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AMPLITUDE EQUATION FOR THE GENERALIZED SWIFT
HOHENBERG EQUATION WITH NOISE

KONRAD KLEPEL, DIRK BLÖMKER, AND WAEL W. MOHAMMED

Abstract. We derive an amplitude equation for a stochastic partial differential
equation (SPDE) of Swift-Hohenberg type with a nonlinearity that is composed
of a stable cubic and an unstable quadratic term, under the assumption that
the noise acts only on the constant mode. Due to the natural separation of
timescales, solutions are approximated well by the slow modes. Nevertheless,
via the nonlinearity, the noise gets transmitted to those modes too, such that
multiplicative noise appears in the amplitude equation.

1. Introduction

The Swift Hohenberg equation is a model equation used to study pattern formation
in driven systems. It was originally derived in [SH77] as a qualitative description
of the convective instability in the Rayleigh Bernard model. Originally, it takes
the form

(1) ∂tu = ru− (1 +∇2)2u− u3 ,

where r ∈ R is the bifurcation parameter. At r = 0 is the change of stability that
corresponds to the convective instability. A variant is the so called generalized
Swift Hohenberg model with quadratic and cubic nonlinearity:

(2) ∂tu = ru− (1 +∇2)2u+ αu2 − u3,

where α > 0 is an additional parameter, measuring the strength of the quadratic
instability. Equation (2) is also derived, when a general nonlinearity is expanded
via Taylor’s formula. The dynamics of (2) was studied in [CH93], [HMBD95],
[BK06] and recently [BD12] among others. In these articles the usual approach of
amplitude equations is the derivation of a simplified model in the vicinity of the
change of stability at r = 0. To be more precise, both (1) and (2) are very well
approximated by

(3) u(t, x) ≈
√
|r| · A(|r|t) · eix +

√
|r| · A(|r|t) · e−ix.
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where the complex amplitude A(T ) of the dominant mode eix is the solution of

(4) ∂TA = rA+ 3(38
27
α2 − 1)|A|2A,

which is accordingly named amplitude equation (AE, for short) of (2).
For the deterministic Swift-Hohenberg equation on an unbounded domain solutions
are approximated via the Ginzburg-Landau PDE. For more results on the deter-
ministic Swift-Hohenberg equation, see for instance [KMS92], [CE90], [MSZ00]
and [Sch96].
It is the aim of this article to provide rigorous error estimates and to verify the
existence of an amplitude equation for (2). We also add noise constant in space.
This does not cover thermal noise, but only perturbations acting on the whole
system. This assumption is only for simplicity of presentation. Completely anal-
ogous, we could treat all kind of spatial noise not acting on the dominant modes
directly. If the additive noise acts on the dominant modes, then we need to change
scaling and consider smaller noise. See for example [BH04] or [Blö07]
Thus we consider the following stochastic generalized Swift Hohenberg equation:

(SH) ∂tu = νε2u− (1 + ∆)2u+ αu2 − u3 + εσ∂tβ,

where β(t) is a real valued standard Brownian motion. For simplicity of presenta-
tion we consider (SH) with periodic boundary conditions on [0, 2π] only. Here α,
σ and ν are real-valued constants. The small parameter ε > 0 relates the distance
from bifurcation to the noise strength. Of course different scalings are possible,
but then in the amplitude equation, either the noise or the linear term disappears.
We show that in our scaling, though the constant mode is non-dominant, the noise
appears also in the AE through coupling by the nonlinear terms. Additional terms
on the right-hand side are created, and the noise is multiplicative. To be more
precise, both (SH) is well approximated by

(5) u(t, x) ≈ εA(ε2t) · eix + εA(ε2t) · e−ix.
where the complex-valued amplitude A(T ) solves the Itô differential equation

(AE) dA = (νA+ 3(38
27
α2 − 1)A|A|2 + 3(α2 − 1

2
)σ2A)dT + 2ασAdβ̃ .

with β̃(T ) := εβ(ε−2T ) being a rescaled version of β(t). It is an interesting obser-
vation, that due to the quadratic nonlinearity both cubic and linear unstable terms
arise in the amplitude equation. This is significantly different to other quadratic
nonlinearities like Burgers, for example, where these terms are all stabilizing. See
[BHP07, BMNW11].
Our research was initiated originally by the observations of Axel Hutt and collab-
orators, who treated the case with α = 0. By numerical simulations and argu-
mentation based on formal application of center manifold theory they studied the
standard Swift Hohenberg equation with noise constant in space [HLSG07, Hut08,
HLSG08]. For a rigorous result in this direction see [BM12] on bounded domains
and [MBK12] on unbounded domains.
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The paper is organized as follows. Section 2 provides the setting of the problem,
while section 3 states the main result. In section 4 we collect all proofs.

2. Setting

We consider mild solutions of (SH) with values in the space C0 = C0
per([0, 2π]), i.e.

the space of 2π periodic continuous functions, defined by

Definition 1. A stochastic process u(t), t ∈ [0, T0] with continuous paths in C0

is a mild solution of (SH) if the following variation of constants formula holds in
C0 for all t ∈ [0, T0]:

u(t) = e−t(1+∂
2
x)

2

u(0) +

∫ t

0

e−(t−s)(1+∂
2
x)

2

[νε2u(s) + αu2(s)− u3(s)]ds

+ ε

∫ t

0

e−(t−s)(1+∂
2
x)

2

σdβ(s) ,

(6)

where e−t(1+∂
2
x)

2
is the semigroup created by the operator −(1 + ∂2x)

2 (cf. [Paz83]).

