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Preface

A stochastic partial differential equation (SPDE) is a partial differential equation
containing a random (noise) term. The study of SPDE:s is an exciting topic which
brings together techniques from probability theory, functional analysis, and the
theory of partial differential equations.

Stochastic partial differential equations appear in several different applica-

tions:

e random evolution of systems with a spatial extension (random interface

growth, random evolution of surfaces, fluids subject to random forcing),

e stochastic models where the state variable is infinite dimensional (for exam-

ple, a curve or surface).

The solution to a stochastic partial differential equations may be viewed in
several manners. One can view a solution as a random field (set of random vari-
ables indexed by a multidimensional parameter). Alternatively, in the case where
the SPDE is an evolution equation, the infinite dimensional point of view consists
in viewing the solution at a given time as a random element in a function space and
thus view the SPDE as a stochastic evolution equation in an infinite dimensional
space. In the pathwise point of view one tries to give a meaning to the solution
for (almost) every realization of the noise and then view the solution as a random
variable on the set of (infinite dimensional) paths thus defined.

All equations considered are parabolic nonlinear SPDEs perturbed by additive
forcing. Near a change of stability, we can use the natural separation of time-
scales, in order to derive simpler equations for the evolution of the dominant pat-
tern. As these equations describe the amplitudes of dominant pattern, they are

referred to as amplitude equations.
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This work is based on one hand on Blomker, Hairer, and Pavliotis [9] and
Roberts [40] for the Burgers’ equation driven by degenerate noise ( i.e. noise
does not act directly on the dominant pattern). On the other hand it discusses
the observation of Axel Hutt and collaborators [23-25] for the Swift-Hohenberg
equation with degenerate noise. Where they established that constant noise in
space leads to a deterministic amplitude equation by using a formal argument
based on center manifold theory.

The aim of this thesis is to establish rigorously amplitude equations for quite
general classes of SPDEs with quadratic or cubic nonlinearities. In the exam-
ples we investigate whether additive degenerate noise leads to stabilization of the
solutions, or not.

The thesis consists of five chapters:

Chapter 1. This chapter is an introductory chapter. It contains some basic defi-
nitions, inequalities and some previously known results without proof for approx-
imation of SPDEs via amplitude equations. These will be used throughout the
next chapters and in the main results of approximation for the stochastic partial
differential equations via amplitude equations.

Chapter 2. In this chapter we rigorously derive stochastic amplitude equations
for SPDE:s of the following type

du = [Au + °Lu + B(u,u)] dt + *dW,

where B is a bilinear map modelling a quadratic nonlinearity. We also show that
the solution u of the original SPDE is well approximated by the solution of the
amplitude equation of the type

da = [L.a — 2F(a)] dT + dW,,

where F(a) = B.(a, A;'B,(a,a)). We give applications to the one-dimensional
Burgers’ equation

oyu = (Qi + 1) u+ e2vu + ud,u + £20,W,
and a model from surface growth
Oh = —A?h — p.Nh — A|VA]2 + 20,V (1).

v



Preface

Chapter 3. In this chapter we derive rigorously an amplitude equation for
du = [Au+ &*Lu+ F(u)] dt + dW,

where W is a degenerate noise acting on finitely many Fourier modes only. We
also show that adding noise will stabilize the dynamics of the dominant modes.
We focus on equations with cubic nonlinearity and give applications to the Swift-

Hohenberg equation
O = (02 4+ 1)%u + ve*u — u® + 0, W (),
the Allen-Cahn equation
O = (02 4+ Vu + ve’u — u® +e0,W(t),
and a model from surface growth
du = —LN%u — pAu+ V ([Vul*Vul) + 0, W ().

Chapter 4. In this chapter we improve the result which we obtained in Chapter 3
in the case of one dimensional kernels of A, by studying higher order corrections.
Moreover, we give applications to the Swift-Hohenberg equation and the Allen-
Cahn equation.

Chapter 5. The purpose of this chapter is to study the influence of large or un-
bounded domains, where there is a band of dominant pattern. This leads to a slow
modulation of the dominant pattern changing stability. We derive rigorously the

Ginzburg-Landau equation

OrA = 40% A+ ( JA—3|A]P A,

302
V—_
2

as a modulation equation for the stochastic Swift-Hohenberg equation
U = AU + 20U — U? + e00,5(1).

Here
U(t,z) ~ A%, ex)e’™ + e A(%t, ex)e ™.

We show that adding noise will stabilize the modulation equation, and thus the

dominant pattern.
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Chapter 1
Introduction

In this chapter we will collect relevant results and notations from probability the-
ory and functional analysis that we will need later. As most of the results are well
known. We either give a proof, if they are short or relevant, or give a reference
to the proof in order to keep the presentation short. This chapter is organized as
follows. In the next section, we define the fractional Sobolev spaces H* and the
semigroup {et““} 1~ generated by the operator A. Also, we state and prove some

property for the semigroup {et““} In Section 1.2, we recall the definition of

stochastic process, ()-Wiener procéig, stochastic convolution, and martingale. We
also summarize some results about the representation of the ()-Wiener process.
In Section 1.3, we introduce the solution concept for certain types of stochas-
tic evolution problems and prove existence and uniqueness of their solutions. In
Section 1.4 we present some basic inequalities which we will use in our proofs.
Finally, in Section 1.5 we recall some previously known results without proof for

the approximation of SPDEs via amplitude equations.

1.1 Spaces and Semigroup

Throughout this thesis we will work in some Hilbert space H equipped with scalar
product (-,-) and norm ||-||. In following definition let us define the fractional

Sobolev spaces H“.



Secl.1 Space and Semigroup

Definition 1.1.1 For a € R, we define the space H* as

HY = {Z Y€k : Z”y,?kh < oo} with norm Z’ykek
k=1 k=1

k=1
where {e}.}, oy is an orthonormal basis of H and {7y}, .y are real numbers.

2 o)
o 21.2
- E f)/kk )
k=1

«

Definition 1.1.2 Ifwe suppose that A is a non-positive operator on H with eigen-
values 0 < A < ... < A\ < ... and for some m > 0 we assume A\, > Ck™
for all sufficiently large k. Suppose we have a complete orthonormal system of
eigenvectors {ek}zozl such that Aey, = —\ey. Then the operator A generates an

analytic semigroup {et““} i~ defined by

et (Z %ek> = Z e_’\kt’Ykek Vi>0.
k=1 k=1

The semigroup {e™} _ has the following property:

t>0

Lemma 1.1.3 Forallt > 0 and B < «, there are constants M > 0 and M =
5’0%3]\/[]‘0;" any 6 € (0,1) such that for all u € H”

e, < Mt~ Jlull, (1.1)

and
HetAuHa < Mt~ et Jullg (1.2)

where w = (1 — 0) 1.

Proof. Let u = Y7 | ugey be an element in H”, then

oo
HeAtuHi _ 26_2t/\kk2aui
k=1

oo

_ Zeth/\ka(a*B)k%uz
k=1

< sup{e MR o
keN

Thus,
HeAtuHa < sup{e kA [ullg s (1.3)
keN

2



Ch.1 Introduction

with

SUp{e—tAkk;a_ﬁ} < Sup{exp{_C’tkm}(kt%)(a—ﬁ)t—af;ﬁ}
keN k>0

= sup{exp{—Czm}z(*" }t_;,
z>0

-~

=M<oo

where z = tw k. Thus,
leul], < M= Jull,

Analogously, from (1.3), consider

Sup{e—t)\kka—ﬁ} _ sup{e tA(1-9) —5t)\kka ﬁ}
k>0 k>1
< Sup{e t)\l 1— 5) —ét)\kka ﬁ}
T k>l
_ eftw Sup{efét)\k kafﬁ}
k>1
< Me (5t

Thus,
eull, < M et ul)
O
Definition 1.1.4 Let L(H) be the set of bounded linear operators from H to H.
1. Q € L(H) is called symmetric if
(Qu,v) = (u,Qu) forallu, v € H.
2. Q € L(H) is called positive if (Qu,u) > 0 forall u € H.

3. Let Q € L1(C L(H)) and ey, be an orthonormal basis of H for k € N. The
trace of Q) is defined as

tr@ = Z (Qer, ex)

k=1

if the series is convergent.

Let us recall that the trace is independent of the choice of the basis. For more
results form the theory of operators in Hilbert spaces can be found in Chapter
1 [27].



1.2. ()-Wiener Process

1.2 ()-Wiener Process

In this section, we recall the definitions of stochastic process, ()-Wiener process,
stochastic convolution, and martingale. We also summarize some results about
the representation of the ()-Wiener process. We follow the presentation in [36]
and [37].

Definition 1.2.1 Let (X2, F, P) be a probability space and T' C R be an interval
(possibly infinite). A H-valued stochastic process { X (t)},., is a set of H-valued
random variables X (t) on (Q, F, P) wheret € T.

Definition 1.2.2 (Q-Wiener process) Let () be a symmetric, nonnegative, linear
operator with tr@) < oco. A H-valued stochastic process W (t), t > 0, is called
Q-Wiener process, if

1. W(0) =0;

2. {W (1)}, has continuous paths almost surely. That is, the mapping t

W (t,w) is continuous for almost every w € );

4. W(t) — W(s) is X(0, (t — s)Q)-distributed for all t > s > 0.

Lemma 1.2.3 IfQ € L(H) is nonnegative and symmetric, with finite trace, then

there exists an orthonormal basis ey, k € N, of H such that
Qe = aiek for a >0, keN,
and 0 is the only accumulation point of the sequence { o} o

Proof. See Theorem VI.21; Theorem VI.16 (Hilbert-Schmidt theorem) in [39]. O

Remark 1.2.4 Let ey, k € N, be an orthonormal basis of H consisting of eigen-

vectors of () with corresponding eigenvalues oy, k € N, then

o0
tr@Q = Z .
k=1
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Proposition 1.2.5 (Representation of the (Q-Wiener process) Let e, k € N, be
an orthonormal basis of ‘H consisting of eigenvectors of () with corresponding
eigenvalues oy, k € N. Then a H-valued stochastic process W (t), t € [0,T], is
a Q)-Wiener process if and only if

W(t) = aB(t)er, tel0,1],

where By (t), k € N, are independent real-valued Brownian motions on a proba-

bility space (L2, F ,P).

Proof. See Proposition 2.1.10 in [37]. O
In the following definition, we define the stochastic convolution W 4 for the
operator .4 and the ()-Wiener process V.

Definition 1.2.6 (Stochastic convolution) The stochastic convolution W 4 is a stochas-

tic process defined fort > 0, as
t o ¢
Wu(t) :/ e =AW (5) = Zak/ A6 (e, (1.4)
0 1 0

where ' is the semigroup generated by the operator A.

Theorem 1.2.7 If

> 2k2a 1
Zak—<oo for §>7>0,

1—2~
k=1 "'k
then
WaeC%0,T],H*) P—as. VY T>0.
Proof. See Theorem 5.9 in [36]. O

1.3 Stochastic Evolution Equations

In this section we introduce the solution concept for certain types of stochastic

evolution problems and prove existence and uniqueness of their solutions. This

5



Secl.3 Stochastic evolution equation

is a standard approach based on Banach’s fixed argument for mild solutions of
SPDEs defined by the variation of constants formula.

The remainder of this section is organised as follows. In Subsection 1.3.1 we
give all basic assumptions, while in Subsection 1.3.2 we sketch briefly the results
on existence & uniqueness of local solutions. Finally, in Subsection 1.3.3 we give
the Burgers’ equation as an example. Nevertheless, the result would apply to all

models discussed in this thesis.

1.3.1 Setting
We consider the following equation written formally as

Ou(t) = Au(t) + f(u(t)) + oW (t)
uw(0) = g, (1.5)

where we make the following assumptions (cf. Definition 1.1.2):

Assumption (A1) A is a non-positive operator on H with eigenvalues 0 < \; <
. < A < ....such that A\, > Ck™ for all sufficiently large k, and a corre-

sponding complete orthonormal system of eigenvectors {e; },-, such that Aej, =

— A€k

Assumption (A2) The process W (t) for ¢ > 0 is a )-Wiener process on the

probability space (€2, F , P) such that

WaeC0,T),H*) P—as. V T.

Assumption (A3) Define f : H* — H? for « — m < B < a such that f satisfies
for some C' > 0 and p > 0 the local Lipschitz condition

1f ()= @)ll5 < Cllu—=vll, (1 +llully + [[v]l)"

for all u,v € H.

1.3.2 Existence and Uniqueness of Mild Solutions

Before we state and prove the theorem of the existence and uniqueness of mild

solutions, let us define the concept of a mild solution for Equation (1.5).

6



Ch.1 Introduction

Definition 1.3.1 (Mild solution) An H-valued process {u(t)} o 1, is a mild solu-
tion of (1.5) if for some random time T > 0 we have u € C°([0, 7], H*) P — a.s.
such that

t
u(t) = eMug + / e =Af (u(s))ds + Wu(t), Vte (0,7],P—a.s, (1.6)
0
where W 4 is the stochastic convolution defined in (1.4).

Theorem 1.3.2 Assume that assumptions (Al), (A2) and (A3) are satisfied. Given
ug € H*. Then, there is a unique mild solution v € C°([0,T], H*) of (1.5).

Proof. The proof is based on the classical fixed point theorem for contractions.
Fix w € {2 and define

Glu)(t) = ey + / M () s + TV a(f).

0

1. Itis easy to check that

G:C([0,T),H*) — C°([0, T], H*) VT >0,
as follows:

ot — efuy € CU0,T],H) as ug € H. This follows from the

regularity of the semigroup e,
o ¢ — Wy(t) € C°([0,T], H*) by Assumption (A2),

o f:C°0,T],H*) — C°([0,T],H?) follows from the assumption on
[+ H* — HP locally Lipschitz,

o [Tet=0Ads : C°([0,T],H%) — C°([0,T],H®) provided a — m <
f<a.

2. The operator G is a contraction:

Define the set I" as
I = {u € C°([0,T],H*) such that |ju(t) —ue|l, < Vte[0,T]},

7



Secl.3 Stochastic evolution equation

for some fixed § > 0. Let

ul|] = sup [lu®)]], -
te(0,7]

To show that G is a contraction on I, provided T is sufficiently small, we

consider for u,v € I

1G(u)(t) = G())l, = /O A f(u(s)) — f(u(s))]ds

[0}

Using (1.1), we obtain
t
B-a
1G(w)(t) = G)@D)], < M/O(t—S) || f(uls)) = fu(s)ll 5 ds
t
B—a

< CM/O (t—=s) = [lu=ol, @+ ul,+vl,)" ds

< O = oll] (26 + 2 fluo ], + 1)
Thus, as (26 + 2 [Jue||,, + 1) is constant

B—a

1G(uw) = G)lll < CT™ =

= olf]

We denoted by C' various constant depending only on uyg, d, o, 3 and p but
not on 7. Choose T such that CT'*+ 7% < 1. ThenG : ' » Tisa

contraction.
. To show that G : ' — T is a self mapping, consider

1G()(®) — uoll, < 1G()(t) — Glun)ll, + G (uo) — wall,-
As @ is a contraction

1
1G(u)(t) = uoll, < 3 |lu —uoll, + |G (uo) — uoll,

1)
< 57 1G (uo) — uoll, -

Consider

t
G (uo) — uoll, < Hemuo — uoHa + H/ DAL (ug)ds|| 4 |Wat)],

0 «

t
o
< [ = Dhuol|, + M/O (t—s) 7 [[f(uo)llzds + [[Walt)l,,

8



Ch.1 Introduction

where we used Lemma 1.1.3. Thus,

B—a
1G(uo) —uoll, < sup |[(e”* = D)uol|, + sup [[Wa(t)|l, +CT" = || f(uo)ll4
te[0,T] te[0,T]
= Il+[2+[3-
We note that

e I, — 0 whenT' — 0 from the continuity of e in 0,
e /5 — 0 when 7' — 0 from the continuity of W, as W4(0) = 0,

e I3 — 0 whenT" — 0, obviously.

Hence,
J
16 (o) = woll, < 5
If T = T(ugp,w, 0) is sufficiently small. In the end we obtain for ¢ € [0, T

1G(u)(t) — uoll, < 6.

Thus, G : I — T is a self mapping.

Therefore, by Banach’s fixed point theorem, there is a unique fixed point
u € T, which is the unique mild solution of (1.5) on [0, 7).

Thus, for ug € H* there is a random time 7 > 0 such that there exist a
unique solution u € C°([0, 7], H%) of u = G(u).

1.3.3 An Example

In this subsection we apply the abstract framework to the stochastic Burgers’ equa-

tion driven by additive noise. Consider
Ou = 0%u + Au + 0,u’ + O, W (), (1.7)

on [0, 7| subject to Dirichlet boundary conditions. Define

H=L*0,7], er(z) = \/gsin(kx), for keN,
m

9



Secl.3 Stochastic evolution equation

and
f(u) = vu + du”.

We consider A = 9? as a linear operator on #. It is well known that A is self-

adjoint, positive definite and
—Aey = Apey,

for the orthonormal basis {e; } -, of H. Moreover, the \;, = k? are an increasing

sequence of eigenvalues
O< A <A< - <A< Mg =00 as k— oo
Let us now verify the local Lipschitz condition. Consider

fu) — f(v) = v(u—v) + 0 (u? — v?).

Thus,
1f(u) = F)]l5 < W] llu—=vllg +[|0u(u® = v?)]| 5 (1.8)
Consider
|00 = 0?)[|; = [10(u—v)(u+ )|l
< Cllu=v)(u+t)|n

IN

Cllu = ol g2 (lull 2 + vl 2)

where we used for 3 < 52 that

|0zull g = sup /(&Cu)vdx.
0

ol _p=1

Integrating by parts, we obtain

|Ozullg = sup /u(@xv)d:c
0

ol _g=1

<l sup 000l -
Joll_p=1

Now, consider v = > o | aep, € H™°, then for 8 < ’73 we obtain

o oo
S adeer| < lael el
k=1 o k=1

< Ci lag|k < C <§: aik_25> 2 (i k2+25>
k=1 k=1

k=1
= Clvll -

N

10



Ch.1 Introduction

Thus,

102wl < [l - e 10:0]l 0o < Cllullp -
vl[_g=

Returning again to (1.8), we obtain

1f(w) = F)llg < [vllu =l + Cllu = ol 2 (lull 2 + 0]l 2)
< Cllu=vllg (0 flull gz + ol 2) -

Then according to Theorem 1.3.2 the Equation (1.7) has a unique mild solution
u € C°([0, 7], H) given by

u(t) = eug + /Ot U= f (u(s))ds + Wy(t).

1.4 Basic Inequalities

In this section we present some basic results frequently used in the proofs in the

following chapters.

Lemma 1.4.1 (Chebychev’s inequality) If X : 2 — R is a random variable such
that
E[|X["] < oo forsomep e (0,00),

then .
PlIX] >\ < ﬁEHle] Sforall A > 0.
Theorem 1.4.2 (Young’s inequality (cf. Theorem A.5 in [5])) For p, ¢ > 1 with

% + % = 1 there is a constant C' > 0 such that
xy < C(a? +y?) forall x, y > 0.
Especially, for all € > 0 there is a constant C. > 0 such that
xy <exf 4+ Coy? forall x, y > 0.

Lemma 1.4.3 (1t6 Isometry) For all Hilbert space valued stochastic processes f

adapted to the filtration of the Brownian motion (3, there is a constant C' such that

E / f(s)dB(s)| = CE / 1F(s)]2 ds.

11



Secl.4 Basic Inequalities

Proof. See Lemma 3.1.5 in [28]. O
We also need the celebrated 1t6 Formula. Here we will state only a simplified
version. For the general case see for example [36].

Theorem 1.4.4 ( 116 Formula) Let {u(t)},, be a stochastic process in H and let

B be a standard real-valued Brownian motion. Suppose that

du = f(u)dt + g(u)dp,

for some functions f,qg : H — H. Then for a twice continuously differentiable
function ¢ : H — R, we have

o(u(t)) — o(u(0)) = / Dip(u(s)) [f (u(s))] ds + / Dip(u(s)) [g(u(s))] dB(s)
/ D?p(u(s)) [g(u(s)), g(u(s))] ds.

Theorem 1.4.5 (Burkholder-Davis-Gundy (cf. Theorem A.7 in [5])). Let B be a
Brownian motion, and [ some H-valued stochastic process adapted to 3. Then

for all p > 0, there exists a constant C = C,, > 0, depending only on p, such that

T £
(tg[lér;] /f )dB (s )ng-E(/O 1£(s)ll d8>

Theorem 1.4.6 (Doob) Consider f and [ as in Theorem 1.4.5. Then for arbitrary

p>1
(o) <2 o

Theorem 1.4.7 (Burkholder-Davis-Gundy (cf. Theorem 1.2.4 in [32])) For ar-
bitrarily given T > 0, let ¢(t,w),t € [0,T], be an Fi-adapted, LY(H)-valued
process such that ]EfOT ||¢(s,w)||ig ds < oo, where LY(H) is the family of all
Hilbert-Schmidt operators from H to H. Then for arbitrary p > 0, there exists a

constant C = C,, > 0, depending only on p, such that for any T > 0,

T £
<sup )scpE ([ 1ot iiyas)
t€]0,7] 0

where ||-|| 1g denotes the Hilbert-Schmidt norm.

12



Ch.1 Introduction

Lemma 148 If X = Zzozl Xyey, for independent real valued Gaussian X,
with EX}, = 0, then for all p > 0, there exists a constant C,, > 0 such that

El| X |2 < C, (B X [2)".

We give an elementary proof here. Also the result can be found in [36], Corol-
lary 2.17, by using characteristic functions.
Proof. We consider two cases.

First case p € N. In this case

P
BIX P - 5 X -8 (z Xk)
k=1 k=1

ki=1 kp=1
< Gy > keLECEXE L EX]
k1=1 kp=1

p
= C, (ZEX,kaC“> =G, (E]| X [12)".
k=1

Second case p ¢ N. In this case, using Holder inequality, we obtain for & > p,
ke N

Bl X2 < (B X 2)"

We finish the proof by using the first case. O

Let us finally recall Gronwall’s lemma as follow:

Lemma 1.4.9 (Gronwall’s lemma (cf. Lemma A.8 in [5])) Let v : [0,T] — R and
a : [0,T] — R be continuous functions, such that a > 0. Fix b € R. Then

u(t) <b+ /ta(s)u(s)ds forallt € [0,T7],

implies

u(t) < b-exp {/Ota(s)ds} forallt € [0,T).

