of participants varies
between 3 and 8. In 1922, the tournament had 5 participants, and its process is
shown by a 5-clique.

It is well known [17, 40, 92] that chordal graphs are exactly the graphs for
which a clique tree exists—see also Lemma 2.3.9. By Theorem 2.3.8, a clique
tree for a chordal graph G = (V,E) can be found having at most |V | nodes and
size O(|V | + |E|). Further details can be found in Section 2.3.

On a chordal graph G, we can find an MIS by using a clique tree (T,B) of
G similar to the algorithm using tree decompositions. The only modification is
that, for a node w of T , we do not have to compute the cardinalities sYw of up
to 2|B(w)| different independent sets, where each set is B(w)-conform to a set
Y ⊆ B(w). The reason for this is that Y has to be an independent set in G, i.e.,
|Y | ≤ 1. Consequently, we have to compute at a node w only the cardinalities
of B(w) + 1 = O(B(w)) independent sets in G[B(Tw)]. Thus, for the whole
computation of a maximum independent set in G, we have to compute only
O(|V | + |E|) cardinalities of independent sets. For an efficient computation at
the parent w′ of w, we additionally compute at w the maximum cardinality
smax
w of an independent set that does not contain a vertex of B(w′); in other

words, smax
w = maxX∈I(B(w)\B(w′)) s

X
w . The computation of smax

w can be done
during the computations of the cardinalities of independent sets of w and takes
asymptotically no extra time. Of course, we can compute the cardinalities sYw
as on general tree decompositions; however, the same result can be obtained
faster for a non-leaf w with children C(w) as follows.

sYw = |Y | +
∑

w′′∈C(w)

{
sYw′′ − |Y | if ∅ 6= Y ⊆ B(w′′)

smax
w′′ otherwise

The time for computing the cardinality of an independent set at a node w
only depends on the number of children of w since, for each child w′′ of w,
we have to add one summand. As a consequence, we can bound the time for
computing the cardinality of an independent set by O(deg(w) + 1) = O(n).

Recall that, for each graph G with n vertices and m edges, the sum over all
cardinalities of the bags of a clique tree for G is linear in n+m, and therefore we
can solve the MIS problem on G in O((n+m)n) time. Indeed, we have roughly
estimated the running time for computing the cardinality of an independent
set, but the algorithm above needs for some chordal graphs more than linear
time. For example we can take the graphs obtained, for all n ∈ N, from an
⌊√n⌋-clique C by connecting n− ⌊√n⌋ vertices to one vertex of C.

For improving the running time note that the algorithm on a chordal graph
G does not use the fact that each bag induces a maximal clique in G; it is only

12

important that each bag induces a clique in G. Let us define a weak clique tree
as a tree decomposition with the additional property:

(TDC’) The vertices of each bag induce a clique in G.

Since each clique tree is also a weak clique tree, each chordal graph has also
a weak clique tree. As we see in Section 2.3, every chordal graph G = (V,E)
has a weak clique tree (T,B) such that T is binary tree with O(|V |) nodes and
such that (T,B) is of size O(|V | + |E|). Using such a weak clique tree we can
compute each cardinality sYw in O(1) time and solve the MIS problem on chordal
graphs in linear time.

1.3 Trees versus Tree Decompositions

As we know from the last section, efficient algorithms for many NP-hard prob-
lems exist if a given graph is a tree or if its treewidth is logarithmically bounded.
Why do both graph classes have efficient algorithms?

If we consider Fig. 1.3.1, a tree and a graph with a small treewidth—see the
tree decomposition in Fig. 1.3.2—seem to have not much in common. However,
this is only the case at first sight.

Trees and graphs with a small treewidth have similar so-called separation
properties. Before showing that we need two further definitions.

Definition 1.3.1 (connected component). A connected component C of a
graph G = (V,E) is a connected subgraph of G induced by some vertices
V ∗ ⊆ V such that no real superset of V ∗ induces in G a connected graph.

Definition 1.3.2 (separator). In a graph G = (V,E), a separator for a
subgraph G′ = (V ′, E′) of G and for a set V ′ ⊆ V , respectively, is a subset S
of V such that at least two vertices in V ′ \ S are not connected in G[V − S].
If no set V ′ is given in the definition above, we assume implicitly V ′ = V . In
addition, the size of a separator is equal to its cardinality.

In a tree T with at least 3 vertices every vertex of T with degree strictly
greater than 1 is a separator. In particular, we can find in every subtree con-
sisting of at least 3 vertices a separator of size 1. Therefore, we can divide a
tree again and again into smaller parts and solve a given problem first on these
small parts. Again because of the small separator we can combine quickly the
solutions of the small parts to a solution of a ever bigger part. In other words,
we can use a so-called divide-and-conquer approach for solving a given problem
on a tree.

We next want to show that if (T,B) is a tree decomposition of width k for
a graph G, then every node w of T defines a separator in G of size k+ 1 if w is
a separator in T . Unfortunately, this is not true in general. Therefore, we next
define a special kind of tree decompositions.

13

CoAlEgSa

Gh CL

CaNi

MoZaSeKeGB

Hu

It

Fi

Ru

De

No Ne

SwAu

Ge

Figure 1.3.1: If we represent each match by an edge, we see on the left side again
the knockout tournament of 1912 and on the right side the matches of the African
Cup of Nations in 1992 with participants Algeria Al , Cameroon Ca , Congo Co ,
Côte d’Ivoire CL , Egypt Eg , Ghana Gh , Kenya Ke , Morocco Mo , Nigeria Ni ,
Senegal Se , Zaire Za , and Zambia Sa .

Al Co

CL

Ni

SeKe

Ni Ca

ZaSe MoZa

Ca

Gh CL

CaNi

Sa Eg

Gh

Eg Al

CLGh

Figure 1.3.2: A tree decomposition for the right graph of Fig. 1.3.1.

Definition 1.3.3 ((k-)normal tree decomposition). Let k ∈ N. A tree de-
composition (T,B) is called k-normal if the following two properties hold:

• |B(w)| = k + 1 for all nodes w of T and

• |B(w1) \B(w2)| = 1 for all adjacent nodes w1 and w2 in T .

The next lemma shows that considering only normal tree decompositions
does not impose any restriction on our comparison between trees and graphs
with small treewidth.

Lemma 1.3.4. Every graph G = (V,E) with treewidth k ∈ N has a k-normal
tree decomposition. Additionally, if a tree decomposition (T,B) for G of width
ℓ ∈ {k, k + 1, . . .} is given and if T has O(|V |) nodes, an ℓ-normal tree decom-
position for G can be found in time O(ℓ|V |).

Proof. Note that G has at least ℓ+ 1 vertices since otherwise (T,B) can not
have width ℓ. We stepwise modify (T,B) to make it ℓ-normal:

14

1. Choose as root of T a node r whose bag B(r) has maximal cardinality.
Thus, |B(r)| = ℓ+ 1.

2. Traverse T top-down starting from r.

(a) If we visit during the traversal a node w with parent w′ whose bag
contains strictly fewer than ℓ + 1 vertices of G, copy ℓ + 1 − |B(w)|
vertices of B(w′) \B(w) to B(w).

(b) Moreover, if now B(w) = B(w′), remove w from T and connect all
children of w to w′. Otherwise, if |B(w) \ B(w′)| > 1, replace in T
the edge {w′, w} by a path of length |B(w) \B(w′)| and assign bags
to the new nodes such that bags of adjacent nodes differ only by one
vertex.

Let (T ′, B′) be the rooted tree decomposition obtained. Concerning the running
time of the algorithm above we can observe that there is the following injective
function from the edges of T ′ to the vertices of G: Assign to each edge {w,w′}
with w child of w′ the vertex v of G with v ∈ B(w)\B(w′). Consequently, T ′ has
at most |V | edges and |V |+1 nodes. The time we spend during the computation
of (T ′, B′) at each node is O(ℓ). Thus, the ℓ-normal tree decomposition can be
found in O(ℓ|V |) time.

For the graph shown on the right side of Fig. 1.3.1, if we take the tree
decomposition shown in Fig. 1.3.2 and choose the upper node in the middle as
root, then we obtain the 4-normal tree decomposition shown in Fig. 1.3.3 by
applying the algorithm of the proof of Lemma 1.3.4.

Let us return to our compensation of a tree and of a graph G with loga-
rithmically bounded treewidth k—now taking a normal tree decomposition for

Ni Ca

ZaSe

Ca Ni

MoZa

Ca Ni

SeKe

Al Co

GhCL

Ni Ca

CLSe

Eg Al

CLGh

Ni Ca

CLGh

Ni Al

CLGh

Sa Eg

GhCL

Figure 1.3.3: A 3-normal tree decomposition for the right graph of Fig. 1.3.1.

15

G into consideration. Property (TD1) ensures intuitively that all vertices and
edges of G are part of a bag of (T,B). More interesting is property (TD2),
which guarantees—similar to trees—that for each node w in T with degree
strictly greater than 1, B(w) is a separator of size k + 1 in G. Moreover, also
for each edge {w1, w2} in T , B(w1) ∩B(w2) is a separator of size k in G. As a
consequence of these observations, we can prove the following lemma.

Lemma 1.3.5. If a graph G = (V,E) has treewidth k ∈ N, there exists for each
set V ′ ⊆ V with |V ′| ≥ k + 2 a separator of size k in G.

Proof. Due to the fact that G has treewidth k, Lemma 1.3.4 implies that
there exists a k-normal tree decomposition (T,B) for G. Choose an arbitrary
node r of T as its root. Let w be a node of T with the largest depth such that a
vertex v ∈ V ′ exists that is contained in the bag of w but not contained in the
bag of the parent w′ of w. Then B(Tw) ∩ V ′ ⊆ B(w), i.e., |B(Tw) ∩ V ′| ≤ k + 1
and |V ′ \ B(Tw)| ≥ 1. Consequently, B(w) ∩ B(w′) separates v from at least
one vertex in V ′ \B(Tw).

If for example we search for a separator for V ′ = { Ca , Eg , Gh , Mo , Ni } in
the graph on the right side of Fig. 1.3.1 and if we consider the 3-normal tree
decomposition shown in Fig. 1.3.3 with the upper node in the middle taken as
the root, then the algorithm of the proof of Lemma 1.3.5 obtains as separator
for V ′ the set { Al , CL , Gh}.

Corollary 1.3.6. If a graph G = (V,E) has treewidth k ∈ N, there exists for
each subgraph G′ of G with at least k+2 vertices a separator of size k in G and
thus also in G′.

Since we can find a tree decomposition (T,B) for each graph G—we simply
have to add all vertices of G to a bag of one node of T—we can solve problems
on each graph G by a divide-and-conquer approach. However, the smallest in-
stances we have to solve without further recursion and the time for combining
smaller instances to a bigger instance depends on the treewidth k of (T,B).
With growing k we have to spend more and more extra time compared to an
algorithm on trees. In this sense the treewidth of a graph G is a parameter for
measuring how tree-like a given problem can be solved on G by a divide-and-
conquer approach.

A more structural similarity between trees and arbitrary graphs with their
normal tree decompositions can be obtained after defining a generalization of
trees called (partial) k-trees.

Definition 1.3.7 ((partial) k-tree). Let k ∈ N. A k-tree is a graph that
can be obtained from a k-vertex clique by zero or more applications of the
following rule: Choose a k-vertex clique C in the current graph, add a new
vertex v and connect v precisely to the vertices in C. A partial k-tree is a
subgraph of a k-tree.

Observation 1.3.8. Each tree is a 1-tree and each 1-tree is a tree.

We next show that we can obtain from a k-normal tree decomposition a
partial k-tree and vice versa. An example of a 2-treeG and a tree decomposition

16

(T,B) for G of width 2 is shown in Fig. 1.3.4 and 1.3.5, respectively. Note also
the similarities in the construction of G and (T,B) described in the caption of
the figures. Since each new node creates a new triangle in G, by the similarity
mentioned above we can create a bijective mapping from the triangles in G to
the nodes of T such that two triangles in G share an edge if and only if their
identified nodes are connected in T . We start with two auxiliary lemmata.

Lemma 1.3.9. If a graph G contains a clique C, any tree decomposition (T,B)
of G has a node w of T with C ⊆ B(w).

Me TT

CR Cd

Gu

Ko

Pe

Cb Ho

Ha

US

Ja

Figure 1.3.4: A 2-tree, where a possible construction is to take Canada Cd ,
Peru Pe , and Colombia Cb as the initial clique and to extend it stepwise
by USA US , Trinidad and Tobago TT , Haiti Ha , Costa Rica CR , South Korea Ko ,
Mexico Me , Guatemala Gu , Honduras Ho , and Jamaica Ja .
. Ignoring the two non-black edges we obtain the matches of the CONCACAF
Gold Cup in 2000.

Cb

PeCd

TT Cb

Cd

USPe

Cb Pe US

Ha

Cb Ho

Pe

TT

CdCR

CR Cd

Ko

Ja

HoCb

Me TT

CdTTMe

Gu

A

I

D E

H

CB

GF J

Figure 1.3.5: A k-normal tree decomposition (T, B) of the graph G shown in Fig.
1.3.4. Starting with the node C we can create (T, B) parallel to the construction
of G by adding stepwise the nodes D, H, E, B, A, G, F, I, and finally J.

17

Proof. The lemma can be proved by induction over the cardinality of C. If
|C| ≤ 2, the lemma follows from property (TD1). In the inductive case G
contains a clique of size at least 3. Let v1, v2 and v3 be 3 different vertices in
C. We know from the induction hypothesis that there are nodes w1, w2 and w3

in T , where B(w1) ⊇ C − {v1}, B(w2) ⊇ C − {v2}, B(w3) ⊇ C − {v3}.
Note that in a tree the three unique paths between w1, w2 and, w3 have a

common node w∗ since otherwise, we have a cycle containing w1, w2 and w3 in
the tree. From property (TD2) we can conclude that B(w1) ∩B(w2) ⊆ B(w∗),
B(w2) ∩B(w3) ⊆ B(w∗), and B(w1) ∩B(w3) ⊆ B(w∗), i.e., C ⊆ B(w∗).

Lemma 1.3.10. Let k ∈ N. Graphs with a k-normal tree decomposition are
exactly the partial k-trees with at least k + 1 vertices.

Proof. We show first that a graph G with a k-normal tree decomposition
(T,B) is a partial k-tree. For the time being, we assume that each pair u, v of
vertices contained in a bag of (T,B) is adjacent in G. Start with choosing a
node r of T as the root. Take the clique C induced by k arbitrary vertices of
B(r) as the initial k-tree and extend it by the (k+1)-th vertex in B(r) together
with its edges to the vertices of C. Then traverse T top-down starting from r.
For each node w visited by the traversal, extend the k-tree as described next.
Let w′ be the parent of w in T and let v be the unique vertex in B(w) \B(w′).
Since under our assumption B(w) \ {v} induces a clique in G, we can extend
the k-tree by v. After the traversal, we obtain a k-tree that consists of exactly
the vertices of G and contains all edges of G. Finally removing the superfluous
edges we obtain G as a partial k-tree.

For the converse, we only have to show that each k-tree G = (V,E) has a
k-normal tree decomposition (T,B) since, for every partial k-tree G′ = (V ′, E′)
subgraph of G, the tree decomposition obtained from (T,B) by removing V \V ′

from all bags is a tree decomposition for G′, which can be made normal (Lemma
1.3.4).

We now use an induction over the number of vertices. Let G be a k-tree
and v be the last vertex added in the construction process of a k-tree. In the
basic step of the induction, G = (V,E) has k+ 1 vertices. Thus, G is a (k+ 1)-
clique. The tree consisting of a single node w and the mapping B(w) = V is a
k-normal tree decomposition for G. In the inductive step, let v be the last vertex
added last during the construction of G. We then can assume that the graph
G[V −{v}] has a k-normal tree decomposition (T,B). Moreover, the neighbors
V ′ of v induce a clique in G, and by the last lemma (T,B) has a node w with
V ′ ⊆ B(w). Thus, we can extend T by a new node w′ and an edge {w,w′},
define B(w′) = V ′ ∪ {v}, and we are done.

Let k ∈ N. Note that every partial k-tree G has treewidth at most k since
this is the case if G has at least k+ 1 vertices by Lemma 1.3.10 and since every
graph with at most k vertices has treewidth smaller than k. Conversely, every
graph with treewidth ℓ ≤ k has an ℓ-normal tree decomposition by Lemma 1.3.4
and is therefore by Lemma 1.3.10 a partial ℓ-tree, i.e., a partial k-tree.

Theorem 1.3.11. Graphs with treewidth at most k are the partial k-trees.

Recall that the width of a tree decomposition is defined as the maximal
size of a bag minus one. The motivation for subtracting one lies in the desired
equivalence stated in the next lemma.

18

Lemma 1.3.12. Trees are exactly the connected graphs with treewidth 1.

Proof. For a given tree G, we can construct a tree decomposition (T,B) as
follows: Create, for every vertex v of G, a node w for T with B(w) = {v} and,
for every edge e of G, a node w for T with B(w) = e. Finally, connect different
nodes w1 and w2 of T if |B(w1)| = 1 = |B(w1) ∩B(w2)|. Thus, (T,B) is a tree
decomposition for G.

For the converse we conclude from Theorem 1.3.11 that if a connected graph
G is no tree, i.e. by Obs. 1.3.8, if G is not a 1-partial tree, G does not have
treewidth 1.

Using Lemma 1.3.4 we can additionally conclude the following:

Corollary 1.3.13. Every graph G = (V,E) with treewidth k ∈ N has a tree
decomposition (T,B) of width k such that T has at most |V | − k nodes.

Proof. The corollary follows from two facts. First, G has a k-normal tree
decomposition by Lemma 1.3.4. Second, each k-normal tree decomposition of
an n-vertex graph has n − k nodes since by induction over the number x of
nodes of a k-normal tree decomposition it becomes obvious that a k-normal
tree decomposition with x nodes is a tree decomposition for a graph with k+ x
vertices.

We finish the comparison between trees and tree decompositions with a
statement about the number of edges. Note that a tree with n vertices has n−1
edges. Something similar holds for an arbitrary graph: the number of edges is
bounded by its number of vertices and its treewidth.

Lemma 1.3.14. A graph G = (V,E) with treewidth k has k|V | edges.

Proof. Let (T,B) be a k-normal tree decomposition for G = (V,E) with an
arbitrary node r of T chosen as root of T . In addition, let us call in this proof
v ∈ V and e ∈ E unseen with respect to the bag B(w) of a node w of T if {v}
and e is not a subset of any bag of an ancestors w′ of w in T , respectively. For
each node w of T , we can observe that if the number of unseen vertices in B(w)
is ℓ ∈ N, then there are at most ℓk unseen edges in B(w). Since each vertex is
unseen in only one bag, |E| ≤ k|V |.

1.4 Large treewidth

Graphs with small treewidth have a certain similarity to trees. One may ask
now if the treewidth of a graph can be arbitrary large. The answer is no since
an n-vertex graph has treewidth at most n− 1. However, from Lemma 1.3.9 we
can conclude that every graph class has arbitrary large treewidth if it contains
the n-clique for all n ∈ N. As a consequence from the next lemma, a graph class
G also has arbitrary large treewidth if, for all n ∈ N, G contains a graph that is
a supergraph of an n-clique.

Lemma 1.4.1. If G′ is a subgraph of a graph G, the treewidth of G′ is at most
as large as the treewidth of G.

19

Proof. Let (T,B) be a tree decomposition for G of minimal width k. By
removing all vertices of G not belonging to G′ from the bags of (T,B), we
obtain a tree decomposition for G′ of width k or even smaller.

In Chapter 3, we search for a tree decomposition for a special graph class
called planar graphs.

Definition 1.4.2 (curve, (end)point). A curve in R
2 with endpoints a, b ∈ R

2

is an injective continuous function f : [0, 1] → R
2 with {f(0), f(1)} = {a, b}.

Moreover, for 0 ≤ x ≤ 1, f(x) is called a point of f .

Definition 1.4.3 (geometrical embedding, planar graph). A geometrical em-
bedding of a graph G = (V,E) is a function ψ that maps V to pairwise disjoint
points in R

2 and every edge {u, v} ∈ E to a curve in R
2 with endpoints ψ(u)

and ψ(v). If additionally, for each pair of edges, their curves have a common
point at most in their endpoints, ψ is a planar embedding. A graph G is
called planar if a planar embedding of G exists.

A planar embedding ψ of a graph G = (V,E) divides the points of R
2 not

belonging to the curves of the edges into regions of ψ as follows: Two points
lie in the same region if and only if they are endpoints of a curve that has no
common point with a curve ψ(e) of an edge e ∈ E. These regions are called
the faces of ψ. Among all faces of ψ, there is one face not contained in any
circle. We call it the outer face of ψ. A vertex or an edge is incident to a face
F and vice versa if each point of its image under ψ is on the boundary of F ,
i.e., arbitrary close to a point of F . Moreover, a vertex or an edge is on the
boundary of a face F if it is incident to F and if additionally, for each ǫ > 0 and
each point p of its image under ψ, there is a point q not contained in F and the
Euclidian distance between p and q is smaller than ǫ.

Not only general graphs, but also planar graphs can have arbitrary large
treewidth. However, this is not as easy to see as it is the case for general graphs
since planar graphs can not have the 5-clique (or any larger one) as a subgraph
(Wagner’s theorem). Therefore, we have to define another kind of graphs being
planar and having large treewidth.

Definition 1.4.4 ((ℓ1 × ℓ2)-grid). The (ℓ1 × ℓ2)-grid is a graph that, for
1 ≤ i, i′ ≤ ℓ1 and 1 ≤ j, j′ ≤ ℓ2 with i 6= j or i′ 6= j′, consists of vertices (i, j)
and (i′, j′), where (i, j) and (i′, j′) are adjacent if and only if |i−i′|+|j−j′| = 1.

If no explicit planar embedding of a grid is given, let us always embed a grid
such that a vertex (i, j) has the x-coordinate i and the y-coordinate j and such
that each curve of an edge is as short as possible. Obviously, grids are planar;
an example of a planar embedding of a grid is shown in Fig. 1.4.1.

Next we show that, for each ℓ ∈ N, the ((ℓ+1)×ℓ)-grid has treewidth exactly
ℓ. With a more complicated proof one can also show that the (ℓ × ℓ)-grid has
treewidth exactly ℓ. For showing that planar graphs can have arbitrary large
treewidth, the weaker result is enough. A tree decomposition for the ((ℓ+1)×ℓ)-
grid of width ℓ—i.e., bags of size ℓ+1—is sketched by Fig. 1.4.2.

20

1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

1, 3 2, 3 3, 3 4, 3 5, 3 6, 3

1, 4 2, 4 3, 4 4, 4 5, 4 6, 4

1, 5 2, 5 3, 5 4, 5 5, 5 6, 5

Figure 1.4.1: A (6 × 5)-grid.

ℓ, ℓ

ℓ+1,1

ℓ+1,2

ℓ+1,ℓ

2, ℓ

3, 1

3, 2

3, ℓ

2, 1

2, 2

2, ℓ

3, 1

1, ℓ

2, 1

2, 2

2, ℓ

1, 3

1, ℓ

2, 1

2, 3

1, 2

1, ℓ

2, 1

2, 2

1, 1

1, 2

1, ℓ

2, 1

Figure 1.4.2: A sketch of a tree decomposition for an ((ℓ+1) × ℓ)-grid.

For showing a lower bound of the treewidth of a graph G = (V,E) we use
a one-robber-ℓ-cops-game [82] in which ℓ cops play against one robber who has
to wear a tracking transmitter, i.e., the cops always know his position. (If the
robber now feels to get a raw deal, the author regrets the circumstances but
rules can not be changed.) Initially the cops and then the robber chooses a
starting positionone-robber-ℓ-cops-game. In each round, one cop first lifts its
helicopter and makes an announcement—taped by the robber—to which vertex
he will fly; then the robber may move along as many edges as he likes and finally
the cop lands at his announced position.

The cops win the game if they catch the robber in at most |V | rounds, i.e.,
during the first |V | rounds the robber and a cop are temporary at the same
position. In particular, if X and X ′ are the vertex sets, where at least one cop
stays before and after a round, respectively, for not loosing the game the robber
is neither allowed in this round to move through a vertex in X ∩X ′ nor to stop
his move at a vertex X ′. The robber wins the game if he is not caught after |V |
rounds.

Lemma 1.4.5. If the one-robber-ℓ-cops-game is played on a graph G = (V,E)
with treewidth k < ℓ, the cops have a winning strategy.

Proof. For an easier understanding we use Lemma 1.3.4, i.e., we use the fact
thatG has a k-normal tree decomposition (T,B) and describe a winning strategy

21

for the cops on (T,B) instead of G. First the cops choose a node wC of T and
distribute themselves to the vertices in B(wC)—i.e., at least one cop per vertex
in B(wC). Since all cops always stay at the vertices contained in the bag of one
node wC of T , let us say that the cops are at the node wC. Then, the robber
chooses a vertex, say vR. Take wR such that vR ∈ B(wR). Since it is not of
interest at which vertex of B(wR) exactly the robber stays, let us say that the
robber is at node wR.

If at the beginning of a round the cops are at node wC and the robber is at
node wR, let w′

C be the node adjacent to wC and part of the path from wC to
wR. Possibly, w′

C = wR. A cop who does not stay at a vertex B(wC) ∩ B(w′
C)

lifts his helicopter and announces to move to the only vertex in B(w′
C)\B(wC).

Then the robber may move and finally the cop lands as announced, i.e., at the
end of the round, the cops are at node w′

C.

From property (TD1) and (TD2) we can conclude that the robber is never
allowed to move from a node w1 to a node w2 if the cops are on a node wC being
on the w1-w2-path. Recall that T has at most |V | − k nodes (Corollary 1.3.13).
Consequently, the cops catch the robber after at most |V | − k rounds.

Lemma 1.4.6. There exists a winning strategy for the robber on the one-robber-
ℓ-cops-game on the ((ℓ+1) × ℓ)-grid.

Proof. The winning strategy for the robber is as follows: The robber goes
at the beginning to an arbitrary vertex in a cop-free column. The robber wins
the game since he can arrange to stay after each round in a cop-free column
if this is the case before the round. In detail, a round starts with the lifting
of a cop’s helicopter and an announcement of his final position. Let i and i′

be the cop-free column at the beginning and at the end of the current round,
respectively. Note that during the move of the robber there is additionally to
the initially cop-free column i a cop-free row j since one cop is in the air. The
robber moves first vertically to (i, j) and then horizontally to (i′, j). Finally the
cop moves to his announced position.

Corollary 1.4.7. The treewidth of planar graph classes can be arbitrary high.

Proof. Let G be a planar graph class containing, for each ℓ ∈ N, a graph that
contains the ((ℓ+1)× ℓ) grid as a subgraph. Lemma 1.4.1 then implies that the
treewidth of G is not bounded by any constant.

Containing a large grid as a subgraph means that there are many vertices
with degree 4. By the next lemma we can conclude that even graph classes
consisting only of graphs with no vertex of degree larger than 3 can have large
treewidth.

Definition 1.4.8 (minor, minor-operation, edge-contraction). A graph G∗

is a minor of a graph G = (V,E) if G∗ can be obtained from G by zero or
several minor-operations consisting of a vertex removal or an edge removal or
a so-called edge-contraction. An edge-contraction is the process of merging
two adjacent vertices v′ and v′′ to one new vertex v∗, i.e., removing v′, v′′,
and {v′, v′′} as well as adding a new vertex v∗ and new edges {v∗, u} to all
neighbors u of v′ or v′′.

22

⇒v′ v′′ v∗

Figure 1.4.3: Edge-contraction of vertices v′ and v′′ to a new vertex v∗.

For a sketch of an edge-contraction see Fig. 1.4.3. It is not hard to see that
a graph obtained from a planar graph by an edge-contraction remains planar,
and therefore we get:

Observation 1.4.9. A minor of planar graph is planar.

Lemma 1.4.10. If G is a graph with treewidth k, each minor of G has treewidth
at most k.

Proof. Let G∗ be a minor of G. We only need to show that one minor-
operation does not increase the treewidth; the lemma then follows by induction.
Removing a vertex or an edge clearly does not increase the treewidth, so it
remains to consider an edge-contraction. Let H and H∗ be the graphs before
and after an edge-contraction of v′ and v′′ to one new vertex v∗. If we replace
in a tree decomposition for H all occurrences of v′ or v′′ by v∗, we obtain a tree
decomposition for H∗ of the same width or even a smaller width.

Corollary 1.4.11. The treewidth of planar graph classes can be arbitrary high
even if we restrict the maximal degree of a vertex to three.

Proof. Take a planar graph class G with arbitrary large treewidth—G exists
by Corollary 1.4.7. It suffices to show that each graph G in G can be replaced by
a planar graph G∗ with at least the same treewidth as G such that the maximal
degree of a vertex in G∗ is three.

Let us consider a fixed planar embedding ψ of G. We initially set G∗ = G
and then modify G∗ as long as there is a vertex v in G∗ of degree deg(v) ≥ 4
as follows: First, draw a circle C with midpoint ψ(v) and a radius such that
each edge incident to v intersect C exactly once and no other edge intersects
C. Second, iterate over all neighbors u of v and embed a new vertex vu on
the common point of C and the edge {v, u}. Third, split C into new embedded
edges connecting consecutive vertices on C. Finally, replace v and all its incident
edges by new edges {u, vu} embedded on a part of the embedded edge {u, v}
for all u ∈ N(v).

Note that during the whole process, G is a minor of G∗, i.e., Lemma 1.4.10
implies that the treewidth does not decrease by the construction. Since the
degree of new vertices is always bounded by three and since by this construction
we also obtain a planar embedding of G∗, the modification above ends with a
graph being planar such that each vertex has degree at most three.

23

Chapter 2

Tree Decompositions

2.1 An O(n log n)-Time Algorithm

Many NP-hard graph problems can be solved on graphs with small treewidth
similar to the algorithm described in Section 1.2 solving the maximum inde-
pendent set problem. Recall that this algorithm traverses a tree decomposition
bottom-up. The problem is now that we usually obtain only a graph and we
have to find a tree decomposition somehow before we can start the real calcula-
tion. Moreover, since the running time of the real computation depends usually
exponentially on the treewidth of the used tree decomposition, we should try to
find a tree decomposition whose width is very small.

In 1996, Bodlaender [14] solved the problem to find a tree decomposition on

n-vertex graphs with treewidth k in Θ(f(k) · n) time where f(k) = 2Θ(k3) as
Röhrig showed two years later [80]. The exponential growth in k is no surprise
because of the fact that given a graph G and k ∈ N it is NP-hard to determine
whether G has treewidth k [4].

Definition 2.1.1 (optimization problem, feasible solutions). An optimization
problem is a tuple (X,F,Z, {max,min}), where

• X is a set of instances,

• F is a function that maps each instance x ∈ X to a set F (x) of feasible
solutions of x, and

• Z is a function that maps each pair (x, y), where x ∈ X and y ∈ F (x),
to a real number Z(x, y)—called the value of y.

Definition 2.1.2 (approximation algorithm). An approximation algorithm
for an optimization problem P = (X,F,Z,⊗) is an algorithm that computes
a feasible solution for each instance.

The only practical algorithms to find a tree decomposition on general graphs
with arbitrary treewidth up to now are approximation algorithms.

24

Definition 2.1.3 (approximation ratio). Let P = (X,F,Z,⊗) be an opti-
mization problem. If an approximation algorithm A computes for an instance
x ∈ X a feasible solution ỹ and if OPT (x) = ⊗y∈F (x)Z(x, y), then the ap-
proximation ratio of A for y is

• 1 if Z(x, ỹ) = OPT (x),

• ∞ if either Z(x, ỹ) = 0 or OPT (x) = 0, and

• max {Z(x, ỹ)/Opt(x), Opt(x)/Z(x, ỹ)} otherwise.

An approximation algorithm A for P has an approximation ratio α ∈ R if, on
every input x ∈ X , A returns a feasible solution of an approximation ratio
bounded by α.

One of the best known algorithms with a constant approximation ratio is
Reed’s algorithm [76]; his ideas are also used in the remaining section. Given
an n-vertex graph with treewidth k his algorithm has, for some large c ∈ N, a
running time of O(cknmin{n, k! logn}) and finds a tree decomposition of width
4k, i.e., the algorithm has an approximation ratio of 4. Bodlaender noted in
[13] that minor improvements can lower the width of the tree decomposition
computed to 3k + 2. For obtaining a simpler proof, on an n-vertex graph with
treewidth k, by Theorem 2.2.9, we show only an O(33kk3n2)-time algorithm that
computes a tree decomposition with a width 4k+ 1 and an O(216kn logn)-time
algorithm that computes a tree decomposition with a width 8k + 6.

If we want to find a tree decomposition for a given graph G = (V,E) with
treewidth k, as a first approach we might use Corollary 1.3.6, i.e., we would like
to use the knowledge that a separator S ⊆ V of size k in G exists. In detail,
first search for a separator S ⊆ V of size k in G and divide V \ S into two
disjoint subsets X and Y such that there is no edge between a vertex in X and
a vertex in Y . Then, create a root r of a tree decomposition (T,B) for G and
define B(r) = S. Next, do the same recursively for the two graphs G[X∪S] and
G[Y ∪S]. Finally, connect r with the roots of the tree decompositions obtained
recursively for G[X ∪ S] and for G[Y ∪ S].

However, this approach does not work because a vertex v ∈ S occurs possibly
not in the bag of the root in the tree decomposition obtained for G[X ∪ S] (or
G[Y ∪ S]) but in some other bag. Thus, the second property (TD2) for tree
decompositions fails for v. See also Fig 2.2.1.

As a consequence, if we want to use an approach similar to the one above, we
need the following special tree decomposition: For a graph G = (V,E) and a set
of vertices X ⊆ V , an X-tied tree decomposition is a rooted tree decomposition
(T,B) such that every vertex in X occurs in the bag of the root of T . If a
tree decomposition (T,B) for a graph G is now obtained by first creating a
root r and defining B(r) = S for a set S separating two sets V1, V2 ⊂ V with
V1 ∪ V2 = V and second by connecting r to the roots of the trees of two S-tied
tree decompositions (T1, B) and (T2, B) for G[V1∪S] and G[V2∪S], respectively,
then we can conclude the following. Property (TD1) is true by construction.
Since property (TD2)v is true in (T1, B) and in (T2, B) for each vertex v ∈ S
and since S is part of the bags of r and part of both roots of T1 and T2, property
(TD2)v is also true in (T,B) for each vertex v ∈ S. Property (TD2)v is also
true in (T,B) for each vertex v /∈ S since these vertices occur either in (T1, B)

25

or in (T2, B). Thus, (TD2) is true for (T,B). Before describing the construction
in more detail, let us define some special kind of separators.

Definition 2.1.4 (X-separator, balanced, weak, weighted). Given a graph
G = (V,E), a vertex set X ⊆ V , and a weight function w : X → N a weighted
X-separator of size k is a separator S in G with |S| ≤ k such that we can
partition the connected components of G[V \ S] into two sets C1 and C2 such
that the weight condition holds: The total weight of all vertices contained
in both X and in a component of Ci (i = 1, 2) is at most max(k,W), where
W = ⌊2/3∑

v∈X w(v)⌋.
Moreover, S is called a weak weighted X-separator if we replace in the

weight condition the value of W by ⌊19/24
∑

v∈X w(v)⌋.
An (unweighted) X-separator is a weighted X-separator, where no weight

function is given and where we assume implicitly w(v) = 1 for all v ∈ X .
If, for a separator S, every component C of G[V \ S] consists of at most

⌊11/12 |V |⌋ vertices, S is called balanced.

Let G be a given graph with treewidth k ∈ N. As we see in the following a
tree decomposition (T,B) for G can then be constructed by calling TDk(G,∅),
where TDk denotes the following function.

(T,B) function TDk(graph G = (V,E),vertex set X)
[01] tree T=new tree(); // empty tree
[02] mapping B=new mapping();
[03] node r=new node(); define r as the root of T ;
[04] if |V | ≤ 4k + 2 then set B(r) = V and return (T,B);
[05] let S be an X-separator of size k + 1 in G;
[06] set B(r) = (S ∪X);
[07] for each connected component C = (VC , EC) in G[V \ S] do
[08] (TC , BC) =TDk(G[VC ∪ S], (X ∩ VC) ∪ S);
[09] connect the root of TC with r;
[10] define B(w) = BC(w) for all nodes w of TC ;
[11] return (T,B);

Since initially the function TDk is called with ∅ as second parameter, by in-
duction over the recursion depth we can conclude from the properties of an
X-separator of size k + 1 that TDk is called recursively such that the cardinal-
ity of the second parameter is always at most ⌊2/3(3k + 1)⌋ + (k + 1) = 3k + 1.
Therefore, the cardinality of the bags obtained is bounded by (3k+1)+(k+1) =
4k + 2, and we obtain a tree decomposition of width 4k + 1.
A tree decomposition can be found more efficiently for some graphs by replacing
line [05] by

[05∗] let S be a balanced X-separator of size 2k + 2 in G.

We call this modified version the balanced version of TDk. For the balanced
version, we can observe that the second parameter is during all recursive calls
at most ⌊2/3(6k + 4)⌋ + (2k + 2) = 6k + 4, i.e., we obtain a tree decomposition
of width (6k + 4) + (2k + 2) − 1 = 8k + 6.

26

Figure 2.2.1: The left side shows a (6 × 9)-grid, where we take, e.g., the hori-
zontally middle vertices as a separator S—shown on the right side in the middle.
Thus, we obtain two (6 × 5)-grids. The remaining parts on the right side show a
schematic tree decomposition—constructed as described on page 20—for each of
the two (6 × 5)-grids. Observe that each cycle-free connection of these two tree
decompositions violates (TD2)v for at least one vertex v ∈ S.

It remains to show that, for the standard version, an X-separator of size
k+1 and, for the balanced version, a balanced X-separator of size 2k+2 exists
in each recursive call of the algorithm and how to find it.

2.2 Finding an X-separator

Lemma 2.2.1. Let G = (V,E) be a graph with treewidth k ∈ N and with at
least 3k vertices. For each set X ⊆ V , there exists an X-separator of size at
most k + 1 in G.

Proof. If |X | ≤ k, every separator in G of size at most k+1 works and we can
use Corollary 1.3.6. Moreover, if |V | ≤ 3 or k = 1, one can easily observe that
the lemma holds. We now assume that the first two cases do not apply, i.e.,
in particular |X | ≥ 3. Let (T,B) be an r-rooted, k-normal tree decomposition
of G such that r is a node of T with degree at most 1. Traverse T downwards
always going to a node w with |X ∩B(Tw)| being maximal until the last node w
with |X∩B(Tw)| ≥ ⌈|X |/2⌉ is reached, i.e., |X∩B(Tw′)| ≤ ⌈|X |/2⌉−1≤⌊|X |/2⌋
for each child w′ of w. Note that w is not r because (T,B) is a k-normal tree
decomposition and in such a tree decomposition, there exists only one vertex in
B(r) not occurring in the bag of the only adjacent vertex of r. Additionally, by
construction |X−B(Tw)| ≤ ⌊|X |/2⌋. If w is no leaf in T , B(w) is anX-separator
of size k + 1 in G since one can easily partition the connected components of
G[V \ B(w)] into two sets C1 and C2 such that the weight condition of an X-
separator holds. Otherwise, B(w) ∩B(w∗) with w∗ being the parent of w is an
X-separator of size k in G.

We next consider the problem of finding an X-separator of size k+ 1, where
we start with a description of a standard algorithm for exploring a graph. Given
a directed or an undirected graph G, a depth-first search—also abbreviated as

27

DFS—is an algorithm for traversing G until a goal vertex is reached or all
vertices of G are considered. The algorithm starts its search at some vertex r
of G by setting a pointer p on r and then moves repeatedly p along edges—in a
directed graph always from tail to head—to so-called unseen vertices. A vertex
is called unseen if up to now p has never pointed to it. The algorithm then either
finds a certain goal vertex or hits a vertex that has no unseen neighbors. In the
first case, the algorithm stops. In the second case, the algorithm backtracks and
returns p to the most recent pointed vertex that is adjacent to an unseen vertex
v and continues the search from v. If finally the algorithm can not move to any
further unseen vertices that are adjacent to a seen vertex and if there are still
unseen vertices, the algorithm starts again from an unseen vertex.

In other words, first mark all vertices as unseen. Then as long as there
is an unseen vertex r we start a DFS from vertex r by calling the procedure
DFS(G, r, goal), where goal is either a vertex of G or goal = null. In the
following, we see a description of a DFS in pseudo code, which is extended by
some additional information stored in variables d, f , and F . These variables are
not necessary for traversing a graph or finding an X-separator, but are useful
in later applications of a DFS. Note that the pointer p can be defined implicitly
by pointing p always to the topmost vertex on S.

// global variables:
stack S =new stack(); // realized by an empty list
int t = 0; // time counter for obtaining useful extra data during a DFS
node array<int> d(G), f(G);
graph F=new graph(); // initially an empty forest

procedure DFS(graph G, vertex v, vertex goal)
// DFS starts from v and browses G (until goal is found)
[01] S.push(v); // add v on the top of S
[02] d[v] = t++; // set discovery time of v
[03] if (v == goal) print ”path: ”, S.toString(); stop;
[04] for all vertices u adjacent to v do
[05] if u is unseen then
[06] add vertex u and edge {u, v} to F ;
[07] mark u as seen;
[08] call DFS(G, u, goal); // u gets a child of v
[09] S.pop(); // removes v from the end of S
[10] f [v] = t++; // set finishing time of v

It is not hard to see that a DFS in a graph G = (V,E) can be done in
O(|V | + |E|) time. Moreover, for a fixed DFS that was started from vertices
r1, . . . , rx (x ∈ N), we call the obtained forest F with roots r1, . . . , rx a DFS-
forest for G and, if x = 1, also a DFS-tree for G. Additionally, the edges of F
are called tree edges.

Instead of describing a procedure for finding an X-separator of size k+1, we
first construct an algorithm that finds—if possible—k + 2 edge-disjoint paths
all connecting a vertex s and a vertex t and use this algorithm to find—if
possible—k + 2 internal vertex-disjoint paths all connecting a vertex s′ and a
vertex t′. If the latter algorithm fails, we will see that as a byproduct we obtain
an X-separator.

28

Definition 2.2.2 (residual graph). The residual graph of a directed graph
G = (V,E) and a path P1 with edges E′ ⊆ E consists of the vertex set V
and the edge set E \ E′ ∪ {(v, u) | (u, v) ∈ E′}. Moreover, the residual graph
of G and ℓ ∈ {2, 3, . . .} paths P1, . . . , Pℓ is defined inductively as the residual
graph of G∗ and Pℓ, where G∗ is the residual graph of G and P1, . . . , Pℓ−1.

Note explicitly that the definition of a residual network of a graph G and
path P1, . . . , Pℓ does not mean that P1, . . . , Pℓ are path in G.

Lemma 2.2.3. Let G = (V,E) be a directed graph with no cycle of length 2, let
s, t ∈ V with s 6= t, and let k ∈ N. In O(k(|V | + |E|)) time, we can either find
k edge-disjoint paths P1, . . . , Pk from s to t in G or at most k − 1 edges whose
removal disconnects s and t.

Proof. The main idea is to search for an s-t-path k times using a DFS in G.
Unfortunately, this approach does not work in general since already one path
may block any other s-t-path in G. For an example, see the graph G with 4
s-t-paths in Fig. 2.2.2. In Fig. 2.2.3, a first s-t-path P is found in G. While we
search for a further path, we must get rid of the blocking caused by P . In Fig.
2.2.4 we see the residual graph G∗ of G and P , where 3 s-t-paths still exist. A
key observation is that having found a path P ′ in G∗ we can obtain two paths
in G by taking all edges (u, v) in G where (u, v) and (v, u) are in total used an
odd number of times by P and P ′.

Generalizing this approach we first search for a path P1 in G0 = G, and
then, for each i ∈ {2, . . . , k}, we search for a path Pi by a DFS in the residual
graph Gi−1 of G and {P1, . . . , Pi−1}. If we have finally found k paths (each in a
different graph), we can easily describe a construction of k edge-disjoint paths
in G after collecting some more properties.

Let E∗ be the multiset of edges being part of the k paths. Since we con-
structed only s-t-paths, each vertex v /∈ {s, t} is incident to an even number
of edges in E∗. From the construction of the residual graphs we can conclude
that each edge (u, v) of G is used at most once more than (v, u), and (v, u) is
used at most as often as (u, v) is used. Let us say that an edge (u, v) of G is a

s

t

Figure 2.2.2: A graph G and 4 s-t-paths.

29

s

t

Figure 2.2.3: In the graph G of Fig. 2.2.2 one s-t-path P—shown by the non-black
edges—blocks all other s-t-paths. Observe that the white vertices are reachable
from s only by the use of one or more edges of P .

s

t

Figure 2.2.4: The residual graph G∗ of the graph G and the path P shown in Fig.
2.2.3. Note that after the ’removal’ of one path P in G exactly 3 of 4 s-t-paths in
G remain in a modified version in G∗.

canceled edge if the k paths P1, . . . , Pk use (u, v) as often as (v, u). If E′ is the
set of non-canceled edges, we can observe that every vertex v /∈ {s, t} has an
even degree in the graph (V,E′). Also note that the number of edges with head
s minus the number of edges with tail s is exactly k in E∗ and thus in E′.

For constructing k edge-disjoint paths in G we can start in (V,E′) a DFS
from s and reach t without backtracking. The visited vertices and edges define
our first path P . After removing the edges of P from E′ we start another DFS as
long as s is incident to an edge, in other words, as long as we have not constructed
k edge-disjoint s-t-paths in G. Since the whole algorithm consists basically only
of k DFS for constructing P1, . . . , Pk and further k DFS for constructing the
disjoint path in G, it runs in the promised time.

It remains to show that there are indeed no k s-t-paths if the algorithm fails,
i.e., if, for some 0 ≤ ℓ < k, Gℓ has no path from s to t. Let C be the connected
component of Gℓ containing s but not t. For each 1 ≤ i ≤ ℓ, Gi has one more
edge in C×(V \C) than Gi−1 has since Pi has one more edge in C×(V \C) than
in (V \C) ×C. Consequently, G has exactly ℓ being edges part of C × (V \C)
and G does not contain ℓ+1 or even more edge-disjoint path from s to t. Thus,
removing these ℓ edges we disconnect s and t.

30

Given a graph G = (V,E) and two non-adjacent vertices s, t ∈ V with s 6= t,
we can find k paths from s to t that pairwise have no internal vertices in common
by first transforming G into the directed graph G′ with V ′ = {v′, v′′ | v ∈ V }
and E′ = {(u′′, v′), (v′′, u′) | {u, v} ∈ E}∪{(v′, v′′) | v ∈ V } and then by finding
in G′ k paths from s′′ to t′ that are pairwise edge disjoint. We say that G′ is the
vertex-disjoint-to-edge-disjoint version of G. An example of the transformation
is shown in Fig. 2.2.5. It is not hard to see that G has k pairwise internal
vertex-disjoint paths from s to t if and only if G′ has k pairwise edge-disjoint
paths from s′′ to t′.

If we have found k edge-disjoint paths from s′′ to t′ in G′, each encountered
path P ′ defines a path P in G by applying the backward vertex transformation
from G to G′: Replace each vertex v′ as well as v′′ in P ′ by v and finally remove
duplicate occurrences. Additionally, if no solution is found in G′, then there are
ℓ < k edges E∗ = {e1, . . . , eℓ} whose removal in G′ disconnects s and t. Since
there is no edge from s to t in G, we can take an endpoint v /∈ {s, t} of each edge
in E∗ and add it to an initially empty set. If S is the vertex set obtained, S is
a separator of size at most ℓ for s′′ and t′ in G′. Again applying the backward
vertex transformation, i.e., replacing each vertex v′ as well as v′′ in S by v, we
obtain a separator of size at most ℓ for s and t in G.

Note that both, the transformation from G to G′ and the computation of
a solution in G from a solution in G′ takes only O(k(|V | + |E|)) time. Using
Lemma 2.2.3 we therefore obtain the next lemma.

Lemma 2.2.4. Given a graph G = (V,E), two non-adjacent vertices s, t ∈ V
with s 6= t, and k ∈ N, we find in O(k(|V |+ |E|)) time either k internal-vertex-
disjoint s-t-paths or at most k− 1 vertices whose removal disconnects s and t.

A slight generalization of the last lemma is stated in the next corollary.

s
s′

t
t′

t′′

s′′

Figure 2.2.5: Vertex-disjoint s-t-paths in the left graph can be found by finding
edge-disjoint s′′-t′-paths in the right graph.

31

Corollary 2.2.5. Given a graph G = (V,E), k ∈ N, and two sets S, T ⊂ V
such that S ∩ T = ∅ and there is no edge {u, v} ∈ E with u ∈ S and v ∈ T ,
we find in O(k(|V |+ |E|)) time either k internal-vertex-disjoint paths each with
endpoints in both, S and T or at most k−1 vertices in V \(S∪T) whose removal
disconnects S and T .

Proof. Connect all neighbors of a vertex in S to a new vertex s and all neigh-
bors of a vertex in T to a new vertex t. See Fig. 2.2.6 for an example. Then
remove all vertices S∪T with its incident edges and search for k internal-vertex-
disjoint paths from s to t in the graph obtained.

s4

s3

t1s2

s

t2

s1

t

t3

Figure 2.2.6: A graph G with two new vertices s and t connecting the neighbors
of S={s1, . . . , s4} and T={t1, . . . , t3}, respectively.

Now we can describe our algorithm for finding an X-separator.

Lemma 2.2.6. Let G = (V,E) be a graph with treewidth k ∈ N, let X ⊆ V ,
and let w : X → N. If a kind of X-separator (weak or non-weak, weighted or
unweighted) of size k exists in G, then it can be found in O(3|X| · k2 · |V |) time.

Proof. By the assumption there exists an X-separator S that separates a set
X1 ⊂ X from X2 ⊂ X . Since we do not know X1 and X2, we simply iterate over
all possibilities to partition X into the three sets X1, X2 and XS with XS ≤ k
such that—depending on the kind of X-separator—the following holds.

• unweighted: |X1|, |X2| ≤ max(k, ⌊2/3|X|⌋),
• weak unweighted: |X1|, |X2| ≤ max(k, ⌊19/24|X|⌋),
• weighted:

∑

v∈X1
w(v),

∑

v∈X2
w(v) ≤ max(k, ⌊2/3∑

v∈X w(v)⌋), and

• weak weighted:
∑

v∈X1
w(v),

∑

v∈X2
w(v) ≤ max(k, ⌊19/24

∑

v∈X w(v)⌋).
In each iteration, try to find a separator S of size k such that

1. there is no path in G[V − S] from a vertex in X1 to a vertex in X2,

2. S ∩ (X1 ∪X2) = ∅, and

3. XS ⊆ S.

32

In other words, we try to find a set S′ of size at most k − |XS | separating X1

and X2 in G[V −XS]. For fixed sets X1 and X2, by Corollary 2.2.5 the search
for S′ can be done in O(k(|V | + |E|)) =

L. 1.3.14
O(k2|V |) time.

The combination of Lemma 2.2.1 and 2.2.6 implies the following.

Corollary 2.2.7. Let k and n ≥ 3k be in N. For each n-vertex graph G = (V,E)
with treewidth k and each set X ⊆ V , an X-separator of size k + 1 in G can be
found in O(3|X| · k2 · n) time.

For the balanced version of TDk, it remains to show the existence of a
balanced X-separator and how we can find it.

Lemma 2.2.8. Let k and n ≥ 3k be in N. If G = (V,E) is an n-vertex graph
with treewidth k, for each set X ⊆ V , we can find in G a balanced X-separator
of size 2k + 2 in O((3|X| + 215.7k)k2 · n) time.

Proof. First, let us try to find a separator S1 of size k + 1 such that each
component in G[V −S1] contains at most ⌊11n/12 ⌋ vertices. A first idea might
be to take a V -separator of size k + 1 as S1 since it fits the matter and since it
exists by Lemma 2.2.1. Using Lemma 2.2.6 we can find S1 in O(3nn3) time—
unfortunately this is too slow.

For improving the running time, the idea is to determine a set R of O(k)
vertices called representatives that are spread—in some sense—smoothly in G
such that each set being a weak weighted R-separator in G is a separator S1

with the properties defined above. In detail, we determine in the following a
function f , a set R of at most 8(k+ 1) vertices, and a partition P of V \R into
sets P1, . . . , Pℓ all of size at most ⌊n/(8(k + 1))⌋ such that each set P of P

• induces a connected component in G and

• is mapped by f to one vertex in R that has a neighbor in P .

For each P ∈ P , each v ∈ P , and each r ∈ R , define f(P) as the representant of
v, and define r as a representant for itself. In addition, for each vertex r ∈ R, set
the weight w(r) = |{v ∈ V | r representant for v}|. Note that the total weight
over all vertices in R is exactly n.

R and P can be found as follows: W.l.o.g. we assume that G is connected.
Otherwise, as long as G contains more than two connected components, connect
them by an edge. Note that this construction neither increases the treewidth
nor the asymptotical size of the graph. First, construct a DFS-tree T for G.
Then traverse T bottom-up and store for each vertex v in T the number of its
descendants in T . If this number exceeds ⌊n/(8(k + 1))⌋, cut T into two parts
by removing the edge between v and its parent, which now becomes a leaf. Each
root of a tree obtained is a representative r—by the construction we have at
most 8(k + 1) representatives—and, for each child v of r, define the set of the
vertices in Tv as one set of P , which is thus of size at most ⌊n/(8(k + 1))⌋.

For the time being let us assume that a V -separator S of size k + 1 exists
with S ∩ R = ∅. Let C1 and C2 be a partition of the connected components of
G[V \ S] such that the weight condition of the V -separator S holds. Let V (Ci)
(i = 1, 2) be the union of the vertices over all connected components of Ci. A
key observation is now that in the graph G[V − S] almost all vertices of V are
in the same connected component as their representants. More exactly, S can

33

disconnect vertices of at most k+1 sets P ∈ P , i.e., in total ⌊ n
8(k+1)⌋(k+1) ≤ ⌊n8 ⌋

vertices, from their representatives. For i=1, 2, thus the observations below hold:

Obs. 1: |V (Ci)| −
∑

r∈R∩V (Ci)
w(r) ≤ ⌊n8 ⌋

Obs. 2:
∑

r∈R∩V (Ci)
w(r) ≤ |V (Ci)| + ⌊n8 ⌋ ≤ ⌊ 2n

3 +n
8 ⌋ = 19

24n = 19
24

∑

r∈R w(r),

i.e., S is a weak weighted R-separator.

Moreover, by Lemma 2.2.6 a weak weighted R-separator S1 can be found in
O(38kk2 · n) time, and Obs. 1 together with Obs. 2 implies that S1 satisfies the
extra condition for balanced X-separators, i.e., each component in G[V \ S1]
contains at most ⌊n/8⌋ + ⌊2n/3 + n/8⌋ ≤ ⌊11n/12⌋ vertices. Let X ⊆ V . If
we also compute an X-separator S2 of size k + 1, then S1 ∪ S2 is a balanced
X-separator of size 2k + 2.

Unfortunately, the idea from above only works if a V -separator S of size
k+ 1 exists with S ∩R = ∅. As we already know, a V -separator S of size k+ 1
exists in G. Consequently, if the algorithm above fails, we can conclude that
there exists a vertex r ∈ R that is part of a V -separator. Thus, we can iterate
over all r ∈ R and assume in each iteration that r is part of our V -separator S;
therefore we can remove r from G and search recursively for a V -separator of
size k instead of k + 1 in the graph G[V \ {r}].

Finally note that by Corollary 2.2.7 an X-separator of size k + 1 can be
found in O(3|X| · k2 · n) time, and the running time of the algorithm for finding
a weak weighted R-separator is bounded by T (n, k + 1), where

T (n, k + 1) ≤
{
c · 38kk2n+ 8(k + 1) · T (n, k) if k > 0

c otherwise

i.e., T (n, k + 1) = O(38kk2n) = O(215.7kk2n).

Concerning the running time of TDk(G = (V,E), ∅), we can observe the
following. Since each instance in one recursion depth can be assigned to a
vertex v ∈ V that occurs only in this instance and since each instance contains
only O(k) vertices that occur in other instances of the same recursion depth,
the total size of all instances of one recursion depth is O(k · n).

In the standard version, i.e., using an arbitrary X-separator we can observe
that, for each recursive call, the size of the instance shrinks by at least one
vertex. Thus, we have a recursion depth of at most n. In the balanced version
the size n′ of an instance shrinks in each recursive call by a constant factor
≤ (⌊11n′/12⌋ + (2k + 2))/n′ ≤ 29/30 as long as n′ ≥ 100k, i.e., we can bound
the recursion depth by O(k + logn). We therefore can conclude the following.

Corollary 2.2.9. Given a graph G = (V,E) with treewidth k we find a (rooted)
tree decomposition of width 4k+ 1 and 8k+ 6 in O(33kk3 · n2) and O(215.7kk3 ·
n · (k + log n)) = O(216k · n logn) time, respectively.

By Lemma 1.3.4 we also can find a (rooted) (4k + 1)-normal and (8k + 6)-
normal tree decomposition, respectively, in the times mentioned above. More-
over, if we want to obtain a binary tree decomposition (T,B), do the following
as long as a node of T has too many children: Iteratively replace a node w with
ℓ > 2 children by a path P of length ℓ − 2, define B(w’)=B(w) for each node
w′ of P , connect an arbitrary node of P to the parent of w, and distribute the
children of w to the nodes of P such that each node of P has exactly 2 children.

34

2.3 Clique Trees

Before describing an algorithm for constructing a clique tree for a chordal graph
we need some more properties of chordal graphs.

Lemma 2.3.1. If G=(V,E) is a chordal graph, for every U ⊆ V , the graph
G[U] is also chordal.

Proof. Assume G′ = G[U] is not chordal, i.e., G′ contains a chordless cycle C
of length at least 4. Let V ∗ be the set of vertices of C. Since each edge e ⊆ V ∗ is
in G if and only if it is in G′, C is also a chordless cycle in G. Contradiction.

Definition 2.3.2 (perfect elimination order, successors). The successors of
a vertex v with respect to an order L are the vertices that are adjacent to v
and that appear behind v in L. An ordering L of the vertices v1, v2, v3, . . .
of a graph G is a perfect elimination order if each vertex v induces together
with its successors a clique in G.

Lemma 2.3.3. Every graph with a perfect elimination order is chordal.

Proof. Let G = (V,E) be an n-vertex graph with a perfect elimination order
L. Assume for contradiction that G is not chordal, i.e., G contains a set V ∗ of
ℓ ≥ 4 vertices that induce a chordless cycle C in G. Let v be the first vertex in
L being part of V ∗ and let v′ and v′′ be the two neighbors of v in C. Since C is
a chordless cycle of length at least 4, v′ and v′′ are not adjacent in G; however,
this contradicts L being a perfect elimination order.

Definition 2.3.4 (rift, height). Let G = (V,E) be an n-vertex graph and L
be an order v1, . . . , vn of V . A rift in G with respect to L is a chordless path
P of length at least 2 such that the endpoints of P appear behind all inner
vertices of P with respect to L. A vi-vj-rift is a rift P from vi to vj and the
height of P is max(i, j).

Lemma 2.3.5. On a chordal graph G, let L be the order of G computed by the
algorithm below. Then, G does not contain a rift with respect to L.

list function findOrder(graph G = (V,E))
[01] list L=new list(); // empty list
[02] for i = 1 to |V | do
[03] choose v /∈ L such that no other vertex v′ /∈ L

has more neighbors than v in L;
[04] add v in front of L;
[05] return L;

Proof. Take G = (V,E). Let v1, v2, . . . , v|V | be the vertices of G ordered
with respect to L. Assume for contradiction that the lemma is wrong and
P = (vσ1 , vσ2 , . . . , vσℓ

) is a rift such that σ1 < σℓ and such that its height is
maximal with respect to all rifts in G. See also Fig. 2.3.1. Since σℓ−1 < σ1

(P is a rift), i.e., the findOrder algorithm has chosen vσ1 before vσℓ−1
and since

vσℓ−1
, but not vσ1 , belongs to the neighbors N(vσℓ

) of vσℓ
in G, there has to

35

σ2

σ1

σq

σℓ

p
o
si

ti
o
n

in
L

σi

Figure 2.3.1: The rift P of the proof of Lemma 2.3.5 is shown by the white vertices.
The values in the vertices are their indices with respect to ordering L.

be a vertex vq ∈ N(vσ1) \ N(vσℓ−1
) with q > σℓ. Let vσi

be the last vertex of
P before vσℓ−1

that is adjacent to vq in G, possibly σi = σ1. Since P is a rift,
vσi

, . . . , vσℓ
induce a chordless path in G and by the definition of i all vertices

vσi+1 , . . . , vσℓ−1
are not adjacent to vq. As a consequence from G being chordal

vq and vσℓ
are also not adjacent—otherwise vq, vσi

, . . . , vσℓ−1
, vσℓ

is a chordless
cycle of length at least 4. Therefore, vσℓ

, vσℓ−1
, . . . , vσi

, vq is a rift with σℓ < q
and height q > σℓ; a contradiction to our choice of P .

The algorithm findOrder and also the next theorem is based on ideas of
Tarjan and Yannakakis [91].

Theorem 2.3.6. Chordal graphs are exactly the graphs with a perfect elimina-
tion order.

Proof. By Lemma 2.3.3 it remains to show that every chordal graph has a per-
fect elimination order. Assume for contradiction that the algorithm findOrder
computes on a chordal graph an order L, which is not a perfect elimination or-
der. Then there exists a vertex v having two successors with respect to L that
are not adjacent, i.e., G contains a rift with respect to L; a contradiction.

Lemma 2.3.7. An efficient implementation of the algorithm findOrder on a
graph G = (V,E) runs in O(|V | + |E|) time.

Proof. The only problem is to find a vertex v in each iteration. For this pur-
pose we use an arrayA[0, . . . , |V |−1] of lists, where each list A[i] (0 ≤ i ≤ |V |−1)
contains all vertices that have exactly i neighbors in L. Moreover, we have an
array B[1 . . . |V |] of pointers that allows us to find each vertex in A in constant
time. Last, we have an integer z which stores max{ i | A[i] is a non empty list}.

Initially, all vertices are part of A[0] and z = 0. Finding a vertex v with
the desired properties can be done in constant time; take the first vertex from
A[z]. After adding v into L, we have to iterate over all its neighbors and correct
their storage in A and also their pointers in B, both can be done using B in
O(N(v)) time. Possibly we also have to increase z by one, which can be checked
in constant time, or we have to decease z, which cost in total not more than

36

the total costs of all increments of z so that we can neglect this time under the
asymptotically point of view.

Consequently, one iteration takes O(N(v) + 1) time and the total running
time is O(|V | + |E|).

A clique tree (T,B) of a chordal graph G = (V,E) can be obtained by first
computing a perfect elimination order L of G. We consider the vertices of G in
the reverse order of L. While constructing a clique tree we will stepwise define
a function Ψ that maps each vertex v to a node whose bag contains v, all its
successors, and possibly some more vertices.

Let v be the currently considered vertex. If v has no successor, create a new
node w of T with a bag containing only v. Moreover, if T has another node
w′—i.e., v is not the first vertex considered—then connect w to w′. If v has a
successor, let ℓ = min{j | vj successor of v}. If B(Ψ(vℓ)) contains exactly the
successors of v, add v to that bag and define Ψ(v) = Ψ(vℓ). Otherwise create
a new node w of T with a bag containing v and all its successors and define
Ψ(v) = w. In the latter case, for guaranteeing property (TD2), observe that

• by induction property (TD2) holds before considering v and that

• the set S of successors of v induces a clique in G, i.e., vℓ is adjacent to
each vertex in S − {vℓ} and S ⊆ B(Ψ(vℓ)).

Consequently, we simply can connect w to Ψ(vℓ).
By our construction the vertices of each bag induce a maximal clique different

to all maximal cliques induced by other bags. In reverse direction, for each
maximal clique, there exists a bag containing exactly its vertices VC since each
maximal clique C contains a vertex v such that C is the subgraph of G induced
by v and its successors, i.e., VC ⊆ B(Ψ(v)), and since C being a maximal clique
implies that no vertex v′ ∈ V \ VC can be part of B(Ψ(v)) with B(Ψ(v)) still
inducing a clique in G. Thus, property (TDC) holds.

Note that the clique tree has at most |V | nodes and, for each node w, the size
of its bag is bounded by the degree of a vertex v with Ψ(v) = w. Consequently,
the construction time and the size of the clique tree is bounded by O(|V |+ |E|).
Finally by Lemma 1.3.9 we can observe that the construction above finds a tree
decomposition of minimal width.

Theorem 2.3.8. Given a chordal graph G = (V,E) with treewidth k, a clique
tree (T,B) for G can be found in O(|V | + |E|) time such that

• (T,B) has treewidth k and size O(|V | + |E|) and

• T has at most |V | nodes.

As we have seen in the introduction, a graph G needs not to have small
treewidth for obtaining efficient algorithms as long as a clique tree for G exists.
But which graphs do have a clique tree?

Lemma 2.3.9. Chordal graphs are exactly the graphs for which a clique tree
exists.

Proof. By the last lemma it remains to show that chordal graphs are the
only graphs having a clique tree. Let G be a graph for which a clique tree

37

(T,B) exists. Choosing an arbitrary node r of T as the root, we can traverse
T top-down. Add the vertices of B(r) to a list L. When we visit w 6= r during
this traversal, add the vertices of B(w) not in L at the beginning of L. After
the traversal L is a perfect elimination order of G, i.e., G is chordal (Theorem
2.3.6).

As promised in Section 1.2 now a description is given how the tree T of a
clique tree (T,B) can be made binary if we allow to replace property (TDC) by
property (TDC’). Recall that, for a tree T ′ with a node w, T ′

w is the complete
subtree of T ′ with root w.

As long as T has a node w with c ≥ 2 children, we modify T as follows:
Let v1, . . . , vℓ be the vertices occurring in the bag of w or in the bag of a
child of w. First, create an r-rooted binary tree T ′ of depth ℓ with 2ℓ leaves
w0, . . . , w2ℓ−1 from left to right. Define B(r) = B(w) and, for each leaf wi,
B(wi) = {vj | (i& 2ℓ−j) = 2ℓ−j} (& denotes here the bitwise AND). For the
remaining nodes w′ of T ′, define B(w′) as small as possible such that (TD2)v
holds for all v ∈ B(w), i.e., add a vertex vi into B(w′) if vi ∈ B(ŵ) for some
leaf ŵ being a descendant of w′. See Fig. 2.3.2 for a small example. Second,
for 1 ≤ j ≤ c, identify each child ŵ of w in T with the leaf wi of T ′ such that
B(wi) = B(ŵ). Note that, because of (TDC) two different children of w are
identified with different leaves in T ′. Third, set T ′′ = T ′, and as long as there is
a leaf w′ of T ′′ not identified with a child of w (in T) modify T ′′ by a shrinking
step: Remove w′ as well as its parent w̄ and connect the other child w′′ 6= w′ of
w̄ to the parent of w̄. At the end, replace the edges between w and its children
in T by T ′′.

1
2

3

2
3 1

2

3

3
2

3

1

3

12

3

3 2
2

3
1

1
3

1
2

1

2 3

Figure 2.3.2: The example shows the tree T ′ and its bags described in the con-
struction of a binary weak clique tree for the case ℓ = 3.

Let us now analyze the size of (T ′′, B) compared to the total size over all
bags of the leaves of T ′′, i.e., the total size over all bags of children of w. For
each vertex v occurring in a bag of (T ′′, B), we have to count 1, in other words,
we have cost 1 for v. Instead of counting these costs directly we distribute the
costs of each vertex in the bag of a inner node of T ′′ to the vertices in the bags
of the leaves of T ′′ and then count the assigned cost for each vertex in the bag

38

of each leaf of T ′′. In detail, for each vertex vj (1 ≤ j ≤ ℓ) occurring in the bag
of a non-leaf w̄ of T ′ and of T ′′, let us add a cost of 2−i+1 to each vj occurring in
the bag of a leaf w′ in T ′

w̄ and in T ′′
w̄, respectively, where i denotes the distance

between w̄ and w′. Observe that, if w′
1, w

′
2, . . . , w

′
q (q ∈ N) are the nodes of T ′ in

depth j, exactly half of the subtrees T ′
w′

1
, T ′
w′

2
, . . . , T ′

w′
q

contain in all its bags vj .

Additionally, observe that each inner node of T ′ has exactly two children. The
two observations above imply that, for vj ∈ B(w̄), we have assigned in T ′ total
cost of at least 1. Moreover, the same is true in T ′′ since, for each shrinking
step, the total cost do not change. Moreover, for each vertex u being part of the
bag of a leaf w′, we have assigned in T ′′ cost of at most 2−1+1 +2−2+1 + . . . ≤ 2
to u. Thus, the total size of the new nodes in (T ′′, B) and its bags is bounded
by the size of the bags of the children of w.

An efficient implementation of the construction of T ′′ is described next.
Recall that v1, . . . , vℓ are the vertices occurring in a bag of w or of a child of
w. Initially, create an array S of sets that maps each vertex vj ∈ B(w) to the
set of all children of w whose bags contain vj . Moreover, create an array P of
pointers that we update dynamically and that maps each child of w to a node
in a tree T̃ that we construct in the following. Take a new node w∗ as the root
of T̃ , define B̃(w∗) = B(w), and initially set P [ŵ] = w∗ for each child ŵ of w.
For each node w′ of T̃ , we also store in Z[w′] the number of pointers pointing
to it. Since the values of Z can be updated easily when moving a pointer from
one node to another. The updates of Z are not described explicitly.

The algorithm then works in rounds j = 1, . . . , ℓ. The idea of the algorithm
is that whenever there are two children ŵ1 and ŵ2 of w in T with vj ∈ B̃(ŵ1) \
B̃(ŵ2) such that both P [ŵ1] and P [ŵ2] point to the same node w′ of T̃ , then
we want to add a left child w′

l and a right child w′
r to w′. In addition, for

each child ŵ of w in T whose value of P points to w′, update P [ŵ] such that
P [ŵ] now points to w′

l if vj /∈ B̃(ŵ) and such that P [ŵ] now points to w′
r if

vj ∈ B̃(ŵ). The challenge is to do the updates of the pointers of all children
of w for a round j in time O(1 + |S[vj]|); details how to obtain this running
time are described now. In round j, iterate through the set of S[vj]. For each
ŵ in S[vj], check if w′ = P [ŵ] already has a right child w′′. If this is not the

case, mark w′, create a right child w′′ for w′, and define B̃(w′′) = B̃(w′). In
both cases, update P [ŵ] = w′′. At the end of the j-th round, for each marked
node w′, check if Z[w′] 6= 0. If so, replace w′ in T̃ by a new node w+—w+ has
the same parent, child, and bag as w′—and connect afterwards w′ as new left
child of w+ and set B̃(w′) = B̃(w+)\{vj}. Note that by these w′-w+-exchanges
over all marked vertices w′ we implicitly update all pointers of nodes ŵ with
vj /∈ B̃(ŵ). Otherwise, i.e., if Z[w′] = 0, we have no reason for introducing a
left child of w′ and therefore we do not want to have a right child. Thus, replace
w′ by its right child w′′ by making the parent of w′ to be the parent of w′′ and
then by deleting w′. At the end of round j, unmark all marked nodes.

After the iteration over all j, identify the root of T̃ with w and each child
ŵ of w in T with the leaf P [ŵ] of T̃ . It is not hard to see that before the first
round (take j=0) and after the j-th round, the two invariants hold:

• for each node w′ part of both T̃ and T ′′, we have B̃(w′) = B(w′), and

39

• T̃ can be obtained from T ′′ by deleting ’a lower part’ of T ′′, i.e., by deleting,
for each i = ℓ, ℓ− 1, . . . , j + 1, all nodes w and w of T ′′ with a common
parent and with (B̃(w) \ B̃(w)) ∩ {vi} 6= ∅.

