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ABSTRACT
Starting with a novel audio analysis and editing paradigm,
a set of new and adaptive audio analysis and editing algo-
rithms in the spectrogram are developed and integrated into
a smart visual audio editing tool in a “what you see is what
you hear” style. At the core of our algorithms and meth-
ods is a very flexible audio spectrogram that goes beyond
FFT and Wavelets and supports manipulating a signal at
any chosen time-frequency resolution: the Gabor analysis
and synthesis. It gives maximum accuracy of the represen-
tation, is fully invertible, and enables resolution zooming.
Simple audio objects are localized in time and frequency.
They can easily be identified visually and selected by sim-
ple geometric selection masks such as rectangles, combs and
polygons. For many audio objects, however the structures in
the spectrogram are rather complex. Therefore, we present
several intelligent and adaptive mask selection approaches.
They are based on audio fingerprinting and visual pattern
matching algorithms. Spectrograms of individually recorded
sounds under controlled conditions or interactively selected
in the current spectrogram can be regarded as visual and
sophisticated templates. In this paper we discuss how to
generate templates, how to find the best match out of a
database of templates and how to adapt the match to the
sound which we want to edit.

1. INTRODUCTION
Hearing, analyzing and evaluating sounds is possible for

everyone. The reference-sensor for audio, the human ear, is
of amazing capabilities and high quality. In contrast editing
and synthesizing audio is an indirect and non-intuitive task
needing great expertise. It is normally performed by experts
using specialized tools for audio-effects such as a low-pass
filter or a reverb. This situation is depicted in figure 1: A
user can edit a given sound by sending it through an audio-
effect (1). The input (2) and the output (3) are evaluated
acoustically and sometimes but rarely also with a spectro-
gram (4,5). The audio-effects can only be controlled via

some dedicated parameters (6) and therefore allow editing
on a very abstract and crude level. In order to generate best
results with this technique it is state of the art to record ev-
ery sound separately on a different track under clean studio
conditions. The effects can now be applied to each channel
separately. More direct audio editing is desirable, but not
yet possible.

Figure 1: Classical situation in audio editing: A
sound is sent through an audio-effect (1). The in-
put (2) and the output (3) are evaluated acoustically
and sometimes visually (4,5). The audio-effects are
controlled via some dedicated parameters (6).

Figure 2: Editing with Audio Brush: The spectro-
gram of a sound is edited directly. The result can
be evaluated either visually or acoustically.

The goal of Visual Audio is to lower these limitations
by providing a means to directly and visually edit audio
spectrograms, out of which high quality audio can be repro-
duced. Figure 2 shows the new approach: A user can edit



the spectrogram of a sound directly. The result can be eval-
uated either visually or acoustically, resulting in a shorter
closed loop for editing and evaluating. This has several ad-
vantages:

1. A spectrogram is a very good representation of an
audio-signal. Often speech-experts are able to read
text out of speech-spectrograms. In our approach, the
spectrogram is used as a representation of both, the
original and the recreated audio-signal, which both can
be represented visually and acoustically. It therefore
narrows the gap between hearing and editing audio.

2. Audio is transient. It is emitted by a source through
a dynamic process, travels through the air and is re-
ceived by the human ear. It cannot be frozen for inves-
tigation at a given point in time and a given frequency
band. This limitation is overcome by representing the
audio signal as a spectrogram. The spectrogram can
be studied in detail and edited appropriately before
transforming it back into the transient audio domain.

Audio Brush allows to edit the spectrogram of a sound,
which we call imaged sound, directly in the visual domain
similar to editing bitmaps – a well understood paradigm as
documented by standard software packages such as Adobe
PhotoshopTM. Audio events are selected and modified with
simple geometric masks. In order to assist the user in this
process, we introduce a new paradigm in visual audio edit-
ing: Editing through the use of audio objects. Therefore
sounds recorded beforehand under defined conditions are
taken as audio objects and are stored in a database. They
can be used to select and crop audio objects in the audio
track. Once the audio objects are selected and separated,
the audio track can be edited similar to a MIDI-track, some-
thing that is completely impossible in the time signal. We
will report our approach and findings in this paper. Figure
3 shows a screenshot of our Audio Brush implementation of
Visual Audio Editing.

Figure 3: Screenshot of our implementation of Vi-
sual Audio Editing.