13



1.5. Approximation via Amplitude Equation

1.5 Approximation via Amplitude Equation

Amplitude equations are well known in the physics literature (see, e.g., [20] or
[46]). They usually describe some order parameter for the system, which evolves
on a much slower time-scale. This separation of time-scale is present in all cases
where a change of stability occurs.

The approximation of SPDEs on bounded domians via amplitude equations
was first rigorously verified in [10] for a simple Swift-Hohenberg model, and later
on extended in [3,4, 6]. Here the amplitude equation for the dominant modes is
given by ODE or SDE.

In contrast to that in the case of unbounded domain or just very large domains
the situation is significant different. The amplitude of the dominant modes are sub-
ject to a long-range modulation in space, and hence not given by an ODE/SODE,
but by some PDE/SPDE instead.

The case of large domain, but still bounded domains, is discussed in [8]. See
also [34] for the deterministic equation.

The main difference between small and large domains is the existence of a
large spectral gap of order O(1) in the linearised operator of the PDE. On bounded
domains, we have a finite number e = (e, ..., €,) of modes (or eigenfunctions)
such that the corresponding eigenvalues change sign at the change of stability. If
we are close to the bifurcation, all other eigenvalues are negative and sufficiently
far away from 0. Formal arguments show, that the amplitudes A € R" of the dom-
inating modes are given by the so called amplitude equation, while the solution u
of the SPDE is well approximated by

u(t,x) = eA(%) - e(x) + O(e?),

where 2 is the typical scale for the distance from bifurcation.

On unbounded or just very large domains this picture changes completely.
Even very close to the bifurcation a large number of modes are near or already
above the threshold of stability, but still small. In this case the amplitude A is also
a function in x that is concentrated in Fourier space near the dominant modes.
Hence, A is subject to slow modulations in space, taking into account the large

number of weakly (un)stable modes. In this case the solution u of the SPDE is

14



Ch.1 Introduction

approximated by
u(t,x) = cA(*, ex) - e(x) + O(?),

and A fulfills a (stochastic) PDE, which is called amplitude or modulation equa-
tion.

Let us now state some previous results without proof which been used be-
fore to approximate the solution of SPDEs with additive noise via the solution of
amplitude equation.

in the literature there are numerous examples of SPDEs with additive noise.
For instance,

O = Au + e*Lu + B(u,u) + o€, (1.9)
and

o = Au + 2 Lu — F(u) + o€, (1.10)

where A is non-positive operator with finite dimensional kernel, 2 £Lu is a small
deterministic perturbation, B is a symmetric and bilinear operator, F is a cubic
nonlinearity and £ is a Gaussian noise in space and time.

Blomker [4] established the following theorem for (1.9) with o = 2 and noise
being the generalised derivative of some Wiener process {QW (¢)};>o on some

probability space (2, F,P), where W is the standard cylindrical Wiener process.

Theorem 1.5.1 Fix ¢ > 0, some small 1 > r > 0, and some Ty > 0. Let a be the
solution of the amplitude equation
T T B
o(T) = a(0) + / Leoa(r)dr —2 / Bu(a, A7 By(a))dr + W.(T),
0 0

with initial condition a(0) = e~ P.u(0), and 1 is the solution of

Y(t) = eap(0) + /t e(t_T)ABS(a(szT), a(e?7))dr + /t e(t_T)AdWS(T),
0 0

with 1(0) = e 2P,u(0). Then for all mild solutions u of (1.9)

P ( sup Hu(t) — ea(e) — 5%&(5%)” < 1n(8_1)52_2“>

tE[O,éfQT()]

> 1 P {]lu(0) > 26]}} — P {|[Pau0)]| > 3¢} — o.(1).

15



Secl.4 Approximation via Amplitude Equation

In Chapter 2, we will extend the above result to a fairly large class of noise
given by (Q-Wiener processes. Moreover, we improve probability estimate signif-
icantly.

Blomker, Hairer and Pavliotis [9] gave a rigorous proof for (1.9) with o = ¢,
degenerate noise, £ = v/Z, and ker A = span{e; } by a multiscale analysis. They
showed that, although not forced directly, the amplitude equation includes the

fluctuations from the fast mode due to the nonlinear interaction.

Theorem 1.5.2 Let u be a continuous solution of (1.9) with initial condition u(0)
such that ||u(0)|| < Ce for C' > 0. Furthermore, assume that the covariance of
the noise satisfies q, = o for k > 2. Then there exists a Brownian motion B(t)
such that, if a(t) is a solution of

da(t) = valt) — %a%) + Vo o MdB(t),  ea(0) % (w(0), er)

where
5 o2 02 & 1 1 1
”_”+§§_”?%;<k—1_kw+102m+ak—r
o? 1 i ot
Oqg = 755 Op = 9
1877 7" 2m% &= (2k? + 2k + 1) (k2 — 1)(k? + 2k)
and

1 t
R(t) = = Pu(0) +/ eEAdQW (1),

€ 0

then for all p, k > 0 there is a constant C' such that
P sup |ju(t)—ea(e®t)er —eR(t)|| < Cei ™| >1-Cer,
te[0,e—2T]
foralle € (0,1).
For the deterministic equation (1.10), with = 1, on unbounded domain. Kir-

rmann, Mielke and Schneider [26] proved the following approximation result for
the deterministic Swift-Hohenberg equation (1.10) through the Ginzburg-Landau

equation
OrA=40?A+ A—3|A]” A. (1.11)

16



Ch.1 Introduction

Theorem 1.5.3 Let A = A(T, X) € C} (R), be a solution of (1.11) with initial
condition A(0, X) € C (R), where C}} (R) denotes the space of 4-times differen-
tiable functions, where all derivatives and the function are bonded and uniformly

continuous. Define
ua(t,z) = cA(T, X)e™ + e A(T, X)e ™,

where T = €?t and X = ecx. Then, for each Ty, > 0 and d > 0, there ex-
ist e > 0 and C' > 0 such that for all ¢ € (0,e9) the following statement
holds. Let u = u(t,z) be a solution of the deterministic equation (1.10) such
that |u(0,z) — u4(0, )| < de? for all x. Then the estimate

lu(t,z) — ua(t,z)| < Ce*, forall (t,z) € [0, Ty x R,
is satisfied.

Blomker, Hairer and Pavliotis [8] considered the SPDEs (1.10), with ¢ = 5%,

=L, L] near its change of stability and showed that, under ap-

on a large domain [
propriate scaling, its solutions can be approximated by the solution of the stochas-

tic Ginzburg-Landau equation
OrA =403 A+vA=3|APA+/q(l)n, X €[-L, L], A(0)= Ay, (1.12)

where 7 is complex space-time white noise and ¢ is the Fourier transform of q.
The noise strength §(1) is derived from the spatial correlation function ¢ of .

Theorem 1.5.4 Let u be a solution of (1.10) with an admissible initial condition
ug(r) = 2eR (Ag(ex)e™) and A be a solution of (1.12) with initial condition A,.
Then, for every Ty > 0, Kk > O and p > 1,

B sup sup fult,e) = 25 (A2 e0)e) [ < oot
te[0,e—2Tp] xe[fL A]

forevery e € (0,1].
In the above theorem, we stated the admissible random variable. This mean
we can split this random variable into two parts such that the first part is in #*

space and the second part is a Gaussian in C° space, and both parts are of order

one.
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Secl.4 Approximation via Amplitude Equation

In Chapter 5, we will consider an intermediate step. Using unbounded do-
mains, but highly degenerate finite dimensional noise, where the amplitude equa-
tion will be deterministic.

On bounded domains Blomker and Hairer [6] gave a rigorous formulation
of the approximation result for the transient dynamics of (1.10), with 0 = &2,

including higher order corrections as follow:

Theorem 1.5.5 Let
t t
u(t) = eu(0) + / A (2 Lu(r) + F(u(r))) dr + 82/ AW (1),
0 0

be the mild solution of (1.10) with initial condition u(0) = wq satisfying for some
family of positive constant {C,, p > 1},

E |lug||” < Cpe?  and E||Psugl|” < CpeP.

Define v as

Y(t) := ea(e’t) + 2™ Pap(0) + 82/ eEIAdPW (1),
0

with initial condition P,1)(0) = e 2P,u(0) and a is a solution of
Ora(T) = Lea(T) + Fe(a(T)) + 0rB(T),

with initial condition a(0) = =1 P,uq and Brownian motion 3(T) = e P.QW (¢ >T).
Then for all Ty, > 0, kK > 0 and p > 1 there is a constant C' > 0 such that the
estimate
P sup Ju(t)—yt)]| <) = 1-Ce,
tG[O,E_QTo]

holds for € > 0 sufficiently small.

In Chapter 3, we will study a combination of Theorem 1.5.2 and Theorem
1.5.5 by using degenerate noise for an SPDE with cubic nonlinearity. In Chapter
4, we also study higher order corrections. This is related to the work of Wang and
Roberts [41]. They considered the SPDEs (1.10) with A = (A + 1) and 0 =
e, on bounded domain (0, ) to study higher order corrections to the amplitude
equation, in order to see the fluctuations induced by the impact of the noise on the

dominant pattern as follow:

18
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Theorem 1.5.6 For any T' > 0, there is positive constant C' > 0, such that for

any solution (u,v°) of
ot = A’ + P.F(u® + 0v°),

o® = Av® + PoF(uf + 0°) + e PO W,

where P, is the projection operator, P, = T — P. and A, is high-pass filter defined
by A, = (Ps + e2P.)/\, there is a N-dimensional Wiener process W such that
with high probability

sup  ||uf(t) — ea(e’t) — 2pe(e%t)|| < Ce™F,
t€[0,e2T]

where a solves
(9ta = Aa + Pcfo(a),

and p. solves the following stochastic differential equation

atpc = Acpc + P -F\ \/ 81?

with p.(0) = 0. Here, the average

Falo) = im 1 [ Foa+ (s,

t—o00

where Fy is the cubic component of F and )" is the stationary solution solving

the linear stochastic partial differential equation
oY = A + e PO W,
and
Bla) = 2 [ E[RAa+ () - PFi)]
@ |PFola+(0) - PFo(a)| ds,
where ® is the tensor product. Furthermore

E sup lve(t) —ev"(1)]| < C<”.

te[0,e—2T)
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Chapter 2

Amplitude Equations for SPDEs
with Quadratic Nonlinearities

2.1 Introduction

Stochastic partial differentail equations (SPDEs) with quadratic nonlinearities arise
in various applications in physics. One example is the stochastic Burgers’ equa-
tion in the study of closure models for hydrodynamic turbulence [14]. Other ex-
amples are the growth of rough amorphous surfaces [38, 45], and the Kuramoto-
Sivashinsky model, which originally models a fire front, but it is also used for
surface erosion [17,30]. All these models fit in the abstract framework of this
chapter.

Consider the following SPDE in Hilbert space H with scalar product (-, -) and
norm ||-||:

du = [Au+ &°Lu+ B(u,u)] dt + *dW. 2.1)

We consider (2.1) near a change of stability, where £2£u measures the distance
from bifurcation. The operator A is assumed to be self-adjoint and non-positive,
and we call the kernel of A the dominant modes. We allow for noise given by a
fairly general (Q-Wiener process.

Near the bifurcation the equation exhibits two widely separated characteris-
tic time-scales and it is desirable to obtain a simplified equation which governs
the evolution of the dominant modes. This is well known on a formal level in

many examples in physics (see e.g. [16]). Moreover, for deterministic PDEs on
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unbounded domains, this method [19,26,43,44] successfully overcomes the gap
of a lacking centre manifold theory. This is also useful for SPDEs on bounded
domains [7], where no centre manifold theory is available yet.

Moreover, there are numerous variants of this method. However, most of these
results are non-rigorous approximations using this type of formal multi-scale anal-
ysis. A noteable example is [18].

The purpose of this chapter is to derive rigorously an amplitude equation for a
quite general class of SPDEs (cf. (2.1)) with quadratic nonlinearities. This work is
based on [9], where degenerate noise in a different scaling was considered, and it
improves significantly previously know results of [4], where in a similar situation
much more regular noise was considered. A related result can be found in [5],
where a simple multiplicative noise was considered, but again with much weaker
results.

In this chapter we follow [11] and focus on quadratic nonlinearities only. The
case of cubic equations is much simpler, as one can rely on nonlinear stability.
This case was already considered in [6], for instance.

As an application of our approximation result of Theorem 2.3.1, we discuss the
stochastic Burgers’ equation and surface growth model. To illustrate our results

consider the Burgers’ equation
Oyu = (Qi + 1) u 4 %vu + udyu + 20,W, (2.2)

on [0, 7] subject to Dirichlet boundary conditions.
We show in our main result that near a change of stability on a time-scale of
order 2 the solution of (2.2) is of the type

u(t, r) = eb(e*t) sin(x) + O(?),
where b is the solution of the amplitude equation on the slow time-scale
1
Orb(T') = vb(T') — Ebg(T) + 0rB(T),

and [ is a Brownian motion with a suitable variance.
This approximating equation is called amplitude equation, as it is rewritten
into an SDE for the amplitudes of an expansion of the dominant modes with re-

spect to a basis in \V.
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Ch.2 Amplitude Equations for SPDEs with Quadratic Nonlinearities

For the proofs we rely on a cut-off technique, as in general we cannot control
moments of solution and exclude the possibility of a blow up. Therefore all esti-
mates are established only with high probability and not in moments. To be more
precise, we use a stopping time, in order to look only at solutions that are not too
large. Then we can use moments for time uniformly up to the stopping time. Later
we use the amplitude equation itself to verify that the stopping is not small.

As the general strategy we first show that all non-dominant modes are given
by an Ornstein-Uhlenbeck process and a quadratic term in the dominant modes.
Then we rely on It6 -Formula and some averaging argument, in order to transform
the equation for the dominant modes to an amplitude equation with an additional
small remainder.

The rest of this chapter is organised as follows. In Section 2.2 we state the
assumptions that we make. In Section 2.3 we give a formal derivation of the
amplitude equation and state the main results. In Section 2.4 we give the main
results. Finally, in Section 2.5 we apply our theory to the stochastic Burgers’
equation and surface growth model.

2.2 Main Assumptions and Definitions

This section summarises all assumptions necessary for our results. For the linear

operator A in (2.1) we assume the following:

Assumption 2.2.1 (Linear Operator A) Suppose A is a self-adjoint and non-
positive operator on H with eigenvalues 0 < A\ < Ay < ... <\ < ....and N\ >
CEk™ for all large k and for m > 0. The corresponding complete orthonormal

system of eigenvectors is {ey }7> | with Aey, = — e

We use the notation N := ker A, S = N'* the orthogonal complement of N/
in H, and P, for the projection P. : H — N. Define, P, := Z — P,, and suppose
that P, and P, commute with A. Suppose that A/ has finite dimension n with basis

(€1, .y €n).
Definition 2.2.2 Define the operator D by D¢y, = k%ey, so that ||ul|, = || D"u||.
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Sec2.2 Main Assumptions and Definitions

Assumption 2.2.3 (Operator L) Fix oo € R and let L : H* — H* P for some
B € [0,m) be a continuous linear mapping that in general does not commute with
P.and P,.

Assumption 2.2.4 (Bilinear Operator B) With o and ( from Assumption 2.2.3
let B be a bounded bilinear mapping from H® x H* to H*P. Suppose without

loss of generality that B is symmetric, i.e. B(u,v) = B(v,u). Moreover, assume
that P.B(u,u) = 0 foru € N.

Remark 2.2.5 If B is not symmetric we can use

1 1
B(u,v) := §B(u, v) + §B(v, w).
Denote for shorthand notation B, = P;B and B. = P.B.

For the nonlinearity appearing later in the amplitude equation we define the

following.
Definition 2.2.6 Define F : N — N, foru € N, as
F(u,u,u) := Be(u, A; ' Bs(u,u)). (2.3)

Assume without loss of generality that F is given by a symmetric map F : N3 —

N.

By Assumption 2.2.4 the operator F is already trilinear, continuous and there-

fore bounded. One standard example being a cubic like u?.

Remark 2.2.7 If F is not symmetric we can always use

1 1 1
Flu,v,w) = 2 Be(u, A By(v, w) 43 Bew, A By(w, v))+3 Be(v, AL By(w, w).
Moreover, we assume the following:

Assumption 2.2.8 (Stability) Assume that the nonlinearity F satisfies the follow-
ing conditions

(u, F(u)) >0 YueN—{0}, (2.4)

and

(F(u,u,w),w) >0 Yu, we N —{0}, (2.5)
where we define F (u) = F(u,u,u) for short.
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Ch.2 Amplitude Equations for SPDEs with Quadratic Nonlinearities

Remark 2.2.9 From Assumption 2.2.8 there exist 0 > 0 such that
(u, F(u)) >0 Hu||4 VueN, (2.6)

and
(F(u,u,w), w) >0 |ull® |w|* Vu, weN.

For the noise we suppose:

Assumption 2.2.10 (Wiener Process W) Let W be a Wiener process on an ab-
stract probability space (), F , P) with a bounded covariance operator Q) : H — H
defined by Q fi, = ; fi, where (a,)y, is a bounded sequence of real numbers and
(fx)ren is an orthonormal basis in H. For the orthonormal basis ey, from Assump-

tion 2.2.1 we assume
Z Z k:o‘la (Qex, e1)| < oo and Z lzo‘/\l%_lHQ%ele < oo, (2.7)
k=1 Il= n+1 l=n+1

for some y € (0, ).

We note that W (t) and €W (¢72t) are in law the same process due to scaling
properties.

Let us discuss two different representations of I/7. One with the basis e, and
the other one with f;. For ¢t > 0, we can write W (¢) (cf. Da Prato and Zabczyk
[36]) as

Zakﬁk Ve = ZBZ er, (2.8)

where (S ), are independent, standard Brownian motions in R. Furthermore, the

Byo= > aw(fi )b (2.9)
k=1

are real valued Brownian motions, which are in general not independent.
Moreover, it follows easily from the definition of P,, P, and W (t) that

W(t) = onBe(t)Pufe = Y Bilt)er, (2.10)
k=1 =1
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and

PW(t) =Y owBu(t)Pufi = > Bilt)er. (2.11)
k=1

l=n+1
For our result we rely on a cut off argument. We consider only solutions
(a, 1)) that are not too large. To be more precise we introduce a cut-off time, after
which the solution is too big. Later we will show that this time is large with high

probability.

Definition 2.2.11 (Stopping Time) For the N X S-valued stochastic process (a, 1)
defined later in (2.14) we define, for some small ) < k < % and some time Ty > 0,

the stopping time T* as
=Ty ANinf {T > 0: ||la(T)||, > e " or |(T)|, > > }. (2.12)

Definition 2.2.12  For a real-valued family of processes { X.(t) },5, we say X. =
O(f-), if for every p > 1 there exists a constant C,, such that

E sup |X.() < Cpf?. (2.13)

te[0,7*]

We use also the analogous notation for time-independent random variables.

Finally note, that we use the letter C' for all constants that depend only on
other constants like 7}, , or o and the data of the equation given by B, @), £, and
A.

2.3 Formal Derivation and the Main Result

Let us first discuss a formal derivation of the Amplitude equation corresponding

to Equation (2.1). We split the solution u into
u(t) = ea(e’t) + %Y (e%) , (2.14)

with a € M and ¢ € S, and rescale to the slow time scale 7' = £2t, in order to
obtain for the dominant modes

da = [Lea + L) + 2B.(a,v) + eB.(¥,¥)] dT + dW.,. (2.15)
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For the fast modes we derive

dip = [e 2 A + e Loa+ Lab + e 2 By(a, a) + 267 By(a, ¥) (2.16)
+ B, (¢, )]|dT + e *dW,

where W(T ) := eW (e72T) is a rescaled version of the Wiener process. Now we
use (2.16) in order to remove ¢ from Equation (2.15).

From (2.16) we obtain in lowest order of ¢ that
A = —B(a,a).
As A, is invertible on S, we derive
)~ — AT By(a,a),
which we substitute into (2.15). Neglecting all small terms in ¢, yields
da ~ [L.a — 2F(a)] dT + dW..
Thus, we consider solutions b : [0, Ty] — N of
db = [Lcb — 2F (b)) dT + dW... (2.17)

This is the amplitude equation that approximates the dynamics of the original
SPDE. The main aim of this chapter is to show that the solution of (2.1)

u(t) = eb(e’t) + O(e*7) .

In the following, let us be more precise. Applying Itd’s formula to B.(a, A; ')
we obtain

ABAa(T), A;H(T)) = Belda, A7) + Bula, A7'dw) + 5 B.(da, A7 dv)
= B.(L.a, A;')dT + eBo(Lab, A;1)dT

+B.(a, A;'La)dT + e ' B.(a, A; ' Lya)dT
+2B,(B.(a,¥), A7')dT + e B(B.(¢, ¢), A7 ')dT
+B.(dW,, A7) 4+ e 2B.(a, A;'By(a, a))dT
+e 2B.(a,¥)dT + 2¢7'B,(a, A;* By(a,v))dT
+B.(a, A7 B, (1, ))dT + e ' B,(a, A7 dW,)
5 BudWo(T), AT dW(T)).
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Integrating from O to 7', yields

/OTBCm(T),w(r))dT — 2B(a(T), AT / Fa

T
—¢ / B.(L.a, A 53/ B.(Lop, A ") dr
oT 0 .
3 / Bu(Bu(th, ), A7 )dr — ¢ / Bu(a, A7' Lya)dr
0 . 0 . )
o2 [ BuBu(a, 0), A — & / Bu(dW,, A_')
0 0

T T
—€ /0 B.(a, A; L) 7—25/0 B.(a, A;'By(a,v))dr
T

T
2 -1 B 1 5%
5/0 Bu(a, A~ By (b, 1)) dr 5/0 Bu(a, A~'d1W,)

3

T
-5 / B.(dW,(1), A7YHdW,(7)). (2.18)
0

Integrating (2.15) and using (2.18) we obtain the amplitude equation with remain-

der
/ca df—z/ Fla(r))dr + Wa(T) + R(T),  (2.19)

where the remainder 2 is given by
T
R(T) =B.(a(T), A 9(D) = 22° [ Bl Bila(r), w(r), 4, (r)dr
T ’ T
=& [ BB, 0. AN~ 2 [ BLia, A )
0 0
T T
— 25/ B.(a(), A;'By(a(),¥(T)))dT — 63/ B.(Lep, A Mp)dr
0 0

T
5/ B.(a,A;'Lsa)dT — ¢ / B.(a, A;'Lp)dr
0 0

~

ve [ Loap(r)dr — e / Be(a(r), A7 By(i(r), (r)))dr

0

Dd

- Y yar < | " BL(aWi(r), AT(r)

. / Bu(a(r), A7\, (r)) — ¢ / B(dW,(r), AtV (r).
(2.20)
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For our main aim we need to show that the remainder R is of order . This

involves carefully analysis of all terms using moments of uniform bounds up to

the stopping time like Esupy, . || R[5 Later, we need an explicit error estimate
to actually remove R from the equation. Finally, we use the nonlinear stability of
the amplitude equation to show that 7" = Tj with high probability.