Using standard theory given in [DPZ92], it is straightforward to verify that such a
mild solution exists. This is, for example, done via Banach’s fixed-point theorem
for unique local solutions and energy estimates for global solutions.

Remark 2. The stochastic integral on the right-hand side of (6) can be simplified
to

Z(t) := εσ

∫ t

0

e−(t−s)(1+∂
2
x)

2

1dβ(s) = εσ

∫ t

0

e−(t−s)dβ(s),(7)

which is a simple real-valued Ornstein-Uhlenbeck process.

Our approximation result states the error in terms of the distance to the bifurcation
point (r = ν = 0) using big O notation modified for random variables. This is
defined by the following:

Definition 3. Let Xε with ε > 0 be a family of stochastic processes and f(ε) be a
function of ε. Then Xε is of order f(ε), which we abbreviate by

Xε = O(f(ε)),

if and only if for every p-th moment of Xε there is a constant Cp such that the
following is valid for all ε > 0:

E (|Xε|p) ≤ Cp|f(ε)|p.
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3. Main result

The main result is the following approximation theorem for the stochastic gener-
alized Swift Hohenberg equation (SH).

Theorem 4. Let T0 > 0 be a time of order 1, α ∈ R with α2 < 27
38

and 0 < κ < 1
17

.
Let u be a stochastic process with continuous paths in C0 that is a mild solution of
(SH) with ‖u(0)‖∞ = O(ε1−κ).
Furthermore, let A(T ), T ∈ [0, T0] be a stochastic process with continuous paths in
C that solves (AE) with

A(0) =
1

2π

∫ 2π

0

ε−1u(0, x)eixdx,

Then for all p ∈ N there is a constant Cp such that the following holds:

(8) P

(
sup

t∈[0,T0]
‖u(t)− uA(t)− εZε(ε2t)− e−t(1+∂

2
x)

2

us(0)‖∞ > ε2−19κ
)
≤ Cpε

p,

with the approximation

uA(t, x) = εA(ε2t)eix − εĀ(ε2t)e−ix

where Zε is the Ornstein-Uhlenbeck process defined by

(9) Zε(T ) := ε−1σ

∫ T

0

e−ε
−2(T−s)dβ̃(s).

Here we easily see that Zε(ε
2t) = Z(t) with Z defined in (7).

Remark 5. We see in (AE) surprising deterministic terms. The origin of these
lie in nonlinear interaction of the noise together with averaging results (see Lemma
11). There is a stabilizing linear term from the cubic term, that was already ob-
served in [Hut08]. The quadratic term leads to destabilizing terms both cubic and
linear. But if α is not too large, increasing the noise strength σ may lead to a
stabilization effect.

Remark 6. We assume in Theorem 4 that α2 < 27
38

. This means that the amplitude
equation (AE) has a stable cubic nonlinearity. Nevertheless as long as the solution
A(T ) to the AE stays small enough (for example |A(T )| ≤ ε−κ) our result still
holds for α2 ≥ 27

38
. The proof is basically the same except T0 is exchanged for the

stopping time τA = inf{t : |A(t)| ≥ ε−κ} ∧ T0. For simplicity of presentation, we
refrain from giving details here.

Remark 7. The interesting case α2 = 27
38

was studied in the deterministic case.
See for example [BD12], where an even more general case was treated. In this case
(AE) loses its cubic nonlinearity. Thus we can change the scaling and consider
larger solutions and, moreover, larger noise. Still a meaningful amplitude equation
is obtained but now with a quintic nonlinearity.
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Using the methods presented in this paper it is straightforward but lengthy to derive
the quintic amplitude equation also in the stochastic case. We refrain from giving
details here.

4. Proof of the main result

We start by rescaling u(t, x) to the slow time-scale by

v(T, x) := ε−1u(ε−2T, x) .

Its stochastic differential is given by

dv = (−ε−2(1 + ∂2x)
2v + νv + ε−1αv2 − v3)dT + ε−1σdβ̃ .

The mild formulation is:

v(T ) = e−Tε
−2(1+∂2x)

2

v(0) + Zε(T )

+

∫ T

0

e−(T−s)ε
−2(1+∂2x)

2

[νv(s) + ε−1αv2(s)− v3(s)]ds .
(10)

Here Zε is the fast Ornstein-Uhlenbeck process defined in (9). It is the solution of

(11) dZε = −ε−2ZεdT + σε−1dβ̃, Zε(0) = 0 .

Also we define the stopping time

(12) τ ∗ = inf {T > 0 : ‖v(T )‖∞ > ε−κ0} ∧ T0,
where κ0 is any small real value with κ0 > κ, which asserts that τ ∗ > 0 almost
surely. Later we fix κ0 = 9

8
κ. Expanding v(T, x) as a complex Fourier series yields

(13) v(T, x) =
∞∑

k=−∞

vk(T )eikx .

Define a splitting of the Fourier modes into the non-dominant modes

(14) vs(T, x) =
∑
|k|6=1

vk(T )eikx

and the dominant modes

(15) vc(T, x) = v(T, x)− vs(T, x) = v1(T )eix + c.c. .