1.1 Related work
An approach of editing audio in the spectrogram has al-

ready been presented earlier. One implementation is Au-
diosculpt from IRCAM1 followed by Ceres, Ceres2 and last
by Ceres32, which are designed for musicians to create ex-
perimental sounds and also for education. Recently the soft-
ware reNOVAtor3 appeared. It is intended to clean a studio
or live recording from short noise signals and needs an au-
dio engineering expert as user. They all have in common,
that they work as FFT/IFFT analysis/resynthesis packages,
which allow editing the short time Fourier transformation
spectrogram of an audio signal. The user has to choose sev-
eral parameters for transformation and reconstruction, e.g.
the window shape itself, but is restricted to very few fixed
window lengths.

Another approach is reported by Horn [13]. Is is based
on auditory spectrograms, which model the spectral-trans-
formation of the ear and is dedicated to speech, i.e. only
for a small bandwidth. The transformation has no tun-
able parameters. The spectrogram is first abstracted to the
so called part-tone-time-pattern and then edited and recon-
structed.

There are two main differences of the earlier approaches
compared to Audio Brush as we present it here: Firstly
we use the Gabor transformation with a Gaussian window
(see [11]). This transformation is optimal in terms of time-
frequency resolution according to the Heisenberg uncertainty
principle as well as in reconstruction quality. The uncer-
tainty principle allows choosing the ratio of time to frequency-
resolution. Therefore the user is allowed to choose this him-
self continuously and as only transformation parameter. In
the following we refer to it as resolution zooming opera-
tion. Secondly, as imaged sounds are more or less complex
structures, we introduce techniques for smart user assisted
editing by the usage of template sounds. This helps to struc-
ture and handle imaged sounds, as they can be accessed as
composition of audio objects very similarly to the events in
a MIDI-track.

1.2 Outline
The paper is organized as follows: In Section 2 we sum-

marize the design and general implementation issues of the
Gabor transformation we use for generating the spectro-
grams. In section 3 it is described how imaged sounds can
be edited manually through the use of simple geometric se-
lection masks such as rectangles, combs and polygons. In
section 4 we introduce visual audio editing based with audio
objects. Section 5 concludes with a short summary of the
main aspects.

2. FROM AUDIO TO VISUAL AUDIO AND
BACK AGAIN

An audio signal is in general given in the 1D time-domain.
In order to edit it visually, a 2D representation is necessary,
which gives the user descriptive information about the sig-
nal and out of which the original or edited signal can be
reconstructed. In this section we briefly discuss how to con-
vert an audio signal into the image domain and back into

1www.ircam.fr
2music.columbia.edu/~stanko/About_Ceres3.html
3www.algorithmix.com/en/renovator.htm



the time domain. A spectrogram is used as image domain.
It is calculated with a Gabor transformation (see [11], [9]
and [10]) using a Gaussian window. The Gabor transfor-
mation allows for perfect localization in time and frequency
according to the absolute bound expressed by the Heisen-
berg uncertainty principle. We use the terms sound image
and imaged sound to denote the spectrogram of an audio sig-
nal. It shows the magnitude of the audio signal. We choose
one of multiple windows, to find the best matching time-
frequency resolution for a given task. All details regarding
the transformation and the spectrogram can be found in [3]
and [2].

2.1 Fundamentals of the Gabor transforma-
tion

The Gabor transformation splits up a time function x(t)
in its time-frequency representation X(t, f). As windowing
function the Gaussian is used, which is given as: g(t) =
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A Gabor system gna,mb(t) is derived by time shift a and
frequency shift b:

gna,mb(t) = e2πjmbtg(t− na), n, m ∈ Z, a, b ∈ R, (1)

a and b are called the lattice constants.
The Gabor transformation is defined as follows:

cnm = X(na, mb) =

+∞Z
−∞

x(t)g∗na,mb(t) dt. (2)

The inverse transformation (reconstruction, Gabor expan-
sion) is given as:

x(t) =
1

L

∞X
n=−∞

∞X
m=−∞

cnmgna,mb(t). (3)

Details for the exact formulas: To ensure perfect re-
construction, the time frequency plane has to be oversam-
pled. We therefore distinguish the critical sampled case
acritbcrit = 1 from the oversampled case aoverbover = 1

5
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. The formulas (2) and (3) are

for a continuous representation of x(t) and calculate sums
and integrals over infinity. For implementation they have to
be discretized and the sums and integrals have to be trun-
cated. The following definitions are needed: fs sampling
frequency. M = d 1

2
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length, D decline of the Gaussian window from the maxi-
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and N = tcutfs, N ∈ N. The Gabor transformation can
then be implemented as:

cnm = X(na, mb) =
1

L

N−1X
k=−N

x(kT )g∗na,mb(kT ) (4)

with its inverse:

x(kT ) =
1
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d kT+tcut
a

eX
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c
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where L =
q

q
PN−1

k=−N |g(ka)|2 and m ∈ [0, M − 1].