To be more precise, the main result is:

Theorem 2.3.1 (Approximation) Under Assumptions 2.2.1, 2.2.3, 2.2.4 and 2.2.10,
let u be a solution of (2.1) defined in (2.14) with the initial condition u(0) =
ea(0) +&21(0) where a(0) and 1(0) are of order one. Suppose that b is a solution
of the amplitude equation (2.17). Then for all p > 1 and Ty > 0 there exists a
constant C' > 0 such that

11»( sup  ||u(t) — eb(e%t)]|o > 62—75) < Cer . (2.21)

te[0,e2Ty)

2.4 Proof of the Main Result

As a first step of the approximation result, we show that in (2.14) the modes ) € S
are essentially an OU-process plus a quadratic term in the modes a € N. Later
we use this to replace ¢ in (2.15). After this, we proceed to show that ¢ is with
high probability not too large.

Lemma 2.4.1 Under Assumption 2.2.1, 2.2.3, 2.2.4 and 2.2.10 let z(T), T > 0
be the S-valued process solving the SDE

dz = e 2 AgzdT 4 e L1dW,, 2(0) = 4(0). (2.22)

Then fore € (0,1) and T < 7*

T
H¢(T) —2(T) — 2 /0 e AT B (a(r),a(r))dr|| < Ce'7F (2.23)

«

Proof. The mild formulation of (2.16) is

T
O(T) = 2(T) + /O e AT [Lap + e Loa + e 2By(a + ev)] dr.
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Thus, we derive

W(T) — 2(T) — 2 ' =PAT-T)B (a, a)dT
| I
H/ AT Ly(r)dr| H/ AT L a(r)dr|

25—1H /O eE*ZAs<T—T>BS(a(T),w(r))dT

IN

«

T
# [ e B ), v
0
= [1+[2+I3+[4.

(e}

We now bound all four terms separately. Using Lemma 1.1.3 with 0 < 3 < m,
we obtain for the first term for all 7' < 7*

[1—H/ ASTT s¢()
< / e—ﬂw@—ﬂ(T—ﬂ-% (7, dr
0

S 05273n ’

where we used the definition of 7" and Assumption 2.2.3. Analogously, to the

second term, we obtain for all 7" < 7*
28y ’ —e72w(T—71) -8 1-k
I, < Cem e (T —7)"m | Lsa(T)|,_gdT < Ce ™" .
0
For the third term we obtain
28 1 T —2 T B
fo= Cem / e T (T — 1) || By(a(r), (7)) lla-sdr
0

T
<C’5%_1 sup ||Bs(a(7'),¢(7'))|]a_5/ Y
0

Using Assumption 2.2.4, yields for 7" < 7%,

_B —4Kk
B0 s (o@llv@l) [ by s o

T€[0,7*]
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Analogously, we derive for the fourth term
28 g —e72w(T—1) —8
Ii<em [ e (T = 7)" 7 [ Bs(&(7), (7))l g dT
0

T
28 —& “w(d—1 _B
<% sup [Bo(r), () ]lacsp / e~ TN (T _ r)~Ear
T€[0,7%] 0
—2

e “wT
<0 sup [ / ey < OO
0

T€E[0,7*]

Combining all four results yields (2.23). O
In the following we will show that ¢ < O(e73%). First, the following Lemma
provides bounds for the stochastic convolution based on the well know factorisa-

tion method. This also implies bounds for the process z defined in (2.22).

Lemma 2.4.2 Under Assumption 2.2.1 and 2.2.10, let ||2(0)||, = O(1). Now for
every kg > 0, p > 1, and Ty > 0, there exists a constant C > 0 such that

E( sup \|z(T)||§P> < O, (2.24)

TG[O,T()}
Proof. The mild solution of equation (2.22) is given by
2(T) = e AT2(0) 4+ e Weag (T). (2.25)

The bound on z(7") depends on the bound on W, A,- We will use the factoriza-
tion method introduced in [35] to prove the bound on Wg—z A,» Which is based on
the following elementary identity

for o <r<T, 0<y<l1l  (2.26)

/UT(T — 7)Y r — o) Vdr =

sin 7y

Fix v € (0, %) By using identity (2.26), we obtain:

W4 (T) = C, /0 : & AT o) [ / T(T — ) — o—)w} AW, (o).

From the stochastic Fubini theorem, we obtain

T s
W, (T) = C, / / & AT — §)7 (s — o) VAW, (0)ds
o Jo

T s
= Cv/ ¢f A=) — g1 / & AL (s — o) VAW, (o) ds.
0 0
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Thus,
Wz (T C/ AT =) (T — 5y (s)ds, (2.27)

with y(s) := [J € TP As(5=9) (5 — ¢)77dW,(0). Hence, by Gaussianity
p
E [ly(s)’ < Cp (Elly(s)]a)"-

Using the series expansion (cf. (2.11)), yields

Z/ SN (5 — o)y (o)

l=n+1

Using It6-Isometry in order to obtain

S ( > e (/o e TN (s - a>—mfsl<a>)2>p

l=n+1

~ L g p
—C 2p—4py l2a A 2y-1 % e g —2fyd
= Cpe (A\) Q2¢ e T dr |
l=n+1 0

where we used

(dBy(o Z a2 fr, e1)2do = ||Q2e||*do. (2.28)
Integrating from 0O to 7{, we obtain

To
E / ly(s) 12 ds < Ce* . (2.29)
0
Taking the H® norm in (2.27), yields
~ T 5 2p
W, (D)2 < € / oI oy ()] ods)
0

Using Holder inequality w1th + >— = 1 for sufficiently large p implies

T
|Weeea (T2 < ¥ / ly(s)|127ds.
0

Hence, using (2.29) we obtain

- To
E sup |[Woon ()| < Ce™r2 / E|ly(s)|[Zds < Ce2-2.
0

T€[0,To]
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For the bound on = take the norm of Equation (2.25) to obtain for sufficiently
large p

E sup [2(T)|* <C
T€[0,T0]

E sup [le” T42(0)| + e PE sup [[Wezn, (T)]2
TE[O,To} TE[O,T()]

< CE sup e 2 “T|2(0)|* + C - % . 22
T€[0,T0]

< Ce2.

Using Holder inequality we derive for all p > 1 and sufficiently large ¢ > ,f—o

1
E sup [T <E( sup (D))" < Ce
T€[0,To) T€[0,To)
where the constant C' depends among other things on 7', p, and k. O

We now need the following simple estimate.

Lemma 2.4.3 Under Assumption 2.2.1 and 2.2.4, using 7* defined in Definition
2.2.11,

2p

E sup < Celr=ivs, (2.30)

T€[0,7*]

/0 e ATB (a(7),a(r))dr

a

foralle € (0,1).

Proof. Using Lemma 1.1.3 and Assumption 2.2.4 we obtain for 7" < 7*

«

T T
| / ¢ AT (a,a)dr|| < Cen / e (T — 1) || By(a, ) |lamsdr
0 0

-2

e *wl
< sup fa(r)l} [ e Ry
T€[0,7*] 0

S 082—21‘6‘

O

Now we can proceed to bound ). The following lemma states that ¢ (7") is
with high probability much smaller than 3%, as asserted by the Definition 2.2.11
for T < 7*. Here a key fact is that in the definition of 7* we have a = O(¢7%),
while 1 = O(e73%), but we already proved that 1 is essentially a quadratic term

n a.
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Lemma 2.4.4 Let the assumptions of Lemmas 2.4.1, 2.4.2, and 2.4.3 be true.
Then for all p > 1 there is a constant C' > 0 such that

E sup |[[o(T)|2F < Ce™". (2.31)

Te[0,7*]
Proof. From (2.23), by triangle inequality and Lemma 2.4.1, we obtain

E sup []27 < Ce71% + OF sup 121127

T %
+ Ce *E sup / e AT1B (a,a)dr
[0,7*] 0 @
We finish the proof by using Lemma 2.4.2 and 2.4.3. O

Corollary 2.4.5 Under the assumptions of Lemma 2.4.4, there is for every every
p > 1 a constant C' > 0 such that

IP( sup [ O(T)a < 8—3“) >1 - Cen, (2.32)

T€[0,7*]
Proof. From Chebychev inequality

P sup [0l <) = 1= 87 B sup 0],
077.* 077'*

We finish the proof by using (2.31). a
Now the next step is to bound the remainder R defined in (2.20), and use it in

order to show the approximation result later.

Lemma 2.4.6 We assume that Assumptions 2.2.1, 2.2.3, 2.2.4, and 2.2.10 hold.
Then for all p > 1 there exists a constant C' > 0 such that

E sup |[R(T)| < CeP=o" (2.33)

T€[0,7%]

Proof. For the bound on R we bound all terms in (2.20) separately. The estimates
rely on Assumption 2.2.4 and the inequality |||, < C||¢||,45 for all v € R and
§ > 0. Moreover, we use that B.(a(7), A;*(7)) € N (finite dimensional) and
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A ! being a bounded linear operator on S C H®. Thus, we obtain for all times
up to the stopping time 7* that

€2 Bela, A;'0)||,, < C* || Be(a, AT,
< Ce*lall, ||[AS ||,
< Ce*|all, l¢l, -

Using the definition of 7%, we obtain

E sup ||e?B.(a, A;*)||P, < Ce?~%", (2.34)

[0,7%]

For the second term in (2.20) with T' < 7 < T}

T T
2= / B.(B.(a,0), AT 0| < e / | Bul(Bu(a, 1), A7 )| sdr
0 « 0
< CET sup 1Bl ) ll A7 e
< CET sup a2

[0,7%]
< e, (2.35)
Analogously, for the third term in (2.20)
T T
| [ BBt A vyar]| < € [ BB ). A ) acpdr
0 a 0
< CT sup ||
[0,7%]
< et (2.36)
The 4th term in (2.20) is bounded by
T T
| / Bi(Lea A )ir|| <02 / | Bu(Lot, A1) s
0 a 0
< Ce” sup [|Leallall A ]l
[0,7%]

< Ce” sup ||alol[¢]|a
[0,7*]

< Ce¥in (2.37)
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where we used || L.al|o < C||Lcala-p, as N is finite dimensional.
For the 5th term in (2.20)

T
< Ce / |Bu(a, A7 By(a, )|l a_pdr
a 0

< Ce [sup] lalla]lA; " Bs(a, 1)
0,7*

o= / " Bufa, AV B.(a.0)dr
0

< Ce sup [laf2]1¢]la
[0,7%]
< Cel=o%, (2.38)
The 6th term in (2.20) is bounded by

T
< 0 / 1B Lot (7), A5 (7)) | apdr
a 0
< Ce sup 1Ll all AT )]

T
& [ BLw A v
0

< el sup K211
0,7*

< Ce36%, (2.39)

The 7th term in (2.20) is bounded by

T T
Ha/ B.(a, A;'Lia)dr|| < Ce/ | Be(a, A; ' Lsa)||a—pdT
0 « 0

< Ce sup [lallo]|A;* Loalla
[0,7]

< Ce sup [|aflo[|Lsalla—m
[0,7]

< Cesup |alf;
(0,77]

< Cel™, (2.40)

The 8th term in (2.20) is completely analogous. We have

T
82/ B.(a, A;'Lp)dr
0

< Ce?im, (2.41)

Moreover for the 9th term in (2.20):
T T
Hg/ Bc(w,w)dTH < Ca/ 1B (), ) ||lagdr < C=0% . (2.42)
0 a 0
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For the 10th term in (2.20)

Hs/OTﬁcwdTHa < Cg/OT 1Let)||adr

T
< Ca/ | L)l a—pdT
0
< Ce sup [[¢(7)|la
[0,7%)
< Cel, (2.43)

The 11th term in (2.20) is bounded by

T T
[ Bla, A B, 0)r]| < €2 [ B0 AL B, 0)amad
0 @ 0
< C& sup [lallall A5 Ba(is, )l

0,77]
< Ce? sup lallalle|2

< Cer™, (2.44)

For the stochastic integral 2 fo (dW,, A714) in (2.20) note that the covariance
operator of W, is Q). = P.Q) P.. Define

to obtain
T ~
E sup /Bc<dWC(T),A81w(T)) =E sup /£ )W, (T
Tel0,7*] 0 Te[0,7*

By Burkholder-Davis-Gundy (cf. Theorem 1.2.4 in [32]) we derive

T
E sup H/ / D*
Telo,~] 1 Jo

< E( / ||Da£c22||%fsdr)§
0

=ce( [ Sipreeiutar)’

=E sup
Te[0,7%]
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where (g )ren is any orthonormal basis in H and D® was defined in Definition
2.2.2. The space HS is the space of Hilbert-Schmidt operators on H, equipped
with the norm || V|| yg = Trace[¥¥*]. Hence,

[ <u(f ZIID“B Qg A1) 0r)
= cx( [" > 1p@ba Azt f2ar)
k=1

eM

E sup
Te[0,7*]

IN

CIE(ZSHP B A0 )

[0,7*]

< (Zu@cgku ) E sup A V()

< 06‘3”“,

where we used the fact that the norm in H S is invariant under taking the adjoint,

and independent of the choice of the basis. To be more precise
[e%e) 1 2 [e%e) 1 2
ZHQSgk = ZHD“QS%
k=1 =

[e.e] 1 2
=l e
c
=1

HS of basm

1112
e
HS

adj:oint H Qc

ad 1 1
= > (Qinve, Qi D)
k=1

= Z <Q0Da6k, Da€k> = Z k2a <Pchcek> €k>

k=1 k=1

= > K (QPuer, Peey) = ¥ K™ (Qex, ex)
k=1 k=1

n L 2
- 3 QaekH <C.
k=1
Thus,
T ~
E sup Be(dWe(r), A (m)|| "< o, (2.45)
T€[0,7] 0
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For the stochastic integral € fo (a, A LW, ) in (2.20), note that the covariance
operator of Ws is Qs = P,QP,. Slmllar to the previous estimate we define

£1(7)u := Be(a(r), A 1u).

Hence,

sup

< Te[0,7*]

sup
T€[0,7*]

T p
g/ D® £+ (7)dW,
0

By Burkholder-Davis-Gundy (cf. Theorem 1.2.4 in [32]), we obtain

T P
E sup 5/ Be(a(r), Ag'dW,)
T, 1 Jo a

<Oa”E/ |D%£4() 3 dr)
0
T 102 2

:CepE/ ‘Da,fl(T)QE d7'>2
0 HS

p

i DO‘£1(T)QS%gk ; alT)E
i Dch(a(T),Angégk)H; dT)
)
)
sup o )(ZHA ngkH )

2

(M|

S || Beatr). A5' @2 )

2
2

BC(CL, Angggk)
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Thus,
IE< TB(()A‘ldW)p> < pp(i A1Q? 2)5
s [ [ B azaial] ) < co (33 |zt

Tel0,7+] 0 @ k=1
- con( £ Sl )
< com, (2.46)

where we used

> 1 1 1
Z A Q2 gil2 = ID AT Q2 || 5is = [|Q2 AT DY Fs

> 2

e 1 k 1
=Yl D = 3 Sk
k=1

k2a
= Z P stek, 6k>

& kQa

> Gl

k=n+1
<C.

The last step follows from Assumption 2.2.10, as A\, — oo.

Analogously, for the last integral & fo (dW.(1), A71dW, (7)) in (2.20), we
obtain

T P
B( swp e [ Bu@in). A )| )
Tel0,7%] 0 ey
P
=¢ePE sup / (ex, — )\l_lel)dﬁkdﬁl
TeLrT|[V0 oy = n+1 N
n o) p
=eP Z Z B.(ex, N 'er) (Qep,er) - 7
k=1 l=n+1 a
n oo p
<Cr (30N [IBelen A e,y Qe en)])
k=1 l=n+1

40



Ch.2 Amplitude Equations for SPDEs with Quadratic Nonlinearities

Using Assumptions 2.2.4 and 2.2.10, we obtain

P
E( sup

Tel0,7%]

; / U Bu(dW(r), A ()

)
<033 leel el Qe e )’

k=1Il= n+1
< Csp<z Z kaza Qe &) )p
k=1 1= TL+1
< Cev. (2.47)

As we supposed k < % in the definition of 7%, we can collect all term in the
equations from (2.34) until (2.47). This implies the result. O
In order to prove now the approximation result, we first need the following

a-priori estimate for solutions of the amplitude equation.

Lemma 2.4.7 Let Assumptions 2.2.1, 2.2.3, 2.2.8 and 2.2.10 hold. Define the
stochastic process b(T') in N with E||b(0)|| < C as the solution of

/ L.b(T dT—Q/ F(b dT—i—W(T) (2.48)
Then for Ty > 0 there exists a constant C' > 0 such that

E sup |[o(T)|E <C. (2.49)

T€[0,To)

We note that all norms in a finite dimensional space are equivalent. Thus for
simplicity of notation in the proof we use only the standard Euclidean norm and
suppose that b € R".

Proof. The existence and uniqueness of solutions for equation (2.48) is standard.
To verify the bound in (2.49) we define X as

X(T) =b(T) - W(T) . (2.50)
Substituting into (2.48), we obtain

OrX = Lo(X +W,) = 2F(X + W,). (2.51)
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Taking the scalar product (-, X') on both sides of (2.51), yields
1 . .
S0r IX|° = (Lo(X +W,), X) — 2(F(X +W,), X).
Using Young and Cauchy-Schwarz inequalities and Assumption 2.2.8, yields

~ 114 6
or|IX|? < C+ CHWC - S Ix]*.

Neglecting the fourth power, integrating from 0 to 7', taking £-th power, and fi-
nally the expectation, we obtain

1 1 ~ |12p
E sup | X||? < CT2" + CT@ E sup ||[W,|| < C.
[O,T()] [O,T()]
Togather with (2.50), this implies
~ P
E sup [|b]]” < CE sup || X||” + CE sup ||W,|| <C.
[O,To] [O,To] [O,T(]]
O
Definition 2.4.8 Define the set ()* C () such that all these estimates
sup [|¢]la < Ce™", (2.52)
[0,7%]
sup ||R||. < Ce'™"™, (2.53)
[0,7]
and
sup [|blla < Ce 2, (2.54)
(0,7%]
hold on 2*.

Remark 2.4.9 Q* has probability

P(2") > 1-B(sup []la > Ce™)~B(sup || Rl > C='™)~P(sup [lbl0 > C=5).

[0,7%] [0,7%] [0,7%]
Using Chebychev inequality and Lemmas 2.4.4, 2.4.6 and 2.4.7, we obtain for
sufficiently large q > 0
1 —Cle™ + & + 5%‘1“]
> 1—Ce2® >1— (e, (2.55)

P(Q)")

Vv
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Theorem 2.4.10 We assume that Assumption 2.2.1, 2.2.3, 2.2.4, 2.2.8 and 2.2.10
hold. Let b be a solution of (2.48) and a as defined in (2.19) with ||a(0)|| < C on
Q*. If the initial conditions satisfy a(0) = b(0), then, for < %, we obtain

sup ||a(T) = b(T)|q < Ce*™, (2.56)
T€[0,7*]
and
sup [|a(T)|lq < Ce™2, (2.57)
Te[0,7*]
on (¥,

Proof. Define p(7') as
p(T) = a(T) — R(T).

From (2.19) we obtain
o(T) = a(0) + /0 L.[p(T)+ R(T)]dr — 2/0 F(o(1) + R(7))dr + W.(T).

(2.58)
Define now h(T') by

Subtracting (2.58) from (2.48), we obtain

W(T) = /0 " Lh(r)dr — /0 "L R(r)dr 42 /0 CFb - bt R) - FO)(r)dr

Thus,
Orh = L.h — LR+ 2[F(b—h+ R) — F(b)] . (2.59)

Taking the scalar product (-, 4) on both sides of (2.59), yields
$0r Ih)|* = (Orh, h) = (Lch,h) — (LR, B) + 2(F(b—h+ R) — F(b), h) .

Using Young and Cauchy-Schwarz inequalities and (2.5), we obtain the following
linear ordinary differential inequality

ar Il < CURIP + 1R+ CIRIP [L+ IRIZ + I6l” + 811 + 161 | R
< ClRl* + 1p*) + C BRI [e + cIRI* +c o] "] -
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Using (2.53) and (2.54), we obtain
or |nlI* < ORI + IAlI"] + Ce> 1 on Q.
As long as ||h|| < 1, we obtain
Ar ||h||* < 2C ||h|]? + Ce* 14,
Integrating from O to 7" and using Gronwall’s lemma, we obtain
I]}? < Oz,

Thus,
sup ||h|| < Ce™™ on Q. (2.60)

0,7

We finish the first part by using (2.53), (2.60) and
sup [la — bl = sup [|h — R[| < sup [|h]| + sup |[R]].
[0,7] [0,7] [0,7] [0,7%]
For the second part of the theorem we consider
sup [laf| < sup [la — b + sup [|5]| .
[0,7%] [0,7%] [0,7%]
Using the first part and (2.54), we obtain (2.57). O
Finally, we use the results previously obtained to prove the main result of
Theorem 2.3.1 for the approximation of the solution of the SPDE (2.1).
Proof of Theorem 2.3.1. For the stopping time we note that

Qo {r" =T} 2{ sup [a(D)[la <™ sup [[¢(T)]a <™} 2 Q"
Tel0,7*] Tel0,7*]

Now let us turn to the approximation result. Using (2.14) and triangle inequal-

ity, we obtain

sup |lu(e™*T) — eb(T)||a < e sup ||a — b||a + &2 sup [|¢]|a.
T€[0,7*] [0,7*] [0,7*]

From (2.52) and (2.56), we obtain

sup  flu(t) —eb(e®t)||la = sup |Ju(t) — eb(e®t)|lo < Ce*™ on Q.

te[0,e—2Tp] te[0,e—27*]
Hence,
P sup  |lu(t) — eb(®t) || > Ce* ™ | =1 —P(QY).
tG[O,E_QTo]

Using (2.55), yields (2.21). O
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2.5 Applications

There are numerous examples in the physics literature of equations with quadratic
nonlinearities where our theory applies. Before we give examples, we suppose
in all our applications for simplicity that 1/ is a cylindrical Wiener process on H
with a covariance operator () defined by Qe;, = aiek where (ay),, is a bounded
sequence of real numbers and ej are the eigenfunctions of the dominant linear

operator.

