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Preface

A stochastic partial differential equation (SPDE) is a partial differential equation
containing a random (noise) term. The study of SPDEs is an exciting topic which
brings together techniques from probability theory, functional analysis, and the
theory of partial differential equations.

Stochastic partial differential equations appear in several different applica-
tions:

• random evolution of systems with a spatial extension (random interface
growth, random evolution of surfaces, fluids subject to random forcing),

• stochastic models where the state variable is infinite dimensional (for exam-
ple, a curve or surface).

The solution to a stochastic partial differential equations may be viewed in
several manners. One can view a solution as a random field (set of random vari-
ables indexed by a multidimensional parameter). Alternatively, in the case where
the SPDE is an evolution equation, the infinite dimensional point of view consists
in viewing the solution at a given time as a random element in a function space and
thus view the SPDE as a stochastic evolution equation in an infinite dimensional
space. In the pathwise point of view one tries to give a meaning to the solution
for (almost) every realization of the noise and then view the solution as a random
variable on the set of (infinite dimensional) paths thus defined.

All equations considered are parabolic nonlinear SPDEs perturbed by additive
forcing. Near a change of stability, we can use the natural separation of time-
scales, in order to derive simpler equations for the evolution of the dominant pat-
tern. As these equations describe the amplitudes of dominant pattern, they are
referred to as amplitude equations.
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This work is based on one hand on Blömker, Hairer, and Pavliotis [9] and
Roberts [40] for the Burgers’ equation driven by degenerate noise ( i.e. noise
does not act directly on the dominant pattern). On the other hand it discusses
the observation of Axel Hutt and collaborators [23–25] for the Swift-Hohenberg
equation with degenerate noise. Where they established that constant noise in
space leads to a deterministic amplitude equation by using a formal argument
based on center manifold theory.

The aim of this thesis is to establish rigorously amplitude equations for quite
general classes of SPDEs with quadratic or cubic nonlinearities. In the exam-
ples we investigate whether additive degenerate noise leads to stabilization of the
solutions, or not.

The thesis consists of five chapters:
Chapter 1. This chapter is an introductory chapter. It contains some basic defi-
nitions, inequalities and some previously known results without proof for approx-
imation of SPDEs via amplitude equations. These will be used throughout the
next chapters and in the main results of approximation for the stochastic partial
differential equations via amplitude equations.
Chapter 2. In this chapter we rigorously derive stochastic amplitude equations
for SPDEs of the following type

du =
[
Au+ ε2Lu+B(u, u)

]
dt+ ε2dW,

where B is a bilinear map modelling a quadratic nonlinearity. We also show that
the solution u of the original SPDE is well approximated by the solution of the
amplitude equation of the type

da = [Lca− 2F(a)] dT + dW̃c,

where F(a) = Bc(a,A−1s Bs(a, a)). We give applications to the one-dimensional
Burgers’ equation

∂tu =
(
∂2x + 1

)
u+ ε2νu+ u∂xu+ ε2∂tW,

and a model from surface growth

∂th = −42h− µε4h−4|∇h|2 + ε2∂tW (t).

iv



Preface

Chapter 3. In this chapter we derive rigorously an amplitude equation for

du =
[
Au+ ε2Lu+ F(u)

]
dt+ εdW,

where W is a degenerate noise acting on finitely many Fourier modes only. We
also show that adding noise will stabilize the dynamics of the dominant modes.
We focus on equations with cubic nonlinearity and give applications to the Swift-
Hohenberg equation

∂tu = (∂2x + 1)2u+ νε2u− u3 + ε∂tW (t),

the Allen-Cahn equation

∂tu = (∂2x + 1)u+ νε2u− u3 + ε∂tW (t),

and a model from surface growth

∂tu = −42u− µε4u+∇
(
|∇u|2∇u|

)
+ ε∂tW (t).

Chapter 4. In this chapter we improve the result which we obtained in Chapter 3
in the case of one dimensional kernels ofA, by studying higher order corrections.
Moreover, we give applications to the Swift-Hohenberg equation and the Allen-
Cahn equation.
Chapter 5. The purpose of this chapter is to study the influence of large or un-
bounded domains, where there is a band of dominant pattern. This leads to a slow
modulation of the dominant pattern changing stability. We derive rigorously the
Ginzburg-Landau equation

∂TA = 4∂2XA+ (ν − 3σ2

2
)A− 3 |A|2A ,

as a modulation equation for the stochastic Swift-Hohenberg equation

∂tU = AU + ε2νU − U3 + εσ∂tβ(t).

Here
U(t, x) ' εA(ε2t, εx)eix + εĀ(ε2t, εx)e−ix.

We show that adding noise will stabilize the modulation equation, and thus the
dominant pattern.
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Chapter 1

Introduction

In this chapter we will collect relevant results and notations from probability the-
ory and functional analysis that we will need later. As most of the results are well
known. We either give a proof, if they are short or relevant, or give a reference
to the proof in order to keep the presentation short. This chapter is organized as
follows. In the next section, we define the fractional Sobolev spaces Hα and the
semigroup

{
etA
}
t≥0 generated by the operator A. Also, we state and prove some

property for the semigroup
{
etA
}
t≥0. In Section 1.2, we recall the definition of

stochastic process, Q-Wiener process, stochastic convolution, and martingale. We
also summarize some results about the representation of the Q-Wiener process.
In Section 1.3, we introduce the solution concept for certain types of stochas-
tic evolution problems and prove existence and uniqueness of their solutions. In
Section 1.4 we present some basic inequalities which we will use in our proofs.
Finally, in Section 1.5 we recall some previously known results without proof for
the approximation of SPDEs via amplitude equations.

1.1 Spaces and Semigroup

Throughout this thesis we will work in some Hilbert spaceH equipped with scalar
product 〈·, ·〉 and norm ‖·‖. In following definition let us define the fractional
Sobolev spacesHα.

1



Sec1.1 Space and Semigroup

Definition 1.1.1 For α ∈ R, we define the spaceHα as

Hα =

{
∞∑
k=1

γkek :
∞∑
k=1

γ2kk
2α <∞

}
with norm

∥∥∥∥∥
∞∑
k=1

γkek

∥∥∥∥∥
2

α

=
∞∑
k=1

γ2kk
2α,

where {ek}k∈N is an orthonormal basis ofH and {γk}k∈N are real numbers.

Definition 1.1.2 If we suppose thatA is a non-positive operator onH with eigen-
values 0 ≤ λ1 ≤ .... ≤ λk ≤ .... and for some m > 0 we assume λk ≥ Ckm

for all sufficiently large k. Suppose we have a complete orthonormal system of
eigenvectors {ek}∞k=1 such that Aek = −λkek. Then the operator A generates an
analytic semigroup

{
etA
}
t≥0 defined by

eAt

(
∞∑
k=1

γkek

)
=
∞∑
k=1

e−λktγkek ∀ t ≥ 0.

The semigroup
{
etA
}
t≥0 has the following property:

Lemma 1.1.3 For all t > 0 and β ≤ α, there are constants M > 0 and M̃ =

δ−
α−β
m M for any δ ∈ (0, 1) such that for all u ∈ Hβ∥∥etAu∥∥

α
≤Mt−

α−β
m ‖u‖β , (1.1)

and ∥∥etAu∥∥
α
≤ M̃t−

α−β
m e−ωt ‖u‖β , (1.2)

where ω = (1− δ)λ1.

Proof. Let u =
∑∞

k=1 ukek be an element in Hβ , then

∥∥eAtu∥∥2
α

=
∞∑
k=1

e−2tλkk2αu2k

=
∞∑
k=1

e−2tλkk2(α−β)k2βu2k

≤ sup
k∈N
{e−2tλkk2(α−β)} ‖u‖2β .

Thus, ∥∥eAtu∥∥
α
≤ sup

k∈N
{e−tλkk(α−β)} ‖u‖β , (1.3)

2



Ch.1 Introduction

with

sup
k∈N
{e−tλkkα−β} ≤ sup

k>0
{exp{−Ctkm}(kt

1
m )(α−β)t−

α−β
m }

= sup
z>0
{exp{−Czm}z(α−β)︸ ︷︷ ︸

:=M<∞

}t−
α−β
m ,

where z = t
1
mk. Thus, ∥∥eAtu∥∥

α
≤Mt−

α−β
m ‖u‖β .

Analogously, from (1.3), consider

sup
k>0
{e−tλkkα−β} = sup

k≥1
{e−tλk(1−δ)e−δtλkkα−β}

≤ sup
k≥1
{e−tλ1(1−δ)e−δtλkkα−β}

= e−tω sup
k≥1
{e−δtλkkα−β}

≤ Me−tω(δt)−
α−β
m .

Thus, ∥∥etAu∥∥
α
≤ M̃t−

α−β
m e−ωt ‖u‖β .

2

Definition 1.1.4 Let L(H) be the set of bounded linear operators fromH toH.

1. Q ∈ L(H) is called symmetric if

〈Qu, v〉 = 〈u,Qv〉 for all u, v ∈ H.

2. Q ∈ L(H) is called positive if 〈Qu, u〉 ≥ 0 for all u ∈ H.

3. Let Q ∈ L1(⊂ L(H)) and ek be an orthonormal basis of H for k ∈ N. The
trace of Q is defined as

trQ :=
∞∑
k=1

〈Qek, ek〉 ,

if the series is convergent.

Let us recall that the trace is independent of the choice of the basis. For more
results form the theory of operators in Hilbert spaces can be found in Chapter
1 [27].

3



1.2. Q-Wiener Process

1.2 Q-Wiener Process

In this section, we recall the definitions of stochastic process, Q-Wiener process,
stochastic convolution, and martingale. We also summarize some results about
the representation of the Q-Wiener process. We follow the presentation in [36]
and [37].

Definition 1.2.1 Let (Ω, z, P) be a probability space and T ⊂ R be an interval
(possibly infinite). A H-valued stochastic process {X(t)}t∈T is a set of H-valued
random variables X(t) on (Ω, z, P) where t ∈ T .

Definition 1.2.2 (Q-Wiener process) Let Q be a symmetric, nonnegative, linear
operator with trQ < ∞. A H-valued stochastic process W (t), t ≥ 0, is called
Q-Wiener process, if

1. W (0) = 0;

2. {W (t)}t≥0 has continuous paths almost surely. That is, the mapping t 7→
W (t, ω) is continuous for almost every ω ∈ Ω;

3. {W (t)}t≥0 has independent increments. That is, for any finite partition
0 = t0 ≤ t1 ≤ ..... ≤ tn < ∞ the random variables W (t1),W (t2) −
W (t1), ......,W (tn)−W (tn−1), are independent;

4. W (t)−W (s) is ℵ(0, (t− s)Q)-distributed for all t > s ≥ 0.

Lemma 1.2.3 If Q ∈ L(H) is nonnegative and symmetric, with finite trace, then
there exists an orthonormal basis ek, k ∈ N, ofH such that

Qek = α2
kek for αk ≥ 0, k ∈ N,

and 0 is the only accumulation point of the sequence {αk}k∈N.

Proof. See Theorem VI.21; Theorem VI.16 (Hilbert-Schmidt theorem) in [39]. 2

Remark 1.2.4 Let ek, k ∈ N, be an orthonormal basis of H consisting of eigen-
vectors of Q with corresponding eigenvalues αk, k ∈ N, then

trQ =
∞∑
k=1

α2
k.

4



Ch.1 Introduction

Proposition 1.2.5 (Representation of the Q-Wiener process) Let ek, k ∈ N, be
an orthonormal basis of H consisting of eigenvectors of Q with corresponding
eigenvalues αk, k ∈ N. Then a H-valued stochastic process W (t), t ∈ [0, T ], is
a Q-Wiener process if and only if

W (t) =
∞∑
k=1

αkβk(t)ek, t ∈ [0, T ] ,

where βk(t), k ∈ N, are independent real-valued Brownian motions on a proba-
bility space (Ω,z,P).

Proof. See Proposition 2.1.10 in [37]. 2

In the following definition, we define the stochastic convolution WA for the
operator A and the Q-Wiener process W .

Definition 1.2.6 (Stochastic convolution) The stochastic convolutionWA is a stochas-
tic process defined for t ≥ 0, as

WA(t) =

∫ t

0

e(t−s)AdW (s) =
∞∑
k=1

αk

∫ t

0

e(t−s)Adβk(t)ek, (1.4)

where etA is the semigroup generated by the operator A.

Theorem 1.2.7 If

∞∑
k=1

α2
kk

2α

λ1−2γk

<∞ for
1

2
> γ > 0,

then

WA ∈ C0([0, T ],Hα) P− a.s. ∀ T > 0.

Proof. See Theorem 5.9 in [36]. 2

1.3 Stochastic Evolution Equations

In this section we introduce the solution concept for certain types of stochastic
evolution problems and prove existence and uniqueness of their solutions. This

5



Sec1.3 Stochastic evolution equation

is a standard approach based on Banach’s fixed argument for mild solutions of
SPDEs defined by the variation of constants formula.

The remainder of this section is organised as follows. In Subsection 1.3.1 we
give all basic assumptions, while in Subsection 1.3.2 we sketch briefly the results
on existence & uniqueness of local solutions. Finally, in Subsection 1.3.3 we give
the Burgers’ equation as an example. Nevertheless, the result would apply to all
models discussed in this thesis.

1.3.1 Setting

We consider the following equation written formally as

∂tu(t) = Au(t) + f(u(t)) + ∂tW (t)

u(0) = u0, (1.5)

where we make the following assumptions (cf. Definition 1.1.2):
Assumption (A1) A is a non-positive operator on H with eigenvalues 0 ≤ λ1 ≤
.... ≤ λk ≤ .... such that λk ≥ Ckm for all sufficiently large k, and a corre-
sponding complete orthonormal system of eigenvectors {ek}∞k=1 such that Aek =

−λkek.
Assumption (A2) The process W (t) for t ≥ 0 is a Q-Wiener process on the
probability space (Ω,z,P) such that

WA ∈ C0([0, T ],Hα) P− a.s. ∀ T.

Assumption (A3) Define f : Hα → Hβ for α−m < β ≤ α such that f satisfies
for some C ≥ 0 and p ≥ 0 the local Lipschitz condition

‖f(u)−f(v)‖β ≤ C ‖u− v‖α (1 + ‖u‖α + ‖v‖α)p ,

for all u, v ∈ Hα.

1.3.2 Existence and Uniqueness of Mild Solutions

Before we state and prove the theorem of the existence and uniqueness of mild
solutions, let us define the concept of a mild solution for Equation (1.5).

6



Ch.1 Introduction

Definition 1.3.1 (Mild solution) AnH-valued process {u(t)}t∈[0,T ] is a mild solu-
tion of (1.5) if for some random time τ > 0 we have u ∈ C0([0, τ ],Hα) P− a.s.
such that

u(t) = etAu0 +

∫ t

0

e(t−s)Af(u(s))ds+WA(t), ∀ t ∈ (0, τ ] ,P− a.s, (1.6)

where WA is the stochastic convolution defined in (1.4).

Theorem 1.3.2 Assume that assumptions (A1), (A2) and (A3) are satisfied. Given
u0 ∈ Hα. Then, there is a unique mild solution u ∈ C0([0, T ],Hα) of (1.5).

Proof. The proof is based on the classical fixed point theorem for contractions.
Fix ω ∈ Ω and define

G(u)(t) = etAu0 +

∫ t

0

e(t−s)Af(u(s))ds+WA(t).

1. It is easy to check that

G : C0([0, T ],Hα)→ C0([0, T ],Hα) ∀ T > 0,

as follows:

• t → etAu0 ∈ C0([0, T ],Hα) as u0 ∈ Hα. This follows from the
regularity of the semigroup etA,

• t→ WA(t) ∈ C0([0, T ],Hα) by Assumption (A2),

• f : C0([0, T ],Hα) → C0([0, T ],Hβ) follows from the assumption on
f : Hα → Hβ locally Lipschitz,

•
∫ t
0
e(t−s)Ads : C0([0, T ],Hβ) → C0([0, T ],Hα) provided α − m <

β ≤ α.

2. The operator G is a contraction:

Define the set Γ as

Γ = {u ∈ C0([0, T ],Hα) such that ‖u(t)− u0‖α ≤ δ ∀ t ∈ [0, T ]},

7



Sec1.3 Stochastic evolution equation

for some fixed δ > 0. Let

|||u||| = sup
t∈[0,τ ]

‖u(t)‖α .

To show that G is a contraction on Γ, provided T is sufficiently small, we
consider for u, v ∈ Γ

‖G(u)(t)− G(v)(t)‖α =

∥∥∥∥∫ t

0

e(t−τ)A[f(u(s))− f(v(s))]ds

∥∥∥∥
α

.

Using (1.1), we obtain

‖G(u)(t)− G(v)(t)‖α ≤ M

∫ t

0

(t− s)
β−α
m ‖f(u(s))− f(v(s))‖β ds

≤ CM

∫ t

0

(t− s)
β−α
m ‖u− v‖α (1 + ‖u‖α + ‖v‖α)p ds

≤ Ct1+
β−α
m |||u− v||| (2δ + 2 ‖u0‖α + 1)p .

Thus, as (2δ + 2 ‖u0‖α + 1) is constant

|||G(u)− G(v)||| ≤ CT 1+β−α
m |||u− v||| .

We denoted by C various constant depending only on u0, δ, α, β and p but
not on T . Choose T such that CT 1+β−α

m ≤ 1
2
. Then G : Γ → Γ is a

contraction.

3. To show that G : Γ→ Γ is a self mapping, consider

‖G(u)(t)− u0‖α ≤ ‖G(u)(t)− G(u0)‖α + ‖G(u0)− u0‖α .

As G is a contraction

‖G(u)(t)− u0‖α ≤
1

2
‖u− u0‖α + ‖G(u0)− u0‖α

≤ δ

2
+ ‖G(u0)− u0‖α .

Consider

‖G(u0)− u0‖α ≤
∥∥etAu0 − u0∥∥α +

∥∥∥∥∫ t

0

e(t−s)Af(u0)ds

∥∥∥∥
α

+ ‖WA(t)‖α

≤
∥∥(etA − I)u0

∥∥
α

+M

∫ t

0

(t− s)
β−α
m ‖f(u0)‖β ds+ ‖WA(t)‖α ,

8



Ch.1 Introduction

where we used Lemma 1.1.3. Thus,

‖G(u0)− u0‖α ≤ sup
t∈[0,T ]

∥∥(etA − I)u0
∥∥
α

+ sup
t∈[0,T ]

‖WA(t)‖α + CT 1+β−α
m ‖f(u0)‖β

:= I1 + I2 + I3.

We note that

• I1 → 0 when T → 0 from the continuity of etA in 0,

• I2 → 0 when T → 0 from the continuity of WA, as WA(0) = 0,

• I3 → 0 when T → 0, obviously.

Hence,

‖G(u0)− u0‖α ≤
δ

2
.

If T = T (u0, ω, δ) is sufficiently small. In the end we obtain for t ∈ [0, T ]

‖G(u)(t)− u0‖α ≤ δ.

Thus, G : Γ→ Γ is a self mapping.

Therefore, by Banach’s fixed point theorem, there is a unique fixed point
u ∈ Γ, which is the unique mild solution of (1.5) on [0, T ].

Thus, for u0 ∈ Hα there is a random time τ > 0 such that there exist a
unique solution u ∈ C0([0, τ ],Hα) of u = G(u).

2

1.3.3 An Example

In this subsection we apply the abstract framework to the stochastic Burgers’ equa-
tion driven by additive noise. Consider

∂tu = ∂2xu+ λu+ ∂xu
2 + ∂tW (t), (1.7)

on [0, π] subject to Dirichlet boundary conditions. Define

H = L2 [0, π] , ek(x) =

√
2

π
sin(kx), for k ∈ N,

9



Sec1.3 Stochastic evolution equation

and
f(u) = νu+ ∂xu

2.

We consider A = ∂2x as a linear operator on H. It is well known that A is self-
adjoint, positive definite and

−Aek = λkek,

for the orthonormal basis {ek}∞k=1 of H. Moreover, the λk = k2 are an increasing
sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ ··, λk →∞ as k →∞.

Let us now verify the local Lipschitz condition. Consider

f(u)− f(v) = ν(u− v) + ∂x(u
2 − v2).

Thus,
‖f(u)− f(v)‖β ≤ |ν| ‖u− v‖β +

∥∥∂x(u2 − v2)∥∥β . (1.8)

Consider ∥∥∂x(u2 − v2)∥∥β = ‖∂x(u− v)(u+ v)‖β
≤ C ‖(u− v)(u+ v)‖L1

≤ C ‖u− v‖L2 (‖u‖L2 + ‖v‖L2) ,

where we used for β < −3
2

that

‖∂xu‖β = sup
‖v‖−β=1

∫ π

0

(∂xu) vdx.

Integrating by parts, we obtain

‖∂xu‖β = sup
‖v‖−β=1

∫ π

0

u (∂xv) dx

≤ ‖u‖L1 sup
‖v‖−β=1

‖∂xv‖∞ .

Now, consider v =
∑∞

k=1 αkek ∈ H−β, then for β < −3
2

we obtain

‖∂xv‖∞ =

∥∥∥∥∥
∞∑
k=1

αk∂xek

∥∥∥∥∥
∞

≤
∞∑
k=1

|αk| ‖∂xek‖∞

≤ C

∞∑
k=1

|αk| k ≤ C

(
∞∑
k=1

α2
kk
−2β

) 1
2
(
∞∑
k=1

k2+2β

) 1
2

= C ‖v‖−β .

10



Ch.1 Introduction

Thus,
‖∂xu‖β ≤ ‖u‖L1 · sup

‖v‖−β=1

‖∂xv‖∞ ≤ C ‖u‖L1 .

Returning again to (1.8), we obtain

‖f(u)− f(v)‖β ≤ |ν| ‖u− v‖β + C ‖u− v‖L2 (‖u‖L2 + ‖v‖L2)

≤ C ‖u− v‖β (1 + ‖u‖L2 + ‖v‖L2) .

Then according to Theorem 1.3.2 the Equation (1.7) has a unique mild solution
u ∈ C0([0, τ ],H) given by

u(t) = etAu0 +

∫ t

0

e(t−s)Af(u(s))ds+WA(t).

1.4 Basic Inequalities

In this section we present some basic results frequently used in the proofs in the
following chapters.

Lemma 1.4.1 (Chebychev’s inequality) If X : Ω→ R is a random variable such
that

E [|X|p] <∞ for some p ∈ (0,∞) ,

then
P [|X| ≥ λ] ≤ 1

λp
E [|X|p] for all λ > 0.

Theorem 1.4.2 (Young’s inequality (cf. Theorem A.5 in [5])) For p, q > 1 with
1
p

+ 1
q

= 1 there is a constant C > 0 such that

xy ≤ C(xp + yq) for all x, y > 0.

Especially, for all ε > 0 there is a constant Cε > 0 such that

xy ≤ εxp + Cεy
q for all x, y > 0.

Lemma 1.4.3 (Itô Isometry) For all Hilbert space valued stochastic processes f
adapted to the filtration of the Brownian motion β, there is a constant C such that

E
∥∥∥∥∫ t

0

f(s)dβ(s)

∥∥∥∥2 = CE
∫ t

0

‖f(s)‖2 ds.

11



Sec1.4 Basic Inequalities

Proof. See Lemma 3.1.5 in [28]. 2

We also need the celebrated Itô Formula. Here we will state only a simplified
version. For the general case see for example [36].

Theorem 1.4.4 ( Itô Formula) Let {u(t)}t≥0 be a stochastic process inH and let
β be a standard real-valued Brownian motion. Suppose that

du = f(u)dt+ g(u)dβ,

for some functions f, g : H → H. Then for a twice continuously differentiable
function ϕ : H → R, we have

ϕ(u(t))− ϕ(u(0)) =

∫ t

0

Dϕ(u(s)) [f(u(s))] ds+

∫ t

0

Dϕ(u(s)) [g(u(s))] dβ(s)

+
1

2

∫ t

0

D2ϕ(u(s)) [g(u(s)), g(u(s))] ds.

Theorem 1.4.5 (Burkholder-Davis-Gundy (cf. Theorem A.7 in [5])). Let β be a
Brownian motion, and f some H-valued stochastic process adapted to β. Then
for all p > 0, there exists a constant C = Cp > 0, depending only on p, such that

E

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

f(s)dβ(s)

∥∥∥∥p
)
≤ Cp · E

(∫ T

0

‖f(s)‖2 ds
) p

2

.

Theorem 1.4.6 (Doob) Consider f and β as in Theorem 1.4.5. Then for arbitrary
p > 1

E

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

f(s)dβ(s)

∥∥∥∥p
)
≤ p

p− 1
E
∥∥∥∥∫ T

0

f(s)dβ(s)

∥∥∥∥p .
Theorem 1.4.7 (Burkholder-Davis-Gundy (cf. Theorem 1.2.4 in [32])) For ar-
bitrarily given T > 0, let φ(t, ω), t ∈ [0, T ], be an Ft-adapted, L0

2(H)-valued
process such that E

∫ T
0
‖φ(s, ω)‖2L0

2
ds < ∞, where L0

2(H) is the family of all
Hilbert-Schmidt operators from H to H. Then for arbitrary p > 0, there exists a
constant C = Cp > 0, depending only on p, such that for any T ≥ 0,

E

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

φ(s, ω)dWs

∥∥∥∥p
)
≤ CpE

(∫ T

0

‖φ(s, ω)‖2L0
2
ds

) p
2

,

where ‖·‖L0
2

denotes the Hilbert-Schmidt norm.

12



Ch.1 Introduction

Lemma 1.4.8 If X =
∑∞

k=1Xkek, for independent real valued Gaussian Xk

with EXk = 0, then for all p > 0, there exists a constant Cp > 0 such that

E‖ X ‖2pα ≤ Cp
(
E‖ X ‖2α

)p
.

We give an elementary proof here. Also the result can be found in [36], Corol-
lary 2.17, by using characteristic functions.

Proof. We consider two cases.

First case p ∈ N. In this case

E ‖ X ‖2pα = E‖
∑
k=1

Xkek‖2pα = E

(∑
k=1

X2
kk

2α

)p

=
∑
k1=1

..........
∑
kp=1

k2α1 ......k2αp E
(
X2
k1
.....X2

kp

)
≤ Cp

∑
k1=1

..........
∑
kp=1

k2α1 ......k2αp EX2
k1
.....EX2

kp

= Cp

(∑
k=1

EX2
kk

2α

)p

= Cp
(
E‖ X ‖2α

)p
.

Second case p /∈ N. In this case, using Hölder inequality, we obtain for k > p,
k ∈ N

E‖ X ‖2pα ≤
(
E‖ X ‖2kα

) p
k
.

We finish the proof by using the first case. 2

Let us finally recall Gronwall’s lemma as follow:

Lemma 1.4.9 (Gronwall’s lemma (cf. Lemma A.8 in [5])) Let u : [0, T ]→ R and
a : [0, T ]→ R be continuous functions, such that a ≥ 0. Fix b ∈ R. Then

u(t) ≤ b+

∫ t

0

a(s)u(s)ds for all t ∈ [0, T ] ,

implies

u(t) ≤ b · exp

{∫ t

0

a(s)ds

}
for all t ∈ [0, T ] .

13



1.5. Approximation via Amplitude Equation

1.5 Approximation via Amplitude Equation

Amplitude equations are well known in the physics literature (see, e.g., [20] or
[46]). They usually describe some order parameter for the system, which evolves
on a much slower time-scale. This separation of time-scale is present in all cases
where a change of stability occurs.

The approximation of SPDEs on bounded domians via amplitude equations
was first rigorously verified in [10] for a simple Swift-Hohenberg model, and later
on extended in [3, 4, 6]. Here the amplitude equation for the dominant modes is
given by ODE or SDE.

In contrast to that in the case of unbounded domain or just very large domains
the situation is significant different. The amplitude of the dominant modes are sub-
ject to a long-range modulation in space, and hence not given by an ODE/SODE,
but by some PDE/SPDE instead.

The case of large domain, but still bounded domains, is discussed in [8]. See
also [34] for the deterministic equation.

The main difference between small and large domains is the existence of a
large spectral gap of orderO(1) in the linearised operator of the PDE. On bounded
domains, we have a finite number e = (e1, ..., en) of modes (or eigenfunctions)
such that the corresponding eigenvalues change sign at the change of stability. If
we are close to the bifurcation, all other eigenvalues are negative and sufficiently
far away from 0. Formal arguments show, that the amplitudesA ∈ Rn of the dom-
inating modes are given by the so called amplitude equation, while the solution u
of the SPDE is well approximated by

u(t, x) = εA(ε2t) · e(x) +O(ε2),

where ε2 is the typical scale for the distance from bifurcation.

On unbounded or just very large domains this picture changes completely.
Even very close to the bifurcation a large number of modes are near or already
above the threshold of stability, but still small. In this case the amplitude A is also
a function in x that is concentrated in Fourier space near the dominant modes.
Hence, A is subject to slow modulations in space, taking into account the large
number of weakly (un)stable modes. In this case the solution u of the SPDE is

14



Ch.1 Introduction

approximated by

u(t, x) = εA(ε2t, εx) · e(x) +O(ε2),

and A fulfills a (stochastic) PDE, which is called amplitude or modulation equa-
tion.

