UNIVERSITAT AUGSBURG

Model driven approach for open distributed systems
using an Enterprise Architecture Framework

(Based on the master thesis of Melanie Langermeier)

Melanie Langermeier

Report 2013-03 January 2013

I55=

INSITUT FUR INFORMATIK

D-86135 Augsburg

© Melanie Langermeier

Institut fiir Informatik

Universitit Augsburg

D-86135 Augsburg, Germany
http://www informatik .uni-augsburg.de/
— all rights reserved —

Abstract

Open distributed systems are complex systems, which contain a lot of components provided by
different vendors and built with different technologies. The use of well-established and
standardized modelling techniques is one way to deal with the problems that occur in the
specification and development process of these systems. Enterprise Architecture Frameworks
provide a good foundation to structure the various required modelling techniques. Existing
modelling solutions in the context of Enterprise Architecture Frameworks like UML40DP, UPDM
and ArchiMate do not provide optimal support for the specification of open distributed systems.
In this report a coherent modelling approach for open distributed systems using an enterprise
architecture framework (MODEA) is presented. In the approach the latest OMG standards like
UML, SoaML BPMN and BMM are used. As enterprise architecture framework the Reference
Model for Open Distributed Systems (RM-ODP) has been chosen. Finally MODEA is illustrated
through the specification of two case studies.

Table of Contents

00 T 0 0 71 . I
0 0 0 =1] (R v
3 I 01U o T L) o 1
1.1 MOUIVATION oA R R 1
1.2 Method Of WOIK...irnrnmnnsinsnssss s sans 2

2 Problem definition. .. ————————————————————— 5
2.1 Pilot 1: Personal Environmental Information System ..., 5
2.1.1 INEEOAUCTION coeeceeteeeeee et ssssses s ssesss s s s s bbb s s s 5
2.1.2 Challenges in the PIrOJECT ... sees s s ss e s senaes 6

2.2 Pilot 2: Oil Spill Decision SUpPOrt SYStem ... —————— 8
2.2.1 INEFOAUCTION coeerertreeeeeet et s s s s s s s s 8
2.2.2 Challenges in the PrOJECT ... ess s enes 11

2.3 Open distributed SYSEEMS ... —————————————— 13
2.3. 1 D INItION ittt s s s s s s s s R AR 13
2.3.2 PIODIEIMS .ottt seses s s sss s s R R 14

2.4 Architecture Framework RM ODP........ccmmmmmmmmnmssssssssssssssssssssssssssssns 19
2.4.1 Definition Enterprise Architecture FrameworK........eeeeneesesseesessessesseesseesseens 19
2.4.2 Introduction t0 RM=-ODP..... e sssssssssssssssssse s ssssssssssssssssssssssssssssssssssssssans 19
2.4.3 USALE OF OD P s s s s s s 21

3 Requirements for a model-based approach........n————— 23
3.1 Requirements concerning the overall approach........—————— 23
3.2 Requirements concerning the single viewpoints.......c.mmns 26
3.2.1 Enterprise VIEWPOINT s sssssssssssssssssss 27
3.2.2 Information VIEWPOINT. ... ssssssssssessssseessssssesssssssesssesssssssesssssssssasssssssseses 28
3.2.3 Computational and Engineering VIeWPOINT.......ccooeerernemeesneesessnessessessessssssesssssssssseess 28
3.2.4 Technology VIEWPOINt. .o ssssssssssesesssesssssssesssssssesssessssssse s ssssssssseses 32

4 EXiSting SOIULIONS ...t 34
4.1 Modeling approaches relating to Enterprise Architecture Frameworks.................. 34
.11 ZACKIMAIN oot setsssseesse s s sssse s s s s R AR R R bR 34
4.1.2 ArchiMate and TOGAF ... sss s s s ssss s sasssans 36
4.1.3 UPDM and DODAF/MODAF /INAF ... sesssssssesssssssssss s ssssssssssessssssesans 38
4.1.4 UMLAODP and RM-ODPeeeereeensesssessssessesssssssssssssssssessssssessssessssssssssssssssssesssssssssssssesess 39

4.2 Other service-oriented modeling approaches.......cci——— 41
4.3 Current approach in the pilot cases.......cccr s ——————— 43
4.3.1 Pilot 1: Personal Environmental Information SyStem........cccumnernmernserneernsesneessessseesnennns 43
4.3.2 Pilot 2: Oil Spill Decision SUPPOTt SYStEIM.....crererrereerrerssses s seessesssesssssssesans 44

4.4 Comparison and Evaluation of the Modeling approaches..........cccouumrrmmmsmsnsnsssssssssesnnns 45

LT L (0.1 D 51
5.1 Vision Of MODEA......cccimmmmsmssssssmssssss s sss s s s s s sssas s sesssasassssssasssas 51
LS L7 0 D 54
5.2.1 INEFOAUCLION worucetererrceseeseiseses st ssssss s st s s bbb 54

ST) o) 1= Tot B 1Y oY U=] 11 oV PP 54

5.2.3 Architectural Framework: VIEWPOINTS ... sesssesssesssesssssessessssseees 56

5.2.4 Distribution tranSPArEIICYcouereerreerieesremsressesseessessessssssesesssesssesssesssssssessse s sssssssssesssssseses 58
RIS T 10 4§ (0] 14 - o Lol 000 PP 58
5.3 Modeling the ODP VieWPOINES ..o ssssssssssssssssssssssssssssssasas 58
5.3.1 ENterpriSe VIEWPOINT. ...t semssessessssesse s sssessssssesssesssesssssssesssssssssssesssssssssasssssssseses 58
5.3.2 Information VIEWPOINT. ... sesssessesssesse s ssessessseessssssesssssssesssesssssssesssssssssssssssseees 61
5.3.3 Computational VIEWPOINT ... ssesessseessesssessssss s ssssssssseees 64
5.3.4 Engineering VIEWPOINT. ... ssesssssssessssssesssssssesssssssesssesssssssesssssssssssssssseees 66
5.3.5 Technology VIEWPOINTt. ..o sssssss s esessseesssssesssssssessse s ssssssssssssssssseees 70
5.4 Connections between the VieWPOINLS ... 73
5.5 Methodology for MODEA ... s sssssssassssssssasses 77
LS ST W0 T0Y B 11] 0) o 78
6 Application Of MODEA ... s sssas s sss s sss s 79
6.1 Pilot 1: ENVIROFI PEIS.....ciiininsnmsssssssssssssssssssssss s s sssssssassssssssasassssssssasas 79
L7000 RN 0 T3 15 Uol O 0 E=0 o= U 1) o 13 (o3P 79
6.1.2 Architecture SPeCifiCation ... enes 80
6.2 Pilot2: ENVISION Oil SPIll....coiiciisninssmmnsmsssmssassssssssssasas 93
6.2.1 0il Spill Decision Support System (RUNTIME).....cocorrrerneerreereerreessemsseesesseesesssesseseesseesseees 93
6.2.2 ENVISION portal (Oil Spill Design Time)....ccoueerermernereerseesseessessseessesssesssssssesssssessesssssseees 99

7 Conclusion and future WOorK ... ———s 101
7% S 1 1111111 = 1 o 101
A/ 2" 111 =1 o L0) ¢ 102
7.3 FULUIe WOTK i s sas s 104
A T 10 1 Lo 11) 4 105

£S J 11 1 1) = L0 o < 106

List of Figures |

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Figure 23
Figure 24
Figure 25

Figure 26

Figure 27

MODEA and its dependencies

Method of Work

ENVIROFI Overall Architecture (PEIS 5.2.2)
Box Diagram for Data Flow (PEIS 2.3.2)
ENVIROFI instance (PEIS 4.2)

Inconsistencies in layer and enabler description
(Own contribution based on PEIS 5.2.1)

Usage of ENVISION (ENV 1.2)

Workflow of Oil Spill Decision Support (ENV 1.1)

Overall Architecture of the MaaS Composition Portal (ENV 3.1)
ENVISION Execution Infrastructure Architectural Components (ENV 6.1)
ENVISION Focus areas (ENV 1.4)

Challenges for the architecture of an open distributed system

Viewpoint of RM ODP and their mapping to the problems

Relationship between the requirements concerning the overall approach and the
problems

Requirements concerning the single viewpoints

Zachman Framework for Enterprise Architecture, Version 3.0 (Zach12)
TOGAF Architecture Development Method Cycle (Open11)

Main Concepts of ArchiMate Version 2 (Openl2b)

Example Structure of the Information Viewpoint Specification (ISO09)
Process loan interaction (ISO09)

Enterprise Architecture Modeling Levels according to (Sad10)

Layers in SOA Framework from
(Own contribution based on Ber08)

Provisioning of MODEA using modeling techniques and an EA Framework
Basic principle for MODEA

Parts of the RM ODP Specification
(Own contribution based on IS098a)

Elements of the basic modeling concept
(Own contribution based on IS010a)

Viewpoint Overview of RM ODP
(Own contribution based on IS098a)

[

Figure 28

Figure 29
Figure 30
Figure 31

Figure 32
Figure 33
Figure 34

Figure 35
Figure 36
Figure 37

Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45

Figure 46
Figure 47
Figure 48
Figure 49

List of Figures |

Mapping of RM-ODP concepts in the Enterprise Viewpoint to MODEA Modeling
Concepts
(Own contribution based on ISO10b)

Concept Model of the Enterprise Viewpoint
Schematic Overview of the Enterprise Viewpoint

Mapping of RM-ODP concepts in the Information Viewpoint to MODEA modeling
concepts (Own contribution based on ISO10b)

Concept Model of the Information Viewpoint
Schematic Overview of the Information Viewpoint

Mapping of RM-ODP concepts in the Computational Viewpoint to MODEA modeling
concepts
(Own contribution based on ISO10b)

Concept Model of the Computational Viewpoint
Schematic Overview of the Computational Viewpoint

Mapping of RM-ODP concepts in the Engineering Viewpoint to MODEA modeling
concepts
(Own contribution based on Lin11, ISO98a)

Concept Model of the Engineering Viewpoint
Schematic Overview of the Engineering Viewpoint
Labeling in the Component Diagram

Proposed labeling in the Component Diagram
Concepts of the Technology Viewpoint

Schematic Overview of the Technology Viewpoint
Relationships between the Viewpoints in MODEA

Schematic relationships between the model elements of the Enterprise, Information
and Computational Viewpoint

Schematic relationship between Computational and Engineering Viewpoint
Mapping of Sequence Diagrams
Steps in the development process

Enablers in ENVIROFI
(Own contribution based on PEIS 4.2)

Figure 50 Architecture-Based Classification Approach (ISO05)

Figure 51
Figure 52
Figure 53

PEIS - Business Motivation Model
PEIS - BMM2Use Case Diagram
PEIS - UML Use Case Diagram

I1

Figure 54

Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69
Figure 70
Figure 71
Figure 72
Figure 73
Figure 74
Figure 75
Figure 76
Figure 77
Figure 78
Figure 79
Figure 80

List of Figures | I11

PEIS - Use Case Template dat03 Check availability of data on system server (Excerpt
from PEIS 2.3.1)

PEIS - BPMN Collaboration RPT-01 Display past meteorological conditions and events
PEIS- BPMN Collaboration vis-01 Select temporal extent
PEIS - Information Type Model

PEIS - State Machine for Information Type User profile
PEIS - Message Type Diagram

PEIS - Object Model

PEIS - Service Architecture PEIS Environment

PEIS - Service Architecture PEIS System

PEIS - Participant Service Architecture Fusor

PEIS - Service Composition with BPMN

PEIS - Service Contracts

PEIS - Consumer and Provider Interfaces

PEIS - Component Diagram PEIS and Environment

PEIS - Service Interface

PEIS - Component Diagram Scheduler

0il Spill - Business Motivation Model

0il Spill - Use Case Diagram

0il Spill - BMM2Use Case Diagram

0il Spill - Invariant Schema Information Type Diagram
0il Spill - Overall Service Architecture

0il Spill - Oil Spill System Service Architecture

0il Spill - Composition Process for the Oil Spill Prediction Executable
0il Spill - Component Diagram 0il Spill System

0il Spill - Service Interfaces

0il Spill - Deployment Diagram

ENVISION Portal - Service Architecture

List of Tables | IV

List of Tables

Table 1 Challenges in distributed systems (Own contribution based on Cou05)
Table 2 Viewpoints of RM ODP (Own contribution based on IS098a)

Table 3 Requirements dealing with the used modeling techniques

Table 4 Requirements concerning the Enterprise Viewpoint

Table 5 Requirements concerning with the Information Viewpoint

Table 6 Requirements concerning the Computational and Engineering Viewpoint
Table 7 Requirements concerning the Technology Viewpoint

Table 8 Viewpoints in DoDAF 2.0 and MODAF 1.2
(Own contribution based on OMG12b)

Table 9 Usage of the RM ODP Viewpoints in TR 19154
(Own Contribution based on Cen12)

Table 10 Specification Approach in the ENVIROFI project
(Own contribution based on PEIS 4.2, PEIS 6.1.1)

Table 11 Specification approach for ENVISION and the Oil Spill project
(Own contribution based on ENV 1.2, ENV 1.4)

Table 12 Summary of the Modeling Approaches
(Own contribution based on OMG12b, ISO09, Open12a, Sad10, Ber08, Cen12)

Table 13 Evaluation of the requirements concerning the overall approach
(Own contribution based on Open12a, OMG12b, ISO09)

Table 14 Evaluation with the requirements concerning the single Viewpoints
(Own contribution based on Open12a, OMG12b, ISO09)

Table 15 Concepts of the Engineering Viewpoint in RM ODP
(Own contribution based on ISO10b)

Table 16 Overview of the diagram types used in MODEA
Table 17 Summary of MODEA

Table 18 Evaluation of MODEA and other modeling approaches

Introduction | 1

1 Introduction

1.1 Motivation

In open distributed system a lot of different parties have to work together. The issue that “each
domain has its own description techniques” (Lan09) and following “different fields speak their
own languages, draw their own models, and use their own techniques and tools” (Lan09) affects
the current practice in architecture specification. Nevertheless the various components of such a
system have to interact to provide the required functionality although communication and
decision making between is vendors gets really hard.

To avoid a Babylonian confusion it is important that the various vendors of the open distributed
system agree on one language used for the specification and documentation of the system
(ISO98a). Such a language should enable the creation of good and pragmatic models using
techniques that are defined as formal as possible.

The use of well-established and standardized modeling techniques in the context of an
Enterprise Architecture Framework is one way to reach this. Several publishers in the scientific
context point out the necessity of specific techniques to deal with the growing complexity of
information systems. Zachman said, that “the increased scope of design and levels of complexity
of information systems implementations are forcing the use of some logical construct (or
architecture)” (Zach99). And also Leist and Zellner (2006) stated that “As information systems
and technologies grow in complexity and scope, the need for a coherent and comprehensive
modeling approach becomes of paramount importance.” (Lei06).

Frameworks for enterprise architecture “structure architecture descriptions techniques by
identifying and relating different architectural viewpoints and the modeling techniques
associated with them.” (Lan09) Therewith they do not propose actual modeling concepts, but
generally define the elements that are part of the architecture in quite precise way. “Modelling
languages are an essential instrument for the description and communication of architectures.”
(Lan07)

When choosing a set of actual modeling techniques for an enterprise architecture framework,
especially in an open distributed context, well-established and standardized techniques like
UML and BPMN should be chosen. Well-established modeling techniques have greater
acceptance and the risk of misunderstanding their specification is lower. Using standardized
modeling techniques provides the advantage that they keep stable and mostly have a good tool
support.

Current approaches in this context are for example ArchiMate, UML40DP or UPDM. ArchiMate is
a very comprehensible approach, but it uses a completely new modeling techniques. UPDM is
originally made for the military domain and therefore contains domain specific practices.
UML4ODP is a complex approach, which is also overweighed in some parts. Additionally it does
not provide explicit support for service-oriented architectures and also for different
communication styles like RPC.

Service orientation is a paradigm that supports the developer by handling the complexity
through structuring a system in services. “SOA represents a set of design principles that enable
units of functionality to be provided and consumed as services. This essentially simple concept

Introduction | 2

can and should be used not just in software engineering, but also at all other levels of the
enterprise architecture, to achieve ultimate flexibility in business and IT design.” (Ste05) The
specification of the UML profile SoaML enables a new way to “define SOA concepts in terms of
existing UML concepts”. (OMG12a)

An initial comparison and evaluation of various Enterprise Architecture frameworks has been
done, including Zachman, TOGAF with Archimate, DODAF/MODAF with UPDM, and ISO RM-ODP
with UML40ODP. RM-ODP has been selected as the foundation for this work, as there already is
an established history of applying RM-ODP within the geospatial and environmental domain. It
is also possible to map the models of RM-ODP into other EA frameworks, like TOGAF or
DOFAF/MODAF.

The goal of the report is to specify a coherent modeling approach for open distributed systems,
illustrated by the use of an enterprise architecture framework and using standardized, well-
established modeling techniques. For evaluation the defined approach is applied to two
environmental systems. As practical examples two environmental systems pilot cases from
running projects are chosen. The first one is the Personal Environmental Information System
(PEIS) from the ENVIROFI Project. The second one is the Oil Spill pilot from the ENVISION
Project. Both are large, distributed systems which contain a lot of services and data services to
be integrated.

1.2 Method of work

The research method in this report is based on the concepts of the basic engineering paradigm
described by Denning et al. (Den89). He proposes the following four steps to solve a given
problem:

1. State requirements

2. State specification

3. Design and implement the system
4. Test the system

This method will be adapted in the report. Following the first step is to introduce the pilot cases
and formulate the problems that come the open distributed context and also the ones from the
examples. The next step is to define requirements for a model based approach for open
distributed systems based on the identified problems. Thereby a requirements matrix will be
established as foundation for further analysis and comparisons.

As second starting basis the existing model based approaches for enterprise architecture will be
examined and evaluated with use of the requirements matrix. The identified gaps in the analysis
of the existing solutions specify the issues that have to be considered, when defining the model
driven approach for open distributed system using an enterprise architecture framework
(MODEA) in the next step. The dependencies around MODEA are shown in Figure 1.

Introduction | 3

EA Modeling
Framework techniques
Pilot 1: Pilot 2:
PEIS 0il Spill

Figure 1 MODEA and its dependencies

With use of the structure and the defined concepts in an Enterprise Architecture Framework
MODEA is introduced. This refers to the design and implement step of in (Den89).

Since the product is a specification approach, the testing step contains the application of the
approach to the two example cases and a verification of the defined requirements in the
beginning. Finally the results will be compared to the existing solutions and further work will be
described. The following figure summarizes the method of work in this report.

Problem

Require-
ments

Existing
Solutions

MODEA

Application in
Pilot Cases

Evaluation

Figure 2 Method of Work

The following research questions will be answered in the report:

1. What are the most important Enterprise Architecture Frameworks and which model
based approaches exist for their application?

2. How to specify an open and heterogeneous system with continuous modeling using an
enterprise architecture framework?

Introduction | 4

a. How to model the concepts of an Enterprise Architecture Framework using
existing standardizes modeling techniques?
b. How to integrate the various views of the models?
3. How to apply the approach to an environmental system?
a. How can modeling tools support the application of the approach?

This concludes into three results. The first one is an analysis of the various existing Enterprise
Architecture Frameworks and a validation of their corresponding modeling approaches. The
second one is the model-driven approach for open distributed systems MODEA. And at least the
specification of this continuous model based application in two pilot cases.

Problem definition | 5

2 Problem definition

In this chapter at first the two pilot cases are introduced and their current challenges are
outlined. The projects are the Personal Environmental Information System PEIS and the il Spill
Decision Support System. Both systems are open distributed system and currently under
development. In the following Open Distributed System in general will be defined. Through
analyzing the pilot cases with respect to the characteristics of open distributed systems, the
problems in developing and maintaining such systems are identified. At least Enterprise
Architecture Framework are introduced, especially the Reference Model for Open Distributed
Processing RM ODP. It is described how RM ODP can be used to deal with the defined problems.