Consequently, at the end of the algorithm (T̃ , B̃) is the same as (T ′′, B).
Concerning the running time we can observe that, apart from the time for

constructing the bags, we have to spend only constant time for each vertex in
a bag of a child of w. Since the construction of each bag can be done in linear
time with respect to its size, the time of the whole algorithm above is linear in
the size of the weak clique tree obtained, i.e., the running time is O(|V |+ |E|).

If we apply the modifications to all nodes with more than two children, we
obtain a binary weak clique tree (T ∗, B) from a clique tree (T,B). In addition,
from our cost analysis we can conclude that the increase of the size from (T,B)
to (T ∗, B) is bounded by the size of (T,B), i.e., bounded by O(|V |+ |E|). Thus,
(T ∗, B) is also of size O(|V | + |E|). Note that T ∗ has O(|V |) leaves and each
non-leaf with only one child is one original node of T , i.e., there are only O(|V |)
such nodes. Thus, T ∗ has O(|V |) nodes.

Corollary 2.3.10. Given a chordal graph G = (V,E) with treewidth k, a weak
clique tree (T,B) for G can be found in O(|V | + |E|) time such that

• (T,B) has treewidth k and size O(|V | + |E|) and

• T is a binary tree with O(|V |) nodes.

40

Chapter 3

Tree Decompositions on
Planar Graphs

3.1 Introduction

The usual approach to solve an NP-hard problem on a graph G with n vertices
and ’small’ treewidth k consists of two steps: First, compute a tree decomposi-
tion for G of width ℓ, and second, solve the problem using this tree decomposi-
tion. Unfortunately, there is a trade-off between the running times of the first
and second step depending on our choice of ℓ. Choosing ℓ closer to k increases
the running time of the first step, but decreases that of the second step. It was
shown that the second step on n-vertex graphs with a given tree decomposition
of constant width can be solved in O(n) time for all graph problems that are
expressible in the so-called monadic second-order logic (MSOL) [26]. For an
exact definition and some further information on MSOL see Section 5.1. The
so-called NP-hard graph problems 3-coloring, triangle matching, Hamiltonian
circuit, dominating set, vertex cover as well as independent set are examples for
problems expressible in MSOL.

It appears that it is mostly the first step that is the bottleneck for the con-
struction of efficient algorithms solving NP-hard problems on graphs of small
treewidth. For n-vertex graphs G of treewidth k, the algorithm achieving the so
far smallest width among the algorithms being polynomial in n and k is the al-
gorithm of Feige, Hajiaghayi, and Lee [30]. It constructs a tree decomposition of
width O(k

√
log k). In particular, on general graphs no algorithms with constant

approximation ratio are known that are polynomial in the number of vertices
and in the treewidth. Better algorithms are known for the special case of planar
graphs. On these graphs, all NP-hard problems given as example above remain
NP-hard. Seymour and Thomas [83] showed that the so-called branch width
bw(G) of G and a so-called branch decomposition of width bw(G) for a planar
n-vertex graph G can be computed in O(n2) and O(n4) time, respectively, in-
dependent of the exact size of bw(G). A minimum branch decomposition of a
graph G can be used directly—like a tree decomposition—to develop efficient
algorithms. Additionally, for each graphG, its branch width bw(G) is closely re-
lated to its treewidth tw(G), in detail, bw(G) ≤ tw(G)+1 ≤ max(3/2 bw(G), 2)
[78]. Thus, one can compute a 3/2-approximation of the treewidth on a pla-

41

nar graph in O(n2) time. Moreover, given a branch decomposition of width
bw(G) ≥ 2, we can find a tree decomposition of width 3/2 bw(G) in linear
time, which is a 3/2-approximation of the treewidth of G. Gu and Tamaki [44]
improved the running time to O(n3) for constructing a branch decomposition
and thus for finding a tree decomposition of width O(tw (G)). It is unknown
whether the problem of computing the treewidth for planar graphs can be solved
in polynomial time or if it is NP-hard.

For planar graphs with n vertices and treewidth k ∈ N, we present the first
O(n ·poly(k))-time algorithm that computes a tree decomposition of width O(k)
if the given graph has treewidth at most k. More precisely, if k ∈ N is given,
for any α with 0 < α < 1, we can compute a tree decomposition of width at
most 9k + 3⌊αk⌋ + 9 in O(n · k3 min(1/α, k) log k) time for planar graphs of
treewidth k. If no k is given, we can combine the new algorithm with a binary
search and obtain so an O(n · k3 log2 k)-time algorithm for constructing a tree
decomposition of width O(k). A simplified version of the algorithm described in
the rest of this chapter with a weaker approximation ratio is published in [56].

3.2 Peelings, Mountains, and Connectivity

This and the following chapter focus on planar graphs. To describe algorithms
on planar graphs, some more terminology and properties of planar graphs are
necessary. The directed version of an undirected graph G = (V,E) is the graph
obtained from G by replacing each edge {u, v} by the directed edges (u, v) and
(v, u). The two directed edges are then called directed version of {u, v}.

Definition 3.2.1 (combinatorial embedding). A (combinatorial) embedding
ϕ of graph G and the directed version (V,D) of G is a permutation of D
such that there exists a planar embedding ψ of G and such that for each edge
(v1, v2) ∈ D, a vertex v3 ∈ V exists with

• ϕ((v1, v2)) = (v2, v3) and

• edge ψ({v2, v3}) follows directly after edge ψ({v1, v2}) while clockwise
turning around ψ(v2).

Then, ϕ is also called a combinatorial embedding of (G,ψ).

GB

Hu

It

Fi

Ru

De

No Ne

SwAu

Ge

e ϕ(e) e ϕ(e)
(GB , Fi) (Fi , Ru) (Fi , Ru) (Ru , Ge)
(Ru , Ge) (Ge , Hu) (Ge , Hu) (Hu , GB)
(Hu , GB) (GB , Fi) (GB , Hu) (Hu , Au)
(Hu , Au) (Au , No) (Au , No) (No , De)
(No , De) (De , GB) (De , GB) (GB , Hu)
(GB , De) (De , Ne) (De , Ne) (Ne , Fi)
(Ne , Fi) (Fi , GB) (Fi , GB) (GB , De)

Figure 3.2.1: A planar embedding and some values of the corresponding combi-
natorial embedding ϕ.

42

See Fig. 3.2.1 for an example of the last definition. Let us call a list
(x0, . . . , xi−1) (i ∈ N) a cycle of a function f if all elements of the list are
pairwise disjoint and f(xj) = xj+1 mod i holds for all 0 ≤ j < i.

For simplicity, in this thesis we consider a combinatorial embedding only
for connected graphs. The reason for this restriction is that we then can easily
define a face of (G,ϕ) or of ϕ as a cycle of ϕ. A rooted embedding ϕ is a
combinatorial embedding, where one face is specified as outer face of ϕ and
where all other faces are called inner faces of ϕ. We define an embedded graph
as a tuple (G,ϕ), where G is a connected planar graph and ϕ is the rooted
combinatorial embedding. An edge e is incident to a face F and vice versa if
the cycle describing F contains a directed version of e. Moreover, e is on the
boundary of F if this is the case for exactly one directed version of e. A vertex
is incident to a face or is on the boundary of a face if it is the endpoint of an
edge incident to the face and on the boundary of the face, respectively.

Note that, if ψ is a planar embedding of a non-empty graph G and if ϕ is
the combinatorial embedding of (G,ψ), there is a bijective mapping m between
the faces of ψ and ϕ such that the vertices and edges being incident to a face
F of ψ are incident to the face m(F) of ϕ and such that the same holds for the
vertices and edges on the boundary. Even if we do not mention the planar
embedding of an embedded graph explicitly, for an easier intuition it is mostly
a good idea to assume that an embedded graph (G,ϕ) has some fixed planar
embedding ψ such that ϕ is the combinatorial embedding of (G,ψ).

If {v, u0}, . . . , {v, ui−1} (i ∈ N) are the incident edges of a vertex v and if
ϕ((uj , v)) = (v, uj+1 mod i) holds for all 0 ≤ j < i, the clockwise order around
v is the cyclic order that assigns the vertex uj−1 mod i as predecessor and the
vertex uj+1 mod i as successor to each vertex uj (0 ≤ j < i). We also say that the
series uj, . . . , ui−1, u0, u1, . . . , uj−1 (0 ≤ j < i) appears clockwise around v (with
respect to ϕ). We say the same if some vertices of the series are missing. Let
{u0, u1}, . . . , {ui−2, ui−1} and {ui−1, u0} (i ∈ N) be the edges incident to a face
F such that ϕ((uj−1 mod i, uj)) = (uj, uj+1 mod i) holds for all 0 ≤ j < i. If F
is the outer face, we say that the series uj, . . . , ui−1, u0, u1, . . . , uj−1 (0 ≤ j < i)
appears clockwise around F (with respect to ϕ), and if F is an inner face, we
say this to the reverse of this series. Once again, we say the same if some
vertices of the series are missing. The counter-clockwise order is the reverse
of the clockwise order. A series appears counter-clockwise if the reverse of the
series appears clockwise. Moreover, a series of vertices appears around a vertex
v if it appears clockwise or counter-clockwise around v.

An embedded graph is called almost triangulated if each inner face is incident
to exactly three vertices and three edges. If additionally the outer face is incident
to exactly three vertices and three edges, the graph is called triangulated. A
multigraph is a tuple (V,E), where V is a set of vertices and E is a multiset of
edges. The dual graph H of an embedded graph (G,ϕ) is the multigraph that
consists of a vertex vF for each face of (G,ϕ) and of an edge e′ = {vF ′ ,vF ′′}
for each edge e of G, where F ′ and F ′′ are the two faces being incident to e.
Intuitively, we can place each vertex vF of H into the face F of (G,ϕ). For
that reason, we also say that an edge e in G and an edge e′ in H cross if the
existence of e is the reason for having e′ in H .

Some less standard or less natural definitions are also needed in the following.
A path on the boundary of a face F means a path in the graph defined by the
boundary of F . The fence of a face F in an embedded graph (G,ϕ) is the

43

embedded subgraph obtained from the boundary of F by deleting all edges
being incident to the outer face and all vertices that are not an endpoint of one
of the remaining edges.

An area is a set of faces. The boundary of an area A is the embedded
subgraph of G that consists of all vertices and edges that are on the boundary
of exactly one face contained in A. The fence of an area A is obtained from its
boundary by deleting all edges incident to the outer face and all vertices that
are not an endpoint of one of the remaining edges. The edges of a boundary
and of a fence (with respect to a face or an area) are called boundary edges
and fence edges, respectively. Boundary vertices and fence vertices are defined
analogously. The vertices and edges incident to an area A are the vertices and
edges that are incident to a face contained in A. Let (G,ϕ) be an embedded
graph and H be a subgraph of G with a combinatorial embedding ζ. Let us say
that a face or an area F1 of (H, ζ) covers another face or area F2 of (G,ϕ) if
there is a set of faces of (G,ϕ) including F2 such that the area consisting of the
union of these faces has the same boundary as F1.

For an area A in an embedded graph (G,ϕ), we call a subset A′ of A a
subarea of A. In addition, for a set A∗ of subareas of A, we define A − A∗ as
A \ ⋃

A′∈A∗ A′ for a simpler notation and denote by G[A .− A∗] the graph that
consist of all vertices and edges that are incident to a face in A−A∗ or that are
part of the fence of an area A′ ∈ A∗.1 An area A in an embedded graph (G,ϕ)
is connected, if, for all faces F and F ′ contained in A, there is a list of faces
F1 = F, F2, . . . , Ft = F ′ all contained in A such that each pair of consecutive
faces Fi and Fi+1 in this list has at least one common fence edge. Let us say

• for a path P containing three consecutive vertices v1, v2, and v3 that a
neighbor u′ /∈ {v1, v3} of v2 leaves on the left (right) side of P (with re-
spect to an embedding ϕ) if v1, u

′, v3 appear clockwise (counter-clockwise)
around v2.

• that two neighbors u′ and u′′ of v2 are on the same side and on different
sides of P (with respect to an embedding ϕ) if u′ and u′′ leave P on the
same side and on different sides, respectively.

For an efficient computation, we represent each faces of an embedded graph
(G,ϕ) with G = (V,E) by a single number, and we additionally have an array
of pointers assigning to each face an incident edge. If we want to know the
remaining edges incident to F , we can simply follow the edges appearing in
clockwise order around F . The next two lemmata describe well-known proper-
ties on planar graphs.

Lemma 3.2.2 (Euler’s formula). If G is a planar graph with n vertices and m
edges, each combinatorial embedding ϕ of G has f = m−n+ c+ 1 faces, where
c denotes the number of connected components of G.

Proof. We prove the lemma by an induction over m. If m = 0, we have
n connected components and one face, i.e., the lemma holds. Otherwise, let
us remove from G an arbitrary edge e. Let us denote by m′, f ′, and c′ the
number of edges, of faces, and of connected components of the graph obtained,
respectively. Clearly, m′ = m−1. Either e is incident to one face or to two faces

1An edge may be a fence edge of two ares in A∗ and, thus, not incident to a face in A−A∗.

44

with respect to ϕ. In the first case, the connected component of G to which
e belongs is divided into two connected components, i.e., c′ = c + 1, and the
number of faces remains unchanged, i.e., f ′ = f . In the latter case, the two faces
incident to e are ’merged’ by the removal to one face F , i.e., f ′ = f−1, and since
the endpoints of e are still connected by the edges incident to F , the number of
connected components does not change, i.e., c′ = c. The lemma follows in both
cases since f ′ = m′ − n+ c′ + 1 holds by induction hypothesis.

Lemma 3.2.3. Every combinatorial embedding of a graph with n vertices has
at most max{0, n− 1, 3n− 6} edges and at most 2n faces.

Proof. Let ϕ be a combinatorial embedding of an n-vertex graph G having m
edges and c connected components. Let f be the number of faces of ϕ. W.l.o.g.
G is connected. Otherwise, as long as there is a connected component containing
a vertex u and another connected component containing a vertex v, add an edge
{u, v} into G. Note that this operation does not change the number of faces
and only increases the number of edges.

Since a graph with q ∈ {1, 2} edges has at least 1 + q vertices and one
face, it remains to prove the lemma in the case m ≥ 3. Then, each face is
incident to at least 3 edges, and the fact that an edge can be incident to at most
two faces implies that 3f ≤ 2m. Subtracting from this inequality two times
the equality of the last lemma, we can conclude that f ≤ 2n − 2c − 2. Thus,
m ≤ 3n− 3c− 3 ≤ 3n− 6.

It is a well-known fact that a graph G is planar if and only if each of the two
graphs shown on Fig. 3.2.2 is not a minor of G.

Figure 3.2.2: The K5 and the K33 is shown on the left and right side, respectively.

Definition 3.2.4 (inherited embedding). Given a connected embedded graph
(G,ϕ) and a subgraphH of G, the inherited embedding ϕ|H from ϕ is a rooted
embedding ofH for which the edges ofH incident to each vertex v ofH appear
around v in the same order in ϕ and in ϕ|H . Moreover, the outer face of ϕ|H
covers the outer face of ϕ.

Next, we define a generalization of a path called alley and some further
terminology for alleys. Many problems search for some kind of path in a given
graph—e.g., see Section 2.2—but it turns out that we need alleys instead of
paths for the following approach to compute a tree decomposition.

Adding an edge e into a face F of an embedded graph (G,ϕ) with G = (V,E)
means replacing (G,ϕ) by a graph (G′, ϕ′) such that G′ = (V,E∪{e}), ϕ′|G = ϕ,
and F is the only face of ϕ not being a face of ϕ′. If F1 and F2 are the faces

45

of (G′, ϕ′) covered by F , we also say that F1 and F2 are obtained from F by
adding e. If (H,ψ) and (G,ϕ) are embedded graphs such that H = (V ′, E′) is a
subgraph of G = (V,E) and such that ψ = ϕ|H , we say that a face F of (H,ψ)
is incident to a vertex of V \ V ′ and an edge of E \E′ if the area of (G,ϕ) with
the same boundary than F is incident to the vertex and the edge, respectively.
Let ϕ′ be an embedding of a graph G′ obtained from adding a new vertex (new
edge) into G. We then say that ϕ′ embeds this vertex (this edge) into a face F ′

of (G,ϕ) if F ′ is incident to this vertex (this edge).
For an embedded graph (G,ϕ) with G = (V,E), we call two elements s1, s2 ∈

V ∪E to be face-adjacent (with respect to ϕ) if they are incident to a common
face F of (G,ϕ). The face F in this case is called a connection face of s1 and
s2. A face without this property is called a non-connection face of s1 and s2.
In an embedded graph (G,ϕ), an A-alley for an area A from a vertex s ∈ V to
a vertex t ∈ V is a list P = (s, . . . , t) of vertices being pairwise disjoint, except
for possibly s = t, such that

• for each pair of consecutive vertices u and v, there is a connection face
contained in A and

• one can add edges between all pairs of consecutive non-adjacent vertices
into one of their connection faces contained in A without destroying pla-
narity.

If s = t, the A-alley is called a cyclic A-alley. For an A-alley P = (v1, . . . , vk)
and a pair i, j ∈ N with 1 ≤ i ≤ j ≤ k, the list (vi, vi+1, . . . , vj) is called
an A-suballey of P . If P is a cyclic alley, i.e., vk = v1, we also call the list
(vj , . . . , vq−1, v1, . . . , vi) to be a suballey of P . If A is the area obtained from
the union of all inner faces in (G,ϕ), we use the abbreviations alley and suballey
for A-alleys or A-suballeys of (G,ϕ). Note that we never use the outer face as a
connecting face for two consecutive vertices of an alley. The inner vertices of an
A-alley from s to t are the vertices of the alley different from its endpoints s and t.
An alley with a first vertex s and a last vertex t is called an s-t-connecting alley.
The length |P | of an alley P = (u1, . . . , uq) is q−1. Two alleys P1 = (u1, . . . , up)
and P2 = (v1, . . . , vq) in an embedded graph (G,ϕ) cross if, for the multigraph
G′ obtained from G by adding two sets E1 = {(u1, u2), . . . , (up−1, up)} and
E2 = {(v1, v2), . . . , (vq−1, vq)} of new edges, there is either

(a) no combinatorial embedding ϕ′ for the new edges with ϕ′|G = ϕ or

(b) for all such combinatorial embeddings ϕ′ of G′ with ϕ′|G = ϕ, there exists
a vertex with four incident edges in E1∪E2 such that the edges of E1 and
E2 alternate clockwise around v.

In case (a), we say that P1 and P2 have a non-planar crossing and, in case (b),
they have a planar crossing. Note that in the case of a non-planar crossing,
there are tuples (ui, ui+1) and (vi, vi+1) of consecutive vertices of P1 and P2,
respectively, such that ui, vi, ui+1, and vi+1 appear around a common connection
face F in (G,ϕ).

We call a set S ⊆ V of vertices in an embedded graph (G,ϕ) to be face-
connected if there is an alley in (G,ϕ) from each vertex of S to each other vertex
of S having as inner vertices only vertices of S. The depth of an alley P or a
path P in an embedded graph (G,ϕ)—denoted by depth(P)—is the minimum
peeling number of its vertices, where the peeling numbers are defined as follows.

46

Definition 3.2.5 (peeling, ℓ-outerplanar, peeling index, peeling number).
The peeling P of an embedded graph (G,ϕ) is the (unique) list of vertex sets

(V1, . . . , Vℓ) with
⋃ℓ
i=1 Vi = VG and Vℓ 6= ∅ such that each set Vi (1 ≤ i ≤ ℓ)

contains all vertices that are incident to the outer face of the embedding
ϕ|G[V ′] with V ′ = V \ (V1 ∪ . . . ∪ Vi−1). We then say that (G,ϕ) and ϕ are
ℓ-outerplanar and that both have peeling index ℓ. For a vertex v ∈ Vi, we call
i the peeling number of v (with respect to ϕ)—also denoted by Nϕ(v). The
peeling number of an edge of G is the average peeling number of its endpoints
and denoted by Nϕ(e), i.e., Nϕ({u, v}) = (Nϕ(u) + Nϕ(v))/2.

An example of an embedded graph with its peeling numbers can be found
in Fig. 3.3.1. We call an edge of an embedded graph (G,ϕ) horizontal (with
respect to ϕ) if it connects two vertices of the same peeling number with respect
to ϕ. Otherwise, we call it vertical (with respect to ϕ).

Definition 3.2.6 (crest, mountain). Let (G,ϕ) be an embedded graph. A
maximal connected set U of vertices having all the same peeling number c ∈ N

with respect to ϕ is called a crest in (G,ϕ) (of height c) if no vertex in U is
face-adjacent to a vertex with a peeling number larger than c. An embedded
graph is called a mountain if it has exactly one crest.

We see in Section 3.5 that it is easy to construct a tree decomposition for a
mountain. Therefore, the idea of our main algorithm is to decompose our graph
into mountains and to combine tree decompositions for the mountains to a tree
decomposition for the whole graph. The next section shows how a graph can be
decomposed into mountains. Unfortunately, this algorithm only works on graphs
with a certain so-called connectivity. The idea is now to decompose a given
graph such that each part of the decomposition has the desired connectivity.

Let us define a graph G to be biconnected (triconnected) if, between each
pair of non-adjacent vertices, there are two (three) internally vertex-disjoint
paths ending in these two vertices. From Lemma 2.2.4 we can conclude that
the following definition is equivalent: a graph G is biconnected (triconnected)
if there does not exist ≤ 1 vertex (≤ 2 vertices) of G whose removal from G
disconnects two non-adjacent vertices of G. If one vertex disconnects G, it is
called cutpoint, and a pair of vertices disconnecting G is called separation pair.
Say (G,ϕ) is biconnected and triconnected if this is true for G. A biconnected
component or a block of G is a maximal biconnected subgraph of G. Next, we
describe a decomposition of a graph into biconnected components. For this
purpose, let us define a block-cutpoint tree [35, 47] of a connected graph G as a
graph T such that

• the nodes of T are the cutpoints and the biconnected components of G
and

• each biconnected component B is incident in T to all cutpoints of G that
are part of B.

Note that each edge of a block-cutpoint tree connects one cutpoint and one
biconnected components. We next show that T is a tree. Assume for a contra-
diction that T contains a cycle. Such a cycle has as vertices two biconnected
components. These components cannot be disconnected in G by the removal of
one cutpoint of G. Contradiction. As a consequence, T is a tree.

47

Lemma 3.2.7. A block-cutpoint tree can be found in linear time [87].

Proof. For finding the cutpoints of a given connected graph G = (V,E), let
us consider for a fixed DFS on G its DFS-tree T . It is not hard to see that the
following three conditions characterize the vertices being no cutpoints.

• The root r of T is no cutpoint if and only if it has exactly one child.

• A leaf of T is no cutpoint.

• An inner vertex v 6= r of T is no cutpoint of G if and only if, for each child
u of v in T , there is an edge from a proper descendant u′ of u to a proper
ancestor v′ of v.

During the DFS, where we already have computed discovery and finishing
times for the vertices, we additionally determine, for each vertex v, a value
a[v] as the minimum discovery time over all discovery times of vertices that
are connected by a non-tree edge to a descendant of v. Just before we set the
finishing time of v, we can compute a[v] as the minimum over the smallest a[u]
with u being a child of v and over the smallest discovery time of a vertex u ∈ V
adjacent to v not being the parent of v.

For finding the cutpoints of G, it only remains to show that we can test the
last condition above, i.e., the condition on an inner vertex v 6= r of T . Let S[v]
be the set of children of v. Again, just before setting the finishing time of v,
determine the set S∗[v] of vertices u ∈ S[v] for which a[u] is not smaller than
the discovery time d[v] of v. Note that, for each u ∈ S∗[v], no descendant of
u is connected to a proper ancestor of u. Moreover, if v is a cutpoint for two
vertices u1 and u2, one of the two vertices is a descendant of v and contained
in S∗[v]. Thus, v is a cutpoint if and only if S∗[v] 6= ∅.

Assume that the cutpoints of G are the colored red whereas all other vertices
are uncolored. Let a white component be a connected component in the graph
obtained from G by removing the red vertices. Then, a block-cutpoint tree can
be obtained by

1. merging each white component to one so-called component node,

2. merging, for each cutpoint v, all component nodes containing a vertex
u ∈ S[v] \S∗[v] with the component node containing the parent of v in T ,
and

3. adding the red vertices to each adjacent component node.

Note that the modified DFS has the same asymptotic running time as a
usual DFS; thus, a block-cutpoint tree can be found in O(|V | + |E|) time.

To define so-called triconnected components, further definitions are neces-
sary. Let us say for a subgraph H of a graph G = (V,E) that two vertices u
and v are connected in G by an internally H-avoiding path if there is a u-v-
path in G whose inner vertices do not belong to H . Moreover, an H-attached
component in G is a subgraph G′ = G[V ′] of G for a maximal set of vertices
V ′ ⊆ V such that each pair of vertices in V ′ is connected in G by an internally
H-avoiding path. A subgraph H of G is a peninsula of G if H = G or each
H-attached component of G has at most two vertices in common with H . The

48

reader may take a look at Fig. 4.4.1 for an example of a peninsula. In addition,
for a peninsula H , define RH as the function that maps each subgraph C of G
to the set of vertices common to C and H . Let C be an H-attached component.
Note that, by the definition of a peninsula, |RH(C)| ≤ 2. If |RH(C)| = 2, we
call RH(C) also a virtual edge.

Before we can define a triconnected component, we finally need the definition
of the induced graph H(G) of a peninsula H of G.

Definition 3.2.8 (induced graph, virtual edge). Given a connected planar
graph G and a peninsula H = (V ′, E′) of G, the induced graph H(G) has the
vertex set V ′ and the edge set {{u, v} | ({u, v} ∈ E′) ∨ (u, v ∈ V ′ and u and
v are connected in G by an internally H-avoiding path)}. An edge {u, v} in
H(G) is called a virtual edge if there is an internally H-avoiding path between
u and v in G (even if {u, v} ∈ E′).

A triconnected component of G is a triconnected induced graph H(G) of a
peninsula H of G such that H is not a subgraph of another peninsula H ′ with
H ′(G) being triconnected. In addition, a cycle component in G is an induced
graph H(G) of a peninsula H such that H(G) is a cycle. A multiple-edge
component is a multigraph consisting only of 2 vertices (a separation pair of G)
connected by at most one edge of G and several virtual edges.

For obtaining a decomposition of G into triconnected components, we make
use of the so-called SPQR trees. An SPQR tree [11] of a biconnected graph G is
a tuple (T,M), where T = (W,F) is a tree and M is a mapping from W to a set
of so-called split-components of G. A split-component is either a triconnected
component, a cycle component, or a multiple-edge component. It is not hard
to see that a split-component is the induced graph H(G) of a peninsula H of
G, which is extended by some edges in the case of a multiple-edge component.
Additionally, for an SPQR tree the following three properties hold:

• Each edge {u, v} of G is part of exactly one split-component H ∈M(W)—
possibly, further virtual edges {u, v} are part of other split-components.

• For each pair of vertices u and v of G, there is at most one multiple-edge
component having u and v as vertices.

• Two nodes w1, w2 ∈W with Hi = M(wi) (i = 1, 2) are connected in T by
an edge in F if and only if |RH1(H2)| = 2 and either one of {H1, H2} is
a multiple-edge component or there is no multiple-edge component with
vertex set RH1(H2).

By the definition above, two multiple-edge components of an SPQR tree
(T,M) are not adjacent in T . One can show that an SPQR tree of a biconnected
planar graph can be found in linear time [11, 45]. An example of an SPQR tree
is shown in Fig. 3.2.3. Note that, if (T,M) is an SPQR tree of a planar graph,
each split component of (T,M) is also planar by Obs.1.4.9. Finally, for an easier
notation, let us extend the mapping M from the nodes of T to each subtree T ′

of T in the canonical way: If w1 is the root of T ′, if {w2, . . . , wℓ} are the
remaining nodes of T ′, if (W ′

i , F
′
i) = M(wi) (1 ≤ i ≤ ℓ), and if S is the set of

all virtual edges in F ′
1, . . . , F

′
ℓ , we define M(T ′) = (

⋃ℓ
i=1W

′
i ,

⋃ℓ
i=1 F

′
i \ S ∪ S′),

where S′ = ∅ if w1 has no parent in T , and otherwise, S′ consists exactly of the
common virtual edge of w1 and its parent in T .

49

3

8

9

12

14

13

5

6

7 1

211

4

10

1

5

6

7

11

1

211
2

1

13

1

2

3

8

9

12

14

1

2

4

10

SPQR tree for Ggraph G

Figure 3.2.3: A biconnected graph G and an SPQR tree of it.

3.3 Decomposition into mountains

In this section, we want to decompose a graph into mountains. However, it ap-
pears that it is much easier to find such a decomposition for a certain embedded
supergraph of (G,ϕ). Hence the idea is to construct such a decomposition for
the supergraph and to use it also for (G,ϕ). For this approach to work, the
supergraph of (G,ϕ) should have the same crests as the original graph. Since
the definition of a crest depends on the peeling numbers, it is therefore useful
to choose a supergraph with the same peeling numbers. The following lemma
shows that such supergraphs exist. In this lemma, we call an embedded graph
(G,ϕ) down-connected if each vertex of G is either incident to the outer face or
adjacent to a vertex with a smaller peeling number.

Lemma 3.3.1. Let (G,ϕ) and (G′, ϕ′) be embedded graphs with ϕ′|G = ϕ such
that

(a) G′ is obtained from G by adding a set of edges, where each edge connects
vertices of different peeling numbers with respect to ϕ or

(b) G is down-connected and G′ is obtained from G by adding an arbitrary set
of edges into inner faces of G.

Then, in both cases the peeling numbers with respect to ϕ and to ϕ′ are the same.

Proof. Adding edges into (G,ϕ) can only increase the peeling numbers. How-
ever, each vertex u with Nϕ(u) ≥ 2 is in (G,ϕ) face-adjacent (case (a)) or

50

adjacent (case (b)) to a vertex v with Nϕ(v) < Nϕ(u). Since this property is
maintained after adding edges into inner faces connecting vertices of the bound-
ary of the inner face with different peeling numbers or in case (b) with arbitrary
peeling numbers, the peeling numbers cannot increase.

The following definition describes the supergraphs that we want to use later:

Definition 3.3.2 (down closure, down edge, down vertex). A down closure
of an embedded graph (G,ϕ) is a triple (G′, ϕ′, ↓) such that

• (G′, ϕ′) is obtained from (G,ϕ) by adding, as long as possible, not al-
ready existing edges with endpoints of different peeling numbers into
inner faces of the current graph, and adding afterwards as long as pos-
sible, not already existing edges with endpoints of the same peeling
number i into inner faces whose boundary contains vertices of peeling
number i and possibly some further vertices of peeling number i+ 1.

• ↓ is a function that assigns to each vertex v ∈ V of peeling number ℓ ≥ 2
one of its neighbors in (G′, ϕ′) with smaller peeling number.

↓(v) is called the down vertex of v and is denoted by v↓. The down edge of v
is the edge whose endpoints consist of v and its down vertex.

Some of the nice properties of a down closure are described in the next four
lemmata. For an example of a down closure, see Fig. 3.3.1, but for the moment,
ignore the difference between dotted, dashed, and usual edges.

0 0

0

0

0 0 0 0 0 0 0

0

0

00 0 0

1

1

1 1
1

1

1

1

1
1

1

1

2

2 2

2
2

2

13

3

3

3

3

4 2

1

2

Figure 3.3.1: The figure shows an undirected embedded graph (G, ϕ), whose edges
are black, and the down closure (G′, ϕ′, ↓) of (G, ϕ), whose edges are black and
red. Moreover, the arrows depict the function ↓. The numbers inside the vertices
are the peeling numbers of (G, ϕ) as well as of (G′, ϕ′), and the green vertices are
part of a crest in (G, ϕ). Dashed and dotted edges are edges of a crest separator.

51

Lemma 3.3.3. Let (G′, ϕ′, ↓) be a down closure of an embedded connected graph
(G,ϕ). Then Nϕ(v) = Nϕ′(v) for all vertices v of G. Moreover, each crest of
(G,ϕ) is a crest of (G′, ϕ′) and vice versa.

Proof. That the peeling number of the vertices in (G,ϕ) and (G′, ϕ′) are the
same follows directly from Lemma 3.3.1.

For showing the second part of the lemma, let us first show some auxiliary
observation. For each vertex u of G belonging to a crest of (G,ϕ), the following
sets U and U ′ are equal: U and U ′ are the maximal connected sets of vertices
in (G,ϕ) and in (G′, ϕ′), respectively, such that both sets contain u and consist
only of vertices with the same peeling number i ∈ N. Since two vertices adjacent
in (G,ϕ) are also adjacent in (G′, ϕ′) U ⊆ U ′. If U ′ ⊆ U is not true, there is
an edge {u1, u2} in G′, but not in G, with u1 ∈ U and u2 ∈ U ′ \U . Possibly, in
the construction process of the down closure, the edge {u1, u2} was added into
a face whose boundary had exactly four vertices with the vertices different from
u1 and u2 all having peeling number i+ 1. In this case, u1 is face-adjacent to a
vertex of peeling number i+1 in (G,ϕ) and cannot be part of a crest in (G,ϕ).
In all other cases, the construction rules of a down closure guarantee that there
is a path P on the boundary of the face, in which {u1, u2} was added, consisting
exclusively of vertices of peeling number i. If possibly some of the edges of P
were added before {u1, u2} and are not contained in G, they can be replaced in
the same way as {u1, u2}. Consequently, we have U = U ′.

Let U be a crest of (G,ϕ). We next show that all vertices of U belong to
the same crest in (G′, ϕ′). Let i be the peeling number of the vertices in U . If
U is no crest in (G′, ϕ′), either

• a vertex of u is face-adjacent to a vertex of peeling number i+ 1 or

• there is a path from a vertex of U to a vertex v /∈ U consisting completely
of vertices with peeling number i and v is face-adjacent to a vertex of
peeling number i+ 1.

By the observation above, the latter case cannot occur. Moreover, since two
vertices are face-adjacent in (G′, ϕ′) only if this is true in (G,ϕ) and since no
vertex of u is face-adjacent to a vertex with peeling number i+1 in (G,ϕ), also
the first case cannot occur.

We finally show that, for each crest U ′ of (G′, ϕ′), all vertices of U ′ belong
to one crest in (G,ϕ). Assume that, in (G,ϕ), a vertex u′ ∈ U ′ is face-adjacent
to a vertex v of peeling number i + 1. Thus, there is a u′-v-path P on the
boundary of a connection face that connects u′ and v. Since the vertices of P
all have either i or i+ 1 as peeling number, the first vertex v̂ on P with peeling
number i+ 1 is adjacent to a vertex û of U ′ in (G,ϕ). Since v̂ is also adjacent
to û in (G′, ϕ′), we can conclude that no vertex in U ′ can belong to a crest in
(G′, ϕ′). It remains to show that all vertices of U ′ are part of the same crest in
(G,ϕ). This follows again from the observation above.

Because of the lemma above, when considering an embedded graph (G,ϕ)
and a down closure (G′, ϕ′, ↓) of (G,ϕ), we often refer to peeling numbers or
crests without mentioning the corresponding embedded graph.

For proving the next lemma, we need a more sophisticated definition how a
set can disconnect two sets: S weakly disconnects two vertex sets U1 and U2 if

52

no connected component of G[V \ S] contains vertices of both sets U1 and U2.
If additionally S ∩ (U1 ∪ U2) = ∅ holds, S strongly disconnects U1 and U2.

Lemma 3.3.4. Let (G′, ϕ′, ↓) be a down closure of a triconnected embedded
graph (G,ϕ). Then (G′, ϕ′) is an almost triangulated graph.

Proof. Assume that there is an inner face F of (G′, ϕ′) whose boundary con-
sists of more than three vertices. Define i to be the minimum of Nϕ′(v) over all
boundary vertices v of F . Choose u, u1, u2, and u′ as four different boundary
vertices of F such that Nϕ′(u) = i and such that u is adjacent to u1 and u2.
Since no edge {u, u′} was added into F , the definition of a down closure implies
that there must be already an edge connecting u and u′. This means that {u, u′}
strongly disconnects {u1} and {u2}. However, this is not possible since G is a
triconnected graph.

Lemma 3.3.5. Let (G′, ϕ′, ↓) be a down closure of a triconnected embedded
graph (G,ϕ), and let F be an inner face of (G,ϕ) for which the set of its bound-
ary vertices is divided into non-empty sets Vi and Vi+1 (i ∈ N) containing the
vertices with peeling numbers i and i+1, respectively. For each vertex u ∈ Vi+1,
there is then a vertex v ∈ Vi with {u, v} being an edge of G′.

Proof. The property that a vertex u ∈ Vi+1 is face-adjacent to a vertex of
Vi is maintained even after adding edges into F with at least one endpoint of
peeling number i. Since (G′, ϕ′) is finally an almost triangulated graph, the
face-adjacency turned into a usual adjacency.

Lemma 3.3.6. Let (G′, ϕ′, ↓) be a down closure of an embedded graph (G,ϕ).
If F ′ is a face of ϕ′ covered by a face F of (G,ϕ) and if at least one boundary
vertex of F has peeling number i, whereas all other boundary vertices of F have
peeling number at least i, then at least one boundary vertex of F ′ has also peeling
number i.

Proof. If, during the construction of a down closure as described in Defini-
tion 3.3.2, we add an edge {u, v} into a face F ∗ covered by F and if at least one
boundary vertex of F ∗ has peeling number i, whereas all other vertices have
a peeling number at least i, then at least one of the vertices u and v has also
peeling number i. Hence the two faces F ′ and F ′′ obtained from F ∗ by adding
the edge {u, v} will both have a boundary vertex with peeling number i. Hence
the lemma follows by a simple induction.

Note also that a down closure can be constructed efficiently.

Lemma 3.3.7. A down closure for a triconnected embedded graph (G,ϕ) with
G = (V,E) can be constructed in O(|V |) time.

Proof. In a first step, for each face F of (G,ϕ) with boundary vertices of
different peeling numbers i and i + 1, choose a boundary vertex v of F with
peeling number i, and add edges between v and each boundary vertex u of F
with peeling number i + 1 if this edge does not already exist. Note that an
already existing edge {u, v} must be a boundary edge since, otherwise, {u, v}
would be a separator of size 2. Afterwards the boundary of each inner face with
vertices of different peeling numbers i and i+1 contains at most two vertices of
peeling number i+ 1. Choose, for each such face F , a boundary vertex v of F

53

with peeling number i+ 1, and add edges between v and each boundary vertex
u of F with peeling number i if this edge is not already a boundary edge of F .
After this second step, each boundary of a face F with at least four boundary
vertices not all having the same peeling number consists of exactly four vertices.
If v1, v2, v3, and v4 is the series of vertices appearing around F , then v1 and v3
have the same peeling number different from the same peeling number of v2 and
v4. If the two vertices with the smaller peeling number are already connected,
they would again define a separator of size 2. Therefore, we can connect them by
an additional edge in a third step of our algorithm. After the third step, for each
face F the boundary vertices of F consist either of exactly three vertices or of
a set of vertices having all the same peeling number. Therefore, the remaining
graph can be almost triangulated, if for each inner face F with more than 3
boundary vertices, we take one boundary vertex u of F and add edges {u, v}
into F for all boundary vertices v 6= u of F that are not already adjacent to u.
We finally choose, for each vertex of peeling number ℓ ≥ 2, arbitrarily one of its
neighbors with a smaller peeling number as its down vertex.

For an embedded graph (G,ϕ) with G = (V,E) and two vertices s and t
of V , let us define an s-t-ridge as a path starting in s and ending in t that
among all paths with these properties has maximal depth. Ridges will later be
useful for finding a special kind of a separator with nice properties. This is the
reason for considering them in the next lemma. For two vertices u and v in a
triconnected embedded graph (G,ϕ) and a connection face F of u and v, let us
denote for the next lemma the two paths from u to v on the boundary of F by
P 1(F, u, v) and P 2(F, u, v).

Lemma 3.3.8. Let (G′, ϕ′, ↓) be the down closure of a triconnected embedded
graph (G,ϕ) with G = (V,E) and s, t ∈ V . For each s-t-ridge R in (G′, ϕ′),
there exists an s-t-path in (G,ϕ) having the same depth as R.

Proof. Take G′ = (V,E′). We only have to show how to replace the edges
{u, v} ∈ E′ \E used by R by a u-v-path in G of depth at least depth(R). Since
two consecutive vertices u and v of R must be face-adjacent in (G,ϕ), the idea
is to replace the edge {u, v} by one of the two paths P 1(F, u, v) and P 2(F, u, v)
for some connection face F of u and v. If afterwards some vertices are visited
several times, the path could be shortened appropriately. The idea described
above works, if for every edge {u, v} ∈ E′ \ E, there is a connection face F
with one of the two paths P 1(F, u, v) and P 2(F, u, v) containing only vertices of
peeling number at least i = min(Nϕ(u),Nϕ(v)). If Nϕ(u) 6= Nϕ(v), all vertices
incident to F have peeling number either i or i+ 1, i.e., both paths P 1(F, u, v)
and P 2(F, u, v) have the desired properties. Hence, let us assume that Nϕ(u) =
Nϕ(v). If we consider a construction of (G′, ϕ′) from (G,ϕ) as described in the
definition of a down closure, it follows that immediately before the addition of
edge {u, v} into a face F ′ (covered by F), the boundary of F consists completely
of vertices whose peeling numbers are at least i. Consequently, the same is true
for the paths P 1(F ′, u, v) and P 2(F ′, u, v), and we can replace {u, v} by a path
P ′ from u to v in the graph immediately before the addition of {u, v}. If P ′

still contains edges in E′ \ E, they can be replaced in the same way so that at
the end we obtain a path in (G,ϕ) that is of the same depth as R.

For splitting an embedded graph (G,ϕ) into mountains, we use so-called
crest separators, which we distinguish from the usual separators. By the way,

54

the dashed edges together with the dotted edges in Fig. 3.3.1 are the edges of
three crest separators.

Definition 3.3.9 (crest separator, lowpoint, size, height). A crest separator
in an embedded graph (G,ϕ) is a tuple X = (L1, L2) consisting of the two
lists L1 = (u1, u2 . . . , uq) and L2 = (v1, v2 . . . , vq) such that Properties 1-5
hold:

1. u1 = v1 or u1 and v1 are face-adjacent.

2. Nϕ(ui) = Nϕ(vi) = q − i+ 1 for all i ∈ {1, . . . , q}.

3. ui and ui+1 are face-adjacent for all i ∈ {1, . . . , q − 1}.

4. vi and vi+1 are face-adjacent for all i ∈ {1, . . . , q − 1}.

5. If there is a j ∈ {2, . . . , q} with uj = vj , then ui = vi for all i ∈
{j, . . . , q}.

If the index j in Property 5 exists, for the smallest p with up = vp, up is called
the lowpoint of X . The size |X | of X is defined as the number of different
vertices in the union over all vertices in L1 and in L2, and the height X is
Nϕ(u1). The latter parameter is denoted by height(X).

Since crest separators are in the main focus of our paper, it is useful to
introduce some additional definitions: The top vertices of a crest separator
X = (L1, L2) consist of the first vertex in L1 and the first vertex in L2—this
means possibly only of one vertex. If we are given two alleys or paths P1 =
(u1, . . . , uq) and P2 = (v1, . . . , vq) such that X = ((u1, . . . , uq), (v1, . . . , vq)) is a
crest separator, we say that X is the crest separator induced by P1 and P2. If
X = (L1, L2) is a crest separator, we also say v is in X and write v ∈ X if v is
contained in one of the lists L1 and L2.

For a crest separator X = ((u1, . . . , uq), (v1, . . . , vq)) of an embedded graph
(G,ϕ), the tuples {u1, u2}, . . . , {uq−1, uq}, {v1, v2}, . . . , {vq−1, vq} and, in the
case u1 6= v1, also the tuple {u1, v1} are called the border edges of X . The border
edges of a set S of crest separators are the union of the border edges of all crest
separators in S. The border of X is the graph consisting of all v ∈ X and of
all border edges. The essential border of X is the subgraph of the border of X
induced by the vertex set {u1, . . . , uq, v1, . . . , vq} if X has no lowpoint, and by
{u1, . . . , up, v1, . . . , vp} if X has a lowpoint up. Moreover, we define the crest
alley from ui to uj with 1 ≤ i < j ≤ q to be the alley (ui, ui+1, . . . , uj) and the
crest alley from a vertex vi to a vertex vj with {vi, vj} 6= {ui, uj} to be the alley
(vi, vi+1, . . . , vj). For i, j ∈ {1, . . . , q}, the crest alley from a vertex ui 6= vi to a
vertex vj 6= uj (or from the lowpoint ui to the lowpoint vj , i.e., i = j) is the alley
(ui, ui−1, . . . , u1, v1, . . . , vj−1, vj) if u1 6= v1 or (ui, ui−1, . . . , u1, v2, . . . , vj−1, vj)
if u1 = v1. The reverse of the alleys above is defined to be the crest alleys from
uj to ui, from vj to vi, and from vj to ui, respectively.

Moreover, for a set S of crest separators of an embedded graph (G,ϕ), we
define G⊕S to be the graph obtained from G by adding each border edge {u, v}
of S into G if this edge does not already exist. Let ϕ′ be a rooted combinatorial
embedding of G⊕ S such that ϕ′|G = ϕ. Then, for a subset S′ ⊆ S, we define
two inner faces F and F ′ of (G ⊕ S, ϕ′) to be (S′, ϕ′)-connected if there is a

55

list (F1, . . . , Fℓ) (ℓ ∈ N) of inner faces of (G ⊕ S, ϕ′) with F1 = F and Fℓ = F ′

such that, for each i ∈ {1, . . . , ℓ − 1}, the faces Fi and Fi+1 share a common
boundary edge not being a border edge of S′. A set F of inner faces of (G⊕S, ϕ′)
is (S′, ϕ′)-connected if each pair of faces in F is (S′, ϕ′)-connected. A set of crest
separators can be used to split a graph into a special kind of components:

Definition 3.3.10 ((S′, ϕ′)-area, (S′, ϕ′)-component). Let S′ be a subset
of a set S of crest separators of an embedded graph (G,ϕ), and let ϕ′ be
an embedding of G ⊕ S with ϕ′|G = ϕ. For a maximal nonempty (S′, ϕ′)-
connected set F of inner faces of (G⊕S, ϕ′), the area consisting of the union
of the faces in F is called an (S′, ϕ′)-area and, for this area A, the subgraph
of G ⊕ S consisting of the vertices and the edges incident to A is called an
(S′, ϕ′)-component.

Let S be a set of crest separators in an embedded graph (G,ϕ) with G =
(V,E), let ϕ′ be an embedding of G⊕ S with ϕ′|G = ϕ, and let S′ be a subset
of S. Take A as an (S′, ϕ′)-area A and C as the (S′, ϕ′)-component consisting
of the vertices and edges incident to A. We define the boundary and fence of C
to be the boundary and fence of A. In addition, for a crest separator X ∈ S,
we call an ({X}, ϕ′)-area C-inner if it covers A, and call it C-outer if the other
({X}, ϕ′)-area completely covers A. We also say that a crest separator X ∈ S
with X = (L1, L2) goes weakly between two subsets U1, U2 ⊆ V if no ({X}, ϕ′)-
component contains vertices of both, U1 \ (L1 ∪L2) and U2 \ (L1 ∪L2). X goes
strongly between U1 and U2 if L1 ∪ L2 additionally does not contain any vertex
of U1 ∪ U2. The tuple (S, ϕ′) is called crossing-free if, for each pair of crest
separators X1, X2 ∈ S, the set consisting of all vertices v in X1, but not in X2

is completely contained in one ({X2}, ϕ′)-component. We often say that S is
crossing-free if (S, ϕ′) is crossing-free and if ϕ′ is clear from the context.

An alley crosses a crest separator X = ((u1, . . . , uq), (v1, . . . , vq)) if it crosses
the crest alley from uq to vq in the case, where X has no lowpoint, or the crest
alley from up to vp = up in the case, where up is the lowpoint of X . Note that
for a triconnected embedded graph (G,ϕ) and a crest separator X of (G,ϕ),
G ⊕ {X} has only two rooted embeddings ϕ′ and its inverse. This means that
an alley P in a triconnected embedded graph (G,ϕ) crosses a crest separator
X of (G,ϕ) if and only if it is not possible to choose one ({X}, ϕ′)-area A such
that P is an A-alley.

For decomposing a graph into mountains, we later use a so-called mountain
structure. Informally, a mountain structure should be a tuple (S, ϕ′) with S
being a crossing-free set of crest separators of an embedded graph (G,ϕ) and
with ϕ′ being an embedding of G ⊕ S such that each (S, ϕ′)-component has
only one crest with respect to the peeling numbers in (G⊕S, ϕ′). The problem
is that, if we consider an (S, ϕ′)-component C as an isolated graph without
the vertices of G ⊕ S not contained in C, the peeling number of a vertex in
the (S, ϕ′)-component may completely different from the peeling number of the
same vertex in the original graph (G ⊕ S, ϕ′). We therefore may obtain crests
for the components that are totally different from the crests of G. To solve this
problem, we later define so-called extended components. Such a component will
be obtained from an (S, ϕ′)-component by adding some extra vertices and edges
such that, apart from the newly introduced vertices, the peeling numbers of all
other vertices in the extended (S, ϕ′)-component with respect to the embedding

56

of the extended component are the same as the peeling numbers with respect
to the embeddings ϕ′ and ϕ of G⊕S and G. However, an extended component
will have a much simpler structure than the whole graph (G ⊕ S, ϕ′), namely,
it is a mountain.

One problem is that it is not so easy to find a set of crest separators that
is crossing-free and that decomposes a graph into mountains. We therefore
use a very special algorithm to construct a certain set S of crest separators.
Unfortunately, for guaranteeing the correctness of this algorithm and several
nice properties of the output of the algorithm, it is necessary to start it on the
down closure (G′, ϕ′, ↓) of an embedded graph (G,ϕ) instead of the original
graph itself. This means that the algorithm outputs a set of crest separators
for (G′, ϕ′) instead of for (G,ϕ). The next lemma shows that this is not a real
problem.

Lemma 3.3.11. If (G′, ϕ′, ↓) is a down closure of an embedded graph (G,ϕ),
each crest separator of (G′, ϕ′) is also a crest separator of (G,ϕ).

Proof. The introduction of edges into an embedded graph cannot make two
vertices face-adjacent that were not face-adjacent before the addition. This
together with the fact that the peeling numbers do not change (Lemma 3.3.1)
shows the lemma.

Let us define a down path from a vertex v with a peeling number i ∈ N in
the down closure (G′, ϕ′, ↓) of an embedded graph (G,ϕ) as the path of length
i whose jth vertex (j ∈ {1, . . . , i+ 1}) is the vertex ↓j−1(v), i.e., obtained from
j − 1 applications of ↓. We use the following algorithm to construct a crossing-
free set S of crest separators for the graph (G′, ϕ′) of the down closure (G′, ϕ′, ↓)
of an embedded graph (G,ϕ).

set function MS(down closure (G′, ϕ′, ↓))
Step 1: Take G′ = (V,E′) and initially set S = ∅.
Step 2: For each vertex u ∈ V of peeling number ℓ ≥ 2, we partition its

neighbors in G′ into sets of maximal size such that the vertices of each set appear
around u immediately one after each other and have either all peeling number
ℓ − 1 or all peeling number ≥ ℓ. For each of these sets containing a vertex of
peeling number ℓ − 1, but not the down vertex u↓, we fix one vertex v of the
set as representant around u for the vertices in the set. More exactly, to have
a unique computation, let us always choose the vertex v as representant that
appears around u immediately after a vertex with peeling number ℓ. The down
path from u and the path obtained by concatenating {u, v} with the down path
from v induces a crest separator X that is added to S. We call the edge {u, v}
the top edge of X .

Step 3: For each horizontal edge {u, v} ∈ E′ connecting two vertices of
peeling number ℓ ≥ 2, the two down paths from u and from v induce a crest
separator that is added to S. In this case, we call {u, v} the top edge of the
crest separator.

Step 4: Return S.

Note that the top edges of the crest separators in Fig. 3.3.1 are exactly the
dashed edges. It is easy to see that each element of the set S constructed by MS
is indeed a crest separator, and that each top edge is on the boundary of two

57

(S, ϕ)-components. Since the vertices of each crest separator in S are exactly the
vertices of two down paths, S must be crossing-free. Given the down closure,
the top edge of a crest separator constructed by the algorithm MS uniquely
defines the crest separator since the remaining part can be constructed with the
function ↓. We can therefore conclude:

Lemma 3.3.12. The running time of the algorithm MS for a down closure
(G′, ϕ′, ↓) of a triconnected embedded ℓ-outerplanar graph (G,ϕ) with G = (V,E)
is O(ℓ|V |).

Proof. Each of the O(|V |) edges of G′ can define at most one top edge of a
crest separator. Since the height of such a crest separator is O(ℓ), the crest
separator itself can be outputted following the down path in O(ℓ) time.

The (S′, ϕ′)-components can be computed efficiently, too.

Lemma 3.3.13. Given a set of crest separators S of height at most q con-
structed by the algorithm MS for the down closure (G′, ϕ′, ↓) of a triconnected
embedded graph (G,ϕ) with G = (V,E), a subset S′ ⊆ S, and an embedding ϕ′ of
G⊕S with ϕ′|G = ϕ, one can construct in O(q|V |) time all (S′, ϕ)-components
C and store the set of all top edges contained in C. In addition, we can store
the two components for each top edge to which it belongs.

Proof. First determine the connected components in the graph obtained from
the dual graph H of (G⊕S, ϕ′) after removing the vertex for the outer face with
its incident edges as well as all edges of the dual graph that crosses a border
edge of a crest separator X ∈ S′. Note that each connected component of the
remaining subgraph of the dual graph represents exactly one (S′, ϕ′)-area A by
its vertices or, more precisely, all inner faces of (G,ϕ) contained in A. For each
such area A, compute first all vertices and edges incident to A as the vertices
and edges of one (S′, ϕ′)-component C, determine second all top edges of C, and
store third, for each top edge e in C, C as one component to which e belongs.
It is easy to see that almost all steps above can be implemented in O(|V |) time.
However, for the construction of H , we need to know all border edges. To
compute the set of border edges, we must consider each crest separator in S′.

Since each crest separator can consist of O(q) vertices that need not be
disjoint to the vertices of other crest separators, the computation of H can be
done in O(q|S′|) = O(q|V |) time. For the last equality, we use the fact that all
top edges must be pairwise disjoint, i.e., |S′| = O(|E|) = O(|V |).

Lemma 3.3.14 and 3.3.15 describe important properties of the set of crest
separators computed by MS on the down closure (G′, ϕ′, d) of a triconnected
embedded graph (G,ϕ) with G = (V,E).

Lemma 3.3.14. The top edge of a crest separator X ∈ S is disjoint from all
border edges of all other crest separators in S.

Proof. The lemma follows from the fact that the top edges of the crest sep-
arators are pairwise disjoint and the fact that no top edge is a down edge and
therefore part of a down path.

Lemma 3.3.15. For s, t ∈ V , let R be an s-t-ridge in G′ that has the smallest
number of vertices with a peeling number equal to its depth among all s-t-ridges.

58

Take v as a vertex of R with smallest peeling number. If the depth of R is
smaller than the peeling numbers of both, s and t, then there is a crest separator
X ∈ S that goes strongly between {s} and {t} with v being a top vertex of X
and with its top edge not being part of R.

Proof. Let us say that an inner vertex u of R with a peeling number i is
dominated on the right (left) of R if all edges not on R leaving u to the right
(left) of R lead to a vertex with peeling number i+1 and if u on the right (left)
side of R is not incident to the outer face. Note that this latter condition is
superfluous in the case i ≥ 2. Let i be the peeling number of v.

The first case that we consider is the case, where i ≥ 2 and v is dominated
neither on the left nor on the right of R. In particular, v is connected by an
edge to a vertex u ∈ V \ {s, t} with peeling number i − 1 or i leaving R on a
different side than v↓. If Nϕ(u) = i− 1, there is a crest separator X ∈ S using
{v, u′} as top edge, where u′ is the representant of u around v. Note that X
goes strongly between {s} and {t} since v↓ and u′ are on different sides with
respect to R and since R is a path not visiting any vertex of peeling number
i−1, i.e., R cannot be crossed by a down path from v↓ or from u′. If Nϕ(u) = i,
there is a crest separator X ∈ S using {v, u} as top edge. In this case, u and v↓
leave on different sides of R. Again, X goes strongly between {s} and {t}.

In the second case, we assume that i = 1 and v is dominated neither on the
left nor on the right of R. Then v is incident to the outer face and, possibly, to
an edge {u, v} that is not incident to the outer face. Since v is not dominated
on any side, u must have peeling number 1. This means that {v} or, if such a
vertex u exists, {u, v} is a separator of size at most 2. A contradiction to the
triconnectivity of G′.

Finally, we consider the remaining case in which v is dominated on the left
or right side of R. Since G′ is triangulated, we then can replace v by a list
L of its neighbors all having a larger peeling number than v and obtain so an
s-t-path R′ either having a larger depth than R or having the same depth as
R, but a smaller number of vertices with a peeling number equal to the depth
of R. In both cases, this contradicts our choice of R. Note explicitly that this
is true even if L contains s or t since we then obtain an s-t-ridge contradicting
our choice of R by shortening R′.

The idea is now to use the lemma above to split a graph into several parts
such that no part contains the vertices of more than one crest. In detail, for
the down closure (G′, ϕ′, ↓) of a triconnected embedded graph (G,ϕ) and a
subset S∗ of the set S of crest separators constructed by the algorithm MS on
(G′, ϕ′, ↓), we call the sextuple (G,ϕ,G′, ϕ′, ↓,S∗) to be a mountain structure if,
for each pair of different crests H1 and H2 in (G,ϕ), there is a crest separator
X ∈ S∗ such that

• X goes strongly between H1 and H2

• the height of X is equal to the depth of an s-t-ridge in (G′, ϕ′) for some
s ∈ H1 and t ∈ H2—and hence for all s ∈ H1 and t ∈ H2.

The next lemma shows that the set of crest separators constructed by the
algorithm MS defines a mountain structure.

59

Lemma 3.3.16. For the down closure (G′, ϕ′, ↓) of a triconnected embedded
graph (G,ϕ) and the set S constructed by the algorithm MS on (G′, ϕ′, ↓), the
tuple (G,ϕ,G′, ϕ′, ↓,S) is a mountain structure.

Proof. Let H1 and H2 be two different crests of (G,ϕ), and let s ∈ H1 as
well as t ∈ H2. Corollary 3.3.3 implies that H1 and H2 define also different
crests in (G′, ϕ′). Hence the depth of an s-t-ridge in (G′, ϕ′) is smaller than
min(Nϕ′(s),Nϕ′(t)), i.e., by Lemma 3.3.15 there must be a crest separator X ∈
S that goes strongly between s and t in (G′, ϕ′) and hence also in (G,ϕ). Note
that the height of X is smaller than the peeling number of s and t. Therefore,
X also goes strongly between H1 and H2.

The next two lemmata help us later to restrict the set S computed by MS to
a smaller set S′ ⊂ S such that (G,ϕ,G′, ϕ′, ↓,S′) is still a mountain structure,
but has some further nice properties.

Lemma 3.3.17. Let (G,ϕ,G′, ϕ′, ↓,S) be a mountain structure, and let C be
an (S, ϕ′)-component that contains no vertex of a crest in (G′, ϕ′). If X is the
crest separator of largest height among all crest separators in S whose top edge
belongs to C, the tuple (G,ϕ,G′, ϕ′, ↓,S \ {X}) is a mountain structure, too.

Proof. If (G,ϕ,G′, ϕ′, ↓,S \ {X}) is not a mountain structure, there must be
two vertices s and t part of different crests in (G′, ϕ′) such that X goes strongly
between {s} and {t} and such that there is an s-t-ridge R whose depth is equal
to the height of X . Let S and T be the crests containing s and t, respectively.
W.l.o.g. let s be the vertex contained in the C-inner ({X}, ϕ′)-area A. Since
C does not contain any vertex of S, there must be a further crest separator X ′

without any vertex of S that goes weakly between S and the vertices of C. This
crest separator goes strongly between S and T since C also contains no vertex of
T . By our choice of X , height(X ′) ≤ height(X) = depth(R). Since X ′ crossing
R implies that height(X ′) ≥ depth(R), we have height(X ′) = depth(R). Thus,
we can remove X from S and still have a mountain structure.

Lemma 3.3.18. If (G,ϕ,G′, ϕ′, ↓,S) is a mountain structure and if X is a
crest separator in S such that its top vertices are part of a crest of (G′, ϕ′), then
(G,ϕ,G′, ϕ′, ↓,S \ {X}) is a mountain structure, too.

Proof. Assume that (G,ϕ,G′, ϕ′, ↓,S\{X}) is not a mountain structure. This
implies that there must be two vertices s and t part of different crests in (G′, ϕ′)
such that X goes strongly between {s} and {t} and such that there is an s-t-
ridge R whose depth is equal to the height of X . Let u be a vertex common of X
and R. Since depth(R) = height(X), u must be a top vertex ofX . By our choice
of X , u must be part of a crest. However, this crest must be different from the
crests containing s and t—otherwise X cannot strongly disconnect these crests.
Therefore, the subpath of R from s to u has a vertex with a peeling number
strictly smaller than u, i.e., the depth of R is smaller than the height of X .
Contradiction.

For an (S, ϕ′)-component C of a mountain structure (G,ϕ,G′, ϕ′, ↓,S), there
can exist a crest separator X ∈ S with a lowpoint such that, for the ({X}, ϕ′)-
area A that has no edge with the outer face of (G′, ϕ′) in common, C is covered
in A. In this case, there is only one such crest separator and we say that X
encloses C. We are now ready to define extended (S, ϕ′)-components.

60

Definition 3.3.19 (extended (S, ϕ′)-component). Let C be an (S, ϕ′)-com-
ponent of a mountain structure (G,ϕ,G′, ϕ′, ↓,S), and let S′ ⊆ S be the set
of crest separators with a top edge in C. Moreover, if C is enclosed by a
crest separator X ∈ S′, let S∗ = {X} and otherwise define S∗ = ∅. The
extended (S, ϕ′)-component (C+, ϕC+) of C is the embedded graph obtained
from (C,ϕ′|C) as follows:

(1) For each crest separator X ∈ S′, extend C by all v ∈ X and all border
edges of X that are not already contained in C.

(2) For each X = ((u1, . . . , uq), (v1, . . . , vq)) ∈ S′, add new vertices xi and
yi as well as edges {ui, xi}, {xi, yi}, {yi, vi} into the C-outer ({X}, ϕ′)-
area for all i ∈ {2, . . . , j}, where j = q if X has no lowpoint, and where
j is chosen such that vj+1 is the lowpoint of X otherwise.

(3) If, for a crest separator X ∈ S′ with two top vertices, the above steps
introduced a new edge (x2, y2)—which is mostly the case—add a further
new vertex z2, and replace the edge (x2, y2) by two edges (x2, z2) and
(z2, y2).

(4) If S∗ = {X}, take X = ((u1, . . . , uq), (v1, . . . , vq)), and add new vertices
xi and yi as well as edges {ui, xi}, {xi, yi}, and {yi, vi} into the C-outer
({X}, ϕ′)-area for all i ∈ {j, . . . , q} with uj being the lowpoint of X .

If S and ϕ′ is not of interest or clear from the context, we call an extended
(S, ϕ′)-component sometimes simply extended component. The vertices and
edges of (C+, ϕC+) introduced in the steps (2), (3), and (4) are called the
virtual vertices and virtual edges, respectively, of (C+, ϕC+). It is easy to see
that the combinatorial embedding obtained from ϕ′|C by adding the virtual
edges introduced for one crest separator X into the C-outer ({X}, ϕ′)-area is
unique. However, to show that the virtual edges for different crest separators
are crossing-free, we prove in the next lemma that the inner faces, into which
we embed the virtual edges, are different for different crest separators.

Lemma 3.3.20. Let C be one of the (S, ϕ′)-components of a mountain structure
(G,ϕ,G′, ϕ′, ↓,S). For each pair of different crest separators X1, X2 ∈ S with
top edges in C, the C-outer (X1, ϕ

′)-area A1 and the C-outer (X2, ϕ
′)-area A2

are disjoint, except for possibly some common fence vertices or fence edges.

Proof. Since S is crossing-free, the vertices that belong to X1, but not to X2

are completely incident to one ({X2}, ϕ′)-areaA′
2 and the vertices that belong to

X2, but not to X1 are completely incident to one ({X1}, ϕ′)-area A′
1. Since crest

separators beside their top edges only consist of down edges, there are exactly
three ({X1, X2}, ϕ′)-components: One component C′ consisting of all vertices
and edges being incident to both A′

1 and A′
2, another consisting of all vertices

and edges being incident to the ({X1}, ϕ′)-areaA′′
1 6= A′

1 and the third consisting
of all vertices and edges being incident to the ({X2}, ϕ′)-area A′′

2 6= A′
2. The

different components are disjoint, except for possibly some common fence edges
and fence vertices. The only component containing the top edges of both, X1

and X2, is C′. Therefore, C must be a subgraph of C′, and, for i ∈ {1, 2},
A′′
i must be the C-outer (Xi, ϕ

′)-area. The lemma now follows from the fact

61

that A′′
1 and A′′

2 are disjoint, except for possibly some fence vertices and fence
edges.

We also want to remark that the reason for connecting two vertices ui and
vi of a crest separator X = ((u1, . . . , uq), (v1, . . . , vq)) in an extended (S, ϕ)-
component not by a single virtual edge {ui, vi}, but by a path of virtual edges,
is that we want to add additional edges into an extended component in the next
section. However, the results of this section would also hold if we introduce only
one virtual edge {ui, vi} instead of a path from u1 to vi visiting further vertices.
As we have seen in Lemma 3.3.13, the (S, ϕ)-components can be computed
efficiently. The same holds for the extended (S, ϕ)-components.

Lemma 3.3.21. Given a mountain structure (G,ϕ,G′, ϕ′, ↓,S) with G = (V,E)
such that each crest separator of S has height at most q, one can construct all
extended (S, ϕ)-components in O(q|V |) time.

Proof. First, compute all (S, ϕ)-components and, for each such (S, ϕ)-com-
ponent C = (V ′, E′), the set of all top edges contained in C to determine
the set S′ as defined in Definition 3.3.19. This can be done in O(q|V |) time
(Lemma 3.3.13). Second, apply the steps (1)-(4) of Definition 3.3.19. Since
G is planar, we can have only O(|E|) = O(|V |) top edges, and therefore our
computation takes O(q|V |) time.

The main reason for introducing extended (S, ϕ′)-components and using the
name mountain structure is that the extended (S, ϕ′)-components of a mountain
structure are mountains. This is shown in Lemma 3.3.24 by using Lemma 3.3.23.
We start with an auxiliary lemma.

Lemma 3.3.22. Let (G,ϕ,G′, ϕ′, ↓,S) be a mountain structure, and let C be
an (S, ϕ′)-component. Each fence edge of C is a border edge of a crest separator
with a top edge in C.

Proof. Let us consider a fence edge e = {u, v} of C. It is clear that e must be
a border edge of a crest separator X ∈ S, but let us assume for a contradiction
that it is not part of a crest separator in S with a top edge in C. Hence e must
be a down edge. Let us further assume w.l.o.g. that among all possible choices
we have chosen e such that the peeling numbers of the endpoints of e are as
large as possible, say i = Nϕ′(u) and Nϕ′(v) = i− 1. Let us consider the other
fence edge e′ of C incident to u. If e′ is the top edge of a crest separator X ∈ S,
e is also part of X and we obtain a contradiction. Thus, e′ must be a down
edge of a crest separator X ∈ S without a top edge in C. Since v is the down
vertex of u, the endpoint of e′ opposite to u must have peeling number i + 1.
This contradicts our choice of e.

Lemma 3.3.23. For a mountain structure (G,ϕ,G′, ϕ′, ↓,S), the peeling num-
bers of the non-virtual vertices of the extended (S, ϕ′)-component (C+, ϕC+) of
an (S, ϕ′)-component C are the same with respect to ϕC+ as with respect to ϕ′.
Moreover, the virtual edges of (C+, ϕC+) are horizontal.

Proof. It is easy to see that the peeling numbers of all non-virtual vertices of
C+ are the same with respect to ϕC+ as with respect to ϕ′ if the same holds
only for all fence vertices of C. Hence by Lemma 3.3.22, it suffices to consider
only the peeling numbers of all endpoints of border edges of a crest separator

62

with a top edge in C. Since the border edges are contained in C+ and since
the peeling numbers of the endpoints of a border edge differ by exactly one
with respect to ϕ′—except for possibly for a top edge, which by definition must
connect two vertices of the same peeling number—it is also easy to see that the
peeling numbers of these vertices cannot increase when switching from ϕ′ to
ϕC+ . Hence let us assume that, for a crest separator X ∈ S with a top edge
in C, there is a vertex in X whose peeling number decreases when switching
from ϕ′ to ϕC+ . In other words, there exists a vertex u ∈ X such that u is
face-adjacent with respect to ϕC+ to a vertex v that either is a vertex of G′

with Nϕ′(v) ≤ Nϕ′(u) − 2 or is a virtual vertex v with Nϕ
C+ (v) ≤ Nϕ′(u) − 2.

Let F be a connection face of u and v in (C+, ϕC+). Then there must be a
crest separator Y ∈ S with a top edge in C such that F is contained in the
C-outer ({Y }, ϕ′)-area. However, we added into this C-outer ({Y }, ϕ′)-area
paths consisting of virtual edges connecting the vertices of Y with the same
peeling number with respect to ϕ′. By an induction over the peeling number
of the endpoints of these paths, one can easily observe that the vertices of such
a path have all the same peeling number with respect to ϕC+ . We therefore
can conclude that the virtual edges are horizontal and that there cannot be a
connecting face of u and v (contradiction). Thus, the peeling numbers cannot
decrease when switching from ϕ′ to ϕC+ .

Lemma 3.3.24. If (G,ϕ,G′, ϕ′, ↓,S) is a mountain structure, each extended
(S, ϕ′)-component of G is a mountain.

Proof. Let C be an (S, ϕ′)-component, and let (C+, ϕC+) be the extended
(S, ϕ′)-component of C. Take G′ = (V,E′) and C+ = (V +, E+). Assume that
there are vertices s and t belonging to two different crests in (C+, ϕC+), and let
i = Nϕ

C+ (s) and j = Nϕ
C+ (t). W.l.o.g. we can assume that s and t are non-

virtual. Otherwise, there is a path that has s (or t) and a non-virtual vertex as
endpoints and that consists only of horizontal edges (Lemma 3.3.23). Therefore,
we can replace s (or t) by the other endpoint of the path.