Finally for technical reasons, we define

(16) v∞(T, x) =
∑
|k|≥3

[vk(T )− e−Tε−2(1−k2)2vk(0)] · eikx

For |k| ≥ 1 from the mild solution (10), each vk is given by

vk(T ) = e−ε
−2(1−k2)2Tvk(0)

+

∫ T

0

e−ε
−2(1−k2)2(T−s)

[
νvk(s) + ε−1α(v̂2)k(s)− (v̂3)k(s)

]
ds,

(17)
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where the hat indicates the discrete Fourier transform and the lower index k de-
notes its k-th mode.

4.1. Removing non-dominant modes. we show first that the non-dominant
modes (|k| 6= 1) can be approximated by the fast OU-process Zε. With a slight
abuse of the O-notation, our result states:

vs(T ) = e−Tε
−2(1+∂2x)

2

vs(0) + Zε(T ) +O(ε1−3κ0) .

Or, to be more precise:

Lemma 8. Under the assumptions of Theorem 4, with stopping time τ ∗ defined
by (12) and vk as in (13), the following statements are true:

sup
T∈[0,τ∗]

‖
∑
|k|≥2

[vk(T )− e−Tε−2(1−k2)2vk(0)] · eikx‖∞ = O(ε1−2κ0) ,(18)

sup
T∈[0,τ∗]

‖v0(T )− Zε(T )− e−Tε−2

v0(0)‖ = O(ε1−2κ0) .(19)

Proof. Since ‖v‖∞ ≤ ε−κ0 , it follows that for any k ∈ Z and n ∈ N

(20) |(v̂n)k| ≤
(∑
k∈Z

|(v̂n)k|2
)1/2

= ‖v̂n‖L2 = ‖vn‖L2 ≤
√

2π‖vn‖∞ ≤
√

2πε−nκ0 .

In combination with the simple inequality (for |k| 6= 1)∫ T

0

e−ε
−2(1−k2)2(T−s)ds ≤ (1− k2)−2ε2,

we can bound the right side of (17) by

(21)
∣∣∣vk(T )− e−Tε−2(1−k2)2vk(0)

∣∣∣ ≤ ε1−2κ0 · (1− k2)−2 · (2 + |ν|+ |α|).

Therefore with
∑
|k|≥2(1− k2)−2 ≤

∑∞
k=1 k

−2 = π2

6
we obtain (using κ0 < 1 for the

cubic term)∑
|k|≥2

∣∣∣vk(T )− e−Tε−2(1−k2)2vk(0)
∣∣∣ ≤ ε1−2κ0 · π

2

3
(2 + |ν|+ |α|),

which proves (18). Projecting the mild solution (6), the constant mode v0 has the
form

v0(T ) =e−ε
−2Tv0(0) + Zε(T )

+

∫ T

0

e−ε
−2(T−s)(νvk(s) + ε−1α(v̂2)0(s)− (v̂3)0(s))ds .

(22)

Thus with similar arguments as before, for all T < τ ∗ the left side of (19) is
bounded by ∣∣∣v0(T )− Zε(T )− e−ε−2Tv0(0)

∣∣∣ ≤ ε1−2κ0(2 + |ν|+ |α|).
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�

4.2. Rewriting the first Fourier-Mode. The next step is to show that the
dominant mode v1(T ) is well approximated by A(T ). For simplicity of presentation
let us define the following functions:

a(T ) := v1(T ), Φ(T ) := ε−1
(
v2(T )− e−9Tε−2

v2(0)
)
,

Ψ(T ) := ε−1
(
v0(T )− Zε(T )− e−Tε−2

v0(0)
)
.

Lemma 9. Under the assumptions of Lemma 8, the stochastic differential of a(T )
is given by

(23) da = (νa+ 3(38
27
α2 − 1)a|a|2 + 6(α2 − 1

2
)aZ2

ε )dT + 2ασadβ̃ + dR,

where R(t) is a stochastic processes with supt∈[0,τ∗] |R(t)| = O(ε1−8κ0).

Proof. In Lemma 8 in (20) and (21) we established:

sup
T∈[0,τ∗]

|v1(T )| ≤ ε−κ0(24)

sup
T∈[0,τ∗]

(
sup
|k|≥2
|vk(T )− e−ε−2(1−k2)2vk(0)|

)
= O(ε1−2κ0).(25)

This readily implies

sup
T∈[0,τ∗]

|a(T )| = O(ε−2κ0), sup
T∈[0,τ∗]

|Φ(T )| = O(ε−2κ0), sup
T∈[0,τ∗]

|Ψ(T )| = O(ε−2κ0).

The infinite-dimensional part is bounded by

(26) sup
T∈[0,τ∗]

‖v∞(T )‖∞= O(ε1−2κ0).