2.1 Pilot 1: Personal Environmental Information System

2.1.1 Introduction

The Personal Information System for air pollutants, allergens and meteorological conditions
(PEIS) is one of the two pilot cases. The aim of the system is to provide data about the
atmospheric conditions to sportspersons, allergic persons or environmental observers. (PEIS
2.1)

PEIS is part of the project Environmental Observation Web and its Service Applications within the
Future Internet (ENVIROFI). This project is one of the eight research projects within the Future
Internet Public Private Partnership (FI PPP) program of the EU. This program is funded by the
European Commission with the goal to “advance a shared vision for harmonised European-scale
technology platforms and their implementation, as well as the integration and harmonisation of
the relevant policy, legal, political and regulatory frameworks.” (FI-PPP12)

The FI WARE project of the FI PPP program provides a Core Platform for the Future Internet. It
offers a set of reusable components for all usage areas. These so called Generic Enablers capture
the domain-independent functionality required for the Future Internet.

ENVIROFI deals with the environmental usage area of the Future Internet and provides generic,
but environmental domain-specific functionalities, so called environmental enablers.
“ENVIROFI's vision is to establish an Environmental Observation Web in which all
environmental data, whether from sensors, citizens, or models, are available anytime anywhere
through the Internet in a standardized, usable format.” (ENV12b)

ENVIROFI consists of three use cases with the topics biodiversity, human/environment
interaction and collaborative usage of marine data. Based on the requirements of the three pilots
in the ENVIROFI project generic use cases and architectural styles for the environmental domain
are specified. It also defines specific enablers needed for the pilots and gives input for the
functionality required by the generic enablers from FI WARE. (ENV12c)

PEIS as one of the pilots provides requirements for ENVIROFI and then adapt the architectural
styles with usage of the established specific and generic enablers to implement them in further
iterations.

The PEIS project consist of three parts:

1. Personal Assessment System
2. Notification and Early Warning System

Problem definition | 6

3. User Input Interface

The Personal Assessment System should provide meteorological, air quality and air pollution
information about past, present and future conditions. The Notification and Early Warning
System offers functionality to inform the user about specific predefined environmental
situations. The User Input Interface enables the interactive part of the system. The user can
provide environmental data and interact with other users. (PEIS 2.1)

2.1.2 Challenges in the project

Since the project contains generic and specific services in the environmental context it has to
deal with a huge application landscape. Therefore support for the implementation is needed to
identify the required services. Existing capabilities in the environmental and generic enablers of
FI WARE and ENVIROFI should be reused as much as possible when implementing the PEIS
system.

In the existing deliverables of ENVIROFI, PEIS and FI WARE projects various modeling
approaches are used at the moment. These are for example:

- FMC Diagrams for FI WARE enablers

- UML Use Cases and Interaction Diagrams for the description of the Use Cases in the PEIS
Specification

- Box Diagram for describing the ENVIROFI architecture

FMC stands for Fundamental Modeling Concepts and “primarily provide a framework for the
comprehensive description of software-intensive systems.” (FMC12) Therewith also a graphical
notation for creating models is included.

The term Box Diagrams is used in the report for referring to diagrams, which consist of boxes
and lines and have their own syntax. They are not compatible with standardized techniques and
typically do not have a syntactically support in modeling tools. Examples of a so called Box
Diagrams are shown in Figure 3 and Figure 5. They are describing the Overall ENVIROFI
architecutre and a ENVIROFI instance architecture.

Application Layer (ENVIROF! Pilot App) ‘ /\E:‘g\:ﬁg;;"ta'

F=======ﬂ

ENVIRONMENTAL
USAGE AREA LAYER
1l

| Egionet
" \ " Information
& W
c;) " . Transformation Layer , " o
o &
= " " O | Observation
< (E!! !H!H!“!!!Hm!!! E’!' | E Coverage
g I
> b
E T Rbetractiontayer @
| ‘L}’J { Distributed Computing Infrastructure /]/// gzws;‘tsisogr’age
N :

J CPUs, Disks,
— Instruments

Hardware

Figure 3 ENVIROFI Overall Architecture (PEIS 5.2.2)

Problem definition | 7

Figure 4 shows a Box Diagram describing the basic data flow, when a user interacts with the

system.

Welcome

l

Choose
profile

AN

Profile No
Type profile

/ Allow Data
GPS

\ T
Not Location

allow

Figure 4 Box Diagram for Data Flow (PEIS 2.3.2)

Most of the diagrams stand for themselves and relationships between them are not shown up.
For example in the Deliverable 5.2.2 from PEIS the Overall architecture (Figure 3) is described
with its layers and afterwards the ENVIROFI instance (Figure 5) is introduced. But theres no
information about how elements of the both diagrams relate to each other.

ot [e | S0, ENVIROF! Instance

I R T a——

e tttas L

Legend

Developed on dop

Devekond wih EN

Mutiple choce of prob.

Other ENVIROFI

instances

3 (Suppcrted heouph mpdeton

Exsstion profocoly (Sg00ied theous mdebory

Figure 5 ENVIROFI instance (PEIS 4.2)

Though the iterative approach used in the project there is one major challenge to keep the
deliverables and specification documents consistent. The huge scope with its separation into
several work packages makes this task even more difficult. For example the Geo Referenced Data
and Application Layer in Figure 3 is called Environmental Information Layer in the description

Problem definition | 8

of the diagram. Both names are used in the several deliverables without mentioning, that they
refer to the same layer. (PEIS 5.2.2)

In D5.2.1 from PEIS a mapping of the enabler to the layers defined in Figure 3 was made.
Thereby the use-dependencies between the layerns and the use-dependencies between the
enabler categories are inconsistent. This is illustrated in Figure 6.

mapped to
Environmental Information sub-layer Geo-referenced
data collection and

application
use functionality use input data
from preprocesses by

Geospatial Mediation and Transformation .
Fusion tools
sub-layer mapped to

Figure 6 Inconsistencies in layer and enabler description (Own contribution based on PEIS 5.2.1)

The Environmental Information Layer is provided through usage of Geo-referenced Data
Collection and Application Enablers. The Geospatial Mediation and Transformation Layer
containts the Fusion Tools Enablers. The description of the Geo-referenced Data Collection and
Application Enablers specifies the relationship between this two enabler categories as follows:
“The services in this thematic class provide ways [...] for later use by other specific enablers such
as fusion services.” (PEIS 5.2.1) But the Environmental Information Layer is on top of Geospatial
Mediation and Transformation Layer. This means that it uses the functionality of the lower layer.

2.2 Pilot 2: Oil Spill Decision Support System

2.2.1 Introduction

The second pilot case is taken from the ENVISION project. “The envision project provides an
environmental services infrastructure with ontologies that aims to support non ICT-skilled
users in the process of semantic discovery and adaptive chaining and composition of
environmental services” (ENV1.2). The ENVISION infrastructure will be validated with usage in
the three environmental pilot cases Landslide, Oil Spill and Floods. In this report the Oil Spill
Pilot is used.

The Oil Spill System supports decision making in the case of accidental oil releases the sea.
Therefore the prediction of the drift and the effects on cods are main functionalities of the
system. To provide the functionality external data services and prediction models will be
composed together at design time. The prediction is made available to the user at runtime via a
scenario website. An overview of the usage of ENVISION to provide a Oil Spill Scenario Website
is shown in Figure 7. (ENV 1.1)

Problem definition | 9
[Scenario Websitesjd— Uses

produces
|
J—
Uses
(envision Portale/ \

The required services are provided as Models-as-a-Service (MaaS) chaining processing services,
data and sensor services. A MaasS in this project is understood as “A model made available as a
web service. A composition the user can interact with.” (ENV 1.4) A Model is a “computer
simulation of real world processes to make forecasts of a certain behavior of natural
phenomena.” (ENV 1.4) The oil spill pilot provides a decision support portal based on the
knowledge provided by two web services.

Figure 7 Usage of ENVISION (ENV 1.2)

- The 0il Drift Prediction calculates the oil spill concentration in three dimension plus
time. Therefore a prediction model service and data sources for Spill data, Wind forecast,
Sea depth data and Coast Line Data are required.

- The Cod Effect Prediction calculates the effects for cod population of an oil spill. The Oil
spill prediction data as well as data about the species and populations of the cods a
required.

The overall Workflow is shown in Figure 8. (ENV1.1)

Problem definition | 10

User input
(Ps1)
" (In2 & In3) Wind, PredictQilDrift
% current forecasts P
[;iilb’a; }
—~ (In4) Sea depth data
4> (In5) Coast line data

i

 (out1) Oil drift
(\ predictions
- (Ps2)

PredictCodEffects

(In 6) Cod species
and population data

(Out2) Cod effect
&\ predictions

Figure 8 Workflow of Oil Spill Decision Support (ENV 1.1)

With support of the ENVISION infrastructure the two Models-as-a-Service will be developed to
provide the functionality for the Oil Spill Decision Support. They will be provided “through an
automated request system for model runs, with online visualization and analysis tools and
through standard data formats for simulation data interoperability” (ENV 1.1)

The ENVISION infrastructure provides functionality directly required to provide the scenario
website like the Map Controller or an Execution Environment for MaaS. It provides also
functionality used at design time to discover and chain services using semantic technologies.
(ENV 1.2)

ENVISION has the goal to provide this functionality for the use non ICT-skilled users. A non-ICT
skilled Workflow- and Web-Site-Designer as well as a Resource Manager use the ENVISION
Portal to create the Oil Spill Decision Support System. The creation of the scenario website is
done at design time using ENVISION with its infrastructure. ENVSISION provides functionality to
manage the required resources, ontologies and compositions and create models on line as
Model-as-a-Service. Following the designer is able to configure web services and scenario
websites for specific communities. ENVISION provides also solution to design the workflow and
execute as required in the oil spill modeling domain. (ENV 1.2, ENV 1.4)

Problem definition | 11

2.2.2 Challenges in the project

The technical part of the functionality in the Oil Spill System is provided by using the ENVISION
portal and infrastructure. Using external processing, data and sensor services provides the
domain relevant part of the system. Following there are many different vendors providing
components to the system, i.e. SINTEF ICT provides a Composition Module, SINTEF Met provides
the Oil Spill and Cod Effects Prediction Models and cost line data is provided by the Norwegian
Mapping Authority. All the vendors have to collaborate with each other to and share their
knowledge and capabilities to provide the Oil Spill Decision Support System. Overall the system
is more or less a composition or chaining of existing services, which are then executed at
runtime. (ENV 1.4)

In the current deliverables there are only informal architectural descriptions of the Oil Spill
Decision Support following the five viewpoints of RM-ODP. Most of the time textual descriptions
are used to describe each viewpoint and simply referring to parts of the ENVISION
infrastructure. An overall oil spill specific picture of the architecture is missing. If there are
architectural descriptions related to Oil Spill they are very generic in the case of ENVISION-
oriented. (ENV 1.2, ENV 1.4)

Also a problem in the current specifications is a missing explicit differentiation between run-
time and design-time aspects for the oil spill system. At run-time the user accesses the scenario
website and executes the models. Then he wants to analyze the result using graphical
simulations, changing the time or map section. At design-time a manager administrates the
resources and ontologies and a designer configures the website and creates and deploys service
compositions. Following it has to be differed between components used for run-time and these
ones used for design-time in the Qil Spill Project. Also there must be a possibility to integrate the
specification of the ENVISION components used to get an overall picture of the system.

The overall ENVISION infrastructure is also specified using the RM ODP viewpoints. A further
description of this approach will be made in chapter 4.3.1.

The single Components like the Decision Support Portal or the MaaS Composition Portal are
each described without the use of any framework (Deliverables 2.x until 6.x, ENV12a). Most
components use Concept Maps to describe the overall architecture and their relations to other
components of ENVISION. Figure 9 shows such a concept map, in this case from the MaaS
Composition Portal.

Problem definition | 12

[Service Composition Editor Module

sends
creates

sends selected entity

///

composition to \
retrieve annotated Resource Module

user resources from
retrieves Web services
in user collection

transforms composition to
WSDL for a SOS service

transforms composition to
executable composition

transforms composition to
WSDL for a WPS service validate service
composition model deploys

BPEL Output Service / executable composition

n l creates
Service Composition
WPS Output Service
Validation Service

composed of /

Deployment Service
/ exposed as
[Data Services (WFS, WCS, SOAP)J \

Data Mediation Service

[Processlng Services (WPS, SOAP)]

/ SWE Services (SOS,SPS)
A

isa

Resource

Figure 9 Overall Architecture of the MaaS Composition Portal (ENV 3.1)

Despite Concept Maps and various kinds of process diagrams, also simple box-and-lines
diagrams with their own syntax are used. One example for this is the description of the
architectural components of the Envision Execution Infrastructure shown in Figure 10.

Information Data Acquisition Interface
Discovery Query
Templates
Parser
{Query Generator) ; Semantic Context Space Engine
Information
Query
g Templates
=
Q
IS
- Process .
€ Information
@ Instance Elements
E Details
>
°
% Enhanced -
o Process Plan Medla.lmn 8
Al Planner —_— Service s
q - 5 (SOAP Services) | @ o
Service Orchestration Engine @ E Data Mediation
Sa i
Service Chains TE Englne
_ (BPEL) 3
[Pl iy Execution & Monitoring Interface =

Envision Execution Infrastructure

Figure 10 ENVISION Execution Infrastructure Architectural Components (ENV 6.1)

Another example for a simple box-and-line diagram is the overview of the Envision Focus areas
in Figure 11.

Problem definition | 13

ENVISION Scenario Websites

2 landslide E Oil Spill v~y Flood Decision Support
& Decision Support % Decision Support © Monitoring for external communities
T A A
ENVISION Portal
% Environmental Decision E Maa$S Composition
= Support Portal % Portal
y t
ENVISION Semantics
n Visual Semantic = Ontology &
- Annotation =) Resource Management
ENVISION Execution
& Semantic ¥ Semantic S Execution o Real-Time
D (Catalogue S Mediation Z Infrastructure “ Support

Figure 11 ENVISION Focus areas (ENV 1.4)

This is one of the few diagrams giving some kind of architectural overview over Envision. Some
parts of the system are described using UML Use Cases, some kind of UML Collaboration diagram
and UML Interactions Diagram (ENV 1.2). A diagram how all the components work together on a
higher abstraction level is missing. Especially between the specifications in the various Work
Packages the models are not connected to each other. This concludes to a high risk of
inconsistencies, when changes are made.

2.3 Open distributed systems

In the following open distributed systems are introduced. First they are defined and the main
characteristics are described. In the following problems occurring during the development and
maintain process of them, especially when trying to specify the system are illustrated.

2.3.1 Definition

A distributed system consists of a number of “hardware and software components located at
networked computers [which] communicate and coordinate their actions only by message
passing” (Cou05). There are two different reasons for distribution. First a system is “inherently
distributed and in connecting its systems into a seamless whole, a distributed systems appears”
(Cro96). Second an “inherently centralized information processing system [is taken] and
distribute[d ...] to achieve higher reliability, availability, safety or performance, or all of the
above” (Cro96).

Such distributed systems are significantly more complex than centralized systems. An increasing
scope leads to an increasing number of involved people and components and often concludes in
a complex definition of the system and communication problems (Lei06). In distributed system
you also have to care about the synchronization of processes and the consistency of data, since
there is no global clock and no global state relating the whole system. (Cro96)

Problem definition | 14

There are several characteristics of distributed systems you have to deal with. The following
table gives an overview of them according to Cou05.

Heterogeneity Manage the heterogeneity of Networks, Computer Hardware,
Operating Systems and Programming Languages in distributed
systems.

Openness It must be possible to integrate components written by different
programmers. The specifications and documentations of the
various interfaces from the components must be made available.

Security This includes Confidentiality, Integrity and Availability of the
System. Protect the system from attacks against communication
channels and processes.

Scalability The system should remain effective although there is a increase in
the number of participating components or users.

Failure Take of an increased number of failure rate due to more

Handling components. Deal with detection, masking, recovery and tolerating
of failures.

Concurrency Each resource must be designed to be safe in a concurrent

environment. It must ensure the integrity of the data and the
consistency of information all the time.

Transparency Hide a specific characteristic of the system with respect to cost and
performance trade offs. This can be Access, Location, Migration,
Relocation, Replication, Concurrency, Failure or Persistence.

Table 1 Challenges in distributed systems (Own contribution based on Cou05)

In the ongoing report we will concentrate on the heterogeneity, openness and transparency
characteristics, since they require concepts in the approach to deal with them. Security,
Scalability, Failure Handling and Concurrency are more concerned with the design of the system.

“An Open Distributed System is made up of components that may be obtained from a number of
different sources, which together work as a single distributed system” (Cro96). Components
participating in Open Distributed System are not only from one vendor, they can be provided
from several ones. Thereby the system compasses heterogeneous IT resources and multiple
domains. Open distributed systems become important because of an increasing demand on
information exchange between cooperating organizations and a growing need of interconnect
information processing services to provide the required functionally (ISO98a).

2.3.2 Problems

The following figure shows the seven main problems, which have to consider when specifying
and open distributed systems. Each problem is described further in detail and illustrated
through linking to the example cases introduced above.

Problem definition | 15

High complexity

Provide the and scope Global

functionality optimization
Collaboration

Distribution
be‘t‘é\’fggrtshe Transparencies
Heterogeneity Open Need for
of the distributed flexibility
components systems

Figure 12 Challenges for the architecture of an open distributed system

Problem 1: Heterogeneity of the components

A major challenge in these kinds of systems is their realization in an “environment of
heterogeneous IT resources and multiple organizational domains”. (ISO98a) The fact that the
“components [...] may be obtained from a number of different sources” (Cro96) increases the
complexity when dealing with such a system. The variety of vendors and components lead to a
broader scope of the system, complicating its structure and make it more complex to see the
system as a whole.

For example in the PEIS project there are 45 environmental enablers, which have to be taken
into account in the design process to explore reuse facilities. On top there are 46 generic
enablers as well as various sensor and data sources, which have to be considered (PEIS 4.2).
Each of these components is provided using different technologies, since they are provided by
different organizations and developed in different projects.

Also in the 0Oil Spill project several sensor and data sources are required. Most of the
components are implemented using different implementation languages and technologies. For
example “Bathymetry data (depths) are made available as a Web Coverage Service, the Coastline
is made available as a Web Feature Service” in the Oil Spill System. (ENV 1.4) Even so the
components have to collaborate with each other to provide the required functionality of the
open distributed system. The major challenge is to manage the interaction between the different
components and to deal with the dependencies between them.

Problem 1
Open distributed systems contain a huge number of components

interacting together.
How to cope with the heterogeneity of them?

Problem 2: Orchestration of a multi-vendor environment

Problem definition | 16

A special characteristic of open distributed systems is, as already described in the above
problem, that different vendors can provide parts of the overall functionality of the open
distributed system. The vendors have to cooperate to provision the open distributed system,
because “a single vendor will not have all of the answers”. (1S098a)

Complicating in current practice the vendors or different domains often use their own
techniques including languages, models and tools for creating a specification (Lan09).
Concluding there is huge variety of modeling techniques and tools, which makes it very difficult
to build one single consistent specification of the whole open distributed system.

In the PEIS projects the specification of the environmental enablers and the geospatial enablers
is completely different. Environmental enablers are described using a predefined template.
(PEIS 5.2.2) Geospatial enablers are described with FMC diagrams and informal text. (FIWiki12)
The observation data sources for air quality, pollen or meteorological data are only described
with informal text. (PEIS 2.3.2) Nevertheless both of the enabler groups as well as the
observation data sources should be used and integrated to provide the PEIS.

The involvement of different domains provides also challenges with the used vocabulary. For
example in the Oil Spill project the term “model” leads to misunderstanding between the domain
specialists and the IT specialists. The domain specialist providing the oil drift prediction logic
understands under the term “model” a “computer simulation of real world processes to make
forecasts of a certain behaviour of natural phenomena.” (ENV 1.4). The IT specialist understands
a model as visualization of an existing or required system.

Problem 2
Various vendors from different domains, using mostly different

specification techniques, have to collaborate for the provisioning of the
open distributed systems.

How to provide an efficient communication and collaboration
environment?

Problem 3: Provide the right functionality

An important aspect in every IT system is the alignment of the Business requirements and the IT
System implementation. “Architectural Alignment, and business and IT alignment in particular,
have proved to be difficult problems in enterprise architecture” (Ste05). The authors define two
reasons for this issue: One are the differences in architectural modeling methods used from
Business analysis and IT architects. The other one is a lack of an “overarching set of design rules
governing the structuring of the various architectures making up the enterprise architecture”
(Ste05).

Especially if the provided functionality is distributed to various components from different
vendors, it is more complicated to ensure that the system provide the right functionality in the
end. Essential for this is a specification of the goals and the vision for the system as well as the
usage of techniques, which is understood by both, the users defining the requirements and the
designers and implementers providing the system. Especially the tracing of goals to the fulfilling
components is a very difficult task.