We next show that each s-t-ridge in (G′, ϕ′) has a depth lower than min{i, j}.
For a contradiction, let us assume that there is a ridge R′ in (G′, ϕ′) of depth
at least min{i, j}. Our intermediate goal is to show that we can replace R′

by a ridge R of depth at least min{i, j} in (G′, ϕ′) that only uses edges of C,
i.e., edges in E′ ∩ E+. Let e = {u, v} be the first edge of R′ in E′ \ E+ with
u being visited before v. By Lemma 3.3.22 each fence edge of C is a border
edge of a crest separator in S with its top edge in C. Hence, there is a crest
separator X ′ = (L1, L2) ∈ S with a top edge in C such that u ∈ X ′ with e
being not incident to the C-inner ({X ′}, ϕ′)-area. Let u′ be the last vertex of
R′ in X ′. Note that u′ 6= u and that u and u′ have both a peeling number of
at least min{i, j}. If X ′ has a lowpoint, u and u′ cannot appear in L1 or L2

after the lowpoint by their definition. This implies that there is a crest alley P
from u to u′. We next replace the subpath of R′ from u to u′ by P and call
the resulting ridge R′′. Let SR′ and SR′′ be the set of crest separators X ∈ S
with a top edge in C, for which R′ and R′′, respectively, visits an edge that
is not incident to the C-inner ({X}, ϕ′)-area. Note that the subpath P may
contain new edges not being contained in C. However, for each edge of P that
is not incident to the C-inner ({X}, ϕ′)-area of a crest separator X ∈ S with a
top edge in C, it follows from S being crossing-free that also the edge e is not

63

incident to the C-inner ({X}, ϕ′)-area. Consequently, SR′′ ⊆ SR′ . Since P does
not contain any new edges that are not part of the C-inner area of X ′, we even
have SR′′ ⊆ SR′ \ {X ′}. This means that after a finite number of replacements
as described above, we obtain a ridge R that has the same depth as R′ and that
only uses edges of C. Since R is a path of depth min{i, j} in (C+, ϕC+), s and
t cannot belong to different crests in (C+, ϕC+). By this contradiction, we can
conclude that each s-t-ridge R′ has a depth lower than min{i, j}.

Let us choose an s-s′-path Ps and a t-t′-path Pt both in (G′, ϕ′) such that
s′ and t′ belong to a crest in (G′, ϕ′) and such that the peeling numbers do not
decrease along these paths, possibly s′ = s or t′ = t. An s′-t′-ridge R′ in (G′, ϕ′)
must have a depth d < min{i, j} since otherwise there would be an s-t-path in
(G′, ϕ′) of depth at least min{i, j} using Ps, R

′ and Pt. Hence, s′ and t′ belong
to different crests of (G′, ϕ′) and by our definition of a mountain structure there
is a crest separator X of height d going strongly between {s′} and {t′}. Since
all vertices of Ps and Pt have a peeling number greater than d, X can have no
common vertices with Ps and Pt. Consequently, X also goes strongly between
{s} and {t} and they cannot both belong to C+.

We next prove some further simple and useful properties of mountain struc-
tures. Let us define the mountain connection tree T of a mountain structure
(G,ϕ,G′, ϕ′, ↓,S) as follows: Each (S, ϕ′)-component is identified with a node
of T and two nodes w1 and w2 of T are connected if and only if they have a
common top edge. Since the crest separators constructed by the algorithm MS
are crossing-free and since they are usual separators the following lemma holds.

Lemma 3.3.25. The mountain connection tree is a tree.

Proof. Take T to be the mountain connection tree of a mountain structure
(G,ϕ,G′, ϕ′, ↓,S). For each (S, ϕ′)-component C, let us call the (S, ϕ′)-areaAC .
We first show that T is connected. Otherwise, consider a connected component
T ′ of T , and let A be the area obtained from the union of all (S, ϕ′)-areas AC
over all (S, ϕ′)-components C that are vertices of T ′. Since G is triconnected
and since T ′ is not the only connected component of T ′, the boundary edges of A
cannot completely consist of edges that are incident to the outer face in (G′, ϕ′).
Note that all fence edges of A are fence edges of an area AC with C being
contained in T ′. Since T ′ is a maximal connected subgraph of T such a fence edge
cannot be a top edge of a crest separator. Therefore, all fence edges of Amust be
down edges. But this is not possible since this would imply that there is at least
one vertex v incident to two down edges—instead of only one defined—on the
boundary both connecting v with a vertex of lower peeling number.

Assume that T is connected but not a tree, i.e., we have (S, ϕ′)-components
C1, . . . , Cz , Cz+1 = C1 with z ≥ 2 that in this order induce a cycle in T . Let
X ∈ S be the crest separator whose top edge e belongs to C1 and to C2.
As all crest separators do, X splits (G′, ϕ′) into two ({X}, ϕ′)-areas. Since,
for an (S, ϕ′)-component C, the inner faces of ϕ′|C cannot belong to both
({X}, ϕ′)-areas, there must be another top edge e′ belonging to Ci and to
Ci+1 for some i ≥ 2 such that Ci and Ci+1 are part of different ({X}, ϕ′)-
areas. Consequently, e′ must be a border edge of X . This fact contradicts
Lemma 3.3.14.

For the rest of this section, we consider the mountain connection tree as a
rooted tree by choosing an arbitrary node of T as root.

64

Lemma 3.3.26. Given a mountain structure (G,ϕ,G′, ϕ′, ↓,S) with G = (V,E)
such that each crest separator of S has height at most q, the mountain connection
tree can be computed in O(q|V |) time.

Proof. In O(q|V |) time, we can compute all (S, ϕ)-components and a data-
structure such that we can find out in constant time to which components each
top edge belongs (Lemma 3.3.13). Afterwards, we can iterate over all top edges,
and for each such top edge e, we can connect the two components containing e.
At the end, we so obtain the mountain connection tree.

Lemma 3.3.27. Let (G,ϕ,G′, ϕ′, ↓,S) be a mountain structure. Moreover, let
C1 and C2 be (S, ϕ′)-components. Assume that C1 and C2 contain a common
top edge of a crest separator X ∈ S. Let U be the set of all vertices of the
essential border of X. Then the set of common vertices of C1 and C2 is a subset
of U . Moreover, there is no edge between a vertex in C1 \ U and a vertex in
C2 \ U .

Proof. Since C1 and C2 are different, but share the top edge of X , they must
be covered by different ({X}, ϕ′)-areas with respect to ϕ′. Hence the common
vertices of C1 and C2 are a subset of the vertices in X . From the definition of
a lowpoint we can conclude that either the C1-inner ({X}, ϕ′)-area or the C2-
inner ({X}, ϕ′)-area cannot be incident to vertices of peeling number strictly
smaller than that of the lowpoint of X , i.e., in particular, the set of common
vertices in C1 and in C2 is indeed a subset of U . Finally note that G being
planar and X being a crest separator implies that there are no edges between a
vertex in C1 \ U and a vertex in C2 \ U .

Combining the last lemma with the fact that the border edges of a crest
separator contains exactly one top edge, we obtain the next corollary.

Corollary 3.3.28. Let T be a mountain connection tree of a mountain structure
(G,ϕ,G′, ϕ′, ↓,S). For each pair of incident (S, ϕ′)-components C1 and C2 of
T , there is a unique crest separator with its top edge belong to both (S, ϕ′)-
components, and this crest separator is also the only crest separator that goes
between C1 and C2.

Even if each (S′′, ϕ′)-component of a mountain structure (G,ϕ,G′, ϕ′, ↓,S′′)
is a mountain, it possibly does not contain a crest of (G′, ϕ′). Let S be the set of
crest separators computed by the algorithm MS on the input (G′, ϕ′, ↓). Since
(S′, ϕ′)-components not containing any crests of (G′, ϕ′) are not very useful for
our algorithm, we define a good mountain structure to be a mountain structure
(G,ϕ,G′, ϕ′, ↓,S′)—thus, S′ ⊆ S—if the following properties hold:

(a) Let H1 and H2 be two crests in (G,ϕ), and let d be the depth of a ridge
in (G′, ϕ′) with one endpoint in H1 and the other in H2. Then, there is a
crest separator X ∈ S′ of height d going strongly between the crests and
having among all such crest separators of S as few as possible top vertices.

(b) No crest separator in S′ contains a vertex of a crest in (G,ϕ).

(c) Each (S′, ϕ′)-component contains exactly the vertices of one crest in (G,ϕ).

An additional property of a good mountain structure is described next.

65

Lemma 3.3.29. Given a good mountain structure (G,ϕ,G′, ϕ′, ↓,S) and a crest
separator X ∈ S with a horizontal top edge e, we can conclude that e is not face-
adjacent to any vertex of peeling number height(X) − 1.

Proof. Let C1 and C2 be the two (S, ϕ′)-components containing the top edge
of X . For i ∈ {1, 2}, let ui be a vertex of the crest Hi that is contained
in Ci, and define P to be a u1-u2-ridge in (G′, ϕ′). The definition of a good
mountain structure implies that, for X as the only crest separator in S going
strongly between H1 and H2, we must have depth(P) = height(X) and that
X must have a minimal number of top vertices among all crest separators of
height depth(P) going strongly between H1 and H2 and being constructed by
the algorithm MS. Take h = height(X) as well as v1 and v2 as the endpoints of
e. Assume now that e is face-adjacent to a vertex v of peeling number h − 1.
Let F be a connection face of e and v in (G⊕ {X}, ϕG⊕{X}), and let A be the
(X,ϕ)-area containing F . Take F ′ as the face in (G′, ϕ′) having e as boundary
edge and being contained in A and hence in F . Lemma 3.3.6 and the existence
of a vertex of peeling number h−1 on the boundary of F implies that the three
boundary vertices of F ′ consist, beside v1 and v2, of a vertex v3 with peeling
number h − 1. Note that each u1-u2-path must cross X , in particular, this is
true for P . Due to this and since e and the down edges of v1 and v2 are border
edges of X contained in G′, P as a ridge of depth height(X) must visit at least
one of the vertices v1 and v2. Moreover, one can choose an i ∈ {1, 2} such
that the down edge of vi, an edge of P incident to vi, the edge {vi, v3} and
the other edge of P incident to vi appear around vi in this order. Take v′3 as
the representant of v3 around vi, and let P ′ be the concatenation of the edge
{vi, v′3} and of the down path of v′3. The algorithm MS would then construct a
crest separator X ′ induced by the down path of vi and P ′. Clearly X ′ also goes
strongly between H1 and H2, but has a lower number of top vertices than X .
This contradicts the fact that we are given a good mountain structure.

In the remainder of this section, we consider an algorithm that, for a given a
triconnected embedded ℓ-outerplanar graph (G,ϕ) with G = (V,E), computes
a good mountain structure (G,ϕ,G′, ϕ′, ↓,S). For a simpler notation in the
following we call a crest separator of a set S̃ of crest separators a largest crest
separator of S̃ if it has among all crest separators in S̃ a largest height and
among all crest separators of largest height a maximal number of top vertices.

We start with the description of a preprocessing phase. In this phase, we
first compute a down closure (G′, ϕ′, ↓) of (G,ϕ) in O(ℓ|V |) time and start the
algorithm MS on (G′, ϕ′, ↓) (Lemmata 3.3.7 and 3.3.12). Note that, for the
set S of crest separators output by the algorithm MS, each X ∈ S has height
at most ℓ. In O(|V |) time, we next determine all crests of (G′, ϕ′) and test
for each crest separator X ∈ S, whether its top vertices belong to a crest of
(G′, ϕ′). If so, we remove X from S. By Lemma 3.3.18, for the resulting set S∗

of crest separators, the tuple (G,ϕ,G′, ϕ′, ↓,S∗) is still a mountain structure.
We initialize S′ with S∗. We also construct the mountain connection tree of
(G,ϕ,G′, ϕ′, ↓,S∗) in O(ℓ|V |) time (Lemma 3.3.26). However, since we defined
the nodes of a mountain connection tree to be the (S′, ϕ′)-components such an
update would be too expensive. Instead of the mountain connection tree, we
thus use a tree T that is obtained from the mountain connection tree by replacing
each (S′, ϕ′)-component C by a new node w and we say that C corresponds to
w.

66

Before describing several updates of T in detail, let us remark that the main
part of the algorithm consists of a traversal of T in a bottom-up manner. During
this traversal, we mark nodes of T as finished—by rules described later—and
we always process a so far unfinished node whose children are already marked
as finished and that among all such nodes have the largest depth in T . When
processing a node w, we possibly remove a crest separator X from the current
set S′ of crest separators with the top edge of X belonging to the two (S′, ϕ′)-
components corresponding to w and to a neighbor w′ of w in T . If so, by the
replacement of S′ by S′ \ {X}, we merge the nodes w and w′ in T to a new
node w∗. We also mark w∗ as finished only if w′ is a child of w.

Some more preprocessing steps are necessary. In O(|V |) time, we determine
and store with each node w of T a value Crest(w) ∈ {0, 1} that is set to 1 if
and only if the (S′, ϕ′)-component corresponding to w contains a vertex that
is part of a crest of (G′, ϕ′). Within the same time, we mark additionally each
node as unfinished and store with each non-leaf w of T in MaxCrestSep(w) a
largest crest separator of the set of all crest separators going weakly between the
two (S′, ϕ′)-components corresponding to w and to a child of w. For each leaf
w of T , we define MaxCrestSep(w) = nil. As a last step of our preprocessing
phase, which also runs in O(|V |) time, we initialize, for each node w of T ,
a value MaxCrestSep∗(w) with nil. MaxCrestSep∗(w) is defined analogously
as MaxCrestSep(w) if we restrict the crest separators to be considered only
to those crest separators that go weakly between the two (S′, ϕ′)-components
corresponding to w and to one of the children of w that have been marked as
finished. We next describe the processing of a node w during the traversal of
T in detail. Keep in mind that S′ is always equal to the set of remaining crest
separators of S∗.

If w has a parent w̃, we first test whether the crest separator stored in
MaxCrestSep(w̃) is equal to the crest separator going weakly between the two
(S′, ϕ′)-components corresponding to w and to w̃. If so and if w̃ has a further
child ŵ marked as unfinished beside w, we delay the processing of w and first
process ŵ. Hence assume that the case above is not given. Next test, whether
the (S′, ϕ′)-component C corresponding to w contains a vertex belonging to a
crest of (G′, ϕ′), which is exactly the case if Crest(w) = 1. In this case, we
mark w as finished. If there is a parent w̃ of w, some extra work is necessary.
TakeX as the crest separator going weakly between the two (S′, ϕ′)-components
corresponding to w and to w̃, and replace MaxCrestSep∗(w̃) by a largest crest
separator in {X,MaxCrestSep∗(w̃)}.

Let us next consider the case where Crest(w) = 0. We then remove a largest
crest separator X of the set of all crest separators going weakly between the
two (S′, ϕ′)-components corresponding to w and to a neighbor of w. X must
be either MaxCrestSep(w) or the crest separator going weakly between the
two (S′, ϕ′)-components corresponding to w and to its parent. If X is a crest
separator going weakly between the two (S′, ϕ′)-components corresponding to
w and to a child ŵ of w, we mark the node w∗ obtained from merging w and ŵ
as finished and set Crest(w∗) = 1. This is correct since ŵ is already marked as
finished. In addition, if there is a parent w̃ of w, we replace MaxCrestSep∗(w̃)
by the largest crest separator in {X ′,MaxCrestSep∗(w̃)} for the crest separator
X ′ going strictly between the (S′, ϕ′)-components corresponding to w and w̃.

Otherwise, X is the crest separator going weakly between the two (S′, ϕ′)-
components corresponding to w and to its parent w̃. In this case, we mark

67

the node w∗ obtained from merging w and w̃ as unfinished, set Crest(w∗) =
Crest(w̃), and define the value MaxCrestSep∗(w∗) as the largest crest separator
in {MaxCrestSep∗(w̃),MaxCrestSep∗(w)} or nil if this set contains no crest sep-
arator. If w̃ beside w has another unfinished child, we define MaxCrestSep(w∗)
as the largest crest separator in {MaxCrestSep(w̃),MaxCrestSep(w)}. Oth-
erwise, we take MaxCrestSep(w∗) as the largest crest separator contained in
{MaxCrestSep∗(w̃),MaxCrestSep(w)} or nil if no crest separator is in this set.

Lemma 3.3.30. After the processing of each node, the tuple (G,ϕ,G′, ϕ′, ↓,S′)
is a mountain structure.

Proof. We already know that (G,ϕ,G′, ϕ′, ↓,S′) is a mountain structure after
the initialization of S′ with S∗. Because of Lemma 3.3.17, this is also true after
the removal of a crest separatorX if the algorithm correctly computes the values
of MaxCrestSep and MaxCrestSep∗. More precisely, we only need the correct
value of MaxCrestSep(w) when processing the node w, which implies that w
is not already marked as finished. For this reason, it suffices to maintain the
values of MaxCrestSep and MaxCrestSep∗ only for these nodes that are marked
as unfinished. It is easy to see that our algorithm always maintains the correct
values of MaxCrestSep∗(w) for all nodes marked as unfinished, where we use
the fact that the parent of an unfinished node is also marked as unfinished. The
same could be easily shown to be true for the values of MaxCrestSep(w), except
that the update rule in the case of merging w with its parent w̃ seems to be a
little bit more complicated. Thus, let us consider this case in detail. Recall that,
when processing a node, we run an initial test whether the crest separator X
separating the two (S′, ϕ′)-components corresponding to w and to w̃ is equal to
MaxCrestSep. If now w̃ has another unfinished child, this test guarantees that
we have X 6= MaxCrestSep(w̃), and we correctly define MaxCrestSep(w∗) to be
the largest crest separator in {MaxCrestSep(w̃),MaxCrestSep(w)}. In the case,
where w̃ has no other unfinished child, all children of w̃, except for w, are already
marked as finished, and MaxCrestSep(w∗) is also correctly computed.

Lemma 3.3.31. Given a triconnected ℓ-outerplanar embedded graph (G,ϕ) with
G = (V,E), a good mountain structure (G,ϕ,G′, ϕ′, ↓,S′) can be computed in
O(ℓ|V |) time. Within the same time bound, we can additionally compute the
mountain connection tree of (G,ϕ,G′, ϕ′, ↓,S′), all (S′, ϕ′)-components, and for
each such component C, the set TC of top edges belonging to C as well as, for
each top edge, the two (S′, ϕ′)-components to which it belongs.

Proof. We already have shown in the last lemma that during our algorithm
we always maintain a mountain structure (G,ϕ,G′, ϕ′, ↓,S′). We next want
to show that it is a good mountain structure. Property (b) holds since at the
beginning of our algorithm we replaced S by S∗.

For proving property (c), we want a node w of T to be marked as finished if
and only if we can guarantee that the (S′, ϕ′)-component C′ corresponding to
w contains at least one crest of (G′, ϕ′)—and since no component ever contains
more than one crest, exactly one crest of (G′, ϕ′). Note that our algorithm only
marks a node w of T as finished if Crest(w) = 1 and that at the end of our
algorithm we have no node with Crest(w) = 0. Consequently property (c) holds
if our algorithm correctly updates the values Crest(w) for all nodes w. Assume
that, when processing a node w, we have already correctly computed the values

68

Crest(w′) for all children w′ of w. In particular, since the children are already
marked as finished, we must have Crest(w′) = 1 for all children w′ of w. Thus,
it easy to see that our algorithm correctly computes Crest(w∗) after merging w
with one of its neighbors to a new node w∗.

For proving property (a), let us consider two crests H1 and H2 of (G′, ϕ′)
and vertices s ∈ H1 and t ∈ H2. We know from Lemma 3.3.15 that there is a
crest separator X ∈ S with one of its top vertices being a vertex of lowest depth
on an s-t-ridge. Hence, the top vertices of X are not part of a crest and X ∈ S∗.
Let C1 and C2 be the (S∗, ϕ′)-components containing H1 and H2. Then X must
be one of the crest separators that goes weakly between C1 and C2. Let w1 and
w2 be the nodes of T such that C1 corresponds to w1 and C2 corresponds to w2.
If, during the processing of a node w on the path from w1 to w2, we remove X
going weakly between the two (S′, ϕ′)-components corresponding to w and to a
neighbor on the path from w1 to w2, we have Crest(w) = 0 and therefore at least
one other crest separator X ′ going weakly between the two (S′, ϕ′)-components
corresponding to w and the other neighbor of w on the path from w1 to w2.
Since X instead of X ′ was chosen for a removal, X ′ must have a height equal
to height(X) or less and, in the first case, additionally no more top vertices
than X . Hence, by having X ′ instead of X in S′, property (a) still holds after
removing X .

Let us finally analyze the running time. As already remarked, the time
for the preprocessing is O(ℓ|V |). Since, during the traversal of T , we do not
explicitly update the (S′, ϕ′)-components and merge nodes of T and since T
has O(|V |) nodes, we can process all nodes of T also in O(ℓ|V |) total time.

3.4 Separators in Planar Graphs

Lemma 3.4.1. Let (T,B) be a tree decomposition for a graph G = (V,E) of
width k, and let v1, v2 ∈ V . If no bag of (T,B) contains both, v1 and v2, there
is a separator S of size at most k strongly disconnecting {v1} and {v2} in G.

Proof. For each edge {w,w′} of T with B(w) 6= B(w′), the set B(w) ∩B(w′)
is a separator of size at most k. Let wi, for i ∈ {1, 2}, be a node of T with
vi ∈ B(wi). Since B(w1) 6= B(w2), one can find two consecutive nodes w and
w′ on the path from w1 to w2 such that B(w) 6= B(w′). The lemma follows by
taking S = (B(w) ∩B(w′)) \ {v1, v2}.
Lemma 3.4.2. Let (G,ϕ) be an embedded graph of treewidth k, and let v1 and
v2 be vertices of G with Nϕ(v2)−Nϕ(v1) ≥ k+ 1. Then, there is a separator of
size at most k that strongly disconnects {v1} and {v2} in G.

Proof. Let (T,B) be a tree decomposition of width k with a smallest num-
ber of bags containing both, v1 as well as v2. If there is no such bag, then
Lemma 3.4.1 guarantees the existence of a separator of size at most k strongly
disconnecting {v1} and {v2}. Hence, let us assume that there is at least one
node w in T with its bag containing v1 and v2. Since |B(w)| ≤ k + 1, one
number i ∈ {Nϕ(v1) + 1,Nϕ(v2) − 1} exists with B(w) containing no vertex of
peeling number i. Of course, there is a separator Y consisting exclusively of
a connected set of vertices of peeling number i with Y disconnecting {v1} and
{v2}. The nodes of T , whose bags contain at least one vertex of Y , induce a
subtree T ′ of T because of property (TD2).

69

Let us root T such that w is a child of the root and such that the subtree
Tw does not contain any node of T ′. We then replace Tw by two copies T1 and
T2 of Tw and connect T1 and T2 to the root of T . In addition, we define the
bag of each node w′ in T1 to consist of those vertices of the bag B(w′) of (T,B)
that are also contained in the connected component of G[V \ Y] containing v2.
The bag of each node w′ in T2 should contain the remaining vertices of B(w′).
The replacement described above leads to a tree decomposition of width k with
a lower number of bags containing v1 as well as v2. Contradiction.

It should be no surprise that, if we are able to find a separator for two
vertices v1 and v2, then we can find a separator for two sets V1 and V2, too.
The details are described next.

Theorem 3.4.3. Let (G,ϕ) be an embedded graph of treewidth k > 1 and
let V1 and V2 be connected sets of vertices of G such that minv∈V2 Nϕ(v) −
maxv∈V1 Nϕ(v) ≥ k + 1. Then, there exists a separator of size at most k that
strongly disconnects V1 and V2 in G.

Proof. We modify the graph G = (V,E) such that we can apply Lemma 3.4.2.
First of all, merge all vertices of peeling number smaller than maxv∈V1 Nϕ(v) to
a vertex v1, and merge all vertices that belong to the same connected component
as V2 in the subgraph of G without any vertex of peeling number lower than
minv∈V2 Nϕ(v) to a vertex v2. Let G′ = (V ′, E′) be the graph obtained. Note
that the treewidth of G′ is not larger than the treewidth of G by Lemma 1.4.10
since G′ is a minor of G. Take an embedding ϕ′ of G′ with ϕ′|G′[V ′\{v1,v2}] =
ϕ|G[V \(V1∪V2)] that embeds v1 into the outer face of ϕ|G[V \(V1∪V2)] and v2 into
the face of ϕ|G[V \(V1∪V2)] containing the nodes of V2 if we embed the nodes of
V2 with respect to ϕ. Next add two vertices v′ and v′′ as well as edges {v1, v′},
{v′, v′′}, and {v′′, v1} into the outer face of (G′, ϕ′) such that the area A having
as boundary the triangle consisting of the vertices v1, v

′, v′′ and not containing
the outer face is incident to all vertices and edges of G′[V ′ \ {v1}]. Let (G′′, ϕ′′)
be the embedded graph obtained.

By our construction the peeling numbers of all vertices part of both embed-
ded graphs (G,ϕ) and (G′′, ϕ′′) differ by exactly maxv∈V1 Nϕ(v)-1. Moreover,
v1 has peeling number 1 in (G′′, ϕ′′) and v2 has peeling number at least k+1 in
(G′′, ϕ′′). Note that a tree decomposition for G′ of width k > 1 can be extended
to a tree decomposition (T,B) for G′′ of the same width by simply connecting
a new node w with B(w) = {v1, v′, v′′} by an edge to a node of T whose bag
already contains v1. Thus G′′ has also treewidth k and the last lemma guar-
antees us that there is a separator S of size k strongly disconnecting {v1} and
{v2} in G′′. Then S \ {v′, v′′} also strongly disconnects V1 and V2 in G.

3.5 Special Tree Decomposition for Mountains

For this section, assume that we are given an (S, ϕ′)-component C of a mountain
structure (G,ϕ,G′, ϕ′, ↓,S) and the extended (S, ϕ′)-component (C+, ϕC+) of
C such that ϕC+ is an ℓ-outerplanar embedding for some ℓ ≥ 2. We denote by
SC the set of crest separators with a top edge in C.

The goal of this section is to construct a tree decomposition for C+ (and
thus for C) of width 3ℓ − 1 that, for each X ∈ SC , has a bag different from

70

the bags chosen for the other crest separators containing all vertices of the es-
sential border of X . We construct such a tree decomposition by modifying the
algorithm of Bodlaender [15] for the construction of a tree decomposition of an
ℓ-outerplanar graph. However, instead of C+ we will construct a tree decom-
position (T ∗, B∗) for a graph C∗ with some extra properties, but we choose C∗

in such a way that a tree decomposition for C∗ can be easily transformed into
a tree decomposition for C+. In an intermediate step, we first construct an
embedded graph (C̃, ϕC̃) that is obtained as follows:

For each crest separator X = ((u1, . . . , uq), (v1, . . . , vq)) of SC that either
has a lowpoint up with p > 2 or no lowpoint, do the following2: If X has a
lowpoint up and X does not enclose C, take r = p − 1, and otherwise r = q.
Recall that there are virtual horizontal edges {ui, xi}, {xi, yi} and {yi, vi} in
(C+, ϕC+) for all i ∈ {2, . . . , r}. More exactly, if X has two top vertices, we
have edges {y2, z2}, {z2, v2} instead of the edge {y2, v2}. We now add edges
{xi, yi+1} for all i ∈ {2, . . . , r− 1}. Moreover, we add an edge {y2, u1}. Finally,
if u1 6= v1, we add an edge {z2, v1}, and, if X has a lowpoint up and does not
enclose C, we add an edge {xp−1, up}. These two latter edges are called extra
edges of X . Note that because of the border edges of X being contained in C,
there is a unique rooted combinatorial embedding ϕC̃ for the graph C̃ obtained
from the additions above. For a simpler notation, we call the vertices xi and yi
(i ∈ {2, . . . , r}) defined above down-connected and up-connected, respectively.
See for an example Fig. 3.5.1.

Lemma 3.5.1. Nϕ
C+

(v) = NϕC̃
(v) for all vertices of C+, and the two embedded

graphs (C+, ϕC+) and (C̃, ϕC̃) have only one and the same crest.

u1

u2 v2

u4

v1

v3

v4

u3

u5

x2 y2

x3 y3

x4 y4

u6

z2

Figure 3.5.1: A crest separator X part of an extended component (C+, ϕ+) with
its border edges and with the virtual horizontal edges. The blue edges are the
new edges in C̃, and the dashed edges are the extra edges of X.

2The only crest separators, for which no further edges are added, are those having an
essential border consisting only of a triangle.

71

Proof. We only introduced vertical edges. We already know from Lemma 3.3.1
that their introduction does not change any peeling number. Since (C+, ϕC+)
is a mountain, (C+, ϕC+) has exactly one crest consisting of all vertices of
largest peeling number, i.e., of peeling number ℓ. Again, because of the newly
introduced edges connecting vertices of different peeling numbers, they cannot
make a vertex part of a crest that was not belonging to any crest before the
addition, and a maximal connected set of vertices in C+ with peeling number
ℓ is still connected after adding additional edges. Hence, after the addition of
the new edges, we again have only one crest consisting of the vertices of peeling
number ℓ.

It is much easier to work with a graph whose vertices have degree at most 3.
Therefore in a second step, for each vertex v in C̃ with d ≥ 4 neighbors, we name
its neighbors in clockwise order with u1, u2, . . . ud such that either u1 = v↓ holds
or {u1, v} as well as {v, ud} are incident to the outer face of (C̃, ϕC̃). Moreover,
we replace v by a path consisting of the vertices v1, v2, . . . , vd−2 in this order,
each edge {v, ui} (i ∈ {2, ..., d− 1}) by the edge {vi−1, ui}, the edge {v, u1} by
{v1, u1}, and the edge {v, ud} by {vd−2, ud}. A sketch of this construction is
shown for one vertex in Fig. 3.5.2 and for the graph of Fig. 3.5.1 in Fig. 3.5.3,
but ignore for the moment the difference between dashed and non-dashed edges.

The following observation shows that u1 is well-defined even in the case of
v having peeling number 1.

Observation 3.5.2. No vertex of (C̃, ϕC̃) is an endpoint of more than two
edges being incident to the outer face since this holds for (C+, ϕC+) because of
C being a subgraph of a triconnected graph.

We call the vertices v1, . . . , vd−2 introduced for a vertex v with degC̃(v) =
d ≥ 4 the duplicates of v. For technical reasons, we also call a vertex v part of
C̃ and C∗ to be a duplicate of itself. Finally, for an edge {u, v} ∈ C̃, we call the
edge {u′, v′} in C∗ connecting duplicates u′ of u and v′ of v to be the duplicate
of {u, v}. If {u, v} is an extra, down, and virtual edge, the duplicates are also
called extra, down, and virtual edge, respectively. Our choice of u1 guarantees
that the following three observations hold for the graph (C∗, ϕ∗) obtained after
the second step.

Observation 3.5.3. NϕC̃
(v) = NϕC∗ (v1) = . . . = NϕC∗ (vd−2) holds for each

vertex v of degree d ≥ 4 in C̃ that is replaced by vertices v1, . . . , vd−2 in C∗, and
NϕC̃

(v) = NϕC∗ (v) holds for all v of degree at most 3 in C̃.

⇒v ud-1

u3

u2

u1 ud

v1

ud-1u2

u1 ud

v2

u3

vd-2

Figure 3.5.2: Splitting a vertex v with d neighbors into d−2 vertices v1, . . . , vd−2.

72

Observation 3.5.4. Since (C∗, ϕ∗) is a planar graph of maximal degree 3,
no vertex of (C∗, ϕ∗) is incident to two or more vertices with a larger peeling
number. Additionally, for each vertex of (C∗, ϕ∗), the peeling numbers of each
pair of its neighbors differ by at most 1.

Observation 3.5.5. Let {v, x} be a virtual horizontal edge with v being a vertex
of a crest separator X = (L1, L2) and let v′ be the vertex appearing immediately
before v in L1 or L2, respectively. Assume that v is split into two or more
duplicates. We then can name the neighbors {u1, . . . , ud} of v in clockwise order
such that the following holds:

• If v has peeling number at least 2, u1 is a duplicate of v ↓, and either
u2 = x and u3 a duplicate of v′ or ud−1 is a duplicate of v′ and ud = x.

• If v has peeling number 1, either u1 = x and u2 is a duplicate of v′ or
ud−1 is a duplicate of v′ and ud = x.

For an easier understanding of the last observation, consider the red dashed
edges in Fig. 3.5.3—the meaning of the edges in other colors and the different
types of edges is explained in the following.

Note that all virtual vertices have degree 3 in C′ and are not split into two
or more duplicates in C∗. Let (Gi, ϕi) be the embedded subgraph of C∗ induced
by the vertices of C∗ with peeling number at least i such that ϕi = ϕ∗|Gi

. We
next describe how to obtain a tree decomposition (T ∗, B∗) for C∗ = (V ∗, E∗)

u8
1

u8
2 v1

2

u8
4

v1
1

v2
3

v1
4

u8
3

u4
5

x2 y2

x3 y3

x4 y4

u5
6

z2

v2
1u7

1

v2
2

v1
3

u7
2u1

2

u1
1 v3

1

v3
2

v3
3

v2
4 v3

4

u7
3u1

3

u7
4u1

4

u6
5u5

5u1
5 u8

5

u1
6 u8

6

Figure 3.5.3: The figure shows the graph obtained from the graph of Fig. 3.5.1
after splitting all vertices of degree greater than 3. The superscripts of the names
in the vertices should be considered as an example. Moreover, only the non-dashed
edges are part of T after adding the edges of type (a), (b), and (c); more exactly,
the black and blue non-dashed edges are of type (a), the green non-dashed edges
are of type (b), and the red non-dashed edges are of type (c).
Note that some of the edges incident to ux ∈ {u1, . . . , u6} and vy ∈ {v1, . . . , v4}
are incident to non-shown vertices ui

x and vj
y (i, j ∈ N) and are thus not shown.

73

of small width. We begin with constructing a spanning tree T = (W,F) for C∗

as follows: Initially, we define T as the graph consisting of the vertices V ∗ and
no edges. Next, we add edges of the following types into T .

(a) all vertical edges of C∗, except for all extra edges of the crest separators.

(b) all non-virtual horizontal edges {v, v′} with v′ being also incident to a
virtual horizontal edge and adjacent to a vertex having a smaller peeling
number than v′.

(c) all virtual horizontal edges connecting two virtual vertices.

See again Fig. 3.5.3 for an example showing edges of all three types.

Observation 3.5.6. Since T contains all edges of the types (a) and (b), by
Obs. 3.5.5, each vertex being a duplicate of a vertex part of a crest separator
X ∈ SC and being incident to a virtual horizontal edge is connected in T to a
duplicate of a vertex of X with a higher peeling number.

For the last observation, note that u8
2, u

8
3, and u8

4 as well as v1
2 , v1

3 , and v1
4 are

part of a connected component in T containing a vertex with a higher peeling
number in Fig. 3.5.3.

If afterwards T is not connected, we apply a postprocessing: We choose one
connected component T1 of T containing a vertex of largest peeling number,
where we mean of course the peeling numbers of (C∗, ϕ∗) and not of T . Let i
be the largest number for which there is a connected component of T different
from T1 containing vertices of peeling number i. Then choose a horizontal non-
virtual edge e with its endpoints having peeling number i that connects T1 with
another connected component T2 of T .

Lemma 3.5.7. An edge e with the properties described above always exists.

Proof. First note that, since (C̃, ϕC̃) is a mountain, the subgraph of C̃ induced
by the vertices of peeling number j is connected for each j ∈ {1, . . . , ℓ} and this
also holds for the graph (C∗, ϕC∗) by construction. Note that T1 also contains
a vertex of peeling number i; either i is the largest peeling number of all or the
definition of i implies that T1 contains all vertices of peeling number i+ 1 and
therefore—because of the addition of all edges of type (a)—at least one vertex
of peeling number i. Note explicitly that this is true although the extra edges of
the crest separators are missing. Since T1 does not contain all vertices of peeling
number i, there is at least one edge e in C∗ with both endpoints having peeling
number i connecting a vertex of T1 to a vertex of another connected component
T2 of T . The lemma follows if we can show that e is not virtual.

Therefore, let us consider a virtual horizontal edge with both endpoints
having peeling number i that is not contained in T and that connects a vertex
u of T1 and a vertex v of another connected component T2 of T . We show that
T2 contains a vertex of peeling number i+ 1, which contradicts our choice of i.
Let us first assume that v is a virtual vertex. Because T contains all edges of
type (c), either v or a neighbor of v is an up-connected virtual vertex in T2 and
hence T2 contains a vertex of a higher peeling number than that of v. Finally
assume that v is a non-virtual vertex. Since by our assumption v is incident to
a virtual horizontal edge, v must be part of a crest separator, but cannot be a
top vertex. By Obs. 3.5.6, T2 contains a vertex of X that has peeling number
i+ 1. Contradiction.

74

Note that beside the edges of type (c) no virtual horizontal edges are added.

Observation 3.5.8. In T , each down-connected virtual vertex v is only adjacent
to one up-connected vertex, which has the same peeling number as v, and to
possibly one vertex of a smaller peeling number.

We next prove that T is indeed a tree.

Lemma 3.5.9. T is a tree.

Proof. T is connected by our construction rules and Lemma 3.5.7. To show
that T contains no cycle, let us think of the edges introduced as being directed

• from a vertex with higher peeling number to a vertex with lower peeling
number in case (a).

• to a vertex incident to a virtual horizontal edge and adjacent to a vertex of
lower peeling number in case (b) (possibly, choose one of two possibilities).

• from the up-connected vertex to the other vertex in case (c).

We next show that the indegree of each vertex in the directed version of T is
bounded by one before the postprocessing. By Obs. 3.5.4, this is true after
adding only edges of type (a). A vertex v with an incoming edge of type (b)
can clearly have no further incoming edges of the types (a) - (c). Since this
also holds for a vertex with an incoming edge of type (c) by Obs. 3.5.8, we have
indegT (v) ≤ 1 for all vertices of T after adding all edges of types (a) - (c) to T .

Note that each path in the directed version of T only visit vertices with
non-increasing peeling numbers. The only remaining possibility for a cycle in
T is that there is a cycle K consisting of vertices of the same peeling number.
However, such a cycle cannot contain an edge e of type (b) since, in C̃, one of its
endpoints, beside edge e, is incident only to a vertical edge e1 and to one virtual
horizontal edge e2, which is not included in T , i.e., e1 and e2 both cannot be
part of K. Since it is not possible to build a cycle consisting exclusively of edges
of type (c), there is no cycle in T before the postprocessing. Since afterwards
we only add edges between vertices of different components, we do not create
cycles at all.

A tree decomposition (T ∗, B∗) for C∗ = (V ∗, E∗) is now constructed as
follows: The vertex set V ∗ of T ∗ consists of both, the vertex set V ∗ and the
edge set F of T . The edge set F ∗ of T ∗ is obtained by introducing for each edge
e = {u1, u2} ∈ F two edges {u1, e} and {u2, e} into T ∗.

For each edge e = {u, v} ∈ E∗ \ F , let us call the cycle consisting of edge e
and the unique path from u to v in T ∗ to be the fundamental cycle of e. We
define B∗ in two steps: For each vertex v ∈ V ∗ and each edge e = {u1, u2} ∈
F , add first v into B∗(v) and u1 and u2 into B∗(e). Second, for each edge
{u1, u2} ∈ E∗ \ F , add one of {u1, u2} into all bags of the vertices in T that
are part of the fundamental cycle of {u1, u2}. More precisely, if exactly one of
u1 and u2 is a virtual vertex, add the non-virtual vertex into the bags of the
fundamental cycle. For proving that (T ∗, B∗) is a tree decomposition of small
width, we need the statement of the next lemma.

Lemma 3.5.10. For i ∈ {1, . . . , ℓ}, the subgraph Ti of T consisting of all ver-
tices of peeling number at least i is a tree.

75

Proof. Assume for a contradiction that the lemma does not hold. Let us
choose i as small as possible such that Ti is no tree. By Lemma 3.5.9, we know
that i > 1. Thus, there must be two vertices u′ and u′′ of peeling number i in
T such that the u′-u′′-path P in T contains a vertex of peeling number i − 1.
Moreover, since we have chosen i as small as possible, P does not contain a
vertex of peeling number i− 2. Let u1, u2, and u3 be three consecutive vertices
of P with u1 and u2 having peeling number i and i − 1, respectively. Thus,
{u1, u2} is an edge of type (a). Obs. 3.5.4 applied to u2 implies that {u2, u3}
cannot be an edge of type (a). Since u2 cannot be incident to a vertex with
peeling number i− 2 (again Obs. 3.5.4), {u2, u3} could be an edge of type (b)
only if u3 is additionally incident to a horizontal virtual edge e1 with a non-
virtual endpoint and to an edge e2 with an endpoint of peeling number i − 2.
Therefore, neither e1 nor e2 can be part of P—e1 is even not part of T . Hence,
{u2, u3} cannot be an edge of type (b). If {u2, u3} is an edge of type (c), u2

must be an up-connected virtual vertex. Then, either u3 is a down-connected
vertex or a virtual vertex being neither up- nor down-connected. In the first
case, we can conclude by Obs. 3.5.8 that, in T , u3 is only adjacent to u2 and
to a vertex of peeling number i− 2. In the second case, u3 is only incident to
{u2, u3} in T . Hence we obtain a contradiction in both cases.

All of the remaining edges added into T are added to T in decreasing order
with respect to the peeling numbers of their endpoints. Since u2 has peeling
number i − 1, before adding {u2, u3} in the post processing phase, all vertices
with peeling number i must be already connected. In particular, u′ and u′′ are
connected. Contradiction.

Lemma 3.5.11. (T ∗, B∗) is a tree decomposition of width 3ℓ− 1 for C∗.

Proof. It is not hard to see that (T ∗, B∗) has all properties of a tree decom-
position for C∗. All we have to prove is that (T ∗, B∗) has width 3ℓ − 1. For
each edge e ∈ F and for each vertex w ∈W , let µ(e) and ν(w) be the number of
fundamental cycles that contain e or w, respectively. The values µ(e) and ν(w)
are also called the load of e and w, respectively. Define µ = max{µ(e) | e ∈ F}
and ν = max{ν(w) |w ∈ W}. It is easy to see that the width of (T ∗, B∗) is
bounded by max{µ+ 1, ν}.

As in the last lemma, let Ti= (Vi, Ei) (i ∈ {1, . . . , ℓ}) be the subgraph of T
consisting of all vertices of peeling number at least i, and let Fi be the set of
edges in E∗ \ F that connect two vertices of peeling number i. Let us consider
the increase of the load of the edges of T while adding the edges Fi into T .
By Lemma 3.5.10, each edge e ∈ Fi is incident to only one inner face of the
embedding of (Vi, Ei ∪Fi) inherited from ϕC∗ . Since each edge of Ti is incident
to at most two of these inner faces and since each vertex of Ti is adjacent to at
most 3 vertices—T is a spanning tree of C∗, whose vertices have a degree of at
most 3—the edges of Fi can increase the load of an edge of T by at most 2 and
the load of a vertex by at most 3. Since this is true for all i ∈ {1, . . . , ℓ}, µ ≤ 2ℓ
and ν ≤ 3ℓ, i.e., (T ∗, B∗) is a tree decomposition of width min{2ℓ+ 1, 3ℓ}. The
bound can be lowered to min{2ℓ+1, 3ℓ− 1} by the fact that a vertex of peeling
number 1 is incident to at most two inner faces in the embedding of (V1, E1∪F1)
inherited from ϕC∗ .

The tree decomposition (T ∗, B∗) of width 3ℓ − 1 can easily be transformed
into a tree decomposition (T,B) of C+ by replacing, for each vertex v, its

76

duplicates in the bags of (T ∗, B∗) by v. Here we use the fact that the duplicates
induce a connected component in C∗ and, thus, (TD2) holds for (T,B), too.

Lemma 3.5.12. For each crest separator X ∈ S, there is a node wX in (T ∗, B∗)
different from the corresponding nodes chosen for the other crest separators such
that B∗(wX) contains a duplicate for each vertex of the essential border of X.

Proof. First we consider the case that X = ((u1, . . . , uq), (v1, . . . , vq)) is a
crest separator that has a lowpoint up with p = 2. Then, the essential border
of X consists exactly of the vertices u1, v1, as well as u2 = v2, and these three
vertices induce a clique in C+. Assume for a moment that there is no bag of
(T ∗, B∗) containing a duplicate for each of the three nodes. Then, (T,B) also
has no node whose bag contains {u1, u2, v1}; a contradiction to Lemma 1.3.9.

For the remaining case, let Y be the set of virtual vertices introduced for a
crest separator X , and let v be the virtual vertex adjacent to a top-vertex u of
X in T (i.e., {u, v} is no extra edge of X). For each vertex u′ 6= u of the essential
border of X , there is a virtual vertex in Y that is connected by a virtual edge
to a duplicate of u′, but this virtual edge has not been added to T . Note that
these virtual edges are the only edges between a vertex of Y and a vertex not
in Y . Thus, the nodes of one component of T [W − {u}] consists exactly of all
vertices in Y . Since the non-virtual endpoints of the virtual edges are added
into all bags of their fundamental cycle, we can conclude the following: The bag
B∗(w) of the node w in T ∗ introduced for the edge {u, v} must consist beside
duplicates of u and v exactly of a duplicate of all vertices of the essential border.
We choose wX = w.

Concerning the running time it is easy to see that the embedded graph
(C∗, ϕ∗) as well as the trees T ∗ and T can be constructed from (C+, ϕ+) in
O(|V |) time—recall that V denotes the vertex set of C+.

For the construction of (T ∗, B∗), note that we have to add one endpoint
of an edge e = {u, v} not part of T into all bags of the fundamental cycle of
e. This fundamental cycle can be easily computed by traversing two pointers
starting from u and v upwards in T ∗ such that the two pointers always have the
same depth in T . Since in each bag visited by one of the two pointers we add
a vertex, the time to construct (T ∗, B∗) is linear in the total size of all bags of
(T ∗, B∗), i.e., the running time for the construction of (T ∗, B∗) can be bounded
by O(ℓ|V |). Finally, it is easy to see that the transformation from (T ∗, B∗) to
(T,B) can be done in O(ℓ|V |) time, too.

As a corollary, we obtain the main result of this section.

Corollary 3.5.13. Let C = (V,E) be an (S, ϕ′)-component of a mountain
structure (G,ϕ,G′, ϕ′, ↓,S) such that the extended (S, ϕ′)-component (C+, ϕC+)
of C has an ℓ-outerplanar embedding for some ℓ ≥ 2. Given (C+, ϕ+), one then
can construct a tree decomposition of width 3ℓ− 1 for C in O(ℓ2|V |) time such
that, for each crest separator X ∈ S with a top edge in C, there is a bag BX
different from the bags chosen for the other top edges that contains all vertices
of the essential border of X.

Proof. Construct a tree decomposition for C+ and remove all vertices and
edges not contained in C. Since C+ may consist of O(ℓ|V |) vertices the running
time is O(ℓ2|V |) instead of O(ℓ|V |).

77

As a byproduct, we can also conclude a version of the well-known result of
Bodlaender [15]—by the ideas of Bodlaender, one can improve the running time
to O(ℓ|V |).
Theorem 3.5.14. Given a graph G = (V,E) with an ℓ-outerplanar embedding
ϕ, a tree decomposition for G of width at most 3ℓ− 1 can be found in O(ℓ2|V |)
time.

Proof. In O(ℓ|V |) time, construct first a good mountain structure M =
(G,ϕ,G′, ϕ′, ↓,S) forG = (V,E), the mountain connection tree T for M, and for
each top edge, the two (S, ϕ′)-components to which it belongs (Lemma 3.3.31).
For each (S, ϕ′)-component C = (V,E), compute then a tree decomposition
for C as described in this section. Note that all these tree decompositions can
be computed in O(ℓ2|V |) total time by the last corollary. Finally, connect the
tree decompositions (T1, B1) and (T2, B2) of two adjacent (S, ϕ′)-components
C1 and C2 in T as follows: Let X be the common crest separator of C1 and C2,
and let w′

X and w′′
X be nodes of T1 and T2, respectively, such that B(w′

X) and
B(w′′

X) contain the essential border of X . Add an edge {w′
X , w

′′
X}.

By Lemma 3.3.25, we obtain a tree whose bags contain all vertices and edges
of G, i.e., (TD1) holds; Lemma 3.3.27 implies that (TD2) is satisfied.

3.6 Shortcuts

As part of our main algorithm, we have to find out for a crest separator X
of a mountain structure, whether some ({X}, ϕ)-areas A are passed by some
short alleys. We define these short alleys later as so-called pseudo shortcuts.
For an efficient computation of such pseudo shortcuts, we want to compute
them by independently constructing short alleys in different components of the
mountain structure and by concatenating them. One problem is that an alley
may pass from one component to another component by passing through a face
that belongs only partly to each of the two areas of a crest separator since it also
belongs partly to the other of the two areas. To avoid this situation, we want to
add border edges into our graph. However, we want to maintain the length of
shortest alleys, and we thus have to apply special rules for these border edges
by introducing some kind of thin edges. More precisely, we extend the definition
of alleys. For a shorter notation, from now on we call an object being either a
vertex or an edge a vedge.

A Z-skipping A-alley in a graph (G,ϕ) with A being an area of (G,ϕ) and Z
being a set of edges is a list P of pairwise disjoint vedges with each vedge being
either a vertex of G or an edge of Z contained in G such that the following holds:
Let E′ be the edges of Z contained in P , and let (G∗, ϕ∗) be the embedded graph
obtained from (G,ϕ) by splitting each edge e ∈ Z into two edges with a new
splitting vertex ve. More precisely, splitting an edge e = {u1, u2} of an embedded
graph (G,ϕ) into two edges with a new splitting vertex ve means

• to modify G by adding a new vertex ve as well as replacing e by the two
new edges {u1, ve} and {ve, u2}, and

• to modify ϕ to obtain a rooted combinatorial embedding for the new graph:
If ϕ((u′0, u1)) = (u1, u2) and ϕ((u1, u2)) = (u2, u

′
3) as well as ϕ((u′′3 , u2)) =

(u2, u1) and ϕ((u2, u1)) = (u1, u
′′
0) hold, redefine ϕ((u′0, u1)) = (u1, ve),

78

ϕ((u1, ve)) = (ve, u2) and ϕ((ve, u2)) = (u2, u
′
3) as well as ϕ((u′′3 , u2)) =

(u2, ve), ϕ((u2, ve)) = (ve, u1) and ϕ((ve, u1)) = (u1, u
′′
0).

Take P ∗ to be the list obtained from P after replacing each edge e of P by
the vertex ve. Then, P is a Z-skipping A-alley if and only if P ∗ is an A-alley
in (G∗, ϕ∗).

Note that the vedges of a Z-skipping A-alley in a graph (G,ϕ) are only
allowed to consist of vertices and edges of G, whereas for technical reasons,
Z may contain edges not part of G. The length of a Z-skipping A-alley P =
(s1, . . . , sq)—also denoted by |P |—is defined as the number of subsequent pairs
(si, si+1) (i ∈ {1, . . . , q − 1}) with si+1 being a vertex. The inner vedges of P
are the elements s2, . . . , sq−1. For a vedge s, we often have to refer to s if it is a
vertex or to both endpoints of s if s is an edge. Thus, for simplicity, we define
the endpoint of a vertex s to be s itself. Note that for the length of a Z-skipping
A-alley P , we only count vertices and this is what we mean by considering some
edges—i.e., the edges in Z—as thin.

As for usual alleys, we also want to define crossings for Z-skipping A-alleys,
which are a little bit more difficult to define. Let P1 = (u1, . . . , up) and P2 =
(v1, . . . , vq) be two Z-skipping A-alleys in an embedded graph (G,ϕ) with G =
(V,E), and let E′ be the edges of Z belonging to P1 or P2. Then P1 and P2

cross if the following holds: Let (G∗, ϕ∗) be the embedded graph obtained from
(G,ϕ) by splitting each edge e = {u1, u2} ∈ E′ into two edges with a new
splitting vertex ve. Take P ∗

1 and P ∗
2 to be the alleys in (G∗, ϕ∗) obtained from

P1 and P2 after replacing each edge e of these alleys by the vertex ve. Then P1

and P2 cross in (G,ϕ) if and only if P ∗
1 and P ∗

2 cross in (G∗, ϕ∗). If the crossing
of P ∗

1 and P ∗
2 is non-planar, the crossing of P1 and P2 is also called non-planar.

Otherwise, the crossing is called planar.

Definition 3.6.1 (s1-s2-connecting Z-skipping A-shortcut). Let (G′, ϕ′) be
an embedded supergraph of an embedded (G,ϕ) with the same vertex set V ,
let Z be a subset of the edges of G′ with Z including all these fence edges of
an area A in (G′, ϕ′) that are not an edge of G, and let si, for i ∈ {1, 2}, be a
fence vedge of A not being an edge of G. Let (G′′, ϕ′′) be the graph obtained
from (G,ϕ) by adding the edges in Z into G and embedding them in the
same way as ϕ′. An s1-s2-connecting s1-s2-connecting Z-skipping A-shortcut
of (G,ϕ,G′, ϕ′) is a Z-skipping A-alley P from s1 to s2 in (G′′, ϕ′′) such that
its length is as short as possible.

We next define a special kind of a shortcut. We therefore extend our defini-
tion of a crest alley. Let X = (L1, L2) be a crest separator, and let s1 and s2
be vedges belonging to the essential border of X such that, for some i, j with
{i, j} = {1, 2}, the endpoints of s1 belong to Li and the endpoints of s2 belong
to Lj . Then, we define the s1-s2-connecting crest alley of X to be the s1-s2-
connecting alley obtained from a shortest crest alley of X from an endpoint of
s1 to an endpoint of s2—this crest alley from a vertex to a vertex is already
defined—by adding s1 in front of the crest alley if s1 is an edge, and adding
s2 at the end of the alley if s2 is an edge. More precisely, in the special case,
where one of s1 and s2 is the lowpoint of X and where the other edge is incident
to the lowpoint, the s1-s2-connecting crest alley should be (s1, s2), and if both,
s1 and s2, are edges incident to the lowpoint and if they have different peeling

79

numbers, we define the s1-s2-connecting crest alley to be (s1, v, s2) with v being
the lowpoint of X . These extra modifications are necessary since a crest alley
from the lowpoint of X to itself is not defined as an alley only existing of the
lowpoint of X . See for an example of the next definition Fig. 3.6.1.

Definition 3.6.2 (s1-s2-connecting Z-skipping pseudo A-shortcut of X). Let
X = (L1, L2) be a crest separator in an embedded graph (G,ϕ) with G =
(V,E), and let (G′, ϕ′) be an embedded supergraph of (G,ϕ) with the same
vertex set that contains all border edges of X . Take A as an ({X}, ϕ′)-area,
Z as a set of edges not being contained in G, and take Z ′ as the set of
border edges of X not contained in G and being on the boundary of A.3 Let
s1, s2 /∈ E be vedges of the essential border of X such that the endpoints
of s1 are contained in Li and the endpoints of s2 are contained in L3−i.
An s1-s2-connecting Z ∪ Z ′-skipping A-shortcut P of (G,ϕ,G′, ϕ′) is then
called an s1-s2-connecting Z-skipping pseudo A-shortcut of X (with respect
to (G,ϕ,G′, ϕ′)) if P has a strictly shorter length than the s1-s2-connecting
crest alley of X . For a simpler notation, the word Z-skipping may be omitted
if Z is the empty-set. If s1 and s2 are not of interest, P is called a (Z-
skipping) pseudo A-shortcut of X . If also A is not of interest, P is called a
pseudo shortcut of X .

u1

u2 v2

u4

v1

v3

v4

u3

u5

u6

x

Figure 3.6.1: Let (G′, ϕ′) be the embedded graph sketched above, and let (G, ϕ)
be the subgraph whose edges are shown non-dashed. For the crest separator X =
((u1, . . . , u6)(v1, . . . , v6)) with the yellow ({X}, ϕ′)-area A, there is a {u2, u3}-
v4-connecting pseudo A-shortcut P of X by the green vedges. This is the case,
although the alley ({u2, u3}, u3, u4, u5, v4) has also length |P |. Note that such a
shortcut is not unique, e.g., we obtain another shortcut by replacing x with v3.

Note that although we consider Z∪Z ′-skipping alleys, we refer to Z-skipping
pseudo shortcuts since, given a crest separator X and an ({X}, ϕ′)-area, the set

3Not all border edges of X must be on the boundary of A since X may have a lowpoint.

80

Z ′ is uniquely defined and since the edges in Z ′ can only be used as endpoints
of the pseudo shortcuts.

We later want to use a very special kind of pseudo shortcuts. For an area A
and an alley P in an embedded graph (G,ϕ), let us define a maximum A-inner
suballey of P to be an A-suballey of P starting and ending in fence vedges of A
that beside these two vedges does not consist of any further fence vedges of A.
For a mountain structure (G,ϕ,G′, ϕ′, ↓,S), we say that an A-pseudo shortcut
P is strong if, for all crest separators X ∈ S and all ({X}, ϕ′)-areas A′ covered
by A, P has at most one maximum A′-inner suballey, and if so, this suballey is
an A′-pseudo shortcut of X .

As shown by Lemma 3.6.4, the construction of a shortest alley visiting a
vertex of a crest separator often allows us to follow the border edges of the crest
separator instead of crossing the crest separator. Since statements about alleys
consisting of vertices and edges are much more complicated than statements
about alleys consisting of only vertices, let us first consider a simplified version.

Lemma 3.6.3. Let X = (L1, L2) be a crest separator of an embedded graph
(G,ϕ), and let (G′, ϕ′) be an embedded supergraph of (G,ϕ) with the same vertex
set containing all border edges of X.

(a) For each i ∈ {1, 2}, no alley with its endpoints v1 and v2 in Li can have
a shorter length than the v1-v2-connecting crest alley.

(b) If X is of height ℓ and has i ∈ {1, 2} top vertices, each pseudo shortcut
of X with its endpoints being vertices can visit at most i − 1 vertices of
peeling number ℓ and no vertex of peeling number larger than ℓ, where we
mean the peeling numbers with respect to (G,ϕ).

Proof. Both (a) and (b) follow from the fact that the peeling numbers of two
subsequent vertices of an alley can differ by at most 1.

Lemma 3.6.4. Let X = (L1, L2) be a crest separator of an embedded graph
(G,ϕ), and let (G′, ϕ′) be an embedded supergraph of (G,ϕ) with the same vertex
set containing all border edges of X. Define Z to be a subset of the edges of G′

without the edges of G.

(a) Let s1 as well as s2 be a vedge part of the essential border of X such that
all endpoints of s1 and s2 are in Li (i = 1 or i = 2). Then, no s1-s2-
connecting Z-skipping alley P in (G′, ϕ′) can have a shorter length than
the s1-s2-connecting crest alley P ∗.

If X has a horizontal top edge not face-adjacent to a vertex of peeling
number h = height(X) − 1, the same holds in the case, where one of
{s1, s2} is a horizontal top edge of X and only the endpoints of the other
vedge are contained in Li.

(b) If X = (L1, L2) is a crest separator of height ℓ with i ∈ {1, 2} top vertices,
each Z-skipping pseudo shortcut P of X with respect to (G,ϕ,G′, ϕ′) can
visit at most i − 1 vertices of peeling number ℓ and no vertex of peeling
number larger than ℓ, where we mean the peeling numbers with respect to
(G,ϕ).

81

Proof. Let us define pj (j ∈ {1, 2}) as the peeling number of an endpoint of
sj . More exactly, we take p1 and p2 in case (a) such that r = |p1 − p2| is as
low as possible, whereas p1 and p2 are both chosen as large as possible in case
(b). For the latter case, let us additionally define P ∗ to be the s1-s2-connecting
crest alley.

Assume in case (a) that |P | < |P ∗| and in case (b) that P visits at least i
vertices of peeling number ℓ or larger. Note that |P | < |P ∗| holds in both cases
since P is a pseudo shortcut in the latter case. If we remove from P and P ∗

all edges in Z, in (G,ϕ), we obtain alleys Q and Q∗, respectively. Note that
|Q| < |Q∗| must hold.

Moreover, in case (a), the peeling numbers of the endpoints of Q∗ differ by
exactly r. The peeling numbers of Q differ by at least r. Here we also use the
fact that in the case, where one of s1 and s2 is a horizontal top edge of X , this
vedge is not face-adjacent to a vertex of peeling number h = height(X) − 1.
Since the peeling numbers of two subsequent vertices of an alley can differ by
at most 1, |Q| ≥ r = |Q∗|, i.e., we obtain a contradiction in case (a).

In case (b), among all vertices of peeling number ℓ, choose v1 as the first
and v2 as the last vertex in Q as well as v∗1 as the first and v∗2 as the last vertex
in Q∗. In addition, let r1 and r2 be the difference between ℓ and the peeling
number of the first and last vertex of Q∗, respectively. Then, the length of Q∗

is exactly r1 + r2 + i − 1. The peeling numbers of the first vertex of Q and v1
differ by at least r1 and the peeling numbers of v2 and the last vertex of Q differ
by at least r2. Thus, Q has a length of at least r1 + r2 + i− 1, i.e., we obtain
again a contradiction.

Corollary 3.6.5. Take (G,ϕ,G′, ϕ′, ↓,S) as a mountain structure, X ∈ S as a
crest separator, and s1 and s2 as two vedges part of the border of X. If there is
an s1-s2-connecting A-pseudo shortcut for an (X,ϕ′)-area A, then there is also
a strong s1-s2-connecting A-pseudo shortcut.

Proof. Take P to be an s1-s2-connecting A-pseudo shortcut, and let A′ be an
(X ′, ϕ)-area for a crest separator X ′ = (L1, L2) in S such that A′ is covered by
A. If P contains a maximal A′-inner suballey not being an A′-pseudo shortcut,
replace this suballey by a crest alley of X ′ (Lemma 3.6.4). If P has two maximal
A′-inner suballeys P1 and P2, there are two vedges s1 and s2 such that

• each is an endpoint of P1 or P2,

• for some i ∈ {1, 2}, all endpoints of s1 and s2 are in Li, and

• s1, the inner vertices of one path in {P1, P2}, and s2 appear in this order
on P .

By Lemma 3.6.4.a, we can replace the subpath between s1 and s2 by the
s1-s2-connecting crest alley of X without increasing the length. Thus, one path
in {P1, P2} is removed from P .

The next lemma later helps us to find some properties how pseudo shortcuts
and crests interact.

Lemma 3.6.6. Let S be the set of crest separators constructed by the algorithm
MS on the down closure (G′, ϕ′, ↓) of a triconnected embedded graph (G,ϕ), and
let s and t be two vertices belonging to two different crests in (G′, ϕ′). Let Z be

82

a subset of the edges of G′ without the edges of G, and let R be an s-t-ridge in
(G′, ϕ′) of smallest depth having as few vertices of smallest peeling number as
possible. Assume that there is a crest separator X = (L1, L2) ∈ S having the
properties PR(X):

1. X crosses R in (G,ϕ) and the crossing is planar,

2. the height of X is equal to the depth of R.

If additionally the number of top vertices of X is as small as possible among
all crest separators X ′ ∈ S with PR(X ′), then no Z-skipping pseudo shortcut P
of X crosses R in (G′[E ∪ ER ∪ EX ∪ Z], ϕ′|G′[E∪ER∪EX∪Z]), where E is the
edge set of G, ER the edge set of R, and EX the set of border edges part of the
essential border of X.

Proof. Take d to be the depth of R, i.e., d is also the height of X . Let us
assume for a contradiction that there is a Z-skipping pseudo shortcut P of X
that crosses R. Let us further assume for a moment that P contains an edge
e = {u, v} with both endpoints having peeling number at least d. Since P
cannot start or end at a horizontal edge by the definition of a pseudo shortcut,
e is an inner vedge of P . Recall that all edges of Z—i.e., also e—are added by
the down closure. By our construction rules of a down closure an edge with both
endpoints having peeling number d can only be added into a face F of (G,ϕ)
for which the vertices of its boundary all have peeling number at least d. Hence
there must be vertices of peeling number at least d in P appearing before and
after edge e. Consequently, Lemma 3.6.4.b implies that P cannot have a shorter
length than the crest alley with the same endpoints as P , since the crest alley
consists of at most two vertices of peeling number d. Thus, P cannot contain
e. Moreover, P cannot contain an edge with an endpoint larger than d since,
in this case, P would also contain at least two vertices with peeling number d.
Since P cannot contain an edge of R by the conclusions above, P and R must
have at least one common vertex. Again by Lemma 3.6.4.b, we can conclude
that P and R have exactly one common vertex v and that X must have two top
vertices. Let s1 and s2 be the vedges part of P appearing immediately before v
and after v, respectively. Note that these two vedges must appear on different
sides of R. Lemma 3.6.4.b and the fact that P contains no edge with both
endpoints having peeling number at least d implies that, for each i ∈ {1, 2}, at
least one endpoint ui of si has peeling number d− 1.

We next show that, in G′, v is adjacent to two vertices v1 and v2 on different
sides of R both having peeling number d − 1. Take v1 = v↓. Choose i ∈ {1, 2}
such that ui and v1 are on different sides with respect to R. If {v, ui} is an
edge in G′, take v2 = ui and skip the rest of this paragraph. Otherwise, let F
be an inner face of (G,ϕ) that is incident to v and si, i.e., that is incident to
v and ui—such a face must exist because v and ui are face-adjacent in (G,ϕ).
Since (G′, ϕ′) contains all edges of R, there is an inner face F ′ of (G′, ϕ′) being
covered by F that has v on its boundary. Moreover, we choose F ′ in such a way
that u′ and u′′ either are part of R or leave R on the same side of R as ui. Note
that the boundary of F ′ consists of exactly three vertices v, u′, u′′. By Lemma
3.3.6 at least one vertex on the boundary of F ′ has peeling number d− 1. Since
v is not this vertex, we can choose v2 to be one of the two vertices u′ or u′′ of
peeling number d− 1. Note that no vertex of peeling number d− 1 can be part
of R, and {v, v2} must leave R on a different side than {v, v1}.

83

Hence we can define another crest separatorX ′ = (L′
1, L

′
2), where L′

1 consists
of the vertices of the down path starting in v (containing also v1) and L′

2 consists
of the vertex v and the vertices of the down path starting in the representant
of v2 around v. Since PR(X ′) holds and since X ′ has fewer top vertices than X
has, we have again a contradiction. Thus, no Z-skipping pseudo shortcut P of
X can cross R.

As a first step for the computation of pseudo shortcuts, we show next that
one can efficiently compute shortest Z-skipping alleys in an embedded graph.

Lemma 3.6.7. Let (G,ϕ) be an embedded graph with G = (V ∗, E), Z ⊆ E, and
let A be an area in (G,ϕ). For a given vedge s1 ∈ V ∗∪Z, let δ(s2) be the length
of a Z-skipping A-alley from s1 to s2 for each vedge s2 ∈ V ∗∪Z that among all
such Z-skipping A-alleys has shortest length. For all q ∈ N, take Sq to be the
set of all vedges s2 ∈ V ∗ ∪ Z with δ(s2) ≤ q. In O(|Sq+1|) time, one then can
compute the set Sq as well as the value δ(s2) for each s2 ∈ Sq. Moreover, within
the same time one can construct a data structure that allows us to compute, for
each s2 ∈ Sq, the set of vertices part of a shortest Z-skipping A-alley P from s1
to s2 in the order in which they appear on P in O(|P | + 1) time.

Proof. A first problem we have to solve is that it is not so easy to consider
Z-skipping A-alleys if these alleys contain edges. Therefore, we split each edge
e ∈ Z into two edges with a new splitting vertex ve. In the embedded graph
(G∗, ϕ∗) obtained, we search for a usual alley using the new vertices instead of
the edges of Z. We denote the set of newly introduced vertices by V ′ and call
each v ∈ V ′ a low-cost vertex. Let m be the bijective function from V ∗ ∪ V ′ to
V ∗ ∪ Z that maps a vertex v ∈ V ∗ ∪ V ′ to itself if v ∈ V ∗ and to the edge e
with ve = v otherwise. For a subset V ′′ ⊆ V ∗ ∪ V ′, m(V ′′) is the union of m(v)
over all v ∈ V ′′. Define s′1 = m−1(s1). Our algorithm for computing the values
δ(v) works as follows: The idea is to store with each vertex v ∈ V ∗ ∪ V ′ three
values d[v], p[v], and p′[v] with the following meaning: There is an A-alley from
s′1 to v in (G∗, ϕ∗) of length d[v] whose last vertex before v is p[v] and whose
last vertex in V ∗ before v is p′[v]. More precisely, p[v] and p′[v] should be s′1 if
there is no vertex before v in V ∗∪V ′ or no vertex in V ∗, respectively. However,
for an efficient implementation, we allow during our computation some of these
values to be undefined. If we compare an undefined value with another value in
the following description, we always consider the undefined value to be infinity
(even an undefined value p[v] or p′[v]). At the beginning of our algorithm we
define the value d[v], p[v], and p′[v] only for the vertex s′1 with d[s′1] = 0 and
p[s′1] = p′[s′1] = s′1. We also put s′1 in an initially empty priority queue Q. All
faces of (G∗, ϕ∗) are considered to be unmarked unless our algorithm explicitly
mark them. In every step of our algorithm, we take a vertex u of Q whose
current value d[u] is of minimal size among all vertices in Q. We delete u from
Q and, for each unmarked face F being incident to u and being contained in A,
we mark F and relax over F from u. Relaxing over F from u means to relax
from u over each vertex v ∈ (V ∗ ∪ V ′) \ {u} being incident to F , where relaxing
over v from u means:

• to test whether d[v] > d[u] + w(u, v) with w(u, v) = 1 if u ∈ V ∗ and
w(u, v) = 0 otherwise, and

• if so, to put v into Q and set d[v] = d[u] + w(u, v), p[v] = u as well as
p′[v] = u if u ∈ V ∗ and p′[v] = p′[u] otherwise.

84

We stop the algorithm after deleting the first vertex v from Q with d[v] =
q + 1. At the end of the algorithm, for each v with d[v] ≤ q, we output d[v] for
m(v). We later show that d[v] = δ(m(v)).

We next show that, if the algorithm sets the value d[v] to a new value, there
is indeed an s′1-v-connecting A-alley in (G∗, ϕ∗) of length d[v] using p[v] as last
vertex in V ∗ ∪ V ′ ∪ {s′1} before v and using p′[v] as last vertex in V ∗ ∪ {s′1}
before v. Let us define T to be the directed tree consisting of s′1 and all vertices
v ∈ V ∗ ∪ V ′ with d[v] 6= ∞. The vertices of T are connected by the directed
edges (p[v], v) for all v 6= s′1. Assume that immediately before the relaxation
over a vertex v from a vertex u (during the relaxation over a face F from u)
the following is true: For each vertex v′ in T , the vertices of the unique s′1-v

′-
path in T define an A-alley of length d[v] in (G∗, ϕ∗) such that this path has
vertices p[v] and p′[v] before v as last vertices in V ∗ ∪ V ′ and V ∗, respectively,
or has no such vertex if p[v] = s′1 and p′[v] = s′1, respectively. In particular,
this means that T is a tree. If the relaxation now redefines p[v] = u, the only
possibility to create a cycle in T is that v was an ancestor of u in T before
the relaxation. However, this cannot be because we have d[v] > d[u] before
the relaxation. Therefore, T must still be a tree after the relaxation, and it
is also easy to see that the properties of the function p and p′ are maintained.
The properties of T additionally imply that, for the output of the vertices of
a Z-skipping A-alley of length d[v] from s1 to m(v) in (G,ϕ), we only have to
print the reverse of the list (m(u1), . . . ,m(ud[v])) with u1 = v, ud[v] = s′1 and
ui+1 = p′[ui] for all i ∈ {1, . . . , d[v] − 1}. Note that having stored the array p′,
we can easily construct the list (m(u1), . . . ,m(ud[v])) in O(d[v]) time.

For the correctness of our algorithm, it remains to show that, at the end
of the algorithm, we have d[m−1(s)] = δ(s) for all vedges s ∈ V ∗ ∪ Z with
δ(s) ≤ q, and d[m−1(s)] ≥ q + 1 or d[m−1(s)] being undefined for all vedges s
with δ(s) > q. However, this proof is included as a special case of the proof of
the next lemma, and it is thus not shown here.

