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The Distribution of the Maximum

Likelihood Estimator in Invariant

Gaussian Graphical Models and its

Application to Likelihood Ratio Tests

Andreas Käu�∗

December 11, 2012

Abstract The distribution of the maximum likelihood estimator of the co-
variance matrix in a class of invariant Gaussian graphical models is deter-
mined and seen to belong to the class of generalized Riesz distributions. For
testing two nested models, the distribution of the likelihood ratio statistic
under the null hypothesis is shown to be of Box type, so that accurate ap-
proximation techniques are applicable.

Keywords Dimension Reduction, Wishart Distribution, Generalized Riesz
Distribution, Gaussian Models, Box Approximation

1 Introduction

A graphical model only allows for distributions that respect certain conditional indepen-
dence constraints. These restrictions can be represented intuitively with the help of a
graph. In a graphical model with normality assumption, it can be shown that every con-
ditional independence restriction causes an entry in the inverse of the covariance matrix
to vanish. Consequently, the parameter space of a graphical model is a subset of the
cone of positive de�nite matrices, in which certain determinants vanish. Even though in
most cases a graphical model therefore has fewer parameters than the saturated model,
it still may have a very high-dimensional parameter space. One way to further reduce
this dimension is the introduction of symmetry restrictions in the model. This can lead
to a signi�cant reduction in the number of parameters.
In the present paper, we are concerned with statistical inference in an invariant graph-

ical model as introduced by Madsen [1]. By de�nition, the distributions in such a model
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respect the independence constraints given by an acyclic directed graph D. Since we as-
sume that D does not contain an immorality, the parameter space of the graphical model
corresponding to D can also be described by an undirected graph U and this description
will prove useful for our purposes.
Our main results are twofold: First, we compute the distribution of the maximum

likelihood estimator in such a model, see Theorem 5.2. Second, this result is used to
show that in an invariant graphical testing problem, the likelihood ratio statistic follows
a Box-type distribution under the null hypothesis, see Theorem 6.2. This allows for very
accurate approximation techniques.
In order to prove these two results, we start by establishing our notation and de�ning

invariant graphical models in Section 2. Afterwards, we introduce the generalized Riesz
distribution in Section 3. In Section 4, we present results related to maximum likeli-
hood estimation in graphical models and invariant graphical models. This enables us
to compute the distribution of the maximum likelihood estimator in an invariant graph-
ical model in Section 5. In Section 6, we address the problem of how likelihood ratio
tests between two nested invariant graphical models can be performed. In Section 7 we
summarize our results and give a short outlook.
General considerations about how to include symmetries in statistical models have

been made since the 1970s. An introduction to this topic is given by Andersson [2]. The
commentary of Perlman [3] on the other hand o�ers a broader overview over the research
in the area of symmetry constraints in statistical models. How invariance restrictions
can be included in graphical models in particular is examined in the papers of Andersson
and Madsen [4] and Madsen [1]. In this last paper, the author not only de�nes invariant
graphical models but also develops a su�cient criterion for the existence of the maximum
likelihood estimator and speci�es its form. However, the question of what the distribution
of this estimator is, was not addressed.
In the existing literature we found several candidates for this distribution. They all

have in common that they are concentrated on certain subsets of the cone of positive
de�nite matrices and can be seen as generalizations of the classical Wishart distribution.
Examples include the papers of Dawid and Lauritzen [5], Andersson and Wojnar [6]
and Letac and Massam [7]. The most recent work in this direction was developed by
Andersson and Klein [8]. They de�ne the so-called generalized Riesz distribution that
turns out to be very useful for proving the two theorems mentioned above.

2 Invariant graphical models

We brie�y introduce some notation and then review acyclic directed graphs. Let I be a
nonempty �nite index set. For the sake of readability we denote the cardinality of the set
I also by I, the context will prevent misunderstandings. For a vector x = (xi)i∈I ∈ RI
and a subset J ⊆ I, we use the notation xJ for the subvector of x corresponding to
the index set J , that is, xJ = (xj)j∈J ∈ RJ . For a matrix A = (aij)i,j∈I ∈ RI×I we
denote the submatrix corresponding to the index sets K ⊆ I and L ⊆ I by AKL =
(ak`)k∈K,`∈L ∈ RK×L.
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Let PD(I) be the cone of all positive de�nite I × I matrices. By convention, index
operations are carried out before inversion or transposition, that is, A−1

KL = (AKL)−1 and
ATKL = (AKL)T for index sets K,L ⊆ I.
Let V be another �nite set. For every element v ∈ V let [v] be a non-empty subset [v] ⊆

I, such that the entire index set I is partitioned according to I = ·∪v∈V [v]. Moreover, let
E ⊆ V × V with

∀v, w ∈ V : (v, w) ∈ E ⇒ (w, v) /∈ E and ∀v ∈ V : (v, v) /∈ E.