2.2 Resolution zooming
All time-frequency transformations are limited in their

time-frequency resolution by the Heisenberg uncertainty prin-
ciple, which says that the product of temporal resolution
and frequency resolution has a total lower limit. The hu-
man ear itself has a time-frequency resolution, which closely
reaches this limit and adapts its current time-frequency res-
olution to the current content of the signal in accordance to
the Heisenberg uncertainty principle (see [1]). It is there-
fore advantageous also to adapt the resolution of the Gabor
transformation to the current editing task. We refer to this
operation as resolution zooming.

The time-frequency resolution is the only user relevant pa-
rameter regarding the generation of the spectrogram in Au-
dio Brush. It is performed by choosing an adapted window
length, which is equivalent to choosing the frequency shift
bcrit, resulting in a time shift acrit = 1

bcrit
or vice versa.

Different choices reveal different characteristics of the sig-
nal. The properties of the 3D-space with the axes t, f and
bcrit are clarified by the extremes of bcrit:

bcrit →∞: The window g(t) becomes the Dirac impulse and
the Gabor transformation becomes the time signal it-
self.

bcrit = 0: The window becomes g(t) = const. losing its win-
dowing properties and the Gabor transformation be-
comes the Fourier transformation.

Time-frequency resolution zooming allows increasing the res-
olution either in time or in frequency, while decreasing the
resolution of the other domain.

Remark: Another conclusion of this discussion is that in
contrast to images, the two axis time and frequency are not
equivalent. A rotation of an image or of a region will lead
to rather undesirable results and must be avoided.

2.3 Fast computation
To achieve acceptable performance, the FFT (Fast Fourier

Transform) can be used as an underlying technique to speed
up the computation of the Gabor transformation. As the
FFT exists only for some rare dedicated window lengths,
this would restrict the possible time-frequency resolutions.
In [2] we propose a solution of extending the FFT to ar-
bitrary window lengths by introducing some computational
overhead.

2.4 Visualization
The transformation-data is represented as complex num-

bers with real and imaginary 32 bit float values. These num-
bers cannot be visualized directly. Instead of complex num-
bers the magnitude values are used. They are then com-
pressed and quantized to 8 bit unsigned integer values by
calculating the square root of the values and scaling them
(per image), to fit in 8 bit, while using the complete number
range.

However, all processing tasks are performed on the trans-
formation data, while the visualization is constantly up-
dated. If a processing task is performed on the magnitude
values only the phases are stored unchanged for the inverse
transformation.



3. MANUAL AUDIO BRUSHING WITH GE-
OMETRIC SELECTION MASKS

We now describe how imaged sounds can be edited with
geometric selection masks. It is performed similar to bitmap
editing. Figure 4 gives an overview over the several stages
of editing. A time signal (1) is transformed (2) into one of a
manifold of time-frequency representations (3). One repre-
sentation is chosen (4) and edited with help of a geometric
selection mask (5). By inverse transformation (6) an edited
time signal (7) is reproduced. By the appropriate choice of
one of the manifold time-frequency representations, which
refer to higher time or higher frequency resolution, it is pos-
sible to edit with high accuracy in time and frequency. If
necessary, the process is repeated (8).

Figure 4: Overview of the several stages of editing:
a time signal (1) is transformed (2) into one of a
manifold of time-frequency representations (3). One
representation is chosen (4) and edited with help of
a geometric mask (5). By inverse transformation (6)
an edited time signal (7) is recreated. If necessary,
the process is repeated (8).

These techniques allow performing tasks, which are either
very complicated or even impossible with classical filtering
techniques. Bitmap editing operations serve as a basis for
developing and understanding of content based audio ma-
nipulation techniques. Our tool also allows listening to se-
lected regions of an imaged sound. This can be used to
provide an instant feedback for the performed sound manip-
ulations and thus serves as a perfect evaluation tool for the
achieved sound quality.