We next want to analyze the running time for computing the values δ(s) for
all s ∈ Sq. Since at each time of our algorithm, the values d[v] for the vertices v
in Q differ by at most 1, it is easy to implement the priority queue Q such that it
supports the output of a vertex v with a minimal value d[v] and the update of a
value d[v] after a relaxation in O(1) time. Our algorithm only relaxes over faces
that have as incident vertices only vertices v ∈ V ∗∪V ′ with δ(m(v)) ≤ q+1. The
number of relaxations over a vertex v ∈ m−1(Sq+1) (from vertices in m−1(Sq))
is bounded by the number of faces in (G∗[m−1(Sq+1)], ϕ|G∗[m−1(Sq+1)]) that are
incident to v, i.e., is bounded by O(deg(v)). Therefore, the total number of
relaxations over a vertex is bounded by two times the number of edges, i.e.,
bounded by O(|Sq+1|), and the whole algorithm runs in O(|Sq+1|) time.

If we want to use the algorithm above to compute efficiently pseudo shortcuts
for all crest separators, it is necessary to avoid visiting areas already considered
during the construction of previous pseudo shortcuts for other crest separa-
tors and to use instead the already computed pseudo-shortcuts. We therefore
introduce so-called forbidden areas.

Let (G′, ϕ′) be an embedded supergraph (G′, ϕ′) of an embedded graph
(G,ϕ) with G and G′ having the same vertex set V . Let A be an area in
(G′, ϕ′), and let A∗ be a set of subareas of A in (G′, ϕ′) such that no inner face

85

of (G′, ϕ′) is contained in more than one of the areas in A∗. Moreover assume
that the graph G[A

.− A∗] = (V ∗, E∗) is connected.4

Let Z be a subset of edges of G′ without the edges of G, and let f be a
partial function assigning a value in N0 to some pairs of vedges in V ∗∪Z on the
fence of at least one A′ ∈ A∗. Then, we define an (A∗, f)-forbidden (Z-skipping)
A-alley in (G,ϕ) as a list P = (s1, . . . , sq) of vedges in V ∪Z such that, for each
pair of two consecutive vedges si and si+1 in P , one of the following 3 cases as
well as the so-called extended alley condition holds:

(1) si and si+1 are face-adjacent with a connection face in A−A∗.

(2) {si, si+1} is a fence edge of at least one A′ ∈ A∗.

(3) f(si, si+1) is defined.

The extended alley condition for P demands that, for each pair of consecutive
vedges si and si+1 of P with a connection face contained in A − A∗, we can
add the edge {si, si+1} into a face of A − A∗ and the graph obtained is still
planar. Intuitively, (A∗, f)-forbidden means that we want to forbid the alley to
pass through the inner of any area A′ ∈ A∗. Instead, we want the alley to pass
through a face in A − A∗ in case (1), to follow the fence of at least one area
A′ ∈ A∗ in case (2), or to skip an area A′ ∈ A∗ using the function f in case (3).

As for usual alleys we call the vedges s2, . . . , sq−1 of an (A∗, f)-forbidden (Z-
skipping) A-alley P = (s1, . . . , sq) the inner vedges of P . The weighted length
|P | of P is then defined as

q−1
∑

i=1

0 if case (1) or (2) holds and si+1 is an edge,
1 if case (1) or (2) holds and si+1 is a vertex,

f(si, si+1) otherwise.

For an efficient implementation of a partial function f , we store so-called
domain lists that, for each vertex s′ with at least one pair (s′, s′′) on which f
is defined, consist of a list domf (s

′) containing all vedges s with f(s′, s) being
defined. Note that, for a (Z-skipping) A-alley being also an (A∗, f)-forbidden
(Z-skipping) A-alley, its usual length and its weighted length are equal, so that
|P | is well-defined.

It turns out that we sometimes need a special kind of (A∗, f)-forbidden
(Z-skipping) A-alleys. Intuitively, these special alleys are alleys that have the
shortest length and have among those as much as possible consecutive vertices
with a connection face in A−A∗. Let us call a vertex s′ an A∗-idol of a vedge
s if there is an area A′ ∈ A∗ such that {s, s′} is a fence edge of A′ or such that
s is a fence edge of A′ with endpoint s′. The idea is to prefer in a certain sense
for each vedge its A∗-idol—if it exists—as predecessor in the alleys. To be more
exact, let us say that an s1-s2-connecting (A∗, f)-forbidden (Z-skipping) A-
alley P is good if it has the shortest weighted length among all s1-s2-connecting
(A∗, f)-forbidden (Z-skipping) A-alleys and if additionally one of the following
three properties holds for each vedge s of P : Either s has no A∗-idol, or the
predecessor s′ of s is an A∗-idol of s, or the replacement of the s1-s

′-connecting
suballey of P by a shortest (A∗, f)-forbidden (Z-skipping) A-alley from s1 to
an A∗-idol of s increases the weighted length. See Fig. 3.6.2 for an example of
the last definition.

4For the definition of G[A
.
− A∗] and of A −A∗, see page 44.

86

2

1 4

2

3

5

5

1

4

4

2

4
3

3

1

5

2

3

3

3

4

6

7

4
4

5

5

5

4 6

6

2

s

5

3

5
3

6

Figure 3.6.2: Let (G′, ϕ′) be the embedded graph sketched above and (G, ϕ) be
the subgraph without the edges of Z that are drawn dashed. Take A∗ as the
set containing the yellow area and X = ((u1, . . . , u6), (v1, . . . , v6)) as the crest
separator shown by the black vertices and the blue top edge. The numbers inside
the vertices denote the weighted distance of a Z-skipping alley from s. Note that
the red alley is good, but the vedges v2 and {v4, v5} on the border of X have both
an A∗-idol that allows a rerouting of the green and the purple alleys using this
A∗-idol of v1 and v4, respectively, without increasing the length.

For an s1-s2-connecting (A∗, f)-forbidden (Z-skipping) A-alley P , we call a
vedge s of P to be (A∗, f)-essential if either s = s1 or for the predecessor s′

of s, the suballeys of P from s1 to s′ and from s1 to s have different lengths.
In particular, each vertex of P is essential. For the next lemma, recall that
G[A

.− A∗] = (V ∗, E∗).

Lemma 3.6.8. Take ℓ ∈ N, and let f be a function assigning r ∈ N pairs of
vedges in V ∗ ∪ Z on the fence of at least one area A′ ∈ A∗ a value of at most
2ℓ. Assume that f(s′, s′′) ≥ 1 for all vertices s′′ ∈ V ∗. Given the domain lists
of f and a vedge s1 ∈ V ∗ ∪Z, in O((|V ∗|+ r) log ℓ) time, one then can compute
a good s1-s-connecting (A∗, f)-forbidden Z-skipping A-alley Ps for all vedges
s ∈ V ∗ ∪ Z. Within the same time one can construct a data structure that
allows us to return for each vedge s ∈ V ∗ ∪ Z in constant time

• the length of Ps and

• for each vedge s+ on Ps, the predecessor of s+ in Ps as well as the last
(A∗, f)-essential vedge before s+ in Ps.

Proof. We introduce the set V ′ as the low-cost vertices, the function m, the
graph G∗, and the vertex s′1 as start vertex in the same way as in the proof of
Lemma 3.6.7.

We also use arrays d, p, and p′, where initially set d[s1] = 0, p[s1] = p′[s1] =
s1, and d[v] = p[v] = p′[v] = ∞ for all v ∈ V ∗ ∪ V ′ with v 6= s1. In these arrays,
for each vertex v ∈ V ∗ ∪ V ′ with d[v] 6= ∞, there is an s1-m(v)-connecting

87

(A∗, f)-forbidden Z-skipping A-alley P ∗ = (s1, . . . , sr) (r ∈ N) of length d[v] in
(G,ϕ) such that p[v] is the last vertex part of V ∗∪V ′ beforem(v) on P ∗ and such
that p′[v] is the last (A∗, f)-essential vedge before m(v) on P ∗. Let f ′ be the
function with f ′(u, v) = f(m(u),m(v)) for each pair u, v ∈ V ∗ ∪ V ′ for which
f(m(u),m(v)) is defined. Moreover, define domf ′(u) = m−1(domf (m(u))) if
domf (m(u)) is defined. We next run a modified version of the algorithm de-
scribed in the proof of Lemma 3.6.7 with q = |V |; the details of the modifications
are described now.

Whenever we delete a vertex u ∈ V ∗∪V ′ from the priority queue Q, we relax
over all faces not incident to an area of A∗ as usual with respect to the update of
d and p. If during the relaxation over a face we relax over a vedge v from u and
if we replace the current value d[v] by d[u]+w(u, v) with w(u, v) ∈ {0, 1}, we set
p′[v] = u if d[p[u]] > d[p[p[u]]], and p′[v] = p′[u] otherwise. We never relax over
faces incident to u that are contained in an area of A∗. Instead of this, we apply
a so-called relaxation over the function f ′ from u and, if u ∈ V ∗, additionally a
so-called relaxation over the fence from u. Relaxing over a function f ′ from u
means to test for each v ∈ domf ′(u) whether d[v] > d[u] + f ′(u, v). If so, we set
d[v] = d[u] + f ′(u, v) and p[v] = u as well as, if d[p[u]] > d[p[p[u]]], p′[v] = u, or
p′[v] = p′[u] otherwise.

Relaxing over the fence from u means the following: For each vertex v ∈ V ∗∪
V ′ that has u as an A∗-idol, we set w(u, v) = 1 if v ∈ V ∗, or w(u, v) = 0 if v ∈ V ′,
and then we test whether d[v] ≥ d[u]+w(u, v). If so, we set d[v] = d[u]+w(u, v),
and p[v] = p′[v] = u—note that we apply the changes even if d[v] is equal to
d[u]+w(u, v), and this is what we meant with preferring an A∗-idol of a vertex.

Whenever a relaxation over a function or over the fence decreases the value
d[v], we put v in our priority queue Q. Since the relaxation over function f ′ from
u may set the value d[v] to a value strictly larger than d[u]+1, a vertex may now
be added different times to Q. Thus, after finding a vertex in Q with smallest
d[v], we first test whether (another occurrence of) v was already deleted from
Q in a previous step. If so, we delete the current occurrence of v and proceed
with searching the next smallest vertex in Q.

For the same reason as described in the proof of Lemma 3.6.7, the graph T
consisting of all vertices v ∈ V ∗ ∪ V ′ with d[v] <∞ and of all edges (p(v), v) 6=
(s′1, s

′
1) maintains the property to be a tree when applying a relaxation over a

face or over a function. If we possibly replace the value p[v] by u during the
relaxation over the fence from a vertex u, we must have d[u′] < d[u] for all
ancestors u′ of u in T before the relaxation since u is a vertex. Thus, v cannot
be an ancestor of u in T before the relaxation, and T maintains the property to
be a tree. Since T is initially one vertex, i.e., a tree, T is always a tree.

If we define, for the vertices v in T , Pv to be the path from s1 to v in T , then
it is also easy to see that the number of vertices of Pv contained in V ∗ is always
d[v] and the last vertex before v on Pv is p[v]. Let P ∗

v be the (A∗, f)-forbidden
Z-skipping alley in (G,ϕ) obtained from Pv by replacing each vertex u by m(u).
Note that p′[v] is the last vertex v′ before v with m(v′) being (A∗, f)-essential
on P ∗

v .
To show that the computed alleys are of shortest length, let us define δ(s∗)

as the length of an (A∗, f)-forbidden Z-skipping A-alley of shortest weighted
length from s1 to s∗ for each s∗ ∈ V ∗ ∪ Z. We next show that d[v] ≤ δ(m(v))
for all v ∈ V ∗ ∪ V ′. Note that this inequality implies that also d[v] = δ(m(v))
holds since P ∗

v has weighted length d[v]. Let v∗ be a vedge with the smallest

88

value δ(v∗) for which, after deleting it from Q, we have d[m−1(v∗)] > δ(v∗).
Moreover, let v = m−1(v∗), and let P ∗ be an s1-v

∗-connecting (A∗, f)-forbidden
Z-skipping A-alley in (G,ϕ) with weighted length δ(v∗). Take u∗ as the vedge
of P ∗ immediately before v and u = m−1(u∗). Since after processing v no value
d[v′] of any vertex v′ ∈ V ∗ ∪ V ′ is updated to a value strictly smaller than d[v],
d[u] cannot be set to δ(u∗) ≤ δ(v∗) < d[v] after deleting v from Q. Hence, when
processing v, u is already removed and d[u] = δ(u∗).

Let us first consider the case that {u∗, v∗} is an edge on the boundary of at
least one area A′ ∈ A∗. Then after the relaxation over the fence from u we have
d[v] ≤ d[u] + 1 = δ(u∗) + w(u, v), and thus d[v] is set to δ(v∗).

Let us next consider the case that there is a connection face F of u∗ and v∗

contained in A −A∗. If F is unmarked when relaxing over all unmarked faces
incident to u, then after this relaxations d[v] ≤ d[u] +w(u, v) = δ(u∗) +w(u, v)
if v ∈ V ∗, and d[v] = d[u] = δ(u∗) if v ∈ V ′. In both cases d[v] is set to δ(v∗).
Otherwise, i.e., if F is marked, we already have relaxed over F when considering
all unmarked faces of a vertex t removed before u from Q. Since afterwards no
value is set to a value smaller than d[t], we must have d[t] ≤ δ(u∗) immediately
after removing t from Q. Consequently, we again have d[v] = δ(v∗) after the
relaxation over all faces incident to t.

We finally consider the case that the two cases above do not apply. We
then must have δ(v∗) = δ(u∗) + f(u∗, v∗), and hence d[v] ≤ d[u] + f ′(u, v) =
δ(u∗) + f(u∗, v∗) = δ(v∗) after relaxing over f ′ from u.

Let v∗ ∈ V ∗ ∪ Z. Then, for the output of the last (A∗, f)-essential vedge
before a vedge s+ on the (A∗, f)-forbidden Z-skipping A-alley P ∗

v defined above
with v = m−1(v∗), we simply return p′[m−1(s+)]. It only remains to show that
the vertices of the path P ∗

v defined above are the vertices of a good (A∗, f)-
forbidden Z-skipping A-alley. However, this must hold since—during the relax-
ation over the fence from some vertex u ∈ V ∗—we change p[v] to u for each ver-
tex v ∈ V ∗∪V ′ with m(u) being an A∗-idol of m(v) even if d[v] = d[u]+w(u,w).

We next want to analyze the running time of the computation of the values
δ(v). An update of a value d[u] in Q may take up to O(log ℓ) time since the pri-
ority queue Q may contain up to O(ℓ) different values because of the relaxation
over f . Hence, it is easy to see that the total time needed for the relaxations over
the fence from different vertices is bounded by O(|E∗| log ℓ) = O(|V ∗| log ℓ). The
number of relaxations over vertices that are done during the relaxations over a
face is bounded by O(|V ∗|)—similarly to the proof of Lemma 3.6.7. Since f is
defined for exactly r pairs of vedges, the total running time of our algorithm is
bounded by O((|V ∗| + r) log ℓ) time.

In the following, we apply the last lemma on a fixed good mountain structure
(G,ϕ,G′, ϕ′, ↓,S) with G = (V,E). Keep in mind thatG′ is almost triangulated.
We define Z to be the set of edges of G′ without the edges of G. If we later
construct alleys, the edges in Z prevent us from jumping from a non-boundary
vertex in an (S, ϕ′)-component to a non-boundary vertex of another (S, ϕ′)-
component. However, we have to show that the length of shortest alleys does
not increase by the introduction of the extra edges in Z.

Lemma 3.6.9. Let (G̃, ϕ̃) be an embedded graph obtained from (G,ϕ) by adding
an edge e into a face of (G,ϕ), and let Z ′ be a subset of the edges in G. For
an area A of (G,ϕ) and two vedges s1, s2 in V ∪ Z ′, take PG as Z ′-skipping

89

A-alley in (G,ϕ) and PG̃ as (Z ′ ∪ {e})-skipping A-alley in (G̃, ϕ̃) both from s1
to s2 and both among all such alleys having shortest length in (G,ϕ) and (G̃, ϕ̃),
respectively. Then, |PG| = |PG̃|.

Proof. For a Z ′-skipping A-alley P of shortest length in (G,ϕ), we can obtain
a Z ′∪{e}-skipping A-alley P̃ in (G̃, ϕ̃) with the same length by possibly adding
e into P , which does not increase the costs. Reversely, from a shortest Z ′-
skipping A-alley P̃ in (G̃, ϕ̃) we obtain a Z ′ ∪ {e}-skipping A-alley P̃ in (G,ϕ)
of the same length by removing edge e if it exists in P̃ .

Corollary 3.6.10. Let A be an area of (G′, ϕ′), let Z̃ ⊆ Z be a set containing
all boundary edges of A, and let G̃ = (V,E ∪ Z̃). For i ∈ {1, 2}, take si as an
edge of Z̃ or as a vertex of G. If PG̃ is a Z̃-skipping A-alley from s1 to s2 in

(G̃, ϕ̃) and if PG′ is a Z-skipping A-alley from s1 to s2 in (G′, ϕ′) such that both
have shortest length, then we have |PG̃| = |PG′ |.

Proof. Iteratively apply Lemma 3.6.9.

Let A be an area in (G′, ϕ′), and let A∗ be a set of subareas of A in (G′, ϕ′)
such that no inner face of (G′, ϕ′) is contained in more than one of the areas
in A∗. Moreover, assume that the graph G[A .− A∗] = (V ∗, E∗) is connected.
Let B∗ be the set of vedges not being an edge of E, but being part of the fence
of at least one area A′ ∈ A∗. A function f is called (A,A∗)-replacing if it is a
partial function f from B∗ ×B∗ to N0 such that the following holds:

• f is defined at least for each (s′, s′′) ∈ B∗ × B∗ for which there is an
s′-s′′-connecting Z-skipping A′-alley P in (G′, ϕ′) for some A′ ∈ A∗ such
that all alleys of the following type have a strictly larger length than |P |:
Take the vertices of a path P from an endpoint of s′ to an endpoint of s′′

consisting completely of fence edges of an area A′′ ∈ A∗ in the order in
which they appear on P and, if s′ or s′′ is an edge, add additionally s′ in
front of the alley and s′′ at the end of the alley, respectively.

• if f(s′, s′′) is defined, then f(s′, s′′) is the length of a shortest s′-s′′-
connecting Z-skipping A′-alley in (G′, ϕ′) for an A′ ∈ A∗ for which this
length is minimal among all areas in A∗.

Note that the definition implies that, if there is an s′-s′′-connecting Z-skipping
A′-alley P in (G′, ϕ′) for some A′ ∈ A∗, then f is defined or there is an (A∗, f)-
forbidden Z-skipping A-alley P ′ from s′ to s′′ with |P ′| ≤ |P | and the inner
vedges of P ′ consist completely of vertices of the fence of one area in A∗.

For the next lemma, let us fix A and A∗ with the properties above, and let
H = G′[A

.− A∗]. Moreover, choose ψ = ϕ′|H and f to be an (A,A∗)-replacing
function.

Lemma 3.6.11. Let s′ and s′′ be part of both V ∪Z and H. If P is a shortest
s′-s′′-connecting Z-skipping A-alley in (G′, ϕ′), and if P ∗ is a shortest s′-s′′-
connecting Z-skipping (A∗, f)-forbidden A-alley in (H,ψ), we have |P | = |P ′|.

Proof. As above, let B∗ be the vedges not in E that are part of the fence
of at least one area A′ ∈ A∗. We first show that, for each Z-skipping A-alley
P1 = (s1, . . . , sq) with s1 = s′ and sq = s′′, we can construct a Z-skipping
(A∗, f)-forbidden A-alley P2 in (H,ψ) from s′ to s′′ of length at most |P1|. Let

90

P ′
1 = (si, si+1, . . . , sj) be a maximal subsequence of consecutive vertices of P1

such that, for each pair of vedges sr and sr+1 with r ∈ {i, . . . , j − 1}, there
is neither a fence edge e of an area A′ ∈ A∗ equal to {sr, sr+1} nor an inner
face F in A − A∗ incident to both, sr and sr+1. Then, there is a subsequence
P ′′

1 = (sa, . . . , sb) of P1 with sa, sb ∈ B∗ such that P ′′
1 is a Z-skipping A′-alley for

some A′ ∈ A∗. Assume for a moment that f(sa, sb) is not defined. Then, there
is an sa-sb-connecting (A∗, f)-forbidden Z-skipping A-alley P ′′

2 with |P ′′
2 | ≤ |P ′′

1 |
and with the inner vedges of P ′′

2 consisting completely of the vertices of the fence
of an area in A∗. We therefore replace P ′′

1 by P ′′
2 . Otherwise, i.e., if f(sa, sb)

is defined, we replace P ′′
1 by (sa, sb). By the definition of f , f(sa, sb) ≤ |P ′′

1 |.
Repeating this process we obtain a Z-skipping (A∗, f)-forbidden A-alley P2 in
(H,ψ) from s′ to s′′ of weighted length at most |P1|.

In the reverse direction, given a Z-skipping (A∗, f)-forbidden A-alley P2 =
(s1, . . . , sq) in (H,ψ) from s1 = s′ to sq = s′′, we replace each pair (si, si+1)
(i ∈ {1, . . . , q − 1}) for which there is no connection face of si and si+1 in A by
a shortest si-si+1-connecting Z-skipping A′-alley for one A′ ∈ A∗ for which this
length is minimal among all A′ ∈ A∗ to obtain a Z-skipping A-alley P1 from s′

to s′′ of length at most |P2|.

In the later parts of this chapter, we want to construct pseudo shortcuts
only for a subgraph of G consisting of vertices with a high peeling number.
For an h ∈ N, we thus define G(h) and G′(h) to be in the following the
subgraphs of G and G′ induced by the set of all vertices with peeling num-
ber at least h, ϕ(h) = ϕ|G(h) and ϕ′(h) = ϕ′|G′(h). For a crest separator
X = ((u1, . . . , uq), (v1, . . . , vq)) of height at least h and for i ∈ {1, . . . , q} with
ui having peeling number h, we let X(h) = ((u1, . . . , ui), (v1, . . . , vi)). For a set
S of crest separators, we define S(h) = {X(h) | X ∈ S and height(X) ≥ h}
and, for an area A of (G′, ϕ′), we also let A(h) be the subset of A consisting
of all faces of (G′, ϕ′) for which the vertices on the boundary all have peeling
number at least h. For a crest separator X ∈ S of height at least h and for
an ({X}, ϕ′)-area A, a pseudo (A, h)-shortcut set for X = (L1, L2) is a set
consisting of exactly one s1-s2-connecting strong pseudo A(h)-shortcut of X
with respect to (G(h), ϕ(h), G(h)⊕X(h), ϕ′|G(h)⊕X(h)) for each pair (s1, s2) for
which an s1-s2-connecting pseudo A(h)-shortcut exists. This also implies that,
for some j1, j2 ∈ {1, 2} with j1 6= j2, each si (i ∈ {1, 2}) is either a vertex in Lji
or a border edge of X not contained in G with both endpoints in Lji .

Lemma 3.6.12. Let C = (VC , EC) be an (S, ϕ′)-component, let h ∈ N, let SC
be the set of crest separators in S whose top edges are part of C, let X = (L1, L2)
be a crest separator in SC , and let AX be the C-inner ({X}, ϕ′)-area. Then,
given for all X ′ ∈ SC \ {X} a pseudo (AX′ , h)-shortcut set PX′ of X ′ with AX′

being the C-outer (X ′, ϕ′)-area, we can compute a pseudo (AX , h)-shortcut set
PX of X in O((ℓ log ℓ)|VC |+(ℓ3 log ℓ)|SC |) time with ℓ being the maximal height
of a crest separator in S.

Proof. For the computation of the Z-skipping pseudo shortcuts, we want to
use the algorithm described in the proof of Lemma 3.6.8 with A, A∗, and f de-
fined as follows: A = AX(h). A∗ is the union consisting, for each crest separator
X ′ ∈ S \{X} of the area AX′(h) (with AX′ as defined in the lemma). The func-
tion f assigns to each pair s1, s2 of fence vedges of an area AX′ ∈ A∗, for which
there is an s1-s2-connecting Z-skipping AX′ -pseudo shortcut P with respect to

91

(G(h), ϕ(h), G′(h), ϕ′(h)), the length of such a pseudo shortcut, i.e., |P |. Since
by the assumptions of our lemma, we are given the AX′ -pseudo shortcut sets
for all AX′ ∈ A∗ with respect to (G(h), ϕ(h), G(h) ⊕X ′(h), ϕ′|G(h)⊕X′(h)) and
since the length of these pseudo shortcuts is equal to the length of Z-skipping
AX′ -pseudo shortcuts with respect to (G(h), ϕ(h), G′(h), ϕ′(h)) connecting the
same vedges (Corollary 3.6.9), it is trivial to initialize f . Observe that, if there is
such a pseudo-shortcut, then there is exactly one crest separator X ′ with a top
edge in C that has an s1-s2-connecting crest alley and there is exactly one area
A′ ∈ A∗, namely A′ = AX′ , having an s1-s2-connecting A′-pseudo shortcut.

Note that, for each pair of vedges s1 and s2 being part of the boundary of
AX′ with X ′ ∈ SC , f(s1, s2) is never defined if all endpoints of these vedges are
part of one list Li with i ∈ {1, 2} or if one of these vedges is a horizontal top
edge. However in this case, because of Lemma 3.6.4.a (and additionally Lemma
3.3.29 if s1 or s2 is a horizontal top edge) an s1-s2-connecting Z-skipping AX′ -
alley does not have a strictly shorter length than the crest alley of X ′, which is
an s1-s2-connecting alley consisting only of fence vertices of AX′ . Thus, f is an
(A,A∗)-replacing function.

Applying Lemma 3.6.8 for a fence vedge s1 of A, for each other vedge s2
on the fence of A, but not belonging to the edges of E, we can obtain a good
s1-s2-connecting Z-skipping (A∗, f)-forbidden A-alley P ′ as well as its weighted
length d. By Lemma 3.6.11, the length d is equal to the length of a shortest
Z-skipping A-alley from s1 to s2 in (G′(h), ϕ′(h)), and by Corollary 3.6.10,
equal to a shortest (Z ∩ {s1, s2})-skipping A-alley from s1 to s2 in (G(h) ⊕
X(h), ϕ′|G(h)⊕X(h)). If and only if d is smaller than the length of the s1-s2-
connecting crest alley of X , there is an s1-s2-connecting pseudo A-shortcut
of X with respect to the tuple (G(h), ϕ(h), G(h) ⊕ X(h), ϕ′|G(h)⊕X), and one
such pseudo A-shortcut P being strong should be added to our pseudo (AX , h)-
shortcut set PX . Using the data structure of Lemma 3.6.8, i.e., the arrays p and
p′, we can compute the sublist P ∗ of the (A∗, f)-essential vedges of P ′. Then P
can be constructed from P ∗ as follows: For each vedge s of P ∗, we test whether
there is a connection face of p[s] and s. If not, replace s by a p[s]-s-connecting
AX′ -alley of length f(p[s], s) for some crest separator X ′ ∈ SC \ {X}, namely,
by a strong pseudo AX′(h)-shortcut of one of the precomputed pseudo (AX′ , h)-
shortcut sets. Moreover, if p[s] then occurs twice, remove one occurrence. Note
that either p[s] = p′[s], or p[s] is not (A∗, f)-essential, i.e., d[p[s]] = d[p′[s]]
and since between p[s] and p′[s] are then only Z-skipping edges in P ′, we can
conclude that p[s] and p′[s] are face-adjacent in (G′, ϕ′) after removing all edges
of Z\{p[s], p′[s]}. Finally, remove all remaining inner edges of the alley obtained.

We next want to show that each pseudo-shortcut P computed above is indeed
strong. Therefore, let us consider an area AX′ for a crest separator X ′ ∈
SC\{X}. If P has two maximum AX′ -inner suballeys P1 and P2, these suballeys
are added because of consecutive vedges s′i and s′′i of P ∗ with f(s′i, s

′′
i) = |Pi|

(i ∈ {1, 2}). Take X ′ = (L1, L2). Then, it is easy to see that we can find vedges
s′ and s′′ both belonging to Lj for some j ∈ {1, 2} such that s′, the vedges
of one suballey in {P1, P2}, and s′′ appear in this order on P—possibly some
vertices are in between. Replacing the suballey P+ of P ′ from s′ to s′′ by the s′-
s′′-connecting crest alley P̃ of X ′ cannot increase the length by Lemma 3.6.4.a.
Then, P is no good s1-s2-connecting Z-skipping (A∗, f)-forbidden A-alley since,
for each vedge in P̃ , its predecessor is also one of its idols, whereas this is not true

92

for each vedge of P+. Contradiction. Since, additionally, f is defined only for
AX′ -pseudo shortcuts with X ′ ∈ SC , P must be a strong pseudo AX -shortcut.

Let us now analyze the running time of our algorithm. Since each pseudo
(AX′ , h)-shortcut set consists of at most ℓ2 pseudo AX′(h)-shortcuts all hav-
ing length at most 2 · height(X ′) ≤ 2ℓ, it easy to construct the function f
in O(

∑

X′∈SC\{X} |PX′ |ℓ) = O(ℓ3|SC |) time. Since G[A
.− A∗] consists of

|VC | + O(ℓ|SC |) vertices and since the number of all pseudo A′-shortcuts for
all A′ ∈ A∗ sums up to O(|SC |ℓ2), the total running time for the computation
of the strong pseudo AX -shortcuts of X from one fixed vedge s1 ∈ V ∗ ∪ Z
on the fence of AX to all other vedges on the fence of AX can be bounded
by O((log ℓ)|VC | + (ℓ2 log ℓ)|SC |)). For the computation of all strong pseudo
AX -shortcuts of X the running time has to multiplied by ℓ.

We finally have to analyze the running time for the construction of the
pseudo A-shortcuts P from a shortest Z-skipping (f,A∗)-forbidden A-alley P ′,
or more precisely, from the data structure given by Lemma 3.6.8. Note that it
is not necessary to compute P ′ explicitly. Recall that the data structure allows
us to output the vedges of P ∗ in O(|P ∗| + 1) time. Since we have f(s′, s′′) ≥ 1
for each pair of consecutive vedges on P ∗, it is easy to construct P from P ∗ in
O(|P ∗|) = O(|P |) time.

We call a pseudo A-shortcut of length ℓ an ℓ-long pseudo A-shortcut of a
crest separator X . An A-pseudo shortcut is called h-high if it visits only vedges
with their endpoints having peeling number at least h. For a mountain structure
(G,ϕ,G′, ϕ′, ↓,S) and ℓ ∈ N, we call a crest separator X ∈ S to be h-high ℓ-long
pseudo shortcut free if, for each area A of the two ({X}, ϕ′)-areas, there is no
h-high pseudo A-shortcut of length at most ℓ. An (S, ϕ′)-component C is called
h-high ℓ-long pseudo shortcut free if, for each crest separator X ∈ S with a top
edge in C, the C-inner (X,ϕ′)-area A has no h-high ℓ-long pseudo A-shortcut
for X and if C contains a vertex of peeling number h− 1.

Lemma 3.6.13. Let h ∈ N, and let (G,ϕ,G′, ϕ′, ↓,S) be a good mountain
structure with G = (V,E) such that all crest separators of S have height at
most ℓ. In O(|V |ℓ3 log ℓ) total time, we can compute a pseudo (A, h)-shortcut
set for all ({X}, ϕ′)-areas A of all crest separators X ∈ S. Within the same
time, we can compute the set S′ ⊆ S consisting of all h-high ℓ-long pseudo
shortcut free crest separators and the set of all h-high ℓ-long pseudo shortcut
free (S, ϕ)-components.

Proof. Take G = (V,E). Initially, compute the mountain connection graph
T of (G,ϕ,G′, ϕ′, ↓,S) (Lemma 3.3.26), and choose an arbitrary root of T .
By the algorithm of Lemma 3.6.12, in a bottom-up traversal of T followed
by a top-down traversal, we can compute all pseudo shortcut sets spending
O((ℓ log ℓ)|VC | + (ℓ3 log ℓ)|SC |) time per (S, ϕ′)-component C being a node C
of T , where VC and SC are defined as in Lemma 3.6.12. In detail, let X be
a crest separator with its top edge being contained in an (S, ϕ′)-component
C1 and contained in the parent C2 of C1 in T . We then compute a pseudo
(A, h)-shortcut set for the C1-inner ({X}, ϕ)-area A of X during the bottom-up
traversal, and an (A′, h)-pseudo shortcut set for the C1-outer ({X}, ϕ)-areaA′ of
X during the top-down traversal. The running time over all (S, ϕ′)-components
sums up to O(|V |ℓ3 log ℓ). Moreover, given the pseudo (A, h)-shortcuts, it is

93

easy to determine all h-high ℓ-long pseudo shortcut free crest separators and
(S, ϕ)-components within the same time.

A cyclic alley is defined as a usual alley, except that the endpoints of a cyclic
alley should be equal. We use many of the definitions introduced for alleys also
for cyclic alleys as, for example, the definition of inner vertices or Z-skipping
alleys. Let us explicitly mention that the length of a (Z-skipping) cyclic alley
(s1, . . . , sq) is the number of consecutive pairs (si, si+1) of vedges of the alley
with si+1 being a vertex.

Let us define the inner graph of a cycle P in an embedded graph (G,ϕ)
as an embedded graph (H, ζ) such that H is a maximal subgraph of G and
such that exactly the vertices of P are incident to the outer face of ζ = ϕ|H .
In addition, for a Z-skipping cyclic alley P in a triconnected embedded graph
(G,ϕ) with G = (V,E), let (G′, ϕ′) be the graph obtained by adding, for each
pair of non-adjacent vertices u and v of P , an edge into a connection face of u
and v in (G,ϕ). Then, we define the inner graph of P in (G,ϕ) as the inner
graph of P in (G′, ϕ′). It is not hard to see that the inner graph of each cyclic
alley in a triconnected embedded graph is unique. Moreover, the strictly inner
graph is the maximal subgraph of the inner graph of P that contains no vertex
on the boundary of P . We say that a cyclic alley P encloses a vertex set U if
the vertices in U are part of the strictly inner graph of P . We also say in the
following that a graph is smaller than another graph if it has a smaller number
of vertices or the same number of vertices, but a smaller number of edges. Let
X be a crest separator in a triconnected embedded graph (G,ϕ), let ϕ′ be an
embedding of the supergraph of G⊕{X} with ϕ′|G = ϕ, and let A and A′ be the
two ({X}, ϕ′)-areas. Define Z to be the set of border edges of X not already
contained in G. Then, for a Z-skipping alley P in (G ⊕ {X}, ϕ′|G⊕{X}), we
define an X-crossing sequence to be a Z-skipping suballey (s, v1, . . . , vp, t) of P
such that s and v1 have only a connection face in one of the two ({X}, ϕ′)-areas,
say area A, and vp and t have no connection face in A, whereas for each pair
vi, vi+1 with i ∈ {1, . . . , p−1}, there are connection faces for vi and vi+1 in both
({X}, ϕ′)-areas. This implies that the Z-skipping suballey of P from v1 to vp is
a crest alley of X . Otherwise, for at least one i ∈ {1, . . . , p− 1}, the vertices vi
and vi+1 are part of a crest alley P ′ of X with vi and vi+1 being no consecutive
vertices of P ′. Thus, at least one vertex of the suballey of P ′ from vi to vi+1

is disconnected by {vi, vi+1} from at least one vertex with peeling number 1,
which is a contradiction to the triconnectivity of G.

For a cyclic alley P in a triconnected embedded graph (G,ϕ), for a crest
separator X in (G,ϕ), for the set Z of the border edges of X not contained in
G, and for an embedding ϕ′ of G⊕ {X}, let P (G,X,ϕ′) be a Z-skipping cyclic
alley in (G⊕X,ϕ′) such that

• P can be obtained from P (G,X,ϕ′) by the removal of all edges in Z, and

• P and P (G,X,ϕ′) have the same inner graph.

Intuitively, P and P (G,X,ϕ′) are the same alleys, but considered in different
graphs G and G ⊕ {X}. In an embedded graph, we call an alley h-high if all
endpoints of its vedges have peeling number at least h.

For the next lemma and the next corollary, let us consider a situation, where
X is a crest separator in a triconnected embedded graph (G,ϕ) with G = (V,E)

94

such that the top edge of X is incident to no vertex with a smaller peeling
number. Take Z as the set of border edges of X not contained in G, ϕ′ as an
embedding of G ⊕ {X} and U as a connected subset of vertices of V incident
to one ({X}, ϕ′)-area A, but not containing any vertex of X . In addition, let
P = (u1, . . . , up) be an h-high cyclic alley enclosing U that is minimal with
respect to the lexicographic ordering of the tuple (size, size of the inner graph).

Lemma 3.6.14. P (G,X,ϕ′) has at most two X-crossing sequences.

Proof. Let X = (L1, L2). If the lemma does not hold, there are at least four
X-crossing sequences and we can find an i ∈ {1, 2} for which there are two
X-crossing sequences Q = (s, v1, . . . , vp, t) and Q′ = (s′, v′1, . . . , v

′
p′ , t

′) such that
the endpoints of all vedges v1, . . . , vp, v

′
1, . . . , v

′
p′ are contained in Li. We fix i

and choose Q and Q′ as described above with the additional constraint that the
peeling numbers of the vedges v1, . . . , vp are as small as possible and that the
peeling numbers of Q′ are as small as possible among the crossing sequences
with peeling numbers larger than that of the vedges v1 and vp. Let us choose
u ∈ {v1, vp} and u′ ∈ {v′1, v′p} such that the difference of the peeling numbers
of u and u′ are as small as possible. Our choice of Q guarantees that the face
enclosed by P (G,X,ϕ′) after adding edges between all subsequent non-adjacent
vertices of P (G,X,ϕ′) contains the crest alley of X between u and u′. Let us
define P1 and P2 to be the two h-high Z-skipping cyclic alleys that we obtain
from P (G,X,ϕ′) by replacing the Z-skipping suballey from u to u′ in the case
of P1 and from u′ to u in the case of P2 by the crest alley from u to u′ and from
u′ to u, respectively. Since U is connected and does not contain any vertex of
X , one of P1 and P2 must enclose U . Moreover, by Lemma 3.6.4.a the length of
P1 as well as the length of P2 cannot be larger than the length of P (G,X,ϕ′).
By our choice of Q, Q′, P1, and P2, it is easy to see that the inner graphs of
P1 and P2 must be subgraphs of the inner graph of P (G,X,ϕ′). Let A be one
of the two (X,ϕ′)-areas. Since there is no connection face in A for one pair of
{(s, v1), (vp, t)} as well as for one pair of {(s′, v′1), (v′p′ , t′)} and since there is no
connection face in the ({X}, ϕ′)-area A′ 6= A for each of the remaining pairs,
the inner graphs of P1 and P2 must be real subgraphs of the inner graphs of
P (G,X,ϕ′), i.e., contain less vertices. Hence, for one of P1 and P2, the removal
of the edges in Z would lead to an h-high Z-skipping cyclic alley enclosing
U of length at most |P | = |P (G,X,ϕ)| with a smaller inner graph than P .
Contradiction.

Corollary 3.6.15. If there is a pair u and v of two consecutive vedges of
P (G,X,ϕ′) such that there is no connection face in (G ⊕ {X}, ϕ′|G⊕{X}) con-
tained in A, then P (G,X,ϕ′) contains an h-high pseudo A′-shortcut of X for
the ({X}, ϕ′)-area A′ 6= A as a Z-skipping suballey.

Proof. By our choice of P , the Z-skipping alley P (G,X,ϕ′) has at least oneX-
crossing sequence. Since the number of crossings must be even, we can conclude
from Lemma 3.6.14 that P (G,X,ϕ′) has exactly two X-crossings sequences
Q = (s, v1, . . . , vp, t) and Q′ = (s′, v′1, . . . , v

′
p′ , t

′). Let us choose u ∈ {v1, vp}
and u′ ∈ {v′1, v′p} such that the crest alley from u to u′ has shortest length.
Take P ′ to be the one of the Z-skipping suballeys from u to u′ and from u′

to u of P (G,X,ϕ′) that contains two subsequent vertices for which there is no
connection face in A.

95

Assume for a moment that, for some i ∈ {1, 2}, u and u′ both have all
their endpoints in Li. Since the top edge of X is incident to no vertex with a
smaller peeling number, we know from Lemma 3.6.4.a that the length of P ′ is
at least the length of the u-u′-connecting crest alley P ′′ of X . By replacing the
Z-skipping suballey P ′ of P by P ′′ and removing all edges from the resulting
alley we would obtain an h-high cyclic alley P ∗ enclosing U of length at most
|P | that has a smaller inner graph than P ; contradiction.

The only remaining case is that the endpoints of u and u′ belong to different
sides of the crest separator. Again, the replacement of P ′ by the crest alley
from u to u′ would lead to an h-high Z-skipping cyclic alley enclosing U with
a smaller inner graph. The only reason for P ′ being part of P is that P ′ is a
pseudo shortcut of X .

For the next two lemmata, let us consider a fixed path P̃ in a mountain
connection tree T of a good mountain structure (G,ϕ,G′, ϕ′, ↓,S). To get an
easier intuition, let us assume that the vertices of P̃ are ordered from left to
right. For some r ∈ N, take C0, . . . , Cr as the (S, ϕ′)-components being the
nodes of P from left to right. Define Xi (1 ≤ i ≤ r) to be the crest separator
whose top edge belongs to both Ci−1 and Ci. The uniqueness of the crest
separators X1, . . . , Xr follows from Corollary 3.3.28. Let A0 and Ar be the
({X0}, ϕ′)-area covering C0 and the ({Xr}, ϕ′)-area covering Cr , respectively.
In addition, for i ∈ {1, . . . , r − 1}, let Ai be the ({Xi, Xi+1}, ϕ′)-area, which
covers Ci. Let Hi be the crest of (G,ϕ) contained in Ci (i ∈ {0, . . . , r}). For a
simpler notation, we call the pseudo A-shortcuts for a crest separator Xi with
A being the Ci-outer or the Ci-inner (Xi, ϕ

′)-area the left and the right pseudo
shortcuts for Xi, respectively.

In the next lemma, we consider a very special kind of cyclic alleys. Let
X = ((u1, . . . , uq), (v1, . . . , vq)) be a crest separator in (G,ϕ), and let P be an
s1-s2-connecting pseudo shortcut of X . Let P ′ be the crest alley of shortest
length from an endpoint of s2 to an endpoint of s1. The cyclic alley of (X,P)
is then the cyclic alley obtained from concatenating the vertices of P and the
vertices of P ′ in the order in which they appear on P and P ′. Explicitly note
that we do not exclude the case that s1 and s2 are equal to the lowpoint of X ,
and that in this case the s1-s2-connecting crest alley visits the top vertices of
X .

Lemma 3.6.16. For each left (right) pseudo shortcut P of a crest separator
Xi with i ∈ {1, . . . , r}, the cyclic alley of (Xi, P) encloses the crest contained in
Ci−1 (in Ci).

Proof. Let P ′ be the cyclic alley of (Xi, P). Note that Xi is the only crest
separator in S strongly going between Hi−1 and Hi. Due to this fact and since
(G,ϕ,G′, ϕ′, ↓,S) is a good mountain structure such that the border edges of
X are contained in G′, we can conclude that property PR(Xi) of Lemma 3.6.6
holds for each ridge R connecting a vertex of Hi−1 with a vertex of Hi. Hence
we know that P cannot cross R. This shows that P ′ must enclose at least some
vertices of Hi−1 (of Hi).

Let hi−1 and hi be the peeling numbers of the vertices in Hi−1 and Hi,
respectively. Note that Xi being the only crest separator strongly going between
Hi−1 and Hi implies that height(Xi) < min{hi−1, hi}. By Lemma 3.6.4.b, P
can visit at most one vertex of peeling number height(Xi) and no vertex of a

96

peeling number larger than height(Xi). Hence P ′ cannot disconnect two vertices
of Hi−1 (or of Hi) weakly and must enclose Hi−1 (Hi).

Lemma 3.6.17. Assume that X1 has no lowpoint with a peeling number ≥ h,
that Xr has no h-high ℓ-long right pseudo shortcut, and that each Xi (i ∈
{2, . . . , r}) has an h-high ℓ-long left shortcut Li being an A-alley for the C0-
outer ({X1}, ϕ′)-area A. Then X1 cannot have an h-high ℓ-long right shortcut.

Proof. Assume for a contradiction that the lemma does not hold. First note
that no crest separator X ∈ {X1, . . . , Xr} can have a lowpoint with a peeling
number ≥ h. Otherwise X would enclose either all (S, ϕ′)-components left
from X or all (S, ϕ′)-components right from X . This would imply that either
X1 or Xr has also lowpoint of peeling number at least h, where in the latter
case this lowpoint is a right pseudo shortcut of Xr. Hence, we would obtain a
contradiction to the conditions of the lemma. Let P1 be an h-high ℓ-long right
pseudo shortcut of X1 of shortest length such that the inner graph I1 of the
cyclic alley P ∗

1 of (X1, P1) is as small as possible among all such alleys. Define
i ∈ {1, . . . , r} to be as small as possible such that P1 is an A1 ∪ . . . ∪ Ai-alley.
By the conditions of the lemma, we must have i ≤ r − 1. Take P2 as an h-high
ℓ-long left pseudo shortcut of Xi+1 with shortest length such that the inner
graph I2 of the cyclic alley P ∗

2 of (Xi+1, P2) is as small as possible. Lemma
3.6.16 and the fact that a suballey L of P1 is an h-high ℓ-long right pseudo
shortcut of Xi imply that the strictly inner graphs of P ∗

1 and P ∗
2 both contain

Hi. Consequently, the alleys P1 and P2 must cross at least two times.

Intuitively, we next interchange the suballeys of P1 and P2 between the first
and last crossing of the two alleys. We then observe that the new right pseudo
shortcut P ′

1 of X1 does not contain any vertex of I2, except for some vertices of
P2. This implies that Hi is not enclosed by the cyclic alley of (X1, P

′
1), which

is a contradiction to Lemma 3.6.16.

Next we describe the interchange of the two suballeys in detail. Take P1 =
(u1, . . . , up) and P2 = (v1, . . . , vq). Let a be the smallest index such that (i) ua is
also part of P2 or (ii) ua is not contained in P2, but a vertex on the boundary of
a face F1 in (G⊕{Xi, Xi+1}, ϕ|G⊕{Xi,Xi+1}) with four vertices ua, vb, ua+1, vb+1

appearing around F1 in this series for some b ∈ {1, . . . , q − 1}. Note that the
definition of b is unique since we have chosen P1 and P2 as the shortest h-high
ℓ-long pseudo shortcuts. Set u = ua in case (i) and u = ua+1 in case (ii).
Similarly, let c be the largest index such that (i) uc is also part of P2 or (ii) uc
is not part of P2, but there exists a vertex part of P2 such that this vertex is on
the boundary of a face F2 in (G⊕{Xi, Xi+1}, ϕ|G⊕{Xi,Xi+1}) with four vertices
uc−1, vd−1, uc, vd appearing around F2 in this series for some d ∈ {2, . . . , q}. Set
u′ = uc in case (i) and u′ = uc−1 in case (ii). We then replace the suballey of
P1 from u to u′ by a suballey from a vertex v to a vertex v′ of P2, where v and
v′ is chosen as follows: Take v from {vb, vb+1} and v′ from {vd−1, vd} such that
the distance between v and v′ is as small as possible. Afterwards, if u = ua,
redefine v = ua. Similarly, if v′ = uc, redefine v′ = uc.

Since P1 and P2 were chosen as h-high ℓ-long pseudo shortcuts of shortest
length, it is clear that the suballeys of P1 from u to u′ and of P2 from v to v′

must have the same length. Since P ∗
2 weakly disconnects the vertices of I2 from

the remaining vertices, it is easy to see that the new h-high ℓ-long right pseudo
shortcut P ′

1 of Xi contains some vertices of P ∗
2 , but no other vertex of I2, i.e.,

97

also no vertex of Hi. Thus—as already observed—we obtain a contradiction to
Lemma 3.6.16.

Lemma 3.6.18. Assume that X1 has no h-high ℓ-long left pseudo shortcut
and that Xr has no h-high ℓ-long right pseudo shortcut. Then one of the crest
separators X1, . . . , Xr is h-high ℓ-long pseudo shortcut free.

Proof. Note that no crest separator X ∈ {X1, . . . , Xr} can have a lowpoint
with a peeling number ≥ h. Otherwise, X would enclose either all (S, ϕ′)-
components left from X or all (S, ϕ′)-components right from X . This would
imply that either X1 or Xr has also a lowpoint of peeling number at least h,
which then is a left pseudo shortcut of X1 and a right pseudo shortcut of Xr,
respectively. Hence, we would obtain a contradiction to our assumptions.

W.l.o.g. all crest separators Xi (i ∈ {2, . . . , r}) have an h-high ℓ-long left
shortcut. Otherwise, it suffices to prove the lemma for a shorter sequence of
crest separators. Since X2, . . . , Xr have a left pseudo shortcut, they also have
a strong left pseudo shortcut (Corollary 3.6.5). Since X1 has no left h-high ℓ-
long pseudo shortcut and because of Lemma 3.6.4, all strong left pseudo short-
cuts of X2, . . . , Xr are A-alleys for the C0-outer ({X1}, ϕ′)-area A. We apply
Lemma 3.6.17 and conclude that X1 cannot have an h-high ℓ-long right pseudo
shortcut. Consequently, X1 is h-high ℓ-long pseudo shortcut free.

Corollary 3.6.19. Let (G,ϕ,G′, ϕ′, ↓,S) be a good mountain structure, let H
be the set of all crests in (G,ϕ) that are contained in an h-high ℓ-long pseudo
shortcut free (S, ϕ′)-component, and let S′ be the set of all h-high ℓ-long pseudo
shortcut free crest separators of S. Then, for each pair of crests H ′, H ′′ ∈ H,
there is a crest separator X ∈ S′ strongly going between H ′ and H ′′.

Proof. We choose C0, . . . , Cr as the (S, ϕ′)-components on the path in the
mountain connection tree T of (G,ϕ,G′, ϕ′, ↓,S) from the (S, ϕ′)-component
containing H ′ to the (S, ϕ′)-component containing H ′′. For i ∈ {1, . . . , r}, take
Xi as the crest separator with a top edge part of both Ci−1 and Ci.

Then by Lemma 3.6.18, there must be a crest separator X ∈ S′ strongly
going between H ′ and H ′′.

It turns out that our algorithm for computing a tree decomposition often
wants to disconnect vertices of high peeling numbers from vertices of low peeling
numbers. In the following, we therefore designate sometimes a face-connected
subset of the vertices of an embedded graph (G,ϕ) as the coast of (G,ϕ) if this
subset consists of at least all vertices of peeling number 1. Take G = (V,E).
In this case, we define a coast separator for a set U ⊆ V to be a set Y strongly
disconnecting U from the coast. The coast separators are very useful for the
construction of a tree decomposition of small width. One of the reasons for the
introduction of pseudo shortcuts in this section is that they later help us to
construct coast separators more efficiently. In the next two lemmata, we show
that the vertices of a coast separator build a cyclic alley in certain cases.

Lemma 3.6.20. Let V1 and V2 be the vertex sets of connected subgraphs of a
triangulated triconnected embedded planar graph (G,ϕ). Let Y be a vertex set
strongly disconnecting V1 and V2 that among all such separators has minimal
size. Then Y is a cycle in G and, for each vertex v of Y , at most two other
vertices of Y are adjacent to v.

98

Proof. Note that G must contain more than 3 vertices since otherwise either
G is not triangulated or there is no separator in G that strongly disconnects
two vertices of G.

For simplicity, we search for a separator in a minor G′ of G obtained by
merging the vertices of V1 to a new vertex s and all vertices of V2 to a new
vertex t. Note that Y is a cycle in G if and only if it is a cycle in G′ and that
there is also a triangulated embedding of G′. By Lemma 2.2.4, there are |Y |
internally vertex-disjoint paths P1, . . . , P|Y | in G′ from s to t, i.e., each of them
visits exactly one vertex of Y . Note also that, since G is triconnected, there are
three vertex-disjoint paths from a vertex in V1 to a vertex in V2. Thus, |Y | ≥ 3.

We first show that each vertex u of Y is incident to exactly two other vertices
in Y in G′ and, hence, also in G. Assume for a moment that u is incident
to at most one other vertex of Y . In this case, we can reroute the path Pi
(1 ≤ i ≤ |Y |) having u as inner vertex by replacing u by some neighbors of u
appearing clockwise around u such that the new path visits no vertex of Y—a
contradiction to the fact that Y disconnects s and t. Let us now assume that u
is incident to at least three other vertices v1, v2, and v3 of Y . Since no path Pi
(1 ≤ i ≤ |Y |) can use an edge incident to u and another vertex of Y , we have a
K3,3 as a minor in G′: Each vertex of {s, t, u} is connected by a path to each
vertex of {v1, v2, v3} such that all paths are pairwise internally vertex disjoint.
Contradiction.

Thus, the subgraph of G induced by the vertices of Y is a set of cycles
C1, . . . , Cq. Clearly one of these cycles must already disconnect V1 and V2.
Since Y was chosen as a separator of minimal size, we must have q = 1.

Lemma 3.6.21. Let (G,ϕ) be a triconnected embedded graph G = (V,E), and
let H1 = (V1, E1) and H2 = (V2, E2) be connected subgraphs of G. If Y is a
separator strongly disconnecting V1 and V2 such that Y among all separators
strongly disconnecting V1 and V2 has as few vertices as possible, then there
is a cyclic alley in (G,ϕ) whose vertices consist exactly of the vertices in Y .
Moreover, for every vertex v in Y , at most two vertices in Y are face-adjacent
to v.

Proof. We first show that there is at least one cyclic alley with the properties
described in the lemma. We construct a triangulated supergraph G+ of (G,ϕ)
by subsequently inserting edges into a face F with a boundary of more than
three vertices as follows: If the boundary contains a vertex of Y , we add an
edge with one endpoint being in Y . Otherwise, we add an arbitrary edge. After
the insertions Y is still a separator of minimal size strongly separating V1 and
V2 in G+. Y is a cycle in G+ by Lemma 3.6.20, i.e., the vertices in Y induce a
cyclic alley in (G,ϕ).

It remains to show that, for every vertex v in Y , there are at most two
vertices in Y being face-adjacent to v. Assume that this is not the case, and let
(v1, . . . , vp) be an ordering of the vertices in Y corresponding to one cyclic alley.
Choose vi with 1 < i < p as a vertex that beside vi−1 and vi+1 is also face-
adjacent to a vertex vj with j 6∈ {i−1, i, i+1}. Since H1 and H2 are connected,
one of the vertex sets vmax{i,j}, . . . , vp, v1, . . . , vmin{i,j} or vmin{i,j}, . . . , vmax{i,j}

disconnects V1 and V2 strongly and is of smaller size than Y . Contradiction.

We say that a (Z-skipping) cyclic alley P represents a coast separator Y if
the vertex set of P is exactly Y . Let (G,ϕ) be a triconnected embedded graph.

99

Take G = (V,E). Then, the inner graph of a coast separator Y for a subset
U ⊂ V with Y being of minimal size among all coast separators for U is the
inner graph of a cycle representing Y . By Lemma 3.6.21 the inner graph of such
a coast separator is well-defined. A coast separator Y for a vertex set U ⊆ V is
called absolutely-minimal if it has the smallest size among all coast separators
for U and if, among those, the inner graph of the coast separator has as few
vertices as possible.

Lemma 3.6.22. Let (G,ϕ) be a triconnected embedded graph with G = (V,E)
with a coast U1, let ℓ ∈ N, and let U2 ⊂ V . Assume that G[U2] is connected.
Then, given the set NG(U1) \ U1, the graph G[V \ U1], and the embedding
ϕ|G[V \U1], one can test in O(ℓ|V \ U1|) time whether there is a separator of
size at most ℓ strongly disconnecting U1 and U2. If such a separator exists,
within the same time bound, one can also construct an absolutely-minimal coast
separator Y for U2 as well as the inner graph (I, ϕ|I) of Y .

Proof. Let G∗ = (V ∗, E∗) be the graph obtained from G by merging the
vertices in U1 to a new vertex t and the vertices of U2 to another new vertex s.
G∗ can be constructed in O(|V \U1|) time from G[V \U1] as follows: Connect the
vertices part of NG(U1)\U1 to a new vertex t, and replace the vertices in U2 by
a new vertex s that is connected to all vertices in NG(U2)\U2. By Lemma 2.2.4,
either there are ℓ + 1 internally vertex-disjoint s-t-paths in G∗ or there is a set
of size at most ℓ disconnecting s and t in G∗. Moreover, either the paths or the
separator can be found in O(ℓ|V ∗|) = O(ℓ|V \ U1|) time using G∗. Remember
that the algorithm for solving the problem above first constructs the vertex-
disjoint-to-edge-disjoint version G+ of G∗—see for a quick reminder Fig 2.2.5.
For each vertex v of G∗, let (v′, v′′) be the directed edge of G+ connecting
the two vertices introduced for v. For some r ∈ {3, . . . , ℓ + 1}, the algorithm
first constructs a path P++

i in the residual graph of G+ and P++
1 , . . . , P++

i−1

for each 1 ≤ i ≤ r. Then, these paths are used to compute edge-disjoint s′′-
t′-paths P+

1 , . . . , P
+
r in G+. Subsequently, these paths are transformed into r

internally vertex-disjoint s-t-paths P ∗
1 , . . . , P

∗
r in G∗. More exactly, remember

that a path P ∗
i (1 ≤ i ≤ r) is obtained from P+

i by applying the backward
vertex transformation.

Note explicitly that r < ℓ+1 if and only if the algorithm returns a separator
Y of size r. Thus, if a separator Y is found, Y has minimal size. By our
construction of G∗, Y is then a separator for U1 and U2 of minimal size in
(G,ϕ).

It remains to determine the inner graph of Y and to show that the inner
graph of Y has as few vertices as possible among all coast separators of minimal
size. Let S+ be the subset of vertices reachable from s′′ in the residual graph of
G+ and P++

1 , . . . , P++
r , and let S∗ = {u | {u′, u′′} ∩ S+ 6= ∅}. The vertices in

U2 ∪ S∗ \ {s} are contained in the inner graph of all coast separators for U2 of
size r in (G,ϕ). This can be shown as follows: Clearly, the vertices in U2 must
be contained in all inner graphs of coast separators for U2. For the remaining
vertices, assume that there is a vertex v ∈ S∗ \ {s} for which there is a coast
separator Y ′ for U2 of size r in (G,ϕ) with the inner graph of Y ′ not containing
v. Note that in G+ there is a path P+ edge-disjoint from P+

1 , . . . , P
+
r leading

from s′′ to the vertex v′ introduced for v. Our construction of G+ implies that
there is an s-v∗-path P ∗ in G∗ internally vertex-disjoint to P ∗

1 , . . . , P
∗
r . Since

100

all these paths must visit at least one vertex of Y ′, we must have |Y ′| ≥ r + 1.
Contradiction.

We next want to construct an absolutely-minimal coast separator Y for U2

in (G,ϕ). Let Y + consist of the union of the last vertex of P+
i contained in

S+ over all i ∈ {1, . . . , r}. Then, all paths from a vertex in S+ to t′ visit a
vertex of Y +. We set Y = {u | {u′, u′′} ∩ Y + 6= ∅}. By the construction of
P ∗
i from above, Y consists of the last vertex of P ∗

i contained in S∗. Moreover,
all paths from a vertex in S∗ to t in G∗ visit a vertex in Y . Hence, Y defines
a coast separator for U2 of size r in (G,ϕ). Since |Y | = r, Y is of minimal
size. We next show that Y is an absolutely-minimal coast separator for U2 in
(G,ϕ). We already know that each inner graph of a coast separator of minimal
size contains all vertices of U2 ∪ S∗ \ {s}. It therefore suffices to show that only
vertices in U2 ∪ S∗ \ {s} belong to the inner graph I of Y in (G,ϕ). Otherwise,
let v0 be a vertex of I not contained in U2∪S∗ \ {s}. Then, v0 cannot belong to
the two connected components C1 and C2 of G[V − Y] containing U1 and U2,
respectively. Consequently, G[V −Y] contains another connected component C3

containing v0. Since G is triconnected, there are three internally vertex-disjoint
paths Q1, Q2, Q3 from v0 to a vertex of U1 which implies that there are three
internally vertex-disjoint paths from v0 to three different vertices v1, v2, and v3
of Y that beside these vertices visit only vertices of C3. If we take the three
paths in {P ∗

1 , . . . , P
∗
k } that visit v1, v2, and v3, respectively, the three subpaths

of these paths from s to the vertices in {v1, v2, v3}, the three subpaths from the
vertices in {v1, v2, v3} to t, and the three paths Q1, Q2, and Q3 define a K3,3

in G∗. Note that G∗ is a minor of the planar graph obtained from the planar
graph G by adding edges into connecting-faces of the face-connected coast U1 as
long as U1 is not connected. Thus, G∗ must be still planar by Obs. 1.4.9, which
is a contradiction to the fact that we found a K3,3. Therefore our assumption
that I contains vertices not part of U2 ∪ S∗ \ {s} must be wrong.

To sum up, we can compute an absolutely-minimal coast separator Y for U2

as well as the inner graph I of Y in O(ℓ|V \ U1|) time. Given the embedding
ϕ|G[V \V1] of G[V \ V1], we can additionally construct the embedding of ϕ|I in
the same time.

3.7 A Linear-Time Algorithm

Given α ∈ R with 0 < α ≤ 1, a triconnected graph G = (V,E) of treewidth k, a
(k+ ⌊αk⌋+2)-outerplanar rooted combinatorial embedding ϕ of G, and a coast
consisting of all vertices with peeling numbers at most ⌊αk⌋ + 1, the algorithm
below constructs a good mountain structure (G,ϕ,G′, ϕ′, ↓,S) as well as a set
P of cyclic alleys with several good properties together with their inner graphs.
Let H be the set of crests in (G,ϕ) of height exactly k + ⌊αk⌋ + 2.

(mountain structure, set) function decomposek,α(graph G = (V,E))

Step 1: In O(k|V |) time, compute first a good mountain structure M =
(G,ϕ,G′, ϕ′, ↓,S), second all (S, ϕ′)-components of M, third, for each (S, ϕ′)-
component C, the set TC of top edges belonging to C, fourth the mountain
connection tree T = (W,F) of M, and fifth, for each top edge, the two (S, ϕ′)-
components to which it belongs (Lemma 3.3.31). Initialize P = ∅.

101

Step 2: Define h = ⌊αk⌋ + 2. Determine in O(|V |k3 log k) time, for all
crest separators X ∈ S and all ({X}, ϕ′)-areas A of X , a pseudo (A, h)-shortcut
set of X , the set S′ ⊆ S consisting of all h-high k-long pseudo shortcut free
crest separators, and the h-high k-long pseudo shortcut free (S, ϕ)-components
(Lemma 3.6.13). Moreover, compute the set H+ ⊆ H of the crests of (G′, ϕ′)
contained in an h-high k-long pseudo shortcut free (S, ϕ′)-component in O(|V |)
time.

Step 3: Compute all (S′, ϕ′)-components in O(|V |) time.

Step 4: For each (S′, ϕ′)-component C = (VC , EC) obtained in Step 3, test
in O(|VC |) time whether it contains a crest H ∈ H+, which then is unique by
Corollary 3.6.19. If so, define the coast U1 as the union over all vertices v with
Nϕ(v) ≤ h− 1 as well as over all vertices in V \ VC . Then compute in O(|VC |)
time the subset of vertices in VC that have peeling number h and are adjacent
to a vertex of peeling number h − 1 or that have peeling number at least h
and are boundary vertices of C. We later show that this set is exactly the set
NG(U1) \U1. Afterwards, we can easily construct the graph G[V \U1] again in
O(|VC |) time and then apply Lemma 3.6.22 with U2 = H to test in O(k|VC |)
time whether there is a separator Y for U1 and H of size at most k. If this
is not the case, output that the treewidth is larger than k and stop the whole
algorithm. Otherwise, compute the following in O(k|VC |) time: an absolutely-
minimal coast separator Y for H , the inner graph I of Y with respect to (G,ϕ),
and the embedding ϕ|I (again Lemma 3.6.22).

Step 5: For each coast separator Y computed in Step 4, construct a cyclic
alley P representing Y , i.e., with vertex set Y , and add P to P . Store the
inner graph I computed for Y as inner graph of P . Since each vertex of
Y is face-adjacent to only two other vertices of Y—as shown in the proof of
Lemma 3.6.21—this step runs also in O(|V |) time.

Step 6: Determine the set H′ of all crests in H that are enclosed by one of
the cyclic alleys P ∈ P . This can be done in O(|V |) total time since different
cyclic alleys in P are constructed in different (S′, ϕ′)-components.

Step 7: Iterate over each maximal connected subtree T ∗ of the mountain
connection tree T that has only the (S, ϕ′)-components containing a crest H ∈
H \ H′ as nodes and that, for each h-high k-long pseudo shortcut free crest
separator X ∈ S, contains at most one (S, ϕ′)-component including the top
edge of X . For each such subtree T ∗ of T , apply the Steps (a)-(e):

(a) Initially, consider T ∗ as undirected tree without any marked nodes, and
initialize a set W ∗ as the set of the (S, ϕ′)-components being nodes in T ∗.
As long as there is a node in W ∗ with exactly one unmarked neighbor in
T ∗, run (b). Afterwards proceed with (c).

(b) Take an (S, ϕ′)-component C with exactly one unmarked neighbor C′ in
T ∗. Delete C from W ∗ (but not from T ∗). Next try to find a crest
separator X and a shortcut L of X as follows:

In a time linear in the number of edges of C, test by the use of the
precomputed pseudo shortcut sets if there is a crest separator with a top
edge in C enclosing C. If so, take X as this crest separator and L as the
lowpoint of X . Otherwise, take X as the crest separator, whose top edge
belongs to C and to C′. Again, use the precomputed pseudo shortcut

102

sets, and determine in O(1) time, whether X has a strong h-high k-long
A-pseudo shortcut L for the C-inner ({X}, ϕ′)-area.

If and only if a shortcut L is found, mark C, and, for the crestH contained
in C, define PH to be the cyclic alley of (X,L), and replace the edge
{C,C′} by a directed edge (C,C′).

(c) For each remaining unmarked node C of T ∗, do the following: Choose a
crest separator X ∈ S that has a top edge belonging to C as well as a
strong h-high k-long A-pseudo shortcut L for the C-inner ({X}, A)-area.
For the crest H contained in C, define PH to be the cyclic alley of (X,L).

(d) Let T̃ be the graph consisting of the nodes in T ∗ and the directed edges
constructed in Step 7(b), which is an intree—i.e., a directed tree whose
edges are all directed from a node to its parent—as shown in Lemma 3.7.2.
Denote the root of T̃ by R. Choose C to be the (S, ϕ′)-component of
maximal depth being enclosed by a crest separatorX with a top edge in C
with X also enclosing R, or let C = R if no such (S, ϕ′)-component exists.
Note that C is uniquely defined since each (S, ϕ′)-component C′ can be
enclosed by at most one crest separator with a top edge in C′. For the
crest H ∈ H contained in C, add PH to P . Moreover, compute the inner
graph I = (VI , EI) of PH and all contained crests in O(|VI |) time. This is
done by marking all vertices of PH as seen and then by starting a DFS.
Here we use the fact that Lemma 3.6.16 guarantees that H is enclosed by
PH so that the DFS indeed determines the correct inner graph. During the
DFS, determine additionally all crests in H \H′ contained in I. Initialize
now T ′ as the forest obtained from T̃ by deleting all (S, ϕ′)-components
containing a crest of H \ H′ contained in I. Note that R is one of the
deleted (S, ϕ′)-components.

e) Until all nodes are deleted from T ′, repeat: Choose an (S, ϕ′)-component
C that is a root of one intree in T ′, and add PH to P for the crest
H contained in C. Moreover, compute the inner graph I = (VI , EI) of
PH in O(|VI |) time (similar as in Step d). Afterwards, delete all (S, ϕ′)-
components containing a crest of H \ H′ contained in I as nodes from
T ′.

The running time of Step 7 is analyzed in Corollary 3.7.6.
Step 8: Return the mountain structure M as well as the set P of cyclic

alleys and the inner graphs of these cyclic alleys.

Informally, we want to show in Corollary 3.7.6 that the algorithm above
constructs a set of coast separators of size 3k + 2 enclosing all highest crests
such that different coast separators ’are part of’ different (S, ϕ′)-components.
We begin with some auxiliary lemmata.

Lemma 3.7.1. Taking a graph G of treewidth at most k as input, the algorithm
above constructs, for each crest in H+, in Step 4 an absolutely-minimal coast
separator. Moreover, the cyclic alleys added in Step 7 to P, have length at most
3k + 2.

Proof. Let C be an (S′, ϕ′)-component containing a crest H ∈ H+. Let U ′
1

be the set of vertices of peeling number at most h − 1, where h = ⌊αk⌋ + 2 as

103

in the algorithm. Then, by Theorem 3.4.3 there is a separator of size at most
k strongly separating U ′

1 and H in G. Let Y be an absolutely-minimal coast
separator for H in (G,ϕ) if we let U ′

1 instead of U1 = U ′
1∪ (V \VC) be the coast

of G. Note explicitly that U ′
1 and H indeed induce a connected component in

G. By Lemma 3.6.21, we already know that the subgraph of G induced by the
vertices of Y contains a cyclic alley P with vertex set Y . We next show that P
is an alley in (C,ϕ|C). Assume for a contradiction that this is not true. Since
the crest separators in S′ are h-high k-long pseudo shortcut free, they cannot
have a lowpoint of peeling number at least h. Due to this, there is at least
one crest separator X ∈ S′ such that the alley P (G,X,ϕ′) has at least one
X-crossing sequence. Because the number of crossing sequences must be even,
Lemma 3.6.14 implies that P (G,X,ϕ′) has exactly two X-crossing sequences
Q = (s, v1, . . . , vp, t) and Q′ = (s′, v′1, . . . , v

′
p′ , t

′). Let us choose u ∈ {v1, vp}
and u′ ∈ {v′1, v′p} such that the crest alley from u to u′ has shortest length.
Take P ′ to be the suballey from either u to u′ or from u′ to u such that P ′

contains two consecutive vertices for which there is no connection face in the
C-inner ({X}, ϕ′)-area A. Hence, we know from Corollary 3.6.15 that P ′ is an
h-high k-long pseudo A′-shortcut of X for the ({X}, ϕ′)-area A′ 6= A. However,
this cannot be the case since X as a crest separator in S′ does not have any
h-high k-long pseudo shortcuts. Thus, Y ⊆ VC , and Y therefore remains to be
an absolutely-minimal coast separator of size at most k if we let now U1 instead
of U ′

1 be coast of G. Hence the algorithm finds an absolutely-minimal coast
separator in Step 4.

Note finally that the length of the cyclic alleys computed in Step 7 is bounded
by the length of an h-high k-long pseudo shortcut plus the number of vertices
v of X with Nϕ(v) ≥ h, i.e., bounded by k + 2(k + 1) = 3k + 2.

Lemma 3.7.2. For a fixed subtree T ∗ considered in Step 7, the forest T̃ consists
of exactly one intree.

Proof. Note that the algorithm assigns to each marked node of T ∗ exactly
one outgoing edge. T̃ cannot contain any cycle—even after making all edges
of T̃ undirected—since T ∗ does not contain any cycle. Hence, T̃ is indeed a
tree immediately after its construction if we can show that after the marking
process in Step 7 only one node of T ∗ remains unmarked. Assume that there
is more than one unmarked node at the end of Step 7(b). For i ∈ {1, 2}, let
wi be the ith node that remains unmarked after deleting it from W ∗. This
means that wi has only one unmarked neighbor w′

i and that the crest separator
Xi with its top edge part of the two (S, ϕ′)-components Cwi

for wi and Cw′
i

for w′
i does not have an h-high k-long pseudo shortcut being contained in the

Cwi
-inner ({Xi}, ϕ′)-area. It is also not hard to see that, by our subsequent

choices of unmarked nodes with exactly one unmarked neighbor, the maximal
subtree of T ∗ containing wi, but not w′

i, must consist of wi and additionally
only of marked nodes. Hence, for all i, j with {i, j} = {1, 2}, wi is not contained
in the Cwj

-inner ({Xj}, ϕ′)-area. Consequently, by Lemma 3.6.18, there must
be an h-high k-long pseudo shortcut free crest separator in S with a top edge
belonging to two consecutive nodes of the path in T ∗ from Cw1 to Cw2 . This is
a contradiction to the construction of the trees T ∗ in Step 7.