This way, the pair (V,E) can be regarded as a directed graph D with vertices V and
edges E. For an edge (v, w) ∈ E we also use the more intuitive notation v → w ∈ E.
The interpretation of this framework is as follows: We are interested in a RI -valued

random vector X. This vector is partitioned into smaller random vectors {X[v]}v∈V .
The marginal model for such an X[v] is saturated, that is, within a block [v] all interac-
tions between the components {Xi}i∈[v] are allowed. Between the blocks, on the other
hand, several conditional independence restrictions are enforced. These constraints are
represented by the graph D.
Throughout this paper we assume that D has no immoralities, that is, no induced

subgraphs of the form • → • ← •. For v 6= w we write v < w if w can be reached from
v via a directed path, that is, there exists a k ∈ N and nodes v1, . . . , vk ∈ V such that
v = v1 → v2 → · · · → vk = w. Analogously we write v ≤ w if v = w or v < w. A directed
graph D = (V,E) is called acyclic if it does not contain a directed cycle, that is, v 6< v
for all nodes v ∈ V . The nodes in the set pa(v) := {w ∈ V |w → v ∈ E} are called the
parents of v ∈ V . The set 〈v〉 = ·∪w∈pa(v)[w] is the subset of I that corresponds to the
parents of v in D. A node v ∈ V is called maximal in D if no directed edge is pointing
out of v.
Let A ∈ RI×I be a square matrix and let v ∈ V be a node of D. The submatrix of

A corresponding to v is denoted by A[v] := A[v][v]. Analogously, we use the notation
A〈v〉 := A〈v〉〈v〉 and A[v〉 := A[v]〈v〉. If A is positive de�nite, we can de�ne the matrices

A[v]• := A[v] − A[v〉A
−1
〈v〉A

T
[v〉 ∈ PD([v]) and A[v〉• := A[v〉A

−1
〈v〉 ∈ R[v]×〈v〉 for every node

v ∈ V .
De�ne a new edge set E∼ such that (v, w) ∈ E∼ if and only if (v, w) ∈ E or (w, v) ∈ E.

In other words, E∼ contains an undirected edge v − w for every directed edge v → w in
E. Therefore, the pair U = (V,E∼) can be interpreted as an undirected graph and is
called the skeleton of D. A clique of U = (V,E∼) is a maximal subset C ⊆ V such that
for every two nodes v, w ∈ C the undirected edge v−w ∈ E∼ appears in U . It will prove
useful to consider the subsets of I that correspond to the cliques of U ,

C(U) := { ·∪v∈C [v] | C clique of U} . (1)

We can now explain why we are only allowing acyclic directed graphs D without immoral-
ities. Andersson et al. [9] show that an acyclic directed graph D is Markov equivalent to
a decomposable graph U if and only if D has no immoralities. In that case the graphi-
cal model corresponding to the graph D = (V,E) and the graphical model given by its
skeleton U = (V,E∼) are identical.
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We continue by introducing automorphisms over acyclic directed graphs and examining
their orbits. For an acyclic directed graph D = (V,E), let Sym(V ) be the set of all
bijections σ : V → V . A permutation σ ∈ Sym(V ) is called an automorphism over D if

∀v, w ∈ V : v → w ∈ E ⇔ σ(v)→ σ(w) ∈ E.

An automorphism σ is called cardinality-respecting, if σ(v) = w implies that the cardi-
nalities of the corresponding sets [v] and [w] are identical. In other words, a cardinality-
respecting automorphism over D is a permutation of the nodes, that keeps the causal
structure of D intact and only exchanges nodes v and w, for which the index sets [v] and
[w] contain the same number of elements. The set of all cardinality-respecting automor-
phisms over D is denoted by Aut(D). It can easily be seen that Aut(D) is a subgroup of
Sym(V ).
Later in this section, it will prove useful to consider the permutation matrix corre-

sponding to a automorphism σ ∈ Aut(D) instead of the permutation σ itself. For that
reason, we de�ne the mapping % : Aut(D)→ RI×I such that for all σ ∈ Aut(D) and for
all v, w ∈ V we have %(σ)[v][w] = I[v] if w = σ−1(v) and %(σ)[v][w] = 0 otherwise. That
is, % maps a cardinality-respecting automorphism onto its corresponding permutation
matrix. Here and in the following, the k × k identity matrix will be denoted by Ik for
any k ∈ N. The image of Aut(D) under % is called the set of allowed symmetries and
is denoted by Perm(D). Evidently, Perm(D) inherits the group property of Aut(D).
Since % : Aut(D)→ Perm(D) is a bijection, the permutation σ ∈ Aut(D) corresponding
to the matrix ρ ∈ Perm(D) can be written as σ = %−1(ρ).
Let H ⊆ Aut(D) be a subgroup and v ∈ V be a node. The orbit of v under H is the set

of nodes that are mapped to v by a permutation in H, that is, Orb(v) = {σ(v)|σ ∈ H}.
For a group of permutation matrices G ⊆ Perm(D) we also speak of the orbit of v
under G and hereby mean the orbit of v under %−1(G) = {%−1(ρ)|ρ ∈ G}. For a
second node w ∈ V , the number of permutations in H that map w onto v is denoted by
κv(w) = |{σ ∈ H|σ(w) = v}|. It follows that κv(w) is positive if and only if w lies in
the orbit of v, that is, w ∈ Orb(v). Moreover, it is not hard to show that κv(w) = κv(v)
for all w ∈ Orb(v). This particularly implies that the number of permutations in H that
map w onto v is constant for all nodes w in the orbit of v. This observation together
with a simple counting argument yields the relation

∀v ∈ V : |H| = |Orb(v)|κv with κv := κv(v). (2)

We are now in a position to de�ne the parameter spaces of a graphical model and
an invariant graphical model respectively. Let D = (V,E) again be an acyclic directed
graph without immoralities and let U = (V,E∼) be the skeleton of D. De�ne

S(U) :=
{
W ∈ RI×Isymm | W[v][w] = 0 if v 6= w and v − w /∈ E∼

}
as the set of symmetric block matrices that contain a zero block for every missing edge
in U . It is a well-known fact that the parameter space of the graphical model given by
the graph U can be described as

PD(U) :=
{

Σ ∈ PD(I) | Σ−1 ∈ S(U)
}
,
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see for example Andersson and Klein [8, p. 792]. Since in general PD(U) is not a convex
cone, it will prove helpful to work with the alternative parameter space

P (U) := {Ω ∈ S(U) | ΩCC ∈ PD(C) for all C ∈ C(U)}

with C(U) as de�ned in equation (1). To understand the relationship between PD(U)
and P (U), consider the mapping

π : RI×Isymm → S(U) with π(W )vw =

{
Wvw v = w or v − w ∈ E∼

0 otherwise
(3)

that deletes all entries in a symmetric matrix W that correspond to a missing edge in
U . It turns out that the restriction π : PD(U) → P (U) constitutes a di�eomorphism
between PD(U) and P (U), see Andersson and Klein [8, Proposition 3.1]. Therefore, we
can use the cone P (U) as a parameter space for the graphical model given by U and D
respectively.
To include symmetries in the model, we use the following de�nition.