The OU-process can be bounded by

(27) sup
T∈[0,τ∗]

|Zε(T )| = O(ε−γ)

for all positive γ ∈ R. For a proof of this well-known result see for example [BM12]
p. 9 (Lemma 14).
Now we can directly calculate the stochastic differentials da, dΦ and dΨ by writing
v as

v = aeix + εΦei2x + āe−ix + εΦ̄e−i2x + εΨ + Zε + v∞ + e−Tε
−2(1+ε2∂2x)

2

vs(0)

and multiplying it with itself to bound (v̂2)k and (v̂3)k for k ∈ {0, 1, 2}. Note that
we can bound the Fourier transform by the L∞ norm. We have

v2 = 2(aeix + āe−ix + Zε)(εΦe
i2x + εΦ̄e−i2x + εΨ + v∞)

+ (aeix + āe−ix + Zε)
2 + r1

v3 = (aeix + āe−ix + Zε)
3 + r2

(28)
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with

r1 = (εΦei2x + εΦ̄e−i2x + εΨ + v∞)2 + (e−ε
−2TLvs(0))2

+ 2(aeix + εΦei2x + āe−ix + εΦ̄e−i2x + εΨ + Zε + v∞)e−ε
−2TLvs(0)

r2 = (εΦei2x + εΦ̄e−i2x + εΨ + v∞)3 + (e−ε
−2TLvs(0))3

+ 3(aeix + āe−ix + Zε)(εΦe
i2x + εΦ̄e−i2x + εΨ + v∞)2

+ 3(aeix + āe−ix + Zε)
2(εΦei2x + εΦ̄e−i2x + εΨ + v∞)

+ 3(aeix + āe−ix + Zε)(e
−ε−2TLvs(0))2 + 3(aeix + āe−ix + Zε)

2(e−ε
−2TLvs(0))

+ 3(εΦei2x + εΦ̄e−i2x + εΨ + v∞)(e−ε
−2TLvs(0))2

+ 3(εΦei2x + εΦ̄e−i2x + εΨ + v∞)2(e−ε
−2TLvs(0))

+ 6(aeix + āe−ix + Zε)(εΦe
i2x + εΦ̄e−i2x + εΨ + v∞)(e−ε

−2TLvs(0)).

Because of

sup
T∈[0,τ∗]

‖εΦ(T )ei2x + εΦ̄(T )e−i2x + εΨ(T ) + v∞(T )‖∞ = O(ε1−2κ0),

sup
T∈[0,τ∗]

‖a(T )eix + ā(T )e−ix + Zε(T )‖∞ = O(ε−2κ0),

which follows from (24), (25), (26) and (27), together with

‖
∫ T

0

e−ε
−2sLvs(0)ds‖∞ ≤ ε2

∑
|k|6=1

(1− k2)−2|(v̂s(0))k|

≤ ε2
√

2π
∑
|k|6=1

(1− k2)−2‖vs(0)‖∞ = O(ε2−κ0)

we can bound the integral in time of r1 and r2 by

sup
T∈[0,τ∗]

‖
∫ T

0

r1dt‖∞ = O(ε2−6κ0)

sup
T∈[0,τ∗]

‖
∫ T

0

r2dt‖∞ = O(ε1−6κ0).

Analogously we can bound integrals of any power of ‖ri‖∞. Inserting (28) into the
mild solution formulas (17) respectively (22) gives

da = (νa+ 2αāΦ + 2αaΨ− 3a|a|2 − 3aZ2
ε + ε−12αaZε +R1)dT(29)

dΦ = (−9ε−2Φ + ε−2αa2 +R2)dT(30)

dΨ = (−ε−2Ψ + ε−2α|a|2 + ε−2αZ2
ε +R3)dT(31)
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where

R1(t) = ε−1α(r̂1)1 − (r̂2)1,

R2(t) = νΦ + 2ε−1αZεΦ− 3ε−1a2Zε + 2ε−2αv3ā+ ε−2α(r̂1)2 − ε−1(r̂2)2

and

R3(t) = νΨ + ε−1αΨZε − ε−1Z3
ε + 6ε−1|a|2Zε + ε−2α(r̂1)0 − ε−1(r̂2)0

are stochastic processes with

sup
T∈[0,τ∗]

∫ T

0

|R1|ds = O(ε1−6κ0), sup
T∈[0,τ∗]

∫ T

0

|R2|+ |R3|ds = O(ε−1−6κ0).

In order to eliminate Φ and Ψ on the right side of (29) we apply the Itô formula
to āΦ, aΨ and aZε. Note that there is no Itô correction at this point.

d(āΦ) = (dā)Φ + ā(dΦ) = (ā(−9ε−2Φ + ε−2αa2) +R4)dT

d(aΨ) = (da)Ψ + a(dΨ) = (a(−ε−2Ψ + 2ε−2α|a|2 + ε−2αZ2
ε ) +R5)dT

d(aZε) = (da)Zε + a(dZε) = (ε−12αaZ2
ε − ε−2aZε +R6)dT + aε−1σdβ̃

where

R4(t) = āR2 + Φ(νā+ 2αaΦ̄ + 2αāΨ̄− 3ā|a|2 − 3āZ2
ε + ε−12αāZε + R̄1),

R5(t) = aR3 + Ψ(νa+ 2αāΦ + 2αaΨ− 3a|a|2 − 3aZ2
ε + ε−12αaZε +R1)

and

R6(t) = Zε(νa+ 2αāΦ + 2αaΨ− 3a|a|2 − 3aZ2
ε +R1)

are stochastic processes with

sup
t∈[0,τ∗]

∫ T

0

|R4|+ |R5|ds = O(ε−1−8κ0), sup
t∈[0,τ∗]

∫ T

0

|R6|ds = O(ε−8κ0).