Let M = (G,ϕ,G′, ϕ′, ↓,S) be the good mountain structure, let T be a
mountain connection tree for M, and P be the set of coast separators con-

104

structed by the algorithm above for a graph G. In addition, let us define m as
the mapping such that, for each cyclic alley P ∈ P , m(P) is the set consisting
of all (S, ϕ′)-components containing a crest being enclosed by P .

Lemma 3.7.3. For each P ∈ P, the graph GP consisting of the vertices and
edges of all (S, ϕ′)-components in m(P) contains the inner graph IP of P as a
subgraph.

Proof. Let us first consider a cyclic alley P that is constructed in Step 7
as a cyclic alley of (X,L) for a crest separator X ∈ S with a lowpoint of
peeling number at least h and a pseudo shortcut L that consists exactly of this
lowpoint. The inner graph of P then consists exactly of the vertices of the
(S, ϕ′)-components enclosed by X and this components are exactly the (S, ϕ′)-
components contained in m(P).

Let us next consider a cyclic alley P ∈ P not considered in the previous
paragraph. If P was constructed in Step 5, let C1 be the (S, ϕ′)-component
containing the crest of H+ enclosed by P . Otherwise, if P is the cyclic alley of
(X,L) for a crest separator X ∈ S and a strong h-high k-long pseudo shortcut
L, let C1 be the (S, ϕ′)-component that contains the top edge of X and is
contained in the ({X}, ϕ′)-area for which L was constructed. Assume that
there is some vertex v of IP not part of GP . This implies that there is an
(S, ϕ′)-component C2 containing v such that the crest H in C2 is not enclosed
by P . Let X ′ ∈ S be the crest separator with a top edge in C2 such that C1 is
part of the C2-outer ({X ′}, ϕ)-area. Since, by our choice of C2 the vertices of
the C2-inner ({X ′}, ϕ)-area cannot be completely enclosed by P , P (G,X ′, ϕ′)
contains a pair (u, v) of two consecutive vedges such that there is no connection
face in (G ⊕ {X ′}, ϕ′|G⊕{X′}) contained in the C2-outer ({X ′}, ϕ′)-area. Note
that P (G,X ′, ϕ′) is either an absolutely-minimal coast separator without any
vertices of peeling number lower than h or a cyclic alley containing a strong h-
high k-long pseudo shortcut L of X ′. Thus, P (G,X ′, ϕ′) must contain a pseudo
shortcut in the C1-outer ({X ′}, ϕ′)-area by Corollary 3.6.15 or by the definition
of a strong pseudo shortcut. Lemma 3.6.16 then implies that P must enclose
H . This contradiction shows that the vertex v defined above cannot exist.

Lemma 3.7.4. For each P ∈ P, m(P) induces a connected subgraph of T .

Proof. Let H0 be the crest for which P is constructed, and let C0 be the
(S, ϕ′)-component containing H0. If there is an (S, ϕ′)-component C′ with a
crest H ′ that is enclosed by P , let C0, . . . , Cr (r ∈ N) in this order be the
(S, ϕ′)-components of a C0-C

′-path in T—in particular, Cr = C′. In addition,
for 1 ≤ i ≤ r, let Hi be the crest contained in Ci, and let Xi be the crest
separator of S with its top edge belonging to Ci−1 and Ci.

Let us first consider the case that P was constructed in Step 7 as a cyclic
alley of (X,L) for a crest separator X ∈ S with a lowpoint of peeling number
at least h and a pseudo shortcut L that consists exactly of this lowpoint. Then,
m(P) consists exactly of the (S, ϕ′)-components enclosed by X and they clearly
induce a connected subtree of T .

In all other cases, since P encloses beside H0 also the crest H ′, a suballey
P ′ of P (G,X1, ϕ

′) must be a strong pseudo shortcut for the C0-outer ({X1}, ϕ′)
area of X1. Here we use the fact that P is either an absolutely-minimal coast
separator or a cyclic alley for a pair (X,L) with X being a crest separator and

105

L being a strong pseudo shortcut. Let q be the minimal index in {1, . . . , r} such
that P ′ is completely contained in the C0-inner ({Xq}, ϕ′)-inner area Aq of Xq,
or let q = r + 1 if no such separator exists. Then, for all crest separators Xi

with 1 ≤ i < q, P (G,Xi, ϕ
′) must contain an h-high k-long Ai-shortcut of X for

the Ci-inner ({Xi}, ϕ)-area Ai. By Lemma 3.6.16, Hi is then enclosed by P . If
q < r, the only possibility for P to enclose H ′ and to be an Aq-alley is that Xq+1

has a lowpoint. In this case, Xq+1 as well as P encloses all (S, ϕ′)-components
Xq+1, . . . , Xr. Hence, C0, . . . , Cr are all contained in m(P). We can conclude
that m(P) must be connected.

Lemma 3.7.5. m(P)∩m(P ′)= ∅ for all pairs of different cyclic alleys P, P ′ ∈P.

Proof. Let us assume that there are two cyclic alleys P and P ′ in P both
enclosing a common crest.

We first consider the case that one of the two cyclic alleys, say P , is con-
structed in Step 5 for some crest H ∈ H+. Then P ′ must be constructed in
Step 7 since different cyclic alleys constructed in Step 5 are contained in differ-
ent (S′, ϕ′)-components. Let H ′ be the crest for which P ′ was constructed and
let C′ be the (S′, ϕ′)-component containing H ′. Let C0, . . . , Cr (r ∈ N) in this
order be the (S, ϕ′)-components of a C′-C-path in T—in particular, C0 = C′

and Cr = C. In addition, for 1 ≤ i ≤ r, let Hi be the crest contained in Ci,
and let Xi be the crest separator of S with its top edge belonging to Ci−1 and
Ci. Let us first consider the case that X1 has a lowpoint. Then the crest alley
constructed for H ′ must be a cyclic alley of (X,L) with X being a crest separa-
tor X ∈ S with a top edge in C′ that has a lowpoint of peeling number at least
h and with L being a pseudo shortcut that consists exactly of this lowpoint. If
X 6= X1, H

′ and H are in the same ({X}, ϕ′)-area, i.e., X beside H ′ must also
enclose H which is a contradiction to the fact that H is contained in an h-high
k-long pseudo shortcut free (S, ϕ′)-component. Otherwise, i.e., if X = X1, L
must be a pseudo shortcut for the C′-inner ({X1}, ϕ′)-area. Hence P ′ is also
contained in this area. If P (G,Xi, ϕ

′) is not completely contained in the C′-
outer ({X1}, ϕ′)-area, Corollary 3.6.15 implies that a suballey of P (G,Xi, ϕ

′)
is a pseudo-shortcut for the C′-inner ({X1}, ϕ′)-area and then encloses H ′ by
Lemma 3.6.16. However, this could not be because of H ′ /∈ H′. We can conclude
that P is contained in the C′-inner and P ′ in the C′-outer ({X1}, ϕ′)-area and
therefore they cannot both enclose the same crest.

It remains to consider the case that both, P and P ′ are constructed in Step
7. By the argumentation above, note that a cyclic alley P̃ constructed in Step 7,
m(P̃) does not contain an (S, ϕ′)-component with a crest in H′. Moreover, the
construction of each tree T ∗ in Step 7 implies that, for two (S, ϕ′)-components
adjacent in T belonging to different subtrees T ∗ constructed in Step 7, the
crest separator going between these (S, ϕ′)-components is h-high ℓ-long pseudo
shortcut free. We hence can conclude together with Lemma 3.7.4 that all (S, ϕ′)-
components of m(P) are contained in one tree T ∗. Thus, P and P ′ must be
added into P during the Steps 7(d) and 7(e) for the same tree T ∗. We next
want to show that different cyclic alleys added to P during the traversal of T̃
in the Steps 7(d) and 7(e) cannot contain the same crests. Since m(P) is a
connected subtree of T ∗ for each P ∈ P (Lemma 3.7.4), all we have to show
is the following: Whenever we construct a cyclic alley PH for a crest H with
PH being added to P—in which case the (S, ϕ′)-component C containing H

106

must be the current root of T ′—then PH is completely contained in the C-inner
({X}, ϕ′)-area of the crest separator X separating C from the parent of C in
T̃ . This is clear, if C is not enclosed by a crest separator: In this case PH is
chosen as the cyclic alley of (X,L) for an A-pseudo shortcut L with A being the
C-inner ({X}, ϕ′) area. Otherwise, P is chosen as a crest separatorX ′ enclosing
C. If in this case, P is not contained in the C-inner ({X}, ϕ′)-area, X ′ must
enclose all ancestors of C in T̃ , in particular, X ′ encloses also the root of R of T̃ .
But in this case C must have been already deleted in Step 7(d). Contradiction.

Corollary 3.7.6. Let α ∈ R with 0 ≤ α ≤ 1. Assume that we are given a
(k+ ⌊αk⌋+ 2)-outerplanar rooted combinatorial embedding ϕ for a triconnected
graph G = (V,E) of treewidth k with the coast of G consisting of all vertices of
peeling number at most ⌊αk⌋+1. In O(|V |k4/α log k) time, the algorithm above
then constructs a good mountain structure M = (G,ϕ,G′, ϕ′, ↓,S), a mountain
connection-tree T for M, a set of cyclic alleys P and, for each P ∈ P, the
inner graph I of P and the corresponding embedding ϕ|I such that the following
properties hold:

(i) There is an injective mapping m from the cyclic alleys in P to the (S, ϕ′)-
components such that, for each P ∈ P, m(P) induces a connected subgraph
of T and such that the union GP of the (S, ϕ′)-components in m(P) con-
tains the inner graph IP of P as a subgraph.

(ii) For each crest H of height exactly k+ ⌊αk⌋+ 2 in (G,ϕ), there is a cyclic
alley P ∈ P with its vertex set Y being a coast separator for H of size at
most 3k + 2.

Proof. We use the algorithm described at the beginning of this section and
first analyze its running time. Except Step 7, we have already analyzed the
running time of each of the steps in the description of the algorithm. The sum
of the running time of all these steps is bounded by O(|V |k3 log k). Let us next
analyze the running time for Step 7. Note that the computation of all subtrees
T ∗ of T in Step 7 can be done in O(|W |) = O(|V |) total time, Step 7(b) and
Step 7(c) take O(k|VC |) time for each (S, ϕ′)-component C considered, where
VC is the vertex set of C. Since we have m(P)∩m(P ′) = ∅ for all pairs of cyclic
alleys in P with P 6= P ′, the running time of Step 7(d) and Step 7(e) sums up
to O(k|V |). In summary, Step 7 runs in O(k|V |) time; and the total running
time is bounded by O(|V |k3 log k).

We next show that the set P of cyclic alleys computed by the algorithm has
all desired properties. Property (i) follows from Lemmata 3.7.3-3.7.5.

Concerning property (ii), Lemma 3.7.1 and the definition of H′ imply that
all crests H ∈ H′ are enclosed by a cyclic alley in P consisting of at most k
vertices. Each remaining crest in H \ H′ is contained in an (S, ϕ′)-component
being a node in one of the subtrees T ∗ considered in Step 7. Since an (S, ϕ′)-
component is removed from T ′ in step Step 7(d) only if its crest is enclosed by
a cyclic alley P ∈ P , the coast separators added in Step 7 to P must enclose all
crests in H \H′ and are of size at most 3k + 2 (Lemma 3.7.1).

We now combine our results to compute, for a rational number α with 0 <
α ≤ 1 and for a connected embedded planar graph (H∗, ψ∗) with treewidth k,

107

a tree decomposition of width 9k + 3⌊αk⌋ + 9. More precisely, we solve a more
general problem that we call the inner tree decomposition problem (ITD). In this
problem, we are given a quintuple (k, α, (H∗, ψ∗), (H,ψ), Y), where either Y is
the vertex set of a cyclic alley P of length at most 3k + 2 in (H∗, ψ∗), H is the
inner graph of P in (H∗, ψ∗) and ψ = ψ∗|H , or (H,ψ) = (H∗, ψ∗) and Y = ∅.
The goal is to compute a tree decomposition for H of width 9k+3⌊αk⌋+9 with
one bag containing at least all vertices of Y .

For solving this problem, the idea is to construct some cyclic alleys in (H,ψ),
to compute the inner graph (H ′, ϕ′) for each such alley P , and to recursively
solve ITD on (k, α, (H∗, ψ∗), (H ′, ϕ′), YP) with YP being the vertex set of P .
Then, a tree decomposition (T ′, B′) is computed for the graph H ′′ obtained
from H by deleting all computed inner graphs. Moreover, (T ′, B′) should con-
tain a bag with exactly the vertices of YP for each computed cyclic alley P . If
the precomputed cyclic alleys were chosen appropriately, we can guarantee that
H ′′ is ℓ-outerplanar for a small value of ℓ. One can therefore compute (T ′, B′)
easily, put the vertices of Y into all bags of (T ′, B′), and finally connect (T ′, B′)
with the recursively constructed tree decompositions to a tree decomposition of
H with all desired properties. However, for an efficient implementation, it is not
really possible to implement a subroutine using the whole graph (H∗, ψ∗) as in-
put parameter since the vertices of the subgraph (H∗, ψ∗), which are considered
in a current call of our subroutine, would then also be part of the subgraphs
taken as input for previous calls. Instead of this, we use one global represen-
tation of our original graph (H∗, ψ∗) and a subroutine TreeCompk,α accessing
this global graph representation.

For j ∈ N and for a cyclic alley P in an embedded graph (G,ϕ) separating
a vertex set U from all vertices with peeling number 1, the j-inner graph of P
with respect to (G,ϕ) is the subgraph of G induced by the vertices v of the
inner graph I of P with Nϕ|I (v) ≤ j. For a subgraph H of our original graph
H∗, let H(q) be subgraph of H induced by all vertices v with Nψ∗|H (v) ≤ q.
Then for solving ITD on the instance (k, α, (H∗, ψ∗), (H,ψ), Y) for a subgraph
H of H∗ and ψ = ψ∗|H , we call a subroutine TreeCompk,α that takes the tuple
((H(q), ψ|H(q)), Y) as input, where q = k + ⌊αk⌋ + 2.

Our main algorithm constructs in a preprocessing phase before the first call
of TreeCompk,α the graph (H∗(q), ψ∗|H∗(q)) in a time linear in the number of
vertices of H∗. This is done by inserting an additional vertex s1 into the outer
face of H∗ and applying Lemma 3.6.7, where we take Z = ∅ and A as the area
consisting of all inner faces. We then obtain a tree decomposition for H∗ by
calling TreeCompk,α((H∗(q), ψ∗|H∗(q)), ∅).

We next describe the routine TreeCompk,α on an input ((H,ψ), Y), where
we assume that Y is a cyclic alley in H∗ with |Y | ≤ 3k + 2 and that (H,ψ) is
the q-inner graph of Y in (H∗, ψ∗).

tree decomposition function TreeCompk,α(emb. graph (H,ψ), cyclic alley Y)
Step 1: Take U as the vertex set of H . In O(|U |) time, determine for H

the biconnected components and the block-cutpoint tree of H . In O(|V ′|) time,
compute for each biconnected component H ′ = (V ′, E′) of H the triconnected
components of H ′ by constructing the SPQR tree for H ′. For example, one
can use an implementation given by Gutwenger and Mutzel [45]. Beside the
edges of H ′, each triconnected component may contain additional virtual edges;
however, since each triconnected component is a minor of H ′, the treewidth

108

of each triconnected component is bounded by the treewidth of H ′. Again
in O(|V ′|) time, for each triconnected component K = (VK , EK), choose an
embedding ζ with ζ|H′ [VK] = ψ|H′ [VK] = ψ∗|H′[VK], and compute the peeling
numbers of the vertices in K with respect to ζ.

Step 2: For each triconnected component K with at most 3 vertices, com-
pute a tree decomposition consisting of only one bag containing the vertices ofK
and of Y in O(k) time. Moreover, for each triconnected embedded component
(K, ζ) with more than 3 vertices and no vertex v with Nζ(v) = q, construct
a tree decomposition for K of width 3(q − 1) − 1 in O(q2|VK |) time (Corol-
lary 3.5.13). In O(q|VK |) time, put additionally the vertices of Y into all bags
of the tree decomposition so that the treewidth increases to 3q + 3k − 2.

Step 3: For each triconnected embedded component (K, ζ) containing a
vertex v with Nζ(v) ≥ q, determine the embedded graph (G,ϕ) that can be
obtained from (K, ζ) by merging, for each maximal connected component con-
sisting only of vertices v with Nζ(v) ≥ q, its vertices to a single vertex. In
detail, determine the connected components of the subgraph of K induced by
all vertices of peeling number of exactly q, and merge each such component
to one vertex. This construction can be done in O(|VK |) time and does not
increase the treewidth since G is a minor of K. We later show that G is still
triconnected. Take G = (V,E) and apply Steps (a)-(f) to (G,ϕ).

(a) Construct a good mountain structure M = (G,ϕ,G′, ϕ′, ↓,S) and a set
P of cyclic alleys of length at most 3k + 2 such that both properties of
Corollary 3.7.6 hold, where the coast of (G,ϕ) consists of all vertices v
with Nϕ(v) ≤ ⌊αk⌋+ 1. This can be done in O(|V |k3 log k) time. Within
the same time bound, compute additionally for each P ∈ P the inner
graph I in (G,ϕ) of P , the embedding ϕ|I as well as the mapping m that
maps each P ∈ P to the set consisting of all (S, ϕ′)-components containing
a crest enclosed by P .

(b) For each (S, ϕ′)-component C = (VC , EC), construct a tree decomposition
for C of width 3q − 1 = 3k + 3⌊αk⌋ + 5 in O(q2|VC |) time such that, for
each crest separator X ∈ S with a top edge in C, there is a bag BC,X
containing all vertices part of both, C and the essential boundary of X
(Corollary 3.5.13).

(c) In O(|V |) time, determine the graph G∗ obtained from G by removing,
for each cyclic alley P ∈ P , the vertices not part of P , but part of the
inner graph I of P in (G,ϕ). Subsequently, construct a tree decomposition
(T ′, B′) of width (3q − 1) + 2(3k + 2) = 9k + 3⌊αk⌋ + 9 for the graph G∗

such that Y is part of all bags and such that, for each cyclic alley P ∈ P ,
there is a bag containing all vertices of P . More precisely, this is done as
follows:

◦ In total time O(k|V |), for each cyclic alley P ∈ P and each (S, ϕ′)-
component C ∈ m(P), remove the vertices in G, but not in G∗, from
all bags of the tree decomposition for C constructed in Step (b), and
then add the vertices of P to all bags of the tree decomposition. Note
that each bag contains afterwards at most (3q− 1) + 3k+ 2 vertices.

109

◦ In O(k|V |) time, for each (S, ϕ′)-component C, add additionally the
set Y to each bag of the tree decomposition for C. After that, each
bag contains at most (3q− 1)+ 2(3k+ 2) vertices since |Y | ≤ 3k+ 2.

◦ For each pair of (S, ϕ′)-components C1 and C2 being adjacent in the
mountain connection tree of M and hence having a common top edge
e of a crest separator X ∈ S, connect the bags BC1,X and BC2,X by
an edge. This step takes O(|V |) time. By Lemma 3.3.25, we obtain
a tree after the edge insertions. Moreover, (TD2)v is true for all
vertices v not part of a P ∈ P by Lemma 3.3.27 and true for the
remaining vertices v by Lemma 3.3.27 and Corollary 3.7.6(i). Thus,
we obtain a tree decomposition (T ′, B′) of width 3q − 1 + 2(3k + 2)
with the desired properties.

(d) In total time O(|VK |), compute for each cyclic alley P ∈ P the inner graph
I ′ of P in (K, ζ) and its embedding ζ|I′ . I ′ and ζ|I′ can be obtained from
the inner graph I of P in (G,ϕ) and from the corresponding embedding
ϕ|I constructed in Step (a) by demerging all vertices v with Nζ(v) = q.

(e) For each cyclic alley P ∈ P , construct the q-inner graph I(q) of P in
(H∗, ψ∗). Given the embedded inner graph (I, ψ∗|I) of P in (H∗, ψ∗),
and the vertices v of I with Nψ∗|I (v) = 1, it would be easy to determine
I(q) in a time linear in the number of vertices in the (q + 1)-inner graph
(Lemma 3.6.7). Unfortunately, we are not given the whole embedded
graph (I, ψ∗|I). However, we are given the global embedding ψ∗ of H∗

and, because of Step (d), the embedding ζ|I′ of the inner graph I ′ of P
in (K, ζ). The faces of ψ∗|I adjacent to the vertices v of I with v /∈ U
are exactly the faces in (H∗, ψ∗), the faces adjacent to a vertex v with
peeling number Nψ|I (v) < q are exactly the faces in (I ′, ζ|I′). Moreover,
for each vertex v with peeling number Nψ|I (v) = q, the list of the faces
around v in clockwise order with respect to (I, ψ∗|I) can be split into a
list of consecutive faces in (H∗, ψ∗) and into a list of consecutive faces in
(I ′, ζ|I′). This allows us to apply Lemma 3.6.7 without constructing ψ∗|I
explicitly; we use instead the embeddings ψ∗ and ζ|I′ to determine the
faces around each vertex v when this is necessary for the algorithm in the
proof of Lemma 3.6.7.

(f) For each q-inner graph I(q) of a cyclic alley P ∈ P in (H∗, ψ∗), call recur-
sively TreeCompk,α((I(q), ψ∗|I(q)), YP) with YP being the vertex set of P
to obtain a tree decomposition for I with a bag containing YP . Connect
this bag by an edge to a bag containing YP in the tree decomposition
(T ′, B′) constructed in Step (c). This leads to a tree decomposition of
width 9k+3⌊αk⌋+ 9 for (G,ϕ) or, more precisely, for the graph obtained
from G by decontracting all vertices of peeling number q and by inserting
all vertices and edges of the inner graphs in (H∗, ψ∗) for all cyclic alleys
P ∈ P . In the following, denote this decontracted graph by D(K). Apart
from the recursive call, this step needs O(|VK |) time.

Step 4: For each pair of triconnected components K1 and K2 in the same
biconnected component H ′ of H with K1 and K2 being connected by an edge
in the SPQR tree for H ′ and for the set S of common vertices of K1 and of K2,
add an edge between a bag B1 and a bag B2 both containing the vertices of

110

S, where Bi (i ∈ {1, 2}) should be part of the tree decomposition constructed
for D(Ki). Observe that such bags exist since, by the definition of triconnected
components in a biconnected graph, the two common vertices of two adjacent
triconnected components in an SPQR tree must be adjacent in both of the two
triconnected components. Note also that SPQR trees are defined in such a way
that, for two triconnected components containing a common set S of vertices,
the path connecting the two components in the SPQR tree consists completely
of triconnected components that also contain all vertices of S. Hence, a tree
decomposition (T ′′, B′′) of width 9k+3⌊αk⌋+9 is obtained for each biconnected
component H ′ of H , or more precisely, for the graph obtained from H ′ by
inserting all vertices and edges of the inner graphs in (H∗, ψ∗) for all cyclic
alleys P ∈ P . Similarly to Step 3(f), denote this graph by D(H ′). It is easy to
see that the total running time of this step is O(|U |).

Step 5: In O(|U |) time, for each cutpoint u of H , create a bag Bu only
containing u and, for each biconnected component H ′ containing u, insert an
edge between Bu and a bag containing u in the tree decomposition of width
9k + 3⌊αk⌋ + 9 for D(H ′). By the definition of blockcut-point trees, a tree de-
composition (T ′′′, B′′′) is found for H , or more precisely, for the graph obtained
from H by inserting all vertices and edges of the inner graphs in (H∗, ψ∗) for
all cyclic alleys P ∈ P . Similarly to the previous steps, let us denote this graph
by D(H), and return (T ′′′, B′′′) as a tree decomposition for D(H).

For the correctness of the algorithm above, it remains to show that merging
the vertices of peeling number q in a triconnected embedded q-outerplanar graph
(K, ζ) leads to a triconnected graph G. Hence, assume for a contradiction that
there are two vertices u1 and u2 in G = (V,E) with {u1} and {u2} being
disconnected in G by a separator of size at most 2. Let S be such a separator
of minimal size. If the vertices of S all have peeling number at most q − 1 and
therefore also belong to K, S would be also a separator in K. Thus, at least
one vertex v ∈ S is a vertex of peeling number q in (G,ϕ). Moreover, there is a
cycle P in G enclosing v consisting exclusively of vertices with peeling number
q − 1 in (G,ϕ). Note that each vertex in NG(v) is part of P . Since there is
at most one vertex of P part of S \ {v}, P and also NG(v) \ S remain to be
connected in G[V − S]. This implies that v is adjacent only to the vertices of
one connected component of G[V −S]. This means that S \{v} also disconnects
{u1} and {u2}, which is a contradiction to the minimality of S.

Hence, if we call TreeCompk,α((H∗(q), ψ∗|H∗(q)), ∅), we obtain a tree decom-
position for H∗ = D(H∗(q)) of width 9k + 3⌊αk⌋ + 9. Let us next analyze the
running time.

Lemma 3.7.7. Let α be a real number with 0 < α ≤ 1. For an embedded graph
(H∗, ψ∗) with H∗ = (V ∗, E∗) of treewidth k, TreeCompk,α((H∗(q), ψ∗|H∗(q)), ∅)
runs in O(|V ∗|k3 min(1/α, k) log k) time.

Proof. We first determine the running time for solving ITD on an instance
(k, α, (H∗, ψ∗), (H,ψ∗|H), Y), or more precisely, the running time for calling
TreeCompk,α((H(q), ψ∗|H(q), Y). Let U—as in the algorithm—be the vertex
set of H(q), and let U ′ be the vertex set of H(2q + 1). Apart from Step 3(a)
and apart from the recursive call of TreeCompk,α in Step 3(f), the running time
of each step of TreeCompk,α is of size O(q2|U∗|) = O(k2|U∗|) with U∗ being
the set of vertices of the subgraphs considered in this step. Hence apart from

111

Step 3(a) and the recursive calls, we obtain a running time of size O(k2|U ′|).
Note that Step 3(e) is the reason for writing O(k2|U ′|) instead of O(k2|U |). The
running time of Step 3(a) summed up over all triconnected components of one
recursion depth is O(|U |k3 log k) = O(|U ′|k3 log k). By each recursive call of
TreeCompk,α, the peeling number of each fixed vertex with respect to (H,ψ)
decreases by at least ⌊αk⌋ + 1. This means that each vertex is considered in at
most O(min(1/α, k)) recursive calls. Therefore, the total running time of the
algorithm can be bounded by O(|V ∗|k3 min(1/α, k) log k).

We now come to our main result:

Theorem 3.7.8. Let α be a real number with 0 < α ≤ 1. Given an embedded
graph (G,ϕ) of treewidth k, one can compute a tree decomposition of width
9k + 3⌊αk⌋ + 9 in O(|V ∗|k3 min(1/α, k) log k) time.

112

Chapter 4

Outerplanarity Index

4.1 Another Complexity Parameter

Known algorithms solving NP-hard graph problems to optimality do not run in
polynomial time and require mostly exponential running time. Given a graph,
let n be the number of its vertices. Using the treewidth as an additional param-
eter k, we can observe that several NP-hard graph problems are computable in
a time that is polynomial in n and that is exponential only in k.

Definition 4.1.1 (fixed-parameter algorithm). A fixed-parameter algorithm
is an algorithm with a running time O(f(ℓ) ·nO(1)), where n is the size of the
input instance, f is a function, and ℓ is an additional parameter.

For denoting more explicitly that we want to use a parameter to measure
the running time, we call it a complexity parameter. The treewidth of a graph
is such a complexity parameter which is unfortunately NP-hard to determine
on general graphs [4]. Moreover, on other graph classes, e.g., the planar graphs,
polynomial-time algorithms for finding a tree decomposition of smallest width
are unknown. We next introduce on planar graphs a new complexity parameter,
which can be computed in polynomial time.

Definition 4.1.2 (outerplanarity index). The outerplanarity index of a graph
G is the smallest ℓ such that G is ℓ-outerplanar.

Observe that the outerplanarity index is a very natural parameter on planar
graphs to use for fixed-parameter algorithms. Baker [7] has shown that many
NP-hard problems can be solved on ℓ-outerplanar n-vertex graphs G in O(cℓn)
time for a constant c if an ℓ-outerplanar embedding of G is given.

In this chapter we focus on an algorithm that determines the outerplanarity
index ℓ of an n-vertex graph in O(n2) time improving an O(ℓ3n2)-time algo-
rithm for the same problem from Bienstock and Monma [12]. Additionally,
we see in Section 4.6 that giving up optimality allows a further improvement
of the running time. In detail, a linear-time algorithm for the outerplanarity
index is presented, which has an approximation ratio of 4. Using the approxi-
mation algorithm and Baker’s technique, we can solve many NP-hard problems
to optimality on ℓ-outerplanar graphs in O(cℓn) time for some constant c (e.g.,

113

maximum independent set in O(84ℓn) time). Thus, this approach as well as the
algorithm of Section 3.7 are the fastest algorithm for many NP-hard problems
for planar graphs whose outerplanarity index ℓ is within a constant factor of
their treewidth.

Using the ratcatcher algorithm of Seymour and Thomas [83] and the results
of Gu and Tamaki [43], one can obtain a tree decomposition of width O(ℓ) for an
ℓ-outerplanar graph in O(n3) time. However, using the new algorithm presented
in this chapter and Theorem 3.5.14, we obtain the following result.

Corollary 4.1.3. Given an n-vertex graph G with outerplanarity index ℓ a tree
decomposition for G with treewidth 3ℓ − 1 and 12ℓ − 4 can be found in time
O(ℓn2) and O(ℓ2n), respectively.

By using Bodlaender’s ideas [15] and the new algorithm of this chapter one
can improve the latter running time from O(ℓ2n) to O(ℓn).

4.2 Treewidth of ℓ-Outerplanar Graphs

For ℓ ∈ N, let Gℓ be the graph class consisting of all ℓ-outerplanar graphs. Before
an algorithm is presented for computing the outerplanarity index, let us analyze
the exact treewidth of the graph class Gℓ. The upper bound follows from Lemma
3.5.14, i.e., all graphs in Gℓ have treewidth at most 3ℓ−1. The exact lower bound
is common knowledge; however, it seems to the author that no one has published
it. An easy lower bound can be obtained by the combination of Lemma 1.4.5
and 1.4.6 since the ((2ℓ+2)× (2ℓ))-grid is an example of an ℓ-outerplanar graph
having treewidth 2ℓ. We next show that there are ℓ-outerplanar graphs of larger
treewidth.

Lemma 4.2.1. For all ℓ, n ∈ N with n ≥ 2ℓ3+6ℓ2, there exists an ℓ-outerplanar
graph G with n vertices and treewidth ≥ 3ℓ− 1.

Proof. Let G be the graph obtained from a (2ℓ × 2ℓ)-grid G1 and a (2ℓ(ℓ +
1) × ℓ)-grid G2 by connecting, for all i ∈ {0, . . . , 2ℓ − 1}, the rightmost vertex
of the (i + 1)-th row of G1 by ℓ + 1 edges with the leftmost vertices of the
(i · (ℓ+1)+1)th, . . ., ((i+1) · (ℓ+1))th row of G2 (see Fig. 4.2.1). Since G1 has
only 2ℓ rows and since G2 has only ℓ columns, G is ℓ-outerplanar. For proving
that the treewidth of G is at least 3ℓ − 1, we consider the one-robber-(3ℓ− 1)-
cops-game on G. Let us define an extended row as a tuple (r, e, s) of a row r of
G1 connected by edge e to a row s of G2. Note that, for each row r of G1, there
are ℓ + 1 extended rows containing r. The robber wins the game since he can
move such that, before and after each round, one of the two following invariants
holds:

(I1) At most 2ℓ−1 cops are in G1 and the robber is in a cop-free extended row.

(I2) At most ℓ−1 cops are in G2 and the robber is in a cop-free column of G2.

For the next conclusions, always keep in mind that there are in total 3ℓ− 1
cops. On the one hand, if there are at most 2ℓ− 1 cops in G1, there is at least
one cop-free row r1 in G1. If there is no cop-free extended row containing r1,
then ℓ + 1 cops must be in G2 and there is another cop-free row r2 in G1. If

114

G1 G2

︸ ︷︷ ︸

2ℓ
︸ ︷︷ ︸

ℓ

ℓ+1

ℓ+1

ℓ+1

ℓ+1

2ℓ(ℓ+1)2ℓ

Figure 4.2.1: The graph G consisting of two grids G1 and G2.

this row again is not part of a cop-free extended row, there is a third row r3 in
G1 that now definitively must be part of a cop-free extended row. This means
that if there are at most 2ℓ − 1 cops in G1, there is an extended cop-free row.
On the other hand, at least one column of G2 is cop-free if there are at least 2ℓ
cops in G1. Thus, the robber can find an initial position such that (I1) or (I2)
holds before the first round. Let us now analyze a fixed round of the game.

Assume that (I1) holds before the round. If one cop lifts his helicopter and
wants to move such that after the round again there will be at most 2ℓ− 1 cops
in G1, the robber moves along his cop-free extended row to a current cop-free
column of G1 and then along this column to an extended row being cop-free
after the movement of the cop. Otherwise at least 2ℓ cops are in G1 after the
round. Then the robber moves along his extended row to a column of G2 being
cop-free with respect to the next positions of the cops.

Let us next analyze what happens if (I2) holds before the round. Then the
robber stays in a cop-free column of G2. If after the next movement of the cops
there are still at most ℓ−1 cops in G2, then there will be a new cop-free column
c. Then the robber can move along his current column to a (non-extended)
cop-free row of G2 and then along this row to column c. Otherwise there will
be a cop-free extended row after the next movement of the cops, and the robber
can move along his current column to this row.

Hence the robber has a winning strategy and this proves the lemma for
n = 2ℓ3 + 6ℓ2. For n > 2ℓ3 + 6ℓ2 just connect the endpoint of a simple path of
length n− (2ℓ3 + 6ℓ2 + 1) by an edge to an arbitrary vertex of G.

115

Corollary 4.2.2. The graph class G consisting of all ℓ-outerplanar graphs has
exactly treewidth 3ℓ− 1.

Having the knowledge that a graph class G consisting of all ℓ-outerplanar
graphs has treewidth 3ℓ − 1 does not mean that we have a tree decomposition
of width 3ℓ − 1. Before we can construct a tree decomposition by the use of
Lemma 3.5.14, we need for each graph G ∈ G an ℓ-outerplanar embedding.

4.3 Ideas of the Algorithm

One way to solve a graph problem is to consider the problem on increasing
subgraphs of a given graph G. Such an approach is easily possible if we have the
tree decomposition for G. However, we want to determine the outerplanarity
index for a graph G without the knowledge of a tree decomposition for G.
The idea will be to solve the problem by removing some subgraph C from G,
solve the problem recursively on the remaining graph G′ as well as on C, and
finally use the solution obtained to solve the problem on G. Unfortunately,
the outerplanarity index of G is not a function of the outerplanarity indices
of G′ and C alone. However, one can determine the outerplanarity index of
G by a computation of the so-called weighted outerplanarity index of G′ and
C, which is a small generalization of the outerplanarity index that additionally
takes into account the weighted outerplanarity indices of 6 different graphs,
each of which is a supergraph of G′ with a few additional edges. It turns out
that by one recursive call one can compute the weighted outerplanarity indices
of the 6 graphs simultaneously. For the time being let us consider only the
outerplanarity index.

Also to find the outerplanarity index we need the definition of peeling. See
possibly again page 47. Note that a peeling can be considered intuitively as a
process that removes the vertices of a graph in successive steps, each of which
removes all vertices incident to the outer face. In this context, the peeling index
of an embedded graph (G,ϕ) is the minimal number of steps of a peeling to
remove all vertices. Let us call an embedding optimal (c-approximative) if it is
a rooted embedding ϕ of a planar graph G such that the peeling index of (G,ϕ)
equals (is bounded by c times) the outerplanarity index of G.

Suppose that we are given a triconnected planar graph G. Then, the combi-
natorial embedding of G is unique and can be found in linear time [93, 23, 66].
Let F be a face of the combinatorial embedding of G. Hence, the rooted em-
bedding ϕ of G with F chosen as the outer face is also unique. Obviously, we
can determine the peeling index ℓ of (G,ϕ) in linear time. Let ϕOPT be an
optimal embedding of G. Define FOPT as the outer face of ϕOPT and ℓOPT

as the peeling index of (G,ϕOPT). If the distance of two faces F ′ and F ′′ is
taken to be the minimal number q ∈ N of faces F ′ = F1, . . . , Fq = F ′′ such
that two consecutive faces have a common edge on their boundary, the distance
in ϕOPT from F to FOPT and from FOPT to any other face is at most ℓOPT.
Consequently, ℓ ≤ 2ℓOPT. By Lemma 3.2.3, a combinatorial embedding of a
graph with n vertices has at most 2n faces. Thus, we can simply iterate over
all faces of G and find an optimal embedding in that way.

116

Lemma 4.3.1. The peeling index of an arbitrary embedding of a triconnected
planar graph G is at most twice as large as the smallest possible peeling index
of an embedding for G.

Corollary 4.3.2. Given a triconnected planar graph G, a 2-approximative and
an optimal embedding of G can be obtained in linear and in quadratic time,
respectively.

4.4 Extended Peelings

In this section, we define extended peelings, the weighted outerplanarity index,
and a special kind of peninsulas. Then a description is given for computing the
weighted outerplanarity index on a graph G by removing this special kind of
peninsula from G and solving the problem recursively.

For a rooted embedding ϕ, let us call a vertex or edge outside (with respect
to ϕ) if it is incident to the outer face of ϕ. Let G = (V,E) be a connected
embedded graph with weight function r : V ∪ E → N, and let ϕ be a rooted
embedding of G. Define Out(ϕ) as the set of vertices outside with respect to ϕ.
If S = Out(ϕ) and u, v ∈ S are two different vertices, Sϕu→v ⊆ S is the maximal
set of vertices part of the series from u to v appearing clockwise around the outer
face of ϕ such that this series contains u as well as v only once. In particular,
this means that, if u = v, Sϕu→v = {u}. Given a directed edge e = (u, v), we say
that an embedding ϕ′ is obtained from ϕ by adding e clockwise if ϕ′ is a (planar)
rooted embedding of (V,E ∪{e}) such that Out(ϕ′) = Out(ϕ)

ϕ
v→u and all inner

faces of ϕ are also inner faces of ϕ′. By iterating over a set of directed edges we
can add a set clockwise into an embedded graph. The embedding obtained does
not depend on the order in which edges are added since several edges can be
added clockwise only if they do not interlace. Let us say that a set of directed
edges is embeddable in ϕ if the set can be added clockwise into ϕ.

Let E+ be a set of directed edges being embeddable in ϕ, and let ϕ+ be the
embedding obtained. The extended peeling P of the quadruple (G,ϕ, r, E+) is
the (unique) list of vertex sets (V1, . . . , Vt) with t ∈ N,

⋃t
i=1 Vi = V , and Vt 6= ∅

such that Vi are exactly the vertices outside with respect to ϕ+|G[V \(V1∪...∪Vi−1)].
In other words, each set Vi (1 ≤ i ≤ t) contains all vertices that are incident
to the outer face obtained after the removal of the vertices in V1, . . . , Vi−1 in
the initial embedding ϕ+. Thus, we also say that the peeling step i removes the
vertices in Vi. We also denote t as the total peeling number of P and, if E+ = ∅,
also of ϕ. Note that the embedding ϕ restricted to the vertices and edges of the
subgraph G[V \ ⋃i

j=1 Vj] is a unique embedding. For a vertex v ∈ Vi, we call
i+r(v) the extended peeling number of v with respect to P also denoted by P(v).
For a set V ′ ⊆ V , we let P(V ′) =

⋃

v∈V ′ P(v). Moreover, the extended peeling
number of an edge {u, v} with u ∈ Vi and v ∈ Vj (1 ≤ i, j ≤ t) is P({u, v}) =
min{i, j}+ r({u, v}), and P(G) = max{maxv∈V P(v),maxe∈E P(e)}. To have a
simpler notation in the following, there is a slight difference in the definition of a
peeling number and an extended peeling number for a non-horizontal edge. For
avoiding any confusion, we consider only extended peelings in the remainder of
this chapter.

The weighted outerplanarity index of G with respect to a weight function r
is the minimal extended peeling number of the extended peelings of (G,ϕ′, r, ∅)

117

over all rooted embeddings ϕ′ of G. Note that the outerplanarity index of G is
the weighted outerplanarity index in the special case r ≡ 0.

Recall that, if H is a peninsula of G, then either H = G or each H-attached
component C of G has at most two vertices in common with H , i.e., |RH(C)| ≤
2. An outer component C of a peninsula H of G is defined in ϕ as H itself or
as an H-attached component of G such that C contains an edge outside with
respect to ϕ.

Definition 4.4.1 (inherited embedding of induced graphs). Let (G,ϕ) be an
embedded graph and H be a peninsula of G.

For the induced graph H(G), an inherited embedding ϕ|H(G) is a rooted
embedding ψ of H(G) that can be obtained from ϕ by iteratively applying
one of the following modifications:

• remove a vertex of degree 0,

• remove an edge {u, v}, i.e., if ϕ((u′, u)) = (u, v), ϕ((v, u)) = (u, u′′),
ϕ((v′, v)) = (v, u), and ϕ((u, v)) = (v, v′′) holds before the removal,
redefine ϕ((u′, u)) = (u, u′′) and ϕ((v′, v)) = (v, v′′),

• merge two edges {u, x} and {x, v} with a common endpoint x of degree
2 to one edge {u, v}, i.e., if ϕ((u′, u)) = (u, x), ϕ((x, u)) = (u, u′′),
ϕ((v′, v)) = (v, x), and ϕ((x, v)) = (v, v′′) holds before the removal,
redefine ϕ((u′, u)) = (u, v), ϕ((v, u)) = (u, u′′), ϕ((v′, v)) = (v, u), and
ϕ((u, v)) = (v, v′′).

See Fig. 4.4.1 for an example. If an induced embedding is obtained by merg-
ing a set E′ of edges to a virtual edge e = {u, v}, we say that e is mapped to the
cyclic position around u of the edge in E′ incident to u. Informally, e is embed-
ded as the path consisting of the edges in E′. Apart from choosing between two
possible outer faces, an inherited embedding of an induced peninsula is unique
if, for each virtual edge {u, v}, the set of edges to whose cyclic position {u, v}
can be mapped around u is a set of consecutive edges around u, none of which
is part of the peninsula. Let us call a peninsula H good if this is the case.

In the rest of this section, we consider different properties of extended peel-
ings and of inherited embeddings. For the next observation, recall that the inner
graph of a cycle S in an embedded graph (G,ϕ) is an embedded graph (C, ζ)
such that C is a maximal subgraph of G and such that exactly the vertices of
S are outside with respect to ζ = ϕ|C .

Observation 4.4.2. Let (G,ϕ) and (G′, ϕ′) be embedded graphs, let r be a
weight function for both graphs, let E+ be a set of directed edges embeddable in
both embedded graphs, and let S be a vertex set inducing a cycle in G as well
as in G′. Moreover, take (C, ζ) as the inner graph of S in (G,ϕ), V (C) as
the vertex set of C, (C′, ζ′) as the inner graph of S in (G′, ϕ′) and V (C′) as
the vertex set of C′. If G[V (C)] and G′[V (C′)] are the same graphs as well as
ϕ|G[V (C)] and ϕ′|G′[V (C′)] are the same embeddings and if, for extended peelings
P of (G,ϕ, r, E+) and P ′ of (G′, ϕ′, r, E+), P(v) − P ′(v) is the same for all
v ∈ S, then P(v) − P ′(v) is the same for all v ∈ C.

Let (G,ϕ) be a connected embedded graph with a weight function r and let
H = (VH , EH) be a good peninsula with an edge {u∗, v∗} outside with respect

118

28

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15 16

17

1819

20

21

22

23
24

25

26

27

1

2

3

6

7

10

12
27

Figure 4.4.1: The left side shows an embedded graph (G, ϕ) with a peninsula H
(black), an outer component of H in G (all white vertices and vertices 2 and 3)
and three further H-attached components of G. On the right side, we see an
inherited embedding ϕ|H(G) with the virtual edges drawn dashed.

to ϕ. We now want to compare the extended peeling of (G,ϕ, r, E+) with the
extended peeling of an inherited embedding of (H(G), ϕ|H(G), r, E

+) for some
r and E+. Moreover, if we consider the peeling as a process iteratively remov-
ing the vertices of smallest peeling number, what happens with an H-attached
component C = (VC , EC) of G during the extended peeling of (G,ϕ, r, E+)?

Define L(V +) for a set V + = {u} as the list of edge sets ({(u, u)}, {}) and
for a set V + = {u, v} as ({(u, v), (v, u)}, {(u, u)}, {(v, v)}, {}, {(v, u)}, {(u, v)}).
Fig. 4.4.2 shows the directed edges of L({u, v}). Take E+ as a set in the list
L({u∗, v∗}) and P = (V1, V2, . . . , Vt) as the extended peeling of (G,ϕ, r, E+).
Choose u and v such that {u, v} = RH(C)—possibly u = v. If u ∈ Vi and v ∈ Vj
(1 ≤ i, j ≤ t), take q = min{i, j}. Note that C is also a peninsula. Define S =
Out(ϕ|C) andH ′ as the outer component ofC that is a supergraph ofH and that
contains {u∗, v∗}. Let P ′ be the extended peeling of (H ′(G), ϕ|H′(G), r

′, E+),
where r′ is an arbitrary weight function such that r′ is equal to r for all vertices
of H ′(G). The following two properties are proved below.

Property 1. Vq ∩ VC equals one of the six sets below. In other words, if we
ignore the vertices not in C, peeling step q of P removes one of these six

sets: 1. {u, v}, 2. {u}, 3. {v}, 4. S, 5. Sϕ|Cu→v or 6. Sϕ|Cv→u. The remaining
vertices of S are removed in peeling step q + 1.

Property 2. The removal of C from G if |RH(C)| = 1 and the replacement of
C by the (virtual) edge RH′ (C) in G if |RH(C)| = 2 does not change the
extended peeling numbers in H ′, i.e., P(s) = P ′(s) for all s being a vertex
or an edge of H ′.

For each of the six sets of Property 1, Fig. 4.4.2 shows an example of a situa-
tion just before the peeling step q. In each example, the black edge corresponds

119

u

v

u u u u u

v v v v v

1: 2: 3: 4: 5: 6:

Figure 4.4.2: Possibilities for an edge to be outside, e.g., 1: Only the two endpoints
are outside.

to C, and each directed edge corresponds to an undirected path in G[Vq∪. . .∪Vt]
using no edge of C.

Proof of Property 1. Consider the two cases |RH(C)| = 1 and |RH(C)| = 2.
In the first case—i.e., u = v—observe that if one vertex of S \ {u} is
removed in peeling step q, then all vertices in S are removed in that
peeling step because there is no edge from S \ {u} to H . Consequently,
Vq ∩ VC equals {u} or S.

In the second case, we argue in the same way that if a vertex in Sϕ|Cu→v \
{u, v} (in Sϕ|Cv→u \ {u, v}) is removed, all vertices in Sϕ|Cu→v (in Sϕ|Cv→u) are
then removed. Finally, note that the remaining vertices in S are outside
after peeling step q.

Proof of Property 2. Starting with the initial embedding ϕP
0 = ϕ and ϕP′

0 =
ϕ|H′(G) and carrying out in parallel the extended peelings P and P ′, let us

compare the embeddings ϕP
i and ϕP′

i obtained after i ∈ N peeling steps.
By induction on i, we can observe that if a C-internal face is one that is
incident only to vertices of C, there is the following bijection f between
the non C-internal faces of ϕP

i and the faces of ϕP′

i : Each face F in ϕP
i

is mapped to the face whose boundary vertices are those of F , except for
the vertices in C. Thus, we can conclude that a face F of ϕP

i is the outer

face if and only if the corresponding face f(F) of ϕP′

i is the outer face,
i.e., a vertex in H ′ is outside after the same number of peeling steps in P
and in P ′.

Note that, for some embedding ζ of C, (C, ζ) is the inner graph of S, and we
thus can apply Observation 4.4.2. Informally, the extended peeling numbers of
vertices in C are determined by the extended peeling numbers of vertices in S.
Because of that and Property 1, a set of edges E′ ∈ L({u, v}) exists such that,
for the extended peeling P ′′ of (C,ϕ|C , r, E′), we have P(v) = P ′′(v) + q− 1 for
all v ∈ C. If we again consider a peeling as a process, then E′ can be determined
during the extended peeling P ′ by observing

• which of the vertices are in RH(C) and,

• if |RH(C)| = 2, which sides of the virtual edge RH(C) are outside just
before a first vertex in RH(C) is removed.

120

For that reason, let us define E′ as the induced set of extra edges with respect
to P ′ and to RH(C). Figure 4.4.2 shows all possibilities for how a virtual edge
(black) can be outside.

The removal and replacement described in Property 2, applied to all H-
attached components ofG in ϕ, results (after the removal of multiple edges) in an
inherited embedding ϕ|H(G). For some function r′, let P and P∗ be the extended
peelings of (G,ϕ, r, E+) and of (H(G), ϕ|H(G), r

′, E+), respectively. Informally,
our goal is to peel the components independently. Thus, we want that, for each
vertex s or edge s being in both G and H(G), the extended peeling numbers of s
with respect to P and with respect to P∗ should coincide for each embeddable set
E+ of directed edges. Therefore, we define r′ = r, except for the following two
changes. The changes enable us to take into consideration the extended peeling
numbers of all H-attached components to the computation of the extended
peeling P∗. The first change is to extend the domain of the weight function r′

to the virtual edges and to define r′ on the extension as follows: The weight
r′ of a virtual edge e is P∗∗(C∗) − 1, where C∗ is the union of all H-attached
components with virtual edge e, P∗∗ is the extended peeling of (C∗, ϕ|C∗ , r, E′),
and E′ is the induced set of extra edges with respect to the extended peeling
(H(G), ϕ|H(G), 0, E

+) and to e. The second change is to increase r′(v) by −1
plus the total peeling number of the embedding of an H-attached component
C′ with RH(C′) = {v} (v ∈ VH). Leave r′(v) unchanged if no such C′ exists.
Denote the first change the extending change w.r.t. (G,H(G), ϕ|H(G), r, E

+),
and the second change the increasing change w.r.t. (G,H, r).

We say that a set S consisting of vertices and edges is outside with respect
to an embedding if all s ∈ S are outside with respect to the embedding. For a
graph G = (V,E) with a weight function r, a set of directed edges E′, and a
set S consisting of one or two vertices, an embedding ϕ′ is vertex-constrained
optimal for (G, r,E′, S) if S is outside with respect to ϕ′ and if the following is
true for all embeddings ϕ′′ of G: Either S is not outside with respect to ϕ′′ or
P ′(G) ≤ P ′′(G), where P ′ and P ′′ are the extended peelings of (G,ϕ′, r, E′) and
(G,ϕ′′, r, E′), respectively. If the same condition holds for S = {u∗, v∗, {u∗, v∗}}
with u∗, v∗ ∈ V , the embedding ϕ′ is called edge-constrained optimal.

We conclude this section with an algorithm to construct constrained optimal
embeddings. Given a graphG = (V,E) with a weight function r : V ∪E → N and
a set S consisting of one or two vertices in V and, in the latter case, possibly of
an edge connecting these two vertices, one can find a vertex- or edge-constrained
optimal embedding for (G, r,E+, S) with E+ ∈ L(S) as follows:

For a good peninsula H of G—possibly H = G—that contains all vertices
and edges of S, first determine recursively for each H-attached component
C and for each E′ ∈ L(RH(C)) a vertex-constrained optimal embedding for
(C, r, E′,RH(C)).

Then, iterate over all embeddings of H(G) such that all vertices and edges of
S are outside with respect to the embedding. For each such embedding ϕ, com-
pute Pϕ(H(G)) with respect to the extended peeling Pϕ of (H(G), ϕ, r′, E+),
where r′ is the function obtained from both changes, the extending change w.r.t.
(G,H,ϕ, r, E+) and the increasing change w.r.t. (G,H, r). Finally, take the em-
bedding ϕ with Pϕ(H(G)) being as small as possible, and combine ϕ and the
embeddings found recursively to an edge-constrained optimal embedding for
(G, r,E+, S).

121

4.5 Biconnected Graphs

First of all, for a biconnected planar graph G and an edge e of G, let us define
a rooted SPQR tree (T,M) of (G, e) as an SPQR tree of G with T = (W,F)
rooted at the unique node r ∈ W with e ∈ M(r). Moreover, we define the
subtree module of a node w in T as the graph M(Tw), and the parent edge ep
of w as follows: If w is the root of a rooted SPQR tree of (G, e), take ep = e;
otherwise, take ep = RC(H) with C = M(w), H = M(w′), and w′ being the
parent of w. The reduced subtree module of a node w is the subtree module of
w without the parent edge of w.

Before we can apply the algorithm of the last section, we have to decompose
our graph into good peninsulas. Given a biconnected planar graph G, this
can be done in linear time by constructing an SPQR tree of G [11, 45], which
we subsequently turn into a rooted SPQR tree (T,M) of (G, e) for an edge
e of G. Take T = (W,F). Observe that, for each node w of T , each M(w)
is the induced graph of a peninsula H with respect to G, and each reduced
subtree module of a child w′ of w is, for some virtual edge e, the union of all H-
attached components having e as virtual edge. More exactly, if w′ is no multiple-
edge component, the reduced subtree module of w′ is exactly one H-attached
component and, otherwise, each of the reduced subtree modules of the children
of w′ is one H-attached component. Given additionally a weight function r, an
edge eout of G, and E+ ∈ L(eout), our intermediate goal is the computation of
an edge-constrained optimal embedding of (G, r,E+, eout ∪{eout}) since we can
later use this computation as an auxiliary procedure to find an optimal or an
approximative embedding. Therefore, we use the following algorithm.

We initially compute a rooted SPQR tree (T,M) of (G, eout) [11, 45]. This
tree is then traversed bottom-up. Let w be the current node visited by the
traversal, and let ep = {u, v} be the parent edge of w. Define H = (VH , EH) =
M(w) and C (C′) as the (reduced) subtree module of w. In addition, set
H ′ = H if w is the root of T , and H ′ = (VH , EH \ {ep}) otherwise. For each
E+ ∈ L({u, v}), we determine at w a constrained optimal embedding ϕ for
(C′, r, E+, S), where S = ep, if w is not the root of T , and S = eout ∪ {eout}
otherwise. By the algorithm described in the last section, such an embedding ϕ
can be computed by considering the extended peeling of (H ′, ϕ|H′ , r′, E+) for
all embeddings ϕ|H′ of H ′ with S being outside and with r′ being the extended
weight function of (C′, H ′, ϕ|H′ , r, E+). The reason for this is that recursive
calls have already found, for each child w′ of w, the vertex-constrained optimal
embeddings for the reduced subtree module of w′.

If H is a cycle component, there are only two possible rooted embeddings of
H with u and v outside. The same is true if H is a triconnected component since
a third rooted embedding would imply that ϕ has three faces being incident to
u and v, i.e, there is a u-v-path separated from the rest of G by the two vertices
in {u, v}. Thus, in both cases, there is only one rooted embedding of H ′ with
u and v outside. Therefore, ϕ|H′ and also an extension of the embeddings of
the reduced subtree modules of the children of w to an embedding ϕ|C′ can be
found in time linear in the size of H ′.

If H is a multiple-edge component, S has to be outside. Let u and v be the
vertices of H . Depending on E+ (and at the root also on S), we can choose d ∈
{0, 1, 2} children of w such that their reduced subtree modules are (with at least
one edge) outside with respect to the embedding obtained from ϕ|C′ by adding

122

E+ clockwise. Observe that the extended peeling numbers of a subtree module
of a child of w differ only by at most one for different orders of the embeddings
of the subtree modules between u and v. Let C1, . . . , Cℓ be the reduced subtree
modules of the children of w. For a simpler notation, let us define in this
paragraph the inside peeling number of Ci (i ∈ {1, . . . , ℓ}) as the total peeling
number in a constrained optimal embedding for (Ci, r, {(u, v), (v, u)}, {u, v})
and the outside peeling number of Ci as the smaller number of the total peeling
number in the vertex-constrained optimal embeddings for (Ci, r, {(u, v)}, {u, v})
and for (Ci, r, {(v, u)}, {u, v}). Since the total peeling number of an embedding
of C′ equals the maximum over the total peeling number of all embeddings of
Ci (1 ≤ i ≤ ℓ), our goal is to reduce the largest numbers. Therefore, we choose
for C′ an embedding such that d reduced subtree modules of the children of w
with largest inside peeling number have outside vertices with respect to ϕ|C′—
intuitively, the total peeling number of these d embeddings decrease to the
outside peeling number in that way. Finding d reduced subtree modules with
largest inside peeling number, i.e., finding ϕ|C′ can be done in a time linear in
the number of virtual edges if we ignore the time for the recursive calls.

Lemma 4.5.1. Given a biconnected graph G with a weight function r and an
edge eout of G, an edge-constrained optimal embedding for (G, r, ∅, eout∪{eout})
can be found in linear time.

By a similar approach, we also can find a vertex-constrained optimal em-
bedding for (G, r, ∅, eout). If eout is an edge of G, compute an edge-constrained
optimal embedding for (G, r, ∅, eout ∪ {eout}). Otherwise, let G∗ be the graph
obtained from G by adding edge eout. Compute then the SPQR (T,M) tree for
(G∗, eout) and traverse T bottom-up. The only difference to the algorithm for an
edge-constrained optimal embedding is at the root H of T . Remove eout from H
and compute a vertex-constrained optimal embedding with the two vertices in
eout being outside. Informally, the peeling of H should consider H as invisible.

Lemma 4.5.2. Given a biconnected graph G with a weight function r and two
vertices eout of G, a vertex-constrained optimal embedding for (G, r, ∅, eout) can
be found in linear time.

For an optimal embedding of a given graph G = (V,E), iterate over all edges
e ∈ E. In each iteration, compute an edge-constrained optimal embedding of
G with e outside. If we use initially the weight function r ≡ 0, then one of the
embeddings found is optimal.

Moreover, for an approximative embedding of G, compute only for one ar-
bitrary edge e ∈ E an edge-constrained optimal embedding of G. The quality
of the approximative embedding ϕ with edge e outside can be estimated with
arguments similar to those used to prove Corollary 4.3.2. Let ϕOPT be an op-
timal embedding of G, and choose ϕ′ as the rooted embedding such that ϕOPT

and ϕ′ have the same combinatorial embedding and such that e is outside with
respect to ϕ′. The number of peeling steps to remove (G,ϕ′) is at most twice the
number of peeling steps to remove (G,ϕOPT). Since ϕ is an edge-constrained
optimal embedding with r ≡ 0 and e outside, the peeling index of (G,ϕ) is
bounded by the peeling index of (G,ϕ′).

Corollary 4.5.3. Given a biconnected planar graph G, one can find a 2-
approximative embedding of G in linear and an optimal embedding of G in
quadratic time.

123

See Figure 4.5.1 for an example of an extended peeling of the split compo-
nents of a rooted SPQR tree.

2

2

2

1

3

1

1

2

1 1

11

2

2

2

33
2

1

1

2

1

1

2

3

1

11

2

3

1

1

1

1

1

2

2

2

1

3

1

1

2

2

SPQR tree for Ggraph G

Figure 4.5.1: Optimal embedding with the yellow edge outside with respect to
the graph shown in Fig. 3.2.3. The numbers of the vertices and of the virtual
edges are extended peeling numbers. By extending the split components by the
red directed edge, the peeling numbers of every vertex is the same in the split
components and in G.

4.6 General Graphs

Given a planar graph G = (V,E) with weight function r, we can determine the
extended peeling number for each connected component separately. Thus, let
us assume in the following that all graphs considered are connected.

Let e ∈ E be an edge contained in a biconnected component B. Let us as-
sume for the moment that, for each B-attached component H , for each cutpoint
u of G part of H , and for each E+ ∈ (∅, {(u, u)}), we know the extended peel-
ing number of a vertex-constrained optimal embedding for (H, r,E+,RH(B)).
Using the algorithm described at the end of Section 4.4 we can then determine
the increased weight function r′ with respect to (G,B, r) and use the algorithm
to find an edge-constrained optimal embedding for (B, r′, ∅, e ∪ {e}) to obtain
an edge-constrained optimal embedding for (G, 0, ∅, e ∪ {e}). By iterating over
all edges of G an optimal embedding can be determined. Thus, it remains to
show how all necessary vertex-constrained optimal embeddings can be found.

124

First of all, construct a block-cutpoint tree T = (W,F) for G in linear time
(Lemma 3.2.7) and choose some biconnected component r as root of T . Let us
define the subtree (supertree) component of a biconnected component B of G as
the subgraph of G induced by the vertices in the biconnected components being
a (no) descendant of B in T .

To find all vertex-constrained optimal embeddings of a graph G, let us tra-
verse a block-cutpoint tree T = (W,F) of G with a biconnected component B∗

as root first bottom-up and then top-down. During the bottom-up (top-down)
traversal we compute, for each biconnected component B 6= B∗ with a parent v,
a vertex-constrained optimal embedding of the subtree (supertree) component
of B with v outside as follows. For each B, define B′ as B during the bottom-up
traversal and as the grandparent—i.e., the parent of the parent—of B during the
top-down traversal. Note that, for the subtree (supertree) component C of B,
we already know the extended peeling numbers of each B′-attached component
in C.

Thus, after the two traversals, we have the increased weight function r′ of
(C,B, r) for each component B. Moreover, a vertex-constrained optimal embed-
ding for (B, r′, ∅, {v}) can be found by iterating over each edge e of B incident to
v and computing an edge-constrained optimal embedding for (B, r′, ∅, e ∪ {e}).
In the end, we obtain for each cutpoint v a vertex-constrained optimal embed-
ding of all v-attached components in G in quadratic time.

Theorem 4.6.1. Given a planar graph G, one can find an optimal embedding
and the outerplanarity index of G in quadratic time.

For an approximate embedding of a graph G with weight function r, the
idea is so far to fix an arbitrary edge e and to search for an edge-constrained
optimal embedding with e outside. Unfortunately, we cannot use the same
approach as for an optimal embedding since determining a vertex-constrained
optimal embedding of a single big biconnected component may take too much
time. Therefore we take a rooted block-cutpoint tree T , compute only bottom-
up the two embeddings ϕ′ and ϕ′′ of B as defined below for each biconnected
component B with parent v and subtree component C = (VC , EC) in T , and
determine the smaller extended peeling number of the two extended peelings
Pϕ′ of (B,ϕ′, r′, ∅) and Pϕ′′ of (B,ϕ′′, r′, ∅), where r′ is the increased weight
function of (C,B, r) computed from the extended peeling numbers obtained
from the recursive calls. Moreover, take the embedding ϕ▽ ∈ {ϕ′, ϕ′′} such that
Pϕ▽(B) is as small as possible, extend ϕ▽ in constant time to an embedding ϕ
of C by using the results of the recursive calls and return ϕ.

For some edge e incident to v, take ϕ′ as an edge-constrained optimal em-
bedding of B with e outside. If B has not a grandchild—i.e., a child of a child—
define ϕ′′ = ϕ′ and skip to the next paragraph. Otherwise, letD be a grandchild
of B such that the algorithm has recursively obtained a largest extended peeling
number on D among all grandchildren of B. In addition, let v∗ be the parent
of D. If a vertex-constrained optimal embedding of B with v and v∗ outside
exists, define ϕ′′ as such an embedding. Otherwise define ϕ′′ = ϕ′ for a simpler
description in the following.

By Lemma 4.5.1 and 4.5.2, we can find ϕ′ and ϕ′′ in a time linear in the
number of vertices of B. We now show by induction over the height of a vertex
B in T that this bottom-up traversal finds a vertex-constrained 2-approximative
embedding ϕ of C with v outside, i.e., P(C) obtained from the extended peeling

125

P of (C,ϕ, r, ∅) is at most twice the extended peeling number of C obtained from
(C,ϕ∗, r, ∅) for every other embedding ϕ∗ of C with v outside. Let ϕB, ϕC , and
ϕD be vertex-constrained optimal embeddings for (B, r, ∅, {v}), for (C, r, ∅, {v}),
and for (D, r, ∅, {v}), respectively, and let pOPT

B = PB(B), pOPT
C = PC(C) and

pOPT
D = PD(D), where PB, PC , and PD is the extended peeling of (B,ϕB , r, ∅),

(C,ϕC , r, ∅), and (D,ϕD, r, ∅), respectively. In addition, take pB, pC , and pD
as the extended peeling numbers obtained from our algorithm for B, C, and D,
respectively. Although we enforce one arbitrary edge incident to v to be outside,
pB − pOPT

B ≤ 1 since after a first peeling step the outer face contains each face
incident to v. If a vertex of B has the largest extended peeling number among
all vertices in C, i.e., pC = pB—this case is also our induction basis, where
no grandchild of B exists—the embedding obtained for C is vertex-constrained
2-approximative since pC = pB ≤ pOPT

B + 1 ≤ 2pOPT
B ≤ 2pOPT

C . Otherwise, a
vertex in some subtree component H—possibly H = D—of some grandchild
of B has the extended peeling number pC . Take v′ as the inner vertex of the
B-H-path and pH as the extended peeling number obtained from our algorithm
for input H . Let ϕH be a constrained optimal embedding for (H, r, ∅, {v}),
and let pOPT

H = PH(H), where PH is the extended peeling of (H,ϕH , r, ∅).
By construction of our algorithm pD ≥ pH holds. Moreover, by induction
pH ≤ 2pOPT

H and pD ≤ 2pOPT
D . Define q = pOPT

C − pOPT
H . Intuitively, we need

q peeling steps in ϕC until the first vertex of H can be removed; thus, our
algorithm needs at most q + 1 peeling steps until a first vertex of H can be
removed. Let us consider 3 cases:

q > 0 : pC ≤ pH + (q + 1) ≤ 2pOPT
H + (q + 1) ≤ 2pOPT

H + 2q = 2pOPT
C .

q = 0 ∧ pH < 2pOPT

H
: pC ≤ pH + (q + 1) = pH + 1 ≤ 2pOPT

H = 2pOPT
C .

q = 0 ∧ pH ≥ 2pOPT

H
: pOPT

D ≥ pD/2 ≥ pH/2 ≥ pOPT
H = pOPT

C , so that v∗,
which is the parent of D, is outside with respect to some optimal embed-
ding of C with v outside.

In the first and second case ϕ′ and in the last case ϕ′′ leads to a vertex-
constrained 2-approximative embedding ϕ. Similarly as in the proof of Corollary
4.5.3, we can conclude that a vertex-constrained 2-approximative embedding is
also a non vertex-constrained 4-approximative embedding.

Theorem 4.6.2. For a planar graph G, a 4-approximative embedding of G and
a 4-approximation of the outerplanarity index of G can be found in linear time.

126

Chapter 5

Generalization of Trees

5.1 A Sketch of Monadic Second-Order Logic

Many properties can be expressed in formulas of a suitable logic by predicates,
i.e., functions whose image set is {true, false}. For this purpose, we define a
labeled graph as graph G = (V,E) with i ∈ N functions XL

1 , . . . , X
L
i : V →

{true, false} to denote that, for all 1 ≤ j ≤ i, all v ∈ V with XL
j (v) = true

are labeled with j. Additionally, we call XL
1 . . . , X

L
i the labels of G and Xj =

{v | Xj(v) = true} the set for the label XL
j . We also write GX1,...,Xj to denote

explicitly that X1, . . . , Xj are the sets for the labels of G.
To simplify matters, we consider in the following only logics over (labeled)

graphs; this means the universe consists of the vertex set of a graph G.

Definition 5.1.1 (first-order logic, free and bound variable). For each for-
mula ϕ in first-order logic as defined below, let us call each variable in ϕ a
free variable unless with some rules below, we explicitly call it bounded. The
following expressions are formulas in first-order logic over a (labeled) graph
G = (V,E).

• Expressions E(x, y) and =(x, y) for variables x and y are formulas in
first-order logic.

• If XL is a label of G, XL(x) is a formula in first-order logic.

• If ϕ is a formula in first-order logic with free variables x1, . . . , xi, for each
1 ≤ j ≤ i, ∀xj : ϕ and ∃xj : ϕ are formulas in first-order logic. After
introducing such a quantifier ∀ or ∃ for xj , all occurrences of xj that
are free in ϕ are now called bounded (by the new introduced quantifier).
The remaining variables x1, . . . , xj−1, xj+1, . . . , xi are still free in ϕ.

• If ϕ1 and ϕ2 are formulas in first-order logic, then ¬ϕ1 and ϕ1 ⊗ ϕ2

with ⊗ being a logical connective such as, e.g., ∧,∨,→, and ↔ are also
formulas in first-order logic.

Note that a vertex of the universe is the only value represented by a var-
iable—usually denoted by lowercase letters such as x and y—in a formula of
first-order logic. For an easier notation, if XL is a label and X the set for XL,

127

we usually write x ∈ X instead of XL(x). If a predicate P is equal to a formula
in logic, the free variables x1, . . . , xi (i ∈ N0) of the formula are exactly the
arguments of the predicate. A predicate is usually denoted by one or several
capital letters followed by its arguments, e.g., P (x1, . . . , xi). Moreover, different
labels imply different predicates. The number of arguments of a predicate is its
arity. A predicate of arity zero is, e.g., P ≡ ∀x : x ∈ X ′ → x ∈ X . P
is true if and only if X ′ ⊆ X . A predicate Q(x) of arity one can be, e.g.,
Q(x) ≡ ¬(x ∈ X), which is true if and only if x /∈ X . From now on, we use
⊆ and /∈ as an abbreviated notation expressing that a vertex set is a subset
or equal to another vertex set and that a vertex is not part of a vertex set,
respectively.

Observe that a predicate P in first-order logic with exactly one free variable
x—also called a monadic predicate—can always be expressed as x ∈ X since
we only have to choose X as a subset of the universe such that it contains all
elements for which P (x) is true. We next define an extension of first-order logic
that allows quantifications over monadic predicates, in other words, quantifi-
cations over sets. Therefore, we introduce new variables—usually denoted by
uppercase letters such as X and Y—to represent subsets of the universe. In
order to distinguish between variables for single elements and for sets, let us
call the first kind individual variables and the latter kind set variables.

Definition 5.1.2 (monadic second-order logic (MSOL)). Formulas in mo-
nadic second-order logic (MSOL) are defined recursively as described in the
next paragraph. First of all, let us call a variable in a formula of MSOL free
if it is not bounded explicitly by a quantifier with the rules below or the rules
for first-order logic.

Each formula in first-order logic is also a formula in MSOL. If ϕ is a formula
in MSOL with a monadic predicate P (x) ≡ x ∈ X , then—in contrast to first-
order logic—X can be a set variable. Moreover, if X is a free (individual-
or set) variable in a formula ϕ in MSOL, then ∀X : ϕ and ∃X : ϕ are also
formulas in MSOL. In this case, all occurrences of X being free in ϕ are called
bounded (by the new introduced quantifier). Additionally, if ϕ1 and ϕ2 are
formulas in MSOL, then ¬ϕ1 and ϕ1 ⊗ ϕ2 with ⊗ being a logical connective
are also formulas in MSOL.