2.5.1 Burgers’ Equation

The first example is the Burgers’ equation (cf. (2.2)) on the interval [0, 7], with
Dirichlet boundary conditions. We take

H=IX((0.7)), exlx) = \/Zsin(kr), and A = span{sin}.

We note that Assumption 2.2.1 is true, where the eigenvalues of —A = —82 -1
are \, = k> — 1 with m = 2 and limy_,., \; = oo. If we fix P. to be the H-
orthogonal projection onto N, then both P, and P, commute with A.

Moreover, all conditions of Assumption 2.2.4 are satisfied with
B(u,v) = 10, (w),
as follows:
P.B(u,u) = P, [y*sin(z) cos(z)] =0 foru = ysin € N,
and for o = 1 and 8 = 2 < m, we obtain

2||B(w, 0)[l3=r = (|02 (wo) 31 < JJuv]| 2

< Cllullgalollze < Cllall, g el 4

where we used Sobolev embedding from #!/* into L*. We derive after a straight-
forward calculation that
. . . 1 )
F(yisin, yasin, 33 8in) = 777273 sin.
This function is trilinear, continuous, and satisfies the Conditions (2.4) and (2.5)
as follows

(71 sin, F(y18in)) = O~ > 0,

45



Sec2.5 Applications

and
T

%ﬁﬁ>0-

(F (71 sin, 1 sin, 2 sin), 7o sin) =
Now our main theorem states that
u(t) = ey(e’t) sin +O(*7) ,

where
Y =vy— 57V +wf,

with a rescaled standard Brownian motion B .

2.5.2 Surface Growth Model

The second example that falls into the scope of our work is the growth of rough

amorphous surfaces. The equation is of the type
Oth = —A?h — pAh — A|VA]> + 00, W (t). (2.61)

Here A is Laplacian with respect to periodic boundary conditions on [0, 27]. Sup-
pose initial condition ~(0) = 0 corresponding to an initially flat surface.
For this model we consider ;1 = 1 + ¢%v and o = 2. Hence,

A=-A*—- A, L=—vA and B(u,v) = —A(du - 0,v).

We take
\/LE sin(kz) if k>0,
er(z) = \/LE cos(kz) ifk <0,
\/%7 it k=0,
and

[\

X

H = {u € L*([0,27]) : / udr =0} and N = span{sin, cos}.
0

The eigenvalues of —A = A2+ A are )\, = k*— k% withm = 4 and limy,_, o \; =
00. S0, Assumption 2.2.1 is true.
If we define u(t) := h(t) — ho(t)ep, then we obtain

O = —N*u — pu — A|Vul* + o Z a0 Bk (t)ey, (2.62)
k20
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and
ho = O'Oéoﬁg(t). (263)
If uw = u; sin +u_; cos € N, then
B(u,u) = 2 [uj — u® ] cos(2z) — duju_; sin(2z),
and
P.B(u,u) =0,

and for o = % and g = % < m, we obtain

1B, 0) |32 = | A(0p - 0pv) |2 < €| Oy - B 2

< clull 5 ol -

Hence, all conditions of Assumption 2.2.4 are satisfied. Moreover, it is easy to
check that Assumption 2.2.8 also holds true.
For the symmetric version of F we obtain

2 1
Flu,u,w) = ch(u, A B (u, w)) + ch(w, A1 By(u,u))
= 11—8[(3u%w1 +wu? | + 2ujw_qu_q) sin

+(uiw_y + 3w_ju* | + 2uywiu_q) cos,
where w = w; sin +w_; cos € N. Now
(F(u),u) > Elul|* >0 Vu#o0.
Ifu+#0 and w # 0, then

7
(F(u, u, w), w) = E[3(U1w1 + w_1u—1)2 + (wiu_y — U1w—1)2] >0.
The amplitude equation for (2.62) is a system of two stochastic ordinary differen-

tial equations:
dvi = vy — 37 (77 +2)]dt + oydp; fori = +1,
where §;(T) = ¢0;(€2T) rescaled Brownian motions.
Now our main theorem states that

u(t) = ey(et) - (

sin) O,

COS
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Chapter 3

Amplitude Equations for SPDEs
with Cubic Nonlinearities

3.1 Introduction

Stochastic partial differential equations (SPDEs) with cubic nonlinearity appear in
several applications, for instance the Swift-Hohenberg equation, which was first
used as a toy model for the convective instability in the Rayleigh-Bénard problem
(see [16] or [22]). The simplest example is the well known real valued Ginzburg-
Landau equation, which depending on the underlying application is also called
Allen-Cahn, Chaffee-Infante or nonlinear heat equation. Moreover, we briefly
discuss a model from surface growth proposed by Lai and Das-Sama (cf. [29] and
see also [31]).

Recently the impact of degenerate noise not acting directly on the dominant
pattern was studied for equations of Burgers type formally by Roberts [40] and
later rigorously by Blomker, Hairer and Pavliotis [9]. Here noise is transported

via nonlinear interaction to the dominant modes.

Our current research was initiated by an observation of Axel Hutt and col-
laborators [23-25]. Using a formal argument based on centre manifold theory,
they showed that noise constant in space leads to a deterministic amplitude equa-
tion, which is stabilized by the impact of additive noise. Thus the noise shifts the

bifurcation point. The aim of this chapter is to make these results rigorous.
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3.2. Formal Derivation

The general prototype of equations under consideration is of the type
du(t) = [Au(t) + e Lu(t) + F(u(t))] dt + edW (t), (3.1)

where A is non-positive self-adjoint operator with finite dimensional kernel, £2 Lu
is a small deterministic perturbation, F is a nonlinearity, and W is some finite
dimensional Gaussian noise.

Our aim of this chapter is to establish rigorously an amplitude equation for
this quite general class of SPDEs with cubic nonlinearities given by (3.1). In the
examples we investigate whether additive degenerate noise leads to stabilization
of the solutions, or not.

In this chapter we follow [13] and focus on cubic nonlinearities only. The case
of quadratic nonlinearities is significantly different. It was already considered
in [6].

This chapter is organized as follows. In the next section, we discuss the for-
mal derivation of our results, while giving the precise assumptions and statements
of the main results in Section 3.3. Section 3.4 give bounds on the non-dominant
modes, while Section 3.5 provides averaging results, in order to remove the im-
pact of the higher modes on the dominant ones. In Section 3.6, we study the
approximation via amplitude equations. Finally, in Section 3.7 we apply our the-
ory to the stochastic Swift-Hohenberg equation, Ginzburg-Landau / Allen-Cahn
equation and surface growth model.

3.2 Formal Derivation

Here we study the behavior of solutions u of (3.1) on the natural slow time-scale

of order 2

, given by the distance from bifurcation.
So, we consider u on the slow time and split it into the dominant part a € N

and the orthogonal part ¢ € S.
u(t) = ea(e’t) + e (%) (3.2)

Rescaling to the slow time-scale 7' = £2t, leads to the following system of equa-
tions:
da = [e2Aa+ Loa+ L)+ Fola+ )] dT + e HdW, (3.3)
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Ch.3 Amplitude Equations for SPDEs with Cubic Nonlinearities

and
A = [e2Aqp + Loa+ Lap + Fola+ )] dT + e HdWs (3.4)

where W (T') := eW (e2T) is a rescaled version of the driving Wiener process
W. For short-hand notation, we use the subscripts ¢ and s for projection onto A/
and S, i.e. A. = P.A and A, = P, A for short.

Let us suppose that the projections P. and P, commute not only with A, but
also with £. Moreover suppose that the noise is degenerate and acts only on S.
Then the system (3.3)-(3.4) takes the form

da = [L.a+ Fe(a+ )] dT, (3.5)

and
dy = [e2 A + Lap + Fyla+ )] dT + e dW; . (3.6)

Formally, we immediately see that ¢ is a fast Ornstein-Uhlenbeck process
(OU, for short) in first approximation. The rigorous statement can be found in
Lemma 3.4.1.

Thus, we can eliminate 1) in Equation (3.5) by averaging. In oder to derive
error estimates, this procedure will be in the proofs based on the Itd6-Formula (see
Lemma 3.5.1).

3.2.1 The Impact of Noise

Let us discuss the averaging and the impact of the noise in some more detail here.
Consider for simplicity of the argument instead of 1) here some real valued fast

OU-process Z given by
T .
Z(T) = oze_l/ e ° ”\(T_T)dB(T),
0

where 3(T) := £8(¢~2T) denotes a rescaled version of a Brownian motion /3 on
the fast time-scale.
We apply Itd formula to Z and Z?, in order to obtain
2
ag -~ €
ZdT = —df — —dZ.
A & A
and ) )
a e, -~ €
Z%dT = —dT + —Zdf§ — —dZ*.
S S
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Sec3.2 Formal Derivation

Thus, on the slow time-scale 7" we can suppose that in integrals Z is small due to
averaging, and a square of Z can be replaced by a constant. See Lemma 3.5.1 for
a rigorous statement. Note that the next order corrections of order € are always
Martingales.

We see in Lemma 3.4.2 that for fast OU-processes Z = O(c~"0) for arbitrarily
small k3 > 0. Thus, we obtain formally that Z is a white noise on the slow time
scale:

Z(T) = 5%(‘%5 + error,

where this error is small only in the sense of distributions, for example in .

3.2.2 Amplitude Equation

One main result of the chapter is the following approximation by amplitude equa-
tions. Suppose for simplicity that the initial condition is sufficiently small, then
we obtain for u

u(t) ~ eb(e?t) + e Z(e*t) + O(*7), (3.7)

where Z is a fast OU-process and b is the solution of the amplitude equation on
the slow time-scale

N

() = L)+ F) + Y SR ene). G
k=n+1

The exact form of the additional linear terms is discussed later.
To illustrate this approximation result stated later in Theorem 3.3.6, we discuss
here the Swift-Hohenberg equation subject to periodic boundary conditions on

0, 2] forced by spatially constant noise:
O = —(1+ 0%)*u + ve’u — u® + cad, . (3.9)

Rescaling the solution u of (3.9) to the slow time-scale by u(t) = ev(e*t), our

main theorem in this case states that v is of the type

(T) =~y (T) sin+v_1(T) cos +5\/%8TB~(T) + O(e),

where 7; and y_; are the solutions of the amplitude equations

302

Oryi = (v — E)% - %%‘(7% +731> fori = =+1.
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Ch.3 Amplitude Equations for SPDEs with Cubic Nonlinearities

We note that if « is large compared to v, then (v — %) is negative. In this case

the degenerate additive noise stabilizes the dynamics of the dominant modes.

3.3 Assumptions and Main Results

This section summarizes all assumptions necessary for our results. For the linear
operator A in (3.1) on the Hilbert-space 7. We assume that .4 satisfies Assump-
tion 2.2.1.

Assumption 3.3.1 (Operator L) Let L : H™ — H*? for some 3 € [0,m) be a

linear continuous mapping that commutes with P, and P;.
For the nonlinearity / we assume that:

Assumption 3.3.2 Assume that F : (H®)> — H*? with B as in Assumption

3.3.1 is trilinear, symmetric and satisfies the following conditions, for some C' > 0,

[F (w, 0,w) g < Cllully vlly wlly Vw00 e HE, (3.10)
(Fe(u),u) <0 VueN, (3.11)

and
(Felu,u,w),w) <0V u, weN. (3.12)

We use F(u) = F(u,u,u) and F. = P.F for short.
For the noise we suppose:

Assumption 3.3.3 Let W be a cylindrical Wiener process on H. Suppose for

t >0,
N

W(t) = Z apfBr(t)ex for N > n+1,
k=n+1

.....

the (Oék)ke{n—H ,,,,,

We define the fast OU processes Z and its coefficients Z;(71") by
T R
Zu(T) = aye™ / e=s M= ag (1), (3.13)
0
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Sec3.3 Assumptions and Main Results

forke{n+1,...,N}and

N

Z(T) = > Z(T)ex, (3.14)
k=n-+1

where 3;(T) := 0, (72T is a rescaled version of the Brownian motion.

Remark 3.3.4 We take N < oo in the above assumption for simplicity of presen-
tation. Nevertheless most results are still true for N = oo, using the same method
of proof. We only need to control the convergence of various infinite series, which
is possible if the noise is not too irregular, which means for oy decaying suffi-

ciently fast for k — oc.

For our result we rely on a cut off argument. We consider only solutions

u = (a, 1) that are not too large, as given by the next definition.

Definition 3.3.5 For the N' x S-valued stochastic process (a, 1) defined in (3.2)

we define, for some Ty > 0 and € (0, 35

=Ty ANinf {T >0 ||a(T)|, > e " or [[¥(T)|, > "}. (3.15)

), the stopping time T* as

The main result for our aim is:

Theorem 3.3.6 (Approximation) Under Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3
let u be a solution of (3.1) defined in (3.2) with the initial conditions u(0) =
ca(0) + e(0) with ||[u(0)||, < d6.¢ for 6. € (0,e73%) where a(0) € N and
¥(0) € S, and b is a solution of (3.8) with b(0) = a(0). Then for all p > 1 and

To > 0and all k € (0, 35), there exists C > 0 such that

IP( sup  |[u(t) — eb(e*t) — eQ(e%)

tE[O,872T0]

> 52—%8“) <O, (3.16)

67

where
Q(T) = &= TA(0) + Z(T), (3.17)
with Z(T') defined in (3.14).
The proof will be given in Section 3.6 later. Let us first discuss the additional
error term Q in (3.17). We see that the first part of O decays exponentially fast on

the fast time-scale O(¢?). The second part is an OU-process Z, which is a small

noise term, as discussed in the formal derivation.
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Ch.3 Amplitude Equations for SPDEs with Cubic Nonlinearities

Corollary 3.3.7 Under Assumptions of Theorem 3.3.6 and for arbitrary initial
condition u(0) we obtain

IP’< sup  ||u(t) —eb(e*t) —eQ(*t)

te[0,e—2Tp]

> 52*%) < Ce? +P(|[u(0)],, > &6.).
(3.18)

«

3.4 Bounds for the High Modes

In this section, we show that the non-dominant modes v are well approximated by
a fast OU-process. We also have to include an exponentially fast decaying term

depending on the initial conditions /(0).

Lemma 3.4.1 Under Assumption 2.2.1 and 3.3.1, 3.3.2, for k > 0 from the defi-

nition of 7" and p > 1, there is a constant C' > 0 such that,

e = (3.19)

«

(1) — T)

E sup
T€[0,7*]

where Q(T) is defined in (3.17). (i.e., 1 = Q + O(g273))

Proof. The mild solution of (3.6) is

W(T) = e TH(0) + /0 ¢ IDAL Y+ Fola+ )] (1) dr + Z(T).

Using triangle inequality

IN

H /OT 65*2A5(T—r)[’sw (T> dr )

T
) [ e E )+ v (i
0 «
= ]1 + ]2 .

Hw(T) — Q(T)

67
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Sec3.4 Bounds for the High Modes

We now bound these two terms separately. For the first term, we obtain by using
(1.2) for the semigroup

T
L < ce2 / eI — 2y || L (7 dr
= g —8721/(T—T) -8
< Cem e (T —T) w ||l o(n)||, dr
_B
< Ce? sup (7], / e~y mdn

< Ce ”7

where we used the definition of 7*. For the second term, we obtain by using
Assumption 3.3.2 for F

T
I, < 0535/ e I(T — 1) | Fula (r) + 9 (7)) g dr
0

T
s 0575/ e T (T — )i Jla (r) + ()| dr
0

e “uvT
< 2 swp Jla(r) + @I / ey ndn
0

T€[0,7*]
< ce( sup Jlall? + sup 0112
[0,7%] [0,7%]
S 062—35’

where we used again the definition of 7*. Combining all results, yields (3.19). O

Let us now provide bounds on Z and thus later on . These are also used to
show that v is not too large, even at time 7*. The following lemma shows that
Z = O(e") for any ko > 0.

Lemma 3.4.2 Under Assumption 2.2.1 and 3.3.3, there is a constant C' > 0,
depending on p > 1, ay, Mg, ko > 0 and Ty, such that

E sup |Zu(T)] < Ce™™,

T€[0,To]

and

E sup [[Z(T)] < Ce™,
TG[O,T()]

where Zi,(T) and Z(T') are defined in (3.13) and (3.14), respectively.
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Ch.3 Amplitude Equations for SPDEs with Cubic Nonlinearities

Proof. In order to prove the first part, we define

1
2\

§(T) = e and ~(T) = /0 e T dr = (8(T) 2 —1),

where A\, = ¢72)\;, and
V(T) i= age™8(T) - B (4(T)) .
Note that Z;(7) and Y (T') are Gaussian stochastic process with
EZ,(T) = EY(T) = 0,
and for S <T
EZ,(T)Z:(S) = EY(T)Y (S) = aje 25(T + S)v(S).
Thus Z;(T') is a version of Y (T'), and
E sup |Z(D)f = E sup YD) = (e)'E sup [8(T)- 8 (D)

T€[0,To] T€[0,Ty) T€[0,To)

n—1

< (ae™)"Y E sup S8BT,

i—o T€[TiTita]

where (7;)", is an equidistant decomposition of [0, Ty]. Using Doob’s theorem,

we obtain
n—1
E sup [Z(T)" < Cpae D (L) 1Tipn)"
i=0

TE[O,T()]
n—1
0Ty 1°
S Cpﬂlcgip)‘;pﬂ § |: ( )>1

=0 (T3
/2 e 2T
= Cpa " ZO e = Cpa NP,
where h = T; 1 — T;. Taking h = /\—15, we obtain
E sup |Z(T)]F < Ce2 (3.20)

T€[0,To]

By Holder inequality we derive for all p > 1 and sufficiently large ¢ > %O

1/
E sup |[Zy(T)P < (]E sup yzk(T)\W> "< e,
T€[0,Ty) T€[0,T0]
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In order to prove the second part, by Gaussianity,

N
p/2
E swp |20 < G(E sup > k2D
TE0, Ty Tel0,To] =14
N p/2
< (3 #E sw zn)"
k=n-+1 TG[O,T()]

Using Holder inequality for all ¢ and (3.20) to obtain

1/
E sup ZZ(T) < (E sup Z,fq(T)) ng&‘*z/q.
T€[0,Ty) T€[0,Ty)
Hence,

E sup [ Z(T)|F < CePl1 < Ce™ "o,
T€[0,To]

for ¢ large enough. O

The following corollary states that ¢/(7") is with high probability much smaller
than £7" as asserted by the Definition 3.3.5 for 7' < 7*. To be more precise,
¥ = O(b. + &) for any Ko > 0 and 8, € (0,73%). We will use this later to
show that 7* > T{, with high probability (cf. Remark 3.6.5 and proof of Theorem
3.3.6).

Corollary 3.4.3 Under the assumptions of Lemmas 3.4.1 and 3.4.2 with k < %
For p > 0 and for ko > 0 there exist a constant C' > 0 such that for ||1(0)||,, < 0.

one has
E(_suwp [¢(T)}) < CO.+27). (3.21)

Te[0,7*]

Proof. From (3.19), by triangle inequality and Lemma 3.4.2, we obtain

E( sup (D)) < €8 + =m0 4 G2,

Te[0,7*]

for k < % we obtain (3.21). O

Lemma 3.4.4 If Assumption 2.2.1 holds, then for q > 1 there exists a constant
C' > 0 such that for ||1(0)||,, < d. one has

i

GTE_QAsw(O)

q
dr < 0§%°.
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Proof. Using (1.2) we obtain

Int

This easily implies the claim. O

2

e 2A g —qe~2 q € q
vO) ar < / T O dr < = O

3.5 Averaging over the Fast OU-Process

Let us turn to the averaging result for the OU-process Z. In Lemma 3.5.1, we
provide the first order approximation. It states that even powers of a real valued

OU-process average to a constant, while odd powers are small of order O(e).

Lemma 3.5.1 Let X be a real valued stochastic process such that for some r > (
we have X (0) = O(e™"). Fix any ko > 0. If dX = GdT with G = O(¢™"), then

L [f X Zpdr = O(e "),
2. [V XZ2dr = 2“; X dr + Ol ),

3. [ XZp2Zidr = O 72),

RN

[ 2h212;dr = O('-%),

-

) 222idr = O(' %),

6. [y Zidr = O('-w),

N

[} 222,2,dr = (9(51*4“0),

Co

T 22 22dr = 9L [T gy 4 (1),

AN
9. [ Zhdr = 3% [T 47 + O(c1~1%0),

a2

where Zy, is defined in (3.13).
Proof. We note that

E sup | X" < CE sup |G]P < Ce™".
[O,To] [O,To]
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Sec3.5 Averaging over the Fast OU-Process

In order to prove the first part, we apply Ito6 formula to X Zj,

AXZ) = ZudX + XdZ,
= GZ,dT + e ' ap XdBs — M 22, X dT.

Integrating from 0 to 7', we obtain

T T T
)\k:/ XZdr = —€2X(T)Zk(T) + 82/ GZidr + EOék;/ XdﬁNk
0 0 0

Taking the absolute value and using the triangle inequality we obtain, for p > 0,

T T T 5
0 0 0

Taking expectation after supremum on both sides and using Lemma 3.4.2 yields

T
/ X Z.dr / XdB,
0

We finish the first part by using the theorem of Burkholder-Davis-Gundy

T
/ XdeT
0

In order to prove the second part, we apply 1td formula to X Z?

p

< P |X(T)P | Z0(T)P +ce™

p
+ceP

p

p

< Ce®7Pr=ro 4 CePE sup
Te[0,To]

p

E sup
Te 0 To

p

E sup
T€[0,To]

T P
< Ce?pmpr—ro 4 CepE</ X2(7')d7) P < Qgbprro,
0

d(XZ2}) = ZHX+2XZdZ, + X (d2;)°
= GZ2T — 202X Z2T + 26 ', 2, X dfy + e 22 X dT.