Therefore we have

āΦdT = (
1

9
αa|a|2 + ε2R4)dT − d(ε2āΦ)(32)

aΨdT = (2αa|a|2 + αaZ2
ε + ε2R5)dT − d(ε2aΨ)(33)

ε−1aZεdT = (2αaZ2
ε + εR6)dT + σadβ̃(T )− d(εaZε)(34)

and by substituting (32) – (34) into (29) we get the desired result for da with

dR = 2αε2((R4dT +R5dT − d(āΦ)− d(aΨ)) + 2αε(R6dT − d(aZ)).

�
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4.3. Averaging with error bounds. Next we have to get the equation for da
to match the amplitude equation (AE). For this we need to remove aZ2

εdT . This
is done in this section. First we need the following technical Lemma

Lemma 10. Let X(t, ω) ∈ C be a stochastic process with

X(t) =

∫ t

0

f(s)ds+

∫ t

0

g(s)dβ̃,

where supt∈[0,T0] |f(t)| = O(εγ) and supt∈[0,T0] |g(t)| = O(εγ) with γ ∈ R. Then
X(t) has the same bound as f(t) and g(t):

(35) sup
t∈[0,T0]

|X(t)| = O(εγ)

Let us remark that the same result is true, if we replace T0 by the stopping time
τ ∗.

Proof. The proof is straightforward using Burkholder-Davis-Gundy, Hölder, and
Young’s inequality. �

Now we can substitute the aZ2 term in (23). This is done by using the averaging
property of Zε described in the next Lemma.

Lemma 11. Let X(t) ∈ C be a stochastic process with dX = f(T )dT + g(T )dβ̃,
where supT∈[0,T0] |f(T )| = O(ε−γ) and supT∈[0,T0] |g(T )| = O(ε−γ) with γ > 0.
Then with Zε as defined by (11) the following holds:

(36) sup
T∈[0,T0]

|
∫ T

0

X(s)Zε(s)
2ds−

∫ T

0

1

2
σ2X(s)ds| = O(ε1−κ0−γ).

Again the same result is true, if we replace T0 by the stopping time τ ∗.

Proof. By using Itô’s formula we get

d(XZ2
ε ) = (dX)Z2

ε +X(dZ2
ε ) + (dX)(dZ2

ε )

and

d(Z2
ε ) = 2(dZε)Zε + (dZε)

2 = 2Zε(−ε−2ZεdT + ε−1σdβ̃) + ε−2σ2dT.

This gives

d(XZ2
ε ) = fZεdT + gZεdβ̃ − ε−22XZ2

εdT + ε−12σXZεdβ̃ + ε−2σ2XdT + ε−1σgdT.

We already know from the proof of Lemma 9 that supT∈[0,T0] |Zε(T )| = O(ε−κ0)

and it follows from Lemma 10 that supT∈[0,T0]|X(T )| = O(ε−γ). Therefore d(XZ2
ε )

can be written as

d(XZ2
ε ) = −ε−22XZ2

εdT + ε−2σ2XdT +R7dT +R8dβ̃,
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where R7(T ) and R8(T ) are stochastic processes with

sup
[0,τ∗]

|R7| = O(ε−1−κ0−γ), sup
[0,τ∗]

|R8| = O(ε−1−κ0−γ).

By multiplying with ε2 and integrating from 0 to T we get∫ T

0

1
2
σ2Xds−

∫ T

0

XZ2
εds = 1

2
ε2XZ2

ε

∣∣∣T
0
− ε2

∫ T

0

R7ds− ε2
∫ T

0

R8dβ̃

and the application of Hölder and Burkholder-Davis-Gundy yields the desired re-
sult. �

4.4. SDE Lemma. With Lemma 11 we have closed the gap between the SDEs
(AE) and (23) down to some error on the right side which is of order ε1−8κ0 . But
to be able to compare the first Fourier mode a and the solution of the amplitude
equation A we need the following Lemma.

Lemma 12. Let X1(t), X2(t) ∈ C be stochastic processes given by

X1(t) = X1(0) +

∫ t

0

f(X1)ds+

∫ t

0

g(X1)dβ

X2(t) = X1(0) +

∫ t

0

f(X2)ds+

∫ t

0

g(X2)dβ +R(t)

(37)

with supt∈[0,τ0]|R(t)| = O(εγ), where γ ∈ R and τ0 ≤ T0 is a stopping time. Let

there be a constant C > 0 and a process R̂(t) with supt∈[0,τ0] |R̂(t)| = O(εγ) such
that the functions f and g satisfy the following conditions:

Re {(f(X1)− f(X2))ϕ} ≤ C(|ϕ|2 + |R̂(t)|2)(38)

∀x, y ∈ C : |g(x)− g(y)|2 ≤ C|x− y|2,(39)

where ϕ := X1− (X2−R). Then the difference between X1 and X2 can be bounded
by

(40) sup
t∈[0,τ0]

|X1(t)−X2(t)| = O(εγ).

Note that condition (38) can be established by a bound of the type

Re{(f(x)− f(y))(x− y − z)} ≤ C|x− y − z|2 + p(y, z)

with polynomial p provided we have additional bounds on the process X2.

Proof. Because of the unknown derivative of R it is much easier to split X1 −X2

into

(41) X1 −X2 = ϕ−R

and bound |ϕ| rather than the actual term.
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Due to the stopping time the process ϕ is not easily bounded directly. Thus we
extend all processes to [0, T0] and define

R̃(t) :=

{
R(t) for t ≤ τ0

R(τ0) for t > τ0

and modify X1 and X2:

X̃1(t) := X1(0) +

∫ τ0∧t

0

f(X̃1)ds+

∫ t

0

g(X̃1)dβ

X̃2(t) := X1(0) +

∫ τ0∧t

0

f(X̃2)ds+

∫ t

0

g(X̃2)dβ + R̃(t).