3.1 Choosing a time-frequency resolution
The first task in editing is to zoom to the right time-

frequency resolution. The right resolution allows to select
a given sound very accurately. This will be illustrated with
three prototypical sounds. Figure 5 shows the imaged sound
of music with three instruments: guitar, keyboard and drums.
The time-frequency resolution is set to bcrit = 52.41Hz. The
sound of a cymbal is marked with a rectangle. Because of
the chosen time-frequency resolution the cymbal-sound can
be found very compactly in the spectrogram. The sound of
the keyboard is represented very poorly (long gray horizon-
tal parts at the bottom of the spectrogram). For the guitar,
it is a good compromise (short dark black lines at the bot-

tom, grouped in three groups, with many repetitions of the
higher harmonics). For sounds with other characteristics

Figure 5: Music with three instruments: guitar,
keyboard and drums. Time-frequency resolution:
bcrit = 52.41Hz. The sound of a cymbal is marked
with a rectangle.

different time-frequency resolutions have to be chosen. Fig-
ure 6 shows the imaged sound of clicks of a ball-pen with a
time-frequency resolution set to bcrit = 196.53Hz, i.e. with
a higher time resolution. This sound has mainly transient
components and is strongly localized in time as can be seen
clearly in the spectrogram.

Figure 6: Clicks of a ball-pen. Time-frequency res-
olution: bcrit = 196.53Hz. This sound has mainly
transient components with very temporal character-
istics.

A third example illustrates that changing the time-fre-
quency resolution not only changes the visualization, but
also more clearly reveals or hides important information.
See figure 7, which shows the sound of a piano playing a
C-major scale, each note separately. The imaged sound
is represented in three different time-frequency resolutions:
bcrit = 10.65Hz, bcrit = 49.13Hz and bcrit = 196.53Hz.
For bcrit = 10.65Hz it is easy to identify the fundamental
frequency and the higher harmonics of each note. It is even
possible to verify that a major scale and not a minor scale
was played. By following the stairs of the first harmonic of
each note, one can clearly see that the semitones are between
III, IV and VII, VIII. For bcrit = 49.13Hz the spectral struc-
ture of each tone can still be identified, but less accurate.
The temporal decay of each harmonic can now be perceived
separately. For bcrit = 196.53Hz the temporal structure,
how fast the notes were played, is emphasized, while the
spectral structure is nearly completely smeared.



Figure 7: Sound of a piano playing a C-major scale,
each note separately. Time-frequency resolutions:
1. bcrit = 10.65Hz, 2. bcrit = 49.13Hz and 3. bcrit =
196.53Hz.

Zooming to a higher resolution on one axis reduces the
resolution on the opposite axis. If the right time-frequency
resolution is chosen, the sound qualities of interest are sepa-
rated and can be selected separately. The original sound can
be reconstructed from an imaged sound at any given time-
frequency resolution. The combined time-frequency resolu-
tion is always at the total optimum. Time-frequency resolu-
tion zooming is therefore a strong feature of Visual Audio.

3.2 Selection masks
Once you have selected a time-frequency resolution, the

mask defining the sound pieces you want to edit must be
constructed. In order to pick up different kinds of sounds,
masks are necessary, which represent common structures of
sounds. The better the mask matches a sound, the easier it
is to select.

This already works with simple masks because of two rea-
sons: Firstly, similar physical generation mechanisms of dif-
ferent sounds of the same class have roughly the same shape.
Secondly, the ear is robust to small degenerations in sound
quality due to experience (recall the bad sound quality of a
telephone compared to original speech) and due to masking
effects (see [15]) near the edge of a selecting mask.

We review some sensible selecting masks with correspond-
ing sound examples:

• rectangle masks

• comb masks

• polygon masks

• combination masks

Rectangle mask: Figure 5 already contained an exam-
ple of a rectangle mask. In this case the sound of a cymbal
is such localized in the spectrogram (bcrit = 52.41Hz), that
it can easily be isolated by a rectangle. This can be verified
by listening to the outer or the inner part of the rectangle
only.

The rectangle mask furthermore exists in two extreme
shapes. One is useful in order to select sounds with very
temporal characteristics, the other is useful for sounds with
strong tonal character. Figure 8 shows an example of a click

Figure 8: Rectangle mask for the two extreme
shapes. Top (bcrit = 196.53Hz): Click of a ball-pen,
rectangle mask with strong temporal characteris-
tics. Bottom (bcrit = 65.51Hz): whistling, with strong
tonal character.

of a ball-pen (top) and an example of a whistling sound
(bottom).