Let us now state some previous results without proof which been used be-
fore to approximate the solution of SPDEs with additive noise via the solution of
amplitude equation.

in the literature there are numerous examples of SPDEs with additive noise.
For instance,

∂tu = Au+ ε2Lu+B(u, u) + σξ, (1.9)

and
∂tu = Au+ ε2Lu−F(u) + σξ, (1.10)

where A is non-positive operator with finite dimensional kernel, ε2Lu is a small
deterministic perturbation, B is a symmetric and bilinear operator, F is a cubic
nonlinearity and ξ is a Gaussian noise in space and time.

Blömker [4] established the following theorem for (1.9) with σ = ε2 and noise
being the generalised derivative of some Wiener process {QW (t)}t≥0 on some
probability space (Ω,F ,P), where W is the standard cylindrical Wiener process.

Theorem 1.5.1 Fix δ > 0, some small 1� κ ≥ 0, and some T0 > 0. Let a be the
solution of the amplitude equation

a(T ) = a(0) +

∫ T

0

Lca(τ)dτ − 2

∫ T

0

Bc(a,A−1s Bs(a))dτ + W̃c(T ),

with initial condition a(0) = ε−1Pcu(0), and ψ is the solution of

ψ(t) = etAψ(0) +

∫ t

0

e(t−τ)ABs(a(ε2τ), a(ε2τ))dτ +

∫ t

0

e(t−τ)AdWs(τ),

with ψ(0) = ε−2Psu(0). Then for all mild solutions u of (1.9)

P

(
sup

t∈[0,ε−2T0]

∥∥u(t)− εa(ε2t)− ε2ψ(ε2t)
∥∥ ≤ ln(ε−1)ε2−2κ

)

≥ 1− P {‖u(0) > 2δ‖} − P
{
‖Psu(0)‖ > δε2

}
− oε(1).

15



Sec1.4 Approximation via Amplitude Equation

In Chapter 2, we will extend the above result to a fairly large class of noise
given by Q-Wiener processes. Moreover, we improve probability estimate signif-
icantly.

Blömker, Hairer and Pavliotis [9] gave a rigorous proof for (1.9) with σ = ε,
degenerate noise, L = νI, and kerA = span{e1} by a multiscale analysis. They
showed that, although not forced directly, the amplitude equation includes the
fluctuations from the fast mode due to the nonlinear interaction.

Theorem 1.5.2 Let u be a continuous solution of (1.9) with initial condition u(0)

such that ‖u(0)‖ < Cε for C > 0. Furthermore, assume that the covariance of
the noise satisfies qk = σ for k ≥ 2. Then there exists a Brownian motion B(t)

such that, if a(t) is a solution of

da(t) = ν̃a(t)− 1

12
a3(t) +

√
σb + σaa2(t)dB(t), εa(0) =

2

π
〈u(0), e1〉 ,

where

ν̃ = ν +
σ2

36π
− σ2

4π

∞∑
k=2

(
1

k − 1
− 1

k(k + 1)

)
1

2k2 + 2k − 1
,

σa =
σ2

18π
, σb =

1

2π2

∞∑
k=2

σ4

(2k2 + 2k + 1)(k2 − 1)(k2 + 2k)
,

and

R(t) =
1

ε
etAPsu(0) +

∫ t

0

e(t−τ)AdQW (τ),

then for all p, κ > 0 there is a constant C such that

P

(
sup

t∈[0,ε−2T ]

∥∥u(t)− εa(ε2t)e1 − εR(t)
∥∥ ≤ Cε

5
4
−κ

)
≥ 1− Cεp,

for all ε ∈ (0, 1).

For the deterministic equation (1.10), with ν = 1, on unbounded domain. Kir-
rmann, Mielke and Schneider [26] proved the following approximation result for
the deterministic Swift-Hohenberg equation (1.10) through the Ginzburg-Landau
equation

∂TA = 4∂2xA+ A− 3 |A|2A. (1.11)
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Theorem 1.5.3 Let A = A(T,X) ∈ C4
b (R), be a solution of (1.11) with initial

condition A(0, X) ∈ C4
b (R), where C4

b (R) denotes the space of 4-times differen-
tiable functions, where all derivatives and the function are bonded and uniformly
continuous. Define

uA(t, x) = εA(T,X)eix + εĀ(T,X)e−ix,

where T = ε2t and X = εx. Then, for each T0 > 0 and d > 0, there ex-
ist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) the following statement
holds. Let u = u(t, x) be a solution of the deterministic equation (1.10) such
that |u(0, x)− uA(0, x)| ≤ dε2 for all x. Then the estimate

|u(t, x)− uA(t, x)| < Cε2, for all (t, x) ∈
[
0, ε−2T0

]
× R,

is satisfied.

Blömker, Hairer and Pavliotis [8] considered the SPDEs (1.10), with σ = ε
3
2 ,

on a large domain
[−L
ε
, L
ε

]
near its change of stability and showed that, under ap-

propriate scaling, its solutions can be approximated by the solution of the stochas-
tic Ginzburg-Landau equation

∂TA = 4∂2XA+ νA− 3 |A|2A+
√
q̂(1)η, X ∈ [−L,L] , A(0) = A0, (1.12)

where η is complex space-time white noise and q̂ is the Fourier transform of q.
The noise strength q̂(1) is derived from the spatial correlation function q of ξ.

Theorem 1.5.4 Let u be a solution of (1.10) with an admissible initial condition
u0(x) = 2ε< (A0(εx)eix) and A be a solution of (1.12) with initial condition A0.
Then, for every T0 > 0, κ > 0 and p ≥ 1,

E sup
t∈[0,ε−2T0]

sup
x∈[−Lε ,L

ε ]

∣∣u(t, x)− 2ε<
(
A(ε2t, εx)eix

)∣∣p ≤ Cκ,pε
3
2
p−pκ,

for every ε ∈ (0, 1].

In the above theorem, we stated the admissible random variable. This mean
we can split this random variable into two parts such that the first part is in H1

space and the second part is a Gaussian in C0 space, and both parts are of order
one.
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Sec1.4 Approximation via Amplitude Equation

In Chapter 5, we will consider an intermediate step. Using unbounded do-
mains, but highly degenerate finite dimensional noise, where the amplitude equa-
tion will be deterministic.

On bounded domains Blömker and Hairer [6] gave a rigorous formulation
of the approximation result for the transient dynamics of (1.10), with σ = ε2,
including higher order corrections as follow:

Theorem 1.5.5 Let

u(t) = etAu(0) +

∫ t

0

e(t−τ)A
(
ε2Lu(τ) + F(u(τ))

)
dτ + ε2

∫ t

0

e(t−τ)AdW (τ),

be the mild solution of (1.10) with initial condition u(0) = u0 satisfying for some
family of positive constant {Cp, p ≥ 1},

E ‖u0‖p ≤ Cpε
p and E ‖Psu0‖p ≤ Cpε

p.

Define ψ as

ψ(t) := εa(ε2t) + ε2etAPsψ(0) + ε2
∫ t

0

e(t−τ)AdPsW (τ),

with initial condition Psψ(0) = ε−2Psu(0) and a is a solution of

∂Ta(T ) = Lca(T ) + Fc(a(T )) + ∂Tβ(T ),

with initial condition a(0) = ε−1Pcu0 and Brownian motion β(T ) = εPcQW (ε−2T ).
Then for all T0 > 0, κ > 0 and p > 1 there is a constant C > 0 such that the
estimate

P

(
sup

t∈[0,ε−2T0]

‖u(t)− ψ(t)‖ ≤ ε3−κ

)
≥ 1− Cεp,

holds for ε > 0 sufficiently small.

In Chapter 3, we will study a combination of Theorem 1.5.2 and Theorem
1.5.5 by using degenerate noise for an SPDE with cubic nonlinearity. In Chapter
4, we also study higher order corrections. This is related to the work of Wang and
Roberts [41]. They considered the SPDEs (1.10) with A = (4 + 1) and σ =

ε, on bounded domain (0, π) to study higher order corrections to the amplitude
equation, in order to see the fluctuations induced by the impact of the noise on the
dominant pattern as follow:
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Theorem 1.5.6 For any T > 0, there is positive constant C > 0, such that for
any solution (uε, vε) of

∂tu
ε = Acu

ε + PcF(uε + vε),

∂tv
ε = Acv

ε + PsF(uε + vε) + εPs∂tW,

where Pc is the projection operator, Ps = I−Pc and Ac is high-pass filter defined
by Ac = (Ps + ε2Pc)4, there is a N -dimensional Wiener process W̃ such that
with high probability

sup
t∈[0,ε−2T ]

∥∥uε(t)− εa(ε2t)− ε2ρc(ε2t)
∥∥ ≤ Cε2+,

where a solves
∂ta = 4a+ PcF̃0(a),

and ρc solves the following stochastic differential equation

∂tρc = Acρc + Pc[F̃ 8
0(a)ρc] +

√
B(a)∂tW̃ ,

with ρc(0) = 0. Here, the average

F̃0(a) = lim
t→∞

1

t

∫ t

0

F0(a+ ψ∗(s))ds,

where F0 is the cubic component of F and ψ∗ is the stationary solution solving
the linear stochastic partial differential equation

∂tψ = Acψ + εPs∂tW,

and

B(a) = 2

∫ ∞
0

E
[
PcF0(a+ ψ∗(s))− PcF̃0(a)

]
⊗
[
PcF0(a+ ψ∗(0))− PcF̃0(a)

]
ds,

where ⊗ is the tensor product. Furthermore

E sup
t∈[0,ε−2T ]

‖vε(t)− εψ∗(t)‖ ≤ Cε3.
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Chapter 2

Amplitude Equations for SPDEs
with Quadratic Nonlinearities

2.1 Introduction

Stochastic partial differentail equations (SPDEs) with quadratic nonlinearities arise
in various applications in physics. One example is the stochastic Burgers’ equa-
tion in the study of closure models for hydrodynamic turbulence [14]. Other ex-
amples are the growth of rough amorphous surfaces [38, 45], and the Kuramoto-
Sivashinsky model, which originally models a fire front, but it is also used for
surface erosion [17, 30]. All these models fit in the abstract framework of this
chapter.

Consider the following SPDE in Hilbert spaceH with scalar product 〈·, ·〉 and
norm ‖·‖:

du =
[
Au+ ε2Lu+B(u, u)

]
dt+ ε2dW. (2.1)

We consider (2.1) near a change of stability, where ε2Lu measures the distance
from bifurcation. The operator A is assumed to be self-adjoint and non-positive,
and we call the kernel of A the dominant modes. We allow for noise given by a
fairly general Q-Wiener process.

Near the bifurcation the equation exhibits two widely separated characteris-
tic time-scales and it is desirable to obtain a simplified equation which governs
the evolution of the dominant modes. This is well known on a formal level in
many examples in physics (see e.g. [16]). Moreover, for deterministic PDEs on
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unbounded domains, this method [19, 26, 43, 44] successfully overcomes the gap
of a lacking centre manifold theory. This is also useful for SPDEs on bounded
domains [7], where no centre manifold theory is available yet.

Moreover, there are numerous variants of this method. However, most of these
results are non-rigorous approximations using this type of formal multi-scale anal-
ysis. A noteable example is [18].

The purpose of this chapter is to derive rigorously an amplitude equation for a
quite general class of SPDEs (cf. (2.1)) with quadratic nonlinearities. This work is
based on [9], where degenerate noise in a different scaling was considered, and it
improves significantly previously know results of [4], where in a similar situation
much more regular noise was considered. A related result can be found in [5],
where a simple multiplicative noise was considered, but again with much weaker
results.

In this chapter we follow [11] and focus on quadratic nonlinearities only. The
case of cubic equations is much simpler, as one can rely on nonlinear stability.
This case was already considered in [6], for instance.

As an application of our approximation result of Theorem 2.3.1, we discuss the
stochastic Burgers’ equation and surface growth model. To illustrate our results
consider the Burgers’ equation

∂tu =
(
∂2x + 1

)
u+ ε2νu+ u∂xu+ ε2∂tW, (2.2)

on [0, π] subject to Dirichlet boundary conditions.
We show in our main result that near a change of stability on a time-scale of

order ε−2 the solution of (2.2) is of the type

u(t, x) = εb(ε2t) sin(x) +O(ε2),

where b is the solution of the amplitude equation on the slow time-scale

∂T b(T ) = νb(T )− 1

12
b3(T ) + ∂Tβ(T ),

and β is a Brownian motion with a suitable variance.
This approximating equation is called amplitude equation, as it is rewritten

into an SDE for the amplitudes of an expansion of the dominant modes with re-
spect to a basis in N .

22



Ch.2 Amplitude Equations for SPDEs with Quadratic Nonlinearities

For the proofs we rely on a cut-off technique, as in general we cannot control
moments of solution and exclude the possibility of a blow up. Therefore all esti-
mates are established only with high probability and not in moments. To be more
precise, we use a stopping time, in order to look only at solutions that are not too
large. Then we can use moments for time uniformly up to the stopping time. Later
we use the amplitude equation itself to verify that the stopping is not small.

As the general strategy we first show that all non-dominant modes are given
by an Ornstein-Uhlenbeck process and a quadratic term in the dominant modes.
Then we rely on Itô -Formula and some averaging argument, in order to transform
the equation for the dominant modes to an amplitude equation with an additional
small remainder.

The rest of this chapter is organised as follows. In Section 2.2 we state the
assumptions that we make. In Section 2.3 we give a formal derivation of the
amplitude equation and state the main results. In Section 2.4 we give the main
results. Finally, in Section 2.5 we apply our theory to the stochastic Burgers’
equation and surface growth model.

2.2 Main Assumptions and Definitions

This section summarises all assumptions necessary for our results. For the linear
operator A in (2.1) we assume the following:

Assumption 2.2.1 (Linear Operator A) Suppose A is a self-adjoint and non-
positive operator onH with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ .... ≤ λk ≤ .... and λk ≥
Ckm for all large k and for m > 0. The corresponding complete orthonormal
system of eigenvectors is {ek}∞k=1 with Aek = −λkek.

We use the notation N := kerA, S = N⊥ the orthogonal complement of N
in H, and Pc for the projection Pc : H → N . Define, Ps := I − Pc, and suppose
that Pc and Ps commute withA. Suppose thatN has finite dimension nwith basis
(e1, ...., en) .

Definition 2.2.2 Define the operatorDα byDαek = kαek, so that ‖u‖α = ‖Dαu‖.
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Assumption 2.2.3 (Operator L) Fix α ∈ R and let L : Hα → Hα−β for some
β ∈ [0,m) be a continuous linear mapping that in general does not commute with
Pc and Ps.

Assumption 2.2.4 (Bilinear Operator B) With α and β from Assumption 2.2.3
let B be a bounded bilinear mapping from Hα × Hα to Hα−β . Suppose without
loss of generality that B is symmetric, i.e. B(u, v) = B(v, u). Moreover, assume
that PcB(u, u) = 0 for u ∈ N .

Remark 2.2.5 If B is not symmetric we can use

B̃(u, v) :=
1

2
B(u, v) +

1

2
B(v, u).

Denote for shorthand notation Bs = PsB and Bc = PcB.

For the nonlinearity appearing later in the amplitude equation we define the
following.

Definition 2.2.6 Define F : N → N , for u ∈ N , as

F(u, u, u) := Bc(u,A−1s Bs(u, u)). (2.3)

Assume without loss of generality that F is given by a symmetric map F : N 3 →
N .

By Assumption 2.2.4 the operator F is already trilinear, continuous and there-
fore bounded. One standard example being a cubic like u3.

Remark 2.2.7 If F is not symmetric we can always use

F̃(u, v, w) :=
1

3
Bc(u,A−1s Bs(v, w))+

1

3
Bc(w,A−1s Bs(u, v))+

1

3
Bc(v,A−1s Bs(w, u)).

Moreover, we assume the following:

Assumption 2.2.8 (Stability) Assume that the nonlinearity F satisfies the follow-
ing conditions

〈u,F(u)〉 > 0 ∀ u ∈ N − {0}, (2.4)

and
〈F(u, u, w), w〉 > 0 ∀ u, w ∈ N − {0}, (2.5)

where we define F(u) = F(u, u, u) for short.
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Remark 2.2.9 From Assumption 2.2.8 there exist δ > 0 such that

〈u,F(u)〉 ≥ δ ‖u‖4 ∀ u ∈ N , (2.6)

and

〈F(u, u, w), w〉 ≥ δ ‖u‖2 ‖w‖2 ∀ u, w ∈ N .

For the noise we suppose:

Assumption 2.2.10 (Wiener Process W ) Let W be a Wiener process on an ab-
stract probability space (Ω,z, P) with a bounded covariance operatorQ : H → H
defined by Qfk = α2

kfk where (αk)k is a bounded sequence of real numbers and
(fk)k∈N is an orthonormal basis inH. For the orthonormal basis ek from Assump-
tion 2.2.1 we assume

n∑
k=1

∞∑
l=n+1

1

λl
kαlα |〈Qek, el〉| <∞ and

∞∑
l=n+1

l2αλ2γ−1l ‖Q
1
2 el‖2 <∞, (2.7)

for some γ ∈ (0, 1
2
).

We note that W (t) and εW (ε−2t) are in law the same process due to scaling
properties.

Let us discuss two different representations of W . One with the basis ek and
the other one with fk. For t ≥ 0, we can write W (t) (cf. Da Prato and Zabczyk
[36]) as

W (t) =
∞∑
k=1

αkβk(t)fk =
∞∑
l=1

ßl(t)el, (2.8)

where (βk)k are independent, standard Brownian motions in R. Furthermore, the

ßl :=
∞∑
k=1

αk〈fk, el〉βk (2.9)

are real valued Brownian motions, which are in general not independent.
Moreover, it follows easily from the definition of Pc, Ps and W (t) that

PcW (t) =
∞∑
k=1

αkβk(t)Pcfk =
n∑
l=1

ßl(t)el, (2.10)
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and

PsW (t) =
∞∑
k=1

αkβk(t)Psfk =
∞∑

l=n+1

ßl(t)el. (2.11)

For our result we rely on a cut off argument. We consider only solutions
(a, ψ) that are not too large. To be more precise we introduce a cut-off time, after
which the solution is too big. Later we will show that this time is large with high
probability.

Definition 2.2.11 (Stopping Time) For theN×S-valued stochastic process (a, ψ)

defined later in (2.14) we define, for some small 0 < κ < 1
7

and some time T0 > 0,

the stopping time τ ∗ as

τ ∗ := T0 ∧ inf
{
T > 0 : ‖a(T )‖α > ε−κ or ‖ψ(T )‖α > ε−3κ

}
. (2.12)

Definition 2.2.12 For a real-valued family of processes {Xε(t)}t≥0 we say Xε =

O(fε), if for every p ≥ 1 there exists a constant Cp such that

E sup
t∈[0,τ∗]

|Xε(t)|p ≤ Cpf
p
ε . (2.13)

We use also the analogous notation for time-independent random variables.

Finally note, that we use the letter C for all constants that depend only on
other constants like T0, κ, or α and the data of the equation given by B, Q, L, and
A.

2.3 Formal Derivation and the Main Result

Let us first discuss a formal derivation of the Amplitude equation corresponding
to Equation (2.1). We split the solution u into

u(t) = εa(ε2t) + ε2ψ(ε2t) , (2.14)

with a ∈ N and ψ ∈ S , and rescale to the slow time scale T = ε2t, in order to
obtain for the dominant modes

da = [Lca+ εLcψ + 2Bc(a, ψ) + εBc(ψ, ψ)] dT + dW̃c. (2.15)
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For the fast modes we derive

dψ = [ε−2Asψ + ε−1Lsa+ Lsψ + ε−2Bs(a, a) + 2ε−1Bs(a, ψ) (2.16)

+Bs(ψ, ψ)]dT + ε−1dW̃s ,

where W̃ (T ) := εW (ε−2T ) is a rescaled version of the Wiener process. Now we
use (2.16) in order to remove ψ from Equation (2.15).

From (2.16) we obtain in lowest order of ε that

Asψ ≈ −Bs(a, a).

As As is invertible on S, we derive

ψ ≈ −A−1s Bs(a, a),

which we substitute into (2.15). Neglecting all small terms in ε, yields

da ≈ [Lca− 2F(a)] dT + dW̃c.

Thus, we consider solutions b : [0, T0]→ N of

db = [Lcb− 2F(b)] dT + dW̃c. (2.17)

This is the amplitude equation that approximates the dynamics of the original
SPDE. The main aim of this chapter is to show that the solution of (2.1)

u(t) = εb(ε2t) +O(ε2−) .

In the following, let us be more precise. Applying Itô’s formula toBc(a,A−1s ψ)

we obtain

dBc(a(T ), A−1s ψ(T )) = Bc(da,A
−1
s ψ) +Bc(a,A

−1
s dψ) +

1

2
Bc(da,A

−1
s dψ)

= Bc(Lca,A
−1
s ψ)dT + εBc(Lcψ,A

−1
s ψ)dT

+Bc(a,A
−1
s Lsψ)dT + ε−1Bc(a,A

−1
s Lsa)dT

+2Bc(Bc(a, ψ), A−1s ψ)dT + εBc(Bc(ψ, ψ), A−1s ψ)dT

+Bc(dW̃c, A
−1
s ψ) + ε−2Bc(a,A

−1
s Bs(a, a))dT

+ε−2Bc(a, ψ)dT + 2ε−1Bc(a,A
−1
s Bs(a, ψ))dT

+Bc(a,A
−1
s Bs(ψ, ψ))dT + ε−1Bc(a,A

−1
s dW̃s)

−ε
2
Bc(dW̃c(T ),A−1s dW̃s(T )).
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Integrating from 0 to T , yields∫ T

0

Bc(a(τ), ψ(τ))dτ = ε2Bc(a(T ), A−1s ψ(T ))−
∫ T

0

F(a(τ))dτ

−ε2
∫ T

0

Bc(Lca,A
−1
s ψ)dτ − ε3

∫ T

0

Bc(Lcψ,A
−1
s ψ)dτ

−ε3
∫ T

0

Bc(Bc(ψ, ψ), A−1s ψ)dτ − ε
∫ T

0

Bc(a,A
−1
s Lsa)dτ

−2ε2
∫ T

0

Bc(Bc(a, ψ), A−1s ψ)dτ − ε2
∫ T

0

Bc(dW̃c, A
−1
s ψ)

−ε2
∫ T

0

Bc(a,A
−1
s Lsψ)dτ − 2ε

∫ T

0

Bc(a,A
−1
s Bs(a, ψ))dτ

−ε2
∫ T

0

Bc(a,A
−1
s Bs(ψ, ψ))dτ − ε

∫ T

0

Bc(a,A
−1
s dW̃s)

−ε
2

∫ T

0

Bc(dW̃c(τ),A−1s dW̃s(τ)). (2.18)

Integrating (2.15) and using (2.18) we obtain the amplitude equation with remain-
der

a(T ) = a(0) +

∫ T

0

Lca(τ)dτ − 2

∫ T

0

F(a(τ))dτ + W̃c(T ) +R(T ), (2.19)

where the remainder R is given by

R(T ) =ε2Bc(a(T ),A−1s ψ(T ))− 2ε2
∫ T

0

Bc(Bc(a(τ), ψ(τ)),A−1s ψ(τ))dτ

− ε3
∫ T

0

Bc(Bc(ψ(τ), ψ(τ)),A−1s ψ(τ))dτ − ε2
∫ T

0

Bc(Lca,A−1s ψ)dτ

− 2ε

∫ T

0

Bc(a(τ),A−1s Bs(a(τ), ψ(τ)))dτ − ε3
∫ T

0

Bc(Lcψ,A−1s ψ)dτ

− ε
∫ T

0

Bc(a,A−1s Lsa)dτ − ε2
∫ T

0

Bc(a,A−1s Lsψ)dτ

+ ε

∫ T

0

Lcψ(τ)dτ − ε2
∫ T

0

Bc(a(τ),A−1s Bs(ψ(τ), ψ(τ)))dτ

+ ε

∫ T

0

Bc(ψ(τ), ψ(τ))dτ − ε2
∫ T

0

Bc(dWc(τ),A−1s ψ(τ))

− ε
∫ T

0

Bc(a(τ),A−1s dW̃s(τ))− ε
∫ T

0

Bc(dW̃c(τ),A−1s dW̃s(τ)).

(2.20)
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For our main aim we need to show that the remainder R is of order ε. This
involves carefully analysis of all terms using moments of uniform bounds up to
the stopping time like E sup[0,τ∗] ‖R‖pα. Later, we need an explicit error estimate
to actually remove R from the equation. Finally, we use the nonlinear stability of
the amplitude equation to show that τ ∗ = T0 with high probability.

To be more precise, the main result is:

Theorem 2.3.1 (Approximation) Under Assumptions 2.2.1, 2.2.3, 2.2.4 and 2.2.10,
let u be a solution of (2.1) defined in (2.14) with the initial condition u(0) =

εa(0)+ε2ψ(0) where a(0) and ψ(0) are of order one. Suppose that b is a solution
of the amplitude equation (2.17). Then for all p > 1 and T0 > 0 there exists a
constant C > 0 such that

P
(

sup
t∈[0,ε−2T0]

‖u(t)− εb(ε2t)‖α > ε2−7κ
)
≤ Cεp . (2.21)

2.4 Proof of the Main Result

As a first step of the approximation result, we show that in (2.14) the modes ψ ∈ S
are essentially an OU-process plus a quadratic term in the modes a ∈ N . Later
we use this to replace ψ in (2.15). After this, we proceed to show that ψ is with
high probability not too large.

Lemma 2.4.1 Under Assumption 2.2.1, 2.2.3, 2.2.4 and 2.2.10 let z(T ), T > 0

be the S-valued process solving the SDE

dz = ε−2AszdT + ε−1dW̃s, z(0) = ψ(0). (2.22)

Then for ε ∈ (0, 1) and T ≤ τ ∗∥∥∥∥ψ(T )− z(T )− ε−2
∫ T

0

eε
−2As(T−τ)Bs(a(τ), a(τ))dτ

∥∥∥∥
α

≤ Cε1−5κ. (2.23)

Proof. The mild formulation of (2.16) is

ψ(T ) = z(T ) +

∫ T

0

eε
−2As(T−τ)

[
Lsψ + ε−1Lsa+ ε−2Bs(a+ εψ)

]
dτ.
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Thus, we derive

∥∥∥ψ(T )− z(T )− ε−2
∫ T

0

eε
−2As(T−τ)Bs(a, a)dτ

∥∥∥
α

≤
∥∥∥∫ T

0

eε
−2As(T−τ)Lsψ(τ)dτ

∥∥∥
α

+ ε−1
∥∥∥∫ T

0

eε
−2As(T−τ)Lsa(τ)dτ

∥∥∥
α

+2ε−1
∥∥∥∫ T

0

eε
−2As(T−τ)Bs(a(τ), ψ(τ))dτ

∥∥∥
α

+
∥∥∥∫ T

0

eε
−2As(T−τ)Bs(ψ(τ), ψ(τ))dτ

∥∥∥
α

=: I1 + I2 + I3 + I4.

We now bound all four terms separately. Using Lemma 1.1.3 with 0 ≤ β < m,
we obtain for the first term for all T ≤ τ ∗

I1 =
∥∥∥∫ T

0

eε
−2As(T−τ)Lsψ(τ)dτ

∥∥∥
α

≤ Cε
2β
m

∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m ‖ψ(τ)‖α dτ

≤ Cε2−3κ ,

where we used the definition of τ ∗ and Assumption 2.2.3. Analogously, to the
second term, we obtain for all T ≤ τ ∗

I2 ≤ Cε
2β
m
−1
∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m ‖Lsa(τ)‖α−β dτ ≤ Cε1−κ .

For the third term we obtain

I3 ≤ Cε
2β
m
−1
∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m‖Bs(a(τ), ψ(τ))‖α−βdτ

≤ Cε
2β
m
−1 sup

τ∈[0,τ∗]
‖Bs(a(τ), ψ(τ))‖α−β

∫ T

0

e−ε
−2ωττ−

β
mdτ.

Using Assumption 2.2.4, yields for T ≤ τ ∗,

I3 ≤ Cε sup
τ∈[0,τ∗]

{‖a(τ)‖α‖ψ(τ)‖α}
∫ ε−2ωT

0

e−ηη−
β
mdη ≤ Cε1−4κ.
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Analogously, we derive for the fourth term

I4 ≤ ε
2β
m

∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m ‖Bs(ψ(τ), ψ(τ))‖α−β dτ

≤ Cε
2β
m sup
τ∈[0,τ∗]

‖Bs(ψ(τ), ψ(τ))‖α−β
∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
mdτ

≤ Cε2 sup
τ∈[0,τ∗]

‖ψ(τ)‖2α
∫ ε−2ωT

0

e−ηη−
β
mdη ≤ Cε2−6κ .

Combining all four results yields (2.23). 2

In the following we will show that ψ � O(ε−3κ). First, the following Lemma
provides bounds for the stochastic convolution based on the well know factorisa-
tion method. This also implies bounds for the process z defined in (2.22).