De�nition 2.1 Let D be an acyclic directed graph without immoralities and let U be the

skeleton of D. Let G ⊆ Perm(D) be a subgroup of the group of allowed symmetries. The

parameter spaces of the invariant graphical model given by U and G are then de�ned as

PD(U , G) := {Σ ∈ PD(U) | ρΣρT = Σ ∀ρ ∈ G} and

P (U , G) := {Ω ∈ P (U) | ρΩρT = Ω ∀ρ ∈ G}.

Using the fact that G is a subgroup of Perm(D), it is possible to show that the projection
π commutes with the congruence transformation W 7→ ρWρT for all ρ ∈ G, that is,
π
(
ρWρT

)
= ρπ(W )ρT for all W ∈ RI×Isymm. Using this observation, it follows that the

image of PD(U , G) under π is the alternative parameter space P (U , G). Therefore, the
restriction π : PD(U , G)→ P (U , G) is also a di�eomorphism.
The inverse mapping π−1 : P (U)→ PD(U) can be described explicitly, see corollaries

5.1 and 5.3 in Andersson and Klein [8]. This description of π−1(Ω) ∈ PD(U) for an
Ω ∈ P (U) can be seen as a generalized Cholesky decomposition of Ω and mainly relies on
the matrices {Ω[v]•,Ω[v〉•}v∈V . Out of that reason, we call the matrices {Ω[v]•,Ω[v〉•}v∈V
the Cholesky parameters of Ω.
Another interesting property of the Cholesky parameters becomes apparent when Ω

is G-invariant, that is, Ω ∈ P (U , G). In that case, Theorem 6.1 in Madsen [1] together
with our de�nition of the mapping % shows that

Ω[σ−1
ρ (v)]• = Ω[v]• and Ω[σ−1

ρ (v)〉• = Ω[v〉• (4)

for all ρ ∈ G and all v ∈ V . Here, σρ means the permutation of nodes corresponding to
the matrix ρ ∈ Perm(D), that is, σρ = %−1(ρ). This means that symmetries in Ω are
also re�ected in its Cholesky parameters in the sense that all nodes in the same orbit
have the same Cholesky parameters.
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3 Generalized Riesz distribution

Let D = (V,E) be an acyclic directed graph without immoralities and let U = (V,E∼)
be its skeleton. Moreover, let G ⊆ Perm(D) be a subgroup of the group of allowed
symmetries. To describe the distribution of the maximum likelihood estimator in the
graphical and the invariant graphical model respectively, we will make use of the gener-
alized Riesz distribution. Aside from the graph D itself this distribution has two more
parameters: An expectation parameter Ω ∈ P (U) and a shape parameter λ ∈ RV . We
write Rp(Ω, λ) for the generalized Riesz distribution of p×p matrices with parameters Ω
and λ. Andersson and Klein de�ne this class of distributions by specifying the density,
see [8, De�nition 10.1]. They also develop an alternative characterization that will prove
useful for our purposes.
In order to describe this characterization we need to de�ne some other matrix valued

distributions �rst. For that purpose, let n, p ∈ N and µ ∈ Rn×p as well as Σ ∈ PD(p)
and Φ ∈ PD(n). By Nn×p(µ,Φ⊗Σ) we mean the normal distribution for n× p matrices
with expectation parameter µ and dispersion parameter Φ⊗ Σ. The parametrization of
Nn×p is the same as in Kollo and von Rosen [10, Chapter 2.2] and the symbol ⊗ stands
for the Kronecker product.
For a centered random matrix X ∼ Nn×p(0, In⊗Σ), the inner product XTX follows a

p× p Wishart distribution with n degrees of freedom and parameter Σ, that is, XTX ∼
Wp(n,Σ). Here, we also chose the parametrization of Kollo and von Rosen [10, Chapter
2.4]. By making use of these well-known distributions, we can now state the alternative
characterization of the generalized Riesz distribution.

Proposition 3.1 Let W be a P (U)-valued random matrix and let m ∈ V be a maximal

node in D. Let Ω ∈ P (U) and λ ∈ RV with λv > ([v] + 〈v〉 − 1)/2 for all v ∈ V .

Then W follows the generalized Riesz distribution RI(Ω, λ) if and only if the following

four conditions are met:

(i) W[m]• ⊥⊥
{
W[m〉•,WI\[m]

}
,

(ii) L
(
W[m]•

)
=W[m]

(
2λm − 〈m〉, 1

2λm
Ω[m]•

)
,

(iii) L
(
W[m〉•

∣∣WI\[m]

)
= N[m]×〈m〉

(
Ω[m〉•,

1
2λm

Ω[m]• ⊗W−1
〈m〉

)
,

(iv) L
(
WI\[m]

)
= RI\[m]

(
ΩI\[m], λV \{m}

)
.