Integrating from 0 to 7', we obtain

r 2 O‘z g? 2 2
X | Z; dr = ——X(T Z GZ dr+— XZ.d
/0 ( 2>\k) T=5 X1 2)\k/ T 6/ B

Taking the absolute value and using the triangle inequality we obtain, for p > 0,

T 2
/OX(Z,E 2)\k)d7' /GdeT

By Burkholder-Davis-Gundy theorem, we obtain
p To P

T 2
/ X(Zk ;‘A )dT < Cer_p’"_"O—FCepE( XQZ,de>2
0 k

P

< e | X Z|P+e +ceP

/ X Zdfu(7)

E sup
Te [O,To]

0
p—pr—2Ko
< Ce ,
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and this finishes the second part. For the third part, we apply Itd formula to X Z; Z;
and integrate from 0 to 7'

2 2

&
XZ.Z +
PV Ve L VNI

T T
o€ ~ (6755 ~
+ XZ.dS; + X Z,dj,..
Akm/o b Akm/o b

T T
/ XZkZldT = - / ZkZlGdT
0 0

Taking the absolute value and using Burkholder-Davis-Gundy theorem, we obtain
forp > 0

T
E( sup / szzldr(p) < Cgr P2,
0

TE[O,To]

For the fourth part, we apply It6 formula to Z,Z;Z; and integrating from 0 to 7T’

we obtain

T T
(>\k + /\l + )\j) / ZkZledT = —€2ZkZle + 0418/ ZkZ]dﬂl
0 0

T T
+Oéj€/ ZkZldﬁj + Oék€/ ZledBk
0 0

Taking the absolute value and using Burkholder-Davis-Gundy theorem, we obtain
forp >0

T P
IEI( sup / ZkZledT’ ) < Celno,
0

TG[O,To]

For the fifth part, we apply Ito formula to Z2Z; and integrating from 0 to T

/ "2z I P AN / ' 22473
T = —
0 R A+ 20 R A+ 2 0 RO

2

T 5 o2 T
Z.Zd _— Zdr. 22
/0 k15k+)\l+2>\k/0 dr. (3.22)

20,€
+—
A+ 20

We note that from the first part. If we take X = 1 and choose » = 0, then we
obtain

T
/ Z(7)dr = O(= ). (3.23)
0

Taking the absolute value and using Burkholder-Davis-Gundy theorem and (3.23),
we obtain for p > 0

E sup
T€[0,To]

T p
/ z,ledT] < et
0
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For the sixth part, we put [ = k in (3.22). We obtain

T T
(87 ~
Z3dr = z T) + — Z2d / Zd
/0 KT = 3/\k o) + )\kg/o F 6k+3)\k e

Analogously, we obtain

E( sup

T€0,T0]

T p
/ z;‘jdf‘ ) < Cel3,
0

For the seventh part, we apply Ito formula to Z2Z, Z; and integrating from 0 to 7'
T T ~
(2>\k + /\l + )\]) / ZngZde = —822132[2]' + 2€Oék/ ZkZlZJdﬁk
0 0
T . T ~
+eqy / Z,fZ]dﬁl + e % / Z,fZldﬁ]
0 0

T
+aj, / 2 Z;dr.
0

Using Burkholder-Davis-Gundy theorem and the second part with X = 1 in order
to obtain the seventh part.
For the eighth part, we apply Itd formula to Z? Z? and integrating from 0 to T’

/ ' a2y G LT / "2z 3
T = —_— [
0 k=l 2()\[ + )\k) k=l )\l + )\k 0 k : :

e /TZ2ZdB L% /Tz%z
i
NN Sy TR T o0 S,

O‘l2 T 2
+—Lt | Z24r
2(\ + Ar) /0 k

We finish the proof of the eighth part by using Burkholder-Davis-Gundy theorem
and the second part with X = 1.
For the ninth part, we apply Itd formula to Z;} and integrating from 0 to 7'

T

(67323
Zir = ——— 2 Z3d Z2d
/0” 4Ak’“+ /’“ﬁ’“+2Ak/ k4T

Using Burkholder-Davis-Gundy theorem and the second part with X = 1 to finish
this part. O

Remark 3.5.2 The above Lemma is true even if X € N or C.
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3.6 Proof of the Main Result

This section is devoted to the proof of the main result in Theorem 3.3.6 and Corol-
lary 3.3.7 for the approximation (3.7) of the solution of the SPDE (3.1).
Let us first check that, we can apply the averaging lemma to (3.5).

Lemma 3.6.1 Assume that Assumption 3.3.1 and 3.3.2 hold. Let X be a stochas-
tic process in N and dX = GdT. If X = F.(a,ex, ;) or X = Fo(a,a,ey), then
G = O(e7%) or G = O(e7), respectively.

Proof. If X = F.(a, e, ex), then
dX = F.(da, e, e) = Fo(Loa+ Fola+ 1), ex, e)dT.

Let
G =F.(Lea+ Fola+1),ex,€).

Taking the H* norm, using Assumption 3.3.2 and the fact all norms are equivalent
on NV, to obtain

1Glla < Clifea+ Fela+ ), < Cllally, + CllFela+9)los
< Cllall, +Clla+l, < Cllal, +Clally + Cllwll, -

Using the definition of 7%, we obtain for all p > 0

E sup |G|]P, < Ce™?P".
[0,7%]

Analogously, if X = F.(a,a,e;), then
dX = 2F.(da,a,e;) = 2F(L.a+ Fela+ 1), a,ep)dT.

Define
G :=2F.(Lea+ Fla+1),a,e),
in order to obtain

E sup ||G|]? < Ce™*".
[0,7%]
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Lemma 3.6.2 If Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3 hold and ||1)(0)|| , < 6.
for . € (0,e73"% ) with k € (0, <5) from the definition of T*, then

712

T N
a(T) = a(0)+/ Lea(r dT+/ F.(a)dr+ Z S0j / Fela, ey, er)dr+R(T),
0 k= n+1
(3.24)
where
R = O, (3.25)
for k > 0 from the definition of T*.
Proof. Recall Lemma 3.4.1, which states
U(T) = ye(T) + 2(T) + O(e*™™), (3.26)

where

ya(T) _ ea*QT.As,[?Z)(O).
Substituting from (3.26) into (3.5) and using the bounds on a = O(¢7"), Z =
O(e7), and y. = O(d.€%) we obtain for k < 2/3

da = [Leoa+ Fela+y.+ Z)]dT + O F)dT
= [Lea+ Fela) +3F.(a,a,Z) + 3F.(a,Z,2) + F(Z2)
+3Fc(a,a,y:) + 6F.(a, Z,y.) + 3F(Z, Z,y.)
+3F (Y, ) + 3Fe(Z, 4z, ye) + Felyo)|dT + O(e*7)dT.

Integrating from O to 7', yields for 7" < 7*

a(T) = a(0)+/0 Lea(r d7+/ F.(a d7+32/2k]-"aaek)d

k=n+1
N
+3 Z / Zk./—: (CL ek,ek dT+3 Z Z/ ZkZl CL ek,el)d
k=n+1"0 k=n+1 £k
+ / ./—" Zkek,Zlel,Z €j)d7' + Rl + O( 2= 5'{) (327)
k,,j=n+1
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where

T T T
Rl - 3/ fc(a7aay€)d7+6/ fc(a7Z7y€>dT+3/ fC(CL, y57y5)d7-
0 0 0

T T T
+3/ Fe(Z,ye, ye)dT + 3/ F(Z, 2,y )dr + 3/ Fe(ye)dr
0 0 0
Now, using Assumption 3.3.1, the definition of 7% and the equivalence of H*-

norms on N to bound R;. We bound all terms in (3.28) separately. For the first
term in (3.28) we obtain

T T
L, <c / lall? llgell, dr < C sup |jal? / lell, dr-
0 [0,T] 0

Using Lemma 3.4.4 for ¢ = 1, we obtain

Analogous results hold to all other terms. To be more precise:

IQ = O(éESQ_H_KO), ]3 = 0(5262_"6), 4 = 0(56282_50),

Is = O(5.>7%%°) andls = O(62?).

Collecting all results we obtain for ko < k, where ko > 0 is arbitrary from Lemma
34.2,
Ry = O((1 + 62)e*7%%). (3.29)

Applying finally Lemmas 3.5.1 and 3.6.1 to (3.27), we obtain (3.24). O
Lemma 3.6.3 Let Assumptions 2.2.1, 3.3.1 and 3.3.2 hold. Define b(t) in N as

the solution of (3.8). If the initial condition satisfies E|b(0)|" < 0P for some
. € (0, 5’%“), then for all Ty, > 0 and p > 1 there exists a constant C' such that

E sup |o(T)]" < CoP. (3.30)

T€[0,To]

Proof. Taking the scalar product (-, b) on both sides of (3.8), yields

1 ) al
SOr b = (Leb, b) + (Fe(b),0) + Y 7 (Felbex,en) b).
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Using Cauchy-Schwarz inequality and Assumption 3.3.2, we obtain
Lor b2 < ¢ b
2 T = '
We apply now a comparison argument to deduce for all 7" € [0, Tp]
6(T)| < |b(0)] e“™. (3.31)

Taking expectation after supremum on both sides, yields (3.30). a

In the following we are not able to calculate moments of error terms. Thus,
we restrict ourselves to a sufficiently large subset of 2, where our estimates go
through.

Definition 3.6.4 Given 6. € (0, 5’%””) with k > 0 from the definition of T*. Define
the set ()* C €1 such that all these estimates

sup ¢ — Qlla < Ce*7", (3.32)
[0,7*]
sup [|¢]ja < o + 72", (3.33)
[0,7]
sup |R| < &', (3.34)
[0,7*]
and
sup |b| < o 2", (3.35)
[0,7*]
hold on Q.

Remark 3.6.5 The set O* has approximately probability 1 provided . < £73",

as

* —4K 1k
PQ) = 1- IP’([Sup] 14 = Qlla > %) - ]P’([Sup] [¥]le = 72")
0,7* 0,7*

— P(sup [b| > £75%) — P(sup |R| > £'~%").
[0,7*] [0,7*]

Using Chebychev inequality and Lemmas 3.4.1, 3.6.2, 3.6.3 and Corollary 3.4.3

with arbitrarily ko < %K,, we obtain for sufficient large q

P(Q*) >1—-C[e™" + IR0 4 oan 4 e >1— Ce39% > 1 — CeP. (3.36)
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Theorem 3.6.6 Assume that Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3 hold and
suppose |a(0)| < 6. and |[1(0)]|o < 0. Let b be a solution of (3.8) and a as
defined in (3.2). If the initial condition satisfies a(0) = b(0), then

sup |a(T) — b(T)| < C(1 + 62)e' 12, (3.37)
Te[0,7*]
and for k < %
sup [a(T)] < C(1+62), (3.38)
T€[0,7*]

on Q*.
Proof. Define p(7') as

p(T) = a(T) — R(T),
where R is defined in (3.25). From (3.24) we obtain

2 T
/ ./T"C(SO—FR, €L, ek)dT.

(3.39)
Subtracting (3.39) from (3.8) and defining h(7") := b(T") — ¢(T'), we obtain

o(T) = a(0)+/OT£ [ + R] dT—l—/ Fe(p+R)dT+ Z "

WT) = /OTcth—/TszT+/OT[fC(b) Fo(b—h+ R)]dr

N

+ Z 30%/ ./—" h R €k7€k>d
k=n+1
Thus,
al 30?2
Orh = Loh— LR+ Fo(b) = Fob—h+R)+ Y 2)\’“]-"(h R, ep, ex). (3.40)
k
k=n-+1

Taking the scalar product (-, ) on both sides of (3.40), we have

%aT \h> = (L.h,h) — (LR, B) + (Fo(b) — Fo(b— h+ R),h)

N 302 N 342
Sk (Fo(h h) — S (Fe(R hy -
+k:;+1 2)\k<f< 7€k7ek)7 > k:;i_l 2)\k <‘F( 7€k7€k>7 >
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Using Cauchy-Schwarz inequality and Assumption 3.3.2, we obtain the following
linear ordinary differential inequality

Op [h|* < ClR* + 8]+ C [IR]" + o [RI* + || [R” + | |R|"]
Using (3.34) and (3.35) in the definition of 2*, we obtain for 7" < 7*
dr |n]> < C[|AP” + |h)"] + C(1 4 09> on Q"
As long as |h| < 1, we obtain
Or |h|” <20 |h]> + C(1 4 6422,
Using Gronwall’s lemma, we obtain for 7' < 7 < Tj
IW(T)]? < O(1 464> < 1,
for 0. < 5_%"‘, e > ( sufficiently small, and k < %. Thus,

sup |h| < C(1+62)e' " on Q. (3.41)
[0,7%)

We finish the first part by using (3.34), (3.41) and

sup |a — b| = sup |h — R| < sup |h| + sup |R|.
[0,7*] [0,7*] [0,7*] [0,7*]

For the second part of the theorem consider

sup |a| < sup |a — b| + sup |b].
[0,7%] [0,7%] [0,7%]

Using the first part and (3.35), we obtain (3.38) as k < % O
Now, we can use the results previously obtained to prove the main result of

Theorem 3.3.6 for the approximation of the Solution (3.7) of the SPDE (3.1).

Proof of Theorem 3.3.6. For the stopping time, we note that provided 9. < £m3k

Qo {r" =Tt 2{ sup [a(T)| <™, sup [Y(D)], <"} 2",
T€[0,T0] T€[0,To)]

where the last inclusion holds due to (3.33) and Theorem 3.6.6. Now let us turn
to the approximation result. Using (3.2) and triangle inequality, yields

u(e™*T) — eb(T) — eQ(T)

Y —Q

sup

<esup |la—b|, + e sup
Tel0,7*] e

[0,7*] [0,7*]

«
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From (3.32) and (3.37), we obtain

sup  ||lu(t) — eb(e*t) — Q(e%t) = sup
te[0,e—2Ty) e t€[0,e=27+]
S 062733—8/€
Thus,
IP’( sup  |[u(t) — eb(e*t) — eQ(e%)

te [0,872T0]

u(t) — eb(e*t) — eQ(e%t)

on QOF.

> 52—%8”) <1-P(Q).

Using the bound on Q* from (3.36), yields the main claim (3.16).

Proof of Corollary 3.3.7. Define )y C 2 as

Qo = {w: [lu(0)]], < ede},

and define
0 Qf
a(0) = o %
u(0) on .
Hence,
uw=1u on .
Thus,
IP’( sup  ||u(t) —eb(e*t) — eQ(*)|| > 52—%“>
t€[0,e2Ty) a
=P({ sup ut) - eb(e*t) — =Q(=*)
tE[O,Eszo]
—l—IP’({ sup  |[u(t) — eb(e*t) — eQ(e%)
tE[07672T0] o
< ]P’( sup  ||[a(t) — eb(e*t) — eQ(e%t)
te[0,e—2Ty] a

< C+P(||lu(0)]l, > ede),
where we used (3.16).
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3.7. Applications

3.7 Applications

In the literature there are numerous examples of equations with cubic nonlineari-
ties where our theory applies. Examples studied here are Swift-Hohenberg equa-
tion, Ginzburg-Landau / Allen-Cahn equation and some Surface growth model.
In all these examples we obtain that adding noise has the potential to stabilize the
dynamics of the dominant modes. Furthermore, the amplitude equation is always
the same type

A'=vA—-C, A—CA|A]?,

where A is the amplitude of the domiant modes in N .

3.7.1 Swift-Hohenberg Equation

The Swift-Hohenberg equation was defined in introduction( cf. (3.9)). It has been
used as a toy model for the convective instability in the Rayleigh-Bénard problem
('see [16] or [22]). Now it is one of the celebrated models in the theory of pattern
formation. For this model we note that

A=—-1+0)? L=vL, Flu)=—u’.

If we take
\/L% sin(kx) if k> 0,
er(z) = \/Lz? if k=0,
\/LE cos(kz) ifk <0,
and

H = L*([0,2n]) and N = span{sin, cos},

then the eigenvalues of —A = (1 + 9?)? are given by A\, = (1 — k?)? with m = 4,
A =1 > 0and limy_,,, Ay = 00. So, the Assumption 2.2.1 is true. If we split
u = uy sin +u_; cos and u = w; sin +w_; cos € N, then the Assumption 3.3.2 is
true as follows:

3
(Fe (uq sin4u_q cos) , uy sin +u_q cos) = —Iﬂ (u% + u2_1)2 <0,
where
Fe(ursinu_y cos) = =3 (u} +wgu? ;) sin—2 (u® | + uju_y) cos.
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Moreover,

3
<‘FC<U’ u, w)v w) = —2 ( %w% + wqu_I + 7~U31U2_1 + wzllﬁ) <0,

4

and for & = 1 and § = 0 we obtain
[F (u, v, w)llgn = |—uvwllyn < Cllullyp ([0l lwlly -

For Assumption 3.3.3, we consider many cases:
First case. The noise is a constant in the space (i.e., W(t) = T Bo(t)).
In this case our main theorem states that the solution of the (3.9) is of the type

u(t,r) = ev(e’, 1),
and

(T, x) >~ v (T)sin(x) + v_1(T) cos(z) + 5%8TB~O(T) +O(e'),

where v, and y_; are the solution of the amplitude equation
%= =) — (i +92y) fori=£1.

Second case. If the noise acts on sin(kz) [or cos(kx)] for one k € {2,3,.....},
then the amplitude equations for (3.9) in this case are

v =V %)% — 34,(72 +42,) fori = +1,
and our main theorem states that the solution of the (3.9) is of the type
u(t, ) = ev(e?, x),
and

(T, x) >~ v (T)sin(x) + v_1(T) cos(z) + 5%8T5k(T) sin(kz) + O(e'7).

Third case. If the noise takes the form W (t) = Z]kVZQ & Bk (t) sin(kx), then
the amplitude equations for (3.9) in this case are

N

3a2 .
v = (v — Z o) i 2975 +124) fori= =1,
s
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and our main theorem states that the solution of the (3.9) is of the type
u(t, ) = ev(e’, x),

and

(T, z) ~ v (T)sin(x) + v-1(T) cos(z) + ¢ Z %GTBk(T) sin(kx) + O(e').

3.7.2 Ginzburg-Landau / Allen-Cahn Equation

The second example is the Ginzburg-Landau / Allen-Cahn equation
O = (02 + r)u + ve*u — u® + 0, Wy (t). (3.42)

We consider two cases depending on the boundary conditions. For Neumann
boundary conditions we need r = 0, while for Dirichlet boundary conditions

weneed r = 1.

First case » = 0. In this case, we consider (3.42) subject to Neumann boundary

conditions on the interval [0, 7]. We note that
A=02 L=vI andF(u) = —u’.

If we take
# = L*([0,7]), N = span{l},
and
1 e

_ \/—71_ if k = 0,

\/%cos(kx) if k >0,
then the Assumption 2.2.1 is true. For this we easily see that the eigenvalues of
-A= —8§ are \;, = k% with m = 2 and lim;_,., A\, = o0o. The condition (3.10)
is satisfied for « = 1 and 8 = 0. Furthermore, for v = v, and w = v, € N the
Condition (3.11) is satisfied as follows:

er()

<-/—:c(u)7u> = _f}/f <0,

where
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and
<FC (ua Uu, w) aw> = _7%’)/22 <0.

For Assumption 3.3.3, we consider two cases:
First case. The noise acts only on cos(z) (i.e., N = 1).
In this case the amplitude equation (Landau equation) of (3.42) takes the form

302
3= (y _ 2—;)7 3 (3.43)

Second case. The noise acts on cos(z), cos(2x),...., cos(Nz) (i.e., N > 1).
In this case the amplitude equation of (3.42) takes the form

3 N o?
v = (V— %Zk—g)v—ﬁ (3.44)

k=1

where F. (u, e, e;) = —%u.

The main theorem states that the solution of (3.42) takes the form
u(t) = ev(e’),
and

o(T) = 4(T) +ey %aTﬁk(T) cos(kz) + O(e17),

where 7 is the solution of the amplitude equation (3.43) or (3.44).

Second case r = 1. In this case, we consider (3.42) subject to Dirichlet boundary

conditions on the interval [0, 7]. If we take
ex(z) = \/gsin(k:x) = §sin(kz) and N = span{sin},

then the Assumption 2.2.1 is true, where the eigenvalues of —A = —9% — 1 are
A\, = k? — 1 with m = 2 and limj,_,o, A\, = oo. Furthermore, for u = v; sin and

w = Yo sin € N the condition (3.11) is satisfied as follows:

3
(Fe(w) u) = =g <0,
where q
Fe(u) = =nsin,
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and

3
<‘FC (’LL,U,U)) ,U)> = _5’73722 <0.

For Assumption 3.3.3, we consider two cases:
First case. The noise acts only on sin(2z).

In this case the amplitude equation (Landau equation) of (3.42) takes the form

2
\ o 3 3
= (v = =)~ = 23 3.45
" (” 4 )7 4! (5:99)
Second case. The noise acts on sin(2z), sin(3z),......, sin(Nx).

In this case the amplitude equation of (3.42) takes the form

N
3 o? 3
\ k 3
= — = - = 3.46
g <V 1277 1)7 1 (3.46)
k=2
If we assume that o, = 03 = ..... = oy = o, then the amplitude equation for

(3.42) in this case takes the form

\_< 902+302(2N+1)) 3
7= 16 SN(N+1) /) T4l

where we used that . (u, ey, e,) = —16%u, 0}, = day and § = \/E

T

The main theorem states that the solution of (3.42) takes the form

u(t) = ev(e’t),
and

(T ~ ) sin +ez k2 8T5k (T)sin(kx) + O(e'7),

where 7 is the solution of the amplitude equation (3.45) or (3.46).

3.7.3 Surface Growth Model

Another example arising in the theory of surface growth is

N
o = —N*u — pAu+V (|Vu\2Vu|) +e Z a0y B (t)ey. (3.47)
k=2
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subject to periodic boundary conditions on the interval [0, 27|. Here we can con-
sider ;1 = 1 + £2v, hence

A=-A*—A, L=-vA and F(u) =V (|Vu|*Vul).

If we take
\/i;r sin(kx) if k>0,
er(x) = \/LQ? if k=0,
\/L% cos(kx) ifk <0,
and

H = L*([0,27]) and N = span{1, sin, cos},

then the eigenvalues of —A = A% + A are A\, = k* — k? with m = 4 and
limy_,oo Ak = 00. So, the Assumption 2.2.1 is true. Moreover, if u = ~y +
~yisin++_;cos € N, then all conditions of Assumption 3.3.2 are satisfied as
follows: 5
s 2
(Fe(u) u) = == (1 +7%)" <0,

where

3 . 3
Felu) === (% +92m) sin—= (¥24 +~37-1) cos.
4 4

Moreover, for « = [ = 2 we obtain
1F @) 2 = |0 (Da)’|| o < [[(B2)* ||, < ClIO0uill3p < Cllull3e .