Comb masks: In contrast to the whistling sound, most
tonal sounds not only incorporate the fundamental frequency,
but also higher harmonics. This leads us to the comb masks.
Figure 9 (bcrit = 11.46Hz) again shows the sound of a piano
playing a C-major scale, each note separately (left). The in
this case useful mask is called comb mask. As in this case
a sound with a prominent pitch always generates a regu-
lar structure of higher harmonics which in its regularity is
similar to a comb. A comb mask is defined by the following
parameters: a function which describes the developing of the
frequency of the highest harmonic, the number of harmonics
and the bandwidth of every single harmonic. Figure 9 shows
the spectrogram of a short piano piece (bcrit = 11.46Hz),
which is of course polyphonic (right). The comb structure
of each single note is nevertheless preserved. A single note
can be selected and separated from the rest, because of its
distinct structure, as it is illustrated in the spectrogram.

Polygon masks: The last mask we want to explain sim-
ply uses polygons. See figure 10 for an example. It shows
a speech signal with background noise (bcrit = 78.61Hz).



Figure 9: Sound of a piano, bcrit = 11.46Hz. Left:
C-major scale. Right: Short polyphonic piece.

Polygons allow to select such complex regions, while requir-
ing more elaborateness of the user. They can be used e.g.
to select structured and desired sounds between surrounding
broadband noise.

Combination masks: Sounds can be very complex in
the spectrogram. Thus it is possible to build up complex
masks out of repeatedly applied simple masks of the same
type or simple masks of different types.

3.3 Interaction
Once a sound of interest is selected with an appropriate

mask, it is possible to edit the imaged sound. There are
several useful possibilities.

Amplifying, stamping: The simplest editing is to mul-
tiply the magnitude values with a certain factor A. For
A = 0 the sound is erased or stamped out, for 0 < A < 1
the sound is damped in its level, for A = 1 it is unchanged
and for A > 1 the sound is amplified.

Equalization: If a factor A(f, t) as function of time and
frequency is used, the result is similar to a very complex
equalization process.

Cut, Copy&Paste: It is also possible to move the sound
in the spectrogram. If only the time position is changed, the
same sound is just moved or copied to another time instance.

Changing the pitch: If a sound is moved not only in
time, but also in frequency, the pitch of the sound is changed,
too.

Changing the shape: If the sound has harmonic com-
ponents, in this case it is necessary to stretch or compress
the sound in frequency direction, to preserve the harmonic
structure.

Evaluating: A very helpful mechanism of Visual Audio
is the playback of selected regions in the sound image. In
practice it is not trivial to choose the correct shape for a
mask for a given desired sound operation. The accuracy of
the shape can however easily be evaluated by simply listen-
ing to the parts inside and the parts outside the mask re-
spectively. By the presence or absence of a sound quality in
these two parts of the sound, it can be clearly distinguished
whether the shape of the mask has to be tuned further or

Figure 10: Imaged sound of speech with background
noise, bcrit = 78.61Hz. The polygon selects parts of
the speech signal, separating it from the surrounding
broadband noise.

whether it is already correct.

4. INTERACTIVE AUDIO BRUSHING WITH
AUDIO OBJECTS

The examples above show that sounds from individual
sound sources have distinctive shapes. Geometric masks can
be used to describe such shapes. For instance the spectro-
gram of the piano notes in figure 9 shows that most of the
sound energy is in the harmonics and can be selected with
a comb mask. However, there are also nonharmonic parts,
such as during the attack phase of every individual note. As
these parts are spread over the whole frequency range and
have no simple geometric structure, they cannot be handled
with the techniques presented in section 3.

In this section we therefore introduce a new selection par-
adigm of Visual Audio Editing based on audio objects. This
approach is a much more flexible. Audio objects can adapt
to very complex shapes, not to say to all kind of shapes,
if they only can be recorded individually. In order to edit
an audio track, matching audio objects are automatically
selected out of a database. If a matching sound object from
the database is found, it can be used as perfect matching
mask.

Overview: First we discuss the features of audio objects
in section 4.1. A sound recorded beforehand under defined
conditions is used as an audio object. A database of audio
objects serves as a toolbox for audio brushing.

Then matching audio objects have to be found in the
database. This is described in section 4.2. Detection has
to be performed resilient to typical variations in which au-
dio objects can be experienced. The detection system has



to be able to find not only exact matches, but also similar
sounds, as not all possible sounds can be in the database.

Last but not least the audio object found has to be made
fitting for the sound under consideration as described in sec-
tion 4.3. The adapted audio object can then be applied to
the sound track. See figure 11 for an overview of the proce-
dure.

Figure 11: Overview of the interactive audio brush-
ing with audio objects,

With this approach a track with a recording of an in-
strument can be handled nearly as flexible as if it were a
MIDI-file. Editing an individual note in a MIDI-file is a two
step procedure:

• Select the note.