For a (labeled) graph G = (V,E), for a predicate P (X1, . . . , Xg, x1, . . . , xh),
for vertex sets V1, . . . , Vg ⊆ V , and for vertices v1, . . . , vh ∈ V , we say G models
P (V1, . . . , Vg, v1, . . . , vh) and write G |= P (V1, . . . , Vg, v1, . . . , vh) to denote that
P (X1, . . . , Xg, x1, . . . , xh) is true if

• the universe for the quantification is V ,

• for all 1 ≤ i ≤ g, 1 ≤ j ≤ h, Xi and xj represents Vi and vj , respectively,

• for variables y, y′ of P and for a set variable or the set for a label Y of P ,

◦ =(y, y′) is true if and only if y and y′ represent the same vertex,

◦ E(y, y′) is true if and only if y and y′ represent vertices u and v,
respectively, with {u, v} ∈ E, and

◦ y ∈ Y is true if and only if y represents a vertex that belongs to the
set represented by Y .

128

Next we see some examples how we can use logic over graphs to express graph
problems. By the formalism of first-order logic we next show the property that
a vertex set X of a graph G = (V,E) is independent:

IS ≡ ∀x, y ∈ V : x /∈ X ∨ y /∈ X ∨ ¬E(x, y).

In other words, GX |= IS if and only if X is an independent set in G. In
MSOL, we can take X as a free set variable. Then G |= IS(X) if and only if X
represents an independent set in G.

Definition 5.1.3 ((ℓ-)vertex-disjoint path problem). Given a graph G =
(V,E) and, for some ℓ ∈ N, ℓ pairs (s1, t1), . . . , (sℓ, tℓ) of vertices in V with
|{s1, t1, . . . , sℓ, tℓ}| = 2ℓ, in the vertex-disjoint path problem (VDPP) the goal
is to find—if possible—ℓ pairwise vertex-disjoint paths P1, . . . , Pℓ such that,
for all i ∈ {1 . . . ℓ}, si and ti are the endpoints of Pi.

In the ℓ-vertex-disjoint path problem (ℓ-VDPP)—in contrast to the
VDPP—ℓ is given as a fixed constant and is not part of the input.

As another example, we consider the decision version of the ℓ-vertex-disjoint
path problem, i.e., we next search for a predicate that gets true if and only if the
ℓ-vertex-disjoint path problem has a solution. First, we introduce an auxiliary
predicate. For a graph G = (V,E), vertices s, t ∈ V , and a set X ⊆ V , the next
predicate in MSOL is modeled by a graph G if and only if s and t are part of
the same connected component in G[X].

JOINS(X, s, t) ≡ s ∈ X ∧ t ∈ X ∧ ∀X ′ ⊆ X :

(s ∈ X ′ ∧ t /∈ X ′) → (∃x, y ∈ V : E(x, y) ∧ x ∈ X ′ ∧ y ∈ X \X ′)

The idea behind JOINS(X, s, t) is that, for every partition X ′ and X ′′ of X
with s ∈ X ′ and t ∈ X ′′, we can find an edge in G connecting a vertex in X ′

with a vertex in X \ X ′. Moreover, for a graph G = (V,E) and ℓ ∈ N pairs
(si, ti) of vertices in V (1 ≤ i ≤ ℓ), we can test by the following predicate if
there exist ℓ pairwise vertex-disjoint paths Pi with endpoints si and ti. Note
that it is enough to show that there exist k pairwise vertex-disjoint sets Xi with
G[Xi] containing a path from si to ti.

PATHℓ(s1, t1, . . . , sℓ, tℓ) ≡ ∃X1, . . . , Xℓ :

ℓ∧

i=1

JOINS (Xi, si, ti) ∧

ℓ∧

j=1

(∀v ∈ V : v /∈ Xi ∨ v /∈ Xj)

Thatcher and Wright [88] showed that one can associate with each fixed pred-
icate P (X1, . . . , Xg, x1, . . . , xh) (g, h ∈ N ∪ {0}) in MSOL a so-called determin-
istic bottom-up tree automaton AP such that, for each binary tree T+ = (V,E)
with a constant number of labels, each choice of vertex sets V1, . . . , Vg ⊆ V and
each choice of vertices v1, . . . , vh ∈ V , T+ |= P (V1, . . . , Vg, v1, . . . , vh) if and
only if after replacing Xi by Vi and xj by vj , for all 1 ≤ i ≤ g, 1 ≤ j ≤ h, AP
accepts T+. Moreover, one can show that a simulation of AP can test whether
AP accepts in a time linear in the size of T+.

129

Theorem 5.1.4. For each fixed predicate in MSOL, there is a linear-time al-
gorithm that tests if a binary (labeled) tree models the predicate.

Courcelle [25] has shown that a generalization from trees to graphs with
bounded treewidth is possible by an approach that can be sketched as follows:
Given a fixed predicate P (X1, . . . , Xg, x1, . . . , xh) (g, h ∈ N0) in MSOL as well
as a graph G and a binary tree decomposition (T,B) for G with (T,B) having
a width bounded by a constant, one can construct a predicate P+ by modi-
fying P (X1, . . . , Xg, x1, . . . , xh) and a labeled tree T+ from T by adding some
labels to T—mainly for encoding the vertex sets of the bags of (T,B) and
X1, . . . , Xg, x1, . . . , xh—such that G |= P (X1, . . . , Xg, x1, . . . , xh) if and only if
T+ |= P+. Combining these ideas with the last theorem we obtain Courcelle’s
fundamental theorem:

Theorem 5.1.5. For a graph class G with bounded treewidth, a property for-
mulated in MSOL can be checked on each graph G ∈ G in linear time.

Recall that in the first chapter we saw how to find a maximum independent
set on a graph G of bounded treewidth in linear time. In particular, we can
determine in linear time whether an independent set of size at least ℓ ∈ N exists
in G. The same result can be obtained by the last theorem using the predicate
IS(X) ∧ SIZE≥ℓ(X), where

SIZE≥ℓ(X) ≡ ∃x1 . . . , xℓ ∈ X :
∧

1≤i<j≤ℓ

¬(xi = xi).

Additionally, for each graph class of bounded treewidth, we can solve the
decision version of the ℓ-vertex-disjoint path problem in linear time. Given an
algorithm for the decision version of the ℓ-vertex-disjoint path problem with a
running time T (n,m) = Ω(n +m), one can iterate over every edge e and test
if there are ℓ-vertex-disjoint paths in the graph (V,E \ {e}). If this is the case,
remove the edge from the given graph and continue the iteration on the graph
obtained. At the end exactly the edges of ℓ vertex-disjoint paths remain. By
ℓ DFS one can finally construct the ℓ paths. Consequently, we can construct
ℓ-vertex-disjoint paths in O(n+mT (n,m)) time.

However, there are also problems for which no predicates in MSOL are known
or do exist. As we see in Section 5.3, certain so-called convex coloring problems
are NP-hard even on trees, i.e., using the common believed assumption P 6= NP
and Theorem 5.1.5 we can conclude that no predicate in MSOL exists for these
convex coloring problems. (Even if P = NP, no predicate in MSOL is known
currently for these problems.)

As we see in the following sections of this chapter, for problems where no
predicate in MSOL is known, we can also generalize ideas on trees to graphs of
bounded treewidth.

5.2 Three Convex Coloring Variants

Before we can define convex colorings, we need some further definitions. A
colored graph (G,C) is a tuple consisting of a graph G and a coloring C of G,
i.e., a function assigning each vertex v to a color that is either 0 or a so-called
real color. A vertex colored with 0 is also called uncolored. A coloring is an

130

(a, b)-coloring if the color set used for coloring the vertices contains at most a
real colors and if each real color is used to color at most b vertices. Two equal-
colored vertices u and v in a colored graph (G,C) are C-connected if there is a
path from u to v whose vertices are all colored by C with the color of u and v.
A coloring C is called convex if all pairs of vertices colored with the same real
color are C-connected. For a colored graph (G,C1), another arbitrary coloring
C2 of G is also called a recoloring of (G,C1). We then say that C1 is the initial
coloring of G and that C2 recolors or uncolors a vertex v of G if C2(v) 6= C1(v)
and C2(v) = 0, respectively. The cost of a recoloring C2 of a colored graph
(G,C1) with G = (V,E) is

∑

v∈V :06=C1(v) 6=C2(v)
w(v), where w(v) denotes the

weight of v with w(v) = 1 in the case of an unweighted graph. This means that
we have to pay for recoloring or uncoloring a real-colored vertex, but not for
recoloring an uncolored vertex.

In the minimum convex recoloring problem (MCRP) we are given a colored
graph possibly with a positive weight-function w, and we search for a convex
recoloring with minimal cost. The MCRP describes a basic problem in graph
theory with different applications in practice: a first systematic study of the
MCRP on trees is from Moran and Snir [68] and was motivated by applications in
biology. Further applications are so-called multicast communications in optical
wavelength division multiplexing networks; see, e.g., [22] for a short discussion
of these applications. Here we focus on the MCRP as a special kind of routing
problem. Suppose we are given a telecommunication or transportation network
described by a graph whose vertices represent routers. Moreover, assume that
each router can establish a connection between itself and an arbitrary set of
adjacent routers. Then routers of the same initial color could represent clients
that want to be connected by the other routers to communicate with each other
or to exchange data or commodities. More precisely, connecting clients of the
same color means finding a connected subgraph of the network containing all
the clients, where the subgraphs for clients of different colors should be disjoint.
If we cannot establish a connection between all the clients, we want to give up
connecting as few clients to the other clients of the same color as possible in
the unweighted case (w(v) = 1 for all vertices v) or to give up a set of clients
with minimal total weight in the weighted case. Hence, the problem reduces to
the MCRP, where the initially uncolored vertices that are recolored by a color c
represent exactly the routers used to connect clients of color c. Fig. 5.2.1 shows
an example instance and Fig. 5.2.2 an optimal solution for it. The case in which
routers can connect a constant number of disjoint sets of adjacent routers can
be handled by duplicating the vertices representing a router.

We also study a relaxed version of the problem above that we call the mini-
mum restricted convex recoloring problem (MRRP). In this problem we ask for a
convex recoloring C′ that does not recolor any real-colored vertex with a differ-
ent real color. In practice clients often cannot be used for routing connections
for other clients so that a clear distinction between clients and routers should be
made. This corresponds to the MRRP, where a client that cannot be connected
to the other clients of the same color may only be uncolored. See Fig. 5.2.3 for
an example instance and Fig. 5.2.4 for an optimal solution.

In addition, we consider a variant of the MCRP, where we search for a convex
recoloring, but assign a cost to each color c. We have to pay the cost for color c if

131

Figure 5.2.1: An instance of a colored graph, where each vertex is a router.

Figure 5.2.2: An optimal convex recoloring of Fig. 5.2.1.

at least one vertex of color c is recolored. Let us call this recoloring problem the
minimum block recoloring problem (MBRP). In an unweighted version we assign
cost 1 to each color. The MBRP is useful if it is not enough in an application
to connect only a proper subset of clients (of the same color) that want to be
connected. See also Fig. 5.2.5.

The MCRP, the MRRP, and the MBRP can also be considered as genera-
lizations of the vertex-disjoint paths problem. Indeed any algorithm solving one
of the three recoloring problems on (∞, 2)-colorings to optimality can solve the
VDPP, too. Given an algorithm for the MBRP one can also solve the problem
of connecting a subset of a given set of weighted vertex pairs (s1, t1), . . . , (sl, tl)
by disjoint paths such that the sum of the weights of the connected pairs is
maximized.

Given an instance of the VDPP, it is NP-hard to determine the maximum
number of pairs that can be connected by pairwise disjoint paths as shown by
Knuth [59] and Lynch [63]. Moreover, Andrews and Zhang [3] have shown that
this problem can not be approximated on N -vertex graphs in polynomial time
within a ratio of size ≤ log1/3−ǫN unless NP is contained in the so-called com-
plexity class ZPTIME (npoly log(n)). The NP-hardness of the unweighted MCRP,
MRRP, and MBRP follows directly from Knuth’s and Lynch’s result. However,
non-approximability results for the recoloring problems do not follow from the
result of Andrews et al. since the recoloring problems are minimization problems,
i.e., we want to minimize the number of colors that can not be connected. Moran
and Snir [68] showed that the MCRP on (∞,∞)-colorings remains NP-hard on
trees, and the same is true for the MRRP, as follows implicitly from Moran’s and
Snir’s result [68] concerning leaf-colored trees. Moreover, Snir [85] presented a

132

Figure 5.2.3: The colored graph of Fig. 5.2.1 with routers and laptops (clients).

Figure 5.2.4: An optimal restricted convex recoloring of figure Fig. 5.2.3.

Figure 5.2.5: An optimal block recoloring of Fig. 5.2.1.

polynomial-time 2-approximation algorithm for the weighted MCRP on paths
and a polynomial-time 3-approximation algorithm for the weighted MCRP on
trees also published in [69]. Bar-Yehuda, Feldman, and Rawitz [9] could im-
prove the approximation ratio on trees to 2 + ǫ. Their algorithm is generalized
in Section 5.7.

In contrast to the work of Moran, Snir as well as of Bar-Yehuda et al., we
consider initial (a, b)-colorings with a and b being different from ∞. In addition,
we also consider graphs of bounded treewidth instead of only trees.

Surprisingly, the three variants of the recoloring problem all have different
complexities on graphs of bounded treewidth, as we prove in the following four
sections. Table 5.2.6 summarizes the results on graphs of bounded treewidth
shown in this chapter. We will see that the MCRP is NP-hard even on un-
weighted trees initially colored with (∞, 2)-colorings, whereas the MRRP can
be solved in polynomial time for the more general (∞, 3)-colorings as input
colorings even on weighted graphs of bounded treewidth. We also observe the
NP-hardness of the MRRP on trees colored with (∞, 4)-colorings. Moreover,

133

we study a polynomial-time algorithm for the MBRP on weighted graphs of
bounded treewidth for general colorings, i.e., (∞,∞)-colorings.

Beside the results on graphs of bounded treewidth we will see that, for some
c > 0, the unweighted versions of the recoloring problems on an n-vertex graph
cannot be approximated in polynomial time within an approximation ratio of
c ln lnn unless P = NP even if the initial colorings are restricted to (∞, 2)-
colorings. As a consequence of this result, P 6= NP implies that there is no good
polynomial-time approximation possible for the following problem: Given pairs
of vertices, find the minimal ℓ such that all except ℓ pairs can be connected by
disjoint paths.

a ∈ O(log n)
a = ∞

b = 2, 3 b ≥ 4

MCRP ∈ P NP-hard NP-hard

MRRP ∈ P ∈ P NP-hard

MBRP ∈ P ∈ P ∈ P

Table 5.2.6: Complexity results for graphs with treewidth O(1) on (a, b)-colorings.

5.3 Hardness Results for Convex Coloring

In this section, we first show an inapproximability result for all three convex
recoloring variants on general graphs by a reduction from the following problem.

Definition 5.3.1 (set cover). Given a tuple (U,F), where U is a finite set
called universe and F is a collection of sets, a set cover for (U,F) is a collection
F∗ ⊆ F such that

⋃

Z∈F∗ Z = U . |F∗| is then called the size of the set-cover
and a minimum set cover is a set cover of minimum size.

Lemma 5.3.2. Given an unweighted n-vertex graph with an (∞, 2)-coloring,
no polynomial-time algorithm for the MCRP, the MRRP or the MBRP has an
approximation ratio c ln lnn (for some constant c > 0) unless P = NP.

Proof. Alon, Moshkovitz, and Safra [2] showed that, for an appropriate chosen
constant c > 0, there is no polynomial-time approximation algorithm of ratio
c ln |U | for the minimum set-cover problem with universe U unless P = NP. In
the following we prove the lemma by a reduction from the minimum set-cover
problem. Since one can easily test in polynomial time if a set-cover instance has
a solution, we assume in the following that we are given a set-cover instance
(U,F) that has a solution. W.l.o.g. we additionally assume that |U | > 5, that
each element of U is contained in a set Z in F , and that F contains only sets
with cardinality ≤ (|U | − 2), i.e., in particular |F| ≤ 2|U| − |U |.

We now create a colored graph (G,C) as follows. For each set Z in F , we
define a ordering σ1, σ2, . . . , σr of the elements of Z and introduce in G a path
consisting of new vertices Z′, Zσ1 , Zσ2 , . . . , Zσr

, Z′′ in this order. For each u ∈ U ,
we add vertices u′ and u′′ to G. Moreover, for each Z ∈ F and each u ∈ Z, we
add edges {Zu, u′} and {Zu, u′′} (see Fig. 5.3.1). For each set Z ∈ F and each
u ∈ U , we define new colors cZ and cu different from the other colors and color

134

the vertices Z′ and Z′′ with cZ and the vertices u′ and u′′ with color cu. All
other vertices remain uncolored.

Set-cover (U,F):

F = {. . . , X , Y, Z, . . .} with

X = {π1, . . . , u, . . . , πp}
Y = {ρ1, . . . , u, . . . , ρq}
Z = {σ1, . . . , u, . . . , σr}

X ′ Xπ1 Xu Xπp X ′′

Z′Zσ1

Zu
Zσr Z′′

u′ u′′

Yu
Yρq

Yρ1

Y′′

Y′

Figure 5.3.1: Reduction from minimum set cover to a recoloring problem.

We next show that each set cover for (U,F) of size k can be used to construct
a convex recoloring of (G,C) with cost k for each of the three coloring problems
in polynomial time and vice versa. Since the constructed graph G has n ≤
2|F|+(|U |− 2)|F|+2|U | = |U | · (|F|+2) ≤ |U |2|U| ≤ e|U| vertices and because
of the non-approximability result for the set-cover problem, for some constant
c > 0, no polynomial-time algorithm can solve the three recoloring problems
with an approximation ratio c ln |U | ≥ c ln lnn unless P = NP.

Given a set cover F∗ ⊆ F of size k, we can find a recoloring C′ of G with
cost k as follows: For each set Z ∈ F \ F∗, we recolor the inner vertices of the
paths from Z′ to Z′′ with color cZ . For each set Z = {σ1, σ2, . . . , σr} ∈ F∗, we
uncolor Z′′ and color Zσi

with cσi
for all 1 ≤ i ≤ r. Since F∗ is a set cover, for

each u ∈ U , there exists a set Z ∈ F∗ with u ∈ Z. Therefore, the recoloring
guarantees that, for each u ∈ U , the vertices u′ and u′′ are C′-connected because
of the recoloring of Zu with color cu for some Z ∈ F∗. For each set Z ∈ F \ F∗,
the vertices Z′ and Z′′ are also C′-connected. Since each remaining color cZ
with Z ∈ F∗ is used by C′ to color only one vertex, C′ is a convex recoloring.
The cost for the recoloring C′ with respect to the MCRP, MRRP or MBRP is
|F∗| = k since the only real-colored vertices with respect to C that are recolored
by C′ are the vertices in {Z′′ | Z ∈ F∗}.

Let us now assume that there is a convex recoloring C′ for the MCRP,
MRRP or MBRP with cost k in G. We show that we can find a set cover of
size at most k: Let F∗

1 be the collection of all sets Z ∈ F for which either at
least one of Z′ or Z′′ is recolored by C′ or there are at least two vertices of
{u′ |u ∈ Z} ∪ {u′′ |u ∈ Z} being colored with cZ by C′. The recoloring cost for
all vertices whose recoloring is responsible for inserting a set Z ∈ F into F∗

1 is of
size at least |F∗

1 | even in the case of the MBRP. Let us remove from G the paths
introduced for all Z ∈ F∗

1 , all vertices u′ and u′′ with u ∈ U being contained in
a set of F∗

1 , and all edges being incident to at least one removed vertex. Let
U∗ ⊆ U be the set of elements u for which u′ and u′′ remain in G. For each set
Z ∈ F with Z ∩ U∗ 6= ∅, we know that the Z′-Z′′-path is colored with cZ . Con-
sequently, for no u ∈ U∗, the vertices u′ and u′′ can be C′-connected. Therefore
and since C′ is a convex recoloring, for each u ∈ U∗, one of the vertices u′ and
u′′ must be uncolored. This means that we have the additional recoloring cost
|U∗|. We can easily find a collection F∗

2 ⊆ F consisting of at most |U∗| sets
whose union contains all elements of U∗. Hence F∗

1 ∪F∗
2 is a set cover of (F , U)

of size at most k.

135

Now we restrict the considered graphs to trees, and let the initial colorings
using only very few colors. Nevertheless, two of the three convex recoloring
problems remain NP-hard.

Theorem 5.3.3. The MCRP on initial (∞, 2)-colorings and the MRRP on
initial (∞, 4)-colorings are NP-hard on unweighted trees.

Proof. For both problems, we use a reduction from 3-SAT. In 3-Satisfiability
(3-SAT) we are given a Boolean formula in 3-CNF—i.e., a formula in conjunc-
tive normal form with at most 3 variables per clause—and we have to find an
assignment of the variables such that at least one literal is true in every clause
of the formula. Let F be an instance of 3-SAT, i.e., F is a Boolean formula
in 3-CNF. Since satisfiability does not change by replacing a clause consisting
of only one literal ℓ by the four clauses ℓ ∨ z1 ∨ z2, ℓ ∨ z1 ∨ z2, ℓ ∨ z1 ∨ z2, and
x ∨ z1 ∨ z2 and by replacing a clause ℓ1 ∨ ℓ2 by the two clauses ℓ1 ∨ ℓ2 ∨ z3
and ℓ1 ∨ ℓ2 ∨ z3 with z1, z2, and z3 being new variables, we assume that each
clause in F has exactly three literals. Let n and m be the number of literals
in F and the number of clauses of F , respectively. In addition, let r be the
minimal number such that each literal in F appears at most r times in F . The
following construction of an instance IMCRP for the MCRP is illustrated by Fig.
5.3.2. We construct G by introducing for each variable x a so-called gadget Gx
consisting of

• an uncolored vertex vx,

• leaves vL,ix , vR,ix colored with a color cix for each i ∈ {0, 1},

• an edge {vL,ix , vx} for each i ∈ {0, 1}, and

• two internally vertex-disjoint paths of length r + 1, one from vx to vR,0x ,
and the other from vx to vR,1x .

vL,0y

vL,1y

vy
vR,0y

vR,1y

vL,0x

vL,1x

vx
vR,0x

vR,1x

vL,1K

vL,2K

vL,3K

vK

vR,1K

vR,2K

vR,3K

gadget for clause x ∨ y ∨ z

gadget for variable x (above) and y (below)
r

r

free extra vertices

Figure 5.3.2: The figure shows parts of the graph obtained by the reduction from
a formula in 3-CNF with a clause x ∨ y ∨ z to MCRP.

Let us call the internal vertices of the vx-v
R,1
x -path the positive and those of

the vx-v
R,0
x -path the negative vertices in the gadget Gx. For each clause K, we

introduce a similar gadget GK consisting of

• an uncolored vertex vK ,

136

• leaves vL,jK , vR,jK colored with a color cjK for each j ∈ {1, 2, 3},

• an edge {vK , vL,jK } for each j ∈ {1, 2, 3}, and

• three internally vertex-disjoint paths that have length 2, start in vK , and
end in vR,1K , vR,2K , and vR,3K , respectively.

In addition, we also introduce 2nr extra vertices without any incident edges
called the free vertices of G. From this forest we obtain a tree T if we simply
connect all gadgets and all free vertices by the following three steps. First, add
a path of length three consisting of v1, v2, and v3 into G that all are colored
with the same new color. Second, for each variable x, connect vx to v1. Third,
for each clause K and each free vertex v, connect vK and v both to v3.

In addition, C colors further vertices of T . For each literal ℓ = x or ℓ = x in
a clause K, color one positive (in the case ℓ = x) or one negative (in the case
ℓ = x) vertex of Gx as well as one of the non-leaves adjacent to vK with a new
color cK,ℓ. If after these colorings there is at least one uncolored positive or
negative vertex, we take for each such vertex u a new color cu and assign it to
u as well as to exactly one uncolored free vertex.

Let us call a pair of equal-colored vertices a literal-clause pair if it contains
a positive or negative vertex. The construction of an instance IMRRP for the
MRRP can be obtained from above by the following modification for each vertex
v being part of a literal-clause pair. Add two new vertices v∗ and v∗∗ to T ,
connect each of them with an edge to v, and move the color c of v to v∗ and
v∗∗, i.e., color both new vertices with c and uncolor v. The vertices v∗ and v∗∗

are called an agent pair of v. The result is illustrated by Fig. 5.3.3.

vL,0y

vL,1y

vy
vR,0y

vR,1y

vL,0x

vL,1x

vx
vR,0x

vR,1x

vL,1K

vL,2K

vL,3K

vK

vR,1K

vR,2K

vR,3K

gadget for clause x ∨ y ∨ z

gadget for variable x (above) and y (below)
r

r

free extra vertices

Figure 5.3.3: The figure shows parts of the graph obtained by the reduction from
a formula in 3-CNF with a clause x ∨ y ∨ z to MRRP.

It remains to show that the following three statements are equivalent.

1. F is satisfiable, i.e., F ∈ 3-SAT.

2. IMCRP has a convex recoloring C′ with cost ≤ n+ 2m+ 2nr.

3. IMRRP has a restricted convex recoloring C′′ with cost ≤ n+ 2m+ 4nr.

1 ⇒ 2: Let B be a satisfying assignment of F . We can construct a convex
recoloring C′ as follows. For each variable x, if x is true with respect to B,

137

we recolor all negative vertices of the gadget x as well as vx with color c0x, and
otherwise we recolor the positive vertices of the gadget x and vx with color c1x.
Moreover, for each clause K, we choose one literal ℓ being true with respect to
B. We then search for the vertex u with color cK,ℓ adjacent to a leaf vR,jK for

some j ∈ {1, 2, 3} and recolor vK and u by the color cjK . Next, for each literal-
clause pair with both vertices still having the same color, we uncolor one of the
two. Finally, we uncolor for all i ∈ {0, 1}, j ∈ {1, 2, 3}, for all variables x and all

clauses K the leaves vL,ix and vL,jK that do not have the same color as the rules
above have assigned to vx and vK . Note that for each variable x and each clause
K, one pair of initially equal-colored leaves in Gx and GK are C′-connected. All
other colors of C′ are used for exactly one vertex. Altogether, we can observe
that C′ is a convex recoloring that is obtained by un- or recoloring 2m leaves
of the gadgets for the clauses, n leaves of the gadgets for the variables, and
one vertex for each of the 2nr literal-clause vertex-pairs. Therefore, C′ has cost
n+ 2m+ 2nr.

2 ⇒ 3: We modify a solution C′ for the IMCRP with cost at most n+2m+2nr
to obtain a solution C′′ for the IMRRP with cost at most n + 2m + 4nr by
considering each vertex v being part of a literal-clause pair. If v is neither
uncolored nor recolored by C′, then C′′ colors the agent pair v∗ and v∗∗ of v as
well as v itself with the color C′(v). The agent pair v∗ and v∗∗ of an uncolored
or recolored vertex v are uncolored by C′′.

Note that C′ has to recolor one of the four leaves of the gadget Gx for each
variable x and two of the six leaves of the gadget GK for each clause K. The
reason for this is that the vertices vx and vK can have only one color. Thus,
apart from these (n+2m) leaves, C′ can only recolor at most 2nr further vertices.
Consequently, we have at most 2nr vertices whose agent pairs are uncolored,
and C′′ has cost at most n + 2m + 4nr. Finally note that C′′ is convex since
C′ is convex and since we color a vertex v∗ and v∗∗ with a color c only if their
neighbor v is colored with c, too.

3 ⇒ 1: Let us consider a convex restricted recoloring C′′ of IMRRP with
cost at most n + 2m + 4nr. Similar to the arguments used in last reduction,
C′′ needs to uncolor at least n + 2m leaves. Hence, C′′ can only uncolor at
most 4nr non-leaves. Assume that C′′ uncolors the three vertices v1, v2, and
v3 (possibly in order to C′′-connect the two agent pairs of a literal-clause pair).
Consequently, for each of at least 2nr − 1 literal-clause pairs, two of the four
vertices of its two agent pairs must be uncolored, i.e., at least 4nr−2 vertices are
to be uncolored by cost at most 4nr− 3. Since this is not possible, at least one
vertex of {v1, v2, v3} is not uncolored and, for each literal-clause pair {u1, u2},
either the agent-pair of u1 or of u2 has to be uncolored.

In summary, C′′ uncolors exactly one agent pair of each literal-clause pair, a
leaf of each gadget Gx and 2 leaves of each gadget GK . Consequently, for each
clause K, two leaves in the gadget for K have to be C′′-connected, i.e., there is
one non-leaf u adjacent to vK on the path from vL,jK to vR,jK for some j ∈ {1, 2, 3}
that is colored with cjK by C′′. If the agent pair of u was initially colored by
cK,ℓ, the idea is now to assign to the literal ℓ the value 1 (true) making clause
K and finally the whole formula F true. However, this only works if no agent
pair initially colored with cK′,ℓ for some clause K ′ is uncolored. Assume for a
contradiction that our construction sets a variable x = 1 for some clause K and

138

x = 1 for some other clause K ′. Since for each literal-clause pair, we can uncolor
exactly one of the two agent pairs, Gx contains a positive and a negative vertex,
neither of whose agent pair is uncolored by C′′. This is a contradiction to the
fact that only one leaf of each Gx is allowed to be uncolored.

5.4 MCRP on Trees

The NP-hardness results in Theorem 5.3.3 for the minimum convex recoloring
problem (MCRP) on trees and the strongly believed assumption P 6= NP implies
that there is no polynomial time algorithm for the MCRP on trees. By the ideas
of Section 1.2, we might be tempted to search for a fixed-parameter algorithm
with the treewidth as complexity parameter. Unfortunately, even if we use
the treewidth as a fixed parameter and restrict the instances such that this
parameter k is small, e.g., k = 1, we still have to solve the problem on all trees
by Lemma 1.3.12; thus, the problem remains NP-hard. Bar-Yehuda, Feldman,
and Rawitz [9] observed that the difficult instances on trees are those with many
colors, i.e., their idea was to use the number of colors ’somehow’ as a complexity
parameter and is described in the following. Since in the next section we solve
the same problem on graphs of bounded treewidth, the algorithm on trees is
only sketched.

Recall that the algorithm for the maximum independent set problem of Sec-
tion 1.2 traverses a rooted tree bottom-up and, for each vertex v of a tree T ,
computes the two sizes |S−

v | and |S+
v | of biggest independent sets S−

v and S+
v

in Tv with v ∈ S+
v \ S−

v . As an alternative description, we can sketch this algo-
rithm as follows: For each vertex v, we partition the independent sets in Tv into
two collections; one consists of all independent sets containing v and the other
consists of all remaining independent sets. However, for an efficient implemen-
tation, we compute for each collection S only the size of a biggest independent
set in S. Intuitively speaking, this strategy works since we need not to know all
independent sets in Tv for determining a biggest independent set in Tv′ with v′

being the parent of v. More exactly, if I1 and I2 are independent sets in S+
v (or

if I1, I2 ∈ S−
v), then for a vertex set I ′ consisting of no vertices of Tv, I1 ∪ I ′ is

an independent set in T if and only if this is the case for I2 ∪ I ′.
Before we can describe an algorithm for the MCRP, some further defini-

tions and observations are necessary. For the rest of this section, let us assume
that we are given a rooted tree T = (V,E) colored by an initial coloring C.
For each V ′ ⊆ V and for each subtree T ∗ of T with vertex set V ∗, we define
C(V ′) = {C(v) | v ∈ V ′} \ {0} and C(T ′) = C(V ∗). For a vertex v of T and
a color c, let compc(C, v) be the set of all connected components of T [V − v]
containing at least one vertex v′ with C(v′) = c. Moreover, let sep(C, v) be
the set of real colors that C uses to color vertices in more than one connected
component of T [V − v]. An extension of a (re-)coloring C1 for a graph H1 is a
new (re-)coloring C′

1 for a graph H2 ⊇ H1 with C′
1(v) = C1(v) for all vertices v

of H1.

Definition 5.4.1. A recoloring of a colored tree (T,C) is called effective if
it colors each vertex v of T with a color in sep(C, v) ∪ {C(v), 0} and each
connected component T ′ of T [V \ {v}] only with colors of C(T ′) ∪ {0}.

139

Observe that, if there is a convex recoloring C′ of (T,C) that colors a vertex
v with a color c /∈ sep(C, v) ∪ {C(v), 0}, there is only one connected component
T ∗ in T [V \ {v}] with vertices colored with c by C, i.e., we can modify C′ by
uncoloring all vertices of color c that are not part of T ∗. Moreover, if there
is a convex recoloring C′′ of (T,C) that colors a vertex part of a connected
component T ′ in T [V \ {v}] with a color c′ /∈ C(T ′), we can uncolor all vertices
that belong to T ′ and that are colored with c′ by C′. The coloring obtained in
both cases is still convex, and both modifications do not increase the cost.

Observation 5.4.2. There is an optimal convex recoloring that is also effective.

For an efficient algorithm for the MCRP, we also have to partition the convex
colorings of Tv for each vertex v into as few collections as possible. Before we
can find such a partition, an interesting question is which of the collections C of
colorings of Tv can be characterized somehow easily and consist only of colorings
with the following property: For each pair of colorings C′ and C′′ of C, C′ and
C′′ can be extended in the same way to a convex recoloring of the whole tree
T . Two colorings C1 and C2 for a graph H1 can be extended in the same way
if, for each extension C′

1 of C1 and C′
2 of C2, at least one of the three following

conditions holds: C′
1(u) 6= C′

2(u) for a vertex u not in H1 or C′
1 and C′

2 are
both convex or C′

1 and C′
2 are both not convex. One can easily observe that a

possible choice of C is to take all colorings that color v with the same color, say
c, and that use the same set Z of colors for the vertices in Tv obtained through
the intersection with the colors in sep(C, v) \ {c, 0}.

Our algorithm for the MCRP considers the vertices of T = (V,E) in a
bottom-up traversal and, for each vertex v ∈ V , the algorithm partitions the
convex colorings of Tv such that two convex colorings belong to the same set of
the partition if and only if they have the same characteristic. A characteristic
for a vertex v is a tuple Q = (c, Z), where c ∈ sep(C, v) ∪ {C(v), 0} and where
Z ⊆ sep(C, v) \ {c}. For obtaining a convex recoloring, the colors in Z are
not allowed to be used for the vertices of T not belonging to Tv. Therefore,
we call Z in the following the forbidden colors of Q. Moreover, we say that
a characteristic (c, Z) represents the collection C of all convex colorings C′ of
Tv with the following properties: C′ is an effective recoloring that colors v
with c and that uses exactly the colors (C(Tv) \ sep(C, v)) ∪ {c, 0} ∪ Z. For
a characteristic (c, Z), we define the cost for (c, Z) as the minimum cost of a
convex coloring part of the collection represented by (c, Z). Alternatively, the
reader can consider a characteristic (c, Z) as one effective convex recoloring C′ of
(Tv, C) such that C′ has minimal cost under all effective convex recolorings that
color v with c and that use exactly the colors in (C(Tv) \ sep(C, v))∪{c, 0} ∪Z.
The cost of a characteristic is then defined as the cost of the recoloring identified
with it.

Note that the cost of an optimal solution for the MCRP is exactly the min-
imum cost of a characteristic at the root of T . For an efficient implementation
of the bottom-up traversal—similar to MIS—we compute only the cost for each
characteristic and not the collections represented by the characteristics. Sim-
ilar to the MIS, a subsequent top-down traversal gives us an optimal convex
recoloring.

Thus, it remains to show how to compute, for each vertex v of T , the cost for
each characteristic (c, Z) at v stored in a variable costv(c, Z) at the end of the
algorithm. If v is a leaf of T , the fact that we search only for effective convex

140

recolorings implies that the only characteristics of v are (C(v), ∅) as well as (0, ∅),
and we store costv(C(v), ∅) = 0 and costv(0, ∅) = w(v). If, for some ℓ ∈ N, v has
children v1, . . . , vℓ, the algorithm initially sets costv(c

′, Z ′) = ∞ for all possible
characteristics (c′, Z ′) of v, iterates over all colors c ∈ sep(C, v) ∪ {C(v), 0} as
possible colors for v, and executes the steps described in the next paragraph.

For a simpler notation, let V ∗ be the set of vertices not in Tv, and call a set
S of characteristics consisting of a characteristic for each v1, . . . , vℓ compatible
if, for each pair of characteristics Q′,Q′′ ∈ S, the forbidden colors of Q′ and
of Q′′ are disjoint. Since finding a convex recoloring implies that each color
c′ ∈ sep(C, v)\{c} can be used only for one child vi of v to color Tvi

, we are only
allowed to combine compatible characteristics of v1, . . . , vℓ to a characteristic
for v. Therefore, the algorithm considers all possibilities to assign each color of
sep(C, v)\{c} to one connected component of T [V−{v}]; more exactly, searching
only for effective convex recolorings implies that each color c′ ∈ sep(C, v) \ {c}
can be assigned to one component of compc′(C, v). Let C′

V ∗ be the colors
assigned to T [V ∗], i.e., C′

V ∗ is designated to be used in T [V ∗]. After assigning
all colors, the algorithm can compute by some simple, but ugly computations
the cost x of a cheapest recoloring of (Tv, C) extending colorings for the subtrees
Tv1 , . . . , Tvℓ

with the assigned colors using the values stored in costv1 , . . . , costvℓ
.

If costv(c, sep(C, v) \ ({c} ∪ C′
V ∗)) is larger than x, we update it to x.

Bar-Yehuda et. al. observed that an efficient implementation of the algorithm
above runs in time

O(n2 +
∑

v∈V

(|sep(C, v)| · ((deg(v) + 1) +
∏

c′∈sep(C,v)

|compc′(C, v)|))).

If s = maxv∈V sep(C, v) is additionally defined as complexity parameter,
a less detailed description of the running time is O(n2 + s

∑

v∈V (n + ns)) =
O(n2 + sns+1). Comparing this running time with the running time of the
algorithm of the next section in the case k = 1—see Theorem 5.5.8—we can
observe that on trees the latter algorithm is better for graphs with many vertices.
The reason for this improvement is that the algorithm above has a much better
running time on binary trees than on arbitrary trees and that an arbitrary tree
T can always be ’packed’ into a binary tree decomposition for T . Therefore, it
can be also a good idea to use tree decompositions even for trees.

5.5 MCRP on Graphs of Bounded Treewidth

Extending the result of the last section we obtain in this section an algorithm
for the MCRP on weighted colored graphs (G,C). However, Obs. 5.4.2 can not
be easily generalized to tree decompositions. Without using the restriction to
effective colorings, we must consider the possibility that a vertex in the given tree
is colored by all possible colors of the initial coloring. If we follow this approach
in a straight forward way, we have to store at each node w of a tree decomposition
(T,B) for an n-vertex graph G at least Ω(|C(G)||B(w)|) characteristics, where
possibly |C(G)| = Θ(n). In other words, if G has treewidth k, we would obtain
as running time Ω(nk+1). Additional ideas presented on the following three
pages still guarantee a running time quadratic in n.

For having a smaller number of case distinctions, we start with the definition
of a special kind of a tree decomposition.

141

Definition 5.5.1 (nice tree decomposition). A tree decomposition (T,B) for
an n-vertex graph is called nice if

• T is a rooted and binary tree with O(n) nodes

• B(w) = B(w1) = B(w2) holds for each node w of T with two children
w1 and w2, and

• for all nodes w of T with only one child w1, either |B(w) \ B(w1)| = 1
and B(w) ⊃ B(w1) or |B(w1) \B(w)| = 1 and B(w1) ⊃ B(w) holds.

Given an n-vertex graph G and a binary tree decomposition (T,B) with O(n)
nodes and width k, we easily obtain a nice tree decomposition by modifying T
in O(k2n) time [61]. In detail, for each edge {w1, w2} of T with B(w1) and
B(w2) differing by x > 1 vertices, replace {w1, w2} by a new w1-w2-path of
length x and assign bags to the nodes of the new path such that stepwise B(w1)
transforms to B(w2). Moreover, as long as T contains a node w having only
one child w′ with B(w′) = B(w), connect the children of w′ to w and remove
w′ from T . Finally, for each node w of T having two children, check if its bag
is identical to the bag of each child w′ of w. In case of a failure, replace edge
{w,w′} of T by a w-w′-path P of length 2 and take as content of the bag for
the inner vertex of P the content of B(w). Note that all modifications can be
done by a DFS on T in O(k2n) time and that the tree decomposition obtained
is nice.

For the remainder of this section, we assume that we are given an n-vertex
graph G = (V,E) and a nice tree decomposition (T,B) for G of width k − 1
(n, k ∈ N) such that T has O(n) nodes. The description of an algorithm for the
convex coloring problems needs some further notations and definitions. By wl

and wr we denote the left and the right child, respectively, of w in a tree T . In
addition, if w has only one child, we define it to be a left child. We also introduce
a new set consisting of k gray colors—in this chapter always denoted by Y—and
we allow for each recoloring additionally to use the gray colors. A gray colored
vertex v of G intuitively means that v is uncolored and is later colored with a
real color. We therefore define the cost for recoloring a gray colored vertex to
be 0 and do not consider the gray colors as real colors. A convex coloring from
now on should denote a coloring C where all pairs of vertices of the same gray
or real color are C-connected. For each node w in T , each subset S of vertices
of G, each subgraph H of G, and each coloring C of a subgraph G′ of G with
G′ containing all vertices of S and of H , we let

• B(Tw) be the set vertices in a bag of a node being no descendant of w.

• C(S), C(H) be the set of real colors used by C to color the vertices of S
and of H , respectively.

• SEP(C,w) be the set of real colors used to color vertices in more than one
of the graphs G[B(Twl

) \B(w)], G[B(Twr) \B(w)], and G[B(Tw)].

On trees, we could easily restrict the recolorings we must consider to find an
optimal solution by Obs. 5.4.2. Next, a weaker restriction for graphs of bounded
treewidth is defined.

142

Definition 5.5.2 (legal coloring). A legal recoloring of a colored graph (G,C)
is a recoloring C′ of (G,C) such that, for each color c assigned by C′, there
is a vertex u of G with c = C(u) = C′(u).

Observe that, if there is a convex recoloring C′′ of a colored graph (H,C) of
cost k, there is also a legal convex recoloring C′ of (H,C) with cost k. C′ can be
obtained from C′′ without increasing the cost by uncoloring all vertices colored
with a color c for which no vertex u with C′′(u) = C(u) = c exists. Hence for
solving the MCRP, we only need to search for legal recolorings.

For the rest of this section we assume that our given graph G is a weighted
graph being colored by an initial coloring C without any gray colors. Similar
to the algorithm on trees, the algorithm considers the nodes of T in a bottom-
up traversal, computes for each node w a set of characteristics, and stepwise
extends the colorings represented by a characteristic. However, extending a
(re-)coloring with gray colors needs a special rule: A vertex colored with a
gray color c1 may be recolored with a real color c2 by an extension if all ver-
tices of color c1 are recolored with c2 by the extension. For the MCRP on
graphs of bounded treewidth, a characteristic for a node w is defined as a tuple
(P, (PS)S∈P , (cS)S∈P , Z), where

• P is a partition of B(w), i.e., a collection of nonempty pairwise disjoint
sets S1, . . . , Sj with j ∈ N and

⋃

1≤i≤j Si = B(w). The sets S1, . . . , Sj are
called macro sets.

• PS is a partition of the macro set S, where the subsets of S contained in
PS are called micro sets.

• cS ∈ C(B(w)) ∪ SEP(C,w) ∪ Y ∪ {0,−1}, where −1 is an extra value
different from the real and gray colors.

• Z ⊆ SEP(C,w). The colors in Z are called the forbidden colors.

In the following, for a characteristic Q and a macro set S of Q, we denote the
values P, PS , cS and Z above by PQ, PQ

S , c
Q
S and ZQ.

We next describe a first intuitive approach of solving the MCRP extending
the ideas from trees to graphs of bounded treewidth by introducing macro and
micro sets, but not using gray colors or the extra value −1. A characteristic Q
for a node w represents a collection C of colorings of B(Tw) such that, for each
coloring C′ ∈ C, the following holds: A macro set S of Q denotes a maximal
subset of vertices in B(w) that are colored by C′ with the same unique color
equal to the value cQS stored with the macro set—maximal means that there
is no further vertex in B(w) \ S colored with cQS . A micro set is a maximal
subset of a macro set that is C′-connected in G[B(Tw)]. Concerning the set Z
of forbidden colors, for a coloring represented by the characteristic, we want to
have Z = SEP(C,w) ∩ (C′(B(Tw)) \ C′(B(w))). The reason that these colors
are called forbidden is that the real colors in C′(B(Tw)) \C′(B(w)) may not be
used any more to color a vertex in V \B(Tw). The additional restriction to the
set SEP(C,w) is possible since we only want to consider legal recolorings.

The definition of a characteristic above using tree decompositions needs more
information compared to a characteristic on trees. The reason is that macro

143

and micro sets are superfluous on trees: Note that there is at most one com-
mon vertex in the bag of a node and the bag of its parent if we take the tree
decompositions for trees constructed in the proof of Lemma 1.3.12. Since the
division into macro and micro sets is essential only for the common vertices in
the bags of a node and its parent, already the algorithm using a tree decompo-
sition for trees does not really need macro and micro sets. Thus, it should be no
surprise any more that the algorithm on trees does not need macro and micro
sets. Ignoring additionally the gray colors and the extra value -1 we obtain the
definition of a characteristic on trees from the last section—now formulated in
the context of tree decompositions.

The main idea of the algorithm is the following: Given all characteristics for
the children of a node w and, for each collection C of colorings described by one
of these characteristics, the minimal cost among all costs of recolorings in C, the
algorithm uses a bottom-up traversal to compute the same information also for
w and its ancestors. Since we only want to compute convex recolorings, we have
to remove at the root of T all characteristics having a real colored macro set
that consists of at least two micro sets. The cost of an optimal convex recoloring
is the minimal cost among all costs computed for the remaining characteristics.
An additional top-down traversal of T can also determine a recoloring having
optimal cost. Unfortunately, the number of characteristics to be considered by
the approach above would be too high for an efficient algorithm. The problem is
that for graphs of bounded treewidth, in contrary to what is the case for trees,
a path connecting two vertices in V \ B(Tw) may use vertices in B(Tw), and a
path connecting two vertices in B(Tw) may use vertices in V \B(Tw). In other
words, we must take into account all legal recolorings contrary to the restriction
of the last section, where we take into account only effective recolorings. In
order to avoid a too large increase of the running time, as a further extension
to the algorithm on trees, we use gray colors and the extra value -1 intuitively
as follows.

If a real color c is used by C only to color vertices in V \B(Tw), a recoloring
C′ of G may possibly also want to recolor a set S of vertices in B(Tw) with c in
order to C′-connect some vertices with color c. The cost for recoloring vertices
of B(Tw) with c is independent of the exact value of c and can be computed as
the cost of uncoloring all vertices of S (since C(v) 6= c by our choice of c for
all v in B(Tw)) and the cost of recoloring it (without any costs) with color c.
Therefore, when considering recolorings of the graph B(Tw), we do not allow to
color it with a real color c 6∈ C(B(Tw)). Instead of c we use a gray color since
coloring a vertex gray has the same cost as uncoloring the vertex but allows us
to distinguish the vertex from vertices in B(w) colored with another gray color
or being uncolored. Note that our definition of extending a recoloring allows us
with zero cost to recolor gray vertices in a later step with a real color, whereas
recoloring real-colored vertices is forbidden when extending a recoloring.

If a recoloring C′ of B(Tw) colors a macro set S with a real color c that is
only used by C to color vertices of B(Tw), then for extending the recoloring C′

to a recoloring C′′, we do not need to know the exact color of S. The reason
for this is that, for any vertex v in V \ B(Tw), the cost for setting C′′(v) = c
can be computed again independently of the color of S: We have to pay the
weight of v as cost if v is real-colored by C and cost zero otherwise. Thus, we
use the extra value −1 to denote that a macro set S is real-colored with a color
c ∈ C(B(Tw)) \ C(B(Tw)), and in this case, we set cQS = −1 instead of cQS = c.

144

Following the ideas described above we let the algorithm consider only a
restricted class of characteristics. For a node w of T , we denote by C|B(Tw)

the coloring C restricted to B(Tw). We define a characteristic Q to be a good
characteristic if there exists a legal recoloring C′ of (B(Tw), C|B(Tw)) with the
properties (P1) - (P7). C′ is then called to be consistent with Q.

(P1) C′(B(Tw)) ⊆ C(B(Tw)) ∪ Y ∪ {0}.

(P2) For each macro set S of Q, C′ colors all vertices of S with one color c.
Moreover, if c is a real color in C(B(Tw)) \ C(B(Tw)), then cQS = −1, and
cQS = c otherwise.

(P3) C′ colors vertices of different macro sets with different colors.

(P4) A micro set is a maximal subset of B(w) that is C′-connected in B(Tw).

(P5) C′ is a convex recoloring for the graph obtained from B(Tw) by adding,
for each macro set S, edges of an arbitrary simple path visiting exactly
one vertex of each micro set of S.

(P6) Every gray colored vertex in B(Tw) is C′-connected to a vertex in B(w).

(P7) ZQ = SEP(C,w) ∩ (C′(B(Tw)) \ C′(B(w))).

Note that each convex legal recoloring C′ of the initial colored graph (G,C) is
consistent with a good characteristic Q for the root r of T . More explicitly, we
obtain Q by dividing B(r) into macro sets each consisting of all vertices of one
color with respect to C′, by defining the partition of each macro set to consist
of only one micro set, by setting ZQ = ∅ and, by defining, for each macro set
S, cQS = −1 if C′(S) is a real color or cQS = 0 otherwise.

Our algorithm computes in a bottom-up traversal for each node w of T all
good characteristics of w from the good characteristics of the children of w.
However, not all pairs of good characteristics of the children can be combined
to good characteristics Q of w. Therefore we call a characteristic Ql of wl and a
characteristic Qr of wr compatible if they satisfy the following three conditions:

• Two vertices v1, v2 ∈ B(wl) = B(wr) belong to the same macro set in Ql

if and only if this is true for Qr.

• For each macro set S of Ql and hence also of Qr, either cQl

S = cQr

S 6= −1

or {cQl

S , cQr

S } contains exactly one gray color and not the value 0.

• The sets of forbidden colors of Ql and of Qr are disjoint.

Note that in a tree T ′ with a vertex v, T ′
vl

and T ′
vr have no common vertices; thus,

the first and the second condition are superfluous in trees. The definition above
is hence a generalization of the definition of ’compatible’ in the last section.

The following algorithm computes, for each node w of T , a set Mw of charac-
teristics for which we later show that it is exactly the set of good characteristics
of w. First of all, in a preprocessing phase compute by a bottom-up and a
top-down traversal of T , for each node w of T , the set SEP(C,w) as well as
the subset of real colors in C(B(Tw)) \ C(B(Tw)) in the following denoted by
LOW(C,w). Second, start a bottom-up traversal of T . For each leaf w of T ,
Mw is obtained by taking into account all possible divisions of the vertices of

145

B(w) into macro sets and all possible colorings of each macro set S with colors
of C(S) ∪ Y ∪ {0} such that, for each pair S′ and S′′ of macro sets, S′ and
S′′ is colored differently. More precisely, for each choice, a characteristic Q is
obtained and added to Mw by defining, for each macro set S colored with a
color c, the micro sets of S to be the connected components of the subgraph of
G induced by the vertices of S and by setting cQS = −1 if c is a real color in
LOW(C,w) or cQS = c otherwise. The set ZQ of forbidden colors is set to ∅.

At a non-leaf w all already computed characteristics of the children are
considered. In detail, for each characteristic Ql of Mwl

and—if w has two
children—for each compatible good characteristic Qr of Mwr , we add to Mw

the set of characteristics that could be obtained as output of the following non-
deterministic algorithm:

• For the vertices in B(w) ∩ B(wl), take the same division into macro sets
for Q as for Ql. If w has only one child and if there is also a vertex
v ∈ B(w) \B(wl), choose one of the ≤ k− 1 possibilities of assigning v to
one of the macro sets of B(w) ∩ B(wl) or choose {v} to be its own new
macro set.

• For dividing the vertices of B(w) into micro sets, construct the graph H
consisting of the vertices in B(w) and having an edge between two vertices
if and only if both vertices belong to the same macro set and either this
edge exists in G or both vertices belong to the same micro set in Ql or
Qr. Define the vertices of each connected component in H to be a micro
set of Q.

• For each macro set S obtained by the construction above, distinguish
between three cases. Let C+(Ql) be the union of ZQl and the values cQl

Sl

over all macro sets Sl of Ql.

◦ S ⊆ S′ for a macro set S′ of Ql: If wr does not exist or if cQl

S′ = cQr

S′ ,

set cQS = cQl

S′ . Otherwise set cQS to the non-gray value in {cQl

S′ , c
Qr

S′ }.
◦ |S| > 1 and ∃v ∈ S∩ (B(w)\B(wl)): If C(v) = 0 or cQl

S\{v} is no gray

color, set cQS = cQl

S\{v} else choose cQS ∈ {cQl

S\{v}}∪ ({C(v)}\C+(Ql)).

◦ S = {v} with v ∈ B(w) \ B(wl): Choose for cQS a value in the set
(Y ∪ {0, C(v)}) \ C+(Ql).

After defining cQS as described above, if cQS is a real color in LOW(c, w),
redefine cQS = −1.

• Reject the computation if there is a singleton micro set S′ part of a real-
or gray-colored macro set S in Ql with S′∩B(w) = ∅ and either S \S′ 6= ∅
or cQl

S is a gray color.

• If there is a singleton macro set S = B(wl) \ B(w) of Ql and if cQl

S is a

real color, set Z ′ = {cQl

S }. In all other cases, set Z ′ = ∅. Finally, set
ZQ = SEP(C,w)∩ (Z ′ ∪ZQl ∪ZQr) with ZQr = ∅ if w has only one child.

For a non-leaf w of T , it is not hard to see that our algorithms constructs
for a good characteristic Ql of wl and, if wr exists, also for a compatible good

146

characteristic Qr of wr, only good characteristics Q of w for which there ex-
ist colorings C′, C′

l and, if wr exists, also C′
r consistent with Q, Ql, and Qr,

respectively, such that the following conditions hold:

(C1) C′ is a color extension of C′
l and, if wr exists, also of C′

r.

(C2) For each x ∈ {l, r} with wx being a child of w, two vertices in B(w)∩B(wx)
belong to the same macro set in Qx if and only if this is true for Q.

(C3) If w has two children and C′ colors a macro set S of Q with a real color
c, then either C′

l or C′
r also colors S with c.

(C4) If w has only one child, if S is a macro set not containing a vertex v ∈
B(w) \ B(wl), and if S is colored with a real color c, then C′

l also colors
S with c.

(C5) If w has only one child and there is a vertex v ∈ B(w)\B(wl), C
′ colors the

macro set S of Q containing v with a color in {0, C(v)}∪Y ∪C′
l (S∩B(wl)).

We now show that even adhering to the restrictions above one can still
construct all good characteristics for a node w.

Lemma 5.5.3. Let C′ be a recoloring consistent with a good characteristic Q
of a node w of T . Then there exists a recoloring C′

l consistent with a good
characteristic Ql of wl and, if wr exists, also a coloring C′

r consistent with a
good characteristic of Qr of wr compatible to Ql such that (C1) - (C5) hold.

Proof. Let wx with x ∈ {r, l} be a child of w. We first define a good
characteristic Qx for wx and a recoloring C′

x consistent with it. The recol-
oring C′

x is obtained from restricting C′ to the vertices in B(Twx
), and in the

case of B(w) \ B(wl) consisting of a vertex being colored with a real color
c 6∈ C(B(Twx

)), by additionally recoloring all vertices of color c with one gray
color not in C′(B(w) ∩B(wl)). Note that there are enough gray colors to color
all vertices with different gray colors since |Y | = k. Let the macro sets of Qx

(x ∈ {l, r}) be the maximal subsets of the vertices in B(wx) colored with the
same color by C′

x and the micro set of Qx be maximal subsets of vertices of
B(wx) that are C′

x-connected in B(Twx
). We then define the forbidden colors

ZQx as in (P7) and set, for each macro set S of Qx, c
Qx

S to −1 if the only color c
in C′

x(S) is contained in LOW(C,wx) and to c, otherwise. By these definitions
Qx is a good characteristic and C′

x a recoloring consistent with it, i.e., properties
(P1) - (P7) hold for Qx and C′

x. Additionally, if w has two children, Ql and Qr

are compatible.
It is easy to see that (C1) and (C2) hold. For the properties (C3) and (C4)

let us assume that C′
x (x ∈ {l, r}) colors a vertex v gray that is colored with a

real color c by C′. Then by our construction of C′
x, we have c 6∈ C(B(Twx

)).
Recall that C′ is a legal coloring. If w has only one child, there must be a
vertex v ∈ B(w) \ B(wl) with c = C′(v) = C(v). Thus, (C4) holds. If w has
two children, we must have c ∈ C(B(Twy

)) for wy 6= wx being the other child
of w. Therefore, the characteristic for wy colors the macro set containing v
with c and (C3) holds. For showing (C5), let us assume that there is a vertex
v ∈ B(w) \B(wl). Let S be the macro set of Q containing v and let us assume
that S is colored by C′ with a real color c 6= C(v). Since C′ is a legal coloring,

147

there must be a vertex v′ in B(Tw) with v′ 6= v and C′(v′) = C(v′) = c. By
our construction C′

l colors v′ also with c, and c is the color in C′
l (S − {v}) =

C′
l (S ∩B(wl)).

The next two lemmata show that our algorithm correctly computes the set
of all good characteristics for each node of T .

Lemma 5.5.4. Let Q′ and Ql be good characteristics of a node w and its
child wl, respectively, and, if wr exists, Qr be a compatible good characteristic
of wr. Let C′

l and, if wr exists, C′
r be recolorings consistent with Ql and Qr,

respectively. Assume that there is a coloring C′ being consistent to Q′ such that
(C1) - (C5) holds for C′, C′

l , and C′
r (if existing). If the algorithm constructs a

characteristic Q from the characteristics Ql and Qr (if existing), then the value
computed for ZQ by the algorithm for the MCRP is exactly the set of forbidden
colors of Q′.

Proof. Recall that the algorithm computes the value SEP(C,w)∩ (Z ′ ∪ZQl ∪
ZQr) for ZQ, where ZQr = ∅ if w has only one child and Z ′ is defined as in the
algorithm for the MCRP. In contrast, by the definition of a consistent recoloring
we must have ZQ′

= SEP(C,w) ∩ (C′(B(Tw)) \C′(B(w))). It remains to show
ZQ′

= SEP(C,w) ∩ (Z ′ ∪ ZQl ∪ ZQr).
We first show that ZQ′ ⊆ SEP(C,w)∩ (Z ′ ∪ZQl ∪ZQr). Hence, let c ∈ ZQ′

.
Then c ∈ SEP(C,w), and a vertex v′ ∈ V \B(Tw) exists with C(v′) = c. If C′

colors a vertex in B(wl) with c, we have c ∈ Z ′ since c /∈ C′(B(w)), i.e., c is the
real color of the singleton macro set S = B(wl) \B(w). Otherwise, there exists
a vertex v in B(Tw)− (B(w)∪B(wl)) with C′(v) = C(v) = c since C′ is a legal
recoloring and since c ∈ ZQ′

. Thus, c ∈ SEP(C,wx) and hence c ∈ ZQx for a
child wx (x ∈ {l, r}) of w.

We next show SEP(C,w) ∩ (Z ′ ∪ ZQl ∪ ZQr) ⊆ ZQ′

. Since C′ is a convex
coloring, we know that ZQl ∪ ZQr does not contain a color of C′(B(w)). Con-
sequently, ZQl ⊆ C′(B(Twl

)) \ C′(B(w)), ZQr ⊆ C′(B(Twr)) \ C′(B(w)) and
also Z ′ ∪ ZQl ∪ ZQr ⊆ C′(B(Tw)) \ C′(B(w)) holds. The last equation implies
SEP(C,w) ∩ (Z ′ ∪ ZQl ∪ ZQr) ⊆ ZQ′

.

Lemma 5.5.5. For each node w, Mw is the set of good characteristics of w.

Proof. We first prove that the set Mw is indeed a set of characteristics. The
only difficult point is to show that the color c assigned to a macro set is in
C(B(w)) ∪ SEP(C,w) ∪ Y ∪ {0,−1}. Hence, assume that this is not the case.
Then either c ∈ C(B(Tw)) \C(B(Tw)) or c ∈ LOW(C,w). However, both cases
can not occur since it is easy to see that in the first case our algorithm assigns
to c only real colors in C(B(Tw)), and in the latter case, our algorithm chooses
c = −1. It remains to show that all characteristics in Mw are good and that
no good characteristic of w is missing in Mw.

For a leaf w of T , the statement of the lemma is clear since we consider all
possible divisions into macro sets and, for each macro set S, all possible colorings
with colors in C(S) ∪ {0} ∪ Y different from the colorings chosen for the other
macro sets. The further restrictions can easily be shown to be necessary and
sufficient to guarantee that Mw is the set of all good characteristics of w.

For a non-leaf w of T , we next want to consider which possibilities exist to
construct a good characteristic Q of w from a good characteristic Ql of wl and, if
wr exists, a compatible good characteristic Qr of wr such that there are colorings

148

C′, C′
l and, if wr exists, C′

r consistent with Q, Ql and Qr, respectively, such that
the conditions (C1) - (C5) hold. By Lemma 5.5.3 it suffices to construct only
such characteristics.

The divisions into macro sets considered by the algorithm are the only possi-
bilities without violating (C2). Moreover, because of property (P4) the vertices
of a macro set must be divided into micro sets as it is done by the algorithm.

We next consider the possible colorings of a macro set S. If S contains
a vertex v ∈ B(w) \ B(wl), v can introduce a new color. However, beside
the choices made by the algorithm there are no further possibilities to color S
without violating (C1) or (C5). If S contains no vertex v ∈ B(w) \ B(wl), we
have S ⊆ S′ for a macro set S′ of Ql. In this case we have to pay attention
to (C1), (C3) and (C4). If w has two children (i.e., S′ = S) and if cQl

S′ 6= cQr

S′ ,
exactly one of the two values is a gray value and the other is equal to a value
c 6= 0 since Ql and Qr are compatible. Thus, to guarantee (C1) we have to
define cQS = c. Otherwise we have to set cQS = cQl

S′ for not violating (C1), (C3)
and (C4), where the conditions (C3) and (C4) forbid a recoloring in the case
of cQl

S′ being a gray color. Note that the redefinitions cQS = −1 made by the
algorithm are necessary because of property (P2).

We already know that ZQ is defined correctly by Lemma 5.5.4. To sum up,
there is no other possibility to construct a good characteristic Q for w and a
recoloring consistent with Q without violating our properties (P1) - (P7) and
(C1) - (C5). It is also easy to verify that, because of the compatibility of Ql

and Qr, our recursive construction only constructs characteristics satisfying our
properties. In particular, for guaranteeing (P5) and (P6) we use the fact that
our non-deterministic algorithm rejects some computations.

Lemma 5.5.6. Our algorithm can be implemented with a running time of
O(n2 + 4s(2k + s+ 2)6k+1(k2 + s)n), where s = maxw node of T |SEP(C,w)|.

Proof. The algorithm can compute the sets SEP(C,w) and LOW(C,w) for
all nodes w easily in O(n2) time in a preprocessing phase. We next analyze the
running time for computing all good characteristics for a leaf w of T . In general,
there are at most kk possibilities to divide the vertices of B(w) into macro sets.
For each such partitioning, there are at most (2k+ 1)k possibilities of assigning
different colors of C(B(w)) ∪ Y ∪ {0} to all macro sets—one to each macro set.
For each such choice, we have to determine the connected components defining
the micro sets. This can be done in O(k2) time for each choice. Hence the
running time for a leaf is O(kk(2k + 1)kk2).

Note that a non-leaf w of T can have at most k2k(2k + s + 2)k2s possible
good characteristics: There are at most kk · kk = k2k possibilities for a division
into micro and macro sets, (2k + s + 2)k possibilities for choosing values of
C(B(w)) ∪ SEP(C,w) ∪ Y ∪ {0,−1} for the macro sets and 2s possibilities to
choose a set of forbidden colors. For a leaf, there are not more possible good
characteristics.

Let us analyze the time needed for constructing a single good characteristic
Q of a node w from fixed good characteristics Ql and possibly Qr for the children
of w. The sets ZQ and C+(Ql) can be constructed in O(k+s) time from ZQl and
ZQr . All remaining computations (the division into micro sets, recoloring some
vertices, etc.) can be done in O(k2) time. Note that, for our pair of compatible
characteristics Ql and Qr we have to compute at most 3k = (2(k− 1))+ (k+ 2)

149

new good characteristics for w: If B(w) contains a vertex v ∈ B(w)\B(wl)—and
hence w has only one child—we have at most k− 1 possibilities to assign v to a
macro set of Ql and, as a further possibility, to make {v} to a new macro set.
Moreover, we have at most two possibilities to color a macro set that contains
v and another vertex; and we have k + 2 possibilities to color a macro set
{v}. If B(w) contains no vertex of v ∈ B(w) \ B(wl) we have less possibilities.
Therefore, for fixed characteristics for the children of w, we can determine all of
the characteristics above in O(k(k2 + s)) time. Whether two characteristics are
compatible can be also tested in O(k(k2+s)) time. Since for a non-leaf with two
children there are at most (k2k(2k + s + 2)k2s)2 different pairs of compatible
characteristics for its children, the good characteristics of a non-leaf can be
computed in O((k2k(2k+ s+ 2)k2s)2k(k2 + s)) = O(4s(2k+ s+2)6k+1(k2 + s))
time. The lemma now follows from the fact that T has O(n) nodes.

The next lemma is essential for computing a legal recoloring of minimal cost.

Lemma 5.5.7. Our algorithm can be extended such that it computes for each
good characteristic Q the cost of a recoloring consistent with Q that among
all such recolorings has minimal cost. The asymptotic running time does not
increase by this extension.

Proof. For a good characteristic Q of a node w, let V ∗(Q) be the set of
vertices of B(w) contained in a macro set S of Q with cQS 6= −1. Let costw(Q)
be the cost of a coloring C′ consistent with Q that among all such colorings has
minimal cost. Let cost′w(Q) be costw(Q) minus the recoloring cost of C′ for the
vertices in V ∗(Q).

We first show how to compute cost′w(Q) for a good characteristic Q of a node
w. If w is a leaf, cost′w(Q) can be computed in O(|B(w)|) = O(k) time. Assume
for a moment that w has two children for which there is exactly one pair of a
good characteristicQl for wl and a compatible good characteristicQr for wr such
that (C1) - (C5) hold for colorings C′, C′

l , and C′
r consistent with Q, Ql, and

Qr, respectively. By definition of cost′wl
(Ql) and cost′wr

(Qr), the value cost′w(Q)
can be computed from cost′wl

(Ql) + cost′wr
(Qr) by adding the recoloring costs

for the vertices in (V ∗(Ql) ∩ V ∗(Qr)) \ V ∗(Q)—note that the latter cost is the
same for each choice of a coloring C′ consistent to Q since Ql and Qr being good
compatible characteristics implies that, for each v ∈ (V ∗(Ql)∩V ∗(Qr))\V ∗(Q),
C′(v) is equal to the non-gray value in {cQl

S , cQr

S } for each coloring C′ consistent
to Q and the macro set S of Q containing v. Hence, the recoloring cost can be
directly computed from Ql and Qr, and is independent from the choice of C′. If
a good characteristic Q can be obtained—in the same way as described above—
from several possible pairs of good characteristics Ql and Qr, we determine the
cost above for each such pair and define cost′w(Q) as the minimum of the costs.
For each pair of good characteristics Ql and Qr and for each good characteristic
Q obtained from Ql and Qr the additional running time is O(k). The value
cost′w(Q) for a node w with one child can be computed in a similar way, i.e., we
take the minimum of the cost for the vertices in V ∗(Ql)\V ∗(Q) plus cost′wl

(Ql)
over all Ql being consistent with Q.

The costw(Q) for each good characteristic Q can be computed from cost′w(Q)
in O(k) time since in this time we can easily determine the recoloring cost of the
vertices in V ∗(Q). Note that all modifications of our algorithm can be applied
during the computation of a characteristic Q for a fixed characteristic Ql and, if

150

it exists, a fixed characteristic Qr in O(k) extra time. Therefore the asymptotic
running time of Lemma 5.5.6 does not increase.

After the removal of all characteristics having a real colored macro set that
consists of at least two micro sets or having a gray colored macro set, we obtain
the cost of an optimal legal convex recoloring as the minimal cost among all costs
stored with the remaining characteristics constructed for the root of T . Finally
by an additional top-down traversal the algorithm above can be easily extended
such that—beside the minimal cost of a legal recoloring—it also determines the
coloring itself within the same time bound.

Theorem 5.5.8. Given a colored graph (G,C) and a tree decomposition (T,B)
of width k− 1, the MCRP can be solved in O(n2 + 4s(2k+ s+ 2)6k+1(k2 + s)n)
time, where s = maxw node of T |SEP(C,w)|.

5.6 MBRP and MRRP

It is easy to modify the algorithm from the last section such that it solves the
MRRP within the same time bound: In each bottom-up step we only have to
exclude recolorings that recolor a real-colored vertex with a gray or another real
color.

Theorem 5.6.1. Given a colored graph (G,C) and a tree decomposition (T,B)
of width k− 1, the MRRP can be solved in O(n2 + 4s(2k+ s+ 2)6k+1(k2 + s)n)
time, where s = maxw node of T |SEP(C,w)|.

Unfortunately, the algorithms above for the MCRP and the MRRP are ex-
ponential in s since there are 2s different possible sets of forbidden colors. As in
the last section, let us assume that we are given an n-vertex graph G = (V,E)
and a nice tree decomposition (T,B) for G of width k − 1 (n, k ∈ N) such that
T has O(n) nodes. Recall that storing forbidden colors in a characteristic of a
node w of T is necessary to distinguish between recolorings that color a sub-
graph of B(Tw), but no vertex in B(w) with a forbidden color c from recolorings
that do not use color c. Note that we only have to search for a legal recoloring
if we want to solve the MBRP or the MRRP—the reason is the same as for
the MCRP. The good news concerning the MBRP on a general initial coloring
and the MRRP with its initial coloring being an (∞, 3)-coloring is that we can
omit to store the forbidden colors explicitly. We next describe the necessary
modifications.

For the MBRP we use the same basic algorithm as for the MCRP. However,
we compute as a solution for the MBRP w.l.o.g. only recolorings that, for each
real color c, either recolor all or none of the vertices initially colored with c.
Following this approach, a characteristic of a node w should only represent
recolorings that, for each real color c, either recolor all or none of the vertices
v in B(Tw) for which C(v) = c holds. If in the latter case c ∈ SEP(C,w), we
claim that a vertex of B(w) is also colored with c since otherwise the recoloring
cannot be extended to a legal convex recoloring not recoloring any vertex of c.
This implies an additional rule for constructing characteristics:

Assume that—as in our algorithm of the last section for the MCRP—we
want to construct a characteristic Q of a non-leaf w from a characteristic Qx of
a child wx of w. Then we are only allowed to color a macro set S of Q with c if

151

(1) all vertices in B(w) that are initially colored with c are contained in S and
(2) either Qx also contains a macro set S′ with cQx

S′ = c or c /∈ C(B(Twx
)).

To test condition (2) efficiently, we construct in a preprocessing phase for
each node w an array Aw with the following entries: For each color c ∈ C(G),
Aw[c] = 1 if B(Tw) contains a vertex v with C(v) = c. Otherwise Aw[c] is
defined to be 0. If the array is computed by a bottom-up traversal of T , the
preprocessing phase takes O(n2) time. After the preprocessing phase we can
test, for each characteristic Q of a node w constructed from characteristics Ql

and possibly Qr of its children and each color c, in O(k) time whether (1)
and (2) hold. Hence, the asymptotic running time of the algorithm does not
increase. Moreover, the additional rule enables us to find out, for each real color
c, whether a vertex of B(Twx

) (x ∈ {l, r}) is colored with c by considering Awx
[c]

and by testing whether a macro set S of Qx is colored with c. Hence, there is
no need to store the forbidden colors.