For Assumption 3.3.3, we consider two cases:
First case. The noise acts only on sin(2z).
In this case the amplitude equation for (3.47) is a system of ordinary differen-

tial equations:
\

’70 = Oa
\ a3 3 2 2 .
Vi =V~ i Vi — Z% (’Yl +’y,1) fori = +1.

Second case. The noise acts on sin(2z), sin(3x),........... ,sin(Nz).
In this case the amplitude equation for (3.47) is a system of ordinary differen-
tial equations:

70207
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g N o ]
= (v — k 2 2 .
E <V 4 ; k% — 1>% = (1 +92y) fori= £l

4
where we supposed o, = day, for k € {2,3,....., N} and § = \/%?
If we assume additionally that 05 = 03 = ..... = on = o, then the amplitude

equation for (3.47) in this case takes the form

vV— — Yi — =% (’yf + 731) fori = +1.

. ( 902  30%(2N + 1)) 3
N 16 ' SN(N+1) 1

where F. (7o + 71 sin +7_1 €08, €, €;) = —%252 (71 sin 4+y_; cos).
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Chapter 4

Higher Order Correction for the
Solution of SPDEs with Cubic

Nonlinearities

4.1 Introduction

This chapter is devoted to study the higher order correction for the solution of
equation (3.1). If we consider higher order corrections to (3.8), we obtain from
the It6-formula argument martingale terms of order €. To get an equation for the
higher order corrections we need to approximate this martingale term in order to
have explicit error bounds. This approach relies on Lemma 6.1 from an article by
Blomker, Hairer, and Pavioltis [9], which is based on the martingale representation
theorem. Thus, we are limited in the final argument to dim N = 1.

Moreover, we want to study higher order corrections to the amplitude equa-
tion, in oder to see the fluctuations induced by the impact of the noise on the
dominant pattern. In this chapter we follow our work [13]. Related results in this
direction are discussed by Roberts & Wang [41].

So, our aim of this chapter is to improve the approximation of (3.1) from

u(t) ~ by (e*t) + eZ(e*t) + O(e*7),

to
u(t) ~ by (e%t) + %bo () + e Z(*t) + O(e%7), 4.1)
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where b; is again the solution of the amplitude equation

dby = [Loby + Fu(by) + Z Fo(by, ex, ex))dT. (4.2)

2k

The higher order correction b, is the solution of

dby = [Leby + 3Fu(bg, by, by) + Z Folba, e, ep)]dT +dM,,,  (4.3)

2k

where M,, (T) is a martingale, which is defined by

W= [ (ng w) aB(s). @4

The integration is against a one-dimensional Brownian motion B arising from a
martingale representation argument (cf. Lemma 4.4.7) and the g;’s are polynomi-
als of degree 4 in b; given later in (4.31).

As an application of our approximation result of Theorem 4.2.2, we discuss
the stochastic Swift-Hohenberg equation and the Ginzburg-Landau equation. To

illustrate our results consider the stochastic Swift-Hohenberg equation
O = —(1 4+ 03)u + ve’u — u® + c00,. 4.5)

with respect to Neumann boundary conditions on the interval [0, 7]. Our main

theorem states that the solution of (4.5) is
u(t, r) ~ ey, (%t) cos(z) + ey (%) cos(w) + £ 2Zo(e%t) + O(e*7),

where v, and 7, are the solution of
. ( 302) 3 5
= YV — — —_ =

and
2 2

30 3 30

This chapter is organized as follows. In the next section, we give assumptions
and statements of the main results. Section 4.3 we recall the averaging results and
dive higher order corrections, while Section 4.4, we study the approximation with
higher order correction via amplitude equations. Finally, in Section 4.5 we apply
our theory to the stochastic Swift-Hohenberg equation, and the Ginzburg-Landau
/ Allen-Cahn equation.
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4.2 Assumptions and Main Result

In this chapter we work in the some setting as before, and assume that all assump-
tions of Chapter 3 hold.
For simplicity here we assume that in Assumption 3.3.3 one has o, = o V k.

this means the noise takes the form
N
W(t)= > oBu(t)er for N >n+ 1. (4.6)
k=n+1
This assumption is only for simplicity of presentation. The proofs can easily be
modified to the general case.

In next definition we modify the stopping time as follows:

Definition 4.2.1 For the N' x S-valued stochastic process (a,)) defined in (3.2)
we split a into a = ay + cay with ay being a solution of the amplitude equation
(4.2). We define, for some Ty > 0 and r € (0, 1), the stopping time T** as

7 = ToAnf {T > 0: |lar ()], > e " or laa(T)|, > e " or [[%(T)||, > "}.
4.7)

The main result of this chapter is the following approximation result.

Theorem 4.2.2 (Approximation) Under Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3
with all o, = o ¥V k, n = 1, let u be a solution of (3.1) defined in (3.2) with
the initial condition u(0) = €a(0) + €(0) with ||u(0)|, < €. for some §. €
(0,e73%), a(0) € N and ¥(0) € S. Suppose by and by are solutions of (4.2) and
(4.3), respectively, with b1(0) = a(0) and by(0) = 0. Then for all p > 1 and
To > 0and all k € (0, %), there exists C' > 0 such that

IP( sup

tE[O,(—.‘*?To]

u(t) — by (%) — e2by(%) — e Q(e%t)

> 5§_7“> < CeP, (4.8)

«

for all € > 0 sufficiently small.

Corollary 4.2.3 Under the Assumptions of Theorem 3.3.6 and for arbitrary initial

condition u(0) we obtain

P< sup ||u(t) — eby (%) — e2by(e%t) — eQ(1)]|, > 8%7%)

te[0,e—2Tp]

< P([u(0)], > doc) + CP. 4.9)
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4.3 Averaging over the Fast OU-Process

Let us expand the averaging result of Lemma 3.5.1 in order to have higher order

corrections. These turn out to be all martingle term.

Lemma 4.3.1 Let X be a real valued stochastic process and X (0) = O(¢™") for
r > 0. IfdX = GdT with G = O(¢™"), then, for all k,l and j, all different,

L [y XZpdr =L [ XdBy, + O(2—"0),
T 2 _ o2 T g T 2 2—r—2Kg
2. |, XdeT_mfo Xd7+7kef0 XZdpr + O(e )

3. [ X2y Zidr = 2% [[ X Zdf + O(27720),

A+
4. fOT ZkZled’T = ()\kf;—;‘_"_)\j) OT lejdgk + 0(82_350),

5. fO ZZZldT = >\ +2)\ )Bl( ) + m {foT Z]%dgl + 2fOT ZkZldBk’} +
O<€2 3/{0)7

6. [y Zidr = 5 Bu(T) + 2 [} Z2dP+ O(>),
where Z, is defined in (3.13).
Proof. We note first that

E sup | X|" < CE sup |G|" < Ce™".
[0,T0) [0,T0]

In order to prove the first part, we apply Ito6 formula to X Zj,

A(X2Z,) = ZdX+Xdz,
= GZdT + e 'oXdB), — \pe 22, X dT.

Integrating from 0O to 7', we obtain
T &2 2 T o [T R
0 )\k )\k 0 )‘k 0
o [T s
A / Xdfy + O(27),
M Jo
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In order to prove the second part, we apply It formula to X Z?

d(XZ2}) = ZHX +2XZd2, + X (d2;)°
= GZ2T — 2\e 2 X 22T + 2¢ 0 2, X dfy, + e 20° X dT.

Integrating from 0 to 7', we obtain

T 2 2 T
XZ2r = ——X(T)ZX(T)+ — Z2d
| xztar — —soxmzm + o [ ezt

T
+—5/ XdeBk+—/ Xdr

= / Xd7+ / X ZpdBy + O(*720).

2k
For the third part, we apply Itd formula to X Z; Z; and integrate from 0 to T’
T 2
/ XZkZldT = — XZk (T) Zl (T)
0 A Al
2 T T R
+ 2. Z1Gdt + / XZd

Ak+Al/0 SR VTEp Wy A 1P
2e0

T
= X Zydf + O 7%).
M+MA f + O(22m)

For the fourth part, we apply It6 formula to Z;, Z; Z; and integrate from 0 to 7" in

order to obtain

/Tz 2,2.d e 2,22 +—7 /Tzzczé
, e e+ N+ A Me+ N+ Sy TIE
3eo T ~
i — ZZ.dB. + O 2—3K0Y

Ak+Al+)\j/0 12dBy + O(=)

For the fifth part, we apply It6 formula to Z2Z; and integrate from 0 to T

T , 2 co T 0 15
ZeZidr = - Zz4 Zod
/0 k14T /\l+2)\k: k=t )\l+2>\k/0 k ﬂl
2e0 T ~ o’ T
+— Z.Zd +—/ Zid
)\l+2>\k/0 S Wy , T

o2 T 20¢ T ~
A % ML -
Al+2>\k/ ’T+Al+2Ak/0 k21

2—3kKo
—Aﬁm/ 22dB + O(),
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we finish the proof of the fifth part by using the first part for X = 1.
For the sixth part, we apply It6 formula to Z} and integrate from 0 to 7 in
order to obtain

T 5 2 o T 2 T
Zpdr = Z.(T) + 6/ d+—/ZdT
| atar = oz L [ i+ L[ =
T
= _/ deT—i——a/ Z2dBy + O(273).
e Jo A Jo

Using the first part for X = 1, we obtain
g ot [t ea (1 214 2-3k
de7—6 5 dﬂk+ deﬁk+0(5 °).
0 b Ak
O

Now, let us give some bounds on stochastic integrals containing Z;’s. These

bounds are improved bounds, using similar arguments of the previous lemma.

Lemma 4.3.2 Let X be as in Lemma 4.3.1, then for kg < % we obtain

T
E sup / Xdeﬁl’nge"”", (4.10)
T€[0,To]
and
E sup /ZkZldﬂj <C. (4.11)
T€[0,To]

Proof. In order to prove (4.10). We first use Burkholder-Davis-Gundy theorem to

To %
/ Xdeﬁl‘ <CIE< / X2z,§dr) .
0

Using Lemma 3.5.1 and Holder inequality, yields

derive

E sup
T€[0,To]

To »
E sSup / Xdeﬁl < CE(ak X2d7-+C€1—2r—2/40)2
TEOTO 0
To ,
< CE/ XPdr + CezPr—pro
0
< e g b
< CeP
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Ch.4 Higher Order Correction

For (4.11). We obtain by using Burkholder-Davis-Gundy theorem again,

E sup
TG[O,To]

T - P To %
/ 2,25, ngE< / Z,ngch) . (4.12)
0 0

Applying 1td formula to Z7 Z? and integrating from 0 to T,

To 2 =2 1 ]'2 2 =2 7o 2 23
ZeZdr = —m—{——*Z 2 2 ZcZd
/0 ke ()‘k‘f‘)\l){ o A+ 80/0 2k

To To
—f—O'Q/ Z,?dT + 25k,l02/ ZkZldT},
0 0

0ifl#k
where d;; = { ) %fl 7 i Using Lemma 3.5.1 with X = 1, we get
1 =
o 1 [P s 5 1-2
0 k l 0
! { Logeze g /TOZ2ZdB}+C
= ——{—=€ eo ,
()\k; +Al) 2 k<l 0 1 <k k

for ko < 5. Taking |2 on both sides before expectation and using Burkholder-
Davis-Gundy theorem we obtain for p > 1,

To P To P
E‘/ 2222477 < CaPE|zkzl|p+Ce’z’E(/ Zfz,fdr)“ +C
0 0

< Qe 4 Cer0 4 O
< C. forkg < g . (4.13)

From (4.12) and (4.13), we obtain

P

p To b
< cpE( / z,zzﬁch)
0

g
<C.

E sup
T€[0,To]

T ~
/ Z,ZdB;
0

To
ZiZEdT
0

IN

C,E

4.4 Proof of the Main Result

First we prove a technical lemma on ordinary differential equations.
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Sec4.4 Proof of the Main Result

Lemma 4.4.1 Let X and Rs be continuous functions from [0, 7] to N with X (0) =
R5(0). If X is a solution of

X(T) = / Qu(X)ds + / Qu(X)ds + Rs,

where QQ, and @y, are linear and bounded operators on N such that

|Qu(X)| < Ca | X[, |Qu(X)| < Cy|X], (4.14)
and
(Qp(X), X) <0, (4.15)
then
sup | X[* < 24 Co(CZ + G sup Rl .16)
where Cy = —1—2[CatlITo,

Ca+1

We note that in the application of this lemma the constant C', grows with &
while C, is independent of . Therefore the condition (4.15) is important in order
to have no () in the exponent.

Proof. Define Y = X — Rj, hence

Y'=Qu(Y) + Qu(Rs) + Qu(Y) + Qu(Rs).

Taking the scalar product (-, Y") on both sides, we obtain

1
SO0 VT = (Qu(Y), Y) +(Qu(Y),Y) +(Qu(R5), Y) + (Qu(5),Y)
Using Cauchy-Schwarz and Young inequalities and (4.15), yields
Or|Y? <2[C, + 1] [V +[C2 + CZ] |Rs|* .

Applying Gronwall’s lemma, yields for all 7" < 7

Y(T)?

IN

T
€24l [ IR e,

0

< Cy[C? 4 CHsup | Ry . (4.17)
[0,7]

To prove (4.16) we use
IX|* =Y + Rs|* < 2|V +2|Rs|*,
and (4.17). O

Let us recall Lemma 3.6.2 and look closer at the terms of order «.
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Ch.4 Higher Order Correction

Lemma 4.4.2 Under Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3 with all o, = o for
ke{n+1,...., N}, we obtain

T T N o352 (T
a(T) = a(O)—l—/ ﬁca(T)dT—l—/ Fela)dr + Z —/ Fe(a, e, ex)dr
0 0 w2 Jo

+eM,(T) + R(T), (4.18)

where M, (T') is a martingale and it is defined by
T N _
3 i w5
0 k=n+1

where all sums are fromn + 1 to N, if it is not explicity stated otherwise

30 60 F.(a,ex, e
Ol(a) = )\—k]: c(a,a,ex) + Z A:f;ll)zl
l=n+1

303 F.(ex, €1, €1) 6o F.(ex, ek, €)
+ Z1.Z
Zl Me( Ak +2)) ; A+ 2M, k2l

3o Fe(ex, e, e;)
+ ZZ. (4.20)
l;—i-lj;l Akt A A ’

and
R= R+ O(e 2= 5“)

where Ry = O(62e*72%) is defined in (3.29).
Proof. Using (3.27) and Lemmas 4.3.1 and 4.3.2 in order to obtain (4.18). O

Lemma 4.4.3 Under Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3 with all o, =

o Y k, consider some stochastic process & = O(e™") for r > 0. Then for all
p > 0 there exists C' > 0 such that

E( sup |M§(T)|p> < Qe (4.21)

Te[0,7+]

where My is defined in (4.19). If £ is bounded upto Ty, then (4.21) holds with T

instead of T*
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Sec4.4 Proof of the Main Result

Proof. In order to prove (4.21), we take |-|” on both sides for (4.20) in order to
obtain

‘MS(T)

_ ’/OTij:Ok(al)dgk(s)‘p
Ckz %

i Z Z )\k‘|‘)\l

T p
/ fc@,s,ek)dﬁk}

/ Fe(&, en, er) szﬁk‘

k=n+11Il=n+1
€k €k 6[ ~ p
C 2 Ol " )
DS Z N a2l f, )
k=n+1 1=
ekaekael 5 |P
w0 Y Y A Zkszﬁk\
k=n+1 I£k (Ar +2A1)"
Y ¥y Flwedr) s
Ak+Al+)\ g

k=n+11l=n+1j= n+1
Taking expectation after supremum on both sides and using Assumptions 3.3.2,
Lemma 4.3.2 and Burkholder-Davis-Gundy theorem, yields (4.21). a

Lemma 4.4.4 Under Assumptions 2.2.1, 3.3.1, 3.3.2 and 3.3.3 with all oy, =

oV k. If we define a as a = ay + €ay such that a;y is a solution of the ampli-

tude equation

3 2
day = [Lear + Fular) + > %]—}(al? ex ex)]dT, (4.22)
k=n+1 k
then as is a solution of
N 2
30
day = [Leax+3F (a1, a1, a2)+ Y o Fe(a2, en ex)[dT+dMy, +d Ry, (4.23)
k
k=n+1

where

T T
Ry = 5_1R+35/ .Fc(al,ag,ag)dr—l—sQ/ Felag)dr
0 0

Y 6o [T 5 =~ 30 (7 3
ey P / F(ar, az, 1) A5y + € Z by / Felaz, az, ex)dfy
+

k=

e Z Z )\k +>\z/ Felaz ex, e Zldﬁk’ (4.24)

k=n+11l=
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Ch.4 Higher Order Correction

with
Ry = O(e'759). (4.25)

Proof. The equation for a, is a straight forward calculation using (4.18) and
(4.22). To bound Ry, we take ||-|[” on both sides of (4.24) in order to obtain

p o ||P ’ g
HRZ(T) < CeP|R(T)|| +Ce / Fela, az, az)dr
a . & pO . (; B
+Ce? / Felag)dr| + Ce” Z Vi / Felay, ag, ex)dfy
0 @ k=n+1 "k /0

T
/ -Fc(a27a27ek)d5k
0

p
a

1
+C€2p Z ﬁ
k=n+1"F

1y (" - ||P
+CeP Z V / Felag, ex, ex) Zrd By
k=n+1 k 0 ¢
1 T = |IP
+CeP —_— / Felas, ey, €) Z1dby
k;}—l l;aézk ()\k —+ )\l)p 0 «

Taking expectation after supremum on both sides and using Assumption 3.3.2,
Lemma 4.3.2, Burkholder-Davis-Gundy inequality and the definition of 7** (cf.
(4.7)) in order to obtain (4.25). O

Lemma 4.4.5 Under assumptions of Lemma 4.4.4. Let a; be a solution of (4.22)
with initial condition a,(0) = LP.u(0). Define ¢ in N with ((0) = 0 as the
solution of

N
302

d¢ = [L{ +3F(ar,a1,0) + Y S—Fol ex, e)ldT + dM,, (T).  (4.26)

k=n+1

If |a1(0)| < 6. for 6. € (0,e73%), then for all Ty > 0 and p > 0 there exist a
constant C' > 0 such that

sup |a1(T)|P < O, (4.27)
Te[0,To]
and
sup [((T)] < C(1+6.) sup |M,, (T)]. (4.28)
T€[0,To] T€[0,To]
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Sec4.4 Proof of the Main Result

Proof. The bound on a; follows from Lemma 3.6.3. Note that (cf. (3.31)) in the
proof of Lemma 3.6.3, we get

a1 (T)| < €T |ar(0)| VT < To. (4.29)

To bound ¢ we integrate (4.26) from 0 to 7" in order to obtain

N

T T 302 T
C(T) = /0 £c<d7—+3/0 Fc(a1>a17C)dT+ Z 2_)%/0 ‘FC(C76:I€’ ek)dT+Ma1 (T)

k=n+1

If we define

N 2
QCL(C) = ‘CCC + Z g;;\-kfc(Cﬂﬁm ek) and Qb(C) = ch(abahC)a

k=n+1

then we obtain from Lemma 4.4.1

sup [¢(T)* < C(1+62) sup | M, (T)I.

T€[0,To] T€[0,To]

Taking the square root on both sides, yields (4.28). O

Remark 4.4.6 Note that, from now on, we consider n = 1 and identify N with
R using the natural isomorphism v - ey — . Thus, for example F. is defined as
(F,e1) and F2 is (F,e))’. Moreover, it is easy to check that the quadratic varia-

tion of My, as a real valued process (M,,, e,) is given by Sn_, fOT O2(ay)dr.

Before we prove the main result let us deduce the approximation g; of the
quadratic variation function ©2.

Taking the square on both sides of (4.20) and using Lemma 3.5.1, we obtain

T T
/ Oi(al)def gk(a1)d7+0(5§51_4”0)7 (4.30)
0 0
where
9(72 904
ge(br) = S5 [Felbr b))’ + S5 [Felbr en, )] 4.31)
k k
ol 1804
T s Leld 240" (b1, b Q)
2 e e e )l O b)) 637,
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with N
901 F.(ex, er, €;)
e(k) _ c ) Cly
l=n+1
and

e(k) . 1106f62(6k) N 90'6(3/\z—|—4/\l)\k—|—4/\12)]:62<6k7€l,65)

2 T Tpa * 2 IO 1 20)?
Z 905 F2(ex, ex, €1) Z Z 958 F2(ex, e, €5)
NN 2P L Lt DN O+ A

. Z oO(6A7 4 18\, + 3\i) Fel(ex, ex, e1) Feler)

l# NN (N + 2X)
N

90' 4/\[)\ + /\2 + /\l)\k)f (ek., €r, 6[)]:6<€k, €j, €j)

+Z > .

AN (A + 20) (O + 2))

£k je{lk}

Let us state without proof Lemma 6.1 from [9] to bound M, (T) — M, (T)
where the martingale M, (T) defined in (4.19) and the martingale M, (T") defined
in (4.4).

Lemma 4.4.7 Let M,,(T') be a continuous martingale with respect to some fil-
tration (F 7)r>o. Denote the quadratic variation of M,, by f and let g be an
arbitrary F p-adapted increasing process with g(0) = 0. Then, there exists a fil-
tration [ with [+ C F 1 and a continuos [ r-martingale ]\;[a1 (T") with quadratic

variation g such that, for every ro < % there exists a constant C with

E sup |M,(T)— M, (T)
T€[0,Ty)]

< C(E|g(T)*)"" (E sup |f(T)—g(T>!”>

Te [07TO]

+E sup |f(T) - g(T)["".
TE[0,To)
Remark 4.4.8 Using the martingale representation theorem, there exists a Brow-
nian motion B with respect to the filtration F 1 such that Mal (T') is given as a

stochastic integral as in (4.4).

Lemma 4.4.9 Under conditions of Lemma 4.4.7, let M, (T) and M, (T) are
martingales defined in (4.19) and (4.4) with |a(0)| < 0. (0, 5_%”),
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respectively. Let f(T fo Sy o O (a1)ds be the quadratic variation of My, (T')
and g(T) = fo Zk:2 gr(ay)ds be the quadratic variation of the martingale
M, (T), then for ry = 5 and ko < K we obtain

E sup A@AT)—ﬂLgTﬂpgcm?%ﬁ—%ﬁ (4.32)

T€[0,To]

Proof. From (4.30), we obtain

T N P
E sup /(1) ~ gD = E sup | [ S (char) - glands
T€[0,To) Telo, 1] |[Jo 15

< C5§p5p—4pﬁo,

and as 02@) are constants
2p
19(To) [ = ng ds <Csup lay|* + C sup |ay|*,
[0 To [O Tg]

using (4.27)in order to obtain

Eg(Tp)* < C52.
Applying Lemma 4.4.7, yields (4.32). O

Let us now turn to the proof of the main result.