This concerns a major actual question in the PEIS project. At the moment there is a specification
of the user requirements as well as a large number of components providing functionality to

Problem definition | 17

meet them. Now the task is to create a system design with use of the existing functionality to
fulfilling the user requirements.

Problem 3
[t is necessary to ensure that the open distributed system provides the

required functionality for the user.

How can this be ensured?

Problem 4: High complexity and scope

As seen in the PEIS and 0il Spill projects in open distributed system often a system-of-system
approach is supported. (PEIS5.2.2) It enables a structuring of the variety of components through
partitioning the overall systems into smaller ones, each one providing and requiring specific
functionality. A system of systems describes the “integration of many independent, autonomous
systems, frequently of large dimensions, which are brought together in order to satisfy a global
goal and under certain rules of engagement.” (Kar10) The huge amount of systems, components
and vendors working together in such system increase the complexity and scope of it. “The
complexity involved in the specification of large, open distributed systems is constantly growing,
due to the increasing size of software applications and the increasingly stringent requirements
on their functionality, performance, reliability, security, availability, etc.” (Rom12)

To describe such complex structures adequate solutions for establishing the specification and in
the best case also a support for the implementation is required. (KaiO5, Lei06).

In the PEIS project in Figure 6, chapter 2.1.2, inconsistencies detected in the current deliverables
are presented. The defined use-relationships between the layers and enabler categories are
contradictory. In the establishing process of the specification of open distributed systems
several groups work on different parts. Uncontrolled changes or updates lead to an increasing
complexity of the specification and also the corresponding system. “During the enterprise
architecting process, changes and updates are likely to occur quickly” (Kai05). This concludes in
different versions and the artifacts, which have to be managed to keep the overall specification
consistent. If the changes “are not applied under the control of well-organized architecture, they
will lead to more complexity and inefficient software systems” (Kho09).

Problem 4
A high number of components and vendors as well as changes and

updates increase the complexity and scope of a system.

How to manage the complexity?

Problem 5: Overall optimization

A large system with many participating parties has several stakeholders and “different
stakeholders require different perspectives” (Kai05). For example a database owner is
interested in the “structure and location of specific databases, while a sales executive may be
focused on the location and movement of data through multiple information systems” (Kai05).

Steen et al. examined that “each type of architecture is supplemented with guidelines and best
practices for optimal design” (Ste05), but “concepts for expressing global optimization and

Problem definition | 18

criteria that guide this optimization across different architectures [are lacking]” (Ste05) in
enterprise architectures.

Each of these architectures has its best practices and techniques for the design of it. Thereby
“architectures within this domain may be optimal” (Lan09) but not necessarily for the overall
organization.

Problem 5
Techniques for optimizing the architecture of one domain are well

established unlike optimization techniques covering all parts and
domains.

How can an overall optimization be supported?

Problem 6: Distribution Transparencies

“The openness is a requirement of the autonomy of different users to acquire, install and operate
different appropriate systems while maintaining consistent distribution mechanisms across all
users’ systems.” (Cro96) The distribution mechanisms required for the collaboration between
the different systems should be therewith hidden from the user. “A transparency is some aspect
of the system that is hidden from the user.” (Cro96)

The overall architecture from ENVISION (Figure 9) and also the ENVIROFI instance architecture
(Figure 5) only show the components participating in the system and the relationships between
them. Details showing how the communications over the distributed network works are hidden.
They are defined at a different section in the specification. This is conform to the definition of
Crowcroft, who said that “a transparency is provided by including some set of mechanisms in the
distributed system at a layer below the interface where the transparency is required.” (Cro96)

[t is necessary to define to which scope the user or parts of system have to deal with the
distribution or if they can use or participate in the system regarding it as a centralized one.
Otherwise at some point you have to define how the distribution will be implemented. Examples
for transparencies are: Access, Location, Relocation, Replication, Concurrency, Failure and
Persistence Transparencies. (Cou05)

Problem 6
Usage of Distribution Transparencies is necessary when implementing a

distributed system.

How can this task be supported?

Problem 7: Need for flexibility

As the term open distributed systems says, these systems open for the integration of new
components. Through ad-hoc relationships with new partners or through recombination of
existing services these systems are able to provide new functionality. To enable this it is
important to specify a flexible architecture, where it is easy to substitute or integrate
components. (Ste05) Also Khoshnevis et al. point out the importance of “reusability and
flexibility in dealing with changes” (Kho(09)

Problem definition | 19

But especially this issue is lacking in incurrent enterprise software development, after Kraftzig
et al. it “always suffers from a lack of agility and from inefficiency” (Kra05). Concluding
enterprises are not able to align fast enough their business requirements to the IT
infrastructure.

“Enterprises have to be increasingly efficient, flexible and innovative to be successful-” (Ste05)
New products or service must be integrated in the existing systems and structures fast and
easily. Drivers for flexibility are for example a high interoperability and a loose coupling
between the components. They enable easy a replace and integration and therewith an effective
cost and resource management. (Ste05)

Problem 7
Flexible architectures for easy adoption, reuse, substitution and

integration are required.

How to enable the design and development of such architectures?

2.4 Architecture Framework RM ODP

In the previous chapter the problems occurring during the design and specification of open
distributed systems are described. In the following Enterprise Architecture Frameworks are
introduced. They provide concepts describing how to deal with these kinds of problems. As
foundation in the report the Reference Model for Open Distributed Processing RM ODP is then
introduced and it is shown how it addresses the defined problems.

2.4.1 Definition Enterprise Architecture Framework

The architecture of a software system is defined as the “fundamental concepts or properties of a
system in its environment embodied in its elements, relationships, and in the principles of its
design and evolution” (ISO11). This architecture description facilitates a good communication in
the development projects by providing a common understanding of the system. Thereby the
focus lies on the main part of the system and its structure; irrelevant details are hidden. (Lan09)
The systematic approach for the establishment of the architecture is called an architecture
framework. Usually a framework contains different viewpoints on a system to enable the
description of different perspectives. (Tan04)

Frameworks exist on the software level but also on the enterprise level. Enterprise, as defined in
TOGAF from the Open Group, is “any collection of organizations that has a common set of goals”
(TOGAF9). The Enterprise Architecture compasses the architecture of the whole organization.
That includes the structure of the organization, the business processes, their application support
and also the technical infrastructure. Through a coherent description of the different parts of the
enterprise architecture it becomes an instrument in controlling the complexity of enterprises
ant its processes and system (Lan09).

2.4.2 Introduction to RM-ODP

In the report the RM-ODP framework is used as foundation for the modeling approach. The
Reference Model for Open Distributed Processing (RM-ODP) is a framework for specifying and
building large or complex systems. It is published as standard by ISO (International Organization

Problem definition | 20

for Standardization) and IEC (International Electrotechnical Commission) in cooperation with
ITU-T (the telecommunications standards forum). (ISO98a, ISO98b, ISO10a, ISO10b)

“The aim of the Reference Model for Open Distributed Processing (the RM- ODP) is to provide a
framework for specifying and building large or complex systems” (Lin11). The systems are
called Open Distributed Processing systems and their can be amongst others classical IT
systems, information systems, embedded systems or business systems. The objective of the
framework is to “allow the benefits of distributing information processing services to be realized
in an environment of heterogeneous IT resources and multiple organizational domains”
(ISO98a). Especially the variety of vendors and technologies requires consistent concepts and
rules for the description of the architecture.

RM-ODP is a framework, which describes a possibility of how to think about a system and how
to structure its specification. It is not a methodology. Typically applying RM-ODP is an iterative
approach, where details or parts will be filled out when the requirements evolved or better
understood. But the framework can be used within almost every design process. (Lin11)

The architecture of RM-ODP “provides a complete and consistent model for the specification of
system architecture design” (Tan04). The specification is structured into five viewpoints,
“covering all the domains of architectural design” (ISO98a): the Enterprise, the Information, the
Computational and the Engineering viewpoint, A short summary of each Viewpoint is given in
Table 2; further details about the Viewpoints will be given in chapter 5.

Enterprise Deals with the scope, policies and requirements for the system
Viewpoint

Information Describes the semantics of the information dealt within the system
Viewpoint and the information processing

Computational Describes the functional decomposition of the system

Viewpoint

Engineering Defines how the distribution works with the used components types
Viewpoint

Technology Specifies the actual implementation with the component instances
Viewpoint and standards

Table 2 Viewpoints of RM ODP (Own contribution based on IS098a)

RM ODP was chosen as foundation for this report because of several reasons, which are
explained in the following.

The single viewpoints are well defined in a formal way using a set of formal concepts as
foundation and specific language for each viewpoint on top of them. The connections between
the viewpoints are defined and there is not much overlapping between the viewpoints. These
characteristics make RM-ODP be a good foundation for a modeling approach. (ISO98a)

Anther reason for this selection is the domain of open distributed systems, which required the
provision of concepts to deal with the high variety of vendors and the heterogeneity of
components. The framework is also already used in the current deliverables of two pilot cases
introduced in chapter 2. This enables the integration of the experiences already made within the
two projects. For each project the challenges are described in chapter 2.1.2 and 2.2.2. The

Problem definition | 21

particular use of RM-ODP in the two projects in illustrated in chapter 4.3.1 for PEIS and 4.3.2 for
0il Spill.

Since the RM-ODP is an ISO standard it will remain stable. Because of the international proven
processes needed for changes, partial changes by some individuals or private groups are not
possible. (Lin11)

2.4.3 Usage of ODP

The concepts of the enterprise architecture framework RM ODP addresses the problems defined
above. The framework provides concepts of how they can be solved, but does not provide a
specific set of techniques for the application of them. In the report the framework is used as a
foundation and the model-driven approach will be built upon it. Therefore in the following the
relations between the identified problems in open distributed systems and the five viewpoints of
RM ODP are illustrated. Figure 13 describes how the five viewpoints of RM ODP relate to the
problems occurring during the specification of an open distributed system.

Enterprise
Right functionality

Information

Flexibility

Computational

Heterogeneity of __—

components
Engineering

High complexity and scope

Distribution
Transparencies

Global optimization
Collaboration between vendors

Technology

Figure 13 Viewpoint of RM ODP and their mapping to the problems

Providing the right functionality is concerned in the Enterprise, Information and Computational
Viewpoint. In the Enterprise Viewpoint the “What” is described in terms of user requirements, in
the Computational Viewpoint the “How” is described in terms of functional components
collaborating together. In the Information Viewpoint the information required for the processing
is described, this includes the user input information and output information. (ISO98a, ISO10b)

To gain an open distributed system with a flexible architecture it is important to separate
concerns and keep them as independently as possible from each other. This is most important in
the Enterprise, Computational and Engineering Viewpoints, since here the what, the how and the
type of realization are specified.

The heterogeneity of the various components participating in the open distributed system is
dealt within the Computational and Engineering Viewpoint. In the Computational Viewpoint the
components are defined focused on the functionality they provide and require. Technical details
about how the functionality is provided and how the collaboration between the components will
take place are hidden in this viewpoint. The Engineering Viewpoint will handle these topics.
(IS098a, ISO10b)

Problem definition | 22

A similar concern is the distribution transparencies. But here the focus lies not on the
communication techniques it is about how the distribution will be realized. In the
Computational Viewpoint the functional components are defined, the Engineering Viewpoint
describes how they will distribute in the system using specific components types. The
Technology Viewpoint defines then the infrastructure required to realize the distribution.
(IS098a, 1ISO10b)

At least there are also problems, which are concerned with the overall framework. The high
complexity and scope of the system enhance the need for the usage of a framework, which
provides a structured approach to describe the system. RM ODP provides such a structure with
its five viewpoints Enterprise, Information, Computational, Engineering and Technology. Each
viewpoint hast its own language describing the content it contains. The relationships between
the viewpoints are also described in the RM ODP specification. (ISO98a, ISO10b)

This provides a good foundation for the global optimization problem. The defined relationships
between the viewpoints as well as the foundation on one set of object modeling concepts enable
the description of architectures with coherent connected elements. On top of this overall
architecture-wide optimization strategies can be defined. (ISO10a, ISO10b)

The vendors of the functionality provided in an open distributed system have to collaborate
through the whole developments and maintaining process. Therefore all viewpoints are
concerned with this problem. The vendors have to agree about the requirements and scope of
the system. For a good collaboration it is recommended to agree on one information model used
in the overall system. In the computational viewpoint the vendors have to agree about how the
required functionality is provided. And in the engineering and technology viewpoint they must
work together to specify how they will handle the distribution and how the required
infrastructure is provided. (ISO98a)

In this chapter the pilot cases were introduced. Based on the experiences in these projects and
the general characteristics of open distributed systems the problems occurring during the
development of such systems were identified. In the end it is illustrated how the concepts of the
enterprise framework RM ODP provide solutions for these problems.

Requirements for a model-based approach | 23

3 Requirements for a model-based approach

In the previous chapter the pilot cases were introduced. Based on the experiences in these pilots
and the generic characteristics of open distributed systems seven problems were identified. This
previous analysis will be the foundation for deriving the requirements for a model driven
approach. The requirements are documented based on the five viewpoints of RM ODP, but there
are also requirement concerning the overall approach.

At the end of each sub chapter a summary of the requirements in form of a table is shown. These
tables are used as foundation for the analysis of existing solutions in the next chapter and for the
evaluation of MODEA in chapter 7.

3.1 Requirements concerning the overall approach

Open distributed systems typically have a broad scope. “As information systems and
technologies grow in complexity and scope, the need for a coherent and comprehensive
modeling approach becomes of paramount importance” (Lei06). A common framework applied
with a shared set of modeling techniques, which is used by all participants provides support for
the problems occurring during the development of an open distributed systems. Such a common
framework should be based on formal specified modeling techniques. The established diagrams,
which are easy to understand but also powerful in their expressions, are structured using
different viewpoints as defined in an enterprise architecture framework. The use of standards as
well as a sound tool support makes the approach complete. How the necessary parts of the
approach are related to the problems defined in the previous chapter is shown in Figure 14.

2 Collaboration Tool Support
between vendors

1 Heterogeneity

of components Standards 4 High

complexity
- « S Different

7 Flexibility Smart” Diagrams Viewpoints 5 Global

optimization
3 Right

functionality 6 Distribution
Transparencies

Figure 14 Relationship between the requirements concerning the overall approach and the problems

Such a tool-supported approach, fulfilling the mentioned requirements, supports in overcoming
the variety of techniques and tools used by the various vendors (Lan09). In the following the
requirements shown in Figure 14 are described in more detail.

Requirements for a model-based approach | 24

Standards

To establish the system specification the information about the components from the various
participants has to be integrated. Therefore the participants have to agree on one way to specify
it. Using existing and standardized modeling techniques and approaches provides a stable
foundation for the specification and communication (Lin11). The use of such well-defined
approaches and techniques avoids misunderstandings and also work for defining an own one.
Standards are also important since the specification and documentation of the components must
be made available for the public. Standards enable a system to be integrated, open, flexible and
modular. (Cou05, ISO98a) Following standards are one answer to deal with the problems of
heterogeneity (Problem 1), providing an efficient communication and collaboration
environment (Problem2) and enabling a flexible architecture (Problem 7).

“Smart” Diagrams

The whole architecture of the open distributed system should be kept as simple as possible,
although the system structure can get very complex. “An EA needs to be simple enough for
everybody to understand and get the gist of which system connects to which system, where
applications reside, and how data and control flow through the system.” (Kai05)

The simpler the architecture and the more understandable it is, the less failures due to
misunderstandings occur and it is more likely to provide the right functionality (Problem 3).
Simple architectures can be achieved through establishing “smart” diagrams. “Smart” diagrams
are easy to understand for the user, but keep powerful in their expression. Well-known and
well-established techniques are supporting the creation of good and pragmatic diagrams. Since
the semantics of those diagrams are often already known, the user can concentrate on the
content.

Different Viewpoints

During the specification and design of open distributed systems one problem is the high
complexity (Problem 4). “One common way to cope with this complexity is by dividing the
design activity according to different areas of concerns”. (Rom12) The introduction of
abstraction layers and different viewpoints enables the focus on the main issues of a diagram
and hide the irrelevant details. Different viewpoints enable also taking into account that
“different stakeholders require different perspectives” (Kai05)

Enterprise Architecture Frameworks identify different architectural viewpoints to structure the
architecture description. Each viewpoint deals with one particular aspect or domain of the
enterprise (Lan09). Thereby it is important to interconnect the model elements in the various
established diagrams. For example a business owner is interested in how his requirements are
met in the system. (Kai05) Therefore the modeled requirements have to be connected to Use
Cases and these have to be mapped to Components, which implement the required functionality.
This is possible if a coherent and comprehensive modeling approach is used with explicit
defined relationships between the artifacts (Kai05, Lei06).

“To keep the enterprise architecture coherent, the relations between the different types of
architecture must be clear, and a change should be carried through methodically in all
architectures.” (Ste05)

Enterprise Architectures take into account all activities of an enterprise through combination
and relation of different architectures. Each architecture describes a particular aspect of the

Requirements for a model-based approach | 25

organization. Also the connections between the elements of the different architectures should be
well described. Therewith they support the alignment of all the various architectures, for
example they relate the strategy to the business processes and to IT resources. Such an
alignment is necessary to optimize the architecture with respect to the goals and also
infrastructure restrictions (Problem 5). The structure provided Enterprise Architecture
Framework also supports the management of the complexity of open distributed systems
(Problem 4). The goal is to create a big picture of all domains in an enterprise. (Ste05)

Modeling languages are an essential instrument for description and communication of
architectures, but mostly they provide only concepts to model a specific domain. An
“overarching set of design rules governing the structuring of the various architectures” is
missing (Ste05). Such a concept would be essential for addressing the problem of Business and
IT-Alignment (Problem 3) and also the optimization of the overall architecture (Problem 5)
(Ste05, Lan09). For this reason only the use of modeling techniques does not bring the expected
benefits, the model elements in the various diagrams required to specify the system, should have
define relationships between each other.

Using different viewpoints to describe the architecture enables also the specification of the of
distribution transparencies (Problem 6). The idea of transparencies is more or less the same as
that one from viewpoints. Both want to abstract from specific details to describe a specific part
of the system. This issue is further described in chapter 3.2.3, when describing specific
requirements for the Computational and Engineering Viewpoint.

Tool Support and formal specification

[t is important that the enterprise architecture specification is kept consistent during the whole
development process. This can be supported with an adequate management of the artifacts
using modeling tools. These tools should provide functionality for team support, especially
change and version management, and also for establishing the models in a comfortable and user-
friendly way. To keep the models consistent “a change should be carried through methodically in
all architectures” (Ste05). Thereby the use of tools addresses problem 2 and 4 with providing
functionality for an effective communication and collaboration between the vendors and also for
managing the complexity of the system due to changes.

Following it is important to choose modeling techniques, where there is already a good tool
support for the single diagrams available. Furthermore the modeling techniques must allow the
specification of relationships between the model elements of the different diagrams to be able to
keep the overall specification consistent. (Problem 4) A good tool should also enable tracing
between the various viewpoints. For example it is important to be able to trace use cases to
requirements and to the components, which will perform the functionality specified in the use
case.

In the best case the tool also enables model-to-model transformations and model-to-code
transformation to support the development process. For such a transformation it is necessary,
that the used modeling techniques and the used methodology are specified in a formal way.

The requirements concerning the modeling techniques and their related problems are
summarized in the following table.

Requirements Prob

1 Use of different Viewpoints 3,56

Requirements for a model-based approach |

1.1 Relationships between model elements of one viewpoint

1.2 Relationships between viewpoints

2 “Smart” Diagrams 3,7
2.1 Well-known and well-established
2.2 Readability

3 Use of existing standards 1,2,7
3.1 Existing standards for modeling techniques
3.2 Existing standardized enterprise architecture frameworks

4 Formal specified modeling techniques 4

5 Tool support for modeling techniques 2,4

6 Tool support for model transformation, code generation 2,4

Table 3 Requirements dealing with the used modeling techniques

3.2 Requirements concerning the single viewpoints

In the following the requirements concerning one or several viewpoints are specified. Eight
requirements are identified.

Figure 15 shows how the requirements were met in the RM ODP framework.