Lemma 2.4.2 Under Assumption 2.2.1 and 2.2.10, let ‖z(0)‖α = O(1). Now for
every κ0 > 0, p > 1, and T0 > 0, there exists a constant C > 0 such that

E
(

sup
T∈[0,T0]

‖z(T )‖2pα
)
≤ Cε−κ0 . (2.24)

Proof. The mild solution of equation (2.22) is given by

z(T ) = eε
−2AsT z(0) + ε−1W̃ε−2As(T ). (2.25)

The bound on z(T ) depends on the bound on W̃ε−2As . We will use the factoriza-
tion method introduced in [35] to prove the bound on W̃ε−2As , which is based on
the following elementary identity∫ T

σ

(T − r)γ−1(r − σ)−γdr =
π

sin πγ
for σ ≤ r ≤ T, 0 < γ < 1. (2.26)

Fix γ ∈
(
0, 1

2

)
. By using identity (2.26), we obtain:

W̃ε−2As(T ) = Cγ

∫ T

0

eε
−2As(T−σ)

[∫ T

σ

(T − r)γ−1(r − σ)−γdr

]
dW̃s(σ).

From the stochastic Fubini theorem, we obtain

W̃ε−2As(T ) = Cγ

∫ T

0

∫ s

0

eε
−2As(T−σ)(T − s)γ−1(s− σ)−γdW̃s(σ)ds

= Cγ

∫ T

0

eε
−2As(T−s)(T − s)γ−1

∫ s

0

eε
−2As(s−σ)(s− σ)−γdW̃s(σ)ds.
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Thus,

W̃ε−2As(T ) = Cγ

∫ T

0

eε
−2As(T−s)(T − s)γ−1y(s)ds, (2.27)

with y(s) :=
∫ s
0
eε

−2As(s−σ)(s− σ)−γdW̃s(σ). Hence, by Gaussianity

E ‖y(s)‖2pα ≤ Cp
(
E ‖y(s)‖2α

)p
.

Using the series expansion (cf. (2.11)), yields

y(s) =
∞∑

l=n+1

∫ s

0

e−ε
−2(s−σ)λl(s− σ)−γdß̃l(σ)el.

Using Itô-Isometry in order to obtain

E ‖y(s)‖2pα ≤ Cp

(
∞∑

l=n+1

l2αE
(∫ s

0

e−ε
−2(s−σ)λl(s− σ)−γdß̃l(σ)

)2
)p

= Cpε
2p−4pγ

(
∞∑

l=n+1

l2α (λl)
2γ−1

∥∥∥Q 1
2 el

∥∥∥2 ∫ ε2s
2λl

0

e−ττ−2γdτ

)p

,

where we used

(dß̃l(σ))2 =
∞∑
k=1

α2
k〈fk, el〉2dσ = ‖Q

1
2 el‖2dσ. (2.28)

Integrating from 0 to T0, we obtain

E
∫ T0

0

‖y(s)‖2pα ds ≤ Cε2p−4γp. (2.29)

Taking theHα norm in (2.27), yields

‖W̃ε−2As(T )‖2pα ≤ C
(∫ T

0

e(−ε
−2ω)(T−s)(T − s)γ−1‖y(s)‖αds

)2p
.

Using Hölder inequality with 1
2p

+ 1
2q

= 1 for sufficiently large p implies

‖W̃ε−2As(T )‖2pα ≤ Cε4pγ−2
∫ T

0

‖y(s)‖2pα ds.

Hence, using (2.29) we obtain

E sup
T∈[0,T0]

‖W̃ε−2As(T )‖2pα ≤ Cε4pγ−2
∫ T0

0

E‖y(s)‖2pα ds ≤ Cε2p−2.
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For the bound on z take the norm of Equation (2.25) to obtain for sufficiently
large p

E sup
T∈[0,T0]

‖z(T )‖2pα ≤ C

[
E sup
T∈[0,T0]

‖eε−2TAsz(0)‖2pα + ε−2pE sup
T∈[0,T0]

‖W̃ε−2As(T )‖2pα

]
≤ CE sup

T∈[0,T0]
e−2pε

−2ωT‖z(0)‖2pα + C · ε−2p · ε2p−2

≤ Cε−2.

Using Hölder inequality we derive for all p > 1 and sufficiently large q > 2
κ0

E sup
T∈[0,T0]

‖z(T )‖2pα ≤ E
(

sup
T∈[0,T0]

‖z(T )‖2pqα

) 1
q ≤ Cε−κ0 ,

where the constant C depends among other things on T , p, and κ0. 2

We now need the following simple estimate.

Lemma 2.4.3 Under Assumption 2.2.1 and 2.2.4, using τ ∗ defined in Definition
2.2.11,

E sup
T∈[0,τ∗]

∥∥∥∥∫ T

0

eε
−2As(T−τ)Bs(a (τ) , a (τ))dτ

∥∥∥∥2p
α

≤ Cε4p−4pκ, (2.30)

for all ε ∈ (0, 1).

Proof. Using Lemma 1.1.3 and Assumption 2.2.4 we obtain for T < τ ∗∥∥∥∫ T

0

eε
−2As(T−τ)Bs(a, a)dτ

∥∥∥
α
≤ Cε

2β
m

∫ T

0

e−ε
−2ω(T−τ)(T − τ)−

β
m‖Bs(a, a)‖α−βdτ

≤ Cε2 sup
τ∈[0,τ∗]

‖a(τ)‖2α
∫ ε−2ωT

0

e−ηη−
β
mdη

≤ Cε2−2κ.

2

Now we can proceed to bound ψ. The following lemma states that ψ(T ) is
with high probability much smaller than ε−3κ, as asserted by the Definition 2.2.11
for T ≤ τ ∗. Here a key fact is that in the definition of τ ∗ we have a = O(ε−κ),
while ψ = O(ε−3κ), but we already proved that ψ is essentially a quadratic term
in a.
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Lemma 2.4.4 Let the assumptions of Lemmas 2.4.1, 2.4.2, and 2.4.3 be true.
Then for all p ≥ 1 there is a constant C > 0 such that

E sup
T∈[0,τ∗]

‖ψ(T )‖2pα ≤ Cε−4pκ. (2.31)

Proof. From (2.23), by triangle inequality and Lemma 2.4.1, we obtain

E sup
[0,τ∗]

‖ψ‖2pα ≤ Cε2p−10pκ + CE sup
[0,τ∗]

‖z‖2pα

+ Cε−4pE sup
[0,τ∗]

∥∥∥∫ T

0

eε
−2As(T−τ)Bs(a, a)dτ

∥∥∥2p
α
.

We finish the proof by using Lemma 2.4.2 and 2.4.3. 2

Corollary 2.4.5 Under the assumptions of Lemma 2.4.4, there is for every every
p > 1 a constant C > 0 such that

P
(

sup
T∈[0,τ∗]

‖ψ(T )‖α < ε−3κ
)
≥ 1− Cε2pκ. (2.32)

Proof. From Chebychev inequality

P
(

sup
[0,τ∗]

‖ψ‖α < ε−3κ
)
≥ 1− ε6κp · E sup

[0,τ∗]

‖ψ‖2pα .

We finish the proof by using (2.31). 2

Now the next step is to bound the remainder R defined in (2.20), and use it in
order to show the approximation result later.

Lemma 2.4.6 We assume that Assumptions 2.2.1, 2.2.3, 2.2.4, and 2.2.10 hold.
Then for all p > 1 there exists a constant C > 0 such that

E sup
T∈[0,τ∗]

‖R(T )‖pα ≤ Cεp−6pκ. (2.33)

Proof. For the bound on R we bound all terms in (2.20) separately. The estimates
rely on Assumption 2.2.4 and the inequality ‖ψ‖γ ≤ C‖ψ‖γ+δ for all γ ∈ R and
δ ≥ 0. Moreover, we use that Bc(a(τ),A−1s ψ(τ)) ∈ N (finite dimensional) and
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A−1s being a bounded linear operator on S ⊂ Hα. Thus, we obtain for all times
up to the stopping time τ ∗ that∥∥ε2Bc(a,A−1s ψ)

∥∥
α
≤ Cε2

∥∥Bc(a,A−1s ψ)
∥∥
α−β

≤ Cε2 ‖a‖α
∥∥A−1s ψ

∥∥
α

≤ Cε2 ‖a‖α ‖ψ‖α .

Using the definition of τ ∗, we obtain

E sup
[0,τ∗]

‖ε2Bc(a,A−1s ψ)‖pα ≤ Cε2p−4pκ. (2.34)

For the second term in (2.20) with T ≤ τ ∗ ≤ T0∥∥∥2ε2
∫ T

0

Bc(Bc(a, ψ),A−1s ψ)dτ
∥∥∥
α
≤ Cε2

∫ T

0

‖Bc(Bc(a, ψ),A−1s ψ)‖α−βdτ

≤ Cε2T sup
[0,τ∗]

‖Bc(a, ψ)‖α‖A−1s ψ‖α

≤ Cε2T sup
[0,τ∗]

‖a‖α‖ψ‖2α

≤ Cε2−7κ. (2.35)

Analogously, for the third term in (2.20)∥∥∥ε3 ∫ T

0

Bc(Bc(ψ, ψ),A−1s ψ)dτ
∥∥∥
α
≤ Cε3

∫ T

0

‖Bc(Bc(ψ, ψ),A−1s ψ)‖α−βdτ

≤ Cε3T sup
[0,τ∗]

‖ψ‖3α

≤ Cε3−9κ. (2.36)

The 4th term in (2.20) is bounded by∥∥∥ε2 ∫ T

0

Bc(Lca,A−1s ψ)dτ
∥∥∥
α
≤ Cε2

∫ T

0

‖Bc(Lca,A−1s ψ)‖α−βdτ

≤ Cε2 sup
[0,τ∗]

‖Lca‖α‖A−1s ψ‖α

≤ Cε2 sup
[0,τ∗]

‖a‖α‖ψ‖α

≤ Cε2−4κ, (2.37)
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where we used ‖Lca‖α ≤ C‖Lca‖α−β , as N is finite dimensional.
For the 5th term in (2.20)∥∥∥2ε

∫ T

0

Bc(a,A−1s Bs(a, ψ))dτ
∥∥∥
α
≤ Cε

∫ T

0

‖Bc(a,A−1s Bs(a, ψ))‖α−βdτ

≤ Cε sup
[0,τ∗]

‖a‖α‖A−1s Bs(a, ψ)‖α

≤ Cε sup
[0,τ∗]

‖a‖2α‖ψ‖α

≤ Cε1−5κ. (2.38)

The 6th term in (2.20) is bounded by∥∥∥ε3 ∫ T

0

Bc(Lcψ,A−1s ψ)dτ
∥∥∥
α
≤ Cε3

∫ T

0

‖Bc(Lcψ(τ),A−1s ψ(τ))‖α−βdτ

≤ Cε3 sup
[0,τ∗]

‖Lcψ‖α‖A−1s ψ)‖α

≤ Cε3 sup
[0,τ∗]

‖ψ‖2α

≤ Cε3−6κ. (2.39)

The 7th term in (2.20) is bounded by∥∥∥ε∫ T

0

Bc(a,A−1s Lsa)dτ
∥∥∥
α
≤ Cε

∫ T

0

‖Bc(a,A−1s Lsa)‖α−βdτ

≤ Cε sup
[0,τ∗]

‖a‖α‖A−1s Lsa‖α

≤ Cε sup
[0,τ∗]

‖a‖α‖Lsa‖α−m

≤ Cε sup
[0,τ∗]

‖a‖2α

≤ Cε1−2κ. (2.40)

The 8th term in (2.20) is completely analogous. We have∥∥∥ε2 ∫ T

0

Bc(a,A−1s Lsψ)dτ
∥∥∥
α
≤ Cε2−4κ. (2.41)

Moreover for the 9th term in (2.20):∥∥∥ε ∫ T

0

Bc(ψ, ψ)dτ
∥∥∥
α
≤ Cε

∫ T

0

‖Bc(ψ, ψ)‖α−βdτ ≤ Cε1−6κ . (2.42)
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For the 10th term in (2.20)∥∥∥ε ∫ T

0

Lcψdτ
∥∥∥
α
≤ Cε

∫ T

0

‖Lcψ‖αdτ

≤ Cε

∫ T

0

‖Lcψ‖α−βdτ

≤ Cε sup
[0,τ∗]

‖ψ(τ)‖α

≤ Cε1−3κ. (2.43)

The 11th term in (2.20) is bounded by∥∥∥ε2 ∫ T

0

Bc(a,A−1s Bs(ψ, ψ))dτ
∥∥∥
α
≤ Cε2

∫ T

0

‖Bc(a,A−1s Bs(ψ, ψ))‖α−βdτ

≤ Cε2 sup
[0,τ∗]

‖a‖α‖A−1s Bs(ψ, ψ)‖α

≤ Cε2 sup
[0,τ∗]

‖a‖α‖ψ‖2α

≤ Cε2−7κ. (2.44)

For the stochastic integral ε2
∫ T
0
Bc(dW̃c,A−1s ψ) in (2.20) note that the covariance

operator of Wc is Qc = PcQPc. Define

£(τ)u := Bc(u(τ),A−1s ψ(τ)),

to obtain

E sup
T∈[0,τ∗]

∥∥∥∫ T

0

Bc(dW̃c(τ),A−1s ψ(τ))
∥∥∥p
α

= E sup
T∈[0,τ∗]

∥∥∥∫ T

0

£(τ)dW̃c(τ)
∥∥∥p
α
.

By Burkholder-Davis-Gundy (cf. Theorem 1.2.4 in [32]) we derive

E sup
T∈[0,τ∗]

∥∥∥∫ T

0

£dW̃c

∥∥∥p
α

= E sup
T∈[0,τ∗]

∥∥∥∫ T

0

Dα£dW̃c

∥∥∥p
≤ E

(∫ τ∗

0

‖Dα£Q
1
2
c ‖2HSdτ

) p
2

= CE
(∫ τ∗

0

∞∑
k=1

‖Dα£Q
1
2
c gk‖2dτ

) p
2
,
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where (gk)k∈N is any orthonormal basis in H and Dα was defined in Definition
2.2.2. The space HS is the space of Hilbert-Schmidt operators on H, equipped
with the norm ‖Ψ‖HS = Trace[ΨΨ∗]. Hence,

E sup
T∈[0,τ∗]

∥∥∥∫ T

0

£dW̃c

∥∥∥p
α
≤ E

(∫ τ∗

0

∞∑
k=1

‖DαBc(Q
1
2
c gk,A−1s ψ)‖2dτ

) p
2

= CE
(∫ τ∗

0

∞∑
k=1

‖Bc(Q
1
2
c gk,A−1s ψ)︸ ︷︷ ︸
∈N

‖2αdτ
) p

2

≤ CE
( ∞∑
k=1

sup
[0,τ∗]

‖Bc(Q
1
2
c gk,A−1s ψ)‖2α−β

) p
2

≤ C
( ∞∑
k=1

‖Q
1
2
c gk‖2α

) p
2E sup

[0,τ∗]

‖A−1s ψ(τ)‖pα

≤ Cε−3pκ,

where we used the fact that the norm in HS is invariant under taking the adjoint,
and independent of the choice of the basis. To be more precise

∞∑
k=1

∥∥∥Q 1
2
c gk

∥∥∥2
α

=
∞∑
k=1

∥∥∥DαQ
1
2
c gk

∥∥∥2 =
∥∥∥DαQ

1
2
c

∥∥∥2
HS

adjoint
=

∥∥∥Q 1
2
cD

α
∥∥∥2
HS

indep.
=

of basis

∞∑
k=1

∥∥∥Q 1
2
cD

αek

∥∥∥2
=

∞∑
k=1

〈
Q

1
2
cD

αek, Q
1
2
cD

αek

〉
=

∞∑
k=1

〈QcD
αek, D

αek〉 =
∞∑
k=1

k2α 〈PcQPcek, ek〉

=
∞∑
k=1

k2α 〈QPcek, Pcek〉 =
n∑
k=1

k2α 〈Qek, ek〉

=
n∑
k=1

k2α
∥∥∥Q 1

2 ek

∥∥∥2 ≤ C.

Thus,

E sup
T∈[0,τ∗]

∥∥∥∫ T

0

Bc(dW̃c(τ),A−1s ψ(τ))
∥∥∥p
α
≤ Cε2p−3pκ. (2.45)
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For the stochastic integral ε
∫ T
0
Bc(a,A−1s dW̃s) in (2.20), note that the covariance

operator of W̃s is Qs = PsQPs. Similar to the previous estimate we define

£1(τ)u := Bc(a(τ),A−1s u).

Hence,

E
(

sup
T∈[0,τ∗]

∥∥∥∥ε∫ T

0

Bc(a(τ), A−1S dW̃s)

∥∥∥∥p
α

)
= E

(
sup

T∈[0,τ∗]

∥∥∥∥ε∫ T

0

£1(τ)dW̃s

∥∥∥∥p
α

)
= E

(
sup

T∈[0,τ∗]

∥∥∥∥ε∫ T

0

Dα£1(τ)dW̃s

∥∥∥∥p
L2

)
.

By Burkholder-Davis-Gundy (cf. Theorem 1.2.4 in [32]), we obtain

E sup
T∈[0,τ∗]

∥∥∥∥ε∫ T

0

Bc(a(τ), A−1S dW̃s)

∥∥∥∥p
α

≤ CεpE
(∫ τ∗

0

‖Dα£1(τ)‖2L2
0
dτ
) p

2

= CεpE
(∫ τ∗

0

∥∥∥Dα£1(τ)Q
1
2
s

∥∥∥2
HS

dτ
) p

2

= CεpE
(∫ τ∗

0

∞∑
k=1

∥∥∥Dα£1(τ)Q
1
2
s gk

∥∥∥2
L2
dτ
) p

2

= CεpE
(∫ τ∗

0

∞∑
k=1

∥∥∥DαBc(a(τ), A−1S Q
1
2
s gk)

∥∥∥2
L2
dτ
) p

2

= CεpE
(∫ τ∗

0

∞∑
k=1

∥∥∥Bc(a(τ), A−1S Q
1
2
s gk)

∥∥∥2
α
dτ
) p

2

≤ CεpE
( ∞∑
k=1

(
sup
[0,τ∗]

∥∥∥Bc(a,A
−1
S Q

1
2
s gk)

∥∥∥2
α−β

)
· τ ∗
) p

2

≤ CεpE
(

sup
[0,τ∗]

‖a‖Pα
)( ∞∑

k=1

∥∥∥A−1S Q
1
2
s gk

∥∥∥2
α

) p
2
.
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Thus,

E
(

sup
T∈[0,τ∗]

∥∥∥∥ε∫ T

0

Bc(a(τ), A−1S dW̃s)

∥∥∥∥p
α

)
≤ Cεp−pκ

( ∞∑
k=1

∥∥∥A−1S Q
1
2
s gk

∥∥∥2
α

) p
2

= Cεp−pκ
( ∞∑
k=n+1

k2α

λ2k

∥∥∥Q 1
2 ek

∥∥∥2 ) p2
≤ Cεp−pκ, (2.46)

where we used

∞∑
k=1

‖A−1s Q
1
2
s gk‖2α = ‖DαA−1s Q

1
2
s ‖2HS = ‖Q

1
2
sA−1s Dα‖2HS

=
∞∑
k=1

‖Q
1
2
sA−1s Dαek‖2 =

∞∑
k=1

k2α

λ2k
‖Q

1
2
s ek‖2

=
∞∑
k=1

k2α

λ2k
〈PsQPsek, ek〉

=
∞∑

k=n+1

k2α

λ2k
‖Q

1
2 ek‖2

≤ C .

The last step follows from Assumption 2.2.10, as λk →∞.

Analogously, for the last integral ε
∫ T
0
Bc(dW̃c(τ),A−1s dW̃s(τ)) in (2.20), we

obtain

E
(

sup
T∈[0,τ∗]

∥∥∥∥ε∫ T

0

Bc(dW̃c(τ),A−1s dW̃s(τ))

∥∥∥∥p
α

)
= εpE sup

T∈[0,τ∗]

∥∥∥∥∥
∫ T

0

n∑
k=1

∞∑
l=n+1

Bc(ek,−λ−1l el)dßkdßl

∥∥∥∥∥
p

α

= εp

∥∥∥∥∥
n∑
k=1

∞∑
l=n+1

Bc(ek, λ
−1
l el) 〈Qek, el〉 · τ ∗

∥∥∥∥∥
p

α

≤ Cεp
( n∑
k=1

∞∑
l=n+1

∥∥Bc(ek, λ
−1
l el)

∥∥
α−β |〈Qek, el〉|

)p
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Using Assumptions 2.2.4 and 2.2.10, we obtain

E
(

sup
T∈[0,τ∗]

∥∥∥∥ε ∫ T

0

Bc(dW̃c(τ),A−1s dW̃s(τ))

∥∥∥∥p
α

)
≤ Cεp

( n∑
k=1

∞∑
l=n+1

1

λl
‖ek‖α ‖el‖α |〈Qek, el〉|

)p
≤ Cεp

( n∑
k=1

∞∑
l=n+1

1

λl
kαlα |〈Qek, el〉|

)p
≤ Cεp. (2.47)

As we supposed κ < 1
7

in the definition of τ ∗, we can collect all term in the
equations from (2.34) until (2.47). This implies the result. 2

In order to prove now the approximation result, we first need the following
a-priori estimate for solutions of the amplitude equation.

Lemma 2.4.7 Let Assumptions 2.2.1, 2.2.3, 2.2.8 and 2.2.10 hold. Define the
stochastic process b(T ) in N with E‖b(0)‖ ≤ C as the solution of

b(T ) = b(0) +

∫ T

0

Lcb(τ)dτ − 2

∫ T

0

F(b(τ))dτ + W̃c(T ). (2.48)

Then for T0 > 0 there exists a constant C > 0 such that

E sup
T∈[0,T0]

‖b(T )‖pα ≤ C . (2.49)

We note that all norms in a finite dimensional space are equivalent. Thus for
simplicity of notation in the proof we use only the standard Euclidean norm and
suppose that b ∈ Rn.
Proof. The existence and uniqueness of solutions for equation (2.48) is standard.
To verify the bound in (2.49) we define X as

X(T ) = b(T )− W̃c(T ) . (2.50)

Substituting into (2.48), we obtain

∂TX = Lc(X + W̃c)− 2F(X + W̃c). (2.51)
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Taking the scalar product 〈·, X〉 on both sides of (2.51), yields

1

2
∂T ‖X‖2 = 〈Lc(X + W̃c), X〉 − 2〈F(X + W̃c), X〉.

Using Young and Cauchy-Schwarz inequalities and Assumption 2.2.8, yields

∂T ‖X‖2 ≤ C + C
∥∥∥ ∼
Wc

∥∥∥4 − δ

2
‖X‖4 .

Neglecting the fourth power, integrating from 0 to T , taking p
2
-th power, and fi-

nally the expectation, we obtain

E sup
[0,T0]

‖X‖p ≤ CT
1
2
p

0 + CT
1
2
p

0 E sup
[0,T0]

∥∥∥W̃c

∥∥∥2p ≤ C.

Togather with (2.50), this implies

E sup
[0,T0]

‖b‖p ≤ CE sup
[0,T0]

‖X‖p + CE sup
[0,T0]

∥∥∥W̃c

∥∥∥p ≤ C.

2

Definition 2.4.8 Define the set Ω∗ ⊂ Ω such that all these estimates

sup
[0,τ∗]

‖ψ‖α < Cε−3κ , (2.52)

sup
[0,τ∗]

‖R‖α < Cε1−7κ , (2.53)

and
sup
[0,τ∗]

‖b‖α < Cε−
κ
2 , (2.54)

hold on Ω∗.

Remark 2.4.9 Ω∗ has probability

P(Ω∗) ≥ 1−P(sup
[0,τ∗]

‖ψ‖α ≥ Cε−3κ)−P(sup
[0,τ∗]

‖R‖α ≥ Cε1−7κ)−P(sup
[0,τ∗]

‖b‖α ≥ Cε−
κ
2 ).

Using Chebychev inequality and Lemmas 2.4.4, 2.4.6 and 2.4.7, we obtain for
sufficiently large q > 0

P(Ω∗) ≥ 1− C[εqκ + εqκ + ε
1
2
qκ]

≥ 1− Cε
1
2
qκ ≥ 1− Cεp. (2.55)
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Theorem 2.4.10 We assume that Assumption 2.2.1, 2.2.3, 2.2.4, 2.2.8 and 2.2.10
hold. Let b be a solution of (2.48) and a as defined in (2.19) with ‖a(0)‖ ≤ C on
Ω∗. If the initial conditions satisfy a(0) = b(0), then, for κ < 1

7
, we obtain

sup
T∈[0,τ∗]

‖a(T )− b(T )‖α ≤ Cε1−7κ, (2.56)

and

sup
T∈[0,τ∗]

‖a(T )‖α ≤ Cε−
κ
2 , (2.57)

on Ω∗.

Proof. Define ϕ(T ) as

ϕ(T ) := a(T )−R(T ).

From (2.19) we obtain

ϕ(T ) = a(0) +

∫ T

0

Lc [ϕ(τ) +R(τ)] dτ − 2

∫ T

0

F(ϕ(τ) +R(τ))dτ + W̃c(T ).

(2.58)
Define now h(T ) by

h(T ) := b(T )− ϕ(T ).

Subtracting (2.58) from (2.48), we obtain

h(T ) =

∫ T

0

Lch(τ)dτ −
∫ T

0

LcR(τ)dτ + 2

∫ T

0

[F(b− h+R)−F(b)](τ)dτ.

Thus,

∂Th = Lch− LcR + 2[F(b− h+R)−F(b)] . (2.59)

Taking the scalar product 〈·, h〉 on both sides of (2.59), yields

1
2
∂T ‖h‖2 = 〈∂Th, h〉 = 〈Lch, h〉 − 〈LcR, h〉+ 2〈F(b− h+R)−F(b), h〉 .

Using Young and Cauchy-Schwarz inequalities and (2.5), we obtain the following
linear ordinary differential inequality

∂T ‖h‖2 ≤ C[‖h‖2 + ‖h‖4] + C ‖R‖2
[
1 + ‖R‖2 + ‖b‖2 + ‖b‖4 + ‖b‖2 ‖R‖2

]
≤ C[‖h‖2 + ‖h‖4] + C ‖R‖2

[
c+ c ‖R‖4 + c ‖b‖4

]
.
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Using (2.53) and (2.54), we obtain

∂T ‖h‖2 ≤ C[‖h‖2 + ‖h‖4] + Cε2−14κ on Ω∗.

As long as ‖h‖ < 1, we obtain

∂T ‖h‖2 ≤ 2C ‖h‖2 + Cε2−14κ.

Integrating from 0 to T and using Gronwall’s lemma, we obtain

‖h‖2 ≤ Cε2−14κ.

Thus,
sup
[0,τ∗]

‖h‖ ≤ Cε1−7κ on Ω∗. (2.60)

We finish the first part by using (2.53), (2.60) and

sup
[0,τ∗]

‖a− b‖ = sup
[0,τ∗]

‖h−R‖ ≤ sup
[0,τ∗]

‖h‖+ sup
[0,τ∗]

‖R‖.

For the second part of the theorem we consider

sup
[0,τ∗]

‖a‖ ≤ sup
[0,τ∗]

‖a− b‖+ sup
[0,τ∗]

‖b‖ .

Using the first part and (2.54), we obtain (2.57). 2

Finally, we use the results previously obtained to prove the main result of
Theorem 2.3.1 for the approximation of the solution of the SPDE (2.1).
Proof of Theorem 2.3.1. For the stopping time we note that

Ω ⊃ {τ ∗ = T0} ⊇ { sup
T∈[0,τ∗]

‖a(T )‖α < ε−κ, sup
T∈[0,τ∗]

‖ψ(T )‖α < ε−3κ} ⊇ Ω∗.

Now let us turn to the approximation result. Using (2.14) and triangle inequal-
ity, we obtain

sup
T∈[0,τ∗]

‖u(ε−2T )− εb(T )‖α ≤ ε sup
[0,τ∗]

‖a− b‖α + ε2 sup
[0,τ∗]

‖ψ‖α.

From (2.52) and (2.56), we obtain

sup
t∈[0,ε−2T0]

‖u(t)− εb(ε2t)‖α = sup
t∈[0,ε−2τ∗]

‖u(t)− εb(ε2t)‖α ≤ Cε2−7κ on Ω∗.

Hence,

P

(
sup

t∈[0,ε−2T0]

‖u(t)− εb(ε2t)‖α > Cε2−7κ

)
= 1− P(Ω∗) .

Using (2.55), yields (2.21). 2
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2.5 Applications

There are numerous examples in the physics literature of equations with quadratic
nonlinearities where our theory applies. Before we give examples, we suppose
in all our applications for simplicity that W is a cylindrical Wiener process on H
with a covariance operator Q defined by Qek = α2

kek where (αk)k is a bounded
sequence of real numbers and ek are the eigenfunctions of the dominant linear
operator.