Definition 4.4.10 Given 6. € (0,e73%). Define the set ¥ C € such that all

these estimates

sup |[1p — Qlla < 27, (4.33)
[0,7%*]
sup ||¢)]|a < o +£72"% (4.34)
[0,7**]
sup |Ry| < 7%, (4.35)
[0,7%%]
sup |M,,| < e, (4.36)
[0,7%+]
and
~ 8 1 7
sup a — My, | < 02e373% (4.37)
[0,7**]
hold on C)**.
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We will see later that the set {2** has approximately probability 1 (cf. proof of
Theorem 4.2.2) and that 7** = T, on Q**.
The following theorem states that in (4.26), (4.23) we have a good approxima-

tion when leaving out the error Rs.

Theorem 4.4.11 We assume that Assumption 2.2.1, 3.3.1, 3.3.2 and 3.3.3 with all
ar = o V k hold. Let ay be a solution of (4.22) and let ¢ and ay are solution of
(4.26) and (4.23), respectively. If the initial condition satisfies a3(0) = ((0) = 0,
then for k < % there is a constant C' > 0 such that

sup |ao(T) — ¢(T)] < Ce'™™, (4.38)
Te[0,7**]
and
sup |az(T)| < C(1 + 8.)e 2", (4.39)
Tel0,7**]
on (**.

Proof. To prove (4.38) we subtract (4.23) from (4.26) and define (T") := ((T') —
as(T) to obtain

N
3 2

dn = [Ln + 3Fc(ar,a1,m) + g L]—}(n, er, ex)]dT + dR;.
k=n+1 2)\k

If we take

N

302

Qa(n) = £C77 + Z _FC<T]7 €k, ek) and Qb(n) = Sfc(alu ahn)u
k=n+1 2)\k

then we obtain from Lemma 4.4.1

sup [n|? < Ce 2 sup |Ro|* on Q. (4.40)
[017—**] [O,T**]

From (4.35) we obtain

sup |¢ —as| = sup || < Ce™™ on Q.

[0,7%*] [0,7**]

For the second part of the Theorem (cf. (4.39)), consider

sup |az| < sup | —as| + sup || on Q.
[077_**] [077_**] [077_**]
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Using (4.36) together with (4.28) and (4.38), yields (4.39) in case K < % O
In the following theorem we approximate the martingale part Mal, that still
depends on the fast OU-process. Here we need n = 1.

Theorem 4.4.12 Under assumptions of Theorem 4.4.11 . Let a; be a solution of
(4.22) and let ay be a solution of (4.23). Define by in N as a solution of

dby = [Lcby + 3F (a1, a1,bs) + Z K}" by, ex, ex)|dT + dM,,,  (4.41)
k

where M,, is defined in (4.4). If the initial condition satisfies ((0) = by(0) = 0,
then for every p > 0, ¢ € (0,1) and every k > 0 there exists a constant C' such

sup [bo(T) — C(T)| < €65 575", (4.42)

Te€[0,7**]

Proof. Subtracting (4.26) from (4.41) and defining ¢ = b, — ¢ we obtain

T T
o(T) = / £C¢d7+3/ Fo(p,a1,a1)dr

0

’ kz 2k / Fe(o, ex, ex)]dr + Mal(T) — Mo, (T).

Let

a - c¢ + Z 2)\kJT- ¢a ekaek) and Qb(¢) = 3fc(a17 a17¢)7

then all conditions of Lemma 4.4.1 satisfy as follows
Qa(@)] < Clo| and [Qu(0)] < |an]* o] < COZ 6] on O,

and from Assumption 3.3.2
(Qu(9),¢) <0.
Hence, we apply Lemma 4.4.1 to obtain
2

sup [¢* < C(1+62) sup | My, (T) = Mo, (T)

[077.**] [077.**]

Using (4.37) finishes the proof. O
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Finally, we use the results previously obtained to prove the main result of
Theorem 4.2.2 for the approximation of the solution of the SPDE (3.1).
Proof of Theorem 4.2.2. We note that provided J. < £3"

Q5{r" =To} 2{ sup |la(T)l, <™, sup [lax(T)[|, <"
TG[O,TO] TE[O,TO}

, sup [[P(T)], <™} 207,
TE[O,To}

where the last inclusion holds due to (4.34) with Lemma 4.4.5 and Theorem
4.4.11. Moreover, (2* D (2** by the definition if we identify b with a;. Hence,

P(Q) > 1=P(sup [[p=Qla > & )=P( sup [[¢lla > £ 2*)=P( sup ||Ralo > ')

[0,7*] [0,7%%] [0,7%%]
—P(sup |M,, — M,,| >3~ 3%) —P(sup |M,,| > e %).
[O,T*ﬂ [O,T**]

Using Chebychev inequality and Lemmas 3.4.1, 4.4.3, 4.4.5, 4.4.9 and Corollary
3.4.3, we obtain

P(Q**) >1— O[gqf’u 4 géqﬁ—qmo + 6%(1”] > 1 — C’g%q” >1- Cgp, (4.43)

if ¢ 1s sufficiently large. Now let us turn to the approximation result. Using

(3.2) and triangle inequality, yields

sup ||u(e?T) — eay(T) — e*by(T) — eQ(T)

T€[0,7**] o
= sup |lea(T) —car(T) — *bo(T) + ep(T) — Q(T)
T€[0,7**] o
= sup |[e%ax(T) — bo(T) + ep(T) — Q(T)
Te[0,7%*] «

«

< &2 sup |lag — bsl|,, +¢€ sup Hw -9
[077_**] [077-**]

Y —Q

o

< = sup fla — Clly + 2 sup [IC — bal, + = sup
[0,7**] [0,7*] [0,7%*]

From (4.33), (4.38) and (4.42), we obtain

sup  ||u(t) — ca; (%) — by (et) — eQ(e%t)
tE[O,E_QTo] a

= sup u(t) — cay (%) — %by(t) — eQ(?)
te[0,e= 277 a

7_
< (Ces ™ on Q.
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Thus,

]P’( sup  ||u(t) —eai (%) —e%by(e°t) —eQ(%)|| > Cé‘%’?”) < 1-P(2™).
t€[0,e=2Ty] a

Using (4.43), yields (4.8). O

Proof of Corollary 4.2.3. We follow exactly the same proof as in Corollary

3.3.7. O

4.5 Applications

To apply our main theorem, we will take the Swift-Hohenberg equation (4.5)
with respect to Neumann boundary conditions on the interval [0, 7] and Ginzburg-
Landau / Allen-Cahn equation (3.42) as examples and we will discuss several

cases depending on the form of the noise.

4.5.1 Swift-Hohenberg Equation

Define
1 e
B NG if k=0,
6k($) - 2 .
\/;cos(k;x) if k> 0,
and

H = L*([0,7]) and N = span{cos}.

In this case our main theorem states that the solution of (4.5) is
u(t, x) =~ ey1(e%t) cos(x) + e*ya(%t) cos(z) + e 2, (%) cos(kz) + O(*),

where v; and 7, are the solution of the following amplitude equations, we will
discuss three cases depending on the noise as follow,

First case. If the noise is a constant in the space, i.e.

then
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and ) )
30 3 30

Second case: If the noise acts on cos(kx) for one k € {2,4,5,6, ....}, then
. (u . 30° ) 34

M= 2(]{:2 — 1)2 M 4’717

and

302 2

3 30
dys = |(v— 20 Vg — 22| dT + ——204dB.
72 {(” (k% — 1)2>72 47“2} T ovam — )

Third case: If the noise takes the form
W (t) = op5(t) cos(3z) ,

then
302 3

\_ —_— — —_—
71_(” 128>71 471’
and
0-2
7 )4B.

30° 3 30
dys = {(v - —) 175721 dT + 5oy 0F + 33

128 256

4.5.2 Ginzburg-Landau / Allen-Cahn Equation

First case » = 0 (i.e., the Ginzburg-Landau Equation (3.42) subject to Neumann
boundary conditions on the interval [0, 7r]). In this case, our main theorem states
that the solution of (3.42) takes the form

N
ult, z) ~ e (et) + e22(e%) + £ Y Zi(e%t) cos(kx) + O(7),
k=1

where 7y; and 7, , we will discuss two cases depending on the noise, are the solu-
tion of the amplitude equations
First case. The noise acts on cos(kz) for one k € {1,2,....}, in this case

3a
2

3o 9
S

and
2

\/_71']{33

’yldB
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Second case: The noise takes the form

W(t)=> oB(t)es .

In this case

and

dT +

Y, 302
dys = [(V - 27Tk2>72 — 3717
k=1

302 (EN: 1 )é
V2 k=1 kS

Remark 4.5.1 Either -y, tends to be 0 in case v < fo:l % and y, tends thus
10 0, too. Or v} =~ (v — fj:l %) > (0 for large T, and thus 5 behaves like an

Ornstein-Uhlenbeck process.

Second case = 1 (i.e., the Ginzburg-Landau Equation (3.42) subject to Dirichlet
boundary conditions on the interval [0, 7]). In this case, our main theorem states
that the solution of (3.42) takes the form

u(t, z) ~ ey (%) sin(x) + %v,(%t) sin(x) + £ 2 (%) sin(kx) + O(e*7),

where ~; and 7, , we will discuss three cases depending on the noise, are the
solution of
First case. The noise acts on sin(kz) forone k € {2,4,5,6,....}, in this case

302 3
v (. 9.3
/Yl - <V 4<k2 _ 1))71 4717
and
302 3 302
dye = (——) — A2 dl' + ———~vdB.
72 { YT a1 47”2} MW

Second case: The noise acts on sin(3z), in this case

. ( 302> 3 5
== ]/ —_—— JES—
71 39 §a! 4717

and
2

30 3, 30 o?
(v =22, =2 T+ 22 2 7 V4B,
drya [(V 3 )’72 471’721 dT' + 35 1 (7f + 16>d

96



Ch.4 Higher Order Correction

Third case: The noise takes the form

in this case

k=2

and ;
302 3 ~
dy, = [(V - Z m)% - 171272 dI’ + dM,

k=2

where
= 7 (g, 371807 , | 168190 1/2dB
T3\ T T T 19404
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Chapter 5

Modulation Equation for the
Stochastic Swift-Hohenberg
Equation

5.1 Introduction

We consider the stochastic Swift-Hohenberg equation on an unbounded domain
near its change of stability. This equation has been used as a toy model for the
convective instability in Rayleigh-Bénard problem (see [16] or [22]). Now it is
one of the celebrated models in the theory of pattern formation. For a scalar field
U(t, z) it takes the form

0U = LU + e*vU — U? + 00,8, (SH)
where the linear differential operator is £ = —(1 4+ 9%)? and its eigenvalues are
~\r = —(1 — k?)? for k € R corresponding to eigenfunctions e?**. The noise

is the derivative of a standard Brownian motion {(3(¢)},., in R. In this article
we restrict ourselves to the case of noise constant in spacej, because on one hand,
this is the case where we are able to study the stabilization effect. On the other
hand noise in space and time may lead to spatially unbounded solutions of (SH).
So, this result is only the starting point for modulation equations on unbounded
domains. The stochastic Swift-Hohenberg model was first studied in the context

of amplitude equations with non-degenerate noise in [10] and later in [6].
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For (SH) on the whole real line with degenerate additive noise, Axel Hutt and
collaborators [23], [24] used a formal argument based on center manifold theory.
They showed that noise constant in space leads to a deterministic amplitude equa-
tion, which is stabilized by the impact of additive noise. The aim of this chapter
is to make their results rigorous.

Blomker, Hairer, and Pavliotis [8] considered the stochastic Swift-Hohenberg
Equation (SH) near its change of stability on a large domain [—L/e, L/e| with
additive noise, where the noise is assumed to be real-valued homogeneous space-
time noise. They showed that, under appropriate scaling, its solutions can be

approximated by the solution A of the stochastic Ginzburg-Landau equation.
Ul(t,r) ~ cA(e’, cx)e™ + c.c.

One severe problem is, that solutions of stochastic PDEs are not very regular in
space and time. They are at most Holder continuous and only for (SH) we have
one spacial derivative. In [8] the amplitude A(7") was shown to split into a more
regular H!-part and a Gaussian.

For the deterministic Swift-Hohenberg equation on an unbounded domain
(i.e., 0 = 0). Kirrmann, Mielke, and Schneider [26] approximated solutions of

the Swift-Hohenberg equation via the Ginzburg-Landau equation
OrA = 40% A+ vA — 3|A|PA,

but this method of approximation depends on high regularity of the modulation
equation, as they needed A € C;A([O, T| x R), which means one bounded deriva-
tive in time and four bounded spatial derivatives. For more results on the deter-
ministic Swift-Hohenberg equation, see for instance [15], [33], [34] and [43].

Our method of approximation relies on very low regularity of the modulation
equation, which is necessary when turning to spatial noise. Unfortunately, we
still need too much regulatity for A, as we need A € C°([0, 7], H'/**). Butas a
solution of the stochastic Ginzburg-Landau, A is at most Holder continuous with
exponent less than 1/2.

The main aim of this chapter is to show that the solution U(¢, z) of (SH) is
well approximated by

U(t, ) ~ cA(e’t,ex)e™ + cA(e’t, ex)e™ + e 2. (%) ,
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where the complex amplitude A(7, X) is the solution of the Ginzburg-Landau
equation
OrA =405A+ (v — 30%)A = 3|APPA (GL)
and
T R
Z(T)=¢"'o / e== " T=1aj(r) , (5.1)
0

is a fast Ornstein-Uhlenbeck process (OU, for short) with 5(T) = £3(e~2T)
being a rescaled version of the Brownian motion.

The remainder of this chapter is organised as follows. In the next section
we define the standard fractional Sobolev space H®. We also state and prove the
relation between the norm in H® and the norm in C°(R). In Section 5.3 we give a
formal derivation of the modulation equation and state the main result. In Section
5.4 we recall the Green’s functions G;(x) of the Swift-Hohenberg operator, and
give estimates on it. In Section 5.5 we bound the Ornstein-Uhlenbeck process

Z.(T). Finally, in Section 5.6 we give the proof of the main result.

5.2 The H"-Space

In this section we define the well known Sobolev space ‘H“, where we rely on
weighted L2-norms of Fourier transforms. We also recall the relation between the

norm in % and the norm in C°(R) by stating the Sobolev embedding theorem.

Definition 5.2.1 For o € R, we define the space H" by

H = {u:R—HR:/OO (1+9)"|F(u)(y))* dy < oo},

—00

with norm

Jullz = | T () 1 F ) (o) Py,

[e.9]

where F(u) is the Fourier transform of u, which takes the form

Flu)(y) = % / " (ke *d

Note that in the space H“ functions still decay to 0 at co. Thus if A € H* we
are still in a setting, where the solutions of (SH) and the amplitude A decay to 0
for || — oo.

Let us now consider semigroups in the space H“.
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Lemma 5.2.2 Let A be a non-positive operator with eigenvalues P(k) such that
P(k) < 0 defined by F(Au) = P(-)F(u). Then fort > 0 and u € H*

le"ull, < llull, - (5.2)

It is well known that e defined by F(e'*u) = e'¥ F(u) generates a contrac-
tion semigroup.
Proof. We note from Definition 5.2.1 that (e~ 2F*) < 1)

etull = [ @) IFE ) dy

[e9]

_ / T (1) e PO F @) )] dy < [l

(e 9]

O

The next Lemma states the relation between the norm ||-||, and the supremum-
norm in C°(R).

Lemma 5.2.3 For o > % there is a constant C' > 0 such that
|ull, < Clull, forallue H". (5.3)

Proof. Using Sobolev Embedding Theorems (See Theorem 5.4 in [2]), yields
(5.3). a
The following lemma is necessary in order to estimate the nonlinearity. It

states that H“ is up to the constant a Banach algebra for o > %
Lemma 5.2.4 For a > % and m € N there exist a constant C > 0 such that
[y < Cllullg . forueH. (5.4)

For simplicity of presentation, here let us give an elementary proof of (5.4) in
case of % < a < 1. For the complete proof, see proof of Theorem 4 in [42].
Proof. To prove (5.4) in case % < a < 1, we study two cases depending on a.

First case, % < «a < 1. In this case, we use that the norm in H“ is equivalent

1/2
o u(z +y) — u(y)|”
|1 D%ul| > = - dydr | |
R JR |y
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where D is a fractional derivative. We note that, if u = f - ¢, then

u(z+y) —uly) = fle+yglz+y) — fv)g(y)
= flx+y) gz +y)—gWw)+9) flx+y) — fy)].

Hence,
1D%fgllz < [ flloo 1Dl 22 + llglloo 1D flI 2 -

From Lemma 3.5.1 in [1], there exist a constant C' > 0 such that

CH ully < Hlull 2 + [1D%ull . < Clull, -

Thus
[u™ll, = llu" g2 + 1 D™ 12
< ™| Nl + (lu™ | 1D ull 2 + [l || D™ | L
-1 -1
< el Ml gz +m full 57 (1Dl

IN

-1
mlullZe™ (el 2 + 1Dl 2)

-1
m |l fully -

Using Lemma 5.2.3, yields (5.4).
Second case, o = 1. In this case

[u™ e = [l 2 + [ Du™ | 2
-1 -1
< ullZe ull g2 4+ m Jull S | Dull 2

-1
< mlullg ull

Using Lemma 5.2.3, yields (5.4). O

5.3 Formal Derivation and the Main Result

In this section let us discuss a formal derivation of the amplitude equation or mod-
ulation equation corresponding to Equation (S H). This is based on the approach
in [26] and uses high regularity of the amplitude A. Let us first rescale (SH). If
we assume that

U(t,z) = eu(e’, ex),
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then Equation (SH) takes the form
Opu = Lou + vu — u® + 5_108T6~(T), (SH,)

with differential operator £. = —%(1 4 £20%)? on the slow time 7" = £t and

the ”slow” space X = cz. Now define w via
w(T,X) =w(T,X)+ Z.(T), (5.5)
where Z. was defined in (5.1). Plugging (5.5) into (S H.), we obtain
orw = Low + vw — w® — w2, — 3wa +vZ, — Zg. (5.6)

Leaving out the error term for simplicity of presentation, we make the following

ansatz:

wa(T, X) = AT, X)e™ + 2B(T, X)e** + 2H(T, X)e*™ + 2 J(T, X) + c.c.,

(5.7)
where c.c. denotes the complex conjugate. The higher order terms of order O(g?)
are used to cancel various terms that appear due to the nonlinearity. We assume
that all functions are sufficiently smooth.

Plugging (5.7) into (5.6) and using the relation
L(f(X)e'=X) = —[e2(1 — n?)f + 4ie~"n(1 — n2)f' 55
4 (2 . 6n2)f“ + 4i€nf‘“ + €2f\m] . eigX 7 .

in order to obtain

OrAe™ + 207 Be?™ 4+ 20, He*™ + 2000 + c.c.

= [4A" — 4ie A" — 2 AMe™ — [9B — 24ieB' — 22¢*B"
+ 8ie* B™ + &' B™|e*™ — [64H — 96ic H' — 52¢* H"
+12i H™ + ' H™e*™ — [J + 22T + &' T

+ v[Ae™ + &*(Be*™ + He*™ + J + c.c.)]

— [(Ae™ + Ae ™) + £*(Be*™ + He*™ + J + c.c.)]?

— 3Z.[(Ae™ + Ae™™) + *(Be*™ + He*™ + J + c.c.)]?
— 3Z2[(Ae™ + Ae ™) + 2(Be*™ + He®™ + J + c.c.)]
+ce+vZ — 22,

104



Ch.5 Modulation Equation for Stochastic Swift-Hohenberg equation

Hence,

OrAe™ + c.c. = [AA" — 4ie AN|e™ — [9B — 24ic B'e*™
— [64H — 96ic H']e*™ + vAe™ — A3e™™
— 3| A|? Ae™ — 3Z2_A%e%T — 322 Ae™ + c.c.
—J4vZ. — 23— 6Z.|AP + O(?) .

Removing all unwanted O(1)-terms by defining

-1 ~1
B= ?Z€A2  H = 6—4A3 and J =vZ. — 2> —6Z_|A, (5.9)

we obtain

OrAe™ + c.c. = [4AY — 4ic A + vA — 3| AP A — 322 Ale™
+ 24ie B'e*™ + 96ic H'e*™ + c.c. + O(&?) . (5.10)

Before we proceed this formal derivation, let us state the following two lemmas on
the approximation of Z.. In the following we will rely on the important fact that
due to averaging we can replace Z2 approximately by the constant /2. Here we

state the result in a way, which is useful for the mild formulation later.

Lemma 5.3.1 For every kg > 0 and p > 1 there is a constant C > 0, depending
only on p, o, ko, and Ty, such that

E sup [Z(T)P <Ce™,
T€[0,T0]

where the fast OU Z.(T)) is defined in (5.1).
Lemma 5.3.2 Let y be a complex function with y =0O(e™") in H* and initial
condition ||y(0)||co = O(e™") for some r > 0.

IfY (T, s) = e*T=9)%y(s) and dY (T, s) = e*T=9)9%%G(s)ds with G =O(e™")

in H®, then for any small ko € (0,1)

T
/ Y(T,s){22 — 2 }dr = O(e! "), (5.11)
0
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These two lemmas will be proved in Section 5.5.
Now let us complete our formal derivation. Collecting all coefficients in front
of € in (5.10), yields

OrA =4A" + VA —3|APA— 3224+ O(e).

Using the averaging result of Lemma 5.3.2, we obtain
2 30 2 1—
OrA =405 A+ (V—T) A=3|A"A+0( ).
Neglecting all small terms in ¢, yields (GL).
The main result of the chapter is the following approximation result for the
stochastic Swift-Hohenberg Equation (SH) through the Ginzburg-Landau Equa-
tion (GL).

Theorem 5.3.3 (Approximation) Let U(t, x) be a solution of (SH), wa(T, X)) the

formal approximation defined as
1
wa(T, X) = A(T, X )™ s + c.c, (5.12)
where A(T, X) is a solution of (GL) such that A € C°([0,To], H*) for o > 3.
Suppose for the initial condition ||U(0) — eA(0)e® — e A(0)e ||, < de'3r0¢,
for some fixed d > 0 and for kg € (0, 1) such that e=¢2 — 0 for ¢ — 0.