• Adjust note number, velocity, beginning, length and
all other parameters as desired.

In Visual Audio editing one more step is necessary:

• Remove the sound by subtracting an adapted audio
object.

• Adjust pitch, volume, beginning, length and all other
parameters of the adapted audio object as desired.

• Reinsert the audio object into the audio track.

Like copy&paste in MIDI-files, even notes can be added to
an instrument track in Visual Audio editing:

• Find a note in the track, similar to the missing one.

• Adapt an audio object to the note.

• Adjust pitch, volume, beginning, length and all other
parameters of the audio object as desired.

• Place the adapted audio object into its target location.

4.1 Audio Objects
Reproducible sounds, which are well-structured, can be

treated as visual objects in the spectrogram. There they
are characterized by a distinctive visual pattern – a pattern
which looks similar even under typical variations such as
pitch shifts, different play rates, and recordings from differ-
ent microphones, different rooms, and playback devices. Ex-
amples could be individual notes played by an instrument,
the sound of a closing car door, the rattling of a single key
on a PC-keyboard or the click of a ball-pen, whose imaged

Figure 12: Example of a recording which can serve
as audio object: A short C2 played as an individual
note by a piano. bcrit = 49.13Hz.

sound we already discussed in figure 6 and figure 8. An-
other example is an individual note played by a piano. See
for instance figure 12.

Not all possible sounds can be in the database, but typical
sounds such as all common instruments. A General MIDI
sound generator could serve as an automatic source genera-
tor for such a database.

Instead of audio objects recorded beforehand, the audio
track itself can also serve as a template. If a recording was
interfered by some noise, the interfered part can be marked
and a similar but clean equivalent in the same recording can
be found. The match can then be handled exactly the same
way as a match from the database.

If the structure of a sound is stable over long times, even
long portions of a sound can serve as audio-objects. A typ-
ical example is a single track of an audio CD.

Recordings of audio objects can be stored in a database
of templates.

4.2 Audio object detection
This is the most crucial part of the system: the best

matching audio object has to be found automatically. If
this cannot be clearly decided, a short list of candidate au-
dio objects has to be generated. As the number of templates
increases, the flexible applicability of the system increases,
too. Meanwhile, the system becomes too complex to be han-
dled manually, because the user could not listen to all the
templates in order to find the best match. With the au-
dio object detection, this disadvantage becomes negligible.
The system finds the best matching audio object itself or
presents a short list of candidates. The main requirements
for the automatic detection of audio objects are:

• Recognition resilient to typical variations and distor-
tions.

• Finding similar audio objects, if exact matches are not
available.



• Stable recognition even in the presence of interfering
noise and other sounds.

• Fast detection even with a large database.

A brute force technique would be using the normalized
cross-correlation between the audio object and all possible
locations in the spectrogram. We derived our advanced al-
gorithm from an audio fingerprinting system. This leads to
a much more stable, flexible and faster algorithm. In this
section we describe the resulting algorithm.

4.2.1 Algorithm overview
In audio fingerprinting one wants to solve the following

problem: Given a database of clean recorded songs and a
live audio stream. Is one of the database songs played in the
live stream, and if yes, which one? As the conditions under
which the live stream is produced are unknown, the audio
fingerprinting algorithm has to be resilient to all kinds of
degradation of the audio signal, such as distortions or noise.

For our purpose we have chosen the audio fingerprinting
algorithm called “Distortion Discriminant Analysis” devel-
oped by Burges et al. (see [4] and [5]). This algorithm ex-
plicitly claims to recognize signals after several distortions.
Most audio fingerprinting algorithms rely somehow on few
heuristic or psychoacoustic features [6]. Distortion Discrim-
inant Analysis relies only on spectral features, which are
reduced in dimension, using the so called Oriented Princi-
pal Component Analysis [7], maximizing the robustness of
the information in the remaining coefficients.

The training data is provided in a clean version and the
following distorted versions:

• Bass cut at 500Hz.

• Compander effect.

• Two bandstop filters: from 400Hz to 3400Hz and from
750Hz to 1800Hz.

• Filter simulating a telephone transmission with a band-
pass from 200Hz to 3400Hz.

• Modified pitch, plus and minus 100 cent.

• Four different convolution effects with impulse responses,
one for a large hall, one echo and two for small rooms.

• MP3 compression and decompression.

The convolutive distortions were calculated directly, the MP3
compression was done with lame4. All the other distortions
were calculated with sox5.