Proof

See Andersson and Klein [8, Proposition 10.2]. �

Remark 3.2 The generalized Riesz distribution RI(Ω, λ) not only depends on Ω and λ
but also on the acyclic directed graph D. That is, in general there are several di�erent
Riesz distributions over P (U) corresponding to the parameter pair (Ω, λ), namely one
for every acyclic directed graph D with skeleton U .
For the purposes of the present paper, we do not need that much �exibility. Later

on, we will work with a Riesz distributed random variable W ∼ RI(Ω, λ) that has a
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scalar shape parameter, that is, λ = (β, . . . , β)T for a β ∈ R. Computing the moment
generating function S 7→ E[exp(tr(SW ))], we see that this function does not depend on
the choice of D at all, see Andersson and Klein [8, Remark 8.1]. Consequently, we do
not have to specify a certain choice of D in order to get a well-de�ned Riesz distribution
as long as we have a scalar shape parameter λ.

4 Maximum likelihood estimation

We �rst describe the maximum likelihood estimator in the graphical model P (U). To
do so, let the random vectors X1, . . . , Xn be independent and identically distributed
according to a NI(0,Σ) distribution for a Σ ∈ PD(U). This distribution can also be
parametrized by Ω = π(Σ) ∈ P (U), see equation (3) and the remark beneath it. There-
fore, it su�ces to specify the estimator Ω̂ ∈ P (U).
It is a well-known fact that this estimator exists with probability one if and only if the

number of observations is not smaller than the number of nodes in the largest clique of
U , that ist, n ≥ max{|C| : C ∈ C(U)}. In this case, the maximum likelihood estimator
of Ω is given by

Ω̂ = π(S) ∈ P (U),

where S =
∑n

i=1XiX
T
i /n is the sample covariance matrix. For a proof of this result, see

for example Lauritzen [11, Proposition 5.9].
At this point, we bene�t from introducing the generalized Riesz distribution in Section

3. It turns out that under the assumptions above, the estimator π(S) follows a generalized
Riesz distribution with expectation parameter Ω ∈ P (U) and shape parameter λ =
(n/2, . . . , n/2) ∈ RV , that is, π(S) ∼ RI(Ω, λ).
Next, we turn to the maximum likelihood estimator in an invariant graphical model

P (U , G). For that purpose, we need the balancing function ψ that averages over the
orbit when the matrices ρ ∈ G act by congruence,

ψ : PD(I)→ PD(I), W 7→ 1

|G|
∑
ρ∈G

ρWρT (5)

Note that ψ in particular depends on the group G. The restriction of ψ on P (U) is of
special interest since it is easy to show that this is a mapping ψ : P (U) → P (U , G), see
Madsen [1, Proposition 6.1].
To describe the maximum likelihood estimator, let X1, . . . , Xn be independent and

identically distributed according to a NI(0, π−1(Ω)) distribution for an Ω ∈ P (U , G).
Corollary 7.2 in Madsen [1] shows that Ω̂ exists and is unique if ψ(π(S))[v] ·∪〈v〉 is positive
de�nite for all nodes v ∈ V . In that case, we have

Ω̂ = ψ(π(S)) ∈ P (U , G).

We want to stress that this result only gives a su�cient criterion for the existence of
the maximum likelihood estimator. Throughout the rest of this paper we assume that
this criterion is met, that is, the estimator Ω̂ ∈ P (U , G) exists. The following section
addresses the problem of computing the distribution of Ω̂.
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5 Distribution of the maximum likelihood estimator

In this section we determine the distribution of the maximum likelihood estimator Ω̂ =
ψ(π(S)) in the invariant graphical model P (U , G). To make the notation a little easier, we
address a more general problem. LetW follow a generalized Riesz distribution over P (U)
with expectation parameter Ω ∈ P (U) and a scalar shape parameter λ = (β, . . . , β)T ∈
RV with 2β ∈ N and β > ([v]+〈v〉−1)/2 for all v ∈ V . Our goal is to use this distribution
to compute the distribution of ψ(W ). This directly gives us the distribution of ψ(π(S))
since π(S) follows a generalized Riesz distribution with a scalar shape parameter, see
Section 4.
Before we state the main result of this section, we prove the following technical propo-

sition.

Proposition 5.1 Let D = (V,E) be an acyclic directed graph without immoralities and

let U = (V,E∼) be its skeleton. Let G ⊆ Perm(D) be a group of allowed symmetries.

For any matrix W ∈ P (U) and any node m ∈ V we have

ψ(W )[m] =
1

|Orb(m)|
∑

v∈Orb(m)

(
W[v]• +W[v〉•W〈v〉W

T
[v〉•

)
,

ψ(W )[m〉 =
1

|Orb(m)|
∑

v∈Orb(m)

W[v〉•W〈v〉,

ψ(W )〈m〉 =
1

|Orb(m)|
∑

v∈Orb(m)

W〈v〉.

Proof

The de�nition of the mapping ψ in equation (5) yields

ψ(W )[m] =
1

|G|
∑
ρ∈G

(ρWρT )[m] =
1

|G|
∑
ρ∈G

W[σ−1
ρ (m)],

where σρ = %−1(ρ) is the automorphism of D corresponding to the permutation matrix
ρ ∈ G, see Section 2. In the second equality, we make use of the fact that ρ[m][σ−1

ρ (m)] is

the identity matrix for every ρ ∈ Perm(D), see the de�nition of %. Equation (2) yields

ψ(W )[m] =
1

|G|
∑

v∈Orb(m)

κmW[v] =
1

|Orb(m)|
∑

v∈Orb(m)

W[v].

Now, the �rst assertion follows from the de�nition of W[m]• and W[m〉•. The remaining
claims follow analogously. �

We are now in a position to prove the following theorem.