Theorem 5.6.2. Given a graph with a tree decomposition (T,B) of bounded
width the MBRP can be solved in polynomial time.

More complicated modifications are necessary for the MRRP. Since in the
MRRP a real-colored vertex may not be recolored with a real color, we can
assume w.l.o.g. that, for each color c, there are either no or at least two vertices
colored with c by C. The main idea of the algorithm is the following: To improve
the running time at a node w of T , we only want to consider legal recolorings
C′ of B(Tw) such that, for each color c ∈ C(G), the following property (C6)c
additionally holds. The correctness of this step is discussed later.

(C6)c If u is a vertex in B(Tw) with C′(u) = C(u) = c, then either there exists
a vertex v 6= u in B(Tw) with C(v) = C′(v) = c or c ∈ C′(B(w)) and
there is another vertex v not in B(Tw) with C(v) = c.

Let w be a node such that for a child wx of w, B(Twx
) contains exactly one

vertex v initially colored with a color c, and let C′ be a recoloring with property
(C6)c such that it is consistent to a good characteristic Q of w. Then, this
property for example guarantees that we have C′(v) = c if and only if B(wx)
contains a vertex colored with c. Therefore, there is also no need to store c
explicitly as a forbidden color in a characteristic of wx any more. Since there is
no need to store for a node w with c /∈ C(B(Tw)) color c as forbidden color, we
can conclude:

Observation 5.6.3. Let w be a node of T such that, for each child wx of w,
B(Tw) contains at most one vertex of color c. Then, there is no need to store
in a good characteristic Q of wx whether color c is a forbidden color since, by
using property (C6)c, this follows for each coloring C′ consistent to Q from the
colors stored for the vertices in B(w).

We later show that also for all remaining nodes it is not necessary to store
the color c as forbidden color in their characteristics. One problem of property
(C6)c is that its application permits some legal recolorings. However, each
convex recoloring Copt of optimal cost either is a recoloring with property (C6)c
at each node of T or it colors w.l.o.g. exactly one vertex u with c. In the latter
case a coloring with the same cost as Copt can be obtained from a recoloring
with property (C6)c not coloring any vertex with c by undoing the uncoloring of

152

one vertex originally colored with c that among all such vertices has a maximal
weight. Therefore, for computing the cost of an optimal convex recoloring, we
only have to consider the cost of recolorings with property (C6)c and eventually
to subtract the maximal weight over all vertices originally colored with c. Let
us call such a subtraction a c-cost adaption. Our goal now is to describe an
algorithm that runs the c-cost-adaption during the bottom-up traversal of T at
a certain node w—called the c-decision node—having the following property:

For each characteristic Q of w, either each recoloring C′ of G, for which
(C6)c holds and which extends a recoloring consistent with Q, C′-connects at
least two vertices initially colored with c (and we therefore must not run a c-
cost-adaption) or all such recolorings uncolor all vertices initially colored with
c (and therefore we have to run a c-cost-adaption).

If we know the c-decision node for each color c, the algorithm works as
the algorithm for the MCRP with the following modifications: For each node
w (also above the c-decision node), we only compute all good characteristics
representing recolorings for which (C6)c holds for all c. If we reach the c-
decision node w of a color c, for each characteristic Q of w, we test whether all
recolorings extending Q do not use color c, and if so, we run a c-cost adaption
for Q.

For a characteristic Q of a node w, let us define C∗(Q) to be the set of
all colors c for which the c-decision node is equal to w or a descendant of w,
and for which we know that all recolorings extending Q do not color any vertex
with c. Then, the cost stored with Q is the minimal cost among all costs of
recolorings C′ of B(Tw) that can be obtained from a recoloring C′′ consistent
with Q and satisfying ∀c (C6)c as follows: For each color c ∈ C∗(Q), recolor
the vertex of maximal weight among all vertices initially colored with c with its
original color. Consequently, at the root of T , we obtain a good characteristic
whose cost is exactly the optimal recoloring cost. Thus, it suffices to show, for
each fixed color c,

(i) how we can find a c-decision node.

(ii) how we guarantee that property (C6)c holds for each coloring consistent
to a good characteristics of a node w of T .

(iii) how we can decide, for a non-leaf w, whether a good characteristic is
allowed to introduce c as a new color or not.

With (iii) we mean the following. Let us assume that we are given a good
characteristic Ql of wl and, if wr exists, a good characteristic Qr of wr as well
as colorings Cl and Cr consistent to them. Then, we show that we can decide
without making use of the set of forbidden colors whether colorings C′ with the
properties (C1) - (C5) and (C6)c (C′

l and C′
r chosen appropriately) can color a

macro set with the color c or not.

Let U = {u1, u2} or U = {u1, u2, u3} be the set of vertices initially colored
with c by C and let W = {w1, w2} or W = {w1, w2, w3} be a set of nodes in T
with ui ∈ B(wi) (i ∈ {1, 2} or i ∈ {1, 2, 3}). We distinguish three cases.

Case 1: For each node of T , its bag contains at most one vertex initially colored
with c. We choose from all lowest common ancestors of a pair of nodes in W

153

the one that has the largest depth and denote it by wc. W.l.o.g. wc is the lowest
common ancestor of w1 and w2.

For guaranteeing property (C6)c for each proper descendant of wc, we ap-
ply the following extra rule when constructing a good characteristic of such a
descendant w′.

• If a good characteristic Q of w′ is constructed from a good characteristic
Q′ of a child of w′ and if Q′ has a macro set S′ with cQ

′

S′ = c, check if Q
has a macro set S with cQS = c, too. If not, reject this computation of Q.

Since (C6)c holds now for all proper descendants of wc, Obs. 5.6.3 implies
that we can solve (iii) for all nodes in Twc . Let us now consider the modifications
when constructing a good characteristic Q of wc by combining two compatible
good characteristics Ql of wcl and Qr of wcr . By Obs. 5.6.3 we can find out which
of the vertices u1 and u2 are uncolored by a recoloring extending recolorings
consistent with Ql and Qr by testing which of Ql and Qr contains a macro set
colored with c.

If both are uncolored, u3—if it exists—must be also uncolored by all recolor-
ings with property (C6)c that extend a recoloring consistent with Q. Therefore,
we will run a c-cost adaption.

Next, we consider the case that exactly only one of u1 and u2 is colored
with c, say u1. If |W | = 3, the good characteristic Q should contain a macro
set S with at least one vertex on a path from u1 to u3 colored with c (i.e.,
cQS = c) since (C6)c requires a connection from u1 to u3. Thus, in this case we
reject this computation of Q if Q does not contain a macro set S with cQS = c.
We also reject if |W | = 2. In the case, where |W | = 3 and u1 as well as u2

are colored, we explicitly take two collections of recolorings C′ of G extending
recolorings consistent with Ql and Qr into account; both collections leading to
different characteristics of wc: The first collection contains all convex colorings
that color u1, u2, and u3 with c. In this case as usual Q should contain a
colored macro set S with cQS = c. The second collection contains all colorings
that uncolor u3. In this case—in opposite to our usual recoloring rules—we
define cQS = −1 for the macro set S in Q colored with c to denote the fact that
the recoloring should not be extended by further vertices initially colored with
c. Intuitively, if u1 and u2 are colored with c and if we decide that u3 should
not be C′-connected to these vertices, this corresponds to uncoloring u3. Then
G[V \B(Tw)] would not contain any vertex colored with c and in this case also
the old algorithm would use the value −1. In the case, where |W | = 2 and u1

as well as u2 are colored, we also set cQS = −1 for the macro set S in Q colored
with c.

Since we distinguish between the value c and −1, we can take wc as c-decision
node. It is also easy to see that our modifications at node wc guarantee that
property (C6)c holds also for wc.

Moreover, if u3 exists, let ŵ be the lowest common ancestor of wc and w3.
For guaranteeing that (C6)c holds for ŵ and its descendants, we apply our extra
rule also for the proper descendants of ŵ not being contained in Twc . However,
there is one problem if we apply the extra rule for these nodes. Let us consider
a good characteristic Q of a node w being a proper ancestor of wc and an
descendant of ŵ constructed during the the bottom-up traversal of T from a
good characteristic Q′ of wc. Then, if Q′ contains a macro set S′ with cQ

′

S′ = c,

154

Q must also contain a macro set S with cQ
′

S′ = c. Note that this may not be
necessary to guarantee property (C6)c if the colorings consistent to Q′ color u1

and u2 both with c. This seems to imply that we possibly could loose some
good characteristics of Q′. However, in such a case we also have constructed a
good characteristic Q′′ of wc equal to Q′ except cQ

′′

S′ = −1. Good characteristics
constructed from Q′′ do not have a macro set colored with c. Indeed this is one
further reason for using the value −1, which here guarantees that we do not
loose any good characteristics.

Let ŵx be the child of ŵ such that Tŵx
contains wc. Since, for all nodes w in

the subtree Tŵx
not in Twc and for a macro set S of a good characteristic Q of w,

cQS = c now means that at least one of the two vertices has to be C′-connected
to u3 for all colorings C′ extending a recoloring consistent to Q—even if u1 and
u2 are already C′-connected—it is now easy to solve (iii) for all nodes in the
subtree rooted in ŵ. We also can guarantee property (C6)c for ŵ, if during the
construction of a good characteristic Q of ŵ from good characteristics Ql and
Qr of the two children of ŵ, we reject this non-deterministic computation of Q
if exactly one of the two good characteristics Ql and Qr contains a macro set S
with cS = c.

Let T ∗ be the subtree of T rooted in wc if |W | = 2 and rooted in ŵ if
|W | = 3. Then it easy to see that (C6)c holds for the nodes outside T ∗ if it
holds for all nodes of T ∗. Hence (ii) holds. Finally (iii) holds because we only
need to consider the vertices contained in the sets B(w) for the nodes w in T ∗

for solving (iii).

Case 2: |U | = 3, and there is no node of T whose bag contains all vertices in
U , but a node whose bag contains two of them. W.l.o.g. we assume that there
is a node whose bag contains u1 and u2, and we let ẅ be the node of smallest
depth with this property. We distinguish to subcases

(2a) There is another node whose bag contains another pair of two vertices in
{u1, u2, u3}, say u2 and u3.

(2b) Condition (2a) does not hold.

Case (2b) can be handled very similar as case 1 if we let wc = ẅ be the c-decision
node. We therefore only consider the case (2a). We now choose w̃ to be the
vertex of smallest depth containing both vertices in {u2, u3} and take ŵ as the
lowest common ancestor of ẅ and w̃.

Note that, for each node w′ on the unique ẅ-ŵ-path in T or on the unique
w̃-ŵ-path in T , we have u2 ∈ B(w′). Similar to case 1, since we want to consider
only colorings for which property (C6)c holds, the extra rule is applied to all
nodes w′ 6∈ {ẅ, ŵ, w̃} in the subtree of Tŵ, and the following special rules are
applied for the construction of good characteristics of the nodes in {ẅ, ŵ, w̃}:
Assume we want to construct a good characteristic Q of w ∈ {ẅ, w̃} \ {ŵ}
by combining two good characteristics Ql of wl and Qr of wr: Note that we
know for each good characteristic of w how their consistent colorings color the
vertices of U part of Tw—we simply have to consider the colors of the macro
sets containing these vertices of U . If these recolorings color one (none) of the
vertices u1 and u2 if w = ẅ or one (none) of u2 and u3 if w = w̃, Q as usual
should (not) contain a macro set S with cQS = c; if this is not the case, reject
the computation of Q. Otherwise—similar to case 1—we have to distinguish

155

between the case that all vertices of U should be C′-connected and the case
that this is not true. In both cases Q should contain a macro set colored with
c, but in the first case, we set cQS = c′, and in the second case, we set cQS = c′′

for some extra values introduced to distinguish the two cases and the case that
only one of the vertices u1 and u2 is uncolored. The suspicious reader may
have noticed that then beside property (C6)c also properties (C6)c′ and (C6)c′′

should hold for all w′ 6∈ {ẅ, ŵ, w̃} in the subtree of Tŵ. For improving the
efficiency, note that it is not really necessary to introduce for each color c its
own two extra colors c′ and c′′. We just can introduce two global extra colors
−2 and −3 since it is clear for the MRRP that the only possible real color for
a macro set containing u2 is c.

When combining good characteristics Ql and Qr of ŵl and ŵr, respectively,
to a good characteristic Q of ŵ, it is easy to decide by the modifications above
which of the vertices u1 and u2 (or u2 and u3) are colored by recolorings con-
sistent with Ql and Qr. Thus, it is easy to determine all good characteristics of
ŵ with property (C6)c and to decide whether a c-cost adaption should be done
or not. Therefore, we take ŵ as the c-decision node.

Case 3: There is a node wc of T whose bag contains all vertices in U . Then we
could choose wc as the c-decision node. We could also guarantee (ii) and (iii)
with arguments similar to that used in the cases 1 and 2. However, it is much
easier to give up property (C6)c in this case since we can easily find out the
colors of u1, u2, u3 when constructing a good characteristic of wc from the good
characteristics of the children; i.e., we also do not need the forbidden colors in
this case.

It is not hard to implement all changes within polynomial running time.

Theorem 5.6.4. The MRRP restricted to initial (∞, 3)-colorings is solvable
in polynomial time on graphs for which a tree decomposition (T,B) of bounded
width is known.

Note that the running times for the MCRP and the MRRP on arbitrary
initial colorings are polynomial if s, defined as in both Theorems 5.5.8 and
5.6.1, is of size O(log n). This is the case if an (a, b)-coloring with a = O(log n)
is given.

Theorem 5.6.5. On graphs for which a tree decomposition (T,B) of bounded
width is known, the MCRP and the MRRP are solvable in polynomial time if
the initial coloring is an (a, b)-coloring with a = O(log n).

5.7 Approximation of MCRP and MRRP

Since the MCRP is NP-hard even on trees, we can not hope for a polynomial-
time algorithm that solves the problem to optimality—even if we consider graphs
of bounded treewidth. Using the algorithm of Subsection 5.5 we now present
(2 + ǫ)-approximation algorithms for the MCRP and the MRRP for graphs of
bounded treewidth with arbitrary (∞,∞)-colorings. The following algorithm is
inspired by the algorithm of Bar-Yehuda et al. [9]. We extend the algorithm from
trees to graphs of bounded treewidth and present a slightly different description
for proving the correctness of the algorithm.

156

Given a graph G= (V,E) with a coloring C and a nice tree decomposition
(T,B) of width k−1 for G, the results can be obtained by iteratively modifying
the coloring C and the weights of the vertices such that finally |SEP(C,w)| < s
for all nodes w of T and a fixed s ∈ N with s > k. Let w be a node of T
such that there is a set R′ ⊆ SEP(C,w) containing exactly s colors and let V ′

be a set consisting of two vertices of color c for all c ∈ R′ such that, for each
pair of vertices u, v ∈ V ′ of the same color, the vertices u and v are in different
connected components in G[V \B(w)]. Moreover, let α be the minimal weight of
a vertex in V ′. The number of vertices in SEP(C,w) is decremented by reducing
the weight of all vertices in V ′ by α and subsequently uncoloring the vertices of
zero-weight.

On the one hand, this weight reduction decreases the cost of an optimal
convex (re-)coloring C′ of G by at least (s−k)α since the vertices in B(w) allow
to connect at most k of the s colors in R′, i.e., at least s− k vertices in V ′ must
be uncolored. On the other hand, if we have a solution for the MCRP (or the
MRRP) with the reduced weight function, we can simply take this solution as
a solution for the MCRP (or the MRRP) with the original weights and our cost
increases by at most 2sα. Thus, in each iteration our cost decreases by at most
a factor of 2s/(s− k) more than the decrease of the cost of an optimal solution.
If at the end no further weight reduction is possible, we can use the exact
algorithms from the previous section, i.e., we can solve the instance obtained by
this weight reduction as good as an optimal algorithm. Altogether, we have only
a recoloring cost that is a factor of 2s/(s− k) larger than the cost of an optimal
solution. Note that this technique above for determining the approximation
ratio is the so-called local ratio technique. Choosing s large enough, we obtain
the following.

Corollary 5.7.1. On graphs for which a tree decomposition (T,B) of bounded
width is known, a (2+ ǫ)-approximation algorithm exists for the MCRP and the
MRRP with quadratic running time.

157

Chapter 6

VDPP on Chordal Graphs

6.1 The ℓ-Vertex-Disjoint Paths Problem

As we have already seen from Section 5.1, we can solve the ℓ-vertex-disjoint
path problem (ℓ-VDPP) in polynomial time on graphs of bounded treewidth.
However, on many graph classes the ℓ-VDPP appears to be a hard problem since
efficient algorithms are unknown or do not exist. Indeed, Fortune, Hopcroft, and
Wyllie [31] have shown that the problem is NP-hard on directed graphs, even
if ℓ is restricted to 2. As shown by Lynch [63] and by Knuth (see the paper of
Karp [59]) the same is true on undirected graphs for the VDPP.

It is a common approach in combinatorial optimization to construct fixed-
parameter algorithms for NP-hard problems. In this chapter, we see a linear
time algorithm for the ℓ-VDPP, which then can be considered also as a fixed
parameter algorithm for the VDPP.

For every fixed ℓ, Robertson and Seymour, in their series of papers, devel-
oped a polynomial algorithm for the ℓ-VDPP on undirected graphs. Perković
and Reed [74] presented an algorithm with an improved running time. Unfor-
tunately, the constants hidden in the O-notation of the running time of the
algorithms above are extremely large and make these algorithms unfeasible in
practice. Algorithms with better practical running times are known for some
classes of graphs such as so-called directed acyclic graphs [31]. However, for
many classes of graphs, e.g., for general, for planar, or for chordal undirected
graphs, algorithms more efficient than the algorithm of Perković and Reed are
known only for the special case ℓ = 2. The first polynomial-time algorithms for
the case ℓ = 2 on general undirected graphs are given, e.g., in [71, 81, 84, 90].
Algorithms with better asymptotic running times can be found in [60] and [89].
The first linear-time algorithm for the case ℓ = 2 on planar undirected graphs
is the algorithm of Perl and Shiloach [75]. A simpler algorithm was later given
by Woeginger [94] and more practical algorithms can be found in [46] and [89].
Perl and Shiloach [75] also presented the first polynomial-time algorithm for the
2-VDPP on undirected chordal graphs and on undirected planar graphs, again
with a linear running time. A simpler algorithm for chordal graphs can be found
in [62].

In the next section, an algorithm is presented for solving the ℓ-VDPP on a
chordal graph with n vertices and m edges in a running time of O(n2ℓ+2 +m).

158

As shown in Section 6.3, this algorithm can be modified to connect given pairs
of vertices by pairwise disjoint paths such that the number of edges used by the
paths is minimized among all such solutions.

In Section 6.4, a combination of the tree decomposition based algorithm of
Section 6.2 with a sparsification technique reduces the running time for solving
the ℓ-VDPP on chordal graphs to O(m+(2ℓ)4ℓ+2n). This means that we obtain
a linear fixed parameter algorithm for the VDPP. Moreover, the additional
constants hidden in the O-notation are of moderate size. The algorithm is easy
to implement and, for small values of ℓ, it is practical. It is no surprise that the
running time increases exponentially in ℓ since the vertex-disjoint path problem
(with ℓ being non-fixed) is NP-hard even for chordal graphs. Details can be
found in Section 6.5.

6.2 A Simple Approach for the ℓ-VDPP

Similar to the algorithm for the maximum independent set problem on chordal
graphs in Section 1.2, we can use a weak clique tree for solving the ℓ-VDPP.
Let G = (V,E) be a chordal graph with treewidth k ∈ N. Moreover, let (T,B)
be a weak clique tree of size O(|V |+ |E|) for G of width k with T being a binary
rooted tree having O(|V |) nodes—such a clique tree can be found in linear time
(Corollary 2.3.10). We call the vertices to be connected by vertex-disjoint paths
the terminals of G. In order to obtain a simpler description of our algorithm,
we describe our problem as a recoloring problem. For an instance of the ℓ-
VDPP, we always define an initial coloring that, for each pair of terminals to be
connected, colors both terminals with the same color different from the colors of
the other terminals. Let C be our initial coloring in the following. Recall that
a recoloring of (G,C) is called a restricted convex recoloring of zero cost only if
it does not recolor initial colored vertices—i.e., the terminals—and if, for each
pair t1 and t2 of terminals sharing a color c, there is a path from t1 to t2 in the
subgraph of G induced by the vertices of color c. We call a recoloring benign
with respect to a weak clique tree if it is a restricted convex recoloring of zero
cost and if each bag of the clique tree contains at most two vertices of the same
color. For a node w of T , recall that G[B(Tw)] is the subgraph of G induced by
all vertices contained in at least one bag of a descendant of w. In addition, for
a subgraph H of G, we define C|H as the coloring C restricted to H .

For a node w of T with a parent w′, let us call the set of vertices in B(w) ∩
B(w′) the transition set of w denoted by A(w). The reason for introducing in
the following two kinds of characteristics is that our algorithm needs to know
the colors of all vertices in a bag for finally obtaining a complete coloring of G
as well as our algorithm extends colorings of G[B(Tw)] to colorings of G[B(Tw′)]
and for determining the colors for the new vertices of this extension (namely
the vertices in B(Tw′) \B(Tw)), it only needs to know the colors of the vertices
in A(w). Thus, we define a full and a reduced characteristic for a node w of T
as a coloring of the nodes in B(w) and A(w), respectively, such that for each
color c at most two vertices are colored with c. Let Q be a full or a reduced
characteristic of a node w. Then Q is valid if and only if

1. there exists a benign recoloring C′ of (G[B(Tw)], C|G[B(Tw)]) extending Q.

159

2. for each color c the following is true: If there is exactly one terminal in
G[B(Tw)] of color c, a vertex in A(w) is colored with c by Q.

A recoloring C′ with properties 1 and 2 is called suitable to Q. We also call two
characteristics compatible if one characteristic is an extension of the other.

There is a connection between the ℓ-VDPP and benign recolorings: If the
ℓ-VDPP has a solution, take a solution with minimal total length. Then a
recoloring that colors the vertices of each path of the solution with the initial
color of its endpoints is a benign recoloring because the following is true: if
one of the vertex-disjoint paths visits three vertices v1, v2, and v3 of one bag
in this order, we obtain a shorter path by replacing the subpath from v1 to v3
by the edge {v1, v3}. For the converse assume that a benign recoloring is given
such that it is suitable to a valid full characteristic of the root of T . Then the
vertex-disjoint paths connecting the terminals of the same color can be easily
obtained by a depth-first search on each subgraph induced by the vertices of one
color. Hence, the idea is to solve the ℓ-VDPP by computing a benign recoloring
suitable to a valid full characteristic of the root of T—details are described next.

For all nodes of T , we next want to determine bottom-up all valid full and all
valid reduced characteristics. If we restrict a recoloring of (G[B(Tw)], C|G[B(Tw)])
suitable to a valid full characteristic of a node w to the graph G[B(Tw′)] for a
descendant w′ of w, this recoloring is suitable to a valid full as well as to a valid
reduced characteristic of w′. In the reverse direction, a full characteristic Q of
a node w is valid if and only if

• the terminals in B(w) are colored by Q with their original color,

• for each child w′ of w, the reduced characteristic of w′ compatible to Q is
valid,

• each color is used by Q to color at most two vertices, and

• for each color c, the following is true: if there is exactly one terminal in
G[B(Tw)] of color c, a vertex in A(w) is colored with c by Q.

The four conditions above imply that there exists a benign recoloring of
(G[B(Tw)], C|G[B(Tw)]) extending Q; in particular, using the last condition we
can conclude by induction that, for each pair of terminals t1 and t2 sharing
a color c, there is a path from t1 to t2 in the subgraph of G induced by the
vertices of color c. By iterating over all valid full characteristics of a node w
in T we can easily compute a lookup-table storing 1 for each valid reduced
characteristic of w and 0 for each non-valid reduced characteristic of w. Hence,
by a subsequently top-down traversal of T we can find a benign recoloring of
(G,C) if such a recoloring exists.

We next analyze the running time of our algorithm. Since T is binary, for
each node of T , we can test whether a certain full characteristic is valid in at
most O(k + ℓ) time by testing the four properties listed above. For testing the
last condition, note that, in O(ℓ) time, we can update the set of colors c for
which there is exactly one terminal of color c in G[B(Tw)] if the corresponding
sets for the children of w are given. Concerning the number of full characteristics
for a node w of T with q = |B(w)|, we can bound this number by q2ℓ−1(q +
ℓ) = O((k + 1)2ℓ−1(k + ℓ)): Let c be a fixed color. Then the number of full
characteristics using c can be bounded by q2ℓ since we can select for color c

160

either one or two vertices out of B(w) (at most q2 possibilities) and, for each
each color c′ 6= c, zero to two vertices out of at most q − 1 vertices (again at
most q2 possibilities). The number of full characteristics without color c can be
bounded by q2ℓ−2ℓ since there are at most ℓ possibilities to choose a color for
a fixed vertex of B(w) and since subsequently, for each each color c′ 6= c, zero
to two vertices out of at most q − 1 vertices are selectable. Finally note that
the time needed to initialize the lookup-table for the reduced characteristics
of a node w is bounded linear in O(|A(w)|) = O(k) times the number of full
characteristics.

Lemma 6.2.1. The ℓ-VDPP can be solved in O((k+1)2ℓ−1(k+ ℓ)2|V |+ |E|) =
O(|V |2ℓ+2 + |E|) time on a chordal graph G = (V,E) with treewidth k.

6.3 Shortest ℓ-Vertex-Disjoint Paths

The algorithm of the last section can be modified to find paths solving an
instance I of the ℓ-VDPP on G such that the total length of the paths—i.e., the
number of edges visited by the paths—is minimized among all solutions for
I. Let G be a chordal graph, and let C be an initial coloring of G defining
the terminals of the ℓ-VDPP. We only have to store one additional value with
each characteristic called the weight of the characteristic. Let us first define the
weight of a benign recoloring of a colored subgraph (H,C|H) of (G,C) as the
number of edges in H whose endpoints are both colored with the same color.
Then the weight W (Q) of a characteristic Q of a node w is the minimal possible
weight of a benign recoloring of (G(w), C|G(w)) extending Q.

Let w be a node of T and Q be a full characteristic of w. If w has j ∈ {1, 2}
children w1, . . . , wj for which the weights W (Q1), . . . ,W (Qj) stored with the
reduced characteristics Q1, . . . ,Qj compatible to Q are given, then one can show
by induction that the correct value of W (Q) can be computed as follows: We
initialize W (Q) with W (Q1)+ . . .+W (Qj). Afterwards, for each color c used by
Q to color two vertices v1, v2 ∈ B(w), we add one minus the number of children
of w with their bags also containing both, v1 and v2.

Note that the extra running time needed for computing the additional val-
ues for one full characteristic can be bounded by O(min{ℓ, |B(w)|}) and there-
fore cannot increase the asymptotic running time of the algorithm of the last
section—remember that there are at most two vertices in B(w) colored with
one color. By stepping through all full characteristics, it is easy to compute
W (R) for all reduced characteristics R of w in a time linear in the number of all
full characteristics for w. Finally at the root of T , we can read off the minimal
possible weight of a benign recoloring of (G,C) which is equal to the length of
ℓ pairs of vertex-disjoint paths solving our instance of the ℓ-VDPP and hav-
ing minimal total length. The paths themselves can be easily computed by an
additional top-down traversal of T .

Theorem 6.3.1. For an instance of the ℓ-VDPP on a chordal graph G = (V,E),
one can find a set of ℓ paths in O(|V |2ℓ+2 + |E|) time such that these paths use
a minimal number of edges among all sets of paths solving the instance.

161

6.4 A Speedup for the ℓ-VDPP

In this section we present a speed-up of the algorithm in Section 6.2. Once
again, for our input graph G = (V,E), we first construct in O(|V | + |E|) time
a weak clique tree (T,B) of size O(|V | + |E|) with T being a binary tree with
O(|V |) nodes. We assume that there is no edge {t1, t2} in G for a pair {t1, t2}
of terminals that are to be connected in G. Otherwise our problem would be
reduced to the (ℓ − 1)-VDPP on G[V − {t1, t2}]. For each pair {t1, t2} of ter-
minals that are to be connected by a path, let us choose Γ(t1) and Γ(t2) as
the unique pair of nodes in T with their bags containing t1 and t2, respec-
tively, such that the distance between the nodes is minimal. Let C be the
initial coloring of the given ℓ-VDPP instance. We choose for an arbitrary ter-
minal t the node Γ(t) as the root of T . Let f be a fixed bijection from V to
{1, . . . , |V |} assigning the highest numbers to the terminals of G. For nodes
w1 and w2 of T , for a function B̃ defining bags for the nodes of T , and for a
vertex v of G, we define the (w1, w2)B̃-count of v as a tuple (p, f(v)), where p

is the number of nodes w′ on the path from w1 to w2 in T whose bags B̃(w′)
contain v. We say that a vertex v1 with (w1, w2)B-count (p1, q1) has a larger
(w1, w2)B̃-count than a vertex v2 with (w1, w2)B̃-count (p2, q2) if and only if
either p1 = p2 and q1 > q2 or p1 > p2 holds. For a node w ∈ T , we let
I(w) = {t | t is terminal with Γ(t) contained in Tw}.

In order to improve the efficiency of the algorithm presented in Section 6.2,
we replace (T,B) by a new tuple (T ∗, B∗), where T ∗ will be a subtree of T
and where B∗ will be a function that maps each node w of T ∗ to a subset of
B(w) of size ≤ 4ℓ2. In order to describe (T ∗, B∗) more precisely, we need some
further definitions. A bag B(w) of a node w is called small if |B(w)| ≤ 2ℓ
and big otherwise. For each node w of T and for each terminal t ∈ I(w), we
define D(w, t) as the set of the min{2ℓ, |B(w)|} vertices of B(w) with the largest
(w,Γ(t))B -count. We also let D(w) be the union of D(w, t) over all t ∈ I(w)
and of the set of all terminals in B(w) \ I(w).

We now obtain T ∗ from T by deleting all nodes w with I(w) = ∅. We choose
the same root for T ∗ as for T and, for each node w, we insert the vertices of
D(w) into B∗(w). Moreover, for each child w′ of w, we insert an arbitrary subset
of D(w) ∩ B(w′) of size min{2ℓ, |D(w) ∩ B(w′)|} into B∗(w′). Let t ∈ I(w′).
Keep in mind that, if |B(w) ∩ B(w′)| ≥ 2ℓ, then D(w, t)—and consequently
also B∗(w)—contains 2ℓ vertices of B(w′) since these vertices have the largest
(w,Γ(t))B -count. Thus, if |B(w) ∩ B(w′)| ≥ 2ℓ, the rules for node w add 2ℓ
vertices of B∗(w) to B∗(w′), i.e., |B∗(w) ∩ B∗(w′)| ≥ 2ℓ. Note that by our
definition B(w) = B∗(w) holds for each small bag B(w). We also can conclude:

Lemma 6.4.1. Let v be a vertex of G, w1 be a node of T ∗ with v ∈ B∗(w1),
and w2 be the node of lowest depth with v ∈ B(w2). Then v ∈ B∗(w) holds for
each node w on the path from w1 to w2 in T ∗.

Proof. Since B(w) and B∗(w) share the same terminals, Lemma 6.4.1 holds if
v is a terminal. Otherwise, we merely need to show that, for each node w on the
path from w1 to w2 in T with v ∈ B∗(w), the following holds: if w has a parent
w′ with v ∈ B(w′), we also have v ∈ B∗(w′). Since B∗(w′) = B(w′) if B(w′) is
small, we only need to consider the case, where B(w′) is big. Let us consider the
case, where B(w) is small. Because of v ∈ B∗(w), there is a terminal t ∈ I(w) for
which v ∈ D(w, t) or v ∈ D(w′, t) holds. Since |B(w)| ≤ 2ℓ, v ∈ D(w, t)∩B(w′)

162

also implies v ∈ D(w′, t). Consequently, v ∈ B∗(w′). Let us finally consider the
case where both, B(w) and B(w′), are big. If the insertion rule for w′ inserts
v into B∗(w), we have v ∈ B∗(w′). Otherwise the only reason for v being
contained in B∗(w) is that v ∈ D(w, t) for a terminal t ∈ I(w). Then v must
also be one of the vertices with the 2ℓ largest (w′,Γ(t))B-count and therefore is
also contained in B∗(w′).

Corollary 6.4.2. For each vertex v of G, the subtree of T ∗ induced by the nodes
w with v ∈ B∗(w) is connected.

Let G∗ be the graph obtained from G by removing all vertices v and all
edges {v1, v2} from G for which there is no longer a node w with v ∈ B∗(w)
and {v1, v2} ⊆ B∗(w), respectively.

Lemma 6.4.3. (T ∗, B∗) is a weak clique tree for G∗ of width at most 4ℓ2 − 1.

Proof. By our construction and Corollary 6.4.2 all properties of a weak clique
tree hold for (T ∗, B∗). Concerning the treewidth, for the root r of T , we have
|B∗(r)| ≤ |D(r)| ≤ 4ℓ2 since |I(r)| = 2ℓ. By our choice of r there is a terminal
t1 with Γ(t1) = r. Thus, we have |D(w)| ≤ 4ℓ2 − 2ℓ for all nodes w 6= r in
T since the subtree of T rooted in w does not contain Γ(t1). Consequently,
|B∗(w)| ≤ 4ℓ2.

Lemma 6.4.4. An instance of the ℓ-VDPP has a solution on G if and only if
this is true for the instance of the ℓ-VDPP on G∗ with the same terminals.

Proof. Clearly, an instance of the ℓ-VDPP is solvable on G if this true for G∗.
For the converse we merely need to show that a solution of the ℓ-VDPP on G
allows us to construct a coloring of G∗ with respect to (T ∗, B∗). First of all, for
a restricted convex recoloring C′ of (G,C) and for a pair of terminals t1 and t2
colored with c by C′, let us call a pair of incident nodes w1 and w2 on the unique
path from Γ(t1) to Γ(t2) a color break with respect to c (and C′) if no vertex
in B∗(w1) ∩ B∗(w2) is colored with c. Let C be the set of all restricted convex
recolorings of (G,C) that color at most two vertices of each bag in (T ∗, B∗) with
the same color. The solvability of the ℓ-VDPP implies C 6= ∅ since there exists—
as shown in Section 6.2—at least one benign recoloring with respect to (T,B)
and since each benign recoloring is contained in C. It remains to show that there
is a C′ ∈ C without any color breaks since C′ then is a benign recoloring of G∗

with respect to (T ∗, B∗).
Assume now that we can find no recoloring in C without color breaks. Let us

choose a fixed numbering with 1, . . . , ℓ for the colors assigned to the terminals
and a recoloring C′ ∈ C such that the smallest number among the colors with a
color break is as large as possible. Moreover, if c is the color with the smallest
number for which there is a color break and if t1 and t2 are the terminals of color
c, we choose the recoloring C′ ∈ C with the above properties such that there
is a maximal distance between Γ(t1) and the node wσ0 of the first color break
(wσ0 , wσ0+1) on the path P = (w1, w2, w3, . . .) from Γ(t1) to Γ(t2) in T . Let v be
a vertex of color c with v ∈ B(wσ0) ∩B(wσ0+1) and v 6∈ B∗(wσ0) ∩B∗(wσ0+1).

Assume |B∗(wσ0) ∩ B∗(wσ0+1)| < 2ℓ. Then |B(wσ0) ∩ B(wσ0+1)| < 2ℓ.
Let w ∈ {wσ0 , wσ0+1} be the parent of the other node w′ ∈ {wσ0 , wσ0+1} and
t ∈ {t1, t2} ∩ I(w′). We can conclude v ∈ D(w, t) and consequently v ∈ B∗(w).

163

Since |B(wσ0)∩B(wσ0+1)| < 2ℓ, the rule for w adds all vertices ofD(w, t)∩B(w′)
including v into B∗(w′), a contradiction to v 6∈ B∗(wσ0) ∩B∗(wσ0+1).

Hence |B∗(wσ0)∩B∗(wσ0+1)| ≥ 2ℓ. Since no vertex in B∗(wσ0)∩B∗(wσ0+1)
is colored with c and since C′ is a recoloring which uses each color at most twice
in a bag of (T ∗, B∗) and thus also in B∗(wσ0)∩B∗(wσ0+1), it follows that there
must be an uncolored vertex in B∗(wσ0)∩B∗(wσ0+1). Let us define u to be the
uncolored vertex in B∗(wσ0) ∩B∗(wσ0+1) that has the largest (wσ0+1,Γ(t2))B-
count among all uncolored vertices. Keep in mind that, if wσ0 is the parent
of wσ0+1, u ∈ D(wσ0+1, t2) since there are at most 2ℓ − 1 colored vertices in
B∗(wσ0)∩B∗(wσ0+1). We next show that we can construct a recoloring C∗ ∈ C
without any new color breaks for the colors different from c for which—if it has
a color break with respect to c—the first such color break occurs after the pair
{wσ0 , wσ0+1} on P . This leads to a contradiction to our choice of C′ and proves
our lemma.

After setting initially C∗ = C′ we modify C∗. First of all, we color u with c.
We then define wσ−1 and wσ1 as the first and the last node on P , respectively,
such that u ∈ B∗(wσ−1) ∩ B∗(wσ1). Let S be the set consisting of u and all
vertices colored with c by C′ contained in a bag of {B(wσ−1), . . . , B(wσ1)}.

Second, modify C∗ as follows: For the set X of all nodes reachable from
one of the nodes in {wσ−1 , . . . , wσ1} without visiting wσ−1−1 or wσ1+1, uncolor
all vertices in S ∩ B∗(X) \ {u, v′, v′′}, where v′ is the vertex with the largest
(wσ−1 ,Γ(t1))B∗ -count in S ∩ B∗(wσ−1) and where v′′ is the vertex with the
largest (wσ1 ,Γ(t2))B-count in S ∩ B(wσ1). From the fact that (wσ0 , wσ0+1) is
the first color break on P and that C′ is a restricted convex recoloring, we can
conclude that v′ 6= u. The situation described above is sketched in Fig. 6.4.1.

v′
u
v′′

wσ1
wσ−1Γ(t1) wσ0 wσ0+1

∈ B∗ ∈ B, possibly ∈ B∗ possibly ∈ B,B∗ /∈ B∗, possibly ∈ B

Figure 6.4.1: The figure shows the ranges of the variables in the case where no
extra modifications are applied. Black horizontal lines represent vertices uncolored
by C′.

Third, test whether v′′ ∈ B(wσ0+1) \ D(wσ0+1, t2) is true. In this case,
no vertex is colored with c by C′ in D(wσ0+1, t2) since we have chosen v′′ as
the c-colored vertex of S ∩ B(wσ1) with the largest (wσ1 ,Γ(t2))B-count and
since v′′ ∈ B(wσ0+1) then implies that v′′ also has the largest (wσ0+1,Γ(t2))B-
count under all vertices in S. Thus, there exists a vertex in D(wσ0+1, t2) not
colored by C′. Take ũ as such a vertex of largest (wσ0+1,Γ(t2))B-count. Clearly,
ũ 6= v′′. Let wσ2 be the last node on P with ũ ∈ B(wσ2). Consequently,
from D(wσ0+1, t2) ∩ {v′′, ũ} = {ũ} we can conclude that wσ2 is on the subpath
of P from wσ1 to Γ(t2) and that the (wσ0+1,Γ(t2))B-count of v′′ is smaller
than that of ũ. Moreover, let v′′′ be the vertex in B(wσ2) with C′(v′′′) = c
that has the largest (wσ2 ,Γ(t2))B-count among all such vertices. In particular,

164

v′′′ ∈ B(wσ2+1) or we have wσ2 = Γ(t2) and v′′′ = t2. See Fig. 6.4.2. If
additionally to v′′ ∈ B(wσ0+1) \D(wσ0+1, t2) the condition v′′ 6= u 6= ũ holds,
so-called extra modifications of C∗ are required: For the set Y of all nodes
reachable from one of the nodes in {wσ1 , . . . , wσ2} without visiting wσ1−1 or
wσ2+1, change C∗ by uncoloring v′′ and all other vertices in B∗(Y) \ {u, v′′′}
and by coloring ũ with c.

v′
u
v′′

ũ
v′′′

Γ(t2)wσ1 wσ1+1 wσ2 wσ2+1wσ−1Γ(t1) wσ0 wσ0+1

∈ B∗ ∈ B, possibly ∈ B∗ possibly ∈ B,B∗ /∈ B∗, possibly ∈ B

Figure 6.4.2: The figure shows the ranges of the variables in the case where Γ(t2) 6=
wσ2 and the extra modifications are applied. Black horizontal lines represent
vertices uncolored by C′.

For analyzing the coloring C∗, first of all note that coloring v′ with c guar-
antees that there is no new color break between Γ(t1) and wσ0 on P .

Let us first consider the case, where no extra modifications are applied. Even
if we uncolor S\{u, v′, v′′}, by coloring u, v′ and v′′ with c we can guarantee that
C∗ is a restricted convex recoloring of (G,C). Hence, if C∗ does not belong to C,
|{u, v′, v′′}| = 3 and there is a node w whose bag B∗(w) contains u, v′, v′′. Due
to our choice of v′ we know that v′ ∈ B∗(wσ−1). Since v′ /∈ B∗(wσ0)∩B∗(wσ0+1),
from Corollary 6.4.2 follows that w 6= wσ0+1 and that w is reachable from Γ(t1)
in T without using wσ0+1. Note that v′′ ∈ B∗(w) implies v′′ ∈ B(w). We
consider two subcases:

• wσ0+1 is the parent of wσ0 . Since v′′ ∈ B(wσ1), we also have v′′ ∈ B(wσ0)∩
B(wσ0+1). Then, v′′ ∈ B∗(wσ0) ∩ B∗(wσ0+1) according to Lemma 6.4.1,
and we obtain a contradiction since (wσ0 , wσ0+1) is a color break.

• wσ0 is the parent of wσ0+1. Since no extra modifications are applied and
since |{u, v′, v′′}| = 3, i.e., u 6= v′′ holds, we have u = ũ or v′′ /∈ B(wσ0+1)
or v′′ ∈ D(wσ0+1, t2) ⊆ B∗(wσ0+1). In the second case, v′′ can not be
part of B(w) and B(wσ1). In the third case, again by Corollary 6.4.2 we
can conclude that v′′ ∈ B∗(wσ0)∩B∗(wσ0+1). If only the first case holds,
because of u ∈ D(wσ0+1, t2) and v′′ /∈ D(wσ0+1, t2), vertex u has a larger
(wσ1 ,Γ(t2))B-count than v′′. Thus, a contradiction occurs in each case.

Let us finally assume that the extra modifications are applied. Then u 6= ũ
and the definition of u implies ũ /∈ B∗(wσ0). Like in the previous case without
extra modifications, v′ can only be contained in one of the bags B∗(w) with w
being reachable from Γ(t1) without using wσ0+1. Therefore, no bag of (T ∗, B∗)
contains v′ and ũ. Recall that the (wσ0+1,Γ(t2))B-count of ũ is larger than
that of v′′. Because of this fact and because of v′′ ∈ B(wσ0+1) ∩ B(wσ1), the

165

(wσ1 ,Γ(t2))B-count of ũ is larger than that of v′′. Assume for the moment
that v′′′ ∈ B∗(wσ1). Then v′′′ ∈ B(wσ1) and the fact that v′′′ ∈ B(wσ2+1) or
v′′′ = t2 implies that v′′′ has a larger (wσ1 ,Γ(t2))B-count than that of ũ and by
transitivity then that of v′′. In particular, v′′ 6= v′′′. Since by our assumption
also v′′′ ∈ S holds, we obtain a contradiction to our choice of v′′. Consequently,
no bag of (T ∗, B∗) contains u and v′′′, and C∗ colors at most two vertices in
each bag of (T ∗, B∗). Our choice of v′′′ guarantees that C∗ is a restricted convex
recoloring.

We have shown that C∗ ∈ C and that the distance between Γ(t1) and the first
node of a color break on P with respect to c and C∗—if indeed there is a color
break—is larger than the corresponding distance for C′. This is a contradiction
to our choice of C′.

We can therefore solve the ℓ-VDPP on a chordal graph G with n vertices
and m edges as follows: In a preprocessing step, we determine for each node w
of T the set I(w) and subsequently all sets D(w, t) and D(w) with t ∈ I(w). For
an efficient computation of D(w, t), initially compute in O(n+m) time for each
tuple (w,w′) of adjacent nodes of T the set ∆(w,w′) = B(w) \ B(w′) —recall
that the size of (T,B) is O(n +m). Then, for each terminal t, let us consider
the tree Tt obtained from T by making Γ(t) the root of Tt. By a subsequent
top-down traversal in Tt, for each vertex v of G, compute d(v) as the smallest
depth of a node w with v ∈ B(w) in Tt. In detail, if we visit a node w with
father w′, we set d(v) to the depth of w exactly for all v ∈ ∆(w′, w). Thus,
for each w in T , D(w, t) consist of the min{2ℓ, |B(w)|} vertices v′ in B(w) with
largest (−d(v′), f(v′)) tuple. It is not hard to see that using the ∆-values, we
can compute the d-values for each fixed terminal t in O(n) time since the sum of
the cardinalities of the considered sets ∆(w,w′) is O(n). Consequently, for each
fixed terminal t, we can compute D(w, t) for all nodes w of T in O(ℓn) time.
Thus, the preprocessing step takes O(m + ℓ2n) time. Hence, we can replace G
and (T,B) by G∗ and (T ∗, B∗) in the same running time. We then apply the
algorithm of the Section 6.2 on G∗. From Lemma 6.2.1 we can conclude the
following:

Theorem 6.4.5. The ℓ-VDPP on chordal graphs with n vertices and m edges
can be solved in O(m + (4ℓ2)2ℓ+1n) = O(m + (2ℓ)4ℓ+2n) time.

6.5 Hardness of the VDPP

As shown, on a chordal graph G = (V,E), the ℓ-vertex-disjoint path problem
for fixed ℓ is solvable in O(|V |) time. However, the constant hidden in the O-
notation grows exponentially with ℓ. Unless P 6= NP, there is no hope to obtain
a running time polynomial in ℓ as we can conclude from the next theorem.

Theorem 6.5.1. The vertex-disjoint paths problem on chordal graphs is NP-
hard.

Proof. We can prove the theorem by a reduction from a restricted case of
the so-called 1-in-3 SAT. In 1-in-3 SAT we are given a Boolean formula in
conjunctive normal form with 3 variables per clause and we have to find an
assignment of the variables such that exactly one of the three literals is true
in every clause of the formula. A Boolean formula in conjunctive normal form

166

is monotone if every literal is positive and it is cubic if every variable occurs
exactly three times. It is shown in [67] that 1-in-3 SAT is NP-complete even
on monotone and cubic Boolean formulas. We now reduce an instance of 1-in-3
SAT consisting of a monotone and cubic Boolean formula F to an instance of
the VDPP on a chordal graph G. Fig. 6.5.1 shall represent a clique tree of
G. Each subgraph induced by the vertices of a bag should be a clique whose
edges are colored gray—however, not all existing edges are shown in the figure.
Black lines represent paths of length 0. Therefore, the endpoints of black lines
represent the same vertex even if they appear in different shapes.

In detail, we construct G as follows: For each variable x and each clause C
in F , we introduce a variable and a clause gadget, respectively, as shown on the
left side of Fig. 6.5.1. A variable gadget has six terminals a1, a2, a3, b1, b2, b3 and
a clause gadget six terminals y1, y2, y3, z1, z2, z3. Each gadget is connected to
one large clique Γ—see the rightmost bag in Fig. 6.5.1. Γ contains 6q vertices
where q is the number of clauses of F . We next divide the terminals into pairs
such that the resulting instance of the VDPP has a solution if and only if F has
a satisfying assignment.

bb
b

b
b b

b

b

b

b

b

b

b

b b

b

b b

b

b b

b

b b

b

b b

b

b b

b

b

b

b

b b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b

b
bb

b b
b

b
bb

b
b
b

b
b b

b
b
b

b
b b

bb
b

b
b b

b b
b

b
bb

b
b
b

b
bb

C2 x
2

x
4 C4

x
3

C
3

x1

C1

a1

b2

a2

b3

a3

b1

y1
y2
y3

z1
z2
z3

Figure 6.5.1: Sketch of a reduction to the disjoint paths problem from a Boolean
formula (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4).

If a clause C contains a variable x as the i-th variable and if it is the j-th
occurrence of variable x in F that is part of C, the pairs (aj , yi) and (bj , zi)
are part of our instance of the VDPP, where the four terminals aj , bj, yi, and
zi belong to the gadgets for x and C. Moreover, we identify one triangular and
one square vertex in the gadget of x with one triangular and one square vertex,
respectively, in the gadget of C different from the triangular and square vertices
chosen for other variables or clauses. For a simpler notation, the terminals a1, a2

and a3 shown in Fig. 6.5.1 are called A-terminals and the remaining terminals
B-, Y - and Z-terminals, respectively.

167

Let us consider a satisfying assignment of F . For each variable x, we con-
struct six paths from the terminals to the triangular and square vertices in the
gadget of x such that, if x is set to true, the paths starting in the A-terminals
are only routed through the triangular vertices; otherwise they are only routed
through the square vertices. Since each clause C has exactly one true variable,
for each clause gadget, exactly one path from an A-terminal to the gadget of C
passes at a triangular vertex, whereas the other two paths from an A-terminal
to the gadget of C pass at a square vertex. Thus, we can forward the three
paths to the Y -terminals of C. Similarly, we can forward the paths from the
B-terminals to the Z-terminals. Hence, we have found a solution to our instance
of the VDPP.

Let us now consider a solution for our VDPP. It remains to show that F
can be satisfied. In our construction, the number of vertices in the large clique
Γ is equal to the number of pairs that have to be connected in our instance.
Moreover, each path has to use at least one and therefore exactly one vertex of
Γ. Note that for each clause C and each variable x in C, Γ contains exactly
two vertices common with the gadgets of C and x, respectively: one triangular
and one square vertex. Thus, these two vertices must be the two vertices visited
by the two paths connecting two pairs of terminals in the gadgets of C and
x. As a consequence, for any fixed variable gadget the paths starting from
the A-terminals must pass either exclusively through the triangular vertices or
exclusively through the square vertices of this gadget—to see this, it might
help to look at the order of the terminals in the variable gadget. We define a
variable x of F to be true if the paths ending in the A-terminals of the gadget of
x pass through triangular vertices. Since the A-terminals are connected to the
Y -terminals, exactly one path ending in an A-terminal uses a triangular vertex
of each clause gadget, i.e., exactly one variable of each clause is set to true.

168

Chapter 7

Generalization of
Chordal Graphs

7.1 Motivation

As we have seen in the previous chapters, complexity parameters such as the
treewidth can help to solve many NP-hard problems of theoretical or practical
importance on a subclass of instances for which the parameter is very small. Al-
though chordal graphs are with their clique tree already generalizations of trees,
we next generalize chordal graphs by introducing new complexity parameters.

Definition 7.1.1 (intersection graphs). Let Q be a type of objects for which
we can define an intersection—e.g., disk or square. An intersection graph of
Q is the graph G defined by a set S of objects of type Q such that each
object of S corresponds to a vertex in G, and there is an edge between the
corresponding vertices of G if and only if two objects of S have a non-empty
intersection. An intersection graph of Q is also called a Q graph—see for an
example Fig. 7.1.1.

Figure 7.1.1: On the left side we see several disks in the plane. The right side
shows the corresponding disk graph G. Note that G has several other embeddings.

For a better understanding of the generalization of chordal graphs, note that
chordal graphs are exactly the intersection graphs of subtrees of a suitable tree

169

T if the intersection of two subtrees T1 = (V1, E1) and T2 = (V2, E2) is defined
as the possibly empty tree (V1 ∩ V2, E1 ∩ E2) [40].

Proof. If G is a chordal graph and (T,B) a clique tree for G, take for each
vertex v of G exactly the subtree of T induced by the nodes whose bags contain
v. G is exactly the intersection graph obtained from these subtrees since all
pairs of vertices in every bag of (T,B) are connected by an edge.

For the converse, let G be an intersection graph of subtrees T1, . . . , Tn (n ∈
N) of a tree T and, for 1 ≤ i ≤ n, let vi be the vertex of G corresponding to
Ti. Assume for contradiction that there is a chordless cycle C = (v1, v2, . . . , vx)
of length x ≥ 4 in G. Take w1,2 and w2,3, respectively, as a node of T2 also
contained in T1 and T3. Since {v1, v3} is no edge in G, w1,2 6= w2,3. Let P be a
path in T2 (and thus also in T) connecting w1,2 and w2,3. Now we can observe
that, on the one hand, the tree T ∗ = ∪xi=4Ti has at least a common vertex with
both T1 and T3. On the other hand, T ∗ has no common vertex with T2 since
otherwise a tree Ti with 4 ≤ i ≤ x has also a common vertex with T2, i.e., C is
not chordless. Combining the last two observations, we obtain in T ∗ (and thus
also in T) a w1,2-w2,3-path P ′ whose internal vertices are pairwise disjoint from
the internal vertices in P . Consequently, we obtain a contradiction since the
vertices of P and P ′ induce a cycle in T .

For measuring the similarity of intersection graphs of several kinds of objects
to chordal graphs, we study in this chapter three complexity parameters (see
also [57]). One of them is new, whereas the others also appear in [1, 51, 95], but
were not analyzed in detail in these papers. A detailed definition of the new
complexity parameters follows in the next section. Similar to treewidth and
trees, for chordal graphs these parameters are all 1, and there is a sequence of
graphs such that the complexity with respect to each of these parameters goes to
infinity. There are many polynomial- or even linear-time algorithms on chordal
graphs known, e.g., for maximum clique, for minimum clique partition [39], for
maximum weighted independent set [33], and for minimum vertex coloring.

Definition 7.1.2 (maximum (weighted) clique (MC, MWC)). A maximum
clique (MC) of a graph G is a clique of G with as many vertices as possible.
For a graph G = (V,E) with a weight function w : V → R, a maximum
weighted clique (MWC) is a clique in G such that the sum of the weights of
its vertices is as large as possible.

Definition 7.1.3 (minimum clique partition (MCP)). A clique partition of
a graph G = (V,E) is a partition of V into sets V1, . . . , Vx such that each Vi
(1 ≤ i ≤ x) induces a clique in G. A minimum clique partition (MCP) is a
clique partition consisting of as few sets as possible.

Definition 7.1.4 (maximum weighted independent set (MWIS)). If G =
(V,E) is a graph with a weight function w : V → R, a maximum weighted
independent set (MWIS) is an independent set S of G such that, for each
independent set S′ 6= S: ∑

v∈S′

w(v) ≤
∑

v∈S

w(v).

170

Definition 7.1.5 (minimum vertex coloring (MVC)). A minimum vertex
coloring (MVC) for a graph G is a coloring using as few colors as possible
such that adjacent vertices are colored in G with different colors.

Contrary to the treewidth measuring the running time, each of the three pa-
rameters measure the quality of the results. In more detail, they determine the
approximation ratio of several algorithms described in this chapter, e.g., for the
problems above on big graph classes containing many intersection graph classes
such as t-interval graphs, circular-arc graphs, (unit-)disk graphs, and intersec-
tion graphs of regular polygons or of arbitrary polygons of so-called bounded
fatness. For a definition of all these objects see the end of this section.

It is not surprising that, for small graph classes such as unit-disk graphs,
one can achieve better results than by the new algorithms designed for bigger
classes of graphs. Nevertheless, also on small graph classes such as disk graphs
new results are obtained for some of the problems mentioned above as well as
for the following two problems.

Definition 7.1.6 (minimum (independent) dominating set (MDS, MIDS)).
Given a graph G = (V,E) a dominating set in G is a set V ′ ⊆ V such that,
for all v ∈ V , either v ∈ V ′ or a neighbor of v is in V ′. If V ′ is additionally an
independent set, V ′ is an independent dominating set. A minimum (indepen-
dent) dominating set (MDS, MIDS) is a set such that no other (independent)
dominating set has a smaller cardinality.

Table 7.1.2 summarizes the best previously known and new approximation
results for the intersection graphs of disks, regular polygons, fat objects, t-
intervals, and t-fat-objects. By an r-regular polygon we mean a polygon with
r corners placed on a cycle such that all pairs of consecutive corners of the
polygon have the same distance. We assume that r ∈ O(1). We define a set
C of geometric objects in R

d to be a set of fat objects if the following holds:
First of all, let us call the radius of a smallest d-dimensional ball containing all
points of a geometric object S in R

d the size of S. Moreover, let R be the size
of the largest object in C. Then, C is called fat if there is a constant c such that,
for each d-dimensional ball B of radius r with 0 < r ≤ R, there exist c points
(possibly also outside B) such that every B-intersecting object S ∈ C of size
at least r contains at least one of the c points. We also say that C has fatness
c. C is called a (c-)restricted set of fat objects if in the condition above every
B-intersecting object in C (with arbitrary size) contains at least one of the c
points. By a unit set of objects—in opposite to arbitrary—we mean that each
object must be a copy of each other object, i.e., it has to be of the same size and
shape. However, unit and arbitrary objects may be rotated and moved to any
position. Thus, the right side of Fig. 7.1.1 shows a special kind of disk graph: a
unit-disk graph. An intersection graph G of t-intervals is an intersection graph,
where each vertex represents a t-interval, i.e., the union of t intervals taken from
a set S of intervals. Similarly, by the intersection graph G of t-fat-objects we
mean an intersection graph, where each vertex represents a t-fat-object, i.e., the
union of t objects taken from a fat set S of objects. In both cases, G being a
t-interval graph or the intersection graph of t-fat objects, S is called a universe
of G.

171

disk r-reg. polygon fat objects t-interval t-fat-objects

MIS arbitrary: arbitrary: arbitrary: 2t-PA. [10] arbitrary:
PTAS [21, 28] PTAS [21, 28] PTAS O(t)-PA. [∗]

unit: unit: [21, 28] t ≥ 3 :
PTAS [34] PTAS [34] unit: APX -h.
NP-h. [32] NP-h. [32] NP-h. [32] [42, 73] NP-h. [32]

MWIS arbitrary: arbitrary: arbitrary: 2t-PA. [10] arbitrary:
PTAS [28] PTAS [28] PTAS [28] O(t)-PA. [∗]

MDS restricted: restricted: restricted: t2-PA. [19] restricted:
O(1)-PA. [∗] O(1)-PA. [∗] O(1)-PA. [∗] O(t)-PA. [∗]

unit: unit: unit: t ≥ 2 : t ≥ 2 :
PTAS [34] PTAS [34] APX -h. APX -h.
NP-h. [24] NP-h. [24] NP-h. [24] [42, 73] [42, 73]

MIDS restricted: restricted: restricted: restricted:
O(1)-PA. [∗] O(1)-PA. [∗] O(1)-PA. [∗] O(t)-PA. [∗]

unit: unit: unit: t ≥ 2 :
PTAS [49] PTAS [49]
NP-h. [24] NP-h. [24] NP-h. [24] NP-h. [24]

MVC arbitrary: arbitrary: arbitrary: 2t-PA. [10] restricted:
5-PA. O(1)-PA. O(1)-PA. O(t)-PA. [∗]
[41, 64, 65] [57, 95] [57, 95]

unit: 3-PA. [65] unit: unit:
4
3
-PA. is NP O(1)-PA. [65] NP-h.

-h. [24, 37, 50] NP-h. [37, 50] [37, 50]

MC arbitrary: arbitrary: arbitrary: t2−t+1
2

-PA. [19] arbitrary:
O(1)-PA. [∗] O(1)-PA. [∗] O(1)-PA. [∗] O(t)-PA. [∗] O(t)-PA. [∗]

unit: t ≥ 3 : t ≥ 3 :
∈ P [24] NP-h. [19] NP-h. [19]

MWC arbitrary: arbitrary: arbitrary: t2−t+1
2

-PA. [19] arbitrary:
O(1)-PA. [∗] O(1)-PA. [∗] O(1)-PA. [∗] O(t)-PA. [∗] O(t)-PA. [∗]

MCP arbitrary: arbitrary: arbitrary: O(log2 n/ arbitrary:
O(1) PA. [∗] O(1)-PA. [∗] O(1)-PA. [∗] log(1 + 1/t))- O(t)-PA. [∗]

unit: 3-PA. [20] PA. [∗]

Table 7.1.2: Approximation results. PA. and NP-h. is used as abbreviation for
polynomial-time approximation algorithm and NP-hard, respectively. Moreover,
n denotes the number of vertices of the intersection graph. [∗] marks a result
shown in this chapter.

172

As usual, disks and regular polygons should be defined in the plane R
2,

intervals in R and fat objects in R
d, where we assume that d = O(1). Concerning

the results in table 7.1.2 including the hardness results, we assume that—beside
an intersection graph itself—a representation of the intersection graph is given.
More precisely, for the intersection graph of a set S of (1) disks, (2) r-regular
polygons, (3) t-intervals, (4) fat objects, or (5) t-fat objects, we are given for
each element in S its radius and the coordinates of its center in case 1, the
coordinates of the center and at least one corner in case 2, the start and end
point of each interval in case 3, and a representation in case 4 that, for each pair
X,Y of objects, each point p ∈ R

d, and each d-dimensional ball B represented
by the coordinates of its center and its radius r ≤ R, supports the following
computations in polynomial time: Decide whether X and Y intersect, whether
X and B intersect, and whether p is contained in X . Moreover, determine the
size s of X as well as the center of the ball with a radius s containing all points
of X , and find c points such that one is contained in every object of size ≥ r
intersecting B. In addition, in case 5 each t-fat-object has a representation of
its objects as described in case 4. For many applications, representations as
described above are given explicitly.

Very related to the graph classes considered in this chapter is the so-called
class of sequentially k-independent graphs introduced by Akcoglu, Aspnes, Das-
Gupta, and Kao [1] and studied more extensively in a recent paper by Ye and
Borodin [95]. Even though the results of Ye et al. and the results here are
achieved completely independently, there are similarities between the paper and
this chapter. Consequently, the results here of generalizing chordal graphs are
quite natural, but surprisingly have not been studied more extensively before.
Since some of the graph classes considered here are smaller than the classes
studied by Ye et al.—but still including big classes of intersection graphs—we
obtain good approximation algorithms for MDS and MIDS for the graph classes
considered here, where especially approximation results for the latter problem
were mentioned as an interesting open problem for k-sequentially independent
graphs. We also generalize some results of Ye et al. for the MCP and the MWC.
In contrast to Ye et al. we additionally study t-interval graphs and intersection
graphs of t-fat objects.

Other generalized classes of graphs including the intersection graphs of unit
disks or r-regular polygons of unit size are graph classes of so-called polynomially
bounded growth studied by Nieberg, Hurink and Kern [49, 70]. Nieberg et al.
presented a PTAS for MWIS, MDS and MIDS for these classes of graphs, but
graphs of polynomially bounded growth do not include the intersection graphs
of arbitrary disks, arbitrary r-regular polygons, t-interval graphs, etc.

Our results include the first polynomial-time approximation algorithms with
constant approximation ratio for maximum clique and minimum clique partition
on disk graphs and on intersection graphs of r-regular polygons. We also present
a polynomial-time approximation algorithm with constant approximation ratio
for minimum dominating set on the intersection graphs of a restricted set of
r-regular polygons. Recently, Erlebach and van Leeuwen [29] presented an ap-
proximation algorithm with constant approximation ratio for the same problem
on an arbitrary set of r-regular polygons, however, they do not allow to rotate
the polygons in contrast to this thesis. Our results also imply an approximation
algorithm with constant approximation ratio for minimum dominating set on
intersection graphs of an arbitrary set of iso-oriented r-regular polygons. A set

173

of r-regular polygons is called iso-oriented if each polygon is obtained from each
other by translation and scaling. We also improve the approximation ratio of
maximum clique on t-interval graphs from (t2− t+1)/2 [19] to O(t). In general,
the new results also extend to intersection graphs of a restricted set of t-fat
objects and further classes of graphs not discussed in this thesis.

7.2 New Complexity Parameters

In this section, we introduce three complexity parameters. For each complexity
parameter, we present examples of classes of intersection graphs for which the
complexity parameter is bounded by a constant.

Definition 7.2.1 (k-perfectly groupable). A graph is k-perfectly groupable if
the neighbors of each vertex v can be partitioned into k sets S1, . . . , Sk such
that G[Si ∪ {v}] is a clique for each i ∈ {1, . . . , k}.

For each object S of a k-restricted set C of fat objects and a smallest ball
B containing S, there exists a set PS of k points such that every object in C
intersecting B covers a point in PS . For each S-intersecting and hence also B-
intersecting object S′ ∈ C, choose one of the points in S′∩PS as a representative.
Then all S-intersecting objects having the same representative in PS induce a
clique in the intersection graph. Hence, the intersection graph of a k-restricted
set of fat objects is k-perfectly groupable. Unit-disk graphs and unit-square
graphs are k-perfectly groupable for a suitable constant k. Graphs of maximum
degree k are also k-perfectly groupable.

Definition 7.2.2 (k-simplicial, k-simplicial elimination order, successor). A
graph G is k-simplicial if there is an order v1, . . . , vn of the vertices of G such
that, for each vertex vi (1 ≤ i ≤ n), the subset of neighbors of vi contained in
{vj | j > i} can be partitioned into k sets S1, . . . , Sk such that G[Sj∪{vi}] is a
clique for each j ∈ {1, . . . , k}. The vertices in {vj | j > i, {vi, vj} ∈ E(G)} are
called the successors of vi and the order above of the vertices in G is called a
k-simplicial elimination order.

Let C be a set of fat objects S1, . . . , Sn ordered by non-decreasing size. Let
k be the fatness of C. Then, for each object Si, we can find k points such that
every Si-intersecting object in {Si+1, . . . , Sn} contains one of the k points. If, for
i ∈ {1, . . . , n}, we define vi to be the vertex representing Si in the intersection
graph G of C, then v1, . . . , vn defines a k-simplicial elimination order. Therefore,
G is k-simplicial. Also note that disk graphs and square graphs are k-simplicial
for a suitable constant k.

Definition 7.2.3 (k-perfectly orientable). A graph G is called k-perfectly
orientable if each edge {u1, u2} of G can be assigned to exactly one of its
endpoints u1 and u2 such that, for each vertex v, the vertices connected to
v by edges assigned to v can be partitioned into k sets S1, . . . , Sk such that
G[Si ∪ {v}] is a clique for each i ∈ {1, . . . , k}. We write a({u1, u2}) = u1 if
{u1, u2} is assigned to u1.

174

We now show that the intersection graph G = (V,E) of a set of t-fat-objects
C with a universe of fatness c is (t · c)-perfectly orientable. Let V = {v1, . . . , vn}
and, for each i ∈ {1, . . . , n}, let Si be the union of t objects Si,1, . . . , Si,t rep-
resented by vi. In particular, (S1,1, . . . , S1,t, . . . , Sn,1, . . . , Sn,t) is the universe
of C. Choose, for each edge {vi, vj} with i < j, a pair {p, q} of indices such
that Si,p and Sj,q intersect. Assign {vi, vj} to vi if the size of Si,p is smaller
than the size of Sj,q and to vj otherwise. Then, for each vertex vi, one can
find t · c points—namely the c points for each of the objects Si,1, . . . , Si,t—such
that each Si-intersecting t-fat-object Sj with {vi, vj} being assigned to vi must
intersect Si in at least one of the t · c points. Here, once again, we exploit the
fact that a larger object intersecting a smaller object must intersect the smaller
object in at least one of the c points for the smaller object. Therefore, the set
of vertices being endpoints of edges assigned to vi can be partitioned into ≤ t · c
cliques. This proves that G is (t · c)-perfectly orientable. Note also that the
intersection graphs of t-intervals are 2t-perfectly orientable. For these graphs,
an edge {vi, vj} with i < j is assigned to vi if the t-interval represented by vj
intersects one of 2t endpoints of the intervals whose union is represented by vi.
Otherwise, {vi, vj} is assigned to vj .

Moreover, intersection graphs of subforests of a tree are k-simplicial if each
subforest consists of at most k trees. In this case an edge {vi, vj} with i < j is
assigned to vi if the subforest represented by vj intersects one of k roots of the
subforest represented by vi. Otherwise, {vi, vj} is assigned to vj .

We next present explicit upper bounds for the three complexity parameters
on some special intersection graphs. Before that let us define the inball and the
outball of a square S to be the ball with largest radius containing only points of
S and the ball with smallest radius containing all points of S, respectively. The
center of S is the center of its outball.

Lemma 7.2.4. An intersection graph of t-squares, i.e., of unions of t (not
necessarily axis-parallel) squares, is

1. 10-perfectly groupable if t = 1 and if the squares are of unit size,
2. 10-simplicial if t = 1, and
3. 10t-perfectly orientable.

Proof. For proving the first two cases, let G be the intersection graph of a
set S of squares. It remains to show that, for a square Q of minimal side length
ℓ, there are 10 points—called the barriers of Q—such that every Q-intersecting
square Q′ of length ≥ ℓ must cover at least one of them. This fact also proves
case 3 since the universe of a set of t-squares then must have fatness 10.

We first describe our choice of the 10 barriers of Q. See also the left side of
Fig. 7.2.1 for the following construction. Let b1 and b2 be the two perpendicular
bisectors of the sides of Q. Choose two barriers x and y of Q as points on b1 such
that the part of b1 inside Q is divided into three parts of equal length. We call
these two points the inner barriers of Q. Let C be the curve surrounding Q that
consists of all points having a distance of exactly ℓ to one of the inner barriers
and a distance of at least ℓ to the remaining inner barrier. The remaining 8
barriers, called outer barriers, are almost equidistant points on C. More exactly,
4 outer barriers of Q are placed on the 2 + 2 intersection points of C with b1
and b2. Choosing the other 4 outer barriers of Q is more sophisticated. Let x′

and y′ be the two points on b1 having the same distance to the center of Q as
to x and y, respectively. In addition, let r1 and r2 (r3 and r4) be the 2 rays

175

starting from x′ (from y′) such that each of the 4 rays intersects a corner of
Q but neither b1 nor b2. The four remaining outer barriers are placed on the
intersection points of C with the rays r1, . . . , r4.

By a simple mathematical analysis one can show that the distance between
any two consecutive outer barriers on C is strictly smaller than ℓ. It remains to
show that each square of side length at least ℓ intersecting Q also covers one of
the barriers of Q. Assume for a contradiction that we can find a square Q′ of
side length at least ℓ intersecting Q but none of the barriers of Q. W.l.o.g. we
can assume that Q′ has side length exactly ℓ since otherwise Q′ also contains
a smaller square intersecting Q. Let H be the convex hull of the outer barriers
and let B be the largest circle contained in H such that B has the same center
as Q. B and thus also H contain at least one corner of Q′ since Q′ intersects
Q and B, and since a simple mathematical analysis shows that each chord of B
with length at most l does not intersect Q. We now distinguish two cases.

Case 1: No side of Q′ is completely contained in the convex hull H of the
outer barriers. For each pair of consecutive outer barriers p and q on C, let us
define Cp,q to be the semi-circle inside H with endpoints p, q and hence having
a diameter equal to the distance between p and q. See again the left side of
Fig. 7.2.1. Let z be the corner of Q′ inside B with the smallest distance to
a point in Q. Note that the two sides of Q′ ending in z are not completely
contained in H. Consequently, by Thales’ theorem and the fact that Q′ does
not contain any barriers there must be two consecutive outer barriers p and q on
C such that z is contained in the face enclosed by Cp,q and pq. Again a simple
mathematical analysis shows that none of our semi-circles intersects Q. Thus,
neither z nor any other point of Q′ is covered by Q. Contradiction.