2.5.1 Burgers’ Equation

The first example is the Burgers’ equation (cf. (2.2)) on the interval [0, π], with
Dirichlet boundary conditions. We take

H = L2([0, π]), ek(x) =
√

2
π

sin(kx), and N = span{sin}.

We note that Assumption 2.2.1 is true, where the eigenvalues of −A = −∂2x − 1

are λk = k2 − 1 with m = 2 and limk→∞ λk = ∞. If we fix Pc to be the H-
orthogonal projection onto N , then both Pc and Ps commute with A.

Moreover, all conditions of Assumption 2.2.4 are satisfied with

B(u, v) = 1
2
∂x(uv),

as follows:

PcB(u, u) = Pc
[
γ2 sin(x) cos(x)

]
= 0 for u = γ sin ∈ N ,

and for α = 1
4

and β = 5
4
< m, we obtain

2‖B(u, v)‖H−1 = ‖∂x(uv)‖H−1 ≤ ‖uv‖L2

≤ C‖u‖L4‖v‖L4 ≤ C‖u‖
H

1
4
‖v‖

H
1
4
,

where we used Sobolev embedding fromH1/4 into L4. We derive after a straight-
forward calculation that

F(γ1 sin, γ2 sin, γ3 sin) =
1

24
γ1γ2γ3 sin .

This function is trilinear, continuous, and satisfies the Conditions (2.4) and (2.5)
as follows

〈γ1 sin,F(γ1 sin)〉 = Cγ41 > 0 ,
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and
〈F(γ1 sin, γ1 sin, γ2 sin), γ2 sin〉 =

π

48
γ21γ

2
2 > 0 .

Now our main theorem states that

u(t) = εγ(ε2t) sin +O(ε2−) ,

where
γ′ = νγ − 1

12
γ3 + α1β̃

′ ,

with a rescaled standard Brownian motion β̃.

2.5.2 Surface Growth Model

The second example that falls into the scope of our work is the growth of rough
amorphous surfaces. The equation is of the type

∂th = −42h− µ4h−4|∇h|2 + σ∂tW (t). (2.61)

Here4 is Laplacian with respect to periodic boundary conditions on [0, 2π]. Sup-
pose initial condition h(0) = 0 corresponding to an initially flat surface.

For this model we consider µ = 1 + ε2ν and σ = ε2. Hence,

A = −42 −4, L = −ν4 and B(u, v) = −4(∂xu · ∂xv).

We take

ek(x) =


1√
π

sin(kx) if k > 0,
1√
π

cos(kx) if k < 0,
1√
2π

if k = 0,

and

H = {u ∈ L2([0, 2π]) :

∫ 2π

0

udx = 0} and N = span{sin, cos}.

The eigenvalues of−A = 42+4 are λk = k4−k2 withm = 4 and limk→∞ λk =

∞. So, Assumption 2.2.1 is true.
If we define u(t) := h(t)− h0(t)e0, then we obtain

∂tu = −42u− µ4u−4|∇u|2 + σ
∑
k 6=0

αk∂tβk(t)ek, (2.62)
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and
h0 = σα0β0(t). (2.63)

If u = u1 sin +u−1 cos ∈ N , then

B(u, u) = 2
[
u21 − u2−1

]
cos(2x)− 4u1u−1 sin(2x),

and
PcB(u, u) = 0,

and for α = 5
4

and β = 13
4
< m, we obtain

‖B(u, v)‖H−2 = ‖4(∂xu · ∂xv)‖H−2 ≤ c‖∂xu · ∂xv‖L2

≤ c‖u‖
H

5
4
‖v‖

H
5
4
.

Hence, all conditions of Assumption 2.2.4 are satisfied. Moreover, it is easy to
check that Assumption 2.2.8 also holds true.

For the symmetric version of F we obtain

F(u, u, w) =
2

3
Bc(u,A−1s Bs(u,w)) +

1

3
Bc(w,A−1s Bs(u, u))

= 1
18

[(3u21w1 + w1u
2
−1 + 2u1w−1u−1) sin

+(u21w−1 + 3w−1u
2
−1 + 2u1w1u−1) cos],

where w = w1 sin +w−1 cos ∈ N . Now

〈F(u), u〉 ≥ 1
6π
‖u‖4 > 0 ∀ u 6= 0.

If u 6= 0 and w 6= 0, then

〈F(u, u, w), w〉 =
π

18
[3(u1w1 + w−1u−1)

2 + (w1u−1 − u1w−1)2] > 0 .

The amplitude equation for (2.62) is a system of two stochastic ordinary differen-
tial equations:

dγi = [νγi − 1
3
γi(γ

2
1 + γ2−1)]dt+ αidβ̃i for i = ±1,

where β̃i(T ) = εβi(ε
2T ) rescaled Brownian motions.

Now our main theorem states that

u(t) = εγ(ε2t) ·
(

sin

cos

)
+O(ε2−) .
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Chapter 3

Amplitude Equations for SPDEs
with Cubic Nonlinearities

3.1 Introduction

Stochastic partial differential equations (SPDEs) with cubic nonlinearity appear in
several applications, for instance the Swift-Hohenberg equation, which was first
used as a toy model for the convective instability in the Rayleigh-Bénard problem
(see [16] or [22]). The simplest example is the well known real valued Ginzburg-
Landau equation, which depending on the underlying application is also called
Allen-Cahn, Chaffee-Infante or nonlinear heat equation. Moreover, we briefly
discuss a model from surface growth proposed by Lai and Das-Sama (cf. [29] and
see also [31]).

Recently the impact of degenerate noise not acting directly on the dominant
pattern was studied for equations of Burgers type formally by Roberts [40] and
later rigorously by Blömker, Hairer and Pavliotis [9]. Here noise is transported
via nonlinear interaction to the dominant modes.

Our current research was initiated by an observation of Axel Hutt and col-
laborators [23–25]. Using a formal argument based on centre manifold theory,
they showed that noise constant in space leads to a deterministic amplitude equa-
tion, which is stabilized by the impact of additive noise. Thus the noise shifts the
bifurcation point. The aim of this chapter is to make these results rigorous.
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3.2. Formal Derivation

The general prototype of equations under consideration is of the type

du(t) =
[
Au(t) + ε2Lu(t) + F(u(t))

]
dt+ εdW (t), (3.1)

whereA is non-positive self-adjoint operator with finite dimensional kernel, ε2Lu
is a small deterministic perturbation, F is a nonlinearity, and W is some finite
dimensional Gaussian noise.

Our aim of this chapter is to establish rigorously an amplitude equation for
this quite general class of SPDEs with cubic nonlinearities given by (3.1). In the
examples we investigate whether additive degenerate noise leads to stabilization
of the solutions, or not.

In this chapter we follow [13] and focus on cubic nonlinearities only. The case
of quadratic nonlinearities is significantly different. It was already considered
in [6].

This chapter is organized as follows. In the next section, we discuss the for-
mal derivation of our results, while giving the precise assumptions and statements
of the main results in Section 3.3. Section 3.4 give bounds on the non-dominant
modes, while Section 3.5 provides averaging results, in order to remove the im-
pact of the higher modes on the dominant ones. In Section 3.6, we study the
approximation via amplitude equations. Finally, in Section 3.7 we apply our the-
ory to the stochastic Swift-Hohenberg equation, Ginzburg-Landau / Allen-Cahn
equation and surface growth model.

3.2 Formal Derivation

Here we study the behavior of solutions u of (3.1) on the natural slow time-scale
of order ε−2, given by the distance from bifurcation.

So, we consider u on the slow time and split it into the dominant part a ∈ N
and the orthogonal part ψ ∈ S.

u(t) = εa(ε2t) + εψ(ε2t) (3.2)

Rescaling to the slow time-scale T = ε2t, leads to the following system of equa-
tions:

da =
[
ε−2Aca+ Lca+ Lcψ + Fc(a+ ψ)

]
dT + ε−1dW̃c , (3.3)
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and
dψ =

[
ε−2Asψ + Lsa+ Lsψ + Fs(a+ ψ)

]
dT + ε−1dW̃s , (3.4)

where W̃ (T ) := εW (ε−2T ) is a rescaled version of the driving Wiener process
W . For short-hand notation, we use the subscripts c and s for projection onto N
and S, i.e. Ac = PcA and As = PsA for short.

Let us suppose that the projections Pc and Ps commute not only with A, but
also with L. Moreover suppose that the noise is degenerate and acts only on S.
Then the system (3.3)-(3.4) takes the form

da = [Lca+ Fc(a+ ψ)] dT, (3.5)

and
dψ =

[
ε−2Asψ + Lsψ + Fs(a+ ψ)

]
dT + ε−1dW̃s . (3.6)

Formally, we immediately see that ψ is a fast Ornstein-Uhlenbeck process
(OU, for short) in first approximation. The rigorous statement can be found in
Lemma 3.4.1.

Thus, we can eliminate ψ in Equation (3.5) by averaging. In oder to derive
error estimates, this procedure will be in the proofs based on the Itô-Formula (see
Lemma 3.5.1).

3.2.1 The Impact of Noise

Let us discuss the averaging and the impact of the noise in some more detail here.
Consider for simplicity of the argument instead of ψ here some real valued fast
OU-process Z given by

Z(T ) := αε−1
∫ T

0

e−ε
−2λ(T−τ)dβ̃(τ),

where β̃(T ) := εβ(ε−2T ) denotes a rescaled version of a Brownian motion β on
the fast time-scale.

We apply Itô formula to Z and Z2, in order to obtain

ZdT =
αε

λ
dβ̃ − ε2

λ
dZ.

and

Z2dT =
α2

2λ
dT +

εα

λ
Zdβ̃ − ε2

2λ
dZ2.
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Thus, on the slow time-scale T we can suppose that in integrals Z is small due to
averaging, and a square of Z can be replaced by a constant. See Lemma 3.5.1 for
a rigorous statement. Note that the next order corrections of order ε are always
Martingales.

We see in Lemma 3.4.2 that for fast OU-processes Z = O(ε−κ0) for arbitrarily
small κ0 > 0. Thus, we obtain formally that Z is a white noise on the slow time
scale:

Z(T ) = ε
α

λ
∂T β̃ + error,

where this error is small only in the sense of distributions, for example inH−1.

3.2.2 Amplitude Equation

One main result of the chapter is the following approximation by amplitude equa-
tions. Suppose for simplicity that the initial condition is sufficiently small, then
we obtain for u

u(t) ' εb(ε2t) + εZ(ε2t) +O(ε2−), (3.7)

where Z is a fast OU-process and b is the solution of the amplitude equation on
the slow time-scale

b′(T ) = Lcb(T ) + Fc(b(T )) +
N∑

k=n+1

3α2
k

2λk
Fc(b(T ), ek, ek). (3.8)

The exact form of the additional linear terms is discussed later.
To illustrate this approximation result stated later in Theorem 3.3.6, we discuss

here the Swift-Hohenberg equation subject to periodic boundary conditions on
[0, 2π] forced by spatially constant noise:

∂tu = −(1 + ∂2x)
2u+ νε2u− u3 + εα∂tβ. (3.9)

Rescaling the solution u of (3.9) to the slow time-scale by u(t) = εv(ε2t), our
main theorem in this case states that v is of the type

v(T ) ' γ1(T ) sin +γ−1(T ) cos +ε
α√
2π
∂T β̃(T ) +O(ε1−),

where γ1 and γ−1 are the solutions of the amplitude equations

∂Tγi = (ν − 3α2

4π
)γi − 3

4
γi(γ

2
1 + γ2−1) for i = ±1.
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We note that if α is large compared to ν, then (ν − 3α2

4π
) is negative. In this case

the degenerate additive noise stabilizes the dynamics of the dominant modes.

3.3 Assumptions and Main Results

This section summarizes all assumptions necessary for our results. For the linear
operator A in (3.1) on the Hilbert-space H. We assume that A satisfies Assump-
tion 2.2.1.

Assumption 3.3.1 (Operator L) Let L : Hα → Hα−β for some β ∈ [0,m) be a
linear continuous mapping that commutes with Pc and Ps.

For the nonlinearity F we assume that:

Assumption 3.3.2 Assume that F : (Hα)3 → Hα−β with β as in Assumption
3.3.1 is trilinear, symmetric and satisfies the following conditions, for someC > 0,

‖F(u, v, ω)‖α−β ≤ C ‖u‖α ‖v‖α ‖ω‖α ∀ u, v, ω ∈ H
α, (3.10)

〈Fc(u), u〉 ≤ 0 ∀ u ∈ N , (3.11)

and
〈Fc(u, u, w), w〉 ≤ 0 ∀ u, w ∈ N . (3.12)

We use F(u) = F(u, u, u) and Fc = PcF for short.
For the noise we suppose:

Assumption 3.3.3 Let W be a cylindrical Wiener process on H. Suppose for
t ≥ 0,

W (t) =
N∑

k=n+1

αkβk(t)ek for N ≥ n+ 1,

where the (βk)k∈{n+1,...,N} are independent, standard Brownian motions in R and
the (αk)k∈{n+1,...,N} are real numbers.

We define the fast OU processes Z and its coefficients Zk(T ) by

Zk(T ) := αkε
−1
∫ T

0

e−ε
−2λk(T−τ)dβ̃k(τ), (3.13)
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for k ∈ {n+ 1, . . . , N} and

Z(T ) :=
N∑

k=n+1

Zk(T )ek, (3.14)

where β̃k(T ) := εβk(ε
−2T ) is a rescaled version of the Brownian motion.

Remark 3.3.4 We take N <∞ in the above assumption for simplicity of presen-
tation. Nevertheless most results are still true for N =∞, using the same method
of proof. We only need to control the convergence of various infinite series, which
is possible if the noise is not too irregular, which means for αk decaying suffi-
ciently fast for k →∞.

For our result we rely on a cut off argument. We consider only solutions
u = (a, ψ) that are not too large, as given by the next definition.

Definition 3.3.5 For the N × S-valued stochastic process (a, ψ) defined in (3.2)
we define, for some T0 > 0 and κ ∈ (0, 1

12
), the stopping time τ ∗ as

τ ∗ := T0 ∧ inf
{
T > 0 : ‖a(T )‖α > ε−κ or ‖ψ(T )‖α > ε−κ

}
. (3.15)

The main result for our aim is:

Theorem 3.3.6 (Approximation) Under Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3
let u be a solution of (3.1) defined in (3.2) with the initial conditions u(0) =

εa(0) + εψ(0) with ‖u(0)‖α ≤ δεε for δε ∈ (0, ε−
1
3
κ) where a(0) ∈ N and

ψ(0) ∈ S, and b is a solution of (3.8) with b(0) = a(0). Then for all p > 1 and
T0 > 0 and all κ ∈ (0, 1

12
), there exists C > 0 such that

P
(

sup
t∈[0,ε−2T0]

∥∥∥u(t)− εb(ε2t)− εQ(ε2t)
∥∥∥
α
> ε2−

38
3
κ
)
≤ Cεp, (3.16)

where
Q(T ) = eε

−2TAsψ(0) + Z(T ), (3.17)

with Z(T ) defined in (3.14).

The proof will be given in Section 3.6 later. Let us first discuss the additional
error termQ in (3.17). We see that the first part ofQ decays exponentially fast on
the fast time-scale O(ε2). The second part is an OU-process Z , which is a small
noise term, as discussed in the formal derivation.
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Corollary 3.3.7 Under Assumptions of Theorem 3.3.6 and for arbitrary initial
condition u(0) we obtain

P
(

sup
t∈[0,ε−2T0]

∥∥∥u(t)−εb(ε2t)−εQ(ε2t)
∥∥∥
α
> ε2−

38
3
κ
)
≤ Cεp+P(‖u(0)‖α > εδε).

(3.18)

3.4 Bounds for the High Modes

In this section, we show that the non-dominant modes ψ are well approximated by
a fast OU-process. We also have to include an exponentially fast decaying term
depending on the initial conditions ψ(0).

Lemma 3.4.1 Under Assumption 2.2.1 and 3.3.1, 3.3.2, for κ > 0 from the defi-
nition of τ ∗ and p ≥ 1, there is a constant C > 0 such that,

E sup
T∈[0,τ∗]

∥∥∥ψ(T )−Q(T )
∥∥∥p
α
≤ Cε2p−3pκ, (3.19)

where Q(T ) is defined in (3.17). (i.e., ψ = Q+O(ε2−3κ))

Proof. The mild solution of (3.6) is

ψ(T ) = eε
−2TAsψ(0) +

∫ T

0

eε
−2(T−τ)As [Lsψ + Fs(a+ ψ)] (τ) dτ + Z(T ).

Using triangle inequality

∥∥∥ψ(T )−Q(T )
∥∥∥
α
≤

∥∥∥∫ T

0

eε
−2As(T−τ)Lsψ (τ) dτ

∥∥∥
α

+
∥∥∥∫ T

0

eε
−2As(T−τ)Fs(a (τ) + ψ (τ))dτ

∥∥∥
α

:= I1 + I2 .

55



Sec3.4 Bounds for the High Modes

We now bound these two terms separately. For the first term, we obtain by using
(1.2) for the semigroup

I1 ≤ Cε
2β
m

∫ T

0

e−ε
−2ν(T−τ)(T − τ)−

β
m ‖Lsψ(τ)‖α−β dτ

≤ Cε
2β
m

∫ T

0

e−ε
−2ν(T−τ)(T − τ)−

β
m ‖ψ(τ)‖α dτ

≤ Cε2 sup
τ∈[0,τ∗]

‖ψ(τ)‖α
∫ ε−2νT

0

e−ηη−
β
mdη

≤ Cε2−κ,

where we used the definition of τ ∗. For the second term, we obtain by using
Assumption 3.3.2 for F

I2 ≤ Cε
2β
m

∫ T

0

e−ε
−2ν(T−τ)(T − τ)−

β
m ‖Fs(a (τ) + ψ (τ))‖α−β dτ

≤ Cε
2β
m

∫ T

0

e−ε
−2ν(T−τ)(T − τ)−

β
m ‖a (τ) + ψ(τ)‖3α dτ

≤ Cε2 sup
τ∈[0,τ∗]

‖a (τ) + ψ(τ)‖3α
∫ ε−2νT

0

e−ηη−
β
mdη

≤ Cε2
(

sup
[0,τ∗]

‖a‖3α + sup
[0,τ∗]

‖ψ‖3α
)

≤ Cε2−3κ,

where we used again the definition of τ ∗. Combining all results, yields (3.19). 2

Let us now provide bounds on Z and thus later on ψ. These are also used to
show that ψ is not too large, even at time τ ∗. The following lemma shows that
Z = O(ε−κ0) for any κ0 > 0.

Lemma 3.4.2 Under Assumption 2.2.1 and 3.3.3, there is a constant C > 0,

depending on p > 1, αk, λk, κ0 > 0 and T0, such that

E sup
T∈[0,T0]

|Zk(T )|p ≤ Cε−κ0 ,

and
E sup
T∈[0,T0]

‖Z(T )‖pα ≤ Cε−κ0 ,

where Zk(T ) and Z(T ) are defined in (3.13) and (3.14), respectively.
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Proof. In order to prove the first part, we define

δ(T ) = e−λεT and γ(T ) =

∫ T

0

e2λετdτ =
1

2λε
(δ(T )−2 − 1),

where λε = ε−2λk, and

Y (T ) := αkε
−1δ(T ) · β (γ(T )) .

Note that Zk(T ) and Y (T ) are Gaussian stochastic process with

EZk(T ) = EY (T ) = 0,

and for S ≤ T

EZk(T )Zk(S) = EY (T )Y (S) = α2
kε
−2δ(T + S)γ(S).

Thus Zk(T ) is a version of Y (T ), and

E sup
T∈[0,T0]

|Zk(T )|p = E sup
T∈[0,T0]

|Y (T )|p =
(
αkε

−1)p E sup
T∈[0,T0]

|δ(T ) · β (γ(T ))|p

≤
(
αkε

−1)p n−1∑
i=0

E sup
T∈[Ti,Ti+1]

|δ(T )|p |β (γ(T ))|p ,

where (Ti)
n
i=0 is an equidistant decomposition of [0, T0]. Using Doob’s theorem,

we obtain

E sup
T∈[0,T0]

|Zk(T )|p ≤ Cp,αkε
−p

n−1∑
i=0

δ(Ti)
pγ(Ti+1)

p
2

≤ Cp,αkε
−pλ−p/2ε

n−1∑
i=0

[
δ(Ti)

δ(Ti+1)

]p
= Cp,αkλ

−p/2
k

n−1∑
i=0

epλεh = Cp,αkλ
−p/2
k

T0
h
epλεh,

where h = Ti+1 − Ti. Taking h = 1
λε
, we obtain

E sup
T∈[0,T0]

|Zk(T )|p ≤ Cε−2. (3.20)

By Hölder inequality we derive for all p ≥ 1 and sufficiently large q > 2
κ0

E sup
T∈[0,T0]

|Zk(T )|p ≤
(
E sup
T∈[0,T0]

|Zk(T )|pq
)1/q
≤ Cε−κ0 .
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In order to prove the second part, by Gaussianity,

E sup
T∈[0,T0]

‖Z(T )‖pα ≤ Cp

(
E sup
T∈[0,T0]

N∑
k=n+1

k2αZ2
k(T )

)p/2
≤ Cp

( N∑
k=n+1

k2αE sup
T∈[0,T0]

Z2
k(T )

)p/2
.

Using Hölder inequality for all q and (3.20) to obtain

E sup
T∈[0,T0]

Z2
k(T ) ≤

(
E sup
T∈[0,T0]

Z2q
k (T )

)1/q
≤ Cε−2/q.

Hence,
E sup
T∈[0,T0]

‖Z(T )‖pα ≤ Cε−p/q ≤ Cε−κ0 ,

for q large enough. 2

The following corollary states that ψ(T ) is with high probability much smaller
than ε−κ as asserted by the Definition 3.3.5 for T ≤ τ ∗. To be more precise,
ψ = O(δε + ε−κ0) for any κ0 > 0 and δε ∈ (0, ε−

1
3
κ). We will use this later to

show that τ ∗ ≥ T0 with high probability (cf. Remark 3.6.5 and proof of Theorem
3.3.6).

Corollary 3.4.3 Under the assumptions of Lemmas 3.4.1 and 3.4.2 with κ < 2
3
.

For p ≥ 0 and for κ0 > 0 there exist a constant C > 0 such that for ‖ψ(0)‖α ≤ δε

one has
E
(

sup
T∈[0,τ∗]

‖ψ(T )‖pα
)
≤ C(δε + ε−κ0) . (3.21)

Proof. From (3.19), by triangle inequality and Lemma 3.4.2, we obtain

E
(

sup
T∈[0,τ∗]

‖ψ(T )‖pα
)
≤ Cδε + Cε−κ0 + Cε2p−3pκ,

for κ < 2
3

we obtain (3.21). 2

Lemma 3.4.4 If Assumption 2.2.1 holds, then for q ≥ 1 there exists a constant
C > 0 such that for ‖ψ(0)‖α ≤ δε one has∫ T

0

∥∥∥eτε−2Asψ(0)
∥∥∥q
α
dτ ≤ Cδqεε

2.
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Proof. Using (1.2) we obtain∫ T

0

∥∥∥eε−2Asτψ(0)
∥∥∥q
α
dτ ≤ c

∫ T

0

e−qε
−2ωτ ‖ψ(0)‖qα dτ ≤

ε2

qω
‖ψ(0)‖qα .

This easily implies the claim. 2

3.5 Averaging over the Fast OU-Process

Let us turn to the averaging result for the OU-process Z . In Lemma 3.5.1, we
provide the first order approximation. It states that even powers of a real valued
OU-process average to a constant, while odd powers are small of order O(ε).

Lemma 3.5.1 Let X be a real valued stochastic process such that for some r ≥ 0

we have X(0) = O(ε−r). Fix any κ0 > 0. If dX = GdT with G = O(ε−r), then

1.
∫ T
0
XZkdτ = O(ε1−r−κ0),

2.
∫ T
0
XZ2

kdτ =
α2
k

2λk

∫ T
0
Xdτ +O(ε1−r−2κ0),

3.
∫ T
0
XZkZldτ = O(ε1−r−2κ0),

4.
∫ T
0
ZkZlZjdτ = O(ε1−3κ0),

5.
∫ T
0
Z2
kZldτ = O(ε1−3κ0),

6.
∫ T
0
Z3
kdτ = O(ε1−3κ0),

7.
∫ T
0
Z2
kZlZjdτ = O(ε1−4κ0),

8.
∫ T
0
Z2
kZ2

l dτ =
α2
kα

2
l

4λkλl

∫ T
0
dτ +O(ε1−4κ0),

9.
∫ T
0
Z4
kdτ =

3α4
k

4λ2k

∫ T
0
dτ +O(ε1−4κ0),

where Zk is defined in (3.13).

Proof. We note that

E sup
[0,T0]

|X|p ≤ CE sup
[0,T0]

|G|p ≤ Cε−pr.
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In order to prove the first part, we apply Itô formula to XZk

d(XZk) = ZkdX +XdZk
= GZkdT + ε−1αkXdβ̃k − λkε−2ZkXdT.

Integrating from 0 to T, we obtain

λk

∫ T

0

XZkdτ = −ε2X(T )Zk(T ) + ε2
∫ T

0

GZkdτ + εαk

∫ T

0

Xdβ̃k.

Taking the absolute value and using the triangle inequality we obtain, for p > 0,∣∣∣∣∫ T

0

XZkdτ
∣∣∣∣p ≤ cε2p |X(T )|p |Zk(T )|p+cε2p

∣∣∣∣∫ T

0

GZkdτ
∣∣∣∣p+cεp

∣∣∣∣∫ T

0

Xdβ̃k

∣∣∣∣p .
Taking expectation after supremum on both sides and using Lemma 3.4.2 yields

E sup
T∈[0,T0]

∣∣∣∣∫ T

0

XZkdτ
∣∣∣∣p ≤ Cε2p−pr−κ0 + CεpE sup

T∈[0,T0]

∣∣∣∣∫ T

0

Xdβ̃k

∣∣∣∣p .
We finish the first part by using the theorem of Burkholder-Davis-Gundy

E sup
T∈[0,T0]

∣∣∣∣∫ T

0

XZkdτ
∣∣∣∣p ≤ Cε2p−pr−κ0 + CεpE

(∫ T

0

X2(τ)dτ
) p

2 ≤ Cεp−pr−κ0 .

In order to prove the second part, we apply Itô formula to XZ2
k

d
(
XZ2

k

)
= Z2

kdX + 2XZkdZk +X (dZk)2

= GZ2
kdT − 2λkε

−2XZ2
kdT + 2ε−1αkZkXdβ̃k + ε−2α2

kXdT.

Integrating from 0 to T, we obtain∫ T

0

X

(
Z2
k −

α2
k

2λk

)
dτ = − ε2

2λk
X(T )Z2

k(T )+
ε2

2λk

∫ T

0

GZ2
kdτ+

αk
λk
ε

∫ T

0

XZkdβ̃k.

Taking the absolute value and using the triangle inequality we obtain, for p > 0,∣∣∣∣∫ T

0

X

(
Z2
k −

α2
k

2λk

)
dτ

∣∣∣∣p ≤ cε2p |XZk|p+cε2p
∣∣∣∣∫ T

0

GZ2
kdτ

∣∣∣∣p+cεp ∣∣∣∣∫ T

0

XZkdβ̃k(τ)

∣∣∣∣p .
By Burkholder-Davis-Gundy theorem, we obtain

E sup
T∈[0,T0]

∣∣∣∣∫ T

0

X

(
Z2
k −

α2
k

2λk

)
dτ

∣∣∣∣p ≤ Cε2p−pr−κ0 + CεpE
(∫ T0

0

X2Z2
kdτ
) p

2

≤ Cεp−pr−2κ0 ,
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and this finishes the second part. For the third part, we apply Itô formula toXZkZl
and integrate from 0 to T∫ T

0

XZkZldτ = − ε2

λk + λl
XZkZl +

ε2

λk + λl

∫ T

0

ZkZlGdτ

+
αlε

λk + λl

∫ T

0

XZkdβ̃l +
αkε

λk + λl

∫ T

0

XZldβ̃k.

Taking the absolute value and using Burkholder-Davis-Gundy theorem, we obtain
for p > 0

E
(

sup
T∈[0,T0]

∣∣∣ ∫ T

0

XZkZldτ
∣∣∣p) ≤ Cεp−pr−2κ0 .

For the fourth part, we apply Itô formula to ZkZlZj and integrating from 0 to T
we obtain

(λk + λl + λj)

∫ T

0

ZkZlZjdτ = −ε2ZkZlZj + αlε

∫ T

0

ZkZjdβ̃l

+αjε

∫ T

0

ZkZldβ̃j + αkε

∫ T

0

ZlZjdβ̃k.

Taking the absolute value and using Burkholder-Davis-Gundy theorem, we obtain
for p > 0

E
(

sup
T∈[0,T0]

∣∣∣ ∫ T

0

ZkZlZjdτ
∣∣∣p) ≤ Cε1−4κ0 .