With this we can define a suitable replacement for ϕ:

ϕτ0(t) := X̃1(t)− (X̃2(t)− R̃(t))

=

∫ τ0∧t

0

(f(X1)− f(X2))ds+

∫ τ0∧t

0

(g(X̃1)− g(X̃2))dβ.

Note that supt∈[0,T0] |R̃(t)| = O(εγ) and for any stopping time τ ≤ τ0 we have

ϕτ0(τ) = ϕ(τ), X̃1(τ) = X1(τ) and X̃2(τ) = X2(τ). This means

sup
t∈[0,τ0]

|ϕ(t)| = sup
t∈[0,τ0]

|ϕτ0(t)|.

Now in order to bound the moments of supt∈[0,τ0] |ϕτ0| we first need a bound on

the moments of |ϕτ0|. We start by taking the differential of |ϕτ0|2p for p ∈ N:

d|ϕτ0 |2p = d(ϕτ0ϕτ0)
p = p(ϕτ0ϕτ0)

p−1d(ϕτ0ϕτ0)

= p|ϕτ0 |2p−2 ((dϕτ0)ϕτ0 + ϕτ0(dϕτ0) + (dϕτ0)(dϕτ0)) .

The derivative of ϕτ0 is given by

dϕτ0 = χ[0,τ0∧t](f(X1)− f(X2))dt+ (g(X̃1)− g(X̃2))dβ .

Therefore

d|ϕτ0 |2p = p|ϕτ0 |2p−2[χ[0,τ0∧t]2 Re {ϕτ0(f(X1)− f(X2))} dt

+ 2 Re
{
ϕτ0(g(X̃1)− g(X̃2))

}
dβ + |g(X̃1)− g(X̃2)|2dt].
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Next we integrate and split the right side into three parts:

|ϕτ0(t)|2p =

∫ τ0∧t

0

p|ϕτ0|2p−22 Re {ϕτ0(f(X1)− f(X2))} ds

+

∫ t

0

p|ϕτ0|2p−22 Re
{
ϕτ0(g(X̃1)− g(X̃2))

}
dβ

+

∫ t

0

p|ϕτ0|2p−2|g(X̃1)− g(X̃2)|2ds

:= I1 + I2 + I3

For the first part we can exchange ϕ and ϕτ0 freely because the integral goes only
up to the stopping time τ0. Doing this and using (38) we get

I1 =

∫ τ0∧t

0

p|ϕ|2p−22 Re {ϕ(f(X1)− f(X2))} ds

≤
∫ τ0∧t

0

p|ϕ|2p−22C(|ϕ|2 + |R̂|2)ds

≤
∫ τ0∧t

0

Cp(|ϕτ0|2p + |R̂|2p)ds ≤ Cp(

∫ t

0

(|ϕτ0|2pds+

∫ τ0

0

|R̂|2p)ds,

where Cp is a constant depending on p and we used Young’s inequality in the
last step. The third part can be bounded from above by using (39) and a simple
application of the triangle inequality:

I3 ≤
∫ t

0

p|ϕτ0|2p−2|X̃1 − X̃2|2ds

≤
∫ t

0

p|ϕτ0|2p−2(|ϕτ0|2 + |R̃|2)ds ≤
∫ t

0

Cp(|ϕτ0 |2p + |R̃|2p)ds

Again we used Young’s inequality in the last step. Now since stochastic integration
preserves the local martingale property, taking the expectation value of |ϕτ0|2p
yields, for all t ≤ T0,

E(|ϕτ0(t)|2p) = E(I1) +E(I2)

≤ CpE
(∫ t

0

|ϕτ0|2p + |R̃|2pds+

∫ τ0

0

|R̂|2pds
)

≤
∫ t

0

CpE(|ϕτ0|2p)ds+ CpT0R
2p
sup,
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where R2p
sup := E(supt∈[0,τ0] |R̂(t)|2p + supt∈[0,T0] |R̃(t)|2p). We apply Gronwall’s

Lemma to get

E(|ϕτ0(t)|2p) ≤ CpT0R
2p
sup +

∫ t

0

C2
pT0R

2p
supe

(T0−s)Cpds

≤ CpT0R
2p
sup + C2

pT
2
0R

2p
supe

T0Cp .(42)

With this we can now bound the moments of supt∈[0,τ0] |ϕτ0(t)|. We start with
E(supt∈[0,τ0] I3(t)):

E( sup
t∈[0,τ0]

I3(t)) = E sup
t∈[0,τ0]

(

∫ t

0

2 Re
{
ϕτ0(g(X̃1)− g(X̃2))

}
dβ)

≤ E
( ∫ τ0

0

C2
p |ϕτ0 |4p−2|g(X̃1)− g(X̃2)|2ds

)1/2
≤
(
E

∫ T0

0

C2
p |ϕτ0 |4p−2(|ϕτ0|2 + |R̃|2)ds

)1/2
≤ Cp

(
E

∫ T0

0

|ϕτ0 |4p + |R̃|4pds
)1/2

,

where we used the Burkholder Davis Gundy theorem in the second step, the Hölder
inequality in the third and Young’s inequality in the last step.
The whole term is now easily bounded by

E( sup
t∈[0,τ0]

|ϕ(t)|)2p = E( sup
t∈[0,τ0]

(I1 + I2 + I3))

≤ CpE(

∫ T0

0

(|ϕτ0|2p + |R̃|2p)ds+

∫ τ0

0

|R̂|2pds)

+ Cp
(
E

∫ T0

0

|ϕτ0|4p + |R̃|4pds
)1/2

≤ Cp(

∫ T0

0

E|ϕτ0|2pds) + Cp(

∫ T0

0

E|ϕτ0|4pds)1/2

+ Cp(T0 + T
1/2
0 )R2p

sup.