Theorem 5.2 Let D = (V,E) be an acyclic directed graph without immoralities and let

U = (V,E∼) be its skeleton. Let G ⊆ Perm(D) be a group of allowed symmetries. Let

8



W follow a generalized Riesz distribution with expectation parameter Ω ∈ P (U , G) and

scalar shape parameter λ = (β, . . . , β)T ∈ RV with 2β ∈ N and β > ([v] + 〈v〉 − 1)/2 for

all v ∈ V .

Then for a maximal node m ∈ V in D and the corresponding index set IOrb =
I\ ·∪v∈Orb(m)[v] the following properties hold:

(i) ψ(W )[m]• ⊥⊥
{
ψ(W )[m〉•, ψ(W )IOrb

}
,

(ii) L
(
ψ(W )[m]•

)
=W[m]

(
2β|Orb(m)| − 〈m〉, 1

2β|Orb(m)|
Ω[m]•

)
,

(iii) L
(
ψ(W )[m〉•

∣∣ψ(W )IOrb
)

= N[m]×〈m〉

(
Ω[m〉•,

1

2β|Orb(m)|
Ω[m]• ⊗ ψ(W )−1

〈m〉

)
.

Remark 5.3 Before proving the theorem, we comment on its content. Property (i)
shows that the independence structure of ψ(W ) is inherited fromW itself, see Proposition
3.1. Properties (ii) and (iii) state that the distributions of ψ(W )[m]• and ψ(W )[m〉• are
Wishart and normal respectively, as is the case for W[m]• and W[m〉•. The only di�erence
is that the parameters of the distributions di�er. While the shape parameter β ofW does
not depend on the node m, the transformed random matrix ψ(W ) has shape parameters
depending on the concrete node m through the size of its orbit |Orb(m)|.
This gives a �rst impression on what happens to the distribution when W is trans-

formed to ψ(W ): The family of distributions does not change, nor does the expectation
parameter, since Ω ∈ P (U , G) is invariant with respect to G. The shape parameter λ,
on the other hand, does change since it re�ects the size of the orbits under G.

Proof of Theorem 5.2

We organize the proof into �ve parts.
I. Let G′ be the image of G under %−1. Since by de�nition % maps an automorphism

of D onto its corresponding permutation matrix, the image G′ is a subgroup of Aut(D).
Let v ∈ V be a node in the orbit of m under G′. Since every σ ∈ G′ is a automorphism
of D, we have |[v]| = |[m]| as well as |〈v〉| = |〈m〉| and v is maximal in D, too. This
observation together with Proposition 3.1 yields the following three properties.

W[v]• ⊥⊥
{
W[v〉•,WI\[v]

}
, (6)

L
(
W[v]•

)
=W[m]

(
2β − 〈m〉, 1

2β
Ω[m]•

)
, (7)

L
(
W[v〉•|WI\[v]

)
= N[m]×〈m〉

(
Ω[m〉•,

1

2β
Ω[m]• ⊗W−1

〈v〉

)
. (8)

Here, we make use of the fact that Ω[v]• = Ω[m]• and Ω[v〉• = Ω[m〉• for all v ∈ Orb(m),
see equation (4). Because of equation (7), there exists a random matrix Yv for every
v ∈ Orb(m) such that

W[v]• = Y T
v Yv and L(Yv) = N2β−〈m〉×[m]

(
0, I2β−〈m〉 ⊗

1

2β
Ω[m]•

)
. (9)
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The assumption β > ([m] + 〈m〉 − 1)/2 entails 2β − 〈m〉 > 0.
Next, observe that the set of parents pa(v) has to be complete in D. Otherwise

there would be an immorality in D, contradicting the assumption. Consequently, the
submatrixW〈v〉 is almost surely positive de�nite because the random matrixW is in P (U)
with probability one. We can therefore use a Cholesky decomposition to write W〈v〉 =√
W〈v〉

T√
W〈v〉 for a matrix

√
W〈v〉 ∈ PD(〈m〉). De�ne Zv :=

√
W〈v〉(W[v〉• − Ω[m〉•)

T .
Using equation (8) and Theorem 2.2.2 from Kollo and von Rosen [10] we get

L(Zv|WIOrb) = N〈m〉×[m]

(
0, I〈m〉 ⊗

1

2β
Ω[m]•

)
. (10)

Let the nodes in the orbit of m be numbered according to Orb(m) = {v1, . . . , vk}.
De�ne the random matrices

X :=

√
2β

|Orb(m)|



Yv1
...
Yvk
Zv1
...
Zvk


and µ :=

√
1

|Orb(m)|



0
...
0√
W〈v1〉
...√
W〈vk〉


,

where 0 is the zero matrix of dimension (2β − 〈m〉)× 〈m〉. We have X ∈ R2β|Orb(m)|×[m]

and µ ∈ R2β|Orb(m)|×〈m〉. Equation (6) yields Yvi ⊥⊥ Yvj for i 6= j and Yvi ⊥⊥ Zvj
for all i, j = 1, . . . , k. Using equation (8) it is not hard to show that Zvi and Zvj
are independent given WIOrb for all i 6= j. Together, this makes all the submatrices
appearing in the de�nition of X independent given WIOrb . Using elementary properties
of the multivariate normal distribution, we can specify the conditional distribution of X,

L(X|WIOrb) = N2β|Orb(m)|×[m]

(
0, I2β|Orb(m)| ⊗

1

|Orb(m)|
Ω[m]•

)
. (11)

II. Using the de�nition of
√
W〈vi〉, we get

µTµ =
1

|Orb(m)|

k∑
i=1

√
W〈vi〉

T√
W〈vi〉 = ψ(W )〈m〉, (12)

see Proposition 5.1. In particular, µTµ is regular with probability one. Proposition 5.1
and equation (10) imply