Use Cases

Motivation and

Requirements

Responsibilities

Interfaces and
Behavior

SOA

De-/ Composition

Architecture Styles

Distribution
transparencies

Figure 15 Requirements concerning the single viewpoints

Enterprise

Information

Computational

Engineering

Technology

26

Requirements for a model-based approach | 27

The support of Use Cases, the definition of motivation and requirements and the assignment of
responsibilities are met in the Enterprise Viewpoint. The assignment of responsibilities is also
required in the Computational, Engineering and Technology Viewpoint. The specification of
interfaces and behavior provides requirements to the Information Viewpoint but also to the
Computational and Engineering Viewpoint. The use of a service-oriented architecture, the
possibility to specify composition and decomposition, the integration of different architecture
styles and patterns as well as support for distribution transparencies are all also relevant in the
Computational and Engineering Viewpoint. The last two ones, architecture styles and
distribution transparencies, have to be met in the technology viewpoint too.

In the following the single requirements are further detailed and their relation to the problems
is shown. Since most of the requirements concerning the Computational Viewpoint are also
related to the Engineering Viewpoint, these two viewpoints will be examined together.

3.2.1 Enterprise Viewpoint

Use Cases are a “popular and widely used technique for capturing and describing the functional
requirements of a software system” (And01). They also support the communication with the
stakeholders, especially the later users of the software system. They support the development
process but are also simple enough to be understood by the users. Therefore use cases support
the alignment between the user requirements and the system implementation with providing a
shared communication foundation between the various stakeholders (And01). Also with the
spreading of agile software engineering methods and their concept of Backlogs and User Stories,
which is very similar to Use Cases, the need for explicit support of Use Cases in a coherent
modeling approach becomes more and more important. Due to their characteristics Use Cases
address problem 2, effective communication environment, and problem 3, providing the right
functionality.

To ensure that the system provides the right functionality the specification of the motivation and
of the requirement is important (Problem 3). “Requirements modeling help to understand,
structure, and anlayse the way business requirements are related to information technology
requirements, and vice-versa, thereby facilitating the business-IT alignment” (Eng11). Often the
consideration of the motivation for the system, i.e. the goals and requirements, is a missing topic
in the specification of distributed systems. (Eng11)

[t is important that a modeling approach supports the specification and integration of goals and
requirements and includes a possibility to see how they are realized in the system. Especially
this is important to ensure a Business IT Alignment, one of the major challenges in the
development process of an IT system (Problem 3). “Business process owners need to see how
their requirements are met across multiple information systems” (Kai05). The results of an
analysis of the motivation and requirements should be connected to elements of the application
architecture. (Ber08)

In open distributed systems it is important “that it be possible to assign responsibility for any
failure to meet the system’s specifications.” (IS098a). It should be clear at any point in time
which participating party is responsible for which part. Therefore also in the Enterprise
Viewpoint it is important to be able to specify who is responsible for achieving specific goals or
requirements. Without such an assignment, nobody will be responsible for reaching a specific
goal with the result that nobody cares about it. Especially in the case of failures this becomes
relevant.

Requirements for a model-based approach | 28

The following table provides an overview of the requirements, which will be met in the
Enterprise Viewpoint with the problems they relate to.

Requirements Prob
7 Assignment of responsibilities 3,4
8 Integrate motivation and requirements 3
9 Support Use Cases 2,3

Table 4 Requirements concerning the Enterprise Viewpoint

3.2.2 Information Viewpoint

In an open distributed system there are a lot of participants interacting together as well as
components processing the data. To ensure that the system provides the expected functionality
it is important that there is a “common understanding of the information they communicate
when they interact” (ISO98a). This avoids failures due to misunderstandings of single
information items. A shared language in an open distributed system supports the
communication and collaboration between the participants (Problem 2). Participants in this
context include human actors, organizations as well as processing components.

In such a common set of information items, the information required and provided by the
processing components as well as by participating users is defined. It also supports the
understanding of how data entities are utilized by business functions, processes, and services”
(TOGAF9) The agreement on one set of information items supports capturing the heterogeneity
of the components and also the origin from different domains. When dealing with an interface of
a component it is clear what information is exactly required and provided (Problem 1).
Misunderstandings can be avoided when using a shared language for the information items.

The requirements, which should be met in the Information Viewpoint, are summarized in Table
5. The interface and behavior specification will be further examined in the next chapter and will
be listed with a number there.

Requirements Prob
10 Setup a system-wide set of vocabulary 2
Interface and behavior specification of components 1

Table 5 Requirements concerning with the Information Viewpoint

3.2.3 Computational and Engineering Viewpoint
Architectural styles and patterns

Especially in open distributed system there exists often several architecture styles. They are
caused through the variety of components and subsystems participating in the system (Problem
1). To capture the variety of them the modeling approach has to support different architectural
styles and also make the difference between them visible. Especially in the geospatial domain
there must be a lot of data sources handled, since “different styles fit better for different user
and system requirements” (Cen12). The use of the resource oriented architectural style is very
common here. But for processing or composition services often a standard web service with
message passing is used. The idea of a system delivering its functionality as services to other
system also supports the integration of various architectural styles during implementation.

Requirements for a model-based approach | 29

Different styles should also be supported in the domain-specific or general context. These
generic solutions for such problems are called design patterns (Erl08). A modeling approach
should support the usage of patterns on all levels.

Composition, Decomposition and Interface and Behavior specification

An open distributed system is characterized by the fact that “it is made up of components that
may be obtained from different vendors” (Cro96). The components are then integrated and
composed together to a whole system. When using the composition concept there are a lot of
single components using different technologies to manage (Problem 1). To capture the occurring
problems several issues have to be considered:

* Parts of an open distributed system can be purchased independently from each other.
Following it is “very important that the behaviours of the different parts of a system be
clearly defined” (ISO98a). Other parts of the system must be able to rely on the
specification of the behavior, since there is no central control unit in distributed systems.
A careful test and validation phase helps ensuring that the components fulfill their
specifications. (Cou05, Cro96) There must also be a possibility to define responsibilities
for modules and their functionality, especially for the case of failures (ISO98a)

* Especially in open distributed systems it is important that the components have
published interfaces and their functionality is accessible over these interfaces. The
interfaces and protocol used in the components and for communication between them
have to be explicit defined (Cro96).

“Currently, developers widely use the terms ‘orchestration’ and ‘choreography’ to describe
business interaction protocols that coordinate and control collaborating services.” (Pap07). Both
should be supported in a modeling approach for open distributed systems. The Choreography
describes the collaboration between the services from a global point of view. The message
exchange, rules of interactions and agreements between the multiple parties are defined. The
internal action of the parties is not described and all services are treated equally. (Pap07, Bar06)

An Orchestration defines how services interact at the message level describing the business logic
and execution order of the interactions. The result is a executable process from the perspective
of one participating party which typically control the process-interactions. (Pap07, Bar06)

A system can also be specified the other way round, through a step-wise refinement of a system
into modules. This decomposition concept of a huge system into smaller modules is an often-
used concept to capture the complexity of the system structure and to keep the architecture of
the open distributed system as simple as possible (Problem 4). (Cro96)

A modeling approach for open distributed systems should support both the decomposition and
composition concept. For an adequate specification of them there also have to be techniques
defined to specify the interface and behavior of the components as well as the interaction
between them.

Service Orientation

The service-oriented style addresses several of the problems occurring in open distributed
system. Above all it enables the establishment of a flexible architecture (Problem 7). It also
supports in capturing the heterogeneity of the various components (Problem 1) and provides a
well-understood concept, the service concept, which is understood by nearly all participants
(Problem 2). The service concept tackles the alignment problem between the different

Requirements for a model-based approach | 30

architectures, which is a main factor for providing the required functionality (Problem 3). At
least the integration of services enables a possibility for linking different architectures. Such a
concept of linking the different architecture is necessary to tackle problem 5, the overall
optimization of the enterprise architecture. The way a service-oriented style will deal with these
problems is examined in the following paragraphs.

Services are characterized by an internal and external behavior. They are “self-contained and
have a clear purpose from the perspective of its environment” (Ste05). For the consumer the
internal behavior is irrelevant, he is only interested in the functionality and quality provided.
There is only little ongoing effort to revise methods for enterprise architecture in the light of
service orientation (Ste05).

Furthermore service oriented architectures “enables new and existing enterprise systems to
share services, information and data across technical platforms, departments and ultimately
across organizational and regional boundaries” (Cen12). Therewith it is an important concept
when it comes to manage the heterogeneity of the various components in an open distributed
system.

Service Orientation is a set of principles, which support to bridge the business and IT worlds in
the context of enterprise architectures. It provides concepts to comprehensively describe
business-critical functionalities of enterprise IT-System, but also efficient ways to cope with
integration and interoperability problems. Therewith the major challenge to align business
requirements and the IT system implementation can be addressed, which supports in providing
the required functionality. (Sad10, Ste05).

When establishing enterprise architectures, there are a lot of stakeholders from different
domains participating in the process. Services are a well-understood concept in the different
domains making up enterprise architectures. SOA “views each system or business as a collection
of service providers” (Kho09). This approach is very similar to what is practically used in
business and organizations. Currently there is an ongoing concentration on services in
organizations, i.e. delivering services as products to the customer. Services provide a common
and understandable language for Business and IT, which facilitates the communication between
these two main domains included in enterprise architectures. (Kho09, Ste05).

Despite the service-concept as common language between the collaborators, it also enables an
adequate separation of concerns. Through the agreement on service contracts between two
parties smaller projects can be established and also be assigned to different development
groups. (Kho09)

For support of the interoperability of the components and to gain a flexible architecture
(Problem 7) a service oriented architectural style should be supported by the modeling
approach. Khoshnevis et al. (2009) stated that the “Independence of services from each other and
from technology helps having higher degrees of reusability and flexibility” (Kho09). Following
the organization is able to take advantage of reuse, substitution and recombination possibilities
when using the service concept.

A high interoperability requires a precise service description and service protocol and also a
loose coupling between the components. Therefore it must be clearly differentiated between the
external and internal behavior and techniques supporting this have to be proposed. (Ste05,
Kho09)

Requirements for a model-based approach | 31

Only enabling a high interoperability does not conclude in a high rate of reuse. Therefore
concepts for identification of required services functionalities are needed. In the further
development process there must also be support for an identification of existing services for
reusing them as implementation for the required one.

Introducing a classification approach as proposed in TR 15449 can support the identification of
services. In the technical report a service-centric view for spatial data infrastructures is
introduced. Thereby the report proposes a life cycle based approach for the classification of
services. The service-centric part of this “lifecycle-based perspective for the identification of
enablers” (Cen12) can be applied to any service-oriented system. The main components in the
service centric view are Register, Discovery, View, Download, Invoke, Orchestration and
Composition and Security and Risk Management.

Despite this approach in TR 15449 is also an architecture-based identification of services
proposed. The main components here are

- Boundary Interaction

- Composition & Workflow

- Processing Services

- Data and Model Management Services
- Communication Services

- Management of metadata

- Security and Privacy.

They can be organized in a bus or a layered architecture.

These two approaches are examples for classification possibilities, which support the designer
in service identification and enable the reuse of them. A grouping of services, together with a
former grouping of requirements, supports the design of stable and loosely coupled services.
This helps to “increase their adaptation to changes and better control their evolution on the
basis of changing tactics” (Ber08). A model-driven approach for an open distributed should
support such a classification possibility.

Distribution Transparencies

“Virtual enterprises are dynamic entities that seek to create transparency of services’
location”(Kai05). Following a further requirement for the modeling approach for open
distributed systems is the support of distribution transparencies (Problem 6). That means that
the approach has to provide mechanisms, which enable hiding of the distribution of the system
but also a possibility, were the way transparencies are implemented is specified. In the
computational viewpoint the system should be described without caring about the distribution
of the system. The Engineering Viewpoint defines then how this abstraction from the
characteristics of the distribution will take place. (ISO98a, Cou05) The several types of
transparencies with its characteristics are explained in chapter 2.3.1.

Assignment of responsibilities

As already mentioned in the requirements for the Enterprise Viewpoint, the assignment of
responsibilities is important in open distributed systems. In the computational viewpoint, there
must be an assignment of responsibilities to the required functionality of the system. In the
engineering viewpoint for each component, which will be realized, there must be a responsible
actor ensuring its provision. The assignment of responsibilities becomes more important the

Requirements for a model-based approach | 32

more different vendors participate in providing the functionality of the open distributed system.
(IS098a)

Since this requirement is already listed in the requirements for the Enterprise Viewpoint, it will
be an unnumbered entry in the following table (Table 6) summarizing the requirements
concerning the Computational and Engineering Viewpoint.

Requirements Prob

—_

11 Specification and integration of different architectural
styles and patterns

12 Support for Decomposition and Composition 4,1

12.1 Support for Choreography and Orchestration

12.2 Interface and behavior specification of components

13 Support a service oriented architectural style 1,2,3,5,7

13.1 Specification of services

13.2 Identification of Services

13.3 Reuse of services

13.4 Classification of Services

14 Support specification of distribution transparencies 6

14.1 Communication styles

Assignment of responsibilities 3,4

Table 6 Requirements concerning the Computational and Engineering Viewpoint

3.2.4 Technology Viewpoint

All the requirements concerning the Technology Viewpoint are already mentioned in the chapter
defining the requirements for the computational and engineering viewpoint. For this reason
only a short comment how these requirements are affecting the Technology Viewpoint
specification is given.

Also in the Technology Viewpoint, there is an assignment of responsibilities required. Each
element of the technical infrastructure in the system has to be managed by a specific actor.

Architectural styles and patterns play a role in the technology viewpoint too. Each architectural
style used in the Computational and Engineering Viewpoint derives requirements for the
Technology Viewpoint. Their realization as well as their link to the Engineering/Computational
Viewpoint should be made visible in the modeling approach. But also the other way round, the
existing infrastructure provides requirements for the usage of architecture styles and patterns.
For example patterns can encompass the parallelization of operations of the scalability of the
system. The modeling approach should be able to adapt such patterns, when specifying the
technology viewpoint.

The use of Distribution Transparencies has also influences on the Technology Viewpoint. Here
the infrastructure of the distributed system is defined from whom the transparencies should
abstract.

Requirements for a model-based approach | 33

Table 7 gives an overview over the requirements concerning also the Technology Viewpoint.

Requirements Prob
Assignment of responsibilities 3,4
Support for different architectural styles and patterns 1
Support specification of distribution transparencies 6

Table 7 Requirements concerning the Technology Viewpoint

Existing Solutions | 34

4 Existing Solutions

4.1 Modeling approaches relating to Enterprise Architecture Frameworks

There are several Architecture Frameworks in current practice and theory. The most known
frameworks are Zachman, TOGAF and DODAF/MODAF/NAF. Despite these frameworks there
exists a lot of other frameworks like the RM-ODP for open distributed systems and the
FEAF/TEAF for US federal agencies and other governmental agencies. (Tan04, Lei06, Lan07)

In the following a short introduction to Zachman, TOGAF, DOFAD/MODAF and RM ODP as the
most known architectural frameworks will be given and modeling approaches related them are
described.

4.1.1 Zachman

The Zachman Framework is the best-known Enterprise Architecture Framework. It provides a
structure for classifying and organizing the elements of an enterprise and its systems that are
interesting to the management or development process. (Lan09)

In a 6x6-cell matrix the resulting artifacts from the different perspectives are defined. The
columns define the five perspectives What, How, Where, Who, When and Why to describe the
enterprise architecture. In the rows six classifications for the artifacts are described. These are
Executive Perspective, Business Management Perspective, Architect Perspective, Engineer
Perspective, Technician Perspective and Enterprise Perspective. In Figure 16 the Architecture
with its classification and perspectives is shown. (Zach12).

35

Existing Solutions |

VIADET W R 5 TRITACES DAMIEa: A GINOTNAGA JDAACET DU QUDACET Dasmts Sl I UNAENT W WO (L0 O

SUONUNU| s siwawuBssy SYIOWIIN
UOnTANOM Aupqrsuodsay voanquIsicy

LAV PO I () siys
s OYTEL] PUDTE A

O

TUOGTIITIG

Loy s s

H -mtams 5 iy
.

N anpadasay
H urowyey

_
[oo mewrg
L
M aapadanyg
o == N~Ew«zn§_\5m
H

SXAUOD)
adoog

iii

o€y sy ppeediey|
HE

. A8ojoyu asudioyuy ayj
_2ANPYPAY 3s1adadjuy 10) Jromawesy uewyoez Yy

Figure 16 Zachman Framework for Enterprise Architecture, Version 3.0 (Zach12)

Existing Solutions | 36

The Zachman framework is not a methodology, it typed itself as ontology and metamodel. Hence
it doesn’t provide a support for the implementation process of the enterprise architecture. The
framework provides a structure to ensure that all views are well established. The concepts of the
Zachman Framework are also used in frameworks like FEAF, DoDAF and TOGAG. (Zach87)

The Zachman Framework is easy to understand and provides a specification for the enterprise at
a whole. It can be implemented with any tool or methodology, since its specification is made
independent from this. But 36 cells is for a practical usage a large number of cells, which makes
the architectural specification more difficult Also the relations between the single cells are not
that well specified in the framework. (Lan09)

4.1.2 ArchiMate and TOGAF

TOGAF is a standardized architecture framework from the Open Group that “provides the
methods and tools for assisting in the acceptance, production, use, and maintenance of an
enterprise architecture.” (Openl11) The framework is a quasi industry standard which supports
the design, evaluation and building of the right architecture for any organization. TOGAF
contains an architectural framework but also an Architecture Development Method (ADM). The
ADM is a a “reliable, proven approach for developing enterprise architecture descriptions that
meets the needs of the specific business” (Lei06). This approach includes:

- establish an architecture framework,
- develop the architecture content,
- transitioning and governing the realization of the architecture. (Open11)

The ADM describes how to derive organization-specific enterprise architecture from the TOGAF
architecture framework that addresses the business requirements. The Architecture
Development Cycle describing the ADM with its single steps is shown in Figure 17.

Existing Solutions | 37

A.
Architecture
Vision

H. B.
Architecture Business
Change Architecture
Management

C.
Information
Systems
Architectures

G.
Implementation
Governance

Requirements
Management

=
Migration
Planning

D.
Technology
Architecture

|

Opportunities
and

Solutions

Figure 17 TOGAF Architecture Development Method Cycle (Open11)

The steps B, C, D in the ADM (Figure 17) deal with the architecture domains. They are the
Business Architecture, the Information System Architecture consisting of the Data Architecture
and the Application Architecture and the Technology Architecture.

- The Business Architecture deals with the Business strategy, the governance, the
organization, and the key business processes.

- The Data Architecture describes the logical and physical data assets as well as the data
management resources.

- In the Application Architecture the individual applications systems for deployment are
designed as well as their interactions and relationships to the core business processes.

- At least the Technology Architecture describes logical software and hardware
capabilities that are required for the deployment of business, data, and application
services. The architecture includes the IT infrastructure, use of middleware, networks,
communications and standards. (Open11, Lan07)

ArchiMate is a modeling approach for TOGAF and also standardized by the Open Group. It’s goal
is to “provide a graphical language for the representation of enterprise architectures over time”
(Open12a). Additionally is a way to capture the domain-based language barriers with only using
a single set of icons. The current version was published in January 2012 (Version 2). The most
important concepts in this version are illustrated in Figure 18.

Existing Solutions | 38

association
m us| n-ess Business
BUSineSS se/xce assgrnment interface
1
1
Business N
object Business
role
- Business
T J_ actar
agoregalian : i~ App"ca“on
(S interface
I
Application I
Data
Sbject L1 Application
L? 7
I -,
P ‘— Infrastructure
compositan :reallzauon . intorface
I
Technology

Information Behaviour Structure
Figure 18 Main Concepts of ArchiMate Version 2 (Open12b)

The architectural description is divided in three layers. They are Business, Application and
Technology. Services and Interfaces are the linking objects between the layers. The idea is, that
functionality is provided through services to the upper layer. In each layer the approach
“distinguish[s] between the structural or static aspect and the behavioural or dynamic aspect”
(Lan07) Structural aspects are further refined in active and passive ones. The last ones are also
referred as Information. The three layers can be further extended through the Motivation
Extension or through the Implementation and Migration Extension. (Open12a)

Examples for tool support for ArchiMate are the BiZZdesign Architect, Archi (ArchiMate
Modeling Tool) and the Enterprise Architect from Sparx Systems. (Rom12)

ArchiMate is a well-connected and well-understandable modeling approach. But this language is
provides only support for a visualization of an enterprise architecture. It is not intended to use
as language for a model driven development with model and code generation.