The input feature vectors during training and recognition
are the complex coefficients of the Gabor transformation
(the modulated lapped transformation was used in the orig-
inal system). The Gabor transformation is calculated over
the whole frequency range and then the values from 0Hz
to 5kHz are passed on to the algorithm. Our algorithm is
designed, to be invertible, i.e. the fingerprints can be repro-
jected into a time signal. Therefore the following modifica-
tions were applied to the original system: All preprocessing
steps such as a psychoacoustic threshold are skipped. The

4lame.sourceforge.net
5sox.sourceforge.net

modulus of the input data is not taken. All calculations are
generalized from R to C, thus the phases are preserved.

The system involves three parts: training of the dimen-
sionality reduction, calculating the fingerprints of the audio
object database and matching fingerprints of the database
to fingerprints of the audio track.

In the following formulas vectors and matrices are printed
in boldface. The asterisk ∗ denotes conjugate complex x∗ of
a vector x and C∗ of a matrix C. All matrices and vectors
are complex. The only exception are the eigenvalues, which
are real.

4.2.2 Training of the dimensionality reduction
The dimensionality reduction is mainly a modified PCA

(principal component analysis). It explicitly trains robust-
ness to distortions. As input we use different audio files,
such as songs and audiobooks, as audio objects shall be rec-
ognized in all kinds of surrounding noise.

The whole system works in two stages. For training of
each stage two runs over the complete training data are nec-
essary. The input of the first stage are single feature vectors
of one time instance. The input of the second stage are the
combined output of several time instances of the first stage.
In each stage in the first run the eigenvalues and eigenvectors
are determined. The eigenvectors of the largest eigenvalues
represent the principal components of the data. Therefore
the dimensionality is reduced, by projecting the input fea-
ture vectors of length nin along the eigenvectors of the first
nout largest eigenvalues with nout < nin. The number of
eigenvectors used to calculate the compressed vectors deter-
mine how much information is preserved. In the second run
the projections of the input vectors along these eigenvectors
are normalized. The aim is to have zero mean along the
projections for the clean and distorted training data. Addi-
tionally variance of the noise vectors (difference of clean and
distorted training data) along that projection is normalized
to one.

First run: The first run over the training data is for
both stages performed as follows: A covariance matrix C
of the feature vectors x and a correlation matrix R of the
noise vectors zk is calculated. The noise vectors are defined
as difference between distorted versions x̃k of the feature
vector and the clean feature vector x: zk = x̃k −x, where k
marks one of N distortions. This gives:
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where N is the total number of distortions an m the total
number of clean input vectors. The following generalized
eigenvalue problem has to be solved:

Cn = λRn (8)

where n are the eigenvectors and λ are the eigenvalues. To
solve the generalized eigenvalue problem, the matrix R has
to be inverted. This is only possible if it has full rank, i.e.
all eigenvalues of R are different. As this is not always the
case, R has to be regularized before inverting. This can be
done by adding a small fraction of the largest eigenvalue of
R to its diagonal. The equation can then be solved with



linear algebra packages such as lapack6 together with blas7.
The matrices have some special properties. As covariance
respectively correlation matrices, they are positive semi def-
inite and also hermitian. The generalized eigenvalue prob-
lem has therefore real eigenvalues and complex eigenvectors.
The input vectors are then projected along the eigenvectors
of the largest eigenvalues.

Second run: In the second run the projections of the in-
put vectors along these eigenvectors are normalized to have
zero mean along the projections for the clean and distorted
training data and unit variance of the noise vectors. Let P
be the column-matrix of eigenvectors, i.e. P ∈ Cnin×nout .
The projection with reduced dimension of x along these
eigenvectors is then calculated as the product PT x. The
normalization vectors are then calculated as:
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4.2.3 Calculating the fingerprints
The output vector y of a single stage is calculated as:

y = (PT x− o)/s. (11)

Each fingerprint vector output by the second stage is as last
step normalized such that its L2-Norm is one. This compen-
sates for different playback levels of the input audio data.
The normalization factor is stored, in order to ensure con-
tinuity of the level of subsequent vectors. The fingerprints
of the audio objects are placed in the database. The finger-
prints of the audio track are computed on the fly.

4.2.4 Matching the fingerprints
The fingerprints of the database and of the audio track

have to be matched. The euclidean distance, i.e. the L2-
Norm of the difference is calculated. If the distance is under
a certain threshold, the audio object is a match.

As this procedure requires calculating all differences, this
is very time consuming. Goldstein et al. developed a fast
indexing scheme called “Redundant Bit Vectors” to speed
up the access, which also can be applied in our case (see
[14]).