XTµ =

√
2β

|Orb(m)|

k∑
i=1

ZTvi

√
W〈vi〉 =

√
2β
(
ψ(W )[m〉 − Ω[m〉•ψ(W )〈m〉

)
. (13)

It follows that

XTX =
2β

|Orb(m)|

k∑
i=1

{
W[vi]• +

(
W[vi〉• − Ω[m〉•

)
W〈vi〉

(
W[vi〉• − Ω[m〉•

)T}
(14)

= 2β
(
ψ(W )[m] − ψ(W )[m〉Ω

T
[m〉• − Ω[m〉•ψ(W )T[m〉 + Ω[m〉•ψ(W )〈m〉Ω

T
[m〉•

)
,
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see Proposition 5.1 as well as the de�nition of X.
III. Since µTX is a linear transformation of the normally distributed random matrix

X, we can specify its conditional distribution using equation (11),

L(µTX|WIOrb) = N〈m〉×[m]

(
0, µTµ⊗ 1

|Orb(m)|
Ω[m]•

)
.

From equations (12) and (13) it follows that the random matrix ψ(W )[m〉• can also be

written as XTµψ(W )−1
〈m〉/
√

2β + Ω[m〉•. This yields the conditional distribution

L
(
ψ(W )[m〉•

∣∣WIOrb

)
= N[m]×〈m〉

(
Ω[m〉•,

1

2β|Orb(m)|
Ω[m]• ⊗ ψ(W )−1

〈m〉

)
. (15)

Since this distribution depends on WIOrb only through a submatrix of ψ(W )IOrb , the
distribution of ψ(W )[m〉• given ψ(W )IOrb is also given by the right-hand side of equation
(15). This shows assertion (iii).
IV. De�ne the matrix Q := I2β|Orb(m)| − µ(µTµ)−1µT , that is symmetric and idem-

potent with rank 2β|Orb(m)| − 〈m〉. Corollary 2.4.3.1 in Kollo and von Rosen [10] and
equation (11) yield the distribution

L
(
XTQX|WIOrb

)
=W[m]

(
2β|Orb(m)| − 〈m〉, 1

|Orb(m)|
Ω[m]•

)
.

Using equations (12), (13) and (14), it is not hard to show thatXTQX equals 2βψ(W )[m]•.
Therefore, we get the distribution

L
(
ψ(W )[m]•|WIOrb

)
=W[m]

(
2β|Orb(m)| − 〈m〉, 1

2β|Orb(m)|
Ω[m]•

)
. (16)

This Wishart distribution does not depend on WIOrb in any way. Consequently, the
unconditional distribution of ψ(W )[m]• is also given by the right-hand side of equation
(16) and the assertion (ii) is proven.
V. It remains to be shown that {ψ(W )[m〉•, ψ(W )IOrb} and ψ(W )[m]• are independent.

Note that equation (16) shows the independence of ψ(W )[m]• andWIOrb . Since ψ(W )IOrb
is a mere transformation of WIOrb it follows that ψ(W )[m]• ⊥⊥ ψ(W )IOrb .

By construction it holds that µTQT = 0 = µTQ. Theorem 2.2.4(iv) in Kollo and von
Rosen [10] yields the conditional independence of XTQX and XTµ given WIOrb . The
fact that given WIOrb , the matrices ψ(W )[m]• and ψ(W )[m〉• are linear transformations

of XTQX and XTµ respectively, yields the conditional independence

ψ(W )[m]• ⊥⊥ ψ(W )[m〉• | WIOrb .

Since we already established that ψ(W )[m]• andWIOrb are independent, the unconditional
independence of ψ(W )[m]• and ψ(w)[m〉• directly follows from the de�nition of conditional
independence, see for example Lauritzen [11, pp. 28-29]. This proves assertion (i) and
completes the proof. �
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We may use Theorem 5.2 together with Proposition 3.1 to show that the estimator
ψ(W ) follows a generalized Riesz distribution. However, since this approach needs an
extensive formalism, we will not carry it out in the present paper. Instead, we illustrate
the arising problems with the help of an example and refer to Käu� [12] for a general
proof.
The main problem is that the parameter space P (U , G) in general is not the param-

eter space of a pure graphical model P (U ′) but a lower-dimensional subset of such a
model. Therefore, there may be no well-de�ned generalized Riesz distribution with sup-
port P (U , G).
To see this, let D = 2 ← 1 → 3 and U = 2 − 1 − 3. This allows the symmetry group

G = {I3, ρ}, where ρ is the permutation matrix corresponding to the permutation (132).
The parameter space of the resulting invariant graphical model is

P (U , G) =


ω11 ω12 ω12

ω12 ω22 0
ω12 0 ω22

 ∈ R3×3

∣∣∣∣∣ ω11ω22 − ω2
12 > 0

 .

This is not a pure graphical model but only a lower-dimensional subset of the graphical
model P (U). The solution to this problem is to reparametrize P (U , G) into the set{(

ω11 ω12

ω12 ω22

)
∈ R2×2

∣∣∣ ω11ω22 − ω2
12 > 0

}
= PD(2).

This set can be interpreted as the parameter space of the pure graphical model P (U ′)
corresponding to the graph U ′ = 1−2. It is now possible to reparametrize the maximum
likelihood estimator ψ(W ) accordingly and to show that the reparametrized estimator
follows a generalized Riesz distribution over P (U ′).
Even though this reparametrization idea also works in the general case, the required

formalism is tedious and does not give any deeper insight. However, we want to stress
that the change in the shape parameter mentioned in Remark 5.3 does have an important
e�ect when trying to combine the distributions from Theorem 5.2 into a joint generalized
Riesz distribution. The reason for this is that Remark 3.2 is not applicable anymore,
since the new shape parameter is not scalar in general. As a consequence, one has to
specify a certain acyclic directed graph D in order to characterize the distribution of
ψ(W ) via a joint generalized Riesz distribution.
Instead of pursuing this approach any further, we demonstrate how to perform a like-

lihood ratio test between two nested invariant graphical models in the next section.