Using (42) we get

E( sup
t∈[0,τ0]

|ϕτ0(t)|)2p ≤ CpT0(CpT0R
2p
sup + C2

pT
2
0R

2p
supe

T0Cp)

+ CpT
1/2
0 (C2pT0R

4p
sup + C2p

2T 2
0R

4p
supe

T0C2p) + CpT
3/2
0 R2p

sup.

Finally any moment can be bounded by even moments through Hölder interpo-
lation, which proves that supt∈[0,τ0] |ϕ(t)| = supt∈[0,τ0] |ϕτ0(t)| = O(εγ). By as-
sumption we also have that supt∈[0,τ0] |R(t)| = O(εγ), so the result follows from
(41). �
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From what we have proven it is easily shown that the theorem holds at least until
the time τ ∗, but we still need to show that τ ∗ is large enough. For this we prove
bounds on moments of A which are a direct application of Lemma 12.

Corollary 13. Let A(t) be the solution to the amplitude equation (AE) then the
following holds:

(43) sup
t∈[0,T0]

|A(t)| = O(ε−κ).

Proof. We define f , g and R by

R(t) := −A(0)

f(A) := νA+ 3(38
27
α2 − 1)A|A|2 + 3(α2 − 1

2
)σ2A

g(A) := 2σαA.

(44)

With this we can write A and zero as in (37):

A(t) = A(0) +

∫ t

0

f(A)dt+

∫ t

0

g(A)dβ

0 = A(0) +

∫ t

0

f(0)dt+

∫ t

0

g(0)dβ +R.

Since f(0) = g(0) we obtain supt∈[0,T0] |R(t)| = supt∈[0,T0] |A(0)| = O(ε−κ), and
we derive the desired result directly from Lemma 12, provided we can prove the
conditions (38) and (39). Because g is linear (39) is readily verified:

(45) |g(x)− g(y)|2 = |2σ(x− y)|2 ≤ 4σ2|x− y|2.

This leaves (38). For better readability we write f as

f(X) = C1X − C2|X|2X

with positive constants C1 and C2. For the linear part of f we are in the same
position as for g, there is no dependency on X1 or X2:

Re{(X1 − (X2 −R))(C1X1 −X2)} ≤ 3C1(|X1 − (X2 −R)|2 + |R|2).(46)

For the cubic term, to keep this proof simple, we note that it is sufficient to bound
it here just for the special case X1 = A and X2 = 0.

Re{(A− (0−R))(−C2|A|2A− 0)} = −C2|A|4 + Re{RA}
≤ 2(|A− (0−R)|2 + |R|2)

�
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4.5. Removing the error. Combining the Lemmas of the previous sections, we
are now able to prove Theorem 4.

Proof of theorem 4. By Lemma 8 u(t) can be approximated by a = v1 and Zε
until the time τ ∗:

sup
t∈[0,τ∗]

‖u(t)− εa(ε2t)eix − εa(ε2t)e−ix − εZε − eTε
−2(1+∂2x)

2

vs(0)‖∞ = O(ε2−8κ0).

Now we bound the difference between a and A until time τ ∗. The initial condition
A(0) is exactly the coefficient of the first Fourier mode of v(0, x)). This means
A(0) = a(0), thus by Lemma 9 and Lemma 10 we know that a is given by

a(t) = A(0) +

∫ t

0

(νa+ 3(38
27
α2 − 1)a|a|2 + 6(α2 − 1

2
)aZ2

ε )ds

+

∫ t

0

2σadβ̃ +R9,

where sup[0,τ∗] |R9| = O(ε1−8κ0). Next we split the aZ2
ε term into

aZ2
ε = (a−R9)Z

2
ε +R9Z

2
ε .

The second part is bounded by sup[0,τ∗] |R9Z
2
ε | = O(ε1−10κ0) and the first part can

be exchanged by using Lemma 11. Set κ0 = 9
8
κ. Because

sup
[0,τ∗]

|νa+ 3(
38

27
α2 − 1)a|a|2 + 6(α2 − 1

2
)aZ2

ε | = O(ε−6κ0)(47)

sup
[0,τ∗]

|2σa| = O(ε−6κ0)(48)

and 10κ0 = 45
4
κ ≤ 12κ we get

a(t) = A(0) +

∫ t

0

(νa+ 3(38
27
α2 − 1)a|a|2 + 3(α2 − 1

2
)σ2a)ds

+

∫ t

0

2σadβ̃ +R10,

where supt∈[0,τ∗] |R10(t)| = O(ε1−12κ).