4.1.3 UPDM and DoDAF/MODAF/NAF

There exist three architecture frameworks, which are specific for the military domain and very
close to each other. The Department of Defence Architectural Framework (DoDAF), the Ministry
of Defence Architectural Framework (MODAF) and the NATO Architecture Framework (NAF).
MODAF was established based on DoDAF. NAF was built upon MODAF and there are only minor
differences between the two frameworks. (OMG12b) Some processes and taxonomies are
domain independent, but the frameworks also contain elements specific for defense operations
and. (Tan04) The goal of them is enable the description of interrelated architectures and
realization of system that can interoperate (Lei06).

Existing Solutions | 39

Table 8 shows the viewpoints of the current version of DoDAF 2.0 and MODAF 1.2. It also
illustrates how the MODAF Viewpoints relate to the DoDAF Viewpoints.

DoDAF 2.0 MODAF 1.2

Capability Viewpoint Strategic Viewpoint

(Service Oriented Viewpoint)

Operational Viewpoint Operational Viewpoint

Services Viewpoint Service oriented Viewpoint

Systems Viewpoint Systems Viewpoint

All Viewpoint All Viewpoint

Data and Information Viewpoint Parts from Operational Viewpoint/

System Viewpoint
Standards Viewpoint Technical Viewpoint

Project Viewpoint Acquisition Viewpoint

Table 8 Viewpoints in DoDAF 2.0 and MODAF 1.2 (Own contribution based on OMG12b)

The concepts of the Capability Viewpoint in DoDAF can be found in the Strategic Viewpoint of
MODAF but also parts of them in the Service Oriented Viewpoint. The Operational Viewpoint, the
Systems Viewpoint and the All Viewpoint contain mainly the same concepts in both frameworks.
The concept of services in MODAF and DoDAF used in the Service Oriented Viewpoint (MODAF)
and Services Viewpoint (Systems Viewpoint) differ significantly. The Data Information
Viewpoint in DoDAF is realized within the Operational and System Viewpoint in MODAF. The
concepts of the Standards Viewpoint in DoDAF can be found in the Technical Viewpoint in
MODAF and the Project Viewpoint in DoDAF corresponds to Acquisition Viewpoint in MODAF.
Further details about the relationships between the two frameworks can be found in the UPDM
specification. (OMG12b)

The Unified profile for DoDAF/MODAF (UPDM) is an initiative for the development of a
modeling standard that support both Enterprise Architecture Frameworks. In the new release in
January 2012 (Version 2) UPDM also supports NAF. The goal of UPDM is “to specify a UML 2, and
optional SysML, profile to enable practitioners to express DoDAF and MODAF model elements
and organize them in a set of specified viewpoints” (OMG12b)

UPDM is provided as a UML Profile based on the UML, SysML and SoaML specifications.
Therewith it includes a service oriented component modeling and a SysML system modeling to
represent the DoDAF and MODAF architecture views. The profile defines a set of elements and
the relationships between these elements and also a number of views and viewpoints. These
concepts are primarily used to support the development of Enterprise Architecture in the
Military domain (OMG12b).

Tool support for UPDM is for example provided in Artisan, Enterprise Architect and Rational
System Architecture. (Rom12)

4.1.4 UML4ODP and RM-ODP

A short introduction to RM-ODP was already given in chapter 2.4.2. There is also an ISO
standard, which defines a UML profile to model the five viewpoints of RM ODP. This approach is

Existing Solutions | 40

called UML40DP and standardized in ISO/IEC 19793 (ISO09). The standard encompass “the
expression of a system specification in terms of RM-ODP viewpoint specifications using defined
UML concepts and extensions” (ISO09)“ and the “relationships between the resultant RM-ODP
viewpoint specifications” (ISO09). UML40DP is an UML profile realizing the concepts of RM ODP.

The five viewpoints are described as packages structured through sub-packages and containing
the corresponding model elements and diagrams for this viewpoint. Figure 19 shows such a
package for the Information Viewpoint of a specification from a Library System.

==Infarmation_Spec== M
LibrarySystem (1 Spec)
==V _|nwariantSchemas== Tf;j ==%_InvariantSchema== ?«;‘]
Information0bjects InformationActions
==I%_StaticSchetmass il ==l%_StaticSchemas= e
TheSystemAtTheBeginning TheSystemAtYearEnd .

Figure 19 Example Structure of the Information Viewpoint Specification (ISO09)

Each package contains in this case a diagram (like in the InformationObjects package) or the
specification of model types (like Action Types in the InformationActions package).

A lot of diagrams are very similar to corresponding UML diagrams but with use of ODP special
stereotypes. An example for these diagrams is the “TheSystemAtBeginning” diagram. It
describes the initial state of the library system with a static schema of the information objects.
This diagram is mainly an UML Object Diagram with the use of <<IV_Object>> stereotypes for the
objects. (ISO09)

Another diagram used in the Enterprise Viewpoint to further define the interaction between two
roles is the one in Figure 20.

system

=<EV_Accountable== i
1 ==E¥_Delegation== 4 <<EV_Interactionlnitiatnr>>&_) ==BV¥_InteractionResponder=»
| |

inci agent .
principal : Assistant Process loan Library

-

Librarian

==EY_AHefactReference==

==EV_AefactReferancess= ==EV_ArefactRe
loan: loan: loar:
requested hy authorised disqualified
assistant 1 1

1

==BEY_ArefactRole==

==EY_AHefactRole== ==EY_AHefactRole==

Figure 20 Process loan interaction (ISO09)

This diagrams shows that the Assistant initiates the Process loan interaction and the Library
system responds to it. Three signals, stereotypes with <<EV_Artefact>> express the artifact roles
of Loan involved in the interaction. (ISO09)

Existing Solutions | 41

UML4ODP is a very formal specified modeling approach since it is defined as UML profile and
built completely upon the formal RM-ODP specification. But this concludes also in over-weighted
diagrams at some points. To capture all the concepts of RM ODP the diagrams differ a lot from
the original UML diagram. Therewith they are more difficult to understand and also to establish.

4.2 Other service-oriented modeling approaches

One major requirement for the modeling approach is the use of a service oriented architectural
style. This year the SoaML specification of the OMG group (OMG12a) was published as a
standard for modeling services and there already exist modeling approaches using SoaML to
capture the service-oriented paradigm in a software specification. The approaches are not
integrated in any enterprise architecture framework and therefore include not all relevant
viewpoints. But they give input to at least a few viewpoints.

Sadovykh et al. (2010): ES Modeling with SoaML using BMM and BPMN

Sadovykh et al. (2010) describe a Model Driven Architecture (MDA) based methodology for
modeling enterprise architecture with BMM, BPMN and SoaML. In the paper they “present]...]
[their] practical experience with SoaML in attempt to align business models and enterprise IT
systems implementation” (Sad10).

MDA specifies three levels a model passes in the development cycle:

- Computational Independent Model
- Platform Independent Model
- Platform Specific Model

According to MDA Sadovykh et al. define a [BusinessArchitecture Model (BAM) Ocm
Business Architecture Model (BAM), a System Business L=

Scope s
Architecture Model (SAM) and the Implementation 1 \

level. Figure 21 shows the levels in the approach e infomation . E—
with their concepts. [Emli Semantics Processes

For the BAM the modeling languages BMM and
SysML Requirements (Business Scope), UML Class

Service
Architectures

Service Contracts
and Choreographies

Diagrams (Information Semantics), = BPMN

System Architecture Model (SAM)

Service Interfaces

Interfaces Service
andMessages Choreographies

/

(Business Processes) and SoaML (Capabilities,
Service Contracts, Choreographies and
Architectures) are used.

For SAM mainly SoaML is used to establish the
models. The implementation models skeletons can
be generated from the SAM SoaML models. In their
research project they developed transformations

Service Software
Orchestrations Components

from the SAM SoaML models to various

Implementation
Cloud, Web Services, JEE, MAS, P2P/Grid, SWS

implementation platforms. They are for example

Web Services, Multi-Agent Systems and Semantic
Figure 21 Enterprise Architecture Modeling

Web Services platforms. Levels according to (Sad10)

Berkem (2008): Goal-Driven SOA

Existing Solutions | 42

Berkem (2008) propose a possibility of how to link the elements of the Business Motivation
Model BMM to the components of a service oriented architecture. Therewith he wants to enable
the alignment of the IT according to the goals and directives. Applying the “layered architecture
of the ‘Goal-Driven SOA’ Process permits to identify traceability relationships that permits to
connect such high level business goals and directives toward elements of the software level
specifications” (Ber08).

The important concepts in BMM for a bridging to SOA are the business goals, the courses of
actions (strategy and tactics), directives (rules and policies) and Business Processes.

Berkem (2008) identifies three necessary layers for a mapping. These layers with its main
concepts are shown in Figure 22. In addition he also mentions a Deployment layer, dealing with
the Where-question.

Business Motivation layer *Goals, Business Rules, Strategy and Tactics,
The Why Business Processes, Resources

Service Definition Layer))))
*Use Cases, Goal Driven Services, Entity Objects

The What)
- = = \
Service Realization Layer *Use Case/Goal Driven Service Description,
The How Actor Action, Use Case Action, Service Action

Figure 22 Layers in SOA Framework from (Own contribution based on Ber08)

The Tactics and Business rules in the Business Motivation layer are traced towards the Service
Definition layer to drive services and derive requirements for them. A goal-driven-service is
defined for each Business Process. Tactics act as a facade to “drive” a set of goal-driven services.
In the approach of Berkem (2008) there is a one-to-one relationship between use cases and
goal-driven services. The realization layer provides a description of the Tactics, Services and Use
Cases determined in the Definition layer. A Use Case or a service can be determined by an
activity (composite structure) or a single action. An activity contains further activities or actions.

TR15449: Service-centric view of a Spatial Data Infrastructure

Despite these two partial approaches for enterprise architecture modeling there is also a
recommendation in TR 15449, which will be further established in ISO 19154 this summer, for
modeling the five viewpoint of RM ODP (Cen12). The standard describes a service-centric view
of Spatial Data Infrastructure (SDI) from the perspective of the RM ODP viewpoints. SDIs can be
seen as a set of interconnected, distributed, information systems. The understanding of the five
viewpoints in the TR 15449 and the relevant standards defined in the report are shown in Table
9.

Existing Solutions | 43

Service aspects from an organizational, business and user
perspective (Use Cases and external functionality related to

Enterprise services)
Viewpoint
BPMN, Use Cases, Agile requirements with user stories, BMM,
UML40ODP Enterprise Specification
Service aspects from a geospatial information expert perspective
Information (Information being used and provided by services)
Viewpoint UML, XML, GML, potentially semantic technologies like OWL and

Linked Open Data with RDF

Computational Service aspects from a system architect perspective

Viewpoint SoaML, USDL, UML40DP Computational Specification
Engineering Service aspects from a system designers perspective
Viewpoint Service-oriented Architecture, REST, Web 2.0
Service aspects from a system builder and implementer
Technology perspective
Viewpoint

Cloud Computing
Table 9 Usage of the RM ODP Viewpoints in TR 19154 (Own Contribution based on Cen12)

UML4ODP is mentioned as relevant standard in the context of modeling RM ODP. But since it
provides a full support for RM ODP it has been preferred to use more light weighted techniques
like UML and SoaML in the SDI community. (Cen12)

4.3 Current approach in the pilot cases

4.3.1 Pilot 1: Personal Environmental Information System

The 0Oil Spill project has already started and there are deliverables, mainly for specification of
requirements and use cases. There are also some architectural diagrams for PEIS, but they are
not included in any framework.

But there are deliverables starting to define the architecture of ENVIROFI. The ENVIROFI
architecture will be used as foundation for the PEIS architecture and adapted to the specific
needs of the project. The architecture is described using the five RM-ODP viewpoints Enterprise,
Information, Computational, Engineering, and Technology. This is done mainly textual, with
tables and some Box Diagrams. The term Box Diagram is used for any diagram consisting of
some boxes and lines with no specific or some self-defined syntax.

In Table 10 the existing specifications from the latest deliverables concerning the ENVIROFI
architecture are shown.

Environmental Architecture | Sketch of the ENVIROFI
(PEIS 4.2) Architecture (PEIS 6.1.1)

Use Cases and Requirements
Enterprise
Template, Use Case Diagrams

Existing Solutions |

44

General Feature Model, Data models and metadata
Service Model, Resource models that must be supported
Model
Information
Approaches to semantic
interoperability
UML Class Diagram, textual Table
Enabler Architecture, Description of system
: Categorization of Enablers requirements and computational
Computational objects, Layered Architecture
Box Diagram Textual, Box Diagram
Relevance of FI WARE Distributed Architecture,
enablers for ENVIROFI Interoperability agreements,
Security Framework
Engineerin
g g Mapping enablers with
engineering objects
Table Box Diagram, Textural, Table
Used technologies and Description of principles that
Technology standards in FI WARE should be applied
Table Textual

Table 10 Specification Approach in the ENVIROFI project (Own contribution based on PEIS 4.2, PEIS 6.1.1)

For each viewpoint the specified content is shortly described and also the used modeling
techniques are named in the table.

Despite the specification documents for PEIS and the ENVIROFI architecture, there are also
specifications of the generic and environmental enablers, which have to be considered. The
enablers are organized in categories. Each of the environmental enablers is specified through a
predefined template (PEIS 5.2.2). Each of the general enablers is specified textual and in the
most cases also with FMC diagrams (FIWikil2). FMC stands for ‘Fundamental Modeling
Concepts’ and is “primarily a consistent and coherent way to think and talk about dynamic
systems” (FMC12). There are also considerations in the project of using USDL for the description
of all enablers.

4.3.2 Pilot 2: Oil Spill Decision Support System

The requirements for the Oil Spill Decision Support System are already specified. Also a first
description of the operational system is done. At the moment the implementation of a first pilot
is in progress.

The requirements from the three case studies for the ENVISION projects are already established.
The specification of the different parts of the ENVISION infrastructure is also done. The several
components of the ENVISION architecture, like the Composition Portal, the Semantic Catalogue
or the Execution Infrastructure, are specified separately from each other in their own work
packages. At the beginning of the specification it is shown how the components are integrated in
the overall ENVISION infrastructure. The following specification does not follow any

Existing Solutions | 45

methodology or framework. Whereas the requirements for the ENVISION infrastructure derived
from the case studies are structured using the RM ODP viewpoints.

This approach and the specification approach for the operational system of the Oil Spill System
are described in Table 11.

Requirements specification for Operational System for Oil Spill
ENVISION (ENV 1.2) (ENV 1.4)

(General System Description)

ENVISION and Pilot Definition, Actors . .
L Composition Workflow, Service
and Roles, User activities

Enterprise Description (Input, Output)
Table, Use Cases, Textual, Box

Box Diagram, Table, Textural
Diagrams, Use Case Diagrams .

Input and Output Data with types,
Information Used Models

Table Objectives and operational

Portlets, Web Services, Libraries, system components to fulfill

Applications them

. Collaboration between them Link to ENVISION work packages
Computational and components

Table, Mix of UML Collaboration and
Component Diagram

Use of Ontologies, Key activities

Activity Diagram, Component

Engineering
Diagram, Textual Templates with UML
Interaction Diagrams Textual, Table
Standards and used technologies

Technology

Short textual description

Table 11 Specification approach for ENVISION and the Oil Spill project (Own contribution based on ENV 1.2,
ENV 1.4)

As illustrated in the table above, the specification of the Oil Spill System is almost completely
done using informal descriptions and links to other specifications. The specification of the
ENVISION infrastructure, describing the requirements for it, is done very structured and with
the use of modeling techniques.

4.4 Comparison and Evaluation of the Modeling approaches

In the previous chapter several modeling approaches relating to Enterprise Architecture
Frameworks and Service-oriented Architectures as well as the recommendations in TR 15449
for RM ODP are presented. In this chapter an overview over all these approaches with their used
modeling techniques is presented. The overview is done based on the five viewpoints of RM
ODP. The layers and viewpoints of other approaches than UML40DP are mapped to the five ones
of RM ODP based on the concepts they contain.

Existing Solutions | 46

The overview in Table 12 will be used to see how other approaches model the aspects from the
Enterprise, Information, Computational, Engineering and Technology Viewpoint. This enables
the definition of a modeling approach using the experiences made within the other approaches.
For each approach the corresponding viewpoint or layer to the RM ODP viewpoint is mentioned
and then the modeling concepts used to describe the viewpoint are shown.

47

Existing Solutions |

daovInn ‘WINg (zrua))
0Z 4°M ‘saL101g J19s() ‘(sorejdwia, 6v¥ST
Sunndwo) pno[) | 1s9y ‘(sad1a1as g9 M) VYOS 1dsn “TNeos TND “TWX “TINN | Y31Mm) 3se) as(TINN ‘NINdE | Y.L ul*Day
suonody 9I1AI3S ‘Sase) as()
‘uondridsa(g ase) as() ‘931AIS ‘[9POJN UOIIBAIIOIN Ssauisng
uonruyaqg
uonezIeay 91AIS ‘UONIUYa(9J1AI3S ‘UOIIBANO (8002)
9214135 03 spuodsa.tio) ssauisng 03 “1107) waNI9g
uoneIISaydIQ sarydeigoaloy)
‘syusuoduioy) alemijos ‘591N30931Yd1Y pUE SILIIUO)) $9SS920.1d ssauisng
‘S908J19]U] 9I1AISS 921A13S ‘sanifiqeden TNEOS weadelq ssepD TN ‘syuawaInbay TNSAS (0102)
uonejuawa[duw] [OPON 91N30YIY [9POIA 21N3093YDIY [9PON 21Ny [9POIAl 91N3093IYDIY ‘e19
03 spuodsa.io) waSAS 03 spuodsalio) ssauisng o0} spuodsa.aio) | ssauisng 03 spuodsa.lio) ssauisng 03 spuodsa.lio) | YyAaopes
(se1qe) aseqere(ax1)
(1ahe] eo1sAyd S10BJ1LIY pUE SaJIAIRS s303(qQ ere(‘(ss9d0.14) s193(qQ
a3 3e) JIoMISDN YySnoayy aanyonnseyjuj Jurpraoad uonoduUN,j [BUINU] ‘S901AISS ssauisnyg ‘921AI9G Ssauisng
P93193Uu0d S321A3(] 9.1BM]JOS WISAS uonedlddy ‘syusuoduwon weadelq ssepD TN ‘sS900.1 ‘S.10310Y pue S9[0y
ele(/2In30aNydIy (ezruado)
91N3093YDIY [BOIUYDR], | 9INn32331Yday A3o[ouyda], uonedddy /aanyoeyoay SWaISAS uoneW.IOJU] 91N3093Yd1Y (A4voo0.lL)
03 spuodsa.io) 03 spuodsa.io) SWaISAS uoneW.I0Ju] 03 spuodsa.io) ssauisng 03 spuodsa.lio) | IIeWIYIIY
weaderq A11An0y s[puueyd weagerq
‘s30a[qo A3ojouyda) | 03 sdiysuone[a. asn yrm UONOeIdIU] ‘S90e}Ia]u] pue | wedderq 399[(qQ ‘SauIyoey SaIyd.eIdlH
J10J weaderq sse[) swe.aderp juauodwo) sy04 :wedelq yusuodwo?) 91e]S ‘sweaderq sse) ‘saulyoey 93e3S ‘sweadel(
sassaoo.ad saAnd3(qo
A3o[ouyoda], ‘splepuels | S[@uueyd I9A0 UONILINUL s309(qo uonewLIOJUI pue sapI[od ‘S9ssadnad (600s1)
a1qeauswafdur y31m sapou guissasoad Jo1aeyag 913 JO BWAYDS JIWEUAD ‘sa[oy ‘s1alqQ astdiaiuyg | (dAdo WY)
‘s309[qo ASojouyoay], 03 uonNqLISIq pue 21n30931Yd.1y 31emyos pue dnels QuUeLieAu] | Ym speuo) Arunwwo) | JAoFTNN
o[qel, ‘xuep ‘wetderq | weaSerq a1nonas aisodwo) saulyoeW 931815
91npNas aysoduwon) pue yusuoduwo)/A1AROY ‘21n3onng ayisoduron) weadelq £11A110y
d[qel pue yusauodwo)/sse[) /sse[) ‘9[qe.L ‘XLnen ‘sweader(q ssepD ‘XLIey ‘sweadeld sse) | (QZIHNO0)
(sryoad spaepueas) jurodmaip jurodmaip (3epoa
jJurodmarp [ed1uyda], jurodmaip walsAs | jutodmarp waisAs jo syred pue [euonetadQ ay3 reuonetadp/ yurodmalp /edpoN)
01 spuodsa.io) Jo syred 03 spuodsaio) juiodmary pajusLIO IDIAISS Jo sared 03 spuodsario) 213938115 03 Spuodsa.tio) nadn
dd
ASojouyday], SurreaurSuy euoneinduwo) uoneuLIojuj asridaajug o EHHML v

Table 12 Summary of the Modeling Approaches (Own contribution based on OMG12b, ISO09, Open12a, Sad10,

Ber08, Cen12

Existing Solutions | 48

The presented modeling approaches ArchiMate, UPDM and UML40ODP, which are built upon an
Enterprise Architecture Framework, are now analyzed by the 14 requirements defined in
chapter 3. For the evaluation a three-step scale is used. 1 means that there is no support of this
requirement in the modeling approach. 2 means partially supported and 3 means fully
supported. First the requirements concerning the overall approach are presented in Table 13.