Determining the length: To reduce the number of mis-
matches, the threshold for the euclidean distance has to be
chosen very low. As result a audio object matches only at
some time instances and not over its whole length. In the
surrounding of a match, the threshold can be increased, to
explore the exact length of the match. Beginning from the
initial match the subsequent fingerprint vectors of the audio
track and the audio object are explored in positive and neg-
ative time direction. If the euclidean distance is under the
increased threshold and so is the stored level normalization
factor, then the audio object is continued. If not, the audio
object is cut. Recall the template of a single piano note: if
the initial match is at the attack of the note (every note has

6www.netlib.org/lapack
7www.netlib.org/blas

an attack), the remaining length of the note can be deter-
mined. If the audio object from the database is longer than
the one from the audio track, it is just cut to the correct
length. As the main energy of the sound is emitted during
the attack and as the attack is critical for sound quality of
an instrument, this produces negligible artefacts.

4.3 Apply
At the last step, the template can be applied to the signal,

very similar to a mask from the preceding chapter. Possible
editing tasks are: correcting the volume level, applying a
selected equalization or deleting and afterward replacing the
audio object.

As templates never match the audio object from the au-
dio track exactly, they have to be adapted somehow. Several
differences are possible, which have to be more or less com-
pensated. At least the volume has to be adjusted, but also
the recordings were normally made with a different reverber-
ation or in a different room respectively. Perhaps only the
type of instrument was the same (e.g. guitar), but not the
instrument itself (a real wooden guitar and a MIDI-guitar-
sound). That is, the template has to be made fitting for the
sound.

For preprocessing the template, we present two alterna-
tives. The first abstracts the template to a mask. The
second estimates an adaptive filter, which corrects the fol-
lowing differences between the audio track (audio object +
other sounds) and the template (clean audio object): phase,
volume and spectral dissimilarities.

Abstracting to a mask: The first approach simply
“stamps” out the audio object, i.e. the magnitude values
are set to zero. This can be understood as generating a
complex shaped mask out of a audio object. All magnitude
values, which in the spectrogram of the audio object are
larger than a certain frequency dependent threshold value,
are declared to be inside the mask, the rest is outside the
mask (see figure 13).

Figure 13: Scheme for stamping a detected audio
object. Generating a template mask by applying a
threshold and stamping the mask out of the spec-
trogram.

Estimating an adaptive filter: In contrast to visual
objects, which are often nontransparent, audio objects are
always additive, i.e. they shine through the energy of an-
other audio object. The stamping approach, although at-
tractive because of its simplicity and analogy to the visual
domain, creates poorer results for increased overlapping of
objects in the time-frequency domain.

Another method is subtracting a template from the au-
dio track. As the template was recorded with a different
microphone and perhaps has a different level, it is first sent
through a linear adaptive filter in order to match the au-
dio object as well as possible before applying the difference.
Figure 14 shows the scheme for this approach. An adpative



Figure 14: Scheme for erasing a detected audio ob-
ject which is adapted beforehand with an adaptive
filter. A is a factor. A = −1: the audio object is
erased from the track. −1 < A < 0: the audio object
is damped. A = 0: nothing changed. A > 0: the
audio object is amplified.

filter is able to adapt phase, volume and spectral dissimi-
larities of the audio object to the signal. We use a simple
FIR-filter with an LMS-update rule (see [8] and [12]). See
figure 15 for the structure of the filter.

Figure 15: Structure of the adaptive filter. The
adapted audio object is substracted from the audio
track.

5. CONCLUSION
A new tool for audio editing has been presented: Audio

Brush. It allows editing audio in an intuitive and direct way.
It opens up the possibility to freeze audio, which is natu-
rally transient, and edit it in a static setting. This enables
many new possibilities in terms of accuracy and flexibility
not only in analyzing, but also in editing audio manually and
automatically. We presented manual editing and extended
it to smart user-assisted audio brushing techniques by in-
troducing the new paradigm of Visual Audio editing with
audio objects. Audio objects greatly enhance the flexibility
of achieving high quality editing results.

Possible further applications of the Audio Brush are: Im-
proving the live recording of an instrument: All notes are
deleted and replaced by a studio recorded version, e.g. to
correct the tune of the instrument. Future developments
could be to adopt image manipulation techniques, such as in-
painting, for reconstructing erased or damaged audio parts.
An interesting direction would be to develop techniques which
would learn audio objects out of audio data, even if they are
interfered by background noise.

Visual Audio will unfold its full power by combining clas-
sical techniques with presented techniques in one tool.
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