With f and g defined as in (44) we show that there exists a process R̂ with

(49) sup
t∈[0,τ∗]

|R̂(t)| = O(ε1−18κ)

such that the conditions (38) and (39) are fulfilled and we can apply Lemma 12.
Since supt∈[0,τ∗] |R10| = O(ε1−9κ) the condition on g and the linear term of f are
already covered by (45) respectively (46). Because of this we only need show that

there is a positive constant C and a process R̂ conforming to (49) such that

ρ := Re
{
−C2(A− (a−R10))(|A|2A− |a|2a)

}
≤ C(|A− (a−R10)|2 + |R̂|2),
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where C2 = −3(38
27
α2−1) is a positive constant. We do this by splitting ρ into two

parts:

ρ = Re
{
−C2

(
A− (a−R10)

) (
|A|2A− |a|2a

)}
= Re

{
−C2

(
A− (a−R10)

) (
|A|2A− |a−R10|2(a−R10)

)}
+ Re

{
−C2

(
A− (a−R10)

) (
|a−R10|2(a−R10)− |a|2a

)}
=: ρ1 + ρ2.

The first term is negative because for any two complex numbers z, w we have

2 Re{(z − w)(|z|2z − |w|2w}
= 2|z − w|2(|z|2 + |w|2) + 2 Re{(z − w)2zw}
≥ 2|z − w|2(|z|2 + |w|2)− |z − w|2(|z|2 + |w|2)
≥ |z − w|2(|z|2 + |w|2) ≥ 0.

This means ρ1 can be bounded from above by 0. The second term can be bounded
by

|ρ2| ≤ C2|A− (a−R10)|(3|a|2|R10|+ 3|a||R10|2 + |R10|3)
≤ C2(|A− (a−R10)|2 + (3|a|2|R10|+ 3|a||R10|2 + |R10|3)2)

and since supt∈[0,τ∗] |a(t)| = O(ε−3κ) we obtain (as κ < 1
17

)

sup
t∈[0,τ∗]

(
3|a|2|R10|+ 3|a||R10|2 + |R10|3

)
= O(ε1−18κ).

Therefore Lemma 12 yields the following bound on |A− a|:

sup
t∈[0,τ∗]

|A(t)− a(t)| = O(ε1−18κ).

Combining this with Corollary 13 we obtain

(50) sup
t∈[0,τ∗]

|a(t)| ≤ sup
t∈[0,τ∗]

|A(t)− a(t)|+ sup
t∈[0,τ∗]

|A(t)| = O(ε−κ).

Next we show that the probability P(τ ∗ < T0) is small. Define the following subset
of the probability space Ω:

M := {ω ∈ Ω : τ ∗(ω) < T0}.

If ω ∈ M then it follows from the definition of τ ∗ that ‖v(τ ∗(ω))‖∞ = ε−κ0 .
Therefore the moments of ‖v(τ ∗)‖∞ can be written as follows

E‖v(τ ∗)‖p∞ =

∫
Mc

‖v(τ ∗)‖p∞dP+

∫
M

(ε−κ0)pdP ≥ P(M)ε−pκ0 ,
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where M c := Ω \M is the complement set of M . From (50), (27),(19) and (18)
we have

E‖v(τ ∗)‖p∞ ≤ CpE sup
t∈[0,τ∗]

(|a(t)|p + |Zε(t)|p + |v0(t)− Zε(t)− e−ε
−2Tv0(0)|p)

+ CpE sup
t∈[0,τ∗]

‖
∑
k≥2

vk − e−ε
−2T (1−k2)2vk(0))eikx‖p∞

+ CpE sup
t∈[0,τ∗]

‖e−ε−2TL
∑
k 6=1

(vk(0))eikx‖p∞

≤ Cpε
−pκ

with a constant Cp depending on p, where we used that there is a constant C such
that for all u ∈ C0,

‖e−ε−2TLu‖∞ ≤ C‖u‖∞.
This is a direct consequence of Lemma 4.5 in [MBK12] which follows the ideas of
Collet and Eckmann in [CE90]. Therefore the probability of M is bounded by

P(M) ≤ Cpε
p(κ0−κ).

Define

ξ := sup
t∈[0,T0]

‖u(t)− εA(ε2t)eix − εĀ(ε2t)e−ix + εZε(ε
2t)− e−t(1+∂2x)2us(0)‖∞

The last step is now to bound the probability of supt∈[0,T0]‖ξ‖∞ being too large

(i.e. P(supt∈[0,T0]‖ξ‖∞ > ε2−19κ)). We can split this into

P( sup
t∈[0,T0]

‖ξ‖ > ε2−19κ)) = P(M ∩ { sup
t∈[0,T0]

‖ξ‖ > ε2−19κ)})

+P(M c ∩ { sup
t∈[0,T0]

‖ξ‖ > ε2−19κ)})

=: P1 + P2.

P1 is easily bounded by

P(M ∩ { sup
t∈[0,T0]

‖ξ‖ > ε2−19κ)}) ≤ P(M) ≤ Cpε
p(κ0−κ),

so the only thing left to do is to bound P2. We get

P2 = P(M c ∩ { sup
t∈[0,T0]

‖ξ‖ > ε2−19κ}) ≤ P( sup
t∈[0,T0]

‖ξ‖ > ε2−19κ).

Using the Chebychev inequality gives

P2 ≤ Cq
1

εq(2−19)κ
E( sup

t∈[0,T0]
‖ξ‖q) ≤ Cqε

qκ,

where q is any positive number and Cq is a constant depending on q. By choosing
q = p/κ we get the desired result. �
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