ArchiMate UPDM UML40DP
(Openl2a) (OMG12b) (1S009)

1 Use of different Viewpoints 3 3 3
1.1 Relationships between One diagram for 3| Meta Models 3| Concept models, 3
model elements of one each layer for each each layer one
viewpoint Viewpoint package
1.2 Relationships between All layers 3| Notvisibleina 2| Defined in 3
viewpoints connected paper form specification

2 “Smart” Diagrams 2 2 2
2.1 Well-known and well- New language 1| New UML 2| New UML profile 2
established profile
2.2 Readability Few concepts, 3| Lots of 2| Over weighted 2

same concepts diagrams, easy diagrams through
in all layers to loose stereotypes
overview

3 Use of existing standards
3.1 Existing standards for New Open 1| New UML 2| New UML profile 2
modeling techniques group standard profile
3.2 Existing standardized TOFAF 3| DODAF, 1| RM ODP 3
enterprise architecture MODAF
frameworks

4 Formal specified modeling Concept meta 2| UML Profile, 3| UML profile, Meta 3

techniques models for each Metamodel for model for each

layer each layer layer

5 Tool support for modeling 3 3 3

techniques

6 Tool support for model Only 1| Support for 2| Support for UML, 2

transformation, code visualization, UML and xODP (M2Maude)

generation structuring SysML

Table 13 Evaluation of the requirements concerning the overall approach (Own contribution based on
Openl12a, OMG12b, ISO09)

ArchiMate, UPDM and UML4ODP contain all different viewpoints, which have defined
relationships to each other. All the three modeling approaches for enterprise architecture
frameworks create their own set of modeling techniques for the documentation. ArchiMate is
built upon a complete new set of language concepts. UPDM and UML40ODP are built defining a
new UML profile. No modeling approach for enterprise architectures is based only upon existing
techniques through linking the concepts of them.

Especially in UPDM and UML40DP the diagrams are not always intuitive and comprehensive for
the user, but they are formally defined and very powerful in expressing the concepts of the used
frameworks. With ArchiMate good understandable diagrams can be established, but the
language is only a visualization techniques and does not include a formal defined set of modeling
constructs, which can be used for code generation.

Existing Solutions | 49

Only ArchiMate and UML40ODP are domain independent approaches. UPDM is build upon a
domain dependent and not standardized enterprise architecture framework. The tool support
for modeling is quite good for all of the frameworks. ArchiMate does not support a model or
code generation. UML40DP and UPDM are formally defined and existing approaches for code
and model generation for UML diagrams could be reused and adapted.

In the following the three approaches will be evaluated using the requirements concerning the
single viewpoints of RM ODP. Table 14 provides an overview of the evaluation.

ArchiMate UPDM UML40DP

(Openl2a) (OMG12b) (1S009)
7 Assignment of No explicit support i.e. Capability Through links
responsibilities to Org. View between the

Viewpoints
8 Integrate motivation Not in core, but in Capability/ Objective
and requirements motivation extension Strategic
Viewpoint

9 Support Use Cases Not Not Not

10 Set up a system-wide
set of vocabulary

Included in
Information Systems
Arch.

Included in
All-Viewpoint

Included in
Information VP

11 Specification, Not explicit, but Not explicit, Applied in
integration of different | possible but possible engineering
architectural styles and viewpoint
patterns

12 Support for Analog UML (Internal) Block Analog UML
Decomposition and components Diagrams components

Composition

12.1 Support for
Choreography and
Orchestration

No explicit
techniques

In MODAF, but
not explicit in
UPDM

No support of
composition

12.1 Interface and
behavior specification of
components

Interfaces for
components,
specification of
collaboration and
interaction

Refinement of
communicatio
n paths
possible

Interface templates
and signatures,
internal behavior,
but not external
behavior
(collaboration)

13 Support a service
oriented architectural

style

Use of service
concept

Service View

No concept of
services (“object
that interact at
interfaces”)

13.1 Specification of
services

Interfaces, Roles,
Service Behavior, but
no information flow,
service interface
specification

Fully
supported in
Service View

no service concept

13.2 Identification of
Services

No explicit
techniques

Capability to
service
mapping

Group predefined
operations to
interfaces

Existing Solutions | 50

13.3 Reuse of services Reuse of 3| No support 1| Not explicit, reuse 2
components and of interfaces
services possible
13.4 Classification of Application, 3| Notdefinedin 1| Not defined in 1
Services Business, specification specification
Infrastructure
Services
14 Support Services as concept 2| Not directly 2| Engineering VP, 3
specification of for distribution through a node concept
distribution transparencies viewpoint
transparencies

Table 14 Evaluation with the requirements concerning the single Viewpoints (Own contribution based on
Open12a, OMG12b, IS009)

None of the three modeling approaches provides full support for the assignment of
responsibilities and the integration of architectural styles and patterns on all architectural
layers. Only UPDM provides full support for modeling the motivation and requirements of the
system and for the composition and decomposition concepts, the two other approaches provide
only partial support in these issues. The concept of use cases is not supported by any of these
approaches, although this is a quite often used and good understandable concept to describe the
functionalities of a system.

Since the agreement on a shared information model is very important all of the three modeling
approaches provide full support for this requirement through an own viewpoint. It is the Data
part in the Information Systems Architecture from ArchiMate, the All-Viewpoint in UPDM and
the Information Viewpoint in UML40DP.

ArchiMate, UPDM and UML40ODP provide only partial support for requirement 13, the support of
a service oriented architectural style. The first two ones contain both a service concept in
contrary to UML40DP, where a service concept is missing. The system is seen here as various
objects interacting together. ArchiMate lacks of concepts for full specification and identification
of services and UPDM does not provide good support for classification and reuse of services.

The specification of distribution transparencies is only directly supported by UML40DP in the
Engineering Viewpoint. The two other approaches UPDM and ArchiMate do not explicitly define
concepts for integrating distribution transparencies. But both approaches enable the
specification of them through already existing ones, like the service concept that abstracts from
the underlying infrastructure in ArchiMate.

The gaps identified in the above evaluation of the existing approaches point out the issues
MODEA should concentrate on. For example the reuse of existing and standardized languages as
techniques in the approach is missing in UPDM, ArchiMate and UML40DP. But also issues were
frameworks provide very high advantages are important to be considered when developing
MODEA. An example for this is the good readability and understandability of ArchiMate
specifications.

MODEA | 51

5 MODEA

5.1 Vision of MODEA

In the previous chapter an introduction to the domain of open distributed systems as well as
enterprise architecture frameworks was given. Thereby seven important problems, that occur in
the development and specification process of open distributed systems are examined. These are:

- Heterogeneity of the components

- Collaboration between the vendors
- Providing the right functionality

- High complexity and scope

- Global optimization

- Distribution transparencies

- Need for flexibility

To cope with these problems a modeling approach based on an enterprise architecture
framework can be used. In chapter 3 several requirements for such a modeling approach are
defined. Among these are smart diagrams, the use of viewpoints and existing standard as well as
a formalized modeling approach. Additionally more detailed requirements for the approach are
the integration of Use Cases, support for decomposition and composition, support for a service-
oriented style and also for the specification of distribution transparencies.

Existing modeling approaches based on enterprise architecture frameworks like UPDM,
ArchiMate and UML40ODP are examined in the previous chapter. In a following analysis of these
three modeling approaches using the requirements in chapter 3 strengths and weaknesses of
them are identified. Important to notify here is that all of these approaches define their own
modeling language or UML profile for the architecture description. Although all approaches
enable the specification of architecture with a service-oriented style, some techniques required
like identification, support for reuse or classification are not well established. Additionally
especially UML40DP and UPDM are very extensive approaches, which are often too complex and
over-weighted. Furthermore UPDM contains specific aspects for the military domain. The main
problem with ArchiMate is, that it is only created for visualizing architectures, and not for model
driven development.

With MODEA a model driven approach based on existing and well-established modeling
techniques will be created. Thereby the increasing use of web-enabled functionality in current
enterprise architectures will be considered. The goal is to create good and pragmatic models
based on existing standards to support the development and specification process of open
distributed systems. Through the use of formalized modeling techniques and a formal defined
framework as foundation, the approach should provide support for model and code generation
in the future.

To reach the described benefits MODEA will be specified upon an Enterprise Architecture
Framework, using its concepts to structure the overall specification. These concepts will be
modeled with use of existing and well-established standards. The techniques should have a good
tool support and should be widely used in industry and research. Furthermore the techniques
should allow the specification of the concepts defined in the requirements (chapter 3), like use
cases, motivation and requirement, architectural styles and patterns, decomposition and
composition as well as a service oriented style. The idea for the provisioning of MODEA through

MODEA | 52

combining existing modeling techniques with an enterprise architecture framework is
illustrated in Figure 23.

Modeling techniques EA Framework MODEA Diagram 2
Diagram 2 Diagram 1 J’

Diagram 1

Diagram 3

Diagram 3
[Element 3

Element 3

Figure 23 Provisioning of MODEA using modeling techniques and an EA Framework

The Enterprise Architecture Framework used in MODEA as foundation is the Reference Model
for Open Distributed Systems (ODP) defined in ISO/IEC 10746-1 - 10746-4 (ODP98a, ODP10a,
ODP10b, ODP98b). A first introduction and reasons for this selection were already given in
chapter 2.4. Advantages on RM ODP are the formal definition of the viewpoints and their
relationships, the domain independency of open distributed systems as well as the issue that it is
an ISO standard which will remain stable. Additionally the framework supports in dealing with a
high heterogeneity in a system and it also already used in the two example cases used in this
report.

The concepts described in this standard will be the modeled using UML, SoaML, BMM and BPMN.
SoaML and BMM are both UML profiles. The following figure provides an overview of the
framework and the modeling techniques used to define MODEA.

(MODEA)

UML

SoaML BPMN BMM

Sequence, Class, Object, State Machine, Component,

Deplovment Diagram. Use Case + Template

RM ODP

Figure 24 Basic principle for MODEA

For MODEA UML is chosen, since it “is the most frequently used language for visualizing static
and dynamic aspects of software- intensive systems” (Bro08). Furthermore it is “widely used by
organizations, and supported by more than a dozen different product offerings”(Bro08).

A lot of domains can be captures with plain UML and defined UML profiles. But UML lacks of an
overarching concept of how to link the various single diagrams. In MODEA such a linking of the
different diagrams with respect to the specification of the RM ODP framework will be made. This
enables to use UML with its strong support in tools and industry for creating a coherent
specification of an open distributed system. “The standardization of the UML notation has
helped the software industry to communicate understanding of software artifacts using a
commonly understood visual language.” (Bro08) With an integration of UML into the context of
enterprise architecture modeling, these benefits of UML should be also earned in EA modeling.

Use Cases are important to integrate, because they are a widespread technique used to specify
the functional requirements. (And01) The UML Use Case diagram enables the specification of

MODEA | 53

actors, a system subject and the use cases they participate in. Further description of Use Cases in
UML can be done through further diagrams but also a textual description. In MODEA we will use
templates for this, since “use case models constructed using the Template or Style guidelines are
easier to understand” (And01).

Further diagrams used from the UML specification are Sequence Diagrams, State Machines, Class
and Objects Diagrams, Deployment Diagrams and Component Diagrams.

A service-oriented style addresses several of the identified problems in open distributed
systems (chapter 3). Therefore and with the increasing importance for the integration of web-
enabled functionality, this style should be supported in MODEA. A new modeling standard called
SoaML was published this year by the OMG. The Service oriented architecture Modeling
Language (SoaML) enables the identification and specification of services as well as defining
service consumers and producers. It provides also support for describing the policies for using
and providing a service and for defining classification schemas. (OMG12a) With respect to the
requirements set in chapter 3, SoaML would be a good choice for realizing a service oriented
architecture style. Additionally SoaML provides another important benefit with its definition of a
metamodel and UML profile through being able to link services to model elements of the OMG
Business Motivation Model, UML Use Cases and also to some process notations. (OMG12a)
Furthermore through the specification of an UML profile, modeling SoaML diagrams is possible
with at least any tool providing support for UML 2.

The Business Motivation Model is a business modeling specification, published by the OMG
group, to define the motivation e.g. “to be able to say ‘way’” (OMG10) for certain business
activity. On advantage of BMM is the very simple definition of it, since the few concepts only
have basic attributes and most of the associations are unconstrained (OMG10). Together with
the provided tool support for BMM, also in the context of UML diagrams, BMM would be a good
choice for modeling the goals in MODEA. A lot of modeling tools like Select Architect, Sparx
Enterprise Architect, IBM Rational Software Architecture and partially also Modelio, provide
support for requirements modeling using the BMM standard. Although BMM does not contain an
UML profile in its specification all mentioned tools enable the definition of links between the
elements of BMM and thus of UML or BPMN. (Ams08, Sel12, Sparx12b, Mod12)

At least Collaboration and Process Diagrams from the Business Process Modeling Notation
(BPMN) are chosen as technique for defining business processes. This notation is also supported
in nearly all modeling-tools, which provide support for UML 2. Furthermore BPMN has two
more advantages:

- It is a “notation that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical developers
responsible for implementing the technology that will perform those processes, and
finally, to the business people who will manage and monitor those processes” (OMG11).

- And it “creates a standardized bridge for the gap between the business process design
and process implementation” (OMG11).

Thus BPMN would be sound selection for MODEA, since enterprise architecture typically
encompasses several domains with several stakeholders. Additionally BPMN would support the
future goal for implementation support.

In the following the used framework RM ODP will be explained more detailed and then the
MODEA is introduced through explaining the modeling approach in each viewpoint. Afterwards

MODEA | 54

the connections between the viewpoints and how to model them in the UML context are shown
up. At least the current tool support is described.

5.2 RM ODP

5.2.1 Introduction

A short introduction to RM ODP was already given in chapter 2.4. Now the concepts and main
elements are illustrated. The RM ODP standard is published in four parts:

4 \ [N

Overview Foundations
ITU-T Rec. X.901 ISO/IEC 10746-1 4 ITU-T Rec. X.901 ISO/IEC 10746-2
Gives a motivational overview, explains | | Defines concepts and the analytical
the Kkey concepts and gives an | |framework, provides requirements for
| introduction to the ODP architecture.) (new specifications techniques.

s N\ N\

Architecture Architectural semantics
ITU-T Rec. X.901 ISO/IEC 10746-3) ITU-T Rec. X.901 ISO/IEC 10746-4
Describes the architectural framework | | Provides a formalization of the ODP
and defines the constraints to which any | | modeling concepts.
\ODP standard must conform.

J/

\.

) \ J

Figure 25 Parts of the RM ODP Specification (Own contribution based on IS098a)

In the four documents, mainly the first three, the main elements of RM ODP are specified. These
are

- Object Modeling,

- Viewpoint Specification,

- Distribution transparency and
- Conformance.

Each of them will be described in the following.

5.2.2 Object Modeling

In the part 2 of the ODP Specification, ITU-T Rec. X.901 ISO/IEC 10746-2 (ISO10a), modeling
concepts as foundation for building the architecture of ODP system are defined. This object
modeling approach is reused and refined when specifying the viewpoint languages in part 3 of
the specification. All viewpoint languages are based on the same concepts. Therewith the
correspondences between the viewpoints can be defined without using the same notation for all
viewpoints.

There are three categories of modeling concepts used in the specification.

- The Basic modeling concepts describe the set of elements that are the basis for the
system description with ODP.

- The specification concepts describe elements, which are required for reasoning about
the ODP system and for defining requirements on the specifications languages.

- The structuring concepts deal with notions and structures that are generally applicable
in the design and description of distributed systems.

MODEA | 55

The basic set of elements for a system description after the RM ODP encompass Objects and the
Environment, Interfaces, Interaction Points, Behavior, Actions, and State. (ISO10a) Figure 26
provides a simplified overview about how these elements are related to each other.

Environmentf~ *| Object characterized Behavior
1 1
Interaction State * * Action
Point cause
* changes
provides

*

Interfaces related to Interactions Internal

* *

Figure 26 Elements of the basic modeling concept (Own contribution based on I1SO10a)

The most important concept is the object. “ODP system specifications are expressed in terms of
objects” (ISO98a). Every object interacts in an environment, which contains also other objects.
Through interaction points, which can contain several interfaces, objects are able to interact
with other objects of the environment. Each object can have several states. A State describes
conditions, which determines a possible future behavior. Each object is characterized by a
specific behavior, which is a collection of actions. An action can be internal or external. External
actions are called Interactions. An action also cause changes in the states of the participating
objects. In the updated version of the Foundation (ISO10a) also a service concept is integrated. A
service is understood as “A behaviour, triggered by an interaction, that adds value for the service
users by creating, modifying, or consuming information” (ISO10a). Those services are associated
with an interface and defined by an interaction. Furthermore a service can be characterized by a
service type and also be composed of other services. At least “the provision of a service involves
a collaboration between its provider and user. This collaboration may involve a complex series
of interaction” (ISO10a).

The second concepts are the specification concepts. Here are elements defined which are needed
for reasoning about the specification of and ODP system and they also define requirements on
specification languages used for the specification of an ODP system. This includes the concept of
composition and decomposition of objects, which is “used to organize the specification of a
distributed system as a set of specifications, each on dealing with a different level of abstraction”
(ISO098a). Also the behavioral compatibility between objects and the concepts of types, classes
and templates belong to the specifications concepts.

One important concept for MODEA is roles. “A role my correspond to a subset of the total
behavior of a component object.” (ISO98a). That means when considering an object in terms of a
specific role, only “a named subset of its actions is of interest” (ISO98a). If an object is composite
by several components objects a role could be the behavior identified with one them. Often roles
are related to interfaces.

At least there are the structuring concepts. They include grouping concepts like Domains and
Groups as well as a Naming concept to refer entities in a given context. In this category also the
Contract concept can be found. It is defined as “a general concept for characterizing and
regulating the cooperation of objects” (ISO98a). In the collaboration context of objects there

MODEA | 56

exist also the concepts of binding and liaison to define the contractual context and the
relationship between cooperating objects.

5.2.3 Architectural Framework: Viewpoints

Part 3 of the RM ODP specification (ITU-T Rec. X.901 ISO/IEC 10746-3) defines an architectural
framework for structuring the specification of ODP systems (ISO10b). The specification of an
ODP system is done using the concepts of viewpoints, viewpoint specifications and distribution
transparencies. The viewpoint specifications are expressed using a set of language terms. In RM
ODP five viewpoints are identified. Figure 27 gives an overview of them together with a short
explanation what they are about.

“Purpose, Scope and Policies”

Objectives, Business
requirements, Key stakeholders

“Semantics of
information and
information
processing”

“Enables distribution
through functional
decomposition

of the system” [Computational

Viewpoint

Technology
Viewpoint

Engineering
Viewpoint

“Choice of technology in the
system”

“Mechanisms and functions
required to support
distributed interaction”

Allocation and configuration
of real resources

Figure 27 Viewpoint Overview of RM ODP (Own contribution based on 1SO98a)

The single viewpoints with their concepts will be described shortly in the following. The
concepts used in each viewpoint are introduced in chapter 3.2, when explaining the modeling
approach for MODEA.

The enterprise viewpoint “focuses on the organizational situation in which the design activity
is to take place” (Lin10) In the specification the purpose, scope and policies of the system are
described and it deals with the objectives, the business requirements and business rules.
(IS098a, Lin10)

The enterprise specification is expressed using the roles played and the activities undertaken by
the system as well as policy statements about the system. The key stakeholders for this
viewpoint are the owners of the business processes and the managers responsible for the
policies (ISO10b).