Case 2: At least one side of Q′ is completely contained in H. Since each
pair of consecutive outer barriers on C has a distance smaller than ℓ, the center
q of Q′ is inside H.

By symmetry, w.l.o.g. we can assume that the distance between q and y is
smaller or equal than the distance between q and x. Let H′ be the convex hull
of x and the outer barriers having a distance of at most ℓ to y. On the one hand,
for each pair of consecutive barriers q1 and q2 on H′, there is at most one corner
in the face bounded by q1q2 and the semi-circle outside H′ with endpoints q1 and
q2. On the other hand, at least one corner of Q′ is outside H′ since the inball
of Q′, which does not contain y, must intersect the border of H′. Consequently,

b

b

b

bb
x yb1

b2 B C

Figure 7.2.1: The left side shows a square with some barriers, and on the right
side, we see a square intersecting 7 disjoint squares.

176

there are two sides s1 and s2 of Q′ that have a common corner p outside H′ and
that intersect H′ between to outer barriers, say q1 and q2.

Let T be the triangle with corners y, q1 and q2. Since Q′ is a square of side
length ℓ, since p is not covered by T , and since T is a triangle with two sides of
length ℓ and with an s1-intersecting side of length at most ℓ, y has to be inside
Q′. Contradiction.

Observation 7.2.5. Some square graphs are not 6-perfectly groupable as shown
on the right side of Fig. 7.2.1.

Lemma 7.2.6. The intersection graph of a set of rectangles, all having aspect
ratio of α, is 10⌈α⌉-simplicial.

Proof. Replace each rectangle of side length (ℓ×αℓ) by a set of ⌈α⌉ (possibly
overlapping) squares of side length (ℓ × ℓ) such that each point contained in
one squares is contained in the rectangle and vice versa. For each rectangle r1
replaced by squares of a size s1, one can find 10⌈α⌉ points P such that every
r1-intersecting square of size s2 ≥ s1 replacing another rectangle r2 must cover
one of the points in P . Here we use the fact that each rectangle can be replaced
by ⌈α⌉ squares of the same size.

Lemma 7.2.7. Let c be a fixed constant and G be an intersection graph, where
each vertex represents a union of t polygons taken from a universe of iso-oriented
c-regular polygons. Then G is (t · c)-perfectly orientable.

Proof. The intersection of two iso-oriented c-regular polygons of the same size
must contain at least one of the corners of the two polygons. Note that this does
not hold for general rotated polygons. Let {v1, . . . , vn} be the vertices of G. We
assign an edge {vi, vj} in G with i < j to vi if and only if one of the polygons in
the union of polygons represented by vi has a corner contained in the union of
polygons represented by vj . Otherwise, we assign it to vj . The edges assigned
to a vertex v can be partitioned into t · c sets such that the endpoints of the
edges of each set induce a clique in G since we have one clique for each corner
of the t polygons.

7.3 The 3 Complexity Parameters in Relation

In the following we study the relations between the complexity parameters de-
fined in the last section to each other and to treewidth.

Observation 7.3.1. Each k-perfectly groupable graph is k-simplicial because
any ordering of the vertices defines a k-simplicial elimination order. Conversely,
for all n, k ∈ N with k < n−1, an n-vertex star, i.e., an n-vertex tree with n−1
leaves, is not k-perfectly groupable, but it is 1-simplicial.

Lemma 7.3.2. A k-simplicial graph is also k-perfectly orientable, but for all
n, ℓ ∈ N with n ≥ 12 and ℓ < ⌊

√

n/3⌋, there exists a 2-perfectly orientable graph
with n vertices that is not ℓ-simplicial.

Proof. Let G be a k-simplicial graph having a k-simplicial elimination order
v1, . . . , vn. If, for a vertex v, all edges that are incident to v as well as to a

177

successor of v are assigned to v, the endpoints u 6= v of the edges assigned to
v can be partitioned into k sets S1, . . . , Sk such that G[Si ∪ {v}] is a clique for
every i ∈ {1, . . . , k}. In other words, G is k-perfectly orientable.

Let us choose an arbitrary n ∈ N with n ≥ 12 and let k = ⌊
√

n/3⌋. We now
construct a 2-perfectly orientable graph G= (V,E) with n vertices that is not
ℓ-simplicial for any ℓ < k. For a sketch of the following construction, see also
Fig. 7.3.1. The vertices of this graph are divided into three disjoint sets S0, S1

and S2 of size k2 and, if n − 3k2 > 0, a further set R = V \ (S0 ∪ S1 ∪ S1) of
isolated vertices. Each set Si (i ∈ {0, 1, 2}) is divided into k subsets Si,1, . . . , Si,k
of size k. For each i ∈ {0, 1, 2} and each j ∈ {1, . . . , k}, we introduce edges
between each pair of vertices contained in the same subset Si,j and assign each
of these edges arbitrarily to one of its endpoints. Let us define a numbering on
the vertices of Si,j such that we can refer to the h-th vertex of Si,j . For each
i ∈ {0, 1, 2} and each h, j ∈ {1, . . . , k}, we additionally introduce edges between
the h-th vertex u of Si,j and all vertices of S(i+1) mod 3,h. We assign them to
u. The constructed graph G is 2-perfectly orientable since the endpoints of
an edge assigned to a vertex u being the h-th vertex of a subset Si,j belong
to one of the two cliques induced by the vertices of Si,j and S(i+1) mod 3,h.
However, u is also adjacent to k vertices in S(i−1) mod 3, namely to the h-th
vertex in each of the subsets S(i−1) mod 3,1, . . . , S(i−1) mod 3,k—see a blue vertex
in Fig. 7.3.1. Since there is no edge between a vertex in S(i−1) mod 3,j1 and a
vertex in S(i−1) mod 3,j2 for j1 6= j2 and since u has neighbors in each of the sets
S(i−1) mod 3,1, . . . , S(i−1) mod 3,k, the neighbors of u contain an independent set
of size at least k. This means that the neighbors cannot be covered by fewer
than k cliques and that thus G cannot be ℓ-simplicial for any ℓ < k.

3

2

1

3

2
1

321

3
2

1

3

2

1

3

2

1

3
2 1 3 2

1
3

2

1

Figure 7.3.1: A sketch of the graph constructed in the proof of Lemma 7.3.2 for the
case n = 27. Due to a better overview, several edges are omitted. S0, S1, and S2

are the vertices in red, blue, and green, respectively. Moreover, for i, j ∈ {0, 1, 2, },
the subsets of each Si are shown in slight color-variations, and the numbers in the
vertices denote the numbering on the vertices of each Si,j .

178

Lemma 7.3.3. All graphs with treewidth k are k-simplicial and therefore also
k-perfectly orientable.

Proof. LetG = (V,E) be a graph and (T,B) be a k-normal tree decomposition
for G. Note that each leaf of T has a bag containing a vertex v that is not
contained in any other bag of (T,B). Consequently, v has at most k neighbors.
We can choose v as the first vertex of a k-simplicial elimination order and
recursively determine a k-simplicial elimination order on G[V \ {v}].

Observation 7.3.4. The n-vertex clique is an example for a 1-perfectly group-
able graph G that does not have treewidth n− 2. Conversely, the n-vertex star
is a graph with treewidth 1 that is not (n− 2)-perfectly groupable.

7.4 Recognition Problems

In this section we show that for a given graph—similar to treewidth—it is NP-
hard to decide whether one of the three complexity parameters is bounded by
a constant. All results are obtained by a reduction from the NP-hardness of
minimum clique partition [58].

Lemma 7.4.1. Given a constant k and a graph G, it is NP-hard to decide
whether G is k-perfectly groupable.

Proof. Given a graph G as an instance of the minimum clique partition prob-
lem, we replace G = (V,E) by G′ = (V ∪ {v+}, E ∪ {{v+, v} | v ∈ V }) for a
new vertex v+ 6∈ V . If G′ is k-perfectly groupable, the neighbors of v+ can be
partitioned into at most k cliques. This means that G has a clique partition of
size k. If G has a clique partition of size k, the neighbors of v+ in G′ can be
partitioned into at most k cliques. The same is true for each other vertex v of
G′ if we cover the neighbors of v by the k cliques covering G and add v+ to one
of these cliques. Hence, G is k-perfectly groupable.

Lemma 7.4.2. Given a constant k and a graph G, it is NP-hard to decide
whether G is k-simplicial.

Proof. Given a graph G as an instance of the minimum clique partition prob-
lem, we construct a graph G′ on which we want to find a k-simplicial elimination
order. G′ is obtained from G by adding k+ 1 new vertices to G and connecting
each new vertex to each vertex of G. If G has a clique partition of size k, con-
struct an ordering of the vertices of G′ beginning with the k + 1 new vertices.
All successors are vertices in G and hence can be covered by at most k cliques.
Therefore G′ is k-simplicial. In the reverse direction a k-simplicial elimination
order v1, . . . , vn cannot start with a vertex of G since such a vertex is adjacent
to all new vertices. Thus, the successors of v1 contain all vertices of G and G
has a clique partition of size k.

Lemma 7.4.3. Given a constant k and a graph G, it is NP-hard to decide
whether G is k-perfectly orientable.

Proof. Given an n-vertex graph G = (V,E) as an instance of the minimum
clique partition problem, we add a set V ′ of nk+1 new vertices to G and connect
each new vertex to each vertex in V . Let G′ be the graph obtained. For showing

179

that G having a clique partition of size at most k implies G′ being k-perfectly
orientable, assign all incident edges of a vertex v′ ∈ V ′ to v′ and edges e ∈ E
to an arbitrary endpoint of e. Then a vertex v together with the endpoints of
edges assigned to v ∈ V ∪ V ′ induce k cliques, i.e., G′ is k-perfectly orientable.

Conversely, let us assume that G′ is k-perfectly orientable and let a : E →
V ∪V ′ be a suitable assignment of the edges to their endpoints. For each vertex
v ∈ V at most k of the nk + 1 new edges incident to v can be assigned by a to
v since there are no edges between two vertices of V ′. Thus, there is at least
one v′ ∈ V ′ with all its edges assigned to itself. Thus, G must have a clique
partition of size at most k.

7.5 Algorithms on Intersection Graphs

We present in the following polynomial time approximation algorithms for sev-
eral NP-hard problems on graph classes with one of the three complexity param-
eters bounded by a constant. We always implicitly assume that we are given
an explicit representation of a graph as a k-perfectly groupable, k-simplicial,
or k-perfectly orientable graph G. By that we mean that we are given, for
each vertex v, a partition of its neighbors, of its successors, and of the ver-
tices connected to v by edges assigned to v, respectively, into k sets S1, . . . , Sk
such that G[Si ∪ {v}] is a clique for all i ∈ {1, . . . , k}. In addition, we are
given a k-simplicial elimination order in the case of a k-simplicial graph and,
for each vertex of G, the edges assigned to it in the case of a k-perfectly ori-
entable graph. These representations are sufficient even for intersection graphs.
We do not need the explicit representations as intersection graphs described
in Section 7.1. However, we can use a representation as intersection graph to
construct the new representations above in polynomial time.

Lemma 7.5.1. Minimum (independent) dominating set can be k-approximated
on k-perfectly groupable graphs in polynomial time.

Proof. As a k-approximative solution on a k-perfectly groupable graph G
we output a maximal—not necessarily maximum—independent set S of G. To
prove correctness, let us consider a minimum (independent) dominating set Sopt

of G. For all v ∈ S \ Sopt, there must be a neighbor of v in Sopt \ S. However,
each such neighbor cannot cover more than k vertices of S, since G is k-perfectly
groupable. Consequently, S is an independent dominating set of size at most
k|Sopt|.

Lemma 7.5.2. Maximum weighted independent set, maximum weighted clique,
and minimum clique partition are k-approximable on k-simplicial and thus also
on k-perfectly groupable graphs in polynomial time.

Proof (maximum weighted independent set). The original proof [1] as
well as the proof below use the local ratio technique, but both proofs describe
this technique in different ways. On a k-simplicial graph G = (V,E) with
weight function w : V → R we obtain a k-approximative solution as follows:
First remove all vertices with non-positive weights since they can be excluded
from a solution. If the remaining graph G′ is the empty graph, return the empty
set. Otherwise, choose the vertex v that among the remaining vertices appears
first in the k-simplicial elimination order of G. Decrease the weight of v and

180

its neighbors by the weight w(v) of v. Compute an independent set I for the
graph G′ with the new weight function w′ recursively. If a neighbor of v is in
I, return I, and otherwise return I ∪ {v}. In both cases, if we reincrease the
weights of v and its neighbors, the weight of our solution increases by at least
w(v). Note that the weight of any other independent set can increase by at most
k · w(v) since all neighbors of v in G′ are successors of v in G and thus they
can be partitioned into ≤ k cliques. Consequently, the difference between the
weights of optimal solutions for G with weight function w and for G′ with weight
function w′ is bounded by k ·w(v). Since this is true for all recursive steps, the
solution obtained has approximation ratio k. The algorithm terminates since
each recursion sets the weight of at least one vertex to 0. Concerning the running
time note that a representation of G′ as a k-simplicial graph can be computed
in polynomial time from such a representation of G.

Proof (maximum weighted clique). If we are given a k-simplicial graph,
for each vertex v, choose a clique Cv of maximal weight among the ≤ k cliques
induced by v and the successors of v. Return the clique with maximal weight
among the cliques in {Cv | v ∈ V }. This solution has approximation ratio k
since a maximum weighted clique Copt must also contain a vertex v with Copt

consisting only of v and a subset of its successors.

Proof (minimum clique partition). Given a graph G and additionally a
k-simplicial elimination order v1, . . . , vn for G, we first compute the graph G′

obtained by removing v1 and its neighbors from G. We then solve the problem
recursively on G′. Let S′ be the collection of vertex sets obtained as a solution
for G′. Note that the graph induced by the removed vertices can be partitioned
into a set Z of at most k cliques. We output S = S′∪Z as a solution for G. Note
that v1 is not incident to any vertex of G′. This guarantees that the difference
between the size of a clique partition for G and for G′ is at least 1. Therefore,
we obtain a clique partition that uses at most k times as many cliques as an
optimal clique partition for G.

For the proof of the next lemma, we need another definition.

Definition 7.5.3 (linear program, integer linear program, relaxation). A
linear program (P) specifies a linear objective function in n ∈ N variables
x1, . . . , xn and m ∈ N linear constraints of the form a1x1 + . . . + anxn ⊲⊳ b
with a1, . . . , an, b ∈ R and ⊲⊳ either ≤,= or ≥. A solution of the linear
program is a tuple (x1, . . . , xn) ∈ R

n that satisfies all the constraints and the
goal is to find a solution that maximizes or minimizes the objective function.

An integer linear program is a linear program where the solutions are
restricted to (x1, . . . , xn) ∈ Z

n and a relaxation of an integer linear program
removes this restriction.

Note that the relaxation (P ′) of an integer linear program (P) has all so-
lutions of (P). Thus, the optimal solution of (P ′) is at least as good as the
optimal solution of (P).

Lemma 7.5.4. On k-perfectly orientable n-vertex graphs, there are polynomial-
time algorithms with approximation ratio

181

1. 2k for maximum weighted independent set, minimum vertex coloring and
maximum weighted clique.

2. O(k log2 |V |) for minimum clique partition.

For the following proofs let G = (V,E) be a k-perfectly orientable n-vertex
graph, and for each u ∈ V , let Vu,1, . . . , Vu,k be k pairwise disjoint vertex sets
such that their union is the set of the neighbors of u assigned to u and such
that Cu,i = G[Vu,i ∪ {u}] is a clique for all 1 ≤ i ≤ k. Moreover, define
C = {Cu,i | u ∈ V, 1 ≤ i ≤ k}.

Proof (maximum weighted independent set). The proof is based on the
ideas in [10]. W.l.o.g. G has no vertex with weight ≤ 0. Otherwise remove such
vertices and their adjacent edges; if no vertex remains, return the empty set as
solution.

Let us define V = {1, . . . , n} and w(i) (1 ≤ i ≤ n) to be the weight of
vertex i. Let w be the vector (w(1), . . . , w(n)) and x = (x1, . . . , xn)T be an
optimal solution of the following integer linear program (P). Then one can easily
observe that S = {i |xi = 1} is an optimal solution for the maximum weighted
independent set problem on G.

(P) : max wx

s.t.
∑

v∈V ′ xv ≤ 1 ∀(V ′, E′) ∈ C
xv ∈ {0, 1} ∀v ∈ V

We next consider the relaxation (P ′) of (P) obtained by replacing xv ∈ {0, 1}
by 0 ≤ xv ≤ 1 for all v ∈ V . Let x be an optimal solution of (P ′) and, for
each vertex v ∈ V , define N [v] to be the set consisting of v and its neighbors.
We next show that there is a vertex v ∈ V with

∑

u∈N [v] xu ≤ 2k. Recall that

a({v, w}) = v means that {v, w} is assigned to v. By the first constraint of (P ′)
we have

∀v ∈ V : k xv +
∑

{v,u}∈E,

a({v,u})=v

xu ≤ k,

nk ≥
∑

v∈V

∑

{v,u}∈E,

a({v,u})=v

xu =
∑

v∈V

∑

{v,u}∈E,

a({v,u})=u

xu, and therefore

∃v :
∑

{v,u}∈E,

a({v,u})=u

xu ≤ k,

which by the first inequality implies

∃v :
∑

u∈N [v]

xu ≤ 2k.

A 2k-approximative solution for the MWIS on G is computed as follows. Find
a solution x for the linear program (P ′). This can be done in time polynomial
in |V | and |E| as shown in [86]. Afterwards it is easy to find a vertex ṽ with
∑

u∈N [ṽ] xu ≤ 2k. Then, decrease the weight of ṽ and its neighbors by w(ṽ)

and find recursively an independent set S′ of approximation ratio 2k for G with
the decreased weight function, which we denote in the following by w′. More

182

precisely, we search for such a solution on the graph obtained from G after
removing the vertices of weight 0 or lower with respect to w′ since these vertices
cannot help to increase the size of a maximal independent set on G. Take as
a solution S = S′ ∪ {ṽ} if S′ ∩N [ṽ] = ∅, and S = S′ otherwise. For analyzing
the approximation ratio, let OPT and OPT ′ be optimal solutions of (P ′) with
respect to w and w′, respectively. Note that w(OPT) ≤ w′(OPT) + 2kw(ṽ) ≤
w′(OPT ′) + 2kw(ṽ). Since the replacement of w by w′ decreases the weight of
ṽ and its neighbors by w(ṽ), and since at least one of these vertices is contained
in S, we have w(S) ≥ w′(S)+w(ṽ) ≥ w′(S′)+w(ṽ). We therefore can conclude
that the vector x with xv = 1 for all v ∈ S and xv = 0 for all v ∈ V \ S is a
2k-approximative solution of (P ′) and hence also for (P). Each weight reduction
step lowers the weight for at least one vertex from a positive value to 0 after
which the vertex is removed as described above. We thus can conclude that
the algorithm terminates after at most n recursive calls, i.e., we have indeed a
polynomial running time.

Proof (minimum vertex coloring). Construct an order v1, . . . , vn of the
vertices of G such that, for each vertex vi (i ∈ {1, . . . , n}), at least half of the
edges in G[{vi, . . . , vn}] being adjacent to vi are assigned to vi. To see that
such a vertex exists, assume that after determining v1, . . . , vi−1 for some i ∈ N,
we direct each edge {u, v} in G from the vertex to which it is assigned to the
other endpoint. Then, in the subgraph G′ of G induced by the vertices not in
{v1, . . . , vi−1}, the number of incoming edges is the same than the number of
outgoing edges. Hence there must be a vertex with at least as many outgoing
than incoming edges. We then let vi be this vertex. We now want to color
the vertices vn, . . . , v1 in this order with numbers in {1, . . . , n}. We color each
vertex v ∈ V with the smallest number different from the colors of all already
colored neighbors of v. Concerning the approximation ratio, for each vertex
v, let us define Dv to be the largest set Vv,i among the partition Vv,1, . . . , Vv,k
of the neighbors of v into k cliques. Then, each vertex v of G obtains a color
smaller or equal 2k|Dv| + 1, whereas an optimal coloring must color v and its
neighbors with at least |Dv| + 1 colors. Thus, the coloring obtained is a 2k-
approximation.

Proof (maximum weighted clique). As a 2k-approximative solution, re-
turn the clique C ∈ C of maximal weight. Let us compare the weight of C with
the weight of a maximal clique COPT of G. The subgraph of G induced by the
vertices of COPT contains at least one vertex u for which the sum of the weights
of the neighbors not being endpoints of edges assigned to u does not exceed
the sum of the weights of the neighbors being endpoints of edges assigned to u.
Thus, there is one clique in {Cu,1, . . . , Cu,k} for which the sum of the weights
of its vertices is at least (

∑

v∈N [u]w(v))/2k. Hence there is indeed a clique in C
whose weight is at most a factor 2k smaller than the weight of COPT.

Proof (minimum clique partition). As part of the following computation,
we want to find a minimal number of cliques in C in polynomial time such that
the union of their vertex sets is V . Unfortunately, this is an instance of the NP-
hard set cover problem. However, using Johnson’s algorithm [52] we can find a
subset of the cliques in C that covers V and that is at most a factor O(log |V |)
larger than the minimal number of cliques in C. We return this subset as an
approximative solution. We achieve the approximation ratio O(k log2 |V |) since

183

there is a clique partition of V using only cliques in C that uses O(k log |V |) as
many cliques as a minimum clique partition COPT: Let COPT consist of q ≤ n
arbitrary cliques C1, . . . , Cq of G. Choose a vertex v of C1 such that in the
subgraph of G induced by the vertices of C1 at least half of the edges adjacent
to v are assigned to v. Remove the clique among Cv,1, . . . , Cv,k containing the
largest number of not already deleted vertices in C1. This decreases the number
of vertices of C1 by a factor of at least 1− 1

2k = 2k−1
2k . Repeat this step recursively

until, after O(log |V |/ log 2k
2k−1) = O(log |V |/ log(1 + 1

k)) = O(k log |V |) steps,
C1 contains no vertices any more. More precisely, when choosing a vertex v
for which at least half of the adjacent edges are assigned to v, only count the
edges not already being deleted. If we do the same for the remaining cliques,
we obtain a clique partition with O(q log |V |/ log 2k

2k−1) cliques part of C.

184

Index

A page number in italics refers to a definition. Other occurrences are possibly
missing. Morover, some definitions of important variable names are listed.

Symbols
A . see shortcut
↓ see down closure
|= . see model
⊕ see crest separator

Numbers
1-in-3 SAT see SAT
3-Satisfiability see SAT
3-coloring . 41
1912 . see soccer
1922 . see soccer
1930 . see soccer
1992 . see soccer
2000 . see soccer

A
(A,A∗)-replacing see function
(A∗, f)-essential see alley
(A∗, f)-forbidden see alley
A∗-idol . see alley
absolutely-minimal see coast

separator
add a set clockwise . . . see embedding
add an edge clockwise see embedding
add an edge into a face see

embedding
adjacent see vertex
African Cup of Nations . . . see soccer
agent pair see coloring
alley 45, 46, 81, 82, 84, 86–90, 92,

94–97, 104, 106
(A∗, f)-essential 87, 88, 89, 92
(A∗, f)-forbidden 86
A-alley 46
A∗-idol 86
A-suballey 46
crossing 46, 56, 59, 60, 66

cyclic alley 46, 94, 95, 96, 97, 99,
102–111

depth 46
endpoint 46
extended alley condition 86
good 86, 87, 89, 92
inner vedge 79, 86
inner vertex 46
length 46, 79, 94
maximum inner suballey 81
non-planar crossing 46, 79
planar crossing 46, 79
s-t-connecting 46
strong 81
Z-skipping 78

almost triangulated . . . see embedded
graph, embedded graph

Alon . 134
ancestor . 4

proper 4
Andrews . 132
appears clockwise around see

embedding
appears counter-clockwise around see

embedding
application . 5
approximation . . 2, 3, 24, 25, 42, 134,

172
approximation ratio 3, 25, 41,

133–135, 171, 173, 174, 183
approximative see embedding
arbitrary see geometric object
area see embedding
arity . see logic
array . . . 28, 36, 39, 44, 85, 87, 92, 152

B
backward vertex transformation . . 31,

100

185

bag see tree decomposition
Baker . 2, 113
balanced see separator
balanced version 26, 27, 33, 34
Bar-Yehuda 3, 133, 139
barrier . 175, 176

inner barrier 175
outer barrier 175, 176, 177

belongs to see graph
benign see coloring
biconnected see connectivity
biconnected component see

connectivity
Bienstock . 2, 113
big bag see disjoint path problem
binary . . . see tree, tree decomposition
block see connectivity
block-cutpoint tree 47, 48, 108

subtree component 125
supertree component 125

blockcut-point tree 111
Bodlaender 1, 24, 71, 114
Boolean formula see SAT
border see crest separator
border edge see crest separator
Borodin . 3
bottom-up see traversal
boundary see embedding,

(S, ϕ′)-component
boundary edge see embedding
boundary vertex see embedding
bounded variables see logic
branch decomposition 41, 42
branch width . 41

C
C-connected see coloring
c-cost adaption see coloring
c-decision node see coloring
C-inner see (S, ϕ′)-component
C-internal face see embedding
C-outer see (S, ϕ′)-component
c-restricted set . . see geometric object
canceled edge . 30
center see geometric object
characteristic . . . see coloring, disjoint

path problem
child . see tree
chord .11, 176

chordal graph 3, 11, 12, 13,
35–37, 40, 158, 159, 161, 166,
167, 169, 170, 173

chordless . 11
circular-arc graph see intersection

graph
clause . see SAT
clause gadget see disjoint path

problem
client . 131, 133
clique . 11, 12, 17, 19, 20, 35, 170, 174,

175, 178–184
maximal 37
maximal clique 11, 37

clique partition 170, 179–181, 184
clique tree 3, 11, 35, 37, 159, 167, 169,

170
shrinking step 38, 39
TDC 11, 37, 38
TDC’ 13, 38
weak clique tree 13, 40, 159, 162,

163
clockwise order around see

embedding
clustering in pattern recognition . . . 5
coast 98, 100, 101, 104
coast separator 98, 99–105, 107

absolutely-minimal 100, 101, 103–
105

inner graph 100
represent 99

collection . 4, 143
colored graph see graph, 134
coloring 2, 130, 132–134, 137, 142

agent pair 137, 138
benign 159, 160, 161, 163
C-connected 131
c-cost adaption 153, 154, 156
c-decision node 153, 154–156
characteristic 140, 141, 143, 145–

147, 149, 150
compatible 141, 145, 146–150,

154
consistent 145, 147, 149, 150, 153–

156
convex 130, 131, 132–138, 140,

142, 144, 145, 148, 151–153,
157

cost 131, 132, 135, 137, 138, 140,
142, 144, 150–153, 157

186

effective recoloring 139, 140, 141,
144

extended in the same way 140
extending 139, 143, 144, 153, 154
extra rule 155
forbidden color 140, 141, 143,

145–149, 151–153, 156
free vertex 136, 137
gadget 136, 137, 138
good characteristic 145, 146–150,

153–156
gray color 143–147, 149, 151
initial coloring 131, 133, 134, 136,

139, 143, 145, 151, 153, 156
legal recoloring 143, 144, 145, 148,

150–152
literal-clause pair 137, 138
LOW 145
macro set 143, 145–152, 154, 155
micro set 143, 144–147, 149, 151
negative vertex 136, 137
positive vertex 136, 137
real color 130, 131, 135, 139, 142–

147, 151, 156
recolor 131
recoloring 131, 132–138, 140, 142,

143, 145, 147–149, 151, 153–
157, 159–161, 163–166

represented by a characteristic140
restricted convex 137, 159, 163–

166
SEP 142
sep 139
uncolor 131
uncolored 130
weight reduction 157

combinatorial embedding see
embedding

compatible see coloring, disjoint path
problem

complexity classes 4
complexity parameter . 2, 3, 113, 139,

169, 170, 177, 179, 180
component node see connectivity
CONCACAF Gold Cup . . . see soccer
conform . 8, 9
conjunctive normal form see SAT
connect . see edge
connected see graph, vertex

connected component see
connectivity, 33, 129

connection face see embedding
connective see logic
connectivity . 47

biconnected 47, 49, 50, 122, 123
biconnected component 47, 108,

124, 125
biconnected components 125
block 47
component node 48
connected component 13, 26, 30,

33, 44, 45, 53, 58, 64, 70, 74,
77, 109, 111, 124, 139–141,
146, 149, 157

cutpoint 47, 48, 111, 125
separation pair 47
triconnected 47, 49, 53, 54, 56,

58–60, 64, 66, 68, 72, 82, 94,
109, 116, 117

triconnected component 48, 49,
108–112, 122

triconnectivity 59
consistent see coloring
contain . see graph
contained in see graph
convex see coloring
convex hull . 176
cop . . see one-robber-ℓ-cops-game, 22
corresponds to . 66
cost . see coloring
count . 3
counter-clockwise order see

embedding
country . 5
Courcelle . 2, 130
cover see embedding
crest 47, 50–52, 56, 59,

60, 63–69, 71, 72, 82, 96, 98,
101–103, 105–107, 109

height 47
crest alley 55, 56, 63, 79–83, 92,

94–96, 104, 106
s1-s2-connecting 79

crest separator 51, 55, 56–71, 73,
74, 77–85, 87, 91–94, 96–98,
102–107, 109, 110

∈ 55
⊕ 55
border 55

187

border edge 55, 56, 58, 61–64, 66,
71

crossing-free 56, 57, 58, 61, 63, 64
enclose 60
essential border 55, 65, 71, 77–81,

83
extra edge 71, 72
go strongly between 56, 59, 60,

64–66
go weakly between 56, 60, 67, 69
height 55
induced by two alleys 55
largest 66
lowpoint 55, 56, 60, 61, 63, 65, 71,

77, 106
pseudo shortcut free 93, 94, 98,

102, 104, 106
size 55
top edge 57, 58–68, 70, 77, 78, 81,

82, 87, 91–93, 95, 96, 101–
106, 109

top vertex 55, 59, 60, 65, 66, 69,
71, 74

crossing . see alley
crossing-free see crest separator
cubic . see SAT
curve . 20

endpoint 20
point 20

cutpoint see connectivity
cycle . 4, 29, 43

directed 4
length 4
undirected 4

cycle component 49, 122
cyclic alley see alley

D
decision version 129, 130
decomposek,α 101
degree . see vertex
depth see tree, alley, path
depth-first search see DFS
descendant . 1, 4

proper 4
deterministic bottom-up tree automa-

ton see logic
DFS 28, 29, 30, 48, 103, 130, 142

depth-first search 27
DFS-forest 28

DFS-tree 28, 33, 48
discovery time 28, 48
finishing time 28, 48
start a DFS 28
tree edge 28

directed see graph, cycle
directed version see edge, graph
disconnected see graph, vertex
discovery time see DFS
disjoint path

edge-disjoint path 28–31
k-disjoint path 3
terminal 159, 160–162, 167, 168
vertex-disjoint path 28, 31, 32,

136, 137
disjoint path problem 3

big bag 162, 163
characteristic 159, 161
clause gadget 167
compatible 160, 161
full characteristic 159, 160, 161
gadget 167, 168
initial coloring 159, 161, 162
ℓ-VDPP 129, 158, 160–163, 166
ℓ-vertex-disjoint path problem

129, 130, 158, 166
reduced characteristic 159, 160,

161
small bag 162
square vertex 167, 168
suitable 160
triangular vertex 167, 168
valid 159, 160
variable gadget 167, 168
VDPP 129, 132, 159, 167, 168
vertex-disjoint path problem 129
(w1, w2)B̃-count 162

disk see geometric object
disk graph see intersection graph
distance see vertex, embedding
divide-and-conquer approach i, 13, 16
domain list see function
dominated on the left 59
dominated on the right 59
dominating set 3, 41, 171
down closure 51, 52–54, 57–60, 66, 82,

83
↓ 51
down edge 51, 58, 61, 62, 64, 66,

72

188

down path 57, 58, 59, 66, 84
down vertex 51, 54, 57, 62

down edge see down closure
down path see down closure
down vertex see down closure
down-connected 71
dual graph . 43, 58

crossing 43, 58
duplicate 72, 73, 74, 77

E
edge . 3, 19

connect 3
directed version 42
endpoint 3
head 3
horizontal 47
incident 4
tail 3
unseen 19
vertical 47
virtual edge 49, 62, 63, 72, 76, 77,

118–121, 123, 124
edge-constrained optimal see

embedding
edge-contraction see minor
edge-disjoint path . . see disjoint path
effective recoloring see coloring
elementary set theory 4
embed see embedding
embeddable see embedding
embedded graph43

almost triangulated 43, 53, 54
down-connected 50
triangulated 43

embedding 2, 23, 56, 169
add a set clockwise 117
add an edge clockwise 117
add an edge into a face 45, 46
appear around 43
appears clockwise around 43
appears counter-clockwise around

43
approximative 116, 122, 126
area 44
boundary 44
boundary edge 44, 53, 54, 56, 66
boundary edges 64
boundary vertex 44, 53, 54, 66
C-internal face 120

clockwise order around 43
combinatorial embedding 42, 43–

46, 55, 61, 71, 116, 123
connection face 46
counter-clockwise order 43
cover 44
distance 116
edge-constrained optimal 121,

122–125
embed 46
embeddable 117, 118, 121
face 20, 43
face-adjacent 46
face-connected 46
fence 43, 44, 56, 86, 87, 89–93
fence edge 44, 61–64, 79, 86, 90,

91
fence vedge 79, 81, 91
fence vertex 44, 61, 92
geometrical embedding 20
incident 20, 43, 44, 46
inherited embedding 45
inherited embedding of induced

graphs 118
inner face 43, 46, 50, 51, 53, 55,

56, 58, 61, 64, 76
inner graph 94, 118, 120
leave on a side 44
mapped 118
non-connection face 46
on different sides 44
on the boundary 20, 43
on the same side 44
optimal 116, 122
outer face 20, 43, 44–47, 50, 58–

60, 64, 70, 72
outerplanar 47, 70, 77, 78, 101,

113, 116
outside 117, 121
path on the boundary 43
planar 20, 23, 42, 43
rooted 43, 45, 55, 56, 71
splitting an edge into two edges 78
splitting vertex 78
strictly inner graph 94
subarea 44
vertex-constrained approximative

125, 126
vertex-constrained optimal 121,

122–126

189

enclose see crest separator
endpoint . . see edge, path, curve, alley
Eschenhof . i
essential border . . see crest separator
Euler’s formula 44
exponential growth 24
extended see (S, ϕ′)-component
extended alley condition see alley
extended component 61
extended peeling see peeling
extended peeling number . see peeling
extended row 114, 115
extending change see peeling
extra edge see crest separator
extra rule . 154

F
face see embedding, embedding
face-adjacent see embedding
face-connected see embedding
fat see geometric object
fat object see geometric object
fat-object graph see intersection

graph
fatness . 171
feasible solution see optimization

problem
Feige . 41
Feldman 3, 133, 139
fence see embedding, see

(S, ϕ′)-component
fence edge see embedding
fence vertex see embedding
findOrder .35, 36
finishing time see DFS
first-order logic see logic
fixed-parameter algorithm 2, 113, 139
fixed-parameter algorithms 158
forbidden color see coloring
forest . 4, 28, 137
Fortune . 158
free variable see logic
free vertex see coloring
full characteristic . . . see disjoint path

problem
function

(A,A∗)-replacing 90
domain list 86

fundamental cycle 75, 76, 77

G
gadget see coloring, disjoint path

problem
generalization . . . 3, 8, 16, 31, 45, 116,

127, 130, 145, 169, 173
geometric object

arbitrary 171
c-restricted set 171
center 175
disk 169, 171, 173
fat 171
fat object 171, 173
inball 175
iso-oriented 174, 177
outball 175
regular polygon 171, 173, 177
size 171
square 169, 175–177
t-fat-object 171, 173, 175
triangle 177
unit 171

geometrical embedding see
embedding

go strongly between see crest
separator

go weakly between see crest separator
gold medal . 5
good . . . see mountain structure, alley
good characteristic see coloring
good peninsula see peninsula
grandchild see tree
grandparent see tree
graph . 3

acyclic 158
belongs to 3
colored graph 130, 143
connected 4
contain 4
contained in 3
directed 3
directed version 42
disconnected 4
empty graph 3
induced 4
induced graph 49
multigraph 43
outerplanar 47, 58, 66, 71, 113,

114, 116
part of 3

190

planar 2, 20, 22, 23, 41–45, 49,
62, 65, 73, 113, 114, 116, 117,
122–126

size 3
triconnected 94, 99–101
undirected 3
union 5
weighted 4

gray color . 142
Y 142

grid . 20, 22, 114
(ℓ1 × ℓ2)-grid 20

Gu . 114
Gutwenger . 108

H
H-attached component see peninsula
h-high see pseudo shortcut
Hagerup . i
Hajiaghayi . 41
Hamiltonian circuit 41
head see edge, path
height see tree, rift, crest, crest

separator
helicopter see one-robber-ℓ-cops-game
Hopcroft . 158
horizontal see edge

I
inball see geometric object
incident see edge, embedding,

embedding
increasing change see peeling
independent dominating set 171
independent set 3, 5, 41, 129, 130, 139
individual variable see logic
induced . see graph
induced by two alleys see crest

separator
induced graph see graph
induced set of extra edges see peeling
information retrieval 5
inherited embedding . . see embedding
inherited embedding of induced graphs

see embedding
initial coloring . . see coloring, disjoint

path problem
inner barrier see barrier
inner face see embedding

inner graph see embedding, coast
separator

inner tree decomposition problem 108
ITD 108, 111

inner vedge see alley, alley
inner vertex see tree, alley
inside peeling number see peeling
instance . . . see optimization problem
integer linear program see linear

program
internal . see path
internally H-avoiding path see

peninsula
intersection graph . . 3, 169, 170–173,

175, 177
circular-arc graph 169, 171
disk graph 169, 171–174
fat-object graph 169, 171–173
polygon graph 169, 171
regular-polygon graph 169, 171–

173
square graph 169, 174, 175
t-fat-object graph 169, 172, 173
t-interval graph 169, 171–174
unit-disk graph 169, 171, 174
unit-square graph 169, 174
universe 171, 175, 177

intree . see tree
IS . see logic
iso-oriented see geometric object

J
j-inner graph . 108
JOINS . see logic

K
k-normal see tree decomposition
k-perfectly groupable . . 174, 175, 177,

179, 180
k-perfectly orientable 174, 175,

177–182
k-simplicial . . . 174, 175, 177, 179–181

successor 174, 178–181
k-simplicial elimination order . . . 174,

177, 179–181
k-tree . 18
k-tree . 16

partial 16, 18
Kammer . 3
Karp . 158

191

Knuth . 132, 158

L
L . see peeling
ℓ-clique . 11
ℓ-long see pseudo shortcut
ℓ-vertex-disjoint path problem see

disjoint path problem
label . see logic
labeled graph see logic
largest see crest separator
leaf . 4
leave on a side see embedding
Lee . 41
left see pseudo shortcut
left child . see tree
legal recoloring see coloring
length see path, cycle, alley
linear program 181

integer linear program 181
objective function 181
relaxation 181
solution 181

literal . see SAT
literal-clause pair see coloring
load . 76
local ratio technique 3, 157
logic . 4, 127–129

arity 128
bounded variables 127, 128
connective 127, 128
deterministic bottom-up tree au-

tomaton 129
first-order logic 127, 128, 129
formula 127, 128
free variable 127, 128
individual variable 128
IS 129, 130
JOINS 129
label 127, 128, 129
labeled graph 127
labeled tree 130
monadic second-order logic 128
model 128, 129, 130
monadic predicate 128
monadic second order 2
monadic second-order logic 41
MSOL 41, 128, 129, 130
PATHℓ 129
predicate 127, 128, 129

propositional 4
quantifier 127, 128
set for the label 127
set variable 128
SIZE≥ℓ 130
universe 127, 128

LOW see coloring
low-cost vertex 84
lowpoint see crest separator
Lynch . 132, 158

M
macro set see coloring
mapped see embedding
maximal clique see clique
maximum 3-coloring 2
maximum clique 170, 173, 174

MC 170, 172
maximum independent set . 2, 5, 114,

139
MIS 5, 7–10, 12, 172

maximum inner suballey see alley
maximum triangle matching 2
maximum weighted clique . . 170, 180,

182, 183
MWC 170, 172, 173

maximum weighted independent set . .
170, 180, 182

MWIS 170, 172, 173, 182
MBRP see minimum block recoloring

problem
MC see maximum clique
MCP . . see minimum clique partition
MCRP see minimum convex

recoloring problem
MDS . . . see minimum dominating set
micro set see coloring
MIDS see minimum independent

dominating set
minimization problems 132
minimum block recoloring problem . . .

132
MBRP 132, 134, 135, 151, 152

minimum clique partition . . 170, 173,
179, 180, 182–184

MCP 170, 172, 173
minimum convex recoloring problem .

131
MCRP 131–136, 139–141, 143,

148, 151, 153, 156, 157

192

minimum dominating set . 2, 171, 180
MDS 171–173

minimum edge dominating set 2
minimum independent dominating set

171, 180
MIDS 171–173

minimum maximal matching 2
minimum restricted convex recoloring

problem 131
MRRP 131–137, 151, 152, 156,

157
minimum set cover 134
minimum vertex coloring . . . 170, 171,

182, 183
MVC 171, 172

minimum vertex cover 2
minor 22, 23, 45, 70, 99, 101, 108, 109

edge-contraction 22, 23
minor-operation 22, 23

MIS . . see maximum independent set,
6, 130

monadic second-order logic . see logic
model . see logic
monadic predicate see logic
Monma . 2, 113
monotone see SAT
Moran . 131–133
Moshkovitz . 134
mountain . . . 47, 50, 54, 56, 57, 62, 65,

72, 74
mountain connection tree . 64, 65, 66,

68, 78, 98, 101, 102, 104, 110
mountain structure 56, 59, 60–62,

64–66, 68, 70, 77, 78, 81, 82,
93, 96, 98, 103, 109

good 65, 66, 68, 78, 89, 93, 96,
101, 104

MRRP see minimum restricted
convex recoloring problem

MS 57, 58–60, 64–66
MSOL . see logic
multicast communications 131
multigraph see graph
multiple-edge component 49, 122
Mutzel . 108
MVC . . see minimum vertex coloring
MWC . see maximum weighted clique
MWIS see maximum weighted

independent set

N
natural numbers . 4
negative vertex see coloring
neighbor see vertex
nice see tree decomposition
node see tree decomposition
non-connection face . . see embedding
non-planar crossing see alley
normal see k-normal
NP-complete . 1
NP-hard . . . 1–3, 41, 42, 130, 132, 133,

136, 172, 179, 180, 183
Nϕ . see peeling

O
objective function see linear program
Okamato . 3
on different sides see embedding
on the boundary see embedding
on the same side see embedding
one-robber-ℓ-cops-game . . 21, 22, 114

cop 21, 22, 114, 115
helicopter 22, 115
raw deal 21
robber 21, 22, 114, 115
tracking transmitter 21

optical wavelength division multiplex-
ing networks 131

optimal see embedding
optimization problem 24

feasible solution 24, 25
instance 24
value 24

order . see path
outball see geometric object
outer barrier see barrier
outer component see peninsula
outer face see embedding, embedding
outerplanar . . . see graph, embedding
outerplanarity index 2, 113, 114, 116,

118, 125, 126
weighted 116, 117

outside see embedding
outside peeling number . . . see peeling

P
packing into a tree 1, 7
parent . see tree
parent edge see SPQR tree
part of . see graph

193

partial . see k-tree
participant . 5
path .4

depth 46
endpoint 4
head 4
internal 4, 28, 31, 32, 136
length 4
order 4
tail 4
undirected 4
v1-vℓ-path 4

path on the boundary see embedding
PATHℓ . see logic
peeling . 47

extended peeling 117, 118–122,
124, 125

extended peeling number 117,
120, 121, 123–126

extended weight function 122
extending change 121
increased weight function 124, 125
increasing change 121
induced set of extra edges 121
inside peeling number 123
L 119
Nϕ 47
outside peeling number 123
peeling index 47, 123
peeling number 46, 47, 50–54, 56–

60, 62–66, 69, 70, 72–76, 80–
83, 91, 93–98, 102–105, 108–
111

peeling step 117, 119, 120, 123,
126

P 117
total peeling number 117, 121,

123
peeling index see peeling
peeling number see peeling
peninsula 48, 49, 117–119, 122

good peninsula 118, 121, 122
H-attached component 48, 118,

119, 121, 122
internally H-avoiding path 48
outer component 118, 119
RH 49

perfect elimination order . . 35, 36–38
successor 35, 36, 37

Perković . 158

Perl . 158
planar see embedding, graph
planar crossing see alley
point . see curve
pointer . 28, 36
polygon . 3
polygon graph see intersection graph
polynomially bounded growth . . . 173
positive see weight-function
positive vertex see coloring
predicate see logic
proper see ancestor, descendant
propositional see logic
pseudo A-shortcut see pseudo

shortcut
pseudo shortcut 80

h-high 93
ℓ-long 93
left 96
pseudo A-shortcut 80
right 96
s1-s2-connecting 80
Z-skipping 80

pseudo shortcut free see (S, ϕ′)-
component, crest separator

P . see peeling

Q
quantifier see logic

R
ranking . 7
raw deal . see one-robber-ℓ-cops-game
Rawith . 3
Rawitz . 133, 139
real color see coloring
recolor see coloring
recoloring see coloring
recursion . 16, 34
reduced characteristic see disjoint

path problem
reduced subtree module . . . see SPQR

tree
reduction 134, 136, 137, 166, 167, 179
Reed . 25, 158
regular polygon . see geometric object
regular-polygon graph see

intersection graph
relax over a face 84
relaxation see linear program

194

relaxing over a function f ′ from u 88
relaxing over a vertex 84
relaxing over the fence from u 88
represent see coast separator
representant 33, 57
representation 180
residual graph . 29
RH . see peninsula
ridge 54, 58–60, 63–66, 69
rift . 35, 36

height 35
vi-vj-rift 35

right see pseudo shortcut
right child see tree
robber . . see one-robber-ℓ-cops-game,

22
Robertson . 1, 158
Röhrig . 1, 24
root . see tree
rooted . . see tree, tree decomposition,

embedding
rooted SPQR tree see SPQR tree
router . 131–133
routing problem 131
running . 34
running time 2, 11, 12, 24, 25, 33,

34, 37, 39, 40, 58, 69, 77, 113,
114, 130, 141, 144, 149, 150,
152, 156–161, 166, 171, 183

S
(S, ϕ′)-area . 56
(S, ϕ′)-component . 56, 58, 60–64, 70,

77, 78, 102–107, 109
boundary 56
C-inner 56, 60, 63, 64, 91, 103,

104, 107
C-outer 56, 61, 63
extended 56, 60, 61, 62, 63, 70, 71,

77
fence 56
pseudo shortcut free 93, 98, 102,

106
virtual edge 61
virtual vertex 61

(S, ϕ′)-connected 55, 56
s-t-connecting see alley
s1-s2-connecting see crest alley,

shortcut, pseudo shortcut
Safra . 134

SAT
1-in-3 SAT 166
3-CNF 136
3-Satisfiability 136
3-SAT 136
Boolean formula 136, 166, 167
clause 136, 137, 166–168
conjunctive normal form 136, 166
cubic 167
literal 136, 137
monotone 167
variable 137, 167

scheduling . 5
SEP . see coloring
sep . see coloring
separation pair see connectivity
separator . . 1, 13, 16, 25–27, 31–33, 69

balanced 26, 27, 33, 34
disconnect 29–32, 34, 47, 52, 97,

111
size 13, 26
strongly disconnect 53, 69, 70, 99
unweighted 26, 32
weak 26, 32, 33
weakly disconnect 52, 97
weight condition 26, 27, 33
weighted 26, 32, 33, 34
X-separator 26, 27, 28, 32–34

sequentially k-independent graphs . . .
173

set cover . 134, 135
size 134, 135
universe 134

set for the label see logic
set variable see logic
Seymour 1, 41, 114, 158
Shiloach . 158
shortcut . 79

A 79
s1-s2-connecting 79
Z-skipping 79

shrinking step see clique tree
signal transmission 5
simple-exponential 9
simulation . 129
size see graph, tree decomposition, sep-

arator, separator, crest sep-
arator, set cover, geometric
object

SIZE≥ℓ . see logic

195

small bag . . see disjoint path problem
Snir . 131–133
soccer

1912 5, 14
1922 12
1930 11
1992 14
2000 17
African Cup of Nations 14
CONCACAF Gold Cup 17
soccer contest 5
soccer teams 5
South American Championship 12
World Cup 11

solution see linear program
South American Championship . . see

soccer
sparsification . 3
sparsification technique 159
split-component 49
splitting an edge into two edges . . see

embedding
splitting vertex see embedding
SPQR tree . 49, 50, 108, 110, 111, 122

parent edge 122
reduced subtree module 122, 123
rooted SPQR tree 122, 124
subtree module 122, 123

square see geometric object
square graph . . see intersection graph
square vertex see disjoint path

problem
starting position 21
stereo vision correspondence 5
strictly inner graph . . . see embedding
strong . see alley
strongly disconnect see separator
subarea see embedding
subgraph . 3, 19
subtree . see tree
subtree component see block-cutpoint

tree
subtree module see SPQR tree
successor . . see perfect elimination

order, see k-simplicial, k-
simplicial

suitable . . . see disjoint path problem
Summer Olympics 5
supergraph . 4

supertree component see
block-cutpoint tree

T
t-fat-object see geometric object
t-fat-object graph see intersection

graph
t-interval . 171, 175
t-interval graph see intersection graph
tail . see edge, path
Tamaki . 42, 114
Tarjan . 36
TD1 see tree decomposition, tree

decomposition
TD2 see tree decomposition, tree

decomposition
TDC see clique tree
TDC’ see clique tree
TDk . 26, 33, 34
telecommunication network 131
terminal see disjoint path
terminology . 3
Thales’ theorem 176
Thatcher . 129
Tholey . i, 2, 3
Thomas . 41, 114
tied see tree decomposition
top edge see crest separator
top vertex see crest separator
top-down see traversal
total peeling number see peeling
tournament . 5, 11

knockout tournament 5, 11, 14
representation 5, 11

tracking transmitter see
one-robber-ℓ-cops-game

transformation . 31
transition set . 159
transportation network 131
traversal . . 1, 4, 6–9, 15, 18, 24, 33, 38

bottom-up 1, 4, 5, 6–9, 24, 33, 67,
93, 139, 140, 143–145, 151–
154, 160

top-down 7, 9, 38, 93, 140, 144,
145, 151, 160, 161, 166

tree 1–3, 4, 5–7, 9, 13, 15,
16, 19, 38, 130–133, 137, 139,
142, 159, 169, 170, 175, 177

binary 4
child 4

196

depth 4
grandchild 125
grandparent 125
height 4
inner vertex 4
intree 103
left child 4
parent 4
right child 5
root 4
rooted 4
subtree 4

tree decomposition
1, 3, 7, 8, 13–21, 23–27, 34,
37, 41, 42, 45, 47, 69–71, 73,
75–78, 98, 108–114, 116, 130,
141, 142, 159, 179

bag 7, 9, 11, 13, 15, 16, 18–20, 25,
26, 37, 39, 69–71, 75, 77, 78,
108–111, 142, 153, 155, 156,
170, 179

binary 8
k-normal 14, 16–19, 21, 27, 179
nice 142
node 3, 8, 19
rooted 8, 15, 25
size 8, 40
TD1 7, 16, 18, 22, 25, 78
TD2 7, 16, 18, 22, 25, 26, 37, 38,

77, 78
tied 25
width 8, 18, 23, 26, 41, 42, 70, 74–

78
X-tied 25

tree-like . 16
TreeCompk,α 108, 110–112
TreeCompk,α . 108
treewidth 1, 2, 8, 9, 13, 14,

16, 18–25, 27, 33, 34, 37, 40–
42, 69, 70, 101–103, 107–109,
111–114, 116, 139, 141, 158,
159, 161, 163, 169–171, 177,
179

bounded treewidth 2, 3, 8, 130,
133, 134, 139, 143, 144, 152,
156, 157

logarithmically bounded 9
triangle matching 41
triangular vertex . . . see disjoint path

problem

triangulated see embedded graph
triconnected see connectivity
triconnected component see

connectivity
Tw . 4

U
Uehara . 3
uncolor see coloring
uncolored see coloring
undirected see graph, cycle, path
union . see graph
unit see geometric object
unit-disk graph see intersection graph
unit-square graph see intersection

graph
universe see logic, set cover,

intersection graph
Uno . 3
unseen see vertex, edge, vertex
unweighted see separator
up-connected . 71

V
valid see disjoint path problem
value see optimization problem
variable . see SAT
variable gadget see disjoint path

problem
VDPP see disjoint path problem
vedge . 78
vertex . 3

adjacent 3
connected 4
degree 3
disconnected 4
distance 4
neighbor 3
unseen 19, 28

vertex-constrained approximative see
embedding

vertex-constrained optimal see
embedding

vertex-disjoint path see disjoint path,
159–161

vertex-disjoint path problem see
disjoint path problem, 159

vertex-disjoint-to-edge-disjoint version
31, 100

vertical . see edge

197

virtual edge see edge,
(S, ϕ′)-component, edge

virtual vertex . see (S, ϕ′)-component
Voepel . 3

W
(w1, w2)B̃-count see disjoint path

problem
Wagner’s theorem 20
weak see separator
weak clique tree see clique tree
weakly disconnect see separator
weight . 161
weight condition see separator
weight-function . 4

positive 4
weighted see graph, separator,

outerplanarity index
width see tree decomposition
winner . 5
winning strategy 21, 22, 115
Woeginger . 158
Wright . 129
Wyllie . 158

X
X-separator see separator, 33, 34
X-tied see tree decomposition

Y
Y . see gray color
Yannakakis . 36
Ye . 3

Z
Z-skipping see alley, shortcut, pseudo

shortcut
Zhang . 132

198

Bibliography

[1] K. Akcoglu, J. Aspnes, B. DasGupta, and M.-Y. Kao. Opportunity cost
algorithms for combinatorial auctions. CoRR, cs.CE/0010031, 2000.

[2] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for
k-restrictions. ACM Transactions on Algorithms, pp. 153–177, 2006.

[3] M. Andrews and L. Zhang. Hardness of the undirected edge-disjoint paths
problem. Proc. 37th Annual ACM Symposium on Theory of Computing
(STOC 2005, pp. 276–283, 2005.

[4] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Alg. Disc. Math., 8: pp. 277–284, 1987.

[5] S. Arnborg and J. Lagergren. Finding minimal mionrs using a finite congru-
ence. Proc. of the 18th International Colloquium on Automata, Languages
and Programming (ICALP 91), pp. 544–555, 1991.

[6] G. Augustson and J. Minker. An analysis of some graph-theoretical clus-
tering techniques. J. ACM 17, 4: pp. 571–588, 1970.

[7] B. S. Baker. Approximation algorithms for NP-complete problems on pla-
nar graphs. Journal of the ACM, 41: pp. 153–180, 1994.

[8] E. Balas and C. S. Yu. Finding a maximum clique in an arbitrary graph.
SIAM J. Comput. 15, 4: pp. 1054–1068, 1986.

[9] R. Bar-Yehuda, I. Feldman, and D. Rawitz. Improved approximation al-
gorithm for convex recoloring of trees. Third International Workshop on
Approximation and Online Algorithms, (WAOA ’05), LNCS 3879, pp. 55–
68, 2006.

[10] R. Bar-Yehuda, M. M. Halldórsson, J. Naor, H. Shachnai, and I. Shapira.
Scheduling split intervals. SIAM J. Comput., 36: pp. 1–15, 2006.

[11] G. D. Battista and R. Tamassia. Incremental planarity testing. Proc. 30th
IEEE Symp. on Foundations of Computer Science, pp. 436–441, 1989.

[12] D. Bienstock and C. L. Monma. On the complexity of embedding planar
graphs to minimize certain distance measures. Algorithmica, 5: pp. 93–109,
1990.

[13] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernet.,
11(1–2): pp. 1–23, 1993.

199

[14] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM J. Comput., 25(6): pp. 1305–1317, 1996.

[15] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoret. Comput. Sci., 209(1–2): pp. 1–45, 1998.

[16] H. L. Bodlaender and T. Kloks. Better algorithms for path width and tree
width. Proc. of the 18th International Colloquium on Automata, Languages
and Programming (ICALP 91), pp. 538–543, 1991.

[17] P. Buneman. A characterisation of rigid circuit graphs. Discrete Math, 9:
pp. 205–212, 1974.

[18] S. Butenko. Maximum independent set and related problems, with appli-
cations. Dissertation, University of Florida, 2003.

[19] A. Butman, D. Hermelin, M. Lewenstein, and D. Rawitz. Optimization
problems in multiple-interval graphs. Proc. 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2007), pp. 268–277, 2007.

[20] M. R. Cerioli, L. Faria, T. O. Ferreira, and F. Protti. On minimum clique
partition and maximum independent set on unit disk graphs and penny
graphs: complexity and approximation. Electronic Notes in Discrete Math-
ematics, 18: pp. 73–79, 2004.

[21] T. M. Chan. Polynomial-time approximation schemes for packing and pierc-
ing fat objects. J. Algorithms, 46: pp. 178–189, 2003.

[22] X. Chen, X. Hu, and T. Shuai. Inapproximability and approximability of
maximal tree routing and coloring. J. Comb. Optim., 11: pp. 219–229,
2006.

[23] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for
embedding planar graphs using PQ-trees. J. Comput. System Sci., 30: pp.
54–76, 1985.

[24] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete
Math., 86: pp. 165–177, 1990.

[25] B. Courcelle. Graph rewriting: An algebraic and logic approach. Handbook
of Theoretical Computer Science, Vol. B: Formal Models and Semantics (J.
van Leeuwen, ed.), Elsevier, Amsterdam, pp. 194–242, 1990.

[26] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets
of finite graphs. Inform. and Comput., 85: pp. 12–75, 1990.

[27] R. O. Duda and P. E. Hart. Unsupervised learning and clustering. Sec-
tion 6:11 in: Pattern Classification and Scene Analysis, Wiley, New York,
Chapter 6., 1973.

[28] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation
schemes for geometric intersection graphs. Proc. 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 671–679, 2001.

200

[29] T. Erlebach and E. J. van Leeuwen. Domination in geometric intersection
graphs. Proc. of the 8th Latin American Symposium (LATIN 2008), LNCS
4957, pp. 747–758, 2008.

[30] U. Feige, M. Hajiaghayi, and J. R. Lee. Improved approximation algorithms
for minimum weight vertex separators. SIAM J. Comput., 38(2): pp. 629–
657, 2008.

[31] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomor-
phism problem. Theoret. Comput. Sci., 10: pp. 111–121, 1980.

[32] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and
covering in the plane are NP-complete. Inform. Process. Lett., 12: pp.
133–137, 1981.

[33] A. Frank. Some polynomial algorithms for certain graphs and hypergraphs.
Proc. 5th British Combinatorial Conference (Aberdeen 1975), Congr. Nu-
mer. XV, pp. 211–226, 1976.

[34] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. NC-approximation schemes for NP- and
PSPACE-hard problems for geometric graphs. J. Algorithms, 26: pp. 238–
274, 1998.

[35] T. Gallai. Elementare Relationen bezüglich der Glieder und trennenden
Punkte von Graphen. Magyar Tud. Akad. Mat. Kutato Int. Kozl., 9: pp.
235–236, 1964.

[36] M. R. Garey and D. S. Johnson. Computers and intractability, a guide to
the theory of NP-completeness. W. H. Freeman and Co., San Francisco,
Calif., 1979.

[37] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoret. Comput. Sci., 1: pp. 237–267, 1976.

[38] D. R. Gaur and R. Krishnamurti. Scheduling intervals using independent
sets in claw-free graphs, computational science and its applications. Proc.
Computational Science and Its Applications (ICCSA 2003), LNCS 2667,
pp. 254–266, 2003.

[39] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum
covering by cliques, and maximum independent set of a chordal graph.
SIAM J. Comput., 1: pp. 180–187, 1972.

[40] F. Gavril. The intersection graphs of subtrees in trees are exactly the
chordal graphs. Journal of Combinatorial Theory, Series B, 16: pp. 47–56,
1974.

[41] A. Gräf. Coloring and recognizing special graph classes. Technical Report
Musikinformatik und Medientechnik Bericht 20/95, Johannes Gutenberg-
Universität Mainz, 1995.

[42] J. R. Griggs and D. B. West. Extremal values of the interval number of a
graph. SIAM Journal on algebraic and discrete methods, 1: pp. 1–7, 1980.

201

[43] Q. P. Gu and H. Tamaki. Optimal branch-decomposition of planar graphs
in O(n3) time. Proc. of the 32nd International Colloquium on Automata,
Languages and Programming (ICALP 05), LNCS 3580, pp. 373–384, 2005.

[44] Q. P. Gu and H. Tamaki. Optimal branch-decomposition of planar graphs
in O(n3) time. ACM Trans. Algor., 4(3): pp. 1–13, 2008.

[45] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees.
Graph Drawing (GD 2000), LNCS 1984, pp. 77–90, 2001.

[46] T. Hagerup. A very practical algorithm for the two-paths problem in 3-
connected planar graphs. Proc. 33rd International Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2007), LNCS Vol. 4769,
Springer, Berlin, 2007, 4769: pp. 145–150, 2007.

[47] F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publicationes
Mathematicae Debrecen, 13: pp. 103–107, 1966.

[48] R. Horaud and T. Skordas. Stereo correspondence through feature grouping
and maximal cliques. IEEE Trans. Pattern Anal. Mach. Intell. 11 (11), pp.
1168–1180, 1989.

[49] J. L. Hurink and T. Nieberg. Approximating minimum independent domi-
nating sets in wireless networks. Inform. Process. Lett., 109: pp. 155–160,
2008.

[50] H. Imai and T. Asano. Finding the connected components and a maximum
clique of an intersection graph of rectangles in the plane. J. Algorithms, 4:
pp. 310–323, 1983.

[51] R. E. Jamison and H. M. Mulder. Tolerance intersection graphs on binary
trees with constant tolerance 3. Discrete Math., 215: pp. 115–131, 2000.

[52] D. S. Johnson. Approximation algorithms for combinatorial problems. J.
Comput. System Sci., 9: pp. 256–278, 1974.

[53] F. Kammer. Determining the smallest k such that G is k-outerplanar. 15th
Annual European Symposium on Algorithms (ESA 07), LNCS 4698, pp.
359–370, 2007.

[54] F. Kammer and T. Tholey. The complexity of minimum convex coloring.
19th Annual International Symposium on Algorithms and Computation
(ISAAC 08), LNCS 5369, pp. 16–27, 2008.

[55] F. Kammer and T. Tholey. The k-disjoint paths problem on chordal graphs.
In Proc. 35 International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG 2009), LNCS 5911, pp. 190–201, 2009.

[56] F. Kammer and T. Tholey. Approximate tree decompositions of planar
graphs in linear time. Proc. 23th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2012), to appear, 2012.

[57] F. Kammer, T. Tholey, and H. Voepel. Approximation algorithms for inter-
section graphs. Tech. Report 2009–6, Institut für Informatik, Universität
Augsburg, 2009.

202

[58] R. M. Karp. Reducibility among combinatorial problems, in complexity of
computer computations. R. E. Miller and J. W. Thatcher, eds., Plenum
Press, New York, pp. 85–103, 1972.

[59] R. M. Karp. On the computational complexity of combinatorial problems.
Networks, 5: pp. 45–68, 1975.

[60] S. Khuller, S. G. Mitchell, and V. V. Vazirani. Processor efficient parallel
algorithms for the two disjoint paths problem and for finding a kuratowski
homeomorph. SIAM J. Comput., 21: pp. 486–506, 1992.

[61] T. Kloks. Treewidth: Computations and approximations. Lecture Notes in
Computer Science, 842: pp. 338–350, 1994.

[62] S. V. Krishnan, C. P. Rangan, and S. Seshadri. A new linear algorithm
for the two path problem on chordal graphs. Proc. 8th Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 1988), LNCS Vol. 338, Springer, Berlin, 1988, 338: pp. 49–66,
1998.

[63] J. F. Lynch. The equivalence of theorem proving and the interconnection
problem. (ACM) SIGDA Newsletter, 5: pp. 31–36, 1975.

[64] E. Malesińska. Graph-theoretical models for frequency assignment prob-
lems. Ph.D. Thesis, University of Berlin, 1997.

[65] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz.
Simple heuristics for unit disk graphs. Networks, 25: pp. 59–68, 1995.

[66] K. Mehlhorn and P. Mutzel. On the embedding phase of the hopcroft and
tarjan planarity testing algorithm. Algorithmica, 16: pp. 233–242, 1996.

[67] C. Moore and J. M. Robson. Hard tiling problems with simple tiles. Discrete
and Comput. Geom., 26: pp. 573–590, 2001.

[68] S. Moran and S. Snir. Convex recolorings of strings and trees: defini-
tions, hardness results and algorithms. Workshop on Algorithms and Data
Structures (WADS ’05), LNCS, Vol. 3608, Springer, Berlin, 2005, 3608:
pp. 218–232, 2005.

[69] S. Moran and S. Snir. Efficient approximation of convex recoloring. J.
Comput. System Sci., 73: pp. 1078–1089, 2007.

[70] T. Nieberg, J. Hurink, and W. Kern. Approximation schemes for wireless
networks. ACM Transactions on Algorithms, 4: p. Article No. 49, 2008.

[71] T. Ohtsuki. The two disjoint path problem and wire routing design. Proc.
Symposium on Graph Theory and Algorithms, LNCS, Vol. 108, Springer,
Berlin, 1981, 108: pp. 207–216, 1981.

[72] Y. Okamoto, T. Uno, and R. Uehara. Linear-time counting algorithms for
independent sets in chordal graphs. Proc. 31st International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2005), LNCS Vol.
3787, Springer, Berlin, pp. 433–444, 2005.

203

[73] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation,
and complexity classes. J. Comput. System Sci., 43: pp. 425–440, 1991.

[74] L. Perković and B. Reed. An improved algorithm for finding tree decompo-
sitions of small width. International Journal of Foundations of Computer
Science (IJFCS), 11: pp. 365–372, 2000.

[75] Y. Perl and Y. Shiloach. Finding two disjoint paths between two pairs of
vertices in a graph. J. ACM, 25: pp. 1–9, 1978.

[76] B. Reed. Finding approximate separators and computing tree-width
quickly. Proc. 24th Annual ACM Symposium on Theory of Computing
(STOC 1992), pp. 221–228, 1992.

[77] N. Robertson and P. D. Seymour. Graph minors III. planar tree-width. J.
Combin. Theory Ser. B, 36(1): pp. 49–64, 1984.

[78] N. Robertson and P. D. Seymour. Graph minors X. obstructions to tree-
decomposition. J. Combin. Theory Ser. B, 52(2): pp. 153–190, 1991.

[79] N. Robertson and P. D. Seymour. Graph minors. XIII. the disjoint paths
problem. J. Combin. Theory Ser. B, 63: pp. 65–110, 1995.

[80] H. Röhrig. Tree decomposition: A feasibility study. Master’s Thesis, Max-
Planck-Institut für Informatik in Saarbrücken, 1998.

[81] P. D. Seymour. Disjoint paths in graphs. Discrete Math., 29: pp. 293–309,
1980.

[82] P. D. Seymour and R. Thomas. Graph searching and a min-max theorem
for tree-width. J. Comb. Theory, Ser. B, 58: pp. 22–23, 1993.

[83] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combi-
natorica, 14(2): pp. 217–241, 1994.

[84] Y. Shiloach. A polynomial solution to the undirected two paths problem.
J. ACM, 27: pp. 445–456, 1980.

[85] S. Snir. Computational issues in phylogenetic reconstruction: Analytic
maximum likelihood solutions, and convex recoloring. Ph.D. Thesis, De-
partment of Computer Science, Technion, Haifa, Israel, 2004.

[86] E. Tardos. A strongly polynomial algorithm to solve combinatorial linear
programs. Operations Research, 34: pp. 250–256, 1986.

[87] R. E. Tarjan. Depth-first search and linear algorithms. SIAM J. Comp.,
1: pp. 146–160, 1972.

[88] J. Thatcher and J.B.Wright. Generalised finite automata theory with ap-
plications to decision problems of second-order logic. Mathematical Systems
Theory, pp. 57–81, 1985.

[89] T. Tholey. Improved algorithms for the 2-vertex disjoint paths problem.
Proc. 35th Conference on Current Trends in Theory and Practice of Com-
puter Science (SOFSEM 2009), LNCS Vol. 5404, Springer, Berlin, 2009,
5404: pp. 546–557, 2009.

204

[90] C. Thomassen. 2-linked graphs. European J. Combin., 1: pp. 371–378,
1980.

[91] R. E. T. und M. Yannakakis. Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM J. Comput., 13: pp. 566–579, 1984.

[92] J. R. Walter. Representations of rigid cycle graphs. Ph.D. Thesis, Wayne
State University, 1972.

[93] H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc.,
34: pp. 339–362, 1932.

[94] G. Woeginger. A simple solution to the two paths problem in planar graphs.
Inform. Process. Lett., 36: pp. 191–192, 1990.

[95] Y. Ye and A. Borodin. Elimination graphs. In Proc. of the 36th Inter-
national Colloquium on Automata, Languages and Programming (ICALP
05), LNCS 5555, pp. 774–785, 2009.

205

Curriculum Vitae

Frank Kammer

Personal Data

Day of birth 10.05.1977

Place of birth Friedberg (Hessen)

Nationality German

Family status Married

Education

1987 – 1996 Secondary schooling, Weidiggymnasium, Butzbach.

1997 – 2002 Studies, J. W. Goethe-Universität, Frankfurt.
1999: ‘Vordiplom’ in Mathematics
1999: ‘Vordiplom’ in Computer Science
2002: ‘Diplom’ (master’s degree) in Computer Science

2003 – 2010 Ph.D. Research, Universität Augsburg, Augsburg,
Faculty of Applied Computer Science.
Supervisor: Prof. Dr. Torben Hagerup

206

	Titlepage
	Acknowledgements
	Contents
	Introduction
	Abstract
	Algorithms on Trees and Extensions
	Trees versus Tree Decompositions
	Large treewidth

	Tree Decompositions
	An O(n log n)-Time Algorithm
	Finding an X-separator
	Clique Trees

	Tree Decompositions on Planar Graphs
	Introduction
	Peelings, Mountains, and Connectivity
	Decomposition into mountains
	Separators in Planar Graphs
	Special Tree Decomposition for Mountains
	Shortcuts
	A Linear-Time Algorithm

	Outerplanarity Index
	Another Complexity Parameter
	Treewidth of l-Outerplanar Graphs
	Ideas of the Algorithm
	Extended Peelings
	Biconnected Graphs
	General Graphs

	Generalization of Trees
	A Sketch of Monadic Second-Order Logic
	Three Convex Coloring Variants
	Hardness Results for Convex Coloring
	MCRP on Trees
	MCRP on Graphs of Bounded Treewidth
	MBRP and MRRP
	Approximation of MCRP and MRRP

	VDPP on Chordal Graphs
	The l-Vertex-Disjoint Paths Problem
	A Simple Approach for the l-VDPP
	Shortest l-Vertex-Disjoint Paths
	A Speedup for the l-VDPP
	Hardness of the VDPP

	Generalization of Chordal Graphs
	Motivation
	New Complexity Parameters
	The 3 Complexity Parameters in Relation
	Recognition Problems
	Algorithms on Intersection Graphs

	Index
	Symbols
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Bibliography
	Curriculum Vitae