For the fifth part, we apply Itô formula to Z2
kZl and integrating from 0 to T∫ T

0

Z2
kZldτ = − ε2

λl + 2λk
Z2
kZl +

αlε

λl + 2λk

∫ T

0

Z2
kdβ̃l

+
2αkε

λl + 2λk

∫ T

0

ZkZldβ̃k +
α2
k

λl + 2λk

∫ T

0

Zldτ. (3.22)

We note that from the first part. If we take X = 1 and choose r = 0, then we
obtain ∫ T

0

Zk(τ)dτ = O(ε1−κ0). (3.23)

Taking the absolute value and using Burkholder-Davis-Gundy theorem and (3.23),
we obtain for p > 0

E sup
T∈[0,T0]

∣∣∣ ∫ T

0

Z2
kZldτ

∣∣∣p ≤ Cε1−3κ0 .
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For the sixth part, we put l = k in (3.22). We obtain∫ T

0

Z3
kdτ = − ε2

3λk
Z3
k(T ) +

αl
λk
ε

∫ T

0

Z2
kdβ̃k +

α2
k

3λk

∫ T

0

Zldτ.

Analogously, we obtain

E
(

sup
T∈[0,T0]

∣∣∣ ∫ T

0

Z3
kdτ
∣∣∣p) ≤ Cε1−3κ0 .

For the seventh part, we apply Itô formula to Z2
kZlZj and integrating from 0 to T

(2λk + λl + λj)

∫ T

0

Z2
kZlZjdτ = −ε2Z2

kZlZj + 2εαk

∫ T

0

ZkZlZjdβ̃k

+εαl

∫ T

0

Z2
kZjdβ̃l + εαj

∫ T

0

Z2
kZldβ̃j

+α2
k

∫ T

0

ZlZjdτ.

Using Burkholder-Davis-Gundy theorem and the second part with X = 1 in order
to obtain the seventh part.

For the eighth part, we apply Itô formula to Z2
kZ2

l and integrating from 0 to T∫ T

0

Z2
kZ2

l dτ = − ε2

2(λl + λk)
Z2
kZ2

l +
αlε

λl + λk

∫ T

0

Z2
kZldβ̃l

+
αkε

λl + λk

∫ T

0

Z2
l Zkdβ̃k +

α2
k

2(λl + λk)

∫ T

0

Z2
l dτ

+
α2
l

2(λl + λk)

∫ T

0

Z2
kdτ.

We finish the proof of the eighth part by using Burkholder-Davis-Gundy theorem
and the second part with X = 1.

For the ninth part, we apply Itô formula to Z4
k and integrating from 0 to T∫ T

0

Z4
kdτ = − ε2

4λk
Z4
k +

αkε

λk

∫ T

0

Z3
kdβ̃k +

3α2
k

2λk

∫ T

0

Z2
kdτ.

Using Burkholder-Davis-Gundy theorem and the second part withX = 1 to finish
this part. 2

Remark 3.5.2 The above Lemma is true even if X ∈ N or C.
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3.6 Proof of the Main Result

This section is devoted to the proof of the main result in Theorem 3.3.6 and Corol-
lary 3.3.7 for the approximation (3.7) of the solution of the SPDE (3.1).
Let us first check that, we can apply the averaging lemma to (3.5).

Lemma 3.6.1 Assume that Assumption 3.3.1 and 3.3.2 hold. Let X be a stochas-
tic process in N and dX = GdT . If X = Fc(a, ek, el) or X = Fc(a, a, ek), then
G = O(ε−3κ) or G = O(ε−4κ), respectively.

Proof. If X = Fc(a, ek, ek), then

dX = Fc(da, ek, el) = Fc(Lca+ Fc(a+ ψ), ek, el)dT.

Let

G = Fc(Lca+ Fc(a+ ψ), ek, el).

Taking theHα norm, using Assumption 3.3.2 and the fact all norms are equivalent
on N , to obtain

‖G‖α ≤ C ‖Lca+ Fc(a+ ψ)‖α ≤ C ‖a‖α + C ‖Fc(a+ ψ)‖α−β
≤ C ‖a‖α + C ‖a+ ψ‖3α ≤ C ‖a‖α + C ‖a‖3α + C ‖ψ‖3α .

Using the definition of τ ∗, we obtain for all p > 0

E sup
[0,τ∗]

‖G‖pα ≤ Cε−3pκ.

Analogously, if X = Fc(a, a, ek), then

dX = 2Fc(da, a, ek) = 2Fc(Lca+ Fc(a+ ψ), a, ek)dT.

Define

G := 2Fc(Lca+ Fc(a+ ψ), a, ek),

in order to obtain

E sup
[0,τ∗]

‖G‖pα ≤ Cε−4pκ.

2
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Lemma 3.6.2 If Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3 hold and ‖ψ(0)‖α ≤ δε

for δε ∈ (0, ε−
1
3
κ) with κ ∈ (0, 1

12
) from the definition of τ ∗, then

a(T ) = a(0)+

∫ T

0

Lca(τ)dτ+

∫ T

0

Fc(a)dτ+
N∑

k=n+1

3α2
k

2λk

∫ T

0

Fc(a, ek, ek)dτ+R(T ),

(3.24)
where

R = O(ε1−5κ), (3.25)

for κ > 0 from the definition of τ ∗.

Proof. Recall Lemma 3.4.1, which states

ψ(T ) = yε(T ) + Z(T ) +O(ε2−3κ), (3.26)

where

yε(T ) = eε
−2TAsψ(0).

Substituting from (3.26) into (3.5) and using the bounds on a = O(ε−κ), Z =

O(ε−κ0), and yε = O(δεε
2) we obtain for κ < 2/3

da = [Lca+ Fc(a+ yε + Z)] dT +O(ε2−5κ)dT

= [Lca+ Fc(a) + 3Fc(a, a,Z) + 3Fc(a,Z,Z) + Fc(Z)

+3Fc(a, a, yε) + 6Fc(a,Z, yε) + 3Fc(Z,Z, yε)
+3Fc(a, yε, yε) + 3Fc(Z, yε, yε) + Fc(yε)]dT +O(ε2−5κ)dT.

Integrating from 0 to T , yields for T ≤ τ ∗

a(T ) = a(0) +

∫ T

0

Lca(τ)dτ +

∫ T

0

Fc(a)dτ + 3
N∑

k=n+1

∫ T

0

ZkFc(a, a, ek)dτ

+3
N∑

k=n+1

∫ T

0

Z2
kFc(a, ek, ek)dτ + 3

N∑
k=n+1

N∑
l 6=k

∫ T

0

ZkZlFc(a, ek, el)dτ

+
N∑

k,l,j=n+1

∫ T

0

Fc(Zkek,Zlel,Zjej)dτ +R1 +O(ε2−5κ), (3.27)
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where

R1 = 3

∫ T

0

Fc(a, a, yε)dτ + 6

∫ T

0

Fc(a,Z, yε)dτ + 3

∫ T

0

Fc(a, yε, yε)dτ

+3

∫ T

0

Fc(Z, yε, yε)dτ + 3

∫ T

0

Fc(Z,Z, yε)dτ + 3

∫ T

0

Fc(yε)dτ

:= I1 + I2 + I3 + I4 + I5 + I6. (3.28)

Now, using Assumption 3.3.1, the definition of τ ∗ and the equivalence of Hα-
norms on N to bound R1. We bound all terms in (3.28) separately. For the first
term in (3.28) we obtain

‖I1‖α ≤ C

∫ T

0

‖a‖2α ‖yε‖α dτ ≤ C sup
[0,T0]

‖a‖2α
∫ T

0

‖yε‖α dτ.

Using Lemma 3.4.4 for q = 1, we obtain

I1 = O(δεε
2−2κ).

Analogous results hold to all other terms. To be more precise:

I2 = O(δεε
2−κ−κ0), I3 = O(δ2εε

2−κ), I4 = O(δ2εε
2−κ0),

I5 = O(δεε
2−2κ0), andI6 = O(δ3εε

2).

Collecting all results we obtain for κ0 ≤ κ, where κ0 > 0 is arbitrary from Lemma
3.4.2,

R1 = O((1 + δ2ε)ε
2−2κ). (3.29)

Applying finally Lemmas 3.5.1 and 3.6.1 to (3.27), we obtain (3.24). 2

Lemma 3.6.3 Let Assumptions 2.2.1, 3.3.1 and 3.3.2 hold. Define b(t) in N as
the solution of (3.8). If the initial condition satisfies E |b(0)|p ≤ δpε for some
δε ∈ (0, ε−

1
3
κ), then for all T0 > 0 and p ≥ 1 there exists a constant C such that

E sup
T∈[0,T0]

|b(T )|p ≤ Cδpε . (3.30)

Proof. Taking the scalar product 〈·, b〉 on both sides of (3.8), yields

1

2
∂T |b|2 = 〈Lcb, b〉+ 〈Fc(b), b〉+

N∑
k=n+1

3α2
k

2λk
〈Fc(b, ek, ek), b〉 .
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Using Cauchy-Schwarz inequality and Assumption 3.3.2, we obtain

1

2
∂T |b|2 ≤ C |b|2 .

We apply now a comparison argument to deduce for all T ∈ [0, T0]

|b(T )| ≤ |b(0)| eCT0 . (3.31)

Taking expectation after supremum on both sides, yields (3.30). 2

In the following we are not able to calculate moments of error terms. Thus,
we restrict ourselves to a sufficiently large subset of Ω, where our estimates go
through.

Definition 3.6.4 Given δε ∈ (0, ε−
1
3
κ) with κ > 0 from the definition of τ ∗. Define

the set Ω∗ ⊂ Ω such that all these estimates

sup
[0,τ∗]

‖ψ −Q‖α < Cε2−4κ , (3.32)

sup
[0,τ∗]

‖ψ‖α < δ0 + ε−
1
2
κ , (3.33)

sup
[0,τ∗]

|R| < ε1−6κ , (3.34)

and
sup
[0,τ∗]

|b| < δ0ε
− 1

2
κ , (3.35)

hold on Ω∗.

Remark 3.6.5 The set Ω∗ has approximately probability 1 provided δε < ε−
1
3
κ,

as

P(Ω∗) ≥ 1− P(sup
[0,τ∗]

‖ψ −Q‖α ≥ ε2−4κ)− P(sup
[0,τ∗]

‖ψ‖α ≥ ε−
1
2
κ)

− P(sup
[0,τ∗]

|b| ≥ ε−
5
6
κ)− P(sup

[0,τ∗]

|R| ≥ ε1−6κ).

Using Chebychev inequality and Lemmas 3.4.1, 3.6.2, 3.6.3 and Corollary 3.4.3
with arbitrarily κ0 ≤ 1

3
κ, we obtain for sufficient large q

P(Ω∗) ≥ 1− C[εqκ + ε
1
2
qκ−qκ0 + ε

1
2
qκ + εqκ] ≥ 1− Cε

1
3
qκ ≥ 1− Cεp. (3.36)
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Theorem 3.6.6 Assume that Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3 hold and
suppose |a(0)| ≤ δε and ‖ψ(0)‖α ≤ δε. Let b be a solution of (3.8) and a as
defined in (3.2). If the initial condition satisfies a(0) = b(0), then

sup
T∈[0,τ∗]

|a(T )− b(T )| ≤ C(1 + δ2ε)ε
1−12κ, (3.37)

and for κ < 1
12

sup
T∈[0,τ∗]

|a(T )| ≤ C(1 + δ2ε), (3.38)

on Ω∗.

Proof. Define ϕ(T ) as

ϕ(T ) := a(T )−R(T ),

where R is defined in (3.25). From (3.24) we obtain

ϕ(T ) = a(0)+

∫ T

0

Lc [ϕ+R] dτ+

∫ T

0

Fc(ϕ+R)dτ+
N∑

k=n+1

3α2
k

2λk

∫ T

0

Fc(ϕ+R, ek, ek)dτ.

(3.39)
Subtracting (3.39) from (3.8) and defining h(T ) := b(T )− ϕ(T ), we obtain

h(T ) =

∫ T

0

Lchdτ −
∫ T

0

LcRdτ +

∫ T

0

[Fc(b)−Fc(b− h+R)] dτ

+
N∑

k=n+1

3α2
k

2λk

∫ T

0

Fc(h−R, ek, ek)dτ.

Thus,

∂Th = Lch−LcR+Fc(b)−Fc(b−h+R)+
N∑

k=n+1

3α2
k

2λk
Fc(h−R, ek, ek). (3.40)

Taking the scalar product 〈·, h〉 on both sides of (3.40), we have

1

2
∂T |h|2 = 〈Lch, h〉 − 〈LcR, h〉+ 〈Fc(b)−Fc(b− h+R), h〉

+
N∑

k=n+1

3α2
k

2λk
〈Fc(h, ek, ek), h〉 −

N∑
k=n+1

3α2
k

2λk
〈Fc(R, ek, ek), h〉 .
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Using Cauchy-Schwarz inequality and Assumption 3.3.2, we obtain the following
linear ordinary differential inequality

∂T |h|2 ≤ C[|h|2 + |h|4] + C
[
|R|4 + |b|2 |R|2 + |b|4 |R|2 + |b|2 |R|4

]
.

Using (3.34) and (3.35) in the definition of Ω∗, we obtain for T ≤ τ ∗

∂T |h|2 ≤ C[|h|2 + |h|4] + C(1 + δ4ε)ε
2−24κ on Ω∗.

As long as |h| ≤ 1, we obtain

∂T |h|2 ≤ 2C |h|2 + C(1 + δ4ε)ε
2−24κ.

Using Gronwall’s lemma, we obtain for T ≤ τ ∗ ≤ T0

|h(T )|2 ≤ C(1 + δ4ε)ε
2−24κ ≤ 1,

for δε < ε−
1
3
κ, ε > 0 sufficiently small, and κ < 3

38
. Thus,

sup
[0,τ∗]

|h| ≤ C(1 + δ2ε)ε
1−12κ on Ω∗. (3.41)

We finish the first part by using (3.34), (3.41) and

sup
[0,τ∗]

|a− b| = sup
[0,τ∗]

|h−R| ≤ sup
[0,τ∗]

|h|+ sup
[0,τ∗]

|R| .

For the second part of the theorem consider

sup
[0,τ∗]

|a| ≤ sup
[0,τ∗]

|a− b|+ sup
[0,τ∗]

|b| .

Using the first part and (3.35), we obtain (3.38) as κ < 1
12

. 2

Now, we can use the results previously obtained to prove the main result of
Theorem 3.3.6 for the approximation of the Solution (3.7) of the SPDE (3.1).
Proof of Theorem 3.3.6. For the stopping time, we note that provided δε < ε−

1
3
κ

Ω ⊃ {τ ∗ = T0} ⊇ { sup
T∈[0,T0]

|a(T )| < ε−κ, sup
T∈[0,T0]

‖ψ(T )‖α < ε−κ} ⊇ Ω∗,

where the last inclusion holds due to (3.33) and Theorem 3.6.6. Now let us turn
to the approximation result. Using (3.2) and triangle inequality, yields

sup
T∈[0,τ∗]

∥∥∥u(ε−2T )− εb(T )− εQ(T )
∥∥∥
α
≤ ε sup

[0,τ∗]

‖a− b‖α + ε sup
[0,τ∗]

∥∥∥ψ −Q∥∥∥
α
.
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From (3.32) and (3.37), we obtain

sup
t∈[0,ε−2T0]

∥∥∥u(t)− εb(ε2t)− εQ(ε2t)
∥∥∥
α

= sup
t∈[0,ε−2τ∗]

∥∥∥u(t)− εb(ε2t)− εQ(ε2t)
∥∥∥
α

≤ Cε2−
38
3
κ on Ω∗.

Thus,

P
(

sup
t∈[0,ε−2T0]

∥∥∥u(t)− εb(ε2t)− εQ(ε2t)
∥∥∥
α
> ε2−

38
3
κ
)
≤ 1− P(Ω∗).

Using the bound on Ω∗ from (3.36), yields the main claim (3.16). 2

Proof of Corollary 3.3.7. Define Ω0 ⊂ Ω as

Ω0 = {w : ‖u(0)‖α ≤ εδε},

and define

û(0) =

{
0 on Ωc

0

u(0) on Ω0.

Hence,

u = û on Ω0.

Thus,

P
(

sup
t∈[0,ε−2T0]

∥∥∥u(t)− εb(ε2t)− εQ(ε2t)
∥∥∥
α
> ε2−

38
3
κ
)

= P
(
{ sup
t∈[0,ε−2T0]

∥∥∥u(t)− εb(ε2t)− εQ(ε2t)
∥∥∥
α
> ε2−

38
3
κ} ∩ Ω0

)
+P
(
{ sup
t∈[0,ε−2T0]

∥∥∥u(t)− εb(ε2t)− εQ(ε2t)
∥∥∥
α
> ε2−

38
3
κ} ∩ Ωc

0

)

≤ P
(

sup
t∈[0,ε−2T0]

∥∥∥û(t)− εb(ε2t)− εQ(ε2t)
∥∥∥
α
> ε2−

38
3
κ
)

+ P
(

Ωc
0

)
≤ Cεp + P(‖u(0)‖α > εδε),

where we used (3.16). 2
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3.7 Applications

In the literature there are numerous examples of equations with cubic nonlineari-
ties where our theory applies. Examples studied here are Swift-Hohenberg equa-
tion, Ginzburg-Landau / Allen-Cahn equation and some Surface growth model.
In all these examples we obtain that adding noise has the potential to stabilize the
dynamics of the dominant modes. Furthermore, the amplitude equation is always
the same type

A8 = νA− CαkA− CA |A|
2 ,

where A is the amplitude of the domiant modes in N .

3.7.1 Swift-Hohenberg Equation

The Swift-Hohenberg equation was defined in introduction( cf. (3.9)). It has been
used as a toy model for the convective instability in the Rayleigh-Bénard problem
( see [16] or [22]). Now it is one of the celebrated models in the theory of pattern
formation. For this model we note that

A = −(1 + ∂2x)
2, L = νI, F(u) = −u3.

If we take

ek(x) =


1√
π

sin(kx) if k > 0,
1√
2π

if k = 0,
1√
π

cos(kx) if k < 0,

and
H = L2([0, 2π]) and N = span{sin, cos},

then the eigenvalues of −A = (1 + ∂2x)
2 are given by λk = (1− k2)2 with m = 4,

λ0 = 1 > 0 and limk→∞ λk = ∞. So, the Assumption 2.2.1 is true. If we split
u = u1 sin +u−1 cos and u = w1 sin +w−1 cos ∈ N , then the Assumption 3.3.2 is
true as follows:

〈Fc (u1 sin +u−1 cos) , u1 sin +u−1 cos〉 = −3π

4

(
u21 + u2−1

)2 ≤ 0,

where

Fc (u1 sin +u−1 cos) = −3
4

(
u31 + u1u

2
−1
)

sin−3
4

(
u3−1 + u21u−1

)
cos .
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Moreover,

〈Fc(u, u, w), w〉 = −3π

4

(
u21w

2
1 + w2

1u
2
−1 + w2

−1u
2
−1 + w2

−1u
2
1

)
≤ 0,

and for α = 1 and β = 0 we obtain

‖F(u, v, w)‖H1 = ‖−uvw‖H1 ≤ C ‖u‖H1 ‖v‖H1 ‖w‖H1 .

For Assumption 3.3.3, we consider many cases:
First case. The noise is a constant in the space (i.e., W (t) = α0√

2π
β0(t)).

In this case our main theorem states that the solution of the (3.9) is of the type

u(t, x) = εv(ε2t, x),

and

v(T, x) ' γ1(T ) sin(x) + γ−1(T ) cos(x) + ε
α0√
2π
∂T β̃0(T ) +O(ε1−),

where γ1 and γ−1 are the solution of the amplitude equation

γ8i = (ν − 3α2
0

4π
)γi − 3

4
γi(γ

2
1 + γ2−1) for i = ±1.

Second case. If the noise acts on sin(kx) [or cos(kx)] for one k ∈ {2, 3, .....},
then the amplitude equations for (3.9) in this case are

γ8i = (ν − 3α2
k

2π(k2−1)2 )γi − 3
4
γi(γ

2
1 + γ2−1) for i = ±1,

and our main theorem states that the solution of the (3.9) is of the type

u(t, x) = εv(ε2t, x),

and

v(T, x) ' γ1(T ) sin(x) + γ−1(T ) cos(x) + ε
αk√
π
∂T β̃k(T ) sin(kx) +O(ε1−).

Third case. If the noise takes the form W (t) =
∑N

k=2
αk√
π
βk(t) sin(kx), then

the amplitude equations for (3.9) in this case are

γ8i = (ν −
N∑
k=2

3α2
k

2π(k2−1)2 )γi − 3
4
γi(γ

2
1 + γ2−1) for i = ±1,
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and our main theorem states that the solution of the (3.9) is of the type

u(t, x) = εv(ε2t, x),

and

v(T, x) ' γ1(T ) sin(x) + γ−1(T ) cos(x) + ε
N∑
k=2

αk√
π
∂T β̃k(T ) sin(kx) +O(ε1−).

3.7.2 Ginzburg-Landau / Allen-Cahn Equation

The second example is the Ginzburg-Landau / Allen-Cahn equation

∂tu = (∂2x + r)u+ νε2u− u3 + ε∂tWk(t). (3.42)

We consider two cases depending on the boundary conditions. For Neumann
boundary conditions we need r = 0, while for Dirichlet boundary conditions
we need r = 1.

First case r = 0. In this case, we consider (3.42) subject to Neumann boundary
conditions on the interval [0, π]. We note that

A = ∂2x, L = νI, andF(u) = −u3.

If we take
H = L2([0, π]), N = span{1},

and

ek(x) =


1√
π

if k = 0,√
2
π

cos(kx) if k > 0,

then the Assumption 2.2.1 is true. For this we easily see that the eigenvalues of
−A = −∂2x are λk = k2 with m = 2 and limk→∞ λk =∞. The condition (3.10)
is satisfied for α = 1 and β = 0. Furthermore, for u = γ1 and w = γ2 ∈ N the
Condition (3.11) is satisfied as follows:

〈Fc (u) , u〉 = −γ41 ≤ 0,

where
Fc (u) = −γ31 ,
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and
〈Fc (u, u, w) , w〉 = −γ21γ22 ≤ 0.

For Assumption 3.3.3, we consider two cases:
First case. The noise acts only on cos(x) (i.e., N = 1).
In this case the amplitude equation (Landau equation) of (3.42) takes the form

γ8 =
(
ν − 3α2

1

2π

)
γ − γ3. (3.43)

Second case. The noise acts on cos(x), cos(2x),...., cos(Nx) (i.e., N ≥ 1).
In this case the amplitude equation of (3.42) takes the form

γ8 =
(
ν − 3

2π

N∑
k=1

α2
k

k2

)
γ − γ3, (3.44)

where Fc (u, ek, ek) = − 1
π
u.

The main theorem states that the solution of (3.42) takes the form

u(t) = εv(ε2t),

and

v(T ) ' γ(T ) + ε
N∑
k=1

αk
k2
∂T β̃k(T ) cos(kx) +O(ε1−),

where γ is the solution of the amplitude equation (3.43) or (3.44).

Second case r = 1. In this case, we consider (3.42) subject to Dirichlet boundary
conditions on the interval [0, π]. If we take

ek(x) =
√

2
π

sin(kx) = δ sin(kx) and N = span{sin},

then the Assumption 2.2.1 is true, where the eigenvalues of −A = −∂2x − 1 are
λk = k2 − 1 with m = 2 and limk→∞ λk = ∞. Furthermore, for u = γ1 sin and
w = γ2 sin ∈ N the condition (3.11) is satisfied as follows:

〈Fc (u) , u〉 = −3π

8
γ41 ≤ 0,

where
Fc (u) = −3

4
γ31 sin,
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and

〈Fc (u, u, w) , w〉 = −3π

8
γ21γ

2
2 ≤ 0.

For Assumption 3.3.3, we consider two cases:
First case. The noise acts only on sin(2x).
In this case the amplitude equation (Landau equation) of (3.42) takes the form

γ8 =
(
ν − σ2

4

)
γ − 3

4
γ3. (3.45)

Second case. The noise acts on sin(2x), sin(3x),......, sin(Nx).
In this case the amplitude equation of (3.42) takes the form

γ8 =
(
ν − 3

4

N∑
k=2

σ2
k

k2 − 1

)
γ − 3

4
γ3, (3.46)

If we assume that σ2 = σ3 = ..... = σN = σ, then the amplitude equation for
(3.42) in this case takes the form

γ8 =
(
ν − 9σ2

16
+

3σ2(2N + 1)

8N(N + 1)

)
γ − 3

4
γ3,

where we used that Fc (u, ek, ek) = −1
2
δ2u, σk = δαk and δ =

√
2
π
.

The main theorem states that the solution of (3.42) takes the form

u(t) = εv(ε2t),

and

v(T ) ' γ(T ) sin +ε
N∑
k=2

σk
k2 − 1

∂T β̃k(T ) sin(kx) +O(ε1−),

where γ is the solution of the amplitude equation (3.45) or (3.46).

3.7.3 Surface Growth Model

Another example arising in the theory of surface growth is

∂tu = −42u− µ4u+∇
(
|∇u|2∇u|

)
+ ε

N∑
k=2

αk∂tβk(t)ek. (3.47)
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subject to periodic boundary conditions on the interval [0, 2π]. Here we can con-
sider µ = 1 + ε2ν, hence

A = −42 −4, L = −ν4 and F(u) = ∇
(
|∇u|2∇u|

)
.

If we take

ek(x) =


1√
π

sin(kx) if k > 0,
1√
2π

if k = 0,
1√
π

cos(kx) if k < 0,

and

H = L2([0, 2π]) and N = span{1, sin, cos},

then the eigenvalues of −A = 42 + 4 are λk = k4 − k2 with m = 4 and
limk→∞ λk = ∞. So, the Assumption 2.2.1 is true. Moreover, if u = γ0 +

γ1 sin +γ−1 cos ∈ N , then all conditions of Assumption 3.3.2 are satisfied as
follows:

〈Fc (u) , u〉 = −3π

4

(
γ21 + γ2−1

)2 ≤ 0 ,

where

Fc (u) = −3

4

(
γ31 + γ2−1γ1

)
sin−3

4

(
γ3−1 + γ21γ−1

)
cos .

Moreover, for α = β = 2 we obtain

‖F(u)‖L2 =
∥∥∂x (∂xu)3

∥∥
L2 ≤

∥∥(∂xu)3
∥∥
H1 ≤ C ‖∂xu‖3H1 ≤ C ‖u‖3H2 .

For Assumption 3.3.3, we consider two cases:
First case. The noise acts only on sin(2x).

In this case the amplitude equation for (3.47) is a system of ordinary differen-
tial equations:

γ80 = 0,

γ8i =

(
ν − α2

2

4π

)
γi −

3

4
γi
(
γ21 + γ2−1

)
for i = ±1.

Second case. The noise acts on sin(2x), sin(3x),..........., sin(Nx).
In this case the amplitude equation for (3.47) is a system of ordinary differen-

tial equations:

γ80 = 0,

75



Sec3.7 Applications

γ8i =
(
ν − 3

4

N∑
k=2

σ2
k

k2 − 1

)
γi −

3

4
γi
(
γ21 + γ2−1

)
for i = ±1,

where we supposed σk = δαk for k ∈ {2, 3, ....., N} and δ = 1√
π

.
If we assume additionally that σ2 = σ3 = ..... = σN = σ, then the amplitude

equation for (3.47) in this case takes the form

γ80 = 0,

γ8i =
(
ν − 9σ2

16
+

3σ2(2N + 1)

8N(N + 1)

)
γi −

3

4
γi
(
γ21 + γ2−1

)
for i = ±1.

where Fc (γ0 + γ1 sin +γ−1 cos, ek, ek) = −k2

2
δ2 (γ1 sin +γ−1 cos).
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Chapter 4

Higher Order Correction for the
Solution of SPDEs with Cubic
Nonlinearities

4.1 Introduction

This chapter is devoted to study the higher order correction for the solution of
equation (3.1). If we consider higher order corrections to (3.8), we obtain from
the Itô-formula argument martingale terms of order ε. To get an equation for the
higher order corrections we need to approximate this martingale term in order to
have explicit error bounds. This approach relies on Lemma 6.1 from an article by
Blömker, Hairer, and Pavioltis [9], which is based on the martingale representation
theorem. Thus, we are limited in the final argument to dimN = 1.

Moreover, we want to study higher order corrections to the amplitude equa-
tion, in oder to see the fluctuations induced by the impact of the noise on the
dominant pattern. In this chapter we follow our work [13]. Related results in this
direction are discussed by Roberts & Wang [41].