The information viewpoint is responsible for the modeling of the shared information in the
system. Therewith a common understanding of the information and a consistent interpretation
of those can be ensured.

MODEA | 57

In this viewpoint the configuration of the information objects, the behavior of the objects, the
actions that can happen and also the constraints that should always hold are specified. The focus
lies on the structure of the information and the information flow. Therefore three schemas exist.

- In the invariant schema a configuration of information object types is specified, which
must always be satisfied.

- The static schema defines the state of information objects at one point in time.

- The dynamic schema specifies the allowed state changes. This can also be modeled as
transition from one static schema to another. (ISO98a, ISO10b)

The goal in the information viewpoint is to “avoid the divergence of use and incomplete
collection of information” (Lin10).

In the computational viewpoint the system is decomposed “into objects performing individual
functions and interacting at well defined interfaces” (ISO98a). The functional decomposition is
described in a distribution transparent manner in this viewpoint, it is not specified where and
how these objects are implemented. The focus of the specification lies on “the object model
which defines the form of interface that an object can have; the way that interfaces can be bound
and the forms of interaction which can take place at them” (Rom05). The environment contracts
for the interfaces of the objects play also a major role in the specification of the computational
viewpoint. (ISO10b)

The computational viewpoint is linked to the information viewpoint in terms of the action types
used to specify the interactions. Whereas the engineering viewpoint specifies the
communication mechanisms, that are required to support the behavior at the interfaces in the
computational viewpoint. (Rom05, ISO98a)

The engineering viewpoint “defines the mechanisms and functions required to support
distributed interaction between objects of an ODP system” (ISO10b).

In the specification the required infrastructure to support the functional distribution of an ODP
system is required. Therefore the configuration of engineering objects with the interaction
channels between them is specified. Engineering Objects can provide application functionality
but also functionality required for the physical distribution, communication, processing and
storage. It is important to notice that the engineering specification is independent from a specific
platform or technical infrastructure. (ISO98a, ISO10b)

Nowadays the specification of the engineering viewpoint can be simplified through the
integration of standard middleware or web service components. They provide mechanisms
required to support the distribution of the system and can easily be referenced in the
specification of the engineering viewpoint (Lin10)

The technology viewpoint “expresses how the specifications for an ODP system are to be
implemented” (Lin10). The viewpoint is concerned with restrictions to the hardware due to
existing platforms or budget requirements. In the specification the allocation and configuration
of the real resources like hardware, software and communication technology of the OPD system
are described. It also includes extra information for testing and specifies processes and activities
for provision, deployment, maintenance and evolution of the system.

The concepts to describe the viewpoint are a configuration of technology objects and the
interfaces between them as well as a selection of implementable standards for the ODP system.
(ISO10b)

MODEA | 58

5.2.4 Distribution transparency

Distribution transparencies in RM ODP are defined as “the property of hiding the properties of
distribution from end users and specifiers in the enterprise, information, and computational
languages.” (1S098a)

The required functionality for this aspect is identified and specified in the engineering
viewpoint. For example engineering objects can move from one location to another. This
requires functionality to record and discover the current location of an object. The engineering
objects work together to provide such transparencies to the upper viewpoints. (ISO98a)

Possible transparencies, which can be supported in ODP systems, are Access, Failure, Location,
Migration, Persistence, Relocation, Replication and Transaction Transparencies. Further
information about the transparencies can be found in the RM ODP specification. Since
transparencies are related to performance and cost trade-offs, typically not all transparencies
are fully supported in an ODP system. (ISO98a)

5.2.5 Conformance

The RM ODP specification provides also a framework for assessing system conformance. This is
important in an open distributed system, since different vendors can provide parts of the
system. “Conformance is a relation between a specification and a real implementation [...]. It
holds when specific requirements in the specification [...] are met by the implementation”
(IS098a).

In the specification of the five viewpoints reference points, which can be declared as
conformance points, are identified. These are the points at which conformance will be tested and
therefore have to be accessible for test. (ISO10a)

Since the framework for conformance assessment will not play a major role in the ongoing
report, this concept is not explained in detail here. Further information can be found in ISO98a
and ISO10a.

5.3 Modeling the ODP Viewpoints

In this chapter the model driven approach for open distributed system using an enterprise
architecture framework (MODEA) is introduced. This is done based on RM ODP, introduced in
the previous chapter. First the modeling approach for the concepts of each viewpoint is
presented. Then the connections between the models of the single viewpoints are examined. In
the end the support for the approach in current modeling tools is described.

5.3.1 Enterprise Viewpoint

The Enterprise Viewpoint in RM-ODP answers the following questions:

* “Whatis the purpose of the system?”
* “What are the business requirements for the system?”
* “Who are the key stakeholders and how do they interact?” (Lin11)

The purpose and motivation for the system is shown in a Business Motivation Model. The
requirements of the system are captured in Use Case templates and their corresponding

MODEA | 59

Business Processes are described using BPMN. The stakeholders and their interactions with the
system are shown in an UML Use Case Diagram.

The base concept in the enterprise viewpoint of RM ODP is a community. A system consists of
several communities containing roles to represent the participating parties. The roles
collaborate together to reach a specific objective. The behavior itself is described through a
composition of several activities and each activity is linked to a responsible role. In addition a
definition of policies allow a dynamic reaction to changing circumstances in the business context
modeling. Following the system is described as an overlapping set of rules, described by policies
and business processes. This enables more flexibility than the specification of one single
algorithm (Lin11, ISO10b). Figure 28 represents a simplified conceptual model of the elements
in the RM ODP Enterprise Viewpoints. Furthermore the figure shows a mapping of these main
concepts to the modeling concepts used in MODEA.

Use Case
Community - -
contains
|
|
has
8!\+M Actor
Objective Role
reached
Ld, i responsible
through
BMM/Process Use Casd/Process Process Step
papa restricted/ Behavior consists of :
Policies extended (Rules) Activities

Figure 28 Mapping of RM-ODP concepts in the Enterprise Viewpoint to

MODEA modeling concepts (Own contribution based on ISO10b)
A community in RM ODP can be seen as the overall system or any subsystem in the given
context. In MODEA this is represented as the subject in the UML Use Case Diagram. An UML Use
Case Diagram typically describes, “what the system is supposed to do” (OMGO7). Thereby it
abstracts from technical details and focuses on the required usage of the system. The Subject is
the system to which the use cases apply. The roles played by users and other interacting systems
or persons, are represented as Actors. Actors are always external from the system. The
interactions between these actors are specified through Use Cases. The Use Cases can be further
specified by “some kind of Behavior [...], such as interactions, activities, and state machines, or
by pre-conditions and post-conditions as well as by natural language text where appropriate”.
(OMGO07)

The behavior of a community, with its goal to reach a specific objective, is represented as a Use
Case and further described through a Business Process using BPMN in MODEA. “Use case
modelling has become a popular and widely used technique for capturing and describing the
functional requirements of a software system.” (And01)

The Business Process Modeling Notation BPMN, also an OMG standard, is a graphical
specification language for modeling business processes and work flows. The main concepts used
are

MODEA | 60

- Pools and Lanes

- Flow Objects (Gateways, Events, Activities)

- Connecting Objects (Sequence Flow, Message Flow)

- Artifacts (Groups, Data). (OMG11)

The objective, which should be achieved by the Use Cases, is described in the Business
Motivation Model. Policies and rules are also captured in the Business Motivation Model, where
rules are some kind of actionable policies. The Business Motivation Model is an OMG standard
describing the why of any business activity. It defines the results that the approach should
achieve. Therefore the following core concepts are defined:

Ends: Describes the Vision, which is amplified by Goals, which are quantified by Objectives

Means: Describes the Missions and its Strategies and guiding Business Policies. Strategies
implemented by Tactics, Policies get actionable through Business Rules(OMG10)

The following figure describes the modeling concepts of MODEA and how the different diagrams
are related. From the BMM the higher level concepts like Vision, Goals, Mission, Strategy and
Business Policy are not mentioned, since only the low-level concept which implement the higher
level ones are important to the other diagrams.

Template

Use Case BMM2UC Model BMN
Acto ——| e Case L Tactic - ~ Objective
S participates Laetase realizes g to achieve 3 ;

O~

governed by

Business . = Busine le
. Jsiness ruie
Process guided by

Figure 29 Concept Model of the Enterprise Viewpoint

participates

In MODEA the tactics defined in the BMM are realized by Use Cases. A business rule can also be
realized directly in a Use Case or only indirectly. In the last case no explicit relationships to other
model elements are possible. If a business rule is realized in a Use Case it also has effects on the
business process describing this Use Case. A specific diagram called BMM2UC Model is
visualizing the relationship between Tactics and Rules with Use Cases.

Use Cases, as representations of interactions between the stakeholders, are summarized in a
UML Use Case Diagram. The role a stakeholder plays in a specific use case is represented as
Actor. The behavior of a use case will be defined through a Business Process using BPMN.
Business rules guide the Business Process, but there will be no special view showing this
relationship, since you can trace the corresponding Business Rules also via Use Cases and
Tactics. The pools in a Business Process represent the Actors that participate in the described
Use Case.

Use Cases and Business Processes are supplementary concepts. As Nawrocki et al. (2006) found
out in an experiment, “Use cases are easier to understand than BPMN diagrams” but also that
Business Process diagrams support the understanding of use cases. They conclude with the

MODEA | 61

proposition that the “description of business processes should be based on use cases”. Also
Libke et al. (2008) analyze the relationship between Use Cases and Business Processes and
present an algorithm of how to generate Business Processes out of Use Case Templates.

With the Business Processes and the Use Case Diagram one part of the use case modeling is
specified. The second part is a use case description containing detailed requirements (And01).
This can be done informally and unstructured but also in a formal style or with pseudo code. In
experiments Anda (2001) comes to the result that “use case models constructed using the
Template or Style guidelines are easier to understand”. Adolph et al. (02) also point out that “a
well-written use case is relatively easy to read”, which is “one reason for their popularity”.
Therefore he describes patterns for well-written use cases (Ado02) and the co-author Cockburn
gives also further advices of how to write effective use cases (Coc00).

In MODEA we will use a predefined template to further describe Use Cases. The exact structure
of the template is dependent from the project and the application of the Use Cases in the
development process. The main issues that should be included in every template after (And01,
Coc00) are: Title, Actor, Trigger, Summary, Preconditions, Basic flow of events, Extension Points,
Alternate courses and Post-conditions.

Figure 30 gives an overview of the used models and how they are connected to each other.

UML Use Case Diagram

System _ .
_ = /g BMM2UC
i <’:’j’"’“jf> Actors Model Mission Vision
Actor 1
Actor /__-_‘_. <I~> N Sl'ulcg',' Goa
—-"‘—-—-—-__USE Caii/l f::(_:d)\D(LD Tactic Objective
= =il T \UC A
< i /—-——-« / \ DC—L/\ Tactic Objective
\ ™y i »,«> / /:) /'T
Aetor2 \EJ:c—Ca:; ‘ \--:} D\—> Strategy \ Goa
Template Tactic } ™ Objective
BPMN Title

Preconditions

T(g):}_':] Main Success Scenario
! .

Figure 30 Schematic Overview of the Enterprise Viewpoint

Above one possible way to model the Enterprise Viewpoint using BMM, Use Cases and BPMN is
shown. The links between the single diagrams are pointed out with grey arrows. The actors
participate in Use Cases and are linked to the pools of the BPMN diagrams. The BPMN diagram
as well as the Use Case Template provides further information about a Use Case. A Use Case
realizes specific Tactics and Business Rules defined in the BMM. If a Business Rule is realized by
a specific Use Case it also as effects on the corresponding Business Process.

5.3.2 Information Viewpoint
The Information Viewpoint in RM-ODP answers the following questions:

* “What are the data types of the information that the system will handle?”
* “What are the relationships between these types?”

MODEA | 62

* “How will the state of the data in the system evolve as the system operates?”
* “What are allowable actions and how will they affect the state of the data?”
(Lin11)

The main concepts in RM ODP used for the description of the information specification are the
information object and their types as well as the relationships between the various objects and
the various types. Every information object has a specific information object type and a specific
state. Action can cause changes to the state of one or more objects. In the definition of an action
also the information types, which participate in the action are defined. (Lin11, ISO10b)

A simplified model showing the main concepts that are dealt within the Information Viewpoint
can be seen in Figure 31.

Class Object State Machine
Information s Information has | e
1 2laie
Object Type Object ‘
participate
to from
Message Type

Actions \— T "—“ State Change

Figure 31 Mapping of RM-ODP concepts in the Information Viewpoint to
MODEA modeling concepts (Own contribution based on ISO10b)

The data types with their relationships to each other are described using an UML Class diagram
in MODEA. A specific state of the data can be described with an UML Object Diagrams. At least
the state of the data and allowable actions can be described using UML state machines.

Following the concepts used in the Information Viewpoint can be easily mapped to concepts in
the UML specification. Information Objects in RM ODP can be modeled as UML objects. Their
structure is specified using an UML Object Diagram. The Object diagram is a variation of the class
specification of UML. It contains the instance specifications (objects) and links between them.
(OMGO07)

These UML objects are instantiated with UML classes, which represent the Information Object
types. The classes itself and relationships between them are modeled using the UML Class
Diagram. Here concepts like association, aggregation and generalization can be used to describe
the structure of the information types represented as classes. (OMG07)

These classes are also referenced as attributes when specifying RM ODP actions. These actions
are modeled with the Message Type concept of SoaML. MessageTypes are a construct from the
SoaML specification. They extend the UML metaclasses DataType, Class and Signal with the goal
to “specif[y] [the] information exchanged between service consumer and providers” (OMG12a).
A message type can contain classes as attributes or aggregated associations of data types.

The state and state changes of information objects can be modeled using UML Behavioral State
Machines. The State Machines can be used for “modeling discrete behavior through finite state-
transition systems” (OMGO07). The most important concepts in this kind of diagrams are states
and transitions. A state represents a static situation like waiting for an event, but also a dynamic

MODEA | 63

one like performing a specific behavior. A transition is a directed relationship between modeling
elements of the state machine. (OMG07)

Following there are four different diagrams in the MODEA approach for the information
viewpoint. Figure 32 illustrates how these diagrams with their containing concepts, relate to

each other.
UML Object Diagram UML Class Diagram SoaM
Information | « has 1| Information |° i} Message .
Object I:' Type is attribute Types
- 1 - 1 . e
linked linked linked
has specifies trigaers
L 1
State Behavior [® - Transition

1] T ’

to

from
Figure 32 Concept Model of the Information Viewpoint

Each information object has a specific type and a specific state. The type is represented through
instantiation of the object with the corresponding class. The state is represented through an
attribute. The information type specifies the possible state changes of an information objects
through a linked UML State Machine. The outgoing transitions in one state represent the exits
that could be used to change the state. Special message types can trigger one or more transitions.
The parameters used to define the message types have to specify as information type.

Figure 33 provides a schematic overview of the diagrams and how they relate to each other. It
illustrates the theoretical concepts described above.

UML Object Diagram

UML Class Diagram
Object 11: Type 1 Object 12: Type 1

|
nf Type 1
Object 2: Type 2 Object 3: Type 3

] 2 —f
nf Type 2 ,_jl Inf Type 3 State 2

- — SoaML Message Type Diagram
GuteD Gate it

Action 2
. |

Action 3

Figure 33 Schematic Overview of the Information Viewpoint

UML State Machine

The diagram contains three different information types in UML Class Diagram. For Type 2 also a
corresponding State Machine is given. Action 1, which has Type 2 and Type 3 as Attributes,
triggers the upper transition. The corresponding Object Model contains 4 information objects.
Two Objects are from Type 1, one object is from Type 3 and one from Type 2. The last one, object
2,1is in state 2 from the state machine of its information type.

MODEA | 64

5.3.3 Computational Viewpoint
The Computational Viewpoint in RM-ODP answers the following questions:

* What s the “basic functionality of the system”?

* How are the services offering these functionalities?

* “How [are] these services [..] realized internally in terms of components and
connectors”? (Lin11)

The main concept in RM ODP to describe the computational specification is the computational
object. “Computational Objects model the basic functional elements of the system” (Lin11). The
computational objects provide their functionality over interfaces to other objects. Each
interfaces fulfills therefore an environmental contract, which specifies a set of Quality of Service
constraints. The behavior at any interface is described through interactions between the
participating parties. Each computational object also realized a defined behavior. A behavior
consists of actions, which can be internal or external. External actions are called interactions
(ISO10a, Lin11). In the case of specifying Human/System interaction the “enterprise interactions
and information objects are modelled in terms of computational objects providing services”
(ISO10b). The concepts of the computational specification in RM ODP with their relationships to
each other are shown in Figure 34. Thereby also the mapping to the concepts, which will be used
in MODEA is shown.

Service Contract Service Interaction Diagram
provided ————

fulfills

nental =

J nterface

Enviro
Contract

Partigipant

Computationa

‘ Internal Action

realizes l
Composition/Process Diagram v

Behavior = Action
€onsists o

Figure 34 Mapping of RM-ODP concepts in the Computational Viewpoint

to the MODEA modeling concepts (Own contribution based on ISO10b)
In open distributed system many vendors work together through providing and requiring
functionality from each other. When using a service-oriented architecture (SOA) approach these
functionalities are provided as a service. A SOA “is a way of describing and understanding
organizations, communities, and systems to maximize agility, scale, and interoperability”
(OMG12a). This paradigm works for integrating existing functionality as well as for creating new
one.

In MODEA mainly SoaML is used as modeling technique to specify the Computational Viewpoint.
Thereby not only the Human/System interaction are modeled as Services, but also the
interaction between different parts of the system. SoaML “provides a standard way to architect
and model SOA solutions using the Unified Modeling Language” (OMG12a). The current
modeling approach for OPD, UML40DP, enables a RPC-based architectural style only. With the
use of SoaML also support for other interaction paradigms like document centric messaging or
publish/subscribe are given. (OMG12a). The characteristics of services in RM ODP, described in
chapter 5.2.2 are also adapted in MODEA. The main concepts used in SoaML are Participants,

MODEA | 65

Service Architectures and Service Descriptions. A service can be specified in three ways. The
simplest one is the use of a UML interface. They define one-way services, which do not require a
protocol and represent in most cases RPC-style web services. To specify two-way services with a
specific protocol the concept of Servicelnterfaces or ServiceContracts can be used. Such bi-
directional services are characterized by the fact that “both the provider and the consumer have
responsibilities to invoke and respond to operations, send and receive messages or events”
(OMGO7).

In the Computational Viewpoint the Service Architectures with its containing services and
participants are specified. Therewith the ServiceContract based specification approach for
services is used. The SoaML Diagrams in the Computational Viewpoint are extended through
UML Sequence Diagram and BPMN. The mapping of the participants to system components and
the specification of the provider and consumer interfaces are done in the Engineering Viewpoint.

The Environment Contract can be roughly mapped to a Service Contract. The interface in RM
ODP will be represented as SoaML ServiceContract in MODEA. A computational object is
modeled as Participant. The behavior of a participant can be modeled using two different ways.
One way is decomposition and the other one is using behavioral diagrams like BPMN. Since the
concept of decomposition is supported in the approach, process diagrams are used to illustrate
how the different parts will be composed together. The interaction that takes place between the
interfaces of different participating parties is specified using UML Sequence Diagrams. UML
Sequence Diagrams enable the specification of the visible aspect of interactions, the messages.
The provide concepts to “describe a sequence of messages” (OMGO07) between several lifelines.
(OMGO07)

The concept model for the computational viewpoint of the MODEA approach is provided in
Figure 35.

rocee Dingrom The specification of the Computational

Composition

Viewpoint in MODEA is completely

conform to the contract-based SOA with

its concepts of Participants, Service

specifies

Architectures, Service Contracts,

Service 1

Architecture KS—m—

Roles (Service

Interface] Providers and Consumers and Sequence

bound to

Diagrams. Therewith Figure 35 is more
or less a simplified conceptual model of
the used part of SoaML.

; The overall system is described as
has Service Architectures, which contains

1 Participants and the Service Contracts

Interaction between them.

Behawvior

Sequence Diagram The Service Contracts specifies the roles
Figure 35 Concept Model of the Computational that can be played within the service. A
role is represented as interface and can be either a provider or a consumer. The Participants
collaborating in the Service have to bound to defined role of the Service Contract. A Service,
specified through a Service Contract, is also related to an interaction behavior of the
participating parties. These parties, represented as lifelines, are the roles that participate in the
Service.