Then for each Ty > 0 and p > 1 there exist C > 0, depending on supy, 1, [| Al|a
such that

IP’{ sup  ||U(t, z) — ewa(e?t, ex) — €ZE(€2t)HOO > 051*4“09255} < Ce?,
te|

0,6~ 2Tp)]
(5.13)
where Z.(T) is the fast OU defined in (5.1) and
g2 if a>3/2,
¢F =< e2n(1/e) if a=3/2, (5.14)
g2l if a<3/2.

5.4 Green’s Function and Semigroup Estimation

For the first part of this section we follow the ideas of Collet and Eckmann [15]
which they apply to a slightly different operator. We define the Green’s functions

G;(x) of the Swift-Hohenberg operator, and we give estimates on it.
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Definition 5.4.1 Define the Green’s function G,(x) of the operator L for t > 0
and x € R as -

Gi(x) = / ethe e HI=2K2 k) g (5.15)

The next lemma states that the Green’s function G, () is bounded with respect

to the norm ||-|| ;..
Lemma 5.4.2 There exists a constant C' > 0 such that for all t > 0
1Gelle < C. (5.16)
In order to prove this lemma, let us state and prove the following two lemmas:

Lemma 5.4.3 Define the function g,(y) as

o)

R

o0

where Q1(m,7) = 772 — 2m? + 7?m™. Then there exists a constant C' > 0 such
that for0 <17 <1

sup (4 +y)g-(y)| < C.
yeR

Proof. Using integration by parts, we obtain

o0

(4 + QQ)QT(ZU) - / Pl (7’)’1,7 T)eimye_Ql(m,T)dm

oo
0

= / P, (m’ 7.)eimye—Ch(m,T)dTn + / P, (m7 T)eimye_Ql(m’T)dm
0

—00

= Il + 127
where
Py(m, 1) = 12m*7% — 16mS7* + 32m*r* — 16m>.

For m > 0 and 0 < 7 < 1 we not that

Qi(m,7) = (mr— 1’ (m+7)° > (m—71)2,

and
Pi(m,7) = 7*m?*[12 — 16(m — 7 )*(1 + 7m)?] .
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Hence,
[P (m,7)| < C[1+ (rm)*][1 + (m — 771)?] .

Thus,
|Pim+7757)] <O+ (rm+ 1)1+ m? < C(1+m°).
Now we bound /; and /5 separately. For the first integral /; we obtain

I, = / P(r 477, 1)l e @i+ g

1

< / Pi(r 477t 1)l e g

-1

where we substituted » = m — 7. Thus

L] < / (c+er®e " dr < / (c+ crSe ™ dr = C.

71 —00

For the second integral /5, we put —m instead of m to obtain
o0 .
I, = / Py(m, 1)e" ™ e Q1 mm) gy,
0

where P, and (), are even polynomials in m. Analogously to the first integral, we
derive
Ll <C.

Hence, from the bounds on /; and /, we obtain

Sub |(4+y%)g-(y)| < C for 0 <7 <1
ye

Lemma 5.4.4 Define the function h,(y) as

where Qo (k,n) = n* — 21°k* + k*. Then there exists a constant C > 0 such that
for0<n<1

sup [(1+ )y ()| < €
yeR
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Proof. Using integration by parts, we obtain

(L) = [ Pallnye e

o)
1

:/ pz(km)eikyeQz(k,n)dk—i-/ P2(k,n)€ikye*Q2(k,n)dk
1

— 00

1
+ / Py(k, n)e*e= @k gy

1
= I, + II, + II5,

where
Py(k,n) =1+ 12k% — 4n* — 16k° 4 32k*n* — 16K°n*.

We note thatfork > 1and 0 <n < 1

Qa(k,m) = (k —n)*(k +n)” > (k —n)*,

1

[\

and
|Py(k,7)] < c(1+ k6).

We now bound all three terms separately. To bound //; and I/5, we follow the

same steps as in the case of Lemma 5.4.3. For the third term

1 1
) < [ (Rl @0 dk < [ (PG| di
—1 -1

1
gc/ (1+k%dk = C.

1

Hence, combining all three estimates on I/, Il and II3 we obtain for 0 < n < 1
that

sup [ (1 + ) hy(y)| < C.
yeR

Proof of Lemma 5.4.2. In order to prove (5.16), we consider two cases:

First case ¢t > 1. In this case we note that

gt(x) = TgT(Tl’),
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with 7 = ¢~% and

19 = [ Jg@lde= [ frg.(ro)]ds

o0

o0 o0 1
- i = [ 4+ (y)d
/_ 19-(y)| dy / 4+y |4+ y%)g:-(y)| dy

oo

<Sup‘ 4+ y%)g-(y ‘/

< Csup |(4+y%)g-(y)
yeR

4+2y

b

where y = 72. Using Lemma 5.4.3, we obtain for ¢ > 1
1Gell < C. (5.17)
Second case ¢ € (0, 1). In this case we note that
Ge(x) =0~ "hy(n~"2),
with ) = ¢4 and

<1
160 = | 1 |0+l dy

<
<sup [(1 +y)h / d
yeﬂg\ y*)h(y)] el

< Csup [(1+y*)hy(y)
yeR

)

where y = n~'z. Using Lemma 5.4.4, we obtain for ¢ € (0,1)
Gl < C (5.18)
Combining (5.17) and (5.18), yields (5.16) for all £ > 0. O
Lemma 5.4.5 There exists a constant C' > 0 such that
e “u||oo < Cllulloe forallt > 0andu € C°(R). (5.19)

Proof. Let 7! denotes the inverse Fourier transform. Then

e“u(z) = F ' Fe'“u(z) = F (e ™ Fu(x))

/ / e*E=Y) ety (4 dy dk

:—/ Y)Gi(x — y)dy . (5.20)
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We obtain
le™ull . < C lull o, 161 -

Using Lemma 5.4.2, yields (5.19). O

Corollary 5.4.6 ForT > 0, there exists a constant C' > 0 such that

72w

‘OO < Ollulloe  forall T > 0andu € C°(R).
Proof.

GTLSU(X) _ 65*2T(1+(56X)2)ZU<X) _ ee*ZT(H-&?()Qu(EX)

= Tru(eX) = e u(X) |
where u.(X) = u(¢X). Using Lemma 5.4.5, we obtain

e

= [Je"ue]| , < Cllucllo = Cllull -

| e}

O
The following lemma provides a result on how to change from semigroup e”*

4

to e*7% when they are applied to Ae™¥e .

Lemma 5.4.7 There is a constant C > 0 such that for all T > 0 and all A € H*
with o > %

sup eTﬁsA(X)einl . (€4T8§(A)(X>eiXa*1 < C’HAHaqbaa
XeR

where ¢. is defined in (5.14).

Proof. We write ' A(sx)e'® as a convolution with the Green’s function of £,
as in (5.20),

etﬁA(sa:)e” = L eik(m_y)e_t’\kA(sy)eiydydk

eik(ax—y)e—t)\ek+1A(y)dy dk - eix’

= %/ ei(k_l)(x_y)e_t)"“A(ey)dy dk - e™®
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where we used the substitution y = ey and k = ¢! (k — 1). Hence,
TEAX )N = / / MEa) = TERT2® A (y)dy dk - €. (5.21)

Analogously, we can write (¢*7% A)(X) - eX<™" as

(64T8§(A)< sz_l B / / k(exz—y) —4Tk2A(y)dy dk - eix' (522)

Let
O — eTEEA(X>€iX5—1 _ (64T8§(A)(X> . eiX:—:—l.
Hence,
e = / / A zk (ex—y) |: T(ek?+2k)2 74Tk2i| dy dk - eiz
/ F(A T(ek>+2k)> 674Tk2} ek g1 . pit

Using Cauchy-Schwarz inequality, yields

O < cllalz [ wikja.

(e 9]

where

2
\Ij(k> - (1+}€2)a 6_8Tk2 |:€_T(€2k4+45k3) - ].:| .

In order to bound © it is sufficient to bound

/oo U(k)dk = /0 %81‘11(k)dk+ /01 U (k)dk

——1
—00 —
25

1 1

+/;O \If(k)dk+/§€ U (k) dk

-1
€ o)
2

= L+ I+ I3+ Iy,

where we consider all terms separately. For I}, we note that ek3(ek + 4) is non-
negative for all k& € [0, %5_1]. Thus, we can use the following inequality, which
follows directly from the intermediate value theorem:

le® — 1] < |z| max{1,e”}. (5.23)
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Hence,

L < / i e T [Tk (ck + 4)]° dk
0

1 1

2°¢ 2
< Ce? /0 e (Tk?)? 7% dk,
where we used (¢k + 4) < 5 for all k € [0, 2e~!]. Now, using the fact

sup {z"e *} < oo forall m >0, (5.24)
2>0

we get
—1 1 -1
I, < Ce? / z k—2dk < Ce? 4 Ce? / : K2 dk < Co?.
B 0 (L+k2)e — 1 -
Let us now turn to /5. Substituting £ = —Fk, yields
1,
I — /2 ;efBTl@ |:65Tk3(475k) _ 1} 2 dke.
0 (14 k%)
We note that ek*(4 — k) is non-negative for all k € [0, 3¢~ *]. Using (5.23), yields
1

25
I < / e o [45Tk;3 45”3] dk
0

1
2° k2 9 2
< g2 — (4TF? —ATE 1k
> ¢ /0 (1+k.2>a( ) € ,

To bound I5:

I3 C’/oo L [e‘T(akQH)Q + e_sTkQ] i dk

Ly 1+k2)a

EE

2a—1 1
< /1 1—|—k:2 dk§C5 for oo > 3.
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Analogously for I, :
I, <Ce* ' fora > 1.

Collecting all four results together, we obtain||©||2, < C|Al|2¢? . O

Let us now state a bound for the semigroup e”%<, when applied to B(X )ei*s ™' X,

The case n = +1 was treated in Lemma 5.4.7 before.

Lemma 5.4.8 Letn € Z~ {+1} and o > 3. There are two constants C > 0 and
cn > 0, depending on n, such that, for T > 0 and B € H?,

L 2 _
sup |7 B(X)eine IX] < C|B|f {e=e= T 4 21}, (5.25)

XeR

Proof. Writing e“ B(ex)e™* as a convolution with the Green’s function of £

as in Lemma 5.4.7
etﬁB(sx)emz = / / ey e t’\kB(sy)emydydk
- / / ei(k—n)(z—y)e—t)\kB(gy)dydk . eina:

— / / k(ex—y) —t>\5k+nB(y)dydk . et

where we used the substitution y = ey and k = ¢ '(k — n). Hence, using the
definition of \; and X = ex, we obtain

TLeB(X ine” / / k(X—y) —t[l (ek+n)?] B( )dydk? 6 lX'

Taking the absolute value |-| on both sides and using Cauchy-Schwarz inequality,
yields

o1y |? 1 212
TL. ine”tX 2 —2t[1—(ek+n)?]
e ( )6 — H ||a/_ (1 k?)ae ( )

Now, we want to bound the integral in (5.26)

0 2—15 0 0 1
O(k)dk < O(k)dk O(k)dk + 2 ———dk
[ awars [T e [ awao [Tt

1
"=ty

with
e 2™ and  q(k) = [1 — (ek + n)??

114



Ch.5 Modulation Equation for Stochastic Swift-Hohenberg equation

Now, let us bound ¢ (k) on [0, =5-]. We consider several cases depending on n and
k.
First case n = 0 and k € [—5, 5-]. In this case as |k < o

9

k)=[1-¢k > —.

o) = 1 K > 2

Second case n > 2and k € [0, -], (orn < —2and k € [52,0]) . In this case as

ek >0 N
gk) = [n+ 1+ ekPln— 1+ ek > [n+ 12— 1> = (n? —1)*.

Third case n > 2 and k € [51,0], (orn < —2and k € [0, 5-]). In this case as

2e
e 11
qk)=[n—1—ckP*[n+1—ck]* > 1—6[n 1+ 5]2

We deduce from the previous three cases that

1
q(k) > 56 > 0.

1

o 2 1 & 1
O(k)dk < 2 -— _C"tdk+2/ —dk
[ < 2 [T e L v e

. -
2e cnt ———dk+2 k—2“dk
‘ /0 TN /

<
< Ce ot 4 O, (5.27)
Plugging (5.27) into (5.26), yields (5.25). O

5.5 General Bounds on Z.

In this section, we prove Lemmas 5.3.1 and 5.3.2.
Proof of Lemma 5.3.1. See the first part of the proof of Lemma 3.4.2 with
A = 1. O
Proof of Lemma 5.3.2. First, we note from Lemma 5.2.2 that

E sup [Y(T,9)|) =E sup [[e” 4y(s)|] < CE sup [ly|> < Ce™".
s€[0,Tp) 5€[0,T0] [0,T0)
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Applying It6 formula to Y Z2 yields

d(YZ22) = 22dY +2Y 2.d2. + Y (d2.)"
= GZ%s — 272V Z2ds + 20 Z.Y dB + e 20%Y ds.

d(YZ2) = AT=9% G () Z2ds — 2e72Y Z2ds + 26 10 Z.df + ¢ 20%Y ds.

Integrating from 0 to 7', taking || - |2, norms, and using triangle inequality, yields

T T
H / Y{Z? - %}ds“p < e HYZEZHZO + ce® / 64(T_S)8§G(S)ZfdsHp
0 oo 0 oo

p

+ceP

/0 ' Y Z.d3(s)|

o0

p
< O P sup | Z P + cef
[0>T0]

/0 Y (T, s)2.df(s)

[e.9]

Taking expectation after supremum on both sides, we obtain

E sup
[OvTU}

T ~ p
/ Y (T, s)Z.d3(s)
0 o0
(5.28)
In order to obtain (5.11), let us bound the last term on the right hand side of (5.28).
Using Sobolev embedding from Lemma 5.2.3, yields

T 2
/ Y{ZZ-2Z }ds

0

P
< O Pr=2m0 1 PR sup
o0 [OvTO]

p
< E sup
0 [0,T0]

p

E sup /0 Y(T,s)2.(s)dB(s)

[OvTO]

/0 Y (T, 5)2.(s)d3(s)

07

By a variant Burkholder-Davis-Gundy theorem (see, Theorem 1.2.5 in [32] or the
paper of Hausenblas and Seidler [21]), we obtain for p > 2

p

/OT TR = CE( /OTO ly(s)2-(s)|2 d8> ’

E sup
[OaTO]

fo 2 2 \%
< cB( [ 126 Iyt ds)
0
< (CegmPrno,

O

As a final result in this section, we prove an averaging result for a mild formu-
lation of (GL).
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Lemma 5.5.1 If A is a solution of (GL) with supjy 7,1 | Alla < C, then

T
/ TR A(s){ 22(s) — G Yds = O(17*), (529)
0
for any ko > 0.

Proof. Define for s € [0, T
Y (T, s) = *T=9)% A(s),

with
dY = (—40%)e*T=9% A(s)ds + e*T9% dA.

Using (G'L), we obtain
dYy = T—9)% (v —20%)A = 3|APA] ds = AT=9% G (s)ds.
Using Lemmas 5.2.3, 5.2.2 and 5.2.4, we derive

1G]l < ClIGIl, < CllAlla+ ClIAJ.

Thus
sup |G|, < C.
[07T0]
Now applying Lemma 5.3.2, yields (5.29). O

5.6 Main Results

In this section, we give the proof of the main result.

Definition 5.6.1 Define the residual p(T') as

T
p(T) = wa(T) — e 2w, (0) — / e(T=9)ke [V(wA + Z.) — (wa + ZE)S} ds,
" (5.30)
where w 4 is defined in (5.12).
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Lemma 5.6.2 If sup, 11 |All, < C for o > 4, then for all p > 1 there is a
constant C' > 0 such that

E sup |[|p(T)|5, < Ce™?Progp, (5.31)
Te[0,T0)

where ¢. is defined in (5.14).

Proof. From (5.12), we obtain

T
p(T) = A(T)e™ +c.c. — eTLSA(O)e” +c.c. — / e(T_S)ﬁey(Ae”” + c.c.)ds
0

T T
+/ e(T_S)LE (Aewz +ece + Z€)3d8 _ I// G(T_S)LEZSdS.
0 0

T
p(T) = A(T)e™ — e = A(0)e™ — / eT=9)Le(yA — 3AZ2 — 3|A|* A)eds
0
T A T A
+/ e(T—s),CEASe?)wdS + 3/ 6(T—S)LEA2Z€62wdS
0 0
T .
—1—3/ eT=9L | A]? Z.e*2ds + c.c.
0

T T
—1// e_(T_S)LEZEds—i-/ eIk 235
0 0

Using Lemma 5.4.7, we obtain

T
p(T) = [A(T)—e”‘Ta?(A(O)— / HI=99% (A — 3AZ2 — 3| Al A)ds| &
0

T T
+ e(T=9)L A3 g 4 3/ e(T=9)L A2 Z %2 g
0 0

T

+3 e
0

T
+/ e T Z3ds + O(e3g,).
0

(T—s)Le

T
A|2 Z.e*ds + c.c. — u/ e T=9) Z (s
0

From (GL) we have

T , 1 ‘ T ‘
p(T) = {3/ 64(T—s)d§<A(Z€2 _ 502)d8] 6z$+/ e(T—s)EgA?)eSm’dS
0 0

T T
+3/ e(T=9)= A2 Z %7 4 3/ e(T=s)ke ]A|2Zaemds
0 0
+c.c. + O(e70g,).
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Taking the norm ||-||”_ on both sides and using Lemma 5.4.8 in order to obtain

1 p

T
/ AMT=9)0% A(22 - 502)d3
0

+C (4o ) (|40 + 2 4218 + 120 1)
+C€_3””0¢§.

ol < 0]

o0

Taking expectation after supremum and using the bound on Z. from Lemma 5.3.1,
the fact H® is a Banach Algebra from Lemma 5.2.4 and averaging result for a mild
formulation from Lemma 5.5.1, yields (5.31). O

Definition 5.6.3 Define the set 2y C €1 such that all these estimates

sup |Z.(T)| <e™ ", (5.32)
TE[O,To}
To o2
{l2.] = S }dr| <&'=, (5.33)
0
and
sup [[p(T)|,, <& 0.,
T€[0,To]
hold on .

Corollary 5.6.4 For all p > 0 there exist a constant C,, such that on ()
P(2) > 1 — Cpe? forall =€ (0,1). (5.34)
Proof. We note that

To 2
P(Qo) > 1— IED( sup |Z€<T)’ > 8*/{0) . P( {|Z€‘2 . U—}dT > 6173,@0)
[OvTO] 0 2

—P(sup [p(T)| > e*¢,).
[OzTO]

Using Chebychev’s inequality

P(0) > 1 — ™ E sup | Z.|" — "¢ 7E sup |pl|2,
0T 0.7

To o2
—ermg( | (|2 - Ty
0
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From Lemmas 5.3.1,5.3.2 and 5.6.2, we obtain

P(Qg) > 1 — C ™70 — C e,
For sufficiently large ¢, we obtain

P() > 1 —Cpe? forall p> 0.

O

Finally, we use the results previously obtained to prove the main result of
Theorem 5.3.3 for the approximation of the solution of the SPDE (SH.).
Proof of Theorem 5.3.3. Define

R(T) = w(T) —wa(T) — Z.(T). (5.35)
Integrating (S H.) from 0 to 7', we obtain
T T
u(T) = eTﬁEu(O)—I—I// e(T_S)LEu(s)ds—/ e T=9)Eeqy(5)3ds+ Z.(T). (5.36)
0 0

Substituting from (5.35) into (5.36), we obtain

T T
R(T) = e R(0) + l// eT=9)5 Rds — 3/ eT=9)k z_R%ds
T " T ’ T
- 3/ e T'=9)L= 22 Rds —/ eT=9L R3ds — 3/ eT=9L=? Rds
0 0 0
T T
- 6/ eI =)y Z. Rds — 3/ eT=9)Cp, R%ds + p(T),
0 0

where the residual p(7") is defined in (5.30). Taking the norm ||-||, on both sides
and using Corollary 5.4.6, yields on €2

T

T
|W@M¢gwmwu+céHmuw+cl|amm;w
T T T
v [ |2 IRl cdsvc [ RILds+C [ 12 |R] ds
0 0 0

T
+ C/ IR||%, ds 4 Ce™*0gp, .
0
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where we used |Jwal|, < C. Aslongas ||R(T)||, < De™*"¢., we obtain
IR(T)|l < (Ce™d+ C)e™ g,

T
+ O+ Deig, + | 22| + D% o2 + | 2] / |R|.. ds
0
—4ko 3 —4ko 1 2 2 _—8kg 12 T
S CV15 ¢5+C[§ +D5 ¢a+ 5 ‘Zay +D € ¢5] ||RHoodS
0

T
1
<Cie .+ [ (Cat 3CIZ IR ds
0
where C = Ce"od + C and

3 3
O[5 + D™, + D02 < Cl2+ SD%067] = Co.

Note that by Assumption on kg, we can choose C5 independent of D, provided

e > 0 1s sufficiently small. Using Gronwall’s inequality, we obtain

T T
IRDl < Cieoli+ [ [Cot3CIZ Iexnl | (Co+ SCIZ.Fldryas

To To
< q{mmﬂ+/ﬁKb+¥H&ﬁaﬁai+§2/]&fwwﬂ
0 0
Taking the supremum over [0, 7] yields

sup ||R(T) oo < Cre ¢ [1+Cy] on Qq, (5.37)

T€[0,T.]

where we used (see (5.33))
To 2 ~
/ |Z|%dr < g7 4 STy <C onfY (5.38)
0
and defined L
ég = (CQT() + %Cé)e(CQTO+§CC) .
Now fix D > C[1 + Cy]. Hence, (5.37) shows that

sup ||R(T)|o < Derog, .
T€[0,13]

Hence, T, = T} and finally
sup  ||U(t, 2) — ewa(e’,ex) —eZ.(*)|| . < € sup [|[R(T)|
t€[0,6~2Tp) o T€[0,To)
< Ce'Mog,.
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Thus,

]P’{ sup  ||U(t,z) — ewa(e’t,ex) — 535(6275)“00 > 051_4“0@} < 1-P(Qp).
t€[0,5_2T0]

Using (5.34), yields (5.13). O
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