So, our aim of this chapter is to improve the approximation of (3.1) from

u(t) ' εb1(ε
2t) + εZ(ε2t) +O(ε2−),

to
u(t) ' εb1(ε

2t) + ε2b2(ε
2t) + εZ(ε2t) +O(ε3−), (4.1)
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where b1 is again the solution of the amplitude equation

db1 = [Lcb1 + Fc(b1) +
N∑
k=2

3σ2

2λk
Fc(b1, ek, ek)]dT. (4.2)

The higher order correction b2 is the solution of

db2 = [Lcb2 + 3Fc(b2, b1, b1) +
N∑
k=2

3σ2

2λk
Fc(b2, ek, ek)]dT + dM̃b1 , (4.3)

where M̃b1(T ) is a martingale, which is defined by

M̃b1(T ) =

∫ T

0

( N∑
k=2

gk(b1)
) 1

2
dB(s). (4.4)

The integration is against a one-dimensional Brownian motion B arising from a
martingale representation argument (cf. Lemma 4.4.7) and the gk’s are polynomi-
als of degree 4 in b1 given later in (4.31).

As an application of our approximation result of Theorem 4.2.2, we discuss
the stochastic Swift-Hohenberg equation and the Ginzburg-Landau equation. To
illustrate our results consider the stochastic Swift-Hohenberg equation

∂tu = −(1 + ∂2x)
2u+ νε2u− u3 + εσ∂tβ. (4.5)

with respect to Neumann boundary conditions on the interval [0, π]. Our main
theorem states that the solution of (4.5) is

u(t, x) ' εγ1(ε
2t) cos(x) + ε2γ2(ε

2t) cos(x) + εZ0(ε
2t) +O(ε3−),

where γ1 and γ2 are the solution of

γ81 =
(
ν − 3σ2

2

)
γ1 −

3

4
γ31 ,

and

dγ2 = [
(
ν − 3σ2

2

)
γ2 −

3

4
γ21γ2]dT +

3σ2

√
2
γ1dB.

This chapter is organized as follows. In the next section, we give assumptions
and statements of the main results. Section 4.3 we recall the averaging results and
dive higher order corrections, while Section 4.4, we study the approximation with
higher order correction via amplitude equations. Finally, in Section 4.5 we apply
our theory to the stochastic Swift-Hohenberg equation, and the Ginzburg-Landau
/ Allen-Cahn equation.
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Ch.4 Higher Order Correction

4.2 Assumptions and Main Result

In this chapter we work in the some setting as before, and assume that all assump-
tions of Chapter 3 hold.

For simplicity here we assume that in Assumption 3.3.3 one has αk = σ ∀ k.
this means the noise takes the form

W (t) =
N∑

k=n+1

σβk(t)ek for N ≥ n+ 1. (4.6)

This assumption is only for simplicity of presentation. The proofs can easily be
modified to the general case.

In next definition we modify the stopping time as follows:

Definition 4.2.1 For theN × S-valued stochastic process (a, ψ) defined in (3.2)
we split a into a = a1 + εa2 with a1 being a solution of the amplitude equation
(4.2). We define, for some T0 > 0 and κ ∈ (0, 1

7
), the stopping time τ ∗∗ as

τ ∗∗ := T0∧inf
{
T > 0 : ‖a1(T )‖α > ε−κ or ‖a2(T )‖α > ε−κ or ‖ψ(T )‖α > ε−κ

}
.

(4.7)

The main result of this chapter is the following approximation result.

Theorem 4.2.2 (Approximation) Under Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3
with all αk = σ ∀ k, n = 1, let u be a solution of (3.1) defined in (3.2) with
the initial condition u(0) = εa(0) + εψ(0) with ‖u(0)‖α ≤ εδε for some δε ∈
(0, ε−

1
3
κ), a(0) ∈ N and ψ(0) ∈ S. Suppose b1 and b2 are solutions of (4.2) and

(4.3), respectively, with b1(0) = a(0) and b2(0) = 0. Then for all p > 1 and
T0 > 0 and all κ ∈ (0, 1

7
), there exists C > 0 such that

P
(

sup
t∈[0,ε−2T0]

∥∥∥u(t)− εb1(ε2t)− ε2b2(ε2t)− εQ(ε2t)
∥∥∥
α
> ε

7
3
−7κ
)
≤ Cεp, (4.8)

for all ε > 0 sufficiently small.

Corollary 4.2.3 Under the Assumptions of Theorem 3.3.6 and for arbitrary initial
condition u(0) we obtain

P
(

sup
t∈[0,ε−2T0]

∥∥u(t)− εb1(ε2t)− ε2b2(ε2t)− εQ(ε2t)
∥∥
α
> ε

7
3
−7κ
)

≤ P(‖u(0)‖α > δ0ε) + Cεp. (4.9)

79



4.3. Averaging over the Fast OU-Process

4.3 Averaging over the Fast OU-Process

Let us expand the averaging result of Lemma 3.5.1 in order to have higher order
corrections. These turn out to be all martingle term.

Lemma 4.3.1 Let X be a real valued stochastic process and X(0) = O(ε−r) for
r ≥ 0. If dX = GdT with G = O(ε−r), then, for all k, l and j, all different,

1.
∫ T
0
XZkdτ = ε σ

λk

∫ T
0
Xdβ̃k +O(ε2−r−κ0),

2.
∫ T
0
XZ2

kdτ = σ2

2λk

∫ T
0
Xdτ + σ

λk
ε
∫ T
0
XZkdβ̃k +O(ε2−r−2κ0),

3.
∫ T
0
XZkZldτ = 2εσ

λk+λl

∫ T
0
XZkdβ̃l +O(ε2−r−2κ0),

4.
∫ T
0
ZkZlZjdτ = 3εσ

(λk+λl+λj)

∫ T
0
ZlZjdβ̃k +O(ε2−3κ0),

5.
∫ T
0
Z2
kZldτ = εσ3

λl(λl+2λk)
β̃l(T ) + εσ

(λl+2λk)

{∫ T
0
Z2
kdβ̃l + 2

∫ T
0
ZkZldβ̃k

}
+

O(ε2−3κ0),

6.
∫ T
0
Z3
kdτ = εσ

3

λ2k
β̃k(T ) + εσ

λk

∫ T
0
Z2
kdβ̃k +O(ε2−3κ0),

where Zk is defined in (3.13).

Proof. We note first that

E sup
[0,T0]

|X|p ≤ CE sup
[0,T0]

|G|p ≤ Cε−pr.

In order to prove the first part, we apply Itô formula to XZk

d(XZk) = ZkdX +XdZk
= GZkdT + ε−1σXdβ̃k − λkε−2ZkXdT.

Integrating from 0 to T, we obtain∫ T

0

XZkdτ = − ε
2

λk
X(T )Zk(T ) +

ε2

λk

∫ T

0

GZkdτ + ε
σ

λk

∫ T

0

Xdβ̃k

= ε
σ

λk

∫ T

0

Xdβ̃k +O(ε2−r−κ0).
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In order to prove the second part, we apply Itô formula to XZ2
k

d
(
XZ2

k

)
= Z2

kdX + 2XZkdZk +X (dZk)2

= GZ2
kdT − 2λkε

−2XZ2
kdT + 2ε−1σZkXdβ̃k + ε−2σ2XdT.

Integrating from 0 to T, we obtain∫ T

0

XZ2
kdτ = − ε2

2λk
X(T )Z2

k(T ) +
ε2

2λk

∫ T

0

GZ2
kdτ

+
σ

λk
ε

∫ T

0

XZkdβ̃k +
σ2

2λk

∫ T

0

Xdτ

=
σ2

2λk

∫ T

0

Xdτ +
σ

λk
ε

∫ T

0

XZkdβ̃k +O(ε2−r−2κ0).

For the third part, we apply Itô formula to XZkZl and integrate from 0 to T∫ T

0

XZkZldτ = − ε2

λk + λl
XZk(T )Zl(T )

+
ε2

λk + λl

∫ T

0

ZkZlGdτ +
2εσ

λk + λl

∫ T

0

XZldβ̃k

=
2εσ

λk + λl

∫ T

0

XZldβ̃k +O(ε2−r−2κ0).

For the fourth part, we apply Itô formula to ZkZlZj and integrate from 0 to T in
order to obtain∫ T

0

ZkZlZjdτ = − ε2

λk + λl + λj
ZkZlZj +

3εσ

λk + λl + λj

∫ T

0

ZlZjdβ̃k

=
3εσ

λk + λl + λj

∫ T

0

ZlZjdβ̃k +O(ε2−3κ0).

For the fifth part, we apply Itô formula to Z2
kZl and integrate from 0 to T∫ T

0

Z2
kZldτ = − ε2

λl + 2λk
Z2
kZl +

εσ

λl + 2λk

∫ T

0

Z2
kdβ̃l

+
2εσ

λl + 2λk

∫ T

0

ZkZldβ̃k +
σ2

λl + 2λk

∫ T

0

Zldτ

=
σ2

λl + 2λk

∫ T

0

Zldτ +
2σε

λl + 2λk

∫ T

0

ZkZldβ̃k

+
εσ

λl + 2λk

∫ T

0

Z2
kdβ̃l +O(ε2−3κ0),
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we finish the proof of the fifth part by using the first part for X = 1.
For the sixth part, we apply Itô formula to Z3

k and integrate from 0 to T in
order to obtain∫ T

0

Z3
kdτ = − ε2

3λk
Z3
k(T ) +

σ

λk
ε

∫ T

0

Z2
kdβ̃k +

σ2

λk

∫ T

0

Zkdτ

=
σ2

λk

∫ T

0

Zkdτ +
σ

λk
ε

∫ T

0

Z2
kdβ̃k +O(ε2−3κ0).

Using the first part for X = 1, we obtain∫ T

0

Z3
kdτ = ε

σ3

λ2k

∫ T

0

dβ̃k +
εσ

λk

∫ T

0

Z2
kdβ̃k +O(ε2−3κ0).

2

Now, let us give some bounds on stochastic integrals containing Zk’s. These
bounds are improved bounds, using similar arguments of the previous lemma.

Lemma 4.3.2 Let X be as in Lemma 4.3.1, then for κ0 < 1
4

we obtain

E sup
T∈[0,T0]

∣∣∣ ∫ T

0

XZkdβ̃l
∣∣∣p ≤ Cε−pr , (4.10)

and

E sup
T∈[0,T0]

∣∣∣ ∫ T

0

ZkZldβ̃j
∣∣∣p ≤ C . (4.11)

Proof. In order to prove (4.10). We first use Burkholder-Davis-Gundy theorem to
derive

E sup
T∈[0,T0]

∣∣∣ ∫ T

0

XZkdβ̃l
∣∣∣p ≤ CpE

(∫ T0

0

X2Z2
kdτ
) p

2
.

Using Lemma 3.5.1 and Hölder inequality, yields

E sup
T∈[0,T0]

∣∣∣ ∫ T

0

XZkdβ̃l
∣∣∣p ≤ CpE

(α2
k

2

∫ T0

0

X2dτ + Cε1−2r−2κ0
) p

2

≤ CE
∫ T0

0

Xpdτ + Cε
p
2
−pr−pκ0

≤ Cε−pr + Cε
p
2
−pr−pκ0

≤ Cε−pr.
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For (4.11). We obtain by using Burkholder-Davis-Gundy theorem again,

E sup
T∈[0,T0]

∣∣∣ ∫ T

0

ZkZldβ̃j
∣∣∣p ≤ CpE

(∫ T0

0

Z2
kZ2

l dτ
) p

2
. (4.12)

Applying Itô formula to Z2
kZ2

l and integrating from 0 to T0∫ T0

0

Z2
kZ2

l dτ =
1

(λk + λl)
{−1

2
ε2Z2

kZ2
l + 2εσ

∫ T0

0

Z2
l Zkdβ̃k

+σ2

∫ T0

0

Z2
kdτ + 2δk,lσ

2

∫ T0

0

ZkZldτ},

where δk,l =

{
0 if l 6= k

1 if l = k
. Using Lemma 3.5.1 with X = 1, we get

∫ T0

0

Z2
kZ2

l dτ =
1

(λk + λl)
{−1

2
ε2Z2

kZ2
l + 2εσ

∫ T0

0

Z2
l Zkdβ̃k}+ C +O(ε1−2κ0)

=
1

(λk + λl)
{−1

2
ε2Z2

kZ2
l + 2εσ

∫ T0

0

Z2
l Zkdβ̃k}+ C,

for κ0 < 1
2

. Taking |·|
p
2 on both sides before expectation and using Burkholder-

Davis-Gundy theorem we obtain for p > 1,

E
∣∣∣ ∫ T0

0

Z2
kZ2

l dτ
∣∣∣ p2 ≤ CεpE |ZkZl|p + Cε

p
2E
(∫ T0

0

Z4
l Z2

kdτ
) p

4
+ C

≤ Cεp−2κ0 + Cε
p
2
−2κ0 + C

≤ C, for κ0 <
p

4
. (4.13)

From (4.12) and (4.13), we obtain

E sup
T∈[0,T0]

∣∣∣ ∫ T

0

ZkZldβ̃j
∣∣∣p ≤ CpE

(∫ T0

0

Z2
kZ2

l dτ
) p

2

≤ CpE
∣∣∣ ∫ T0

0

Z2
kZ2

l dτ
∣∣∣ p2 ≤ C.

2

4.4 Proof of the Main Result

First we prove a technical lemma on ordinary differential equations.
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Lemma 4.4.1 LetX andRδ be continuous functions from [0, τ ] toN withX(0) =

Rδ(0). If X is a solution of

X(T ) =

∫ T

0

Qa(X)ds+

∫ T

0

Qb(X)ds+Rδ,

where Qa and Qb are linear and bounded operators on N such that

|Qa(X)| ≤ Ca |X| , |Qb(X)| ≤ Cb |X| , (4.14)

and
〈Qb(X), X〉 ≤ 0, (4.15)

then
sup
[0,τ ]

|X|2 ≤ [2 + C0(C
2
a + C2

b )] sup
[0,τ ]

|Rδ|2 , (4.16)

where C0 = 1
Ca+1

e2[Ca+1]T0 .

We note that in the application of this lemma the constant Cb grows with ε
while Ca is independent of ε. Therefore the condition (4.15) is important in order
to have no Cb in the exponent.
Proof. Define Y = X −Rδ, hence

Y 8 = Qa(Y ) +Qa(Rδ) +Qb(Y ) +Qb(Rδ).

Taking the scalar product 〈·, Y 〉 on both sides, we obtain

1

2
∂T |Y |2 = 〈Qa(Y ), Y 〉+ 〈Qb(Y ), Y 〉+ 〈Qa(Rδ), Y 〉+ 〈Qb(Rδ), Y 〉 .

Using Cauchy-Schwarz and Young inequalities and (4.15), yields

∂T |Y |2 ≤ 2[Ca + 1] |Y |2 + [C2
a + C2

b ] |Rδ|2 .

Applying Gronwall’s lemma, yields for all T ≤ τ

|Y (T )|2 ≤ [C2
a + C2

b ]

∫ T

0

|Rδ|2 e2[Ca+1](T−s)ds

≤ C0[C
2
a + C2

b ] sup
[0,τ ]

|Rδ|2 . (4.17)

To prove (4.16) we use

|X|2 = |Y +Rδ|2 ≤ 2 |Y |2 + 2 |Rδ|2 ,

and (4.17). 2

Let us recall Lemma 3.6.2 and look closer at the terms of order ε.
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Lemma 4.4.2 Under Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3 with all αk = σ for
k ∈ {n+ 1, ......, N}, we obtain

a(T ) = a(0) +

∫ T

0

Lca(τ)dτ +

∫ T

0

Fc(a)dτ +
N∑

k=n+1

3σ2

2λk

∫ T

0

Fc(a, ek, ek)dτ

+εMa(T ) + R̃(T ), (4.18)

where Ma(T ) is a martingale and it is defined by

Ma(T ) =

∫ T

0

N∑
k=n+1

�k(a)dβ̃k(s), (4.19)

where all sums are from n+ 1 to N , if it is not explicity stated otherwise

�k(a) =
3σ

λk
Fc(a, a, ek) +

∑
l=n+1

6σFc(a, ek, el)
λk + λl

Zl

+
∑
l=n+1

3σ3Fc(ek, el, el)
λk(λk + 2λl)

+
∑
l 6=k

6σFc(ek, ek, el)
λl + 2λk

ZkZl

+
∑
l=n+1

∑
j=n+1

3σFc(ek, el, ej)
λk + λl + λj

ZlZj , (4.20)

and

R̃ = R1 +O(ε2−5κ),

where R1 = O(δ2εε
2−2κ) is defined in (3.29).

Proof. Using (3.27) and Lemmas 4.3.1 and 4.3.2 in order to obtain (4.18). 2

Lemma 4.4.3 Under Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3 with all αk =

σ ∀ k, consider some stochastic process ξ = O(ε−r) for r ≥ 0. Then for all
p > 0 there exists C > 0 such that

E
(

sup
T∈[0,τ∗∗]

|Mξ(T )|p
)
≤ Cε−2pr, (4.21)

where Mξ is defined in (4.19). If ξ is bounded upto T0, then (4.21) holds with T0
instead of τ ∗∗.
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Proof. In order to prove (4.21), we take |·|p on both sides for (4.20) in order to
obtain∣∣∣Mξ(T )

∣∣∣p =
∣∣∣ ∫ T

0

N∑
k=2

�k(a1)dβ̃k(s)
∣∣∣p

≤ C
∑
k=n+1

1

λpk

∣∣∣ ∫ T

0

Fc(ξ, ξ, ek)dβ̃k
∣∣∣p

+C
∑
k=n+1

∑
l=n+1

1

(λk + λl)
p

∣∣∣ ∫ T

0

Fc(ξ, ek, el)Zldβ̃k
∣∣∣p

+C
∑
k=n+1

∑
l=n+1

Fc(ek, ek, el)p

λpk(λk + 2λl)p

∣∣∣ ∫ T

0

˜dβk(τ)
∣∣∣p

+C
∑
k=n+1

∑
l 6=k

Fc(ek, ek, el)p

(λl + 2λk)
p

∣∣∣ ∫ T

0

ZkZldβ̃k
∣∣∣p

+C
∑
k=n+1

∑
l=n+1

∑
j=n+1

Fc(ek, el, ej)p

(λk + λl + λj)
p

∣∣∣ ∫ T

0

ZlZjdβ̃k
∣∣∣p.

Taking expectation after supremum on both sides and using Assumptions 3.3.2,
Lemma 4.3.2 and Burkholder-Davis-Gundy theorem, yields (4.21). 2

Lemma 4.4.4 Under Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3 with all αk =

σ ∀ k. If we define a as a = a1 + εa2 such that a1 is a solution of the ampli-
tude equation

da1 = [Lca1 + Fc(a1) +
N∑

k=n+1

3σ2

2λk
Fc(a1, ek, ek)]dT, (4.22)

then a2 is a solution of

da2 = [Lca2+3Fc(a1, a1, a2)+
N∑

k=n+1

3σ2

2λk
Fc(a2, ek, ek)]dT+dMa1+dR2, (4.23)

where

R2 = ε−1R̃ + 3ε

∫ T

0

Fc(a1, a2, a2)dτ + ε2
∫ T

0

Fc(a2)dτ

+ε
N∑

k=n+1

6σ

λk

∫ T

0

Fc(a1, a2, ek)dβ̃k + ε2
N∑

k=n+1

3σ

λk

∫ T

0

Fc(a2, a2, ek)dβ̃k

+ε
N∑

k=n+1

N∑
l=n+1

6σ

λk + λl

∫ T

0

Fc(a2, ek, el)Zldβ̃k, (4.24)
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with
R2 = O(ε1−5κ). (4.25)

Proof. The equation for a2 is a straight forward calculation using (4.18) and
(4.22). To bound R2, we take ‖·‖pα on both sides of (4.24) in order to obtain∥∥∥R2(T )

∥∥∥p
α
≤ Cε−p

∥∥∥ ˜R(T )
∥∥∥p
α

+ Cεp
∥∥∥∫ T

0

Fc(a1, a2, a2)dτ
∥∥∥p
α

+Cε2p
∥∥∥∫ T

0

Fc(a2)dτ
∥∥∥p
α

+ Cεp
∑
k=n+1

1

λpk

∥∥∥∫ T

0

Fc(a1, a2, ek)dβ̃k
∥∥∥p
α

+Cε2p
∑
k=n+1

1

λpk

∥∥∥∫ T

0

Fc(a2, a2, ek)dβ̃k
∥∥∥p
α

+Cεp
∑
k=n+1

1

λpk

∥∥∥∫ T

0

Fc(a2, ek, ek)Zkdβ̃k
∥∥∥p
α

+Cεp
∑
k=n+1

∑
l 6=k

1

(λk + λl)p

∥∥∥∫ T

0

Fc(a2, ek, el)Zldβ̃k
∥∥∥p
α
.

Taking expectation after supremum on both sides and using Assumption 3.3.2,
Lemma 4.3.2, Burkholder-Davis-Gundy inequality and the definition of τ ∗∗ (cf.
(4.7)) in order to obtain (4.25). 2

Lemma 4.4.5 Under assumptions of Lemma 4.4.4. Let a1 be a solution of (4.22)
with initial condition a1(0) = 1

ε
Pcu(0). Define ζ in N with ζ(0) = 0 as the

solution of

dζ = [Lcζ + 3Fc(a1, a1, ζ) +
N∑

k=n+1

3σ2

2λk
Fc(ζ, ek, ek)]dT + dMa1(T ). (4.26)

If |a1(0)| ≤ δε for δε ∈ (0, ε−
1
3
κ), then for all T0 > 0 and p > 0 there exist a

constant C > 0 such that

sup
T∈[0,T0]

|a1(T )|p ≤ Cδpε , (4.27)

and
sup

T∈[0,T0]
|ζ(T )| ≤ C(1 + δε) sup

T∈[0,T0]
|Ma1(T )| . (4.28)

87



Sec4.4 Proof of the Main Result

Proof. The bound on a1 follows from Lemma 3.6.3. Note that (cf. (3.31)) in the
proof of Lemma 3.6.3, we get

|a1(T )| ≤ eCT |a1(0)| ∀ T ≤ T0. (4.29)

To bound ζ we integrate (4.26) from 0 to T in order to obtain

ζ(T ) =

∫ T

0

Lcζdτ+3

∫ T

0

Fc(a1, a1, ζ)dτ+
N∑

k=n+1

3σ2

2λk

∫ T

0

Fc(ζ, ek, ek)dτ+Ma1(T ).

If we define

Qa(ζ) = Lcζ +
N∑

k=n+1

3σ2

2λk
Fc(ζ, ek, ek) and Qb(ζ) = 3Fc(a1, a1, ζ),

then we obtain from Lemma 4.4.1

sup
T∈[0,T0]

|ζ(T )|2 ≤ C(1 + δ2ε) sup
T∈[0,T0]

|Ma1(T )|2 .

Taking the square root on both sides, yields (4.28). 2

Remark 4.4.6 Note that, from now on, we consider n = 1 and identify N with
R using the natural isomorphism γ · e1 7→ γ. Thus, for example Fc is defined as
〈F , e1〉 and F2

c is 〈F , e1〉2. Moreover, it is easy to check that the quadratic varia-
tion of Ma1 as a real valued process 〈Ma1 , e1〉 is given by

∑N
k=2

∫ T
0
�2
k(a1)dτ .

Before we prove the main result let us deduce the approximation gk of the
quadratic variation function �2

k.
Taking the square on both sides of (4.20) and using Lemma 3.5.1, we obtain∫ T

0

�2
k(a1)dτ =

∫ T

0

gk(a1)dτ +O(δ2εε
1−4κ0), (4.30)

where

gk(b1) =
9σ2

λ2k
[Fc(b1, b1, ek)]2 +

9σ4

2λ3k
[Fc(b1, ek, ek)]2 (4.31)

+
N∑
l 6=k

18σ4

λl(λk + λl)2
[Fc(b1, ek, el)]2 + θ

(k)
1 [Fc(b1, b1, ek)] + θ

(k)
2 ,
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with

θ
(k)
1 =

N∑
l=n+1

9σ4Fc(ek, el, el)
λ2kλl

,

and

θ
(k)
2 =

11σ6F2
c (ek)

4λ4k
+

N∑
l 6=k

9σ6(3λ2k + 4λlλk + 4λ2l )F2
c (ek, el, el)

4λ2kλl(λk + 2λl)2

+
N∑
l 6=k

9σ6F2
c (ek, ek, el)

λkλl(λl + 2λk)2
+

N∑
l 6=k

N∑
j /∈{l,k}

9σ6F2
c (ek, el, ej)

2λlλj(λk + λl + λj)2

+
N∑
l 6=k

σ6(6λ2k + 18λl + 3λk)Fc(ek, ek, el)Fc(ek)
2λlλ3k(λk + 2λl)

+
N∑
l 6=k

N∑
j /∈{l,k}

9σ6(4λlλj + λ2k + λlλk)Fc(ek, el, el)Fc(ek, ej, ej)
4λ2kλlλj(λk + 2λl)(λk + 2λj)

.

Let us state without proof Lemma 6.1 from [9] to bound Ma1(T ) − M̃a1(T )

where the martingaleMa1(T ) defined in (4.19) and the martingale M̃a1(T ) defined
in (4.4).

Lemma 4.4.7 Let Ma1(T ) be a continuous martingale with respect to some fil-
tration (zT )T≥0. Denote the quadratic variation of Ma1 by f and let g be an
arbitrary zT -adapted increasing process with g(0) = 0. Then, there exists a fil-
tration z̃T with zT ⊂ z̃T and a continuos z̃T -martingale M̃a1(T ) with quadratic
variation g such that, for every r0 < 1

2
there exists a constant C with

E sup
T∈[0,T0]

∣∣∣Ma1(T )− M̃a1(T )
∣∣∣p ≤ C

(
E |g(T0)|2p

)1/4(E sup
T∈[0,T0]

|f(T )− g(T )|p
)r0

+E sup
T∈[0,T0]

|f(T )− g(T )|p/2 .

Remark 4.4.8 Using the martingale representation theorem, there exists a Brow-
nian motion B with respect to the filtration z̃T such that M̃a1(T ) is given as a
stochastic integral as in (4.4).

Lemma 4.4.9 Under conditions of Lemma 4.4.7, let Ma1(T ) and M̃a1(T ) are
martingales defined in (4.19) and (4.4) with |a(0)| ≤ δε for some δε ∈ (0, ε−

1
3
κ),
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respectively. Let f(T ) =
∫ T
0

∑N
k=2�

2
k(a1)ds be the quadratic variation ofMb1(T )

and g(T ) =
∫ T
0

∑N
k=2 gk(a1)ds be the quadratic variation of the martingale

M̃a1(T ), then for r0 = 1
3

and κ0 ≤ κ we obtain

E sup
T∈[0,T0]

∣∣∣Ma1(T )− M̃a1(T )
∣∣∣p ≤ Cδ

8
3
p

ε ε
1
3
p− 4

3
pκ. (4.32)

Proof. From (4.30), we obtain

E sup
T∈[0,T0]

|f(T )− g(T )|p = E sup
T∈[0,T0]

∣∣∣∣∣
∫ T

0

N∑
k=2

[�2
k(a1)− gk(a1)]ds

∣∣∣∣∣
p

≤ Cδ2pε ε
p−4pκ0 ,

and as θ(k)i are constants

|g(T0)|2p =

∣∣∣∣∣
∫ T0

0

N∑
k=2

gk(s)ds

∣∣∣∣∣
2p

≤ C sup
[0,T0]

|a1|8p + C sup
[0,T0]

|a1|4p ,

using (4.27)in order to obtain

Eg(T0)
2p ≤ Cδ8pε .

Applying Lemma 4.4.7, yields (4.32). 2

Let us now turn to the proof of the main result.

Definition 4.4.10 Given δε ∈ (0, ε−
1
3
κ). Define the set Ω∗∗ ⊂ Ω such that all

these estimates
sup
[0,τ∗∗]

‖ψ −Q‖α < ε2−4κ, (4.33)

sup
[0,τ∗∗]

‖ψ‖α < δ0 + ε−
1
2
κ , (4.34)

sup
[0,τ∗∗]

|R2| < ε1−6κ, (4.35)

sup
[0,τ∗∗]

|Ma1| < ε−
1
2
κ, (4.36)

and
sup
[0,τ∗∗]

∣∣∣Ma1 − M̃a1

∣∣∣ < δ
8
3
ε ε

1
3
− 7

3
κ, (4.37)

hold on Ω∗∗.
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We will see later that the set Ω∗∗ has approximately probability 1 (cf. proof of
Theorem 4.2.2) and that τ ∗∗ = T0 on Ω∗∗.

The following theorem states that in (4.26), (4.23) we have a good approxima-
tion when leaving out the error R2.

Theorem 4.4.11 We assume that Assumption 2.2.1, 3.3.1, 3.3.2 and 3.3.3 with all
αk = σ ∀ k hold. Let a1 be a solution of (4.22) and let ζ and a2 are solution of
(4.26) and (4.23), respectively. If the initial condition satisfies a2(0) = ζ(0) = 0,
then for κ < 1

7
there is a constant C > 0 such that

sup
T∈[0,τ∗∗]

|a2(T )− ζ(T )| ≤ Cε1−7κ, (4.38)

and
sup

T∈[0,τ∗∗]
|a2(T )| ≤ C(1 + δε)ε

− 1
2
κ, (4.39)

on Ω∗∗.