6 Likelihood ratio tests

The �rst task in this section is to specify to two acyclic directed graphs D0 and D
with skeletons U0 and U as well as two groups G0 and G such that the testing problem
PD(U0, G0) against PD(U , G) is well-de�ned, that is, PD(U0, G0) ⊆ PD(U , G).
To do so, as always let I be an index set. Let D0 = (V0, E0) and D = (V,E) be two

acyclic directed graphs such that I is partioned according to ·∪v∈V [v] = I = ·∪w∈V0 [w].

12



Let ϕ : V0 → V be a surjective mapping such that [v] = ·∪w:ϕ(w)=v[w] and

∀w,w′ ∈ V0 : w → w′ ∈ E0 ⇒ ϕ(w)→ ϕ(w′) ∈ E.

In Madsen [1], such a mapping is called a homomorphism between the graphs D0 and D.
Finally, let U0 and U be the skeletons of D0 and D respectively.
This construction implies that the two graphical models PD(U0) and PD(U) are

nested, PD(U0) ⊆ PD(U). Indeed, within a index set [v] all interactions are allowed
and that a missing directed edge corresponds to an additional independence constraint.
By construction D has at least as many directed edges as has D0. Moreover, D0 has at
least as many nodes as has D, so that for D0 the variables in I are divided up into smaller
subsets [w]. This means that the blocks in D0 allowing for all interactions contain fewer
elements than the saturated blocks in D.
To include symmetries in the models, let G0 ⊆ Perm(D0) and G ⊆ Perm(D) be

subgroups of allowed symmetries, such that G ⊆ G0. It follows directly from de�nition
2.1 that the two invariant graphical models are nested, PD(U0, G0) ⊆ PD(U , G), since
G induces less symmetry restrictions on the covariance matrices than G0 does.
The second task in this section is to state the likelihood ratio statistic explicitely and

approximate its distribution. From now on, let U0, U , D0, D, G0 and G be as described
above. Let ψ0 be the balancing function with respect to G0 as de�ned in equation (5)
and ψ be the balancing function with respect to G. Analogously, let π0 and π be the
projections on S(U0) and S(U) respectively, as de�ned in equation (3). The projections
of the sample covariance matrix S are denoted byW0 = π0(S) andW = π(S). Moreover,
assume that the maximum likelihood estimator ψ0(W0) ∈ P (U0, G0) in the smaller model
exists. This implies the existence of the likelihood ratio test statistic

Q =

( ∏
v∈V det[ψ(W )[v]•]∏

w∈V0 det[ψ0(W0)[w]•]

)n
2

,

see Madsen [1, p. 1177]. Caution is advised when interpreting the Cholesky parameters
present in this equation. The de�nition of these parameters implicitly depends on the
causal structure of an acyclic directed graph, see chapter 2. For ψ(W )[v]• this corre-
sponding graph is D, while ψ0(W0)[w]• is de�ned with respect to the graph D0. In order
to keep this di�erence in mind, we continue to use the index �[v]•� for nodes in D and
the index �[w]•� for nodes in D0.
To simplify the statistic Q, we can make use of the fact that the Cholesky parameters

of a matrix Ω ∈ P (U , G) are identical for all nodes in the same orbit, see equation (4).
For that reason, let VG ⊆ V be a subset that includes exactly one node of every orbit
of V under G. Analogously, let VG0 ⊆ V0 include exactly one node of every orbit of V0

under G0. The statistic Q can then be reformulated as

Q =

( ∏
v∈VG det[ψ(W )[v]•]

|Orb(v)|∏
w∈VG0

det[ψ0(W0)[w]•]|Orb(w)|

)n
2

. (17)
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Now, we compute the higher moments of Q. This enables us to prove that the deviance
−2 log(Q) follows a Box-type distribution under the null hypothesis. The following propo-
sition will be useful in this process.

Proposition 6.1 Let D = (V,E) be an acyclic directed graph without immoralities and

let U = (V,E∼) be its skeleton. Let G ⊆ Perm(D) be a group of allowed symmetries.

Let X1, . . . , Xn ∼ NI (0,Σ) be independent for a Σ ∈ PD(U , G) with n ≥ [v] + 〈v〉 for all

v ∈ V . Again, we use the notation Ω = π(Σ) ∈ P (U , G) and W = π(S) where S is the

sample covariance matrix and π the projection from equation (3).

Then for all δ > maxv∈VG

{
[v]+〈v〉−1
2|Orb(v)| −

n
2

}
, the following equality holds true:

E

 ∏
v∈VG

det(ψ(W )[v]•)
δ|Orb(v)|


=

2δ|I| det(Σ)δ

nδ|I|

∏
v∈VG

|Orb(v)|−δ[v]|Orb(v)|
[v]∏
i=1

Γ
((
δ + n

2

)
|Orb(v)| − 〈v〉+i−1

2

)
Γ
(
n
2 |Orb(v)| − 〈v〉+i−1

2

)


Proof

By assumption, W follows a generalized Riesz distribution with expectation parameter
Ω and scalar shape parameter λ = (n/2, . . . , n/2)T ∈ RV , see Andersson and Klein [8,
Example 17.1]. Theorem 5.2 then implies that the random matrices {ψ(W )[v]•}v∈VG are
all independent and follow Wishart distributions. This yields