Proof. To prove (4.38) we subtract (4.23) from (4.26) and define η(T ) := ζ(T )−
a2(T ) to obtain

dη = [Lcη + 3Fc(a1, a1, η) +
N∑

k=n+1

3σ2

2λk
Fc(η, ek, ek)]dT + dR2.

If we take

Qa(η) = Lcη +
N∑

k=n+1

3σ2

2λk
Fc(η, ek, ek) and Qb(η) = 3Fc(a1, a1, η),

then we obtain from Lemma 4.4.1

sup
[0,τ∗∗]

|η|2 ≤ Cε−2κ sup
[0,τ∗∗]

|R2|2 on Ω∗∗. (4.40)

From (4.35) we obtain

sup
[0,τ∗∗]

|ζ − a2| = sup
[0,τ∗∗]

|η| ≤ Cε1−7κ on Ω∗∗.

For the second part of the Theorem (cf. (4.39)), consider

sup
[0,τ∗∗]

|a2| ≤ sup
[0,τ∗∗]

|ζ − a2|+ sup
[0,τ∗∗]

|ζ| on Ω∗∗.
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Using (4.36) together with (4.28) and (4.38), yields (4.39) in case κ < 1
7
. 2

In the following theorem we approximate the martingale part M̃a1 , that still
depends on the fast OU-process. Here we need n = 1.

Theorem 4.4.12 Under assumptions of Theorem 4.4.11 . Let a1 be a solution of
(4.22) and let a2 be a solution of (4.23). Define b2 in N as a solution of

db2 = [Lcb2 + 3Fc(a1, a1, b2) +
N∑
k=2

3σ2

2λk
Fc(b2, ek, ek)]dT + dM̃a1 , (4.41)

where M̃a1 is defined in (4.4). If the initial condition satisfies ζ(0) = b2(0) = 0,
then for every p > 0, ε ∈ (0, 1) and every κ > 0 there exists a constant C such

sup
T∈[0,τ∗∗]

|b2(T )− ζ(T )| ≤ Cδ
11
3
ε ε

1
3
− 7

3
κ. (4.42)

Proof. Subtracting (4.26) from (4.41) and defining φ = b2 − ζ we obtain

φ(T ) =

∫ T

0

Lcφdτ + 3

∫ T

0

Fc(φ, a1, a1)dτ

+
N∑
k=2

3σ2

2λk

∫ T

0

Fc(φ, ek, ek)]dτ + M̃a1(T )−Ma1(T ).

Let

Qa(φ) = Lcφ+
N∑
k=2

3σ2

2λk
Fc(φ, ek, ek) and Qb(φ) = 3Fc(a1, a1, φ),

then all conditions of Lemma 4.4.1 satisfy as follows

|Qa(φ)| ≤ C |φ| and |Qb(φ)| ≤ |a1|2 |φ| ≤ Cδ2ε |φ| on Ω∗∗,

and from Assumption 3.3.2
〈Qb(φ), φ〉 ≤ 0.

Hence, we apply Lemma 4.4.1 to obtain

sup
[0,τ∗∗]

|φ|2 ≤ C(1 + δ2ε) sup
[0,τ∗∗]

∣∣∣M̃a1(T )−Ma1(T )
∣∣∣2 .

Using (4.37) finishes the proof. 2
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Finally, we use the results previously obtained to prove the main result of
Theorem 4.2.2 for the approximation of the solution of the SPDE (3.1).
Proof of Theorem 4.2.2. We note that provided δε < ε−

1
3
κ

Ω ⊃ {τ ∗∗ = T0} ⊇ { sup
T∈[0,T0]

‖a1(T )‖α < ε−κ, sup
T∈[0,T0]

‖a2(T )‖α < ε−κ

, sup
T∈[0,T0]

‖ψ(T )‖α < ε−κ} ⊇ Ω∗∗,

where the last inclusion holds due to (4.34) with Lemma 4.4.5 and Theorem
4.4.11. Moreover, Ω∗ ⊃ Ω∗∗ by the definition if we identify b with a1. Hence,

P(Ω∗∗) ≥ 1−P(sup
[0,τ∗]

‖ψ−Q‖α ≥ ε2−4κ)−P( sup
[0,τ∗∗]

‖ψ‖α ≥ ε−
1
2
κ)−P( sup

[0,τ∗∗]

‖R2‖α ≥ ε1−6κ)

−P( sup
[0,τ∗∗]

∣∣∣Ma1 − M̃a1

∣∣∣ ≥ ε
1
3
− 29

3
κ)− P( sup

[0,τ∗∗]

|Ma1 | ≥ ε−
κ
2 ).

Using Chebychev inequality and Lemmas 3.4.1, 4.4.3, 4.4.5, 4.4.9 and Corollary
3.4.3, we obtain

P(Ω∗∗) ≥ 1− C[εqκ + ε
1
2
qκ−qκ0 + ε

1
2
qκ] ≥ 1− Cε

1
2
qκ ≥ 1− Cεp, (4.43)

if q is sufficiently large. Now let us turn to the approximation result. Using
(3.2) and triangle inequality, yields

sup
T∈[0,τ∗∗]

∥∥∥u(ε−2T )− εa1(T )− ε2b2(T )− εQ(T )
∥∥∥
α

= sup
T∈[0,τ∗∗]

∥∥∥εa(T )− εa1(T )− ε2b2(T ) + εψ(T )− εQ(T )
∥∥∥
α

= sup
T∈[0,τ∗∗]

∥∥∥ε2a2(T )− ε2b2(T ) + εψ(T )− εQ(T )
∥∥∥
α

≤ ε2 sup
[0,τ∗∗]

‖a2 − b2‖α + ε sup
[0,τ∗∗]

∥∥∥ψ −Q∥∥∥
α

≤ ε2 sup
[0,τ∗∗]

‖a2 − ζ‖α + ε2 sup
[0,τ∗]

‖ζ − b2‖α + ε sup
[0,τ∗∗]

∥∥∥ψ −Q∥∥∥
α
.

From (4.33), (4.38) and (4.42), we obtain

sup
t∈[0,ε−2T0]

∥∥∥u(t)− εa1(ε2t)− ε2b2(ε2t)− εQ(ε2t)
∥∥∥
α

= sup
t∈[0,ε−2τ∗∗]

∥∥∥u(t)− εa1(ε2t)− ε2b2(ε2t)− εQ(ε2t)
∥∥∥
α

≤ Cε
7
3
−7κ on Ω∗∗.
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Thus,

P
(

sup
t∈[0,ε−2T0]

∥∥∥u(t)−εa1(ε2t)−ε2b2(ε2t)−εQ(ε2t)
∥∥∥
α
> Cε

7
3
−7κ
)
≤ 1−P(Ω∗∗).

Using (4.43), yields (4.8). 2

Proof of Corollary 4.2.3. We follow exactly the same proof as in Corollary
3.3.7. 2

4.5 Applications

To apply our main theorem, we will take the Swift-Hohenberg equation (4.5)
with respect to Neumann boundary conditions on the interval [0, π] and Ginzburg-
Landau / Allen-Cahn equation (3.42) as examples and we will discuss several
cases depending on the form of the noise.

4.5.1 Swift-Hohenberg Equation

Define

ek(x) =


1√
π

if k = 0,√
2
π

cos(kx) if k > 0,

and

H = L2([0, π]) and N = span{cos}.

In this case our main theorem states that the solution of (4.5) is

u(t, x) ' εγ1(ε
2t) cos(x) + ε2γ2(ε

2t) cos(x) + εZk(ε2t) cos(kx) +O(ε3−),

where γ1 and γ2 are the solution of the following amplitude equations, we will
discuss three cases depending on the noise as follow,

First case. If the noise is a constant in the space, i.e.

W (t) = σβ0(t) ,

then

γ81 =
(
ν − 3σ2

2

)
γ1 −

3

4
γ31 ,
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and

dγ2 =

[(
ν − 3σ2

2

)
γ2 −

3

4
γ21γ2

]
dT +

3σ2

√
2
γ1dB.

Second case: If the noise acts on cos(kx) for one k ∈ {2, 4, 5, 6, ....}, then

γ81 =
(
ν − 3σ2

2(k2 − 1)2

)
γ1 −

3

4
γ31 ,

and

dγ2 =

[(
ν − 3σ2

2(k2 − 1)2

)
γ2 −

3

4
γ21γ2

]
dT +

3σ2

2
√

2(k2 − 1)3
γ1dB.

Third case: If the noise takes the form

W (t) = σβ3(t) cos(3x) ,

then

γ81 =
(
ν − 3σ2

128

)
γ1 −

3

4
γ31 ,

and

dγ2 =

[(
ν − 3σ2

128

)
γ2 −

3

4
γ21γ2

]
dT +

3σ

256
γ1

√
(γ21 +

σ2

32
)dB.

4.5.2 Ginzburg-Landau / Allen-Cahn Equation

First case r = 0 (i.e., the Ginzburg-Landau Equation (3.42) subject to Neumann
boundary conditions on the interval [0, π]). In this case, our main theorem states
that the solution of (3.42) takes the form

u(t, x) ' εγ1(ε
2t) + ε2γ2(ε

2t) + ε
N∑
k=1

Zk(ε2t) cos(kx) +O(ε3−),

where γ1 and γ2 , we will discuss two cases depending on the noise, are the solu-
tion of the amplitude equations

First case. The noise acts on cos(kx) for one k ∈ {1, 2, ....}, in this case

γ81 =
(
ν − 3α2

k

2πk2

)
γ1 − γ31 ,

and

dγ2 =

[(
ν − 3σ2

4πk2

)
γ2 − 3γ21γ2

]
dT +

3σ2

√
2πk3

γ1dB.
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Second case: The noise takes the form

W (t) =
N∑
k=1

σβk(t)ek .

In this case

γ81 =
(
ν −

N∑
k=1

3σ2

2πk2

)
γ1 − γ31 ,

and

dγ2 =

[(
ν −

N∑
k=1

3σ2

2πk2

)
γ2 − 3γ21γ2

]
dT +

3σ2

√
2π

( N∑
k=1

1

k6

) 1
2
γ1dB.

Remark 4.5.1 Either γ1 tends to be 0 in case ν <
∑N

k=1
3σ2

2πk2
and γ2 tends thus

to 0, too. Or γ21 ≈ (ν −
∑N

k=1
3σ2

2πk2
) > 0 for large T , and thus γ2 behaves like an

Ornstein-Uhlenbeck process.

Second case r = 1 (i.e., the Ginzburg-Landau Equation (3.42) subject to Dirichlet
boundary conditions on the interval [0, π]). In this case, our main theorem states
that the solution of (3.42) takes the form

u(t, x) ' εγ1(ε
2t) sin(x) + ε2γ2(ε

2t) sin(x) + εZk(ε2t) sin(kx) +O(ε3−),

where γ1 and γ2 , we will discuss three cases depending on the noise, are the
solution of

First case. The noise acts on sin(kx) for one k ∈ {2, 4, 5, 6, ....}, in this case

γ81 =
(
ν − 3σ2

4(k2 − 1)

)
γ1 −

3

4
γ31 ,

and

dγ2 =

[(
ν − 3σ2

4(k2 − 1)

)
γ2 −

3

4
γ21γ2

]
dT +

3σ2

2
√

2(k2 − 1)3
γ1dB.

Second case: The noise acts on sin(3x), in this case

γ81 =
(
ν − 3σ2

32

)
γ1 −

3

4
γ31 ,

and

dγ2 =

[(
ν − 3σ2

32

)
γ2 −

3

4
γ21γ2

]
dT +

3σ

32
γ1

√
(γ21 +

σ2

16
)dB.
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Third case: The noise takes the form

W (t) =
3∑

k=2

σβk(t)ek ,

in this case

γ81 =
(
ν −

3∑
k=2

3σ2

4(k2 − 1)

)
γ1 −

3

4
γ31 ,

and

dγ2 =

[(
ν −

3∑
k=2

3σ2

4(k2 − 1)

)
γ2 −

3

4
γ21γ2

]
dT + dM̃,

where

dM̃ =
σ

32

(
9γ41 +

3713σ2

84
γ21 +

16819σ4

19494

)1/2

dB.
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Chapter 5

Modulation Equation for the
Stochastic Swift-Hohenberg
Equation

5.1 Introduction

We consider the stochastic Swift-Hohenberg equation on an unbounded domain
near its change of stability. This equation has been used as a toy model for the
convective instability in Rayleigh-Bénard problem (see [16] or [22]). Now it is
one of the celebrated models in the theory of pattern formation. For a scalar field
U(t, x) it takes the form

∂tU = LU + ε2νU − U3 + εσ∂tβ, (SH)

where the linear differential operator is L = −(1 + ∂2x)
2 and its eigenvalues are

−λk = −(1 − k2)2 for k ∈ R corresponding to eigenfunctions eikx. The noise
is the derivative of a standard Brownian motion {β(t)}t≥0 in R. In this article
we restrict ourselves to the case of noise constant in space, because on one hand,
this is the case where we are able to study the stabilization effect. On the other
hand noise in space and time may lead to spatially unbounded solutions of (SH).
So, this result is only the starting point for modulation equations on unbounded
domains. The stochastic Swift-Hohenberg model was first studied in the context
of amplitude equations with non-degenerate noise in [10] and later in [6].
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For (SH) on the whole real line with degenerate additive noise, Axel Hutt and
collaborators [23], [24] used a formal argument based on center manifold theory.
They showed that noise constant in space leads to a deterministic amplitude equa-
tion, which is stabilized by the impact of additive noise. The aim of this chapter
is to make their results rigorous.

Blömker, Hairer, and Pavliotis [8] considered the stochastic Swift-Hohenberg
Equation (SH) near its change of stability on a large domain [−L/ε, L/ε] with
additive noise, where the noise is assumed to be real-valued homogeneous space-
time noise. They showed that, under appropriate scaling, its solutions can be
approximated by the solution A of the stochastic Ginzburg-Landau equation.

U(t, x) ≈ εA(ε2t, εx)eix + c.c.

One severe problem is, that solutions of stochastic PDEs are not very regular in
space and time. They are at most Hölder continuous and only for (SH) we have
one spacial derivative. In [8] the amplitude A(T ) was shown to split into a more
regular H1-part and a Gaussian.

For the deterministic Swift-Hohenberg equation on an unbounded domain
(i.e., σ = 0). Kirrmann, Mielke, and Schneider [26] approximated solutions of
the Swift-Hohenberg equation via the Ginzburg-Landau equation

∂TA = 4∂2XA+ νA− 3|A|2A,

but this method of approximation depends on high regularity of the modulation
equation, as they needed A ∈ C1,4

b ([0, T ]×R), which means one bounded deriva-
tive in time and four bounded spatial derivatives. For more results on the deter-
ministic Swift-Hohenberg equation, see for instance [15], [33], [34] and [43].

Our method of approximation relies on very low regularity of the modulation
equation, which is necessary when turning to spatial noise. Unfortunately, we
still need too much regulatity for A, as we need A ∈ C0([0, T ],H1/2+). But as a
solution of the stochastic Ginzburg-Landau, A is at most Hölder continuous with
exponent less than 1/2.

The main aim of this chapter is to show that the solution U(t, x) of (SH) is
well approximated by

U(t, x) ' εA(ε2t, εx)eix + εĀ(ε2t, εx)e−ix + εZε(ε2t) ,
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Ch.5 Modulation Equation for Stochastic Swift-Hohenberg equation

where the complex amplitude A(T,X) is the solution of the Ginzburg-Landau
equation

∂TA = 4∂2XA+ (ν − 3
2
σ2)A− 3|A|2A , (GL)

and

Zε(T ) = ε−1σ

∫ T

0

e−ε
−2(T−τ)dβ̃(τ) , (5.1)

is a fast Ornstein-Uhlenbeck process (OU, for short) with β̃(T ) := εβ(ε−2T )

being a rescaled version of the Brownian motion.
The remainder of this chapter is organised as follows. In the next section

we define the standard fractional Sobolev space Hα. We also state and prove the
relation between the norm inHα and the norm in C0(R). In Section 5.3 we give a
formal derivation of the modulation equation and state the main result. In Section
5.4 we recall the Green’s functions Gt(x) of the Swift-Hohenberg operator, and
give estimates on it. In Section 5.5 we bound the Ornstein-Uhlenbeck process
Zε(T ). Finally, in Section 5.6 we give the proof of the main result.

5.2 TheHα-Space

In this section we define the well known Sobolev space Hα, where we rely on
weighted L2-norms of Fourier transforms. We also recall the relation between the
norm inHα and the norm in C0(R) by stating the Sobolev embedding theorem.

Definition 5.2.1 For α ∈ R, we define the spaceHα by

Hα =

{
u : R→ R :

∫ ∞
−∞

(
1 + y2

)α |F(u)(y)|2 dy <∞
}
,

with norm
‖u‖2α =

∫ ∞
−∞

(
1 + y2

)α |F(u)(y)|2 dy,

where F(u) is the Fourier transform of u, which takes the form

F(u)(y) =
1√
2π

∫ ∞
−∞

u(k)e−ikydk.

Note that in the space Hα functions still decay to 0 at∞. Thus if A ∈ Hα we
are still in a setting, where the solutions of (SH) and the amplitude A decay to 0

for |x| → ∞.
Let us now consider semigroups in the spaceHα.
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Lemma 5.2.2 Let A be a non-positive operator with eigenvalues P (k) such that
P (k) ≤ 0 defined by F(Au) = P (·)F(u). Then for t ≥ 0 and u ∈ Hα

∥∥etAu∥∥
α
≤ ‖u‖α . (5.2)

It is well known that etA defined by F(etAu) = etPF(u) generates a contrac-
tion semigroup.

Proof. We note from Definition 5.2.1 that (e−2tP (k) ≤ 1)∥∥etAu∥∥2
α

=

∫ ∞
−∞

(
1 + y2

)α ∣∣F(etAu)(y)
∣∣2 dy

=

∫ ∞
−∞

(
1 + y2

)α ∣∣e−tP (k)F(u)(y)
∣∣2 dy ≤ ‖u‖2α .

2

The next Lemma states the relation between the norm ‖·‖α and the supremum-
norm in C0(R).

Lemma 5.2.3 For α > 1
2

there is a constant C > 0 such that

‖u‖∞ ≤ C ‖u‖α for all u ∈ Hα. (5.3)

Proof. Using Sobolev Embedding Theorems (See Theorem 5.4 in [2]), yields
(5.3). 2

The following lemma is necessary in order to estimate the nonlinearity. It
states thatHα is up to the constant a Banach algebra for α > 1

2
.

Lemma 5.2.4 For α > 1
2

and m ∈ N there exist a constant C > 0 such that

‖um‖α ≤ C ‖u‖mα , for u ∈ Hα. (5.4)

For simplicity of presentation, here let us give an elementary proof of (5.4) in
case of 1

2
< α ≤ 1. For the complete proof, see proof of Theorem 4 in [42].

Proof. To prove (5.4) in case 1
2
< α ≤ 1, we study two cases depending on α.

First case, 1
2
< α < 1. In this case, we use that the norm in Hα is equivalent

to

‖Dαu‖L2 =

(∫
R

∫
R

|u(x+ y)− u(y)|2

|y|2α+1 dydx

)1/2

,
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where Dα is a fractional derivative. We note that, if u = f · g, then

u(x+ y)− u(y) = f(x+ y)g(x+ y)− f(y)g(y)

= f(x+ y) [g(x+ y)− g(y)] + g(y) [f(x+ y)− f(y)] .

Hence,
‖Dαfg‖L2 ≤ ‖f‖∞ ‖D

αg‖L2 + ‖g‖∞ ‖D
αf‖L2 .

From Lemma 3.5.1 in [1], there exist a constant C > 0 such that

C−1 ‖u‖α ≤ ‖u‖L2 + ‖Dαu‖L2 ≤ C ‖u‖α .

Thus

‖um‖α = ‖um‖L2 + ‖Dαum‖L2

≤
∥∥um−1∥∥∞ ‖u‖L2 +

∥∥um−1∥∥∞ ‖Dαu‖L2 + ‖u‖∞
∥∥Dαum−1

∥∥
L2

≤ ‖u‖m−1∞ ‖u‖L2 +m ‖u‖m−1∞ ‖Dαu‖L2

≤ m ‖u‖m−1∞ (‖u‖L2 + ‖Dαu‖L2)

= m ‖u‖m−1∞ ‖u‖α .

Using Lemma 5.2.3, yields (5.4).
Second case, α = 1. In this case

‖um‖H1 = ‖um‖L2 + ‖Dum‖L2

≤ ‖u‖m−1∞ ‖u‖L2 +m ‖u‖m−1∞ ‖Du‖L2

≤ m ‖u‖m−1∞ ‖u‖H1 .

Using Lemma 5.2.3, yields (5.4). 2

5.3 Formal Derivation and the Main Result

In this section let us discuss a formal derivation of the amplitude equation or mod-
ulation equation corresponding to Equation (SH). This is based on the approach
in [26] and uses high regularity of the amplitude A. Let us first rescale (SH). If
we assume that

U(t, x) = εu(ε2t, εx),

103



Sec5.3 Formal Derivation and the Main Result

then Equation (SH) takes the form

∂Tu = Lεu+ νu− u3 + ε−1σ∂T β̃(T ), (SHε)

with differential operator Lε = −ε−2(1 + ε2∂2X)2 on the slow time T = ε2t and
the ”slow” space X = εx. Now define w via

u(T,X) = w(T,X) + Zε(T ), (5.5)

where Zε was defined in (5.1). Plugging (5.5) into (SHε), we obtain

∂Tw = Lεw + νw − w3 − 3w2Zε − 3wZ2
ε + νZε −Z3

ε . (5.6)

Leaving out the error term for simplicity of presentation, we make the following
ansatz:

wA(T,X) = A(T,X)eix + ε2B(T,X)e2ix + ε2H(T,X)e3ix + ε2J(T,X) + c.c.,

(5.7)
where c.c. denotes the complex conjugate. The higher order terms of order O(ε2)

are used to cancel various terms that appear due to the nonlinearity. We assume
that all functions are sufficiently smooth.

Plugging (5.7) into (5.6) and using the relation

Lε
(
f(X)ei

n
ε
X
)

= −[ε−2(1− n2)2f + 4iε−1n(1− n2)f 8

+ (2− 6n2)f 88 + 4iεnf 888 + ε2f 8888] · ei
n
ε
X ,

(5.8)

in order to obtain

∂TAe
ix + ε2∂TBe

2ix + ε2∂THe
3ix + ε2∂TJ + c.c.

= [4A88 − 4iεA888 − ε2A8888]eix − [9B − 24iεB8 − 22ε2B88

+ 8iε3B888 + ε4B8888]e2ix − [64H − 96iεH 8 − 52ε2H 88

+ 12iε3H 888 + ε4H 8888]e3ix − [J + 2ε2J 88 + ε4J 8888]

+ ν[Aeix + ε2(Be2ix +He3ix + J + c.c.)]

− [(Aeix + Āe−ix) + ε2(Be2ix +He3ix + J + c.c.)]3

− 3Zε[(Aeix + Āe−ix) + ε2(Be2ix +He3ix + J + c.c.)]2

− 3Z2
ε [(Aeix + Āe−ix) + ε2(Be2ix +He3ix + J + c.c.)]

+ c.c.+ νZε −Z3
ε .
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Hence,

∂TAe
ix + c.c. = [4A88 − 4iεA888]eix − [9B − 24iεB8]e2ix

− [64H − 96iεH 8]e3ix + νAeix − A3e3ix

− 3 |A|2Aeix − 3ZεA2e2ix − 3Z2
εAe

ix + c.c.

− J + νZε −Z3
ε − 6Zε |A|2 +O(ε2) .

Removing all unwanted O(1)-terms by defining

B =
−1

3
ZεA2 , H =

−1

64
A3 and J = νZε −Z3

ε − 6Zε |A|2 , (5.9)

we obtain

∂TAe
ix + c.c. = [4A88 − 4iεA888 + νA− 3 |A|2A− 3Z2

εA]eix

+ 24iεB8e2ix + 96iεH 8e3ix + c.c.+O(ε2) . (5.10)

Before we proceed this formal derivation, let us state the following two lemmas on
the approximation of Zε. In the following we will rely on the important fact that
due to averaging we can replace Z2

ε approximately by the constant σ2/2. Here we
state the result in a way, which is useful for the mild formulation later.

Lemma 5.3.1 For every κ0 > 0 and p > 1 there is a constant C > 0, depending
only on p, σ, κ0, and T0, such that

E sup
T∈[0,T0]

|Zε(T )|p ≤ Cε−κ0 ,

where the fast OU Zε(T ) is defined in (5.1).

Lemma 5.3.2 Let y be a complex function with y =O(ε−r) in Hα and initial
condition ‖y(0)‖∞ = O(ε−r) for some r ≥ 0.

If Y (T, s) = e4(T−s)∂
2
Xy(s) and dY (T, s) = e4(T−s)∂

2
XG(s)dswithG =O(ε−r)

inHα, then for any small κ0 ∈ (0, 1)∫ T

0

Y (T, s){Z2
ε − σ2

2
}dτ = O(ε1−r−2κ0). (5.11)
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These two lemmas will be proved in Section 5.5.
Now let us complete our formal derivation. Collecting all coefficients in front

of eix in (5.10), yields

∂TA = 4A88 + νA− 3 |A|2A− 3Z2
εA+O(ε).

Using the averaging result of Lemma 5.3.2, we obtain

∂TA = 4∂2XA+

(
ν − 3σ2

2

)
A− 3 |A|2A+O(ε1−).

Neglecting all small terms in ε, yields (GL).
The main result of the chapter is the following approximation result for the

stochastic Swift-Hohenberg Equation (SH) through the Ginzburg-Landau Equa-
tion (GL).

Theorem 5.3.3 (Approximation) Let U(t, x) be a solution of (SH), wA(T,X) the
formal approximation defined as

wA(T,X) = A(T,X)eiX
1
ε + c.c, (5.12)

where A(T,X) is a solution of (GL) such that A ∈ C0([0, T0],Hα) for α > 1
2
.

Suppose for the initial condition ‖U(0)− εA(0)eix − εĀ(0)e−ix‖∞ ≤ dε1−3κ0φε

for some fixed d > 0 and for κ0 ∈ (0, 1
8
) such that ε−8κ0φ2

ε → 0 for ε→ 0.
Then for each T0 > 0 and p > 1 there existC > 0, depending on sup[0,T0] ‖A‖α,

such that

P
{

sup
t∈[0,ε−2T0]

∥∥U(t, x)− εwA(ε2t, εx)− εZε(ε2t)
∥∥
∞ > Cε1−4κ0φε

}
≤ Cεp,

(5.13)
where Zε(T ) is the fast OU defined in (5.1) and

φ2
ε =


ε2 if α > 3/2,

ε2 ln(1/ε) if α = 3/2,

ε2α−1 if α < 3/2.

(5.14)

5.4 Green’s Function and Semigroup Estimation

For the first part of this section we follow the ideas of Collet and Eckmann [15]
which they apply to a slightly different operator. We define the Green’s functions
Gt(x) of the Swift-Hohenberg operator, and we give estimates on it.
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Definition 5.4.1 Define the Green’s function Gt(x) of the operator L for t > 0

and x ∈ R as
Gt(x) =

∫ ∞
−∞

eikxe−t(1−2k
2+k4)dk. (5.15)

The next lemma states that the Green’s function Gt(x) is bounded with respect
to the norm ‖·‖L1 .

Lemma 5.4.2 There exists a constant C > 0 such that for all t > 0

‖Gt‖L1 ≤ C . (5.16)

In order to prove this lemma, let us state and prove the following two lemmas:

Lemma 5.4.3 Define the function gτ (y) as

gτ (y) =

∫ ∞
−∞

eimye−Q1(m,τ)dm,

where Q1(m, τ) = τ−2 − 2m2 + τ 2m4. Then there exists a constant C > 0 such
that for 0 < τ ≤ 1

sup
y∈R

∣∣(4 + y2)gτ (y)
∣∣ ≤ C .

Proof. Using integration by parts, we obtain

(4 + y2)gτ (y) =

∫ ∞
−∞

P1(m, τ)eimye−Q1(m,τ)dm

=

∫ ∞
0

P1(m, τ)eimye−Q1(m,τ)dm+

∫ 0

−∞
P1(m, τ)eimye−Q1(m,τ)dm

:= I1 + I2,

where
P1(m, τ) = 12m2τ 2 − 16m6τ 4 + 32m4τ 2 − 16m2.

For m ≥ 0 and 0 < τ ≤ 1 we not that

Q1(m, τ) = (mτ − 1)2(m+ τ−1)︸ ︷︷ ︸
≥τ−2

2 ≥ (m− τ−1)2 ,

and
P1(m, τ) = τ 2m2[12− 16(m− τ−1)2(1 + τm)2] .
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Hence,
|P1(m, τ)| ≤ C[1 + (τm)4][1 + (m− τ−1)2] .

Thus, ∣∣P1(m+ τ−1, τ)
∣∣ ≤ C[1 + (τm+ 1)4][1 +m2] ≤ C(1 +m6) .

Now we bound I1 and I2 separately. For the first integral I1 we obtain

I1 =

∫ ∞
−τ−1

P1(r + τ−1, τ)ei(r+τ
−1)ye−Q1(r+τ−1,τ)dr

≤
∫ ∞
−τ−1

P1(r + τ−1, τ)ei(r+τ
−1)ye−r

2

dr ,

where we substituted r = m− τ−1. Thus

|I1| ≤
∫ ∞
−τ−1

(c+ cr6)e−r
2

dr ≤
∫ ∞
−∞

(c+ cr6)e−r
2

dr = C.

For the second integral I2, we put −m instead of m to obtain

I2 =

∫ ∞
0

P1(m, τ)e−imye−Q1(m,τ)dm,

where P1 and Q1 are even polynomials in m. Analogously to the first integral, we
derive

|I2| ≤ C.

Hence, from the bounds on I1 and I2 we obtain

sup
y∈R

∣∣(4 + y2)gτ (y)
∣∣ ≤ C for 0 < τ ≤ 1.

2

Lemma 5.4.4 Define the function hη(y) as

hη(y) =

∫ ∞
−∞

eikye−Q2(k,η)dk,

where Q2(k, η) = η4 − 2η2k2 + k4. Then there exists a constant C > 0 such that
for 0 < η < 1

sup
y∈R

∣∣(1 + y2)hη(y)
∣∣ ≤ C .
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Proof. Using integration by parts, we obtain

(1 + y2)hη(y) =

∫ ∞
−∞

P2(k, η)eikye−Q2(k,η)dk

=

∫ ∞
1

P2(k, η)eikye−Q2(k,η)dk +

∫ −1
−∞

P2(k, η)eikye−Q2(k,η)dk

+

∫ 1

−1
P2(k, η)eikye−Q2(k,η)dk

:= II1 + II2 + II3,

where

P2(k, η) = 1 + 12k2 − 4η2 − 16k6 + 32k4η2 − 16k2η4.

We note that for k ≥ 1 and 0 < η < 1

Q2(k, η) = (k − η)2(k + η)︸ ︷︷ ︸
≥1

2 ≥ (k − η)2,

and

|P2(k, τ)| ≤ c(1 + k6).

We now bound all three terms separately. To bound II1 and II2, we follow the
same steps as in the case of Lemma 5.4.3. For the third term

|II3| ≤
∫ 1

−1
|P2(k, η)|

∣∣e−Q2(k,η)
∣∣ dk ≤ ∫ 1

−1
|P2(k, η)| dk

≤ c

∫ 1

−1
(1 + k6)dk = C.

Hence, combining all three estimates on II1, II2 and II3 we obtain for 0 < η < 1

that

sup
y∈R

∣∣(1 + y2)hη(y)
∣∣ ≤ C.

2

Proof of Lemma 5.4.2. In order to prove (5.16), we consider two cases:
First case t ≥ 1. In this case we note that

Gt(x) = τgτ (τx),
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with τ = t−
1
2 and

‖Gt‖L1 =

∫ ∞
−∞
|Gt(x)| dx =

∫ ∞
−∞
|τgτ (τx)| dx

=

∫ ∞
−∞
|gτ (y)| dy =

∫ ∞
−∞

1

4 + y2
∣∣(4 + y2)gτ (y)

∣∣ dy
≤ sup

y∈R

∣∣(4 + y2)gτ (y)
∣∣ ∫ ∞
−∞

1

4 + y2
dy

≤ C sup
y∈R

∣∣(4 + y2)gτ (y)
∣∣ ,

where y = τx. Using Lemma 5.4.3, we obtain for t ≥ 1

‖Gt‖L1 ≤ C . (5.17)

Second case t ∈ (0, 1). In this case we note that

Gt(x) = η−1hη(η
−1x),

with η = t
1
4 and

‖Gt‖L1 =

∫ ∞
−∞

1

1 + y2
∣∣(1 + y2)hη(y)

∣∣ dy
≤ sup

y∈R

∣∣(1 + y2)hη(y)
∣∣ ∫ ∞
−∞

1

1 + y2
dy

≤ C sup
y∈R

∣∣(1 + y2)hη(y)
∣∣ ,

where y = η−1x. Using Lemma 5.4.4, we obtain for t ∈ (0, 1)

‖Gt‖L1 ≤ C . (5.18)

Combining (5.17) and (5.18), yields (5.16) for all t > 0. 2

Lemma 5.4.5 There exists a constant C > 0 such that

‖etLu‖∞ ≤ C‖u‖∞ for all t ≥ 0 and u ∈ C0(R). (5.19)

Proof. Let F−1 denotes the inverse Fourier transform. Then

etLu(x) = F−1FetLu(x) = F−1(e−tλkFu(x))

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

eik(x−y)e−tλku(y)dydk

=
1

2π

∫ ∞
−∞

u(y)Gt(x− y)dy . (5.20)
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We obtain ∥∥etLu∥∥∞ ≤ C ‖u‖∞ ‖Gt‖L1 .

Using Lemma 5.4.2, yields (5.19). 2

Corollary 5.4.6 For T ≥ 0, there exists a constant C > 0 such that∥∥eTLεu∥∥∞ ≤ C‖u‖∞ for all T ≥ 0 and u ∈ C0(R).

Proof.

eTLεu(X) = eε
−2T (1+(ε∂X)2)2u(X) = eε

−2T (1+∂2X)2u(εX)

= eε
−2TLu(εX) = etLuε(X) ,

where uε(X) = u(εX). Using Lemma 5.4.5, we obtain∥∥eTLεu∥∥∞ =
∥∥etLuε∥∥∞ ≤ C ‖uε‖∞ = C ‖u‖∞ .

2

The following lemma provides a result on how to change from semigroup eTLε

to e4T∂2X when they are applied to AeiXε−1 .

Lemma 5.4.7 There is a constant C > 0 such that for all T > 0 and all A ∈ Hα

with α > 1
2

sup
X∈R

∣∣∣eTLεA(X)eiXε
−1 − (e4T∂

2
XA)(X)eiXε

−1
∣∣∣ ≤ C‖A‖αφε,

where φε is defined in (5.14).

Proof. We write etLA(εx)eix as a convolution with the Green’s function of L,
as in (5.20),

etLA(εx)eix = 1
2π

∫ ∞
−∞

∫ ∞
−∞

eik(x−y)e−tλkA(εy)eiydy dk

= 1
2π

∫ ∞
−∞

∫ ∞
−∞

ei(k−1)(x−y)e−tλkA(εy)dy dk · eix

= 1
2π

∫ ∞
−∞

∫ ∞
−∞

eik(εx−y)e−tλεk+1A(y)dy dk · eix,
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where we used the substitution y = εy and k = ε−1(k − 1). Hence,

eTLεA(X)eiXε
−1

= 1
2π

∫ ∞
−∞

∫ ∞
−∞

eik(εx−y)e−T (εk
2+2k)2A(y)dy dk · eix. (5.21)

Analogously, we can write (e4T∂
2
XA)(X) · eiXε−1 as

(e4T∂
2
XA)(X)eiXε

−1

= 1
2π

∫ ∞
−∞

∫ ∞
−∞

eik(εx−y)e−4Tk
2

A(y)dy dk · eix. (5.22)

Let
Θ = eTLεA(X)eiXε

−1 − (e4T∂
2
XA)(X) · eiXε−1

.

Hence,

Θ = 1
2π

∫ ∞
−∞

∫ ∞
−∞

A(y)eik(εx−y)
[
e−T (εk

2+2k)2 − e−4Tk2
]
dy dk · eix

= 1
2π

∫ ∞
−∞
F(A)(k)

[
e−T (εk

2+2k)2 − e−4Tk2
]
eiεkxdk · eix.

Using Cauchy-Schwarz inequality, yields

|Θ|2 ≤ C‖A‖2α
∫ ∞
−∞

Ψ(k)dk,

where
Ψ(k) = 1

(1+k2)α
e−8Tk

2
[
e−T (ε

2k4+4εk3) − 1
]2
.

In order to bound Θ it is sufficient to bound∫ ∞
−∞

Ψ(k)dk =

∫ 1
2
ε−1

0

Ψ(k)dk +

∫ 0

−1
2
ε−1

Ψ(k)dk

+

∫ ∞
1
2
ε−1

Ψ(k)dk +

∫ −1
2
ε−1

−∞
Ψ(k)dk

:= I1 + I2 + I3 + I4,

where we consider all terms separately. For I1, we note that εk3(εk + 4) is non-
negative for all k ∈ [0, 1

2
ε−1]. Thus, we can use the following inequality, which

follows directly from the intermediate value theorem:

|ex − 1| ≤ |x|max{1, ex}. (5.23)
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Hence,

I1 ≤
∫ 1

2
ε−1

0

1
(1+k2)α

e−8Tk
2 [
εTk3(εk + 4)

]2
dk

≤ Cε2
∫ 1

2
ε−1

0

k2

(1+k2)α

(
Tk2

)2
e−8Tk

2

dk,

where we used (εk + 4) < 5 for all k ∈ [0, 1
2
ε−1]. Now, using the fact

sup
z>0

{
zme−z

}
<∞ for all m ≥ 0, (5.24)

we get

I1 ≤ Cε2
∫ 1

2
ε−1

0

k2

(1 + k2)α
dk ≤ Cε2 + Cε2

∫ 1
2
ε−1

1

k2−2αdk ≤ Cφ2
ε.

Let us now turn to I2. Substituting k = −k, yields

I2 =

∫ 1
2
ε−1

0

1

(1 + k2)α
e−8Tk

2
[
eεTk

3(4−εk) − 1
]2
dk.

We note that εk3(4−εk) is non-negative for all k ∈ [0, 1
2
ε−1]. Using (5.23), yields

I2 ≤
∫ 1

2
ε−1

0

1
(1+k2)α

e−8Tk
2
[
4εTk3e4εTk

3
]2
dk

≤ ε2
∫ 1

2
ε−1

0

k2

(1 + k2)α
(
4Tk2

)2
e−4Tk

2

dk,

where we used εk ≤ 1
2

for all k ∈ [0, 1
2
ε−1]. Now (5.24) implies

I2 ≤ Cε2
∫ 1

2
ε−1

0

k2

(1 + k2)α
dk ≤ Cφ2

ε.

To bound I3:

I3 ≤ C

∫ ∞
1
2
ε−1

1

(1 + k2)α

[
e−T (εk

2+2)2 + e−8Tk
2
]2
dk

≤ C

∫ ∞
1
2
ε−1

1

(1 + k2)α
dk ≤ Cε2α−1 for α > 1

2
.
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Analogously for I4 :

I4 ≤ Cε2α−1 for α > 1
2
.

Collecting all four results together, we obtain‖Θ‖2∞ ≤ C‖A‖2αφ2
ε . 2

Let us now state a bound for the semigroup eTLε , when applied toB(X)einε
−1X .

The case n = ±1 was treated in Lemma 5.4.7 before.

Lemma 5.4.8 Let n ∈ Zr {±1} and α > 1
2
. There are two constants C > 0 and

cn > 0, depending on n, such that, for T > 0 and B ∈ Hα,

sup
X∈R

∣∣∣eTLεB(X)einε
−1X
∣∣∣2 ≤ C ‖B‖2α {e

−cnε−2T + ε2α−1}. (5.25)

Proof. Writing etLB(εx)einx as a convolution with the Green’s function of L
as in Lemma 5.4.7

etLB(εx)einx =
1

2π

∫ ∞
−∞

∫ ∞
−∞

eik(x−y)e−tλkB(εy)einydydk

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

ei(k−n)(x−y)e−tλkB(εy)dydk · einx

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

eik(εx−y)e−tλεk+nB(y)dydk · einx,

where we used the substitution y = εy and k = ε−1(k − n). Hence, using the
definition of λk and X = εx, we obtain

eTLεB(X)einε
−1X =

1

2π

∫ ∞
−∞

∫ ∞
−∞

eik(X−y)e−t[1−(εk+n)
2]2B(y)dydk · einε−1X .

Taking the absolute value |·| on both sides and using Cauchy-Schwarz inequality,
yields∣∣∣eTLεB(X)einε

−1X
∣∣∣2 ≤ C ‖B‖2α

∫ ∞
−∞

1

(1 + k2)α
e−2t[1−(εk+n)

2]2dk. (5.26)

Now, we want to bound the integral in (5.26)∫ ∞
−∞

Φ(k)dk ≤
∫ 1

2ε

0

Φ(k)dk +

∫ 0

−1
2ε

Φ(k)dk + 2

∫ ∞
1
2ε

1

(1 + k2)α
dk,

with
Φ(k) =

1

(1 + k2)α
e−2tq(k) and q(k) = [1− (εk + n)2]2.
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Now, let us bound q(k) on [0,± 1
2ε

].We consider several cases depending on n and
k.

First case n = 0 and k ∈ [− 1
2ε
, 1
2ε

]. In this case as |k| ≤ 1
2ε

q(k) = [1− ε2k2]2 ≥ 9

16
.

Second case n ≥ 2 and k ∈ [0, 1
2ε

],
(
or n ≤ −2 and k ∈ [−1

2ε
, 0]
)
. In this case as

εk ≥ 0

q(k) = [n+ 1 + εk]2[n− 1 + εk]2 ≥ [n+ 1]2[n− 1]2 =
(
n2 − 1

)2
.

Third case n ≥ 2 and k ∈ [−1
2ε
, 0],

(
or n ≤ −2 and k ∈ [0, 1

2ε
]
)
. In this case as

k ≤ 1
2ε

q(k) = [n− 1− εk]2[n+ 1− εk]2 ≥ 1

16
[n+

1

2
]2.

We deduce from the previous three cases that

q(k) ≥ 1

2
cn > 0 .

Thus,∫ ∞
−∞

Φ(k)dk ≤ 2

∫ 1
2ε

0

1

(1 + k2)α
e−cntdk + 2

∫ ∞
1
2ε

1

(1 + k2)α
dk

≤ 2e−cnt
∫ ∞
0

1

(1 + k2)α
dk + 2

∫ ∞
1
2ε

k−2αdk

≤ Ce−cnt + Cε2α−1. (5.27)

Plugging (5.27) into (5.26), yields (5.25). 2

5.5 General Bounds on Zε
In this section, we prove Lemmas 5.3.1 and 5.3.2.

Proof of Lemma 5.3.1. See the first part of the proof of Lemma 3.4.2 with
λk = 1. 2

Proof of Lemma 5.3.2. First, we note from Lemma 5.2.2 that

E sup
s∈[0,T0]

‖Y (T, s)‖pα = E sup
s∈[0,T0]

∥∥e(T−s)Ay(s)
∥∥p
α
≤ CE sup

[0,T0]

‖y‖pα ≤ Cε−pr.
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Applying Itô formula to Y Z2
ε , yields

d
(
Y Z2

ε

)
= Z2

εdY + 2Y ZεdZε + Y (dZε)2

= GZ2
εds− 2ε−2Y Z2

εds+ 2ε−1σZεY dβ̃ + ε−2σ2Y ds.

d
(
Y Z2

ε

)
= e4(T−s)∂

2
XG(s)Z2

εds− 2ε−2Y Z2
εds+ 2ε−1σZεdβ̃ + ε−2σ2Y ds.

Integrating from 0 to T, taking ‖ · ‖p∞ norms, and using triangle inequality, yields∥∥∥∫ T

0

Y {Z2
ε − σ2

2
}ds
∥∥∥p
∞
≤ cε2p

∥∥Y Z2
ε

∥∥p
∞ + cε2p

∥∥∥∫ T

0

e4(T−s)∂
2
XG(s)Z2

εds
∥∥∥p
∞

+cεp
∥∥∥∫ T

0

Y Zεdβ̃(s)
∥∥∥p
∞

≤ Cε2p−pr sup
[0,T0]

|Zε|2p + cεp
∥∥∥∫ T

0

Y (T, s)Zεdβ̃(s)
∥∥∥p
∞
.

Taking expectation after supremum on both sides, we obtain

E sup
[0,T0]

∥∥∥∫ T

0

Y {Z2
ε−σ2

2
}ds
∥∥∥p
∞
≤ Cε2p−pr−2κ0+CεpE sup

[0,T0]

∥∥∥∫ T

0

Y (T, s)Zεdβ̃(s)
∥∥∥p
∞
.

(5.28)
In order to obtain (5.11), let us bound the last term on the right hand side of (5.28).
Using Sobolev embedding from Lemma 5.2.3, yields

E sup
[0,T0]

∥∥∥∫ T

0

Y (T, s)Zε(s)dβ̃(s)
∥∥∥p
∞
≤ E sup

[0,T0]

∥∥∥∫ T

0

Y (T, s)Zε(s)dβ̃(s)
∥∥∥p
α
.

By a variant Burkholder-Davis-Gundy theorem (see, Theorem 1.2.5 in [32] or the
paper of Hausenblas and Seidler [21]), we obtain for p ≥ 2

E sup
[0,T0]

∥∥∥∫ T

0

e4(T−s)∂
2
Xy(s)Zε(s)dβ̃(s)

∥∥∥p
∞
≤ CE

(∫ T0

0

‖y(s)Zε(s)‖2α ds
)p

2

≤ CE
(∫ T0

0

|Zε(s)|2 ‖y(s)‖2α ds
)p

2

≤ Cε−pr−κ0 .

2

As a final result in this section, we prove an averaging result for a mild formu-
lation of (GL).
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Lemma 5.5.1 If A is a solution of (GL) with sup[0,T0] ‖A‖α ≤ C, then∫ T

0

e4(T−s)∂
2
XA(s){Z2

ε (s)− σ2

2
}ds = O(ε1−2κ0), (5.29)

for any κ0 > 0.

Proof. Define for s ∈ [0, T ]

Y (T, s) = e4(T−s)∂
2
XA(s),

with

dY = (−4∂2X)e4(T−s)∂
2
XA(s)ds+ e4(T−s)∂

2
XdA.

Using (GL), we obtain

dY = e4(T−s)∂
2
X
[
(ν − 3

2
σ2)A− 3|A|2A

]
ds = e4(T−s)∂

2
XG(s)ds.

Using Lemmas 5.2.3, 5.2.2 and 5.2.4, we derive

‖G‖∞ ≤ C ‖G‖α ≤ C‖A‖α + C‖A‖3α.

Thus

sup
[0,T0]

‖G‖∞ ≤ C.

Now applying Lemma 5.3.2, yields (5.29). 2

5.6 Main Results

In this section, we give the proof of the main result.

Definition 5.6.1 Define the residual ρ(T ) as

ρ(T ) = wA(T )− eTLεwA(0)−
∫ T

0

e(T−s)Lε
[
ν(wA + Zε)− (wA + Zε)3

]
ds,

(5.30)
where wA is defined in (5.12).
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Lemma 5.6.2 If sup[0,T0] ‖A‖α ≤ C for α > 1
2
, then for all p > 1 there is a

constant C > 0 such that

E sup
T∈[0,T0]

‖ρ(T )‖p∞ ≤ Cε−3pκ0φpε, (5.31)

where φε is defined in (5.14).

Proof. From (5.12), we obtain

ρ(T ) = A(T )eix + c.c.− eTLεA(0)eix + c.c.−
∫ T

0

e(T−s)Lεν(Aeix + c.c.)ds

+

∫ T

0

e(T−s)Lε(Aeix + c.c.+ Zε)3ds− ν
∫ T

0

e(T−s)LεZεds.

Hence,

ρ(T ) = A(T )eix − eTLεA(0)eix −
∫ T

0

e(T−s)Lε(νA− 3AZ2
ε − 3 |A|2A)eixds

+

∫ T

0

e(T−s)LεA3e3ixds+ 3

∫ T

0

e(T−s)LεA2Zεe2ixds

+3

∫ T

0

e(T−s)Lε |A|2Zεe2ixds+ c.c.

−ν
∫ T

0

e−(T−s)LεZεds+

∫ T

0

e(T−s)LεZ3
εds.

Using Lemma 5.4.7, we obtain

ρ(T ) =

[
A(T )− e4T∂2XA(0)−

∫ T

0

e4(T−s)∂
2
X (νA− 3AZ2

ε − 3 |A|2A)ds

]
eix

+

∫ T

0

e(T−s)LεA3e3ixds+ 3

∫ T

0

e(T−s)LεA2Zεe2ixds

+3

∫ T

0

e(T−s)Lε |A|2Zεe2ixds+ c.c.− ν
∫ T

0

e−ε
−2(T−s)Zεds

+

∫ T

0

e−ε
−2(T−s)Z3

εds+O(ε−3κ0φε).

From (GL) we have

ρ(T ) =

[
3

∫ T

0

e4(T−s)∂
2
XA(Z2

ε −
1

2
σ2)ds

]
eix +

∫ T

0

e(T−s)LεA3e3ixds

+3

∫ T

0

e(T−s)LεA2Zεe2ixds+ 3

∫ T

0

e(T−s)Lε |A|2Zεe2ixds

+c.c.+O(ε−3κ0φε).
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Taking the norm ‖·‖p∞ on both sides and using Lemma 5.4.8 in order to obtain

‖ρ‖p∞ ≤ C

∥∥∥∥∫ T

0

e4(T−s)∂
2
XA(Z2

ε −
1

2
σ2)ds

∥∥∥∥p
∞

+C
(
ε2p + εpα−

p
2

) [∥∥A3
∥∥p
α

+ |Zε|p
∥∥A2

∥∥p
α

+ |Zε|p
∥∥|A|2∥∥p

α

]
+Cε−3pκ0φpε.

Taking expectation after supremum and using the bound onZε from Lemma 5.3.1,
the factHα is a Banach Algebra from Lemma 5.2.4 and averaging result for a mild
formulation from Lemma 5.5.1, yields (5.31). 2

Definition 5.6.3 Define the set Ω0 ⊂ Ω such that all these estimates

sup
T∈[0,T0]

|Zε(T )| < ε−κ0 , (5.32)

∣∣∣∣∫ T0

0

{|Zε|2 −
σ2

2
}dτ
∣∣∣∣ < ε1−3κ0 , (5.33)

and
sup

T∈[0,T0]
‖ρ(T )‖∞ < ε−4κ0φε,

hold on Ω0.

Corollary 5.6.4 For all p > 0 there exist a constant Cp such that on Ω0

P(Ω0) ≥ 1− Cpεp for all ε ∈ (0, 1). (5.34)

Proof. We note that

P(Ω0) ≥ 1− P( sup
[0,T0]

|Zε(T )| ≥ ε−κ0)− P(

∫ T0

0

{|Zε|2 −
σ2

2
}dτ ≥ ε1−3κ0)

−P( sup
[0,T0]

|ρ(T )| ≥ ε−4κ0φε).

Using Chebychev’s inequality

P(Ω0) ≥ 1− εqκ0E sup
[0,T0]

|Zε|q − ε4qκ0φ−qε E sup
[0,T0]

‖ρ‖q∞

− ε−q+3qκ0E(

∫ T0

0

{|Zε|2 −
σ2

2
}dτ)q.
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From Lemmas 5.3.1,5.3.2 and 5.6.2, we obtain

P(Ω0) ≥ 1− Cqεqκ0−κ0 − Cqεqκ0 .

For sufficiently large q, we obtain

P(Ω0) ≥ 1− Cpεp for all p > 0.

2

Finally, we use the results previously obtained to prove the main result of
Theorem 5.3.3 for the approximation of the solution of the SPDE (SHε).

Proof of Theorem 5.3.3. Define

R(T ) = u(T )− wA(T )−Zε(T ). (5.35)

Integrating (SHε) from 0 to T , we obtain

u(T ) = eTLεu(0)+ν

∫ T

0

e(T−s)Lεu(s)ds−
∫ T

0

e(T−s)Lεu(s)3ds+Zε(T ). (5.36)

Substituting from (5.35) into (5.36), we obtain

R(T ) = eTLεR(0) + ν

∫ T

0

e(T−s)LεRds− 3

∫ T

0

e(T−s)LεZεR2ds

− 3

∫ T

0

e(T−s)LεZ2
εRds−

∫ T

0

e(T−s)LεR3ds− 3

∫ T

0

e(T−s)Lεw2
ARds

− 6

∫ T

0

e(T−s)LεwAZεRds− 3

∫ T

0

e(T−s)LεwAR
2ds+ ρ(T ),

where the residual ρ(T ) is defined in (5.30). Taking the norm ‖·‖∞ on both sides
and using Corollary 5.4.6, yields on Ω0

‖R(T )‖∞ ≤ C ‖R(0)‖∞ + C

∫ T

0

‖R‖∞ ds+ C

∫ T

0

|Zε| ‖R‖2∞ ds

+ C

∫ T

0

∣∣Z2
ε

∣∣ ‖R‖∞ ds+ C

∫ T

0

‖R‖3∞ ds+ C

∫ T

0

|Zε| ‖R‖∞ ds

+ C

∫ T

0

‖R‖2∞ ds+ Cε−4κ0φε .
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where we used ‖wA‖∞ ≤ C. As long as ‖R(T )‖∞ ≤ Dε−4κ0φε, we obtain

‖R(T )‖∞ ≤ (Cεκ0d+ C)ε−4κ0φε

+ C[1 +Dε−4κ0φε +
∣∣Z2

ε

∣∣+D2ε−8κ0φ2
ε + |Zε|]

∫ T

0

‖R‖∞ ds

≤ C1ε
−4κ0φε + C[

3

2
+Dε−4κ0φε +

1

2
|Zε|2 +D2ε−8κ0φ2

ε]

∫ T

0

‖R‖∞ ds

≤ C1ε
−4κ0φε +

∫ T

0

[C2 +
1

2
C |Zε|2] ‖R‖∞ ds ,

where C1 = Cεκ0d+ C and

C[
3

2
+Dε−4κ0φε +D2ε−8κ0φ2

ε] ≤ C[2 +
3

2
D2ε−8κ0φ2

ε] = C2.

Note that by Assumption on κ0, we can choose C2 independent of D, provided
ε > 0 is sufficiently small. Using Gronwall’s inequality, we obtain

‖R(T )‖∞ ≤ C1ε
−4κ0φε[1 +

∫ T

0

[C2 + 1
2
C |Zε|2] exp{

∫ T

s

[C2 + 1
2
C|Zε|2]dr}ds]

≤ C1ε
−4κ0φε[1 +

∫ T0

0

[C2 + 1
2
C |Zε|2] exp{C2T + 1

2
C

∫ T0

0

|Zε|2 dr}ds].

Taking the supremum over [0, T?] yields

sup
T∈[0,T?]

‖R(T )‖∞ ≤ C1ε
−4κ0φε[1 + C̃2] on Ω0 , (5.37)

where we used (see (5.33))∫ T0

0

|Zε|2dτ ≤ ε1−3κ0 + σ2

2
T0 ≤ C̃ on Ω0 (5.38)

and defined
C̃2 = (C2T0 + 1

2
CC̃)e(C2T0+

1
2
CC̃) .

Now fix D > C1[1 + C̃2]. Hence, (5.37) shows that

sup
T∈[0,T?]

‖R(T )‖∞ < Dε−4κ0φε .

Hence, T? = T0 and finally

sup
t∈[0,ε−2T0]

∥∥U(t, x)− εwA(ε2t, εx)− εZε(ε2t)
∥∥
∞ ≤ ε sup

T∈[0,T0]
‖R(T )‖∞

≤ Cε1−4κ0φε.
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Thus,

P
{

sup
t∈[0,ε−2T0]

∥∥U(t, x)− εwA(ε2t, εx)− εZε(ε2t)
∥∥
∞ > Cε1−4κ0φε

}
≤ 1−P(Ω0).

Using (5.34), yields (5.13). 2
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[27] M. Kovács and S. Larsson. Introduction to stochastic partial differ-
ential equations. Lecture notes. Department of Mathematical Science,
Chalmers University of Technology and University of Gothenburg, 2008.
http://www.maths.otago.ac.nz/ mkovacs/spdenotes.pdf.

[28] B. Øksendal. Stochastic Differential Equations: An Introduction with Appli-
cations. Universitext. Springer-Verlag, Berlin,, 1998.

[29] Z.-W. Lai and S. Das Sarma. Kinetic growth with surface relaxation: Con-
tinuum versus atomistic models. Phys. Rev. Lett., 66:2348–2351, 1991.

[30] K. B. Lauritsen, R. Cuerno, and H.A. Makse. Noisy Kuramoto-Sivashinsky
equation for an erosion model. Phys. Rev. E, 54:3577–3580, 1996.

[31] C. Liu. A fourth-order parabolic equation in two space dimensions. Mathe-
matical Methods in the Applied Sciences, 30:1913–1930, 2007.

[32] K. Liu. Stability of infinite dimensional stochastic differential equations with
applications, volume 135. Chapman and Hall /CRC Monographs, 2006.

125



BIBLIOGRAPHY

[33] A. Mielke and G. Schneider. Attractors for modulation equations on un-
bounded domains - existence and comparison. Nonlinearity, 8:743–768,
1995.

[34] A. Mielke, G. Schneider, and A. Ziegra. Comparison of interial manifolds
and application to modulated systems. Math. Nachr., 214:53–69, 2000.

[35] G. Da Prato, S. Kwapien, and J. Zabczyk. Regularity of solutions of linear
stochastic equations in Hilbert spaces. Stochastics, 23:1–23, 1987.

[36] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions,
volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 1992.
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