E

 ∏
v∈VG

det(ψ(W )[v]•)
δ|Orb(v)|

 =
∏
v∈VG

E
[
det(Wv)

δ|Orb(v)|
]

=:
∏
v∈VG

Ev, (18)

where Wv is Wishart distributed with n|Orb(v)| − 〈v〉 degrees of freedom and parameter
matrix Ω[v]•/(n|Orb(v)|). Therefore, the problem of computing the expected value above
simpli�es to specifying the higher moments of the determinant of a Wishart matrix.
Using Corollary 2.4.4.1 in Kollo and von Rosen [10], it is not hard to show that

Ev =

(
2

n|Orb(v)|

)δ[v]|Orb(v)|
det(Ω[v]•)

δ|Orb(v)|
[v]∏
i=1

Γ
(
δ|Orb(v)| − n|Orb(v)|−〈v〉−i+1

2

)
Γ
(
n|Orb(v)|−〈v〉−i+1

2

)
holds true for every v ∈ VG. Also note that from equation (4) and Corollary 5.3 in
Andersson and Klein [8] it follows that∏

v∈VG

det(Ω[v]•)
|Orb(v)| =

∏
v∈V

det(Ω[v]•) = det
[
π−1(Ω)

]
= det(Σ).

Together with the fact that
∑

v∈VG [v]|Orb(v)| = |I|, this shows the assertion. Note that
the restriction on δ is needed to prevent the argument of the Gamma function to become
negative. �
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The main step in the proof of Proposition 6.1 is to use the independence structure
given by Theorem 5.2 in equation (18). The application of this result to the likelihood
ratio statistic Q yields the following theorem.

Theorem 6.2 Let D0 = (V0, E0), D = (V,E), U0, U , G0 and G be as described above,

so that PD(U0, G0) ⊆ PD(U , G). Moreover, let X1, . . . , Xn ∼ NI(0,Σ) be independent

for a Σ ∈ PD(U , G). Also, let n ≥ [v] + 〈v〉 for all v ∈ V0∪V , so that the likelihood ratio

statistic Q from equation (17) exists almost surely. Then under the null hypothesis, the

identity

E
[
Qt
]

=

∏
v∈VG

{
|Orb(v)|−

n
2
t[v]|Orb(v)|∏[v]

i=1

Γ
(
n
2
|Orb(v)|(t+1)− 〈v〉+i−1

2

)
Γ
(
n
2
|Orb(v)|− 〈v〉+i−1

2

)
}

∏
w∈VG0

{
|Orb(w)|−

n
2
t[w]|Orb(w)|∏[w]

j=1

Γ
(
n
2
|Orb(w)|(t+1)− 〈w〉+j−1

2

)
Γ
(
n
2
|Orb(w)|− 〈w〉+j−1

2

)
}

holds true for every t > max
{

[v]+〈v〉−1
n|Orb(v)| − 1

∣∣∣ v ∈ V0 ∪ V
}
.

Proof

Let δ ∈ R. Under the null hypothesis, the likelihood ratio statistic Q and the Cholesky

parameters {ψ0(W0)[w]•}w∈V0 of the maximum likelihood estimator Σ̂0 ∈ PD(U0, G0) are
independent, see Madsen [1, Section 8]. Together with the description of Q in equation
(17) this yields the identity

E
[
Q

2δ
n

]
=

E
[∏

v∈VG det(ψ(W )[v]•)
δ|Orb(v)|

]
E
[∏

w∈VG0
det(ψ0(W0)[w]•)δ|Orb(w)|

] .
Both the numerator and the denominator can be simpli�ed by using Proposition 6.1.
The substitution t := 2δ/n then shows the assertion. �

This theorem proves that the distribution of the deviance −2 log(Q) under the null
hypothesis lies in the family of Box-type distributions as introduced by Box [13]. For
these distributions, very accurate approximation methods are available as described for
example in Jensen [14]. We can therefore perform a likelihood ratio test by evaluating
−2 log(Q) with respect to its approximated distribution.

7 Conclusions

In Section 5 we showed that the maximum likelihood estimator in an invariant graphical
model follows a generalized Riesz distribution. In particular, we made clear that in gen-
eral this distribution has a non-scalar shape parameter λ. This retrospectively motivates
the introduction of a multivariate shape parameter by Andersson and Klein [8].
Also, this result proves that a certain independence structure is present in the Cholesky

parameters of the maximum likelihood estimator. With the help of this observation, we
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showed in Section 6 that the likelihood ratio statistic follows a Box-type distribution
under the null hypothesis. This enables us to perform a likelihood ratio test by using the
accurate approximation methods that have been developed for Box-type distributions.
Finally, we want to stress that throughout this paper we are concerned with graphical

models that implement conditional independence restrictions. Since these constraints are
re�ected as zeros in the concentration matrix, we could term these models "`graphical
concentration models"'.
In recent years, research has increasingly been concerned with "`graphical covariance

models"'. These models use graphs to encode marginal independencies, that is, zeros
in the covariance matrix. An example of the ongoing work in this �eld is the paper of
Drton et al. [15].
In general, graphical covariance models are not regular but curved exponential families.

This makes them harder to analyze than the models examined in the present paper. It
may still be worthwile to include symmetries in these models, too, in order to reduce the
number of parameters. Shah and Chandrasekaran [16] take a �rst step in this direction
and illustrate their results by numerical studies. It may then be possible to describe the
exact distribution of the maximum likelihood estimator in these models as well. It seems
likely that for this purpose, a new generalization of the classical Wishart distribution
concentrated on a graphical covariance model is needed. In this context, we want to
mention the article of Khare and Rajaratnam [17], where such a candidate is developed.
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