MODEA | 66

A Service Contract can also be composed of other Service Contracts. These nested Service
Contracts provide a more fine-granular description of the service. Such a compound service does
not represent an implementation through calling other service. This can be specified in a
Participant Architecture or Process Diagram. (OMG12a)

The participants can be further described through a service architecture defining how the
services are provided through internal parts or use of other services. Another possibility to
describe the internal behavior of a participant is through the use of a process diagram like
BPMN. Here the composition of required services and required internal actions are defined to
describe how the functionality is provided. A schematic diagram illustrating the modeling
approach in MODEA for the computational viewpoint is presented in Figure 36.

SoaML

e Participant

Service / Service Architecture ~\

Participantf— Contract
ticp NS Gty / N @ }——-{37)
/

I/ Service Contract \

- UML Interaction
Diagram

RS i W—

<consumer>> §. . > <<provider>>
Imerfacel < Interface2

|
Figure 36 Schematic Overview of the Computational Viewpoint
The SoaML specification contains an interface-based approach and a service-contract-based
approach. The difference between these two approaches is “whether the interaction between

participants are defined separately from the participants in a ServiceContract [...] or individually
on each partipiants’ service and request” (OMG12a)

The use of the contract-based approach for SoaML enables a definition and usage of patterns of
services. (OMGO07) Compound services enable the specification of general design patterns, which
can be then adapted to a specific context in the service architecture. For example a generic
Service Contract for a Sale can be specified. This contract can then be used either for a retail sale
or a whole sale, dependent on the participants that are bound to the buyer and seller role.

5.3.4 Engineering Viewpoint

The Engineering Viewpoint in RM-ODP answers the following questions:

* “How [does] distribution work[...]?”

* “How [are] objects distributed to nodes?”

* What s the structure of the nodes and the linking channels?

* What functions are required to support the required distribution transparencies?(Lin11)

The engineering viewpoint describes how the interaction between the objects defined in the
computational viewpoint is achieved and what resources are required for this. These can be for

MODEA | 67

example discovery services or request brokers. In this viewpoint the “supporting mechanisms
for distributed interactions between objects [are identified and specified]” (Lin11) With the
concepts of engineering objects, nodes, capsules, clusters and channels a technology-neutral
architectural framework or reference architecture should be described. (ISO98a, Lin11)

Each application functionality identified as object in the computational viewpoint is represented
as Basic Engineering Object in the engineering specification. Transparencies objects represent
the platform functionality required to enable the distribution. The engineering objects
communicate between each other through channels, which contain a specific protocol. In the
engineering specification the distribution of these engineering objects to processing units, the
so-called nodes, is defined. Inside these nodes engineering objects can be further grouped in
capsules and clusters. Capsules own storage and a part of the node’s processing resources, which
are shared among the contained engineering objects. Clusters are the smallest grouping
possibility for engineering objects with the goal to reduce the costs of manipulating the
contained engineering objects. (ISO10b, Lin11) Figure 37 summarized the main concepts that
are dealt within the engineering specification. It also illustrated a mapping to the modeling
concepts used for them in MODEA.

Port and Interfaces,
Components
UML Component
| Channe
Node !
bDinding
to from
UML Corhponent UML Component
Capsule — Engineering Basic Engineering
Object Object
supported by
UML Component
- \ Transparency
Cluster o
Objects
UML Component/Other
0DP Specification

Figure 37 Mapping of RM-ODP concepts in the Engineering Viewpoint to

MODEA modeling concepts (Own contribution based on Lin11, ISO98a)
In MODEA nodes, capsules, clusters and engineering objects are modeled as UML components.
They are differentiated through their use on different abstraction layers. Their structure with
the corresponding communication channels is modeled using UML Component diagrams. UML
Component Diagram enables the specification of “software systems of arbitrary size and
complexity” (OMGO07). A component in this context is defined “as a modular unit with well-
defined interfaces that is replaceable within its environment”. There are two kinds of
components: A Basic Component represents an executable element in a system. It has provided
and required interfaces as well as at least one classifier realizing its behavior. The second one is
Packaging Components. These components extend the Basic Components to be able to represent
“building block[s]’ that may own and import a set of model elements.” Components are
connected through ports and interfaces as well as realization and usage dependencies. The
component diagram is enables the specification of logical components but also physical
components. Following a link to the logical description of the system as well as the deployment
can be made. (OMGO07)

MODEA | 68

Nodes represent the highest abstraction layer. If required they can be decomposed into capsules
and clusters. The components representing basic engineering objects and transparencies objects
are on the lowest abstraction level in the engineering specification. The communication channels
between the various components are modeled through the use of ports and assembly
connectors, linking required and provided interfaces. If necessary for the communication,
components fulfilling any protocol processing steps or other communication functionality can
also be included. The diagrams used in the MODEA approach to specify the engineering
viewpoint as well as their main concepts and the relations between them are illustrated in
Figure 38.

Sequence
Diagram
Service has Interaction
Interface . 1 Behavior
connected

instantiate

1 1 . .
Behavior . ~={ Component [@— Port >— Interfaces -
realized by
___J_,_,,LIB.\“__ A

Processing . System . - Platform .
& Ty R Provided Required
System Component require Capability

Platform

ODP Specification

Figure 38 Concept Model of the Engineering Viewpoint

The essential element in the engineering viewpoint in MODEA is the component diagram. Here
the system distribution using components is described. Components represent Processing
Systems, Platform Capabilities from external Platforms and System Components. System
components provide application functionality but also necessary functionality to support the
distribution or communication in the OPD system. For example the replication transparency can
be modeled with distributing the replicated system component on two processing systems.

Often when using Cloud Computing as infrastructure, external organizations or companies
provide the distribution infrastructure. In this case “engineering specifications should be
mapped to the specifications of the transparency mechanisms and common functions
implemented and offered by the cloud provider.” (Lin11) This is realized in MODEA through
representing these platform capabilities from external providers as components. The platform
itself can be described with an own enterprise architecture specification. The provided
capabilities are integrated with use-relationships to internal system components.

The service contracts of the computational viewpoint are defined more technically in the
Engineering Viewpoint using SoaML Service Interfaces or simple UML Interfaces in case of a one-
way service. This is similarly to the approach from Sadovykh et al. (2010) described in chapter
4.2. In his approach the services with their contracts and choreography are defined in the
Business Architecture Model. The Service Interfaces and Software Components are described in
the System Architecture Model.

The communication between the components is modeled using UML Ports and UML Interfaces
as well as SoaML Service Interfaces. A port describes a communication point at a component and

MODEA | 69

is typed with an Interface, if it is a one-way-service, or with a Service Interface, if it is a two-way-
service. The port at the component providing the service is labeled as <<service>>-Port, the port
at the component requiring the service is labeled as <<request>>-Port. The provided and
required interfaces at the port are then typed with the same interface as the port in case of a
one-way-service and with the provider and consumer interfaces in case of a two-way service.
The communication channels between the provided and required interfaces are modeled using
assembly connectors. Ports can be also connected through a simple connector. For each port,
that means for the interface that types this port, a more technically UML Sequence Diagram can
be specified. This modeling approach relates to the Participant Architecture as defined in SoaML.
(OMG12a)

The internal behavior of a component can be modeled with two ways. Either it is described using
a behavioral diagram like State Machines or a Process Diagram or the structure is further refined
through a decomposition of the component.

A schematic overview of how the viewpoint is specified is given in Figure 39.

<<Provider>>
Interface 1

<<Consumer>>

Interface 2

:ﬂ

UML Interaction

Interface 3

Diagram <<Servicelnterface>>
Service

—_—

Processing = J Processing System 2 %Jl
service

System 1 O?\\/quu /O
e sj

L

A

System System

‘)g Component 1 Component 2 [:)
- Faal T
_asE usk usk
P ¥ v
= B
Platform Platform Platform
Capability 1 Capability 2 Capability 3

Figure 39 Schematic Overview of the Engineering Viewpoint

The schematic overview represents two processing systems, which communicate with each
other through a two-way-service. The service and request ports at the processing systems are
typed with the Service Interface of the Service. System 1 provides the service and therefore
provides Interface 1 and required Interface 2, the consumer. System 2 is the consumer of the
service. It required the providing Interface 1 and provides the consuming Interface 2. System 2
also provides a second service, typed by Interface 3, which is a simple one-way-service.
Processing System 2 can be further decomposed using two system components. These
components must together have the same ports as the processing system. The System
Components use several external Platform Components to provide their functionality.

In the current UML specification the communication between the components works over
interfaces and ports. Port, provided and required interfaces can be specified and connected
through the assembly connector. This enables only the visible specification of one
communication type, which represents a one-way communication. Two-way communications
between components have to be modeled at the moment using a required and a provided

MODEA | 70

interface at each component. This leads to a lot of labels and connections and blow the diagrams
out of proportion. The diagrams with the labels as specified in the UML and SoaML Specification
are shown in Figure 40. On the left side a one-way-service is shown and on the right side a two-
way-service.

1WayService 1WayService Interface 1 Interface 1

Component 1 E

Component 3
.~ 2WayService

<<service>>

: 2WayService

1WayService “1WaySefvice

Interface 2 Interface 2

<<Provider>> <<Consumer>>

n > Interface 1 Interface 2
1WayService AR)

-

<<Servicelnterface>>

2WayService

Figure 40 Labeling in the Component Diagram

Through labeling all visible elements the diagrams get hard to understand. Therefore the
recommendation, especially for more complex diagram containing a lot of components, ports
and interfaces, is to hide the interface and port labels. Only the assembly connector will be
labeled with the service name and in the case of an two-way-service the service and request
ports have to labeled. This recommendation is presented in Figure 41.

Component 3 'L:E }Compunenl!l @ Component 1 E /'O Component 2 E
40) D <<servicess D<—~ S Jecrequests»
iwayService | ‘ \“---(C./

2WayService

Figure 41 Proposed labeling in the Component Diagram

Therefore the recommendation is not to label all single interfaces.

5.3.5 Technology Viewpoint
The Technology Viewpoint in RM-ODP answers the following questions:

* How to consider “the IT infrastructure already available in the company [and] their budget
requirements”?
* How to align to the “existing commercial policies or strategies that might force (or
forbid) the use particular vendor technologies”?
(Lin11)

The technology viewpoint provides the link between the other four viewpoints and the real
implementation. It describes the hard- and software components of the implementation as well
as the constraints in terms of costs and availability of existing products. Also possible standards
the system should be conform to are integrated. (ISO98a)

The four main concepts are shortly explained in the following table.

Technology Hardware devices like PCs, servers, ATMs, printers

Objects Operating Systems and applications like browsers, text editors
Connections like LANs, WANSs, intranets

Implementable Templates for the technology objects

standards Represent standards to which the objects must be conform

MODEA | 71

Implementation Defines the activity of instantiating the specification
Includes development, deployment, configuration and evolution
processes

IXIT Provides extra information for conformance testing
Table 15 Concepts of the Engineering Viewpoint in RM ODP (Own contribution based on ISO10b)
The implementation processes can be specified using process diagrams like BPMN or UML
Activity Diagrams. Both enable the specification of single actions and the integration of different
process flows. With regard to a possible automation of these processes BPMN should be
preferred, since there support for automation is given using BPEL.

The technology objects and their structure are represented in MODEA with the UML Deployment
Diagram. The Deployment package of UML provides “constructs that can be used to define the
execution architecture of systems that represent the assignment of software artifacts to nodes”
(OMGO07). With the concept of Nodes, with possible nesting, communication channels and
artifacts the technical specification will be described.

Each technology object is represented as a Node in a UML Deployment Diagram, which is very
similar to the approach described in UML40ODP. The interfaces between the technology objects
are represented through communication paths between the nodes. The implementable
standards can be integrated as artifacts, which have dependencies to the nodes the must be
conform to them. Figure 42 gives an overview of the diagrams and concepts used in MODEA to
specify the Technology Viewpoint. The process diagram for the implementation process is not
included in the figure.

connected

deployed 1 dependent from

Artifact . : Node o Standard

manifest /éﬁ\

Jperanng
Con Hardware ¥
Component Y .
PO Device
Application

Figure 42 Concepts of the Technology Viewpoint

At this moment we will not go in detail of the specification for this viewpoint, since it should be
generated in main parts out of the other specifications in the future. The concepts related to
conformance testing are not examined in this report.

A schematic overview of the specification of the deployment structure and the implementation
process is given in Figure 43.

MODEA | 72

Structure of Communicationl Implementation
Deployment Process
:)
1 Step 1
Apolication 1 Hardware Hardware
RRICation Device 1 Device 2
AN 3
deployed..*” \\ deployed '
s s ' Step 2a Step 2b
<<artifact>> <<artifact>> <<artifact>>
Artifact 1 Artifacts 2 Standard 1
n’aﬂ‘es:i E manifest Step 3
v v
System System @
Component 1 Component 2

Figure 43 Schematic Overview of the Technology Viewpoint

Each system components defined in the Engineering Viewpoint is manifested through an
Artifact. The Artifacts are then deployed to Nodes, which can be for example Applications,
Hardware Devices or Communication Channels. Standards are represented as artifacts, since
they are also “concrete elements in the physical world that are the result of a development
process.” (OMGO07). A dependency-connector links the standard to the appropriate node.

MODEA | 73

5.4 Connections between the viewpoints

If a system is specified with the use of different viewpoints and different language for each
viewpoint the consistency between the various diagrams are a major issue. Therefore it is
necessary to define the relationships between the viewpoints. They will support the designers to
keep the overall specification consistent. The relationships between the model elements in
MODEA are identified based on that ones defined in the RM ODP specification and on the
relationships between the different UML and SoaML packages.

First an overview of the relationship between all the model elements defined in the five
viewpoints above is given in Figure 44. Specialized children of the elements are hidden as well as
the multiplicities and labels between the elements of one viewpoint.

uses |
Business Template
Rule it s
Objective [— Tactic Use Case Actor
T
1
realizef by, types
Message |USed IN| Interaction Service
Transition . ® . Architecture

Type Behavior s 0
1 O O 0
¢ |- used in Y Y [c
1] E
nfermation 2 Composition c
Behavior 2 Participant R -~
Type Behavior -
[2 1 §
- Role 2

State nformation Interface
Object 1
fulfills realized by
typks
% '] = Port —* Component 8ehavior
1
Interfaces nteraction
- Behavior
manifepted in
1

Standard | — Node — Artifact

Technology

Figure 44 Relationships between the Viewpoints in MODEA

The model elements between the different viewpoints are connected through the use-connector,
the realization-connector or through typing of the element.

Enterprise Viewpoint

The Enterprise Viewpoint is related indirectly to all other viewpoint. The goals and objectives
described here must be considered in the overall specification. A viewpoint is “consistent with
an enterprise specification if all roles, activities and policies described in the enterprise
specification are correctly reflected”. (ISO98a)

For example the behavior of an information type or a participant must always obey the policies
and rules defined in the Enterprise Specification. Flexibility requirements or policies must be
considered in the choice of technology for the implementation of the system. Transparency
needs as well as security and performance issues defined as requirements in the Enterprise

MODEA | 74

Specification have to be considered in the Engineering Viewpoint. (ISO98a) If any object is
related to a specific requirement, specified as business rule, use case or tactic in the Enterprise
Specification, then these two elements can be connected with the Realization or Dependency-
Connector in UML.

Enterprise, Information and Computational Viewpoint

But there are also direct links from the Enterprise Viewpoint to the Information and
Computational Viewpoint. In the Business Process the Information Types are used for the data
objects and also to annotate the message flows with objects.

An actor in the Enterprise Specification, which is also linked to a pool in the Business Process,
will be mapped to a participant on the highest abstraction levels. These participants can then be
further refined. The same will be done with a Use Case in the Enterprise Specification. At the
highest abstraction level in the Computational Specification, this will be directly mapped to a
service. In the most cases this is then a Business Service. Further refinement steps will identify
more technical services required to implement the business service.

Berkem (2008) also proposes a one-to-one mapping between use cases and services. He also
includes the Business Processes in the one-to-one mapping. Tactics act as a fagade for the goal-
driven-services that are mapped to use cases in his approach. In MODEA Tactics, Use Cases,
Business Processes and Business Services are linked in a similar manner to each other. The exact
cardinalities between these concepts are dependent from the project type and development
process. Following MODEA supports a one-to-one mapping between these four elements as it is
in Berkem (2008), but there is also support for specifying one Business Process for several Use
Cases or link a Use Case to more than one service.

The information viewpoint provides a shared vocabulary for all the other viewpoints through
the definition of the used information and message types. The information types are important
for the Business Processes in the Enterprise Specification. Each state change in the Information
Specification, triggered by some Messages Types, also known as actions, has some
correspondence in the computational viewpoint. In most cases it corresponds to some message
flow in the sequence diagram of a service contract. But they can also be linked to some internal
actions of a participant.

The Computational Viewpoint, typically created when some first results for the Enterprise and
Information Viewpoint are specified, has links to the Enterprise, Information and also
Engineering Viewpoint (Lin11). An schematically overview of the explained relationships
between the Enterprise, Information and Computational Viewpoint is given in Figure 45.

MODEA | 75

Information

Enterprise

Actor 2

Actor 1 \ o

m'<‘:'_""’c“'j; z7 | E =

— Message 1

™ Message 2

Sefvice Architecture
\

\
1
Ee Service
I Contract

Figure 45 Schematic relationships between the model elements of the Enterprise,

Information and Computational Viewpoint
To ensure that the computational specification fulfills the enterprise specification, the use cases
and actors are mapped in a first step to participants and service contract using a one-to-one
mapping. Then this system overview can be further detailed to specify the functional
decomposition required to fulfill the requirements. This support the top-down approach to
define the enterprise specification presented in (Linl1l). When existing components or
functionality has to be integrated in the system a Bottom-up approach is recommended (Lin11).
This is support through encapsulate the existing component or functionality using a participant
and providing it over a service. The so defined components are then composed together to fulfill
the requirements in the Enterprise Specification.

With both approach the used information in messages of the sequence diagrams and also in the
interface definition for the roles has to be defined in the information specification.

Computational and Engineering Viewpoint

On the RM ODP specification each computational object corresponds to at least one basic
engineering object in the engineering specification. The process of getting from the
computational specification to the engineering specification “may simply consist of the
identification of suitable supporting objects to populate channels that represent binding objects
in the computational specification”. (ISO98a)

In MODEA this concept is realized through the introduction of one system component for each
participant at the lowest abstraction level. The distribution of the components in the engineering
specification can be the same as the functional decomposition hierarchy in the computational
specification but they can also be different from each other.

The relationships between the interactions parts of the two specifications are done as followed.
Each service contract will be fulfilled by a service interface. This service interface types the port
from the component representing a participant of the service. The provided and required
interfaces at this ports define the role, the component plays, through implementing the provider
and consumer roles defined in the computational specification. This mapping of service
architectures and participants to components and the mapping of the interaction elements is
shown in Figure 46.

MODEA | 76

B
Saci I[E <ol R Participant }ﬂ
ekl Service Ar(nlr LUIL =1 .
>-- ?’
B —,_ — {._.. service) S
\) —{3
— N — 4
-
<<Consumer>> <<Provider>> q _____ <<Servicelnterface>>
Interface 2 Interface 1 Service
A ‘ :
Computational e e ' Engineering

Figure 46 Schematic relationship between Computational and Engineering Viewpoint

The sequence diagrams defined in the computational viewpoint for the interaction in one service
can be extended in the engineering viewpoint with more technical details or protocol
information. Therefore also components with functionality for the communication or
transparency specification can be introduced in the engineering viewpoint.

In the RM ODP specification the interaction defined in the engineering specification is restricted
by the fact that is has to “start[...] and end [...] with an interaction involving one or more of the
basic engineering objects corresponding to the interacting computational objects” (ISO10b).
This means that the sequence diagram defined in the engineering specification for a service
interfaces must at least contain the same lifelines and messages as the corresponding sequence
diagram from the service contract. It also has to start and end with an interaction from these
“original” participators. But with considering these restrictions the sequence diagram can be

extended with further lifelines, for example a broker, a Computational Engineering
| J & | [J |) |]

further interactions between the lifelines. This relationship
is illustrated in Figure 47. The grey shaded lifelines
represent the participants of the service contract in the

computational viewpoint. In the engineering specification a] i 3
third actor will be included. This could be for example Figure 47 Mapping of Sequence

Diagrams
necessary for some transparency or security reasons.
Engineering and Technology Viewpoint

In the technology specification each technology object has a corresponding atomic or composite
engineering object or a channel in the computational specification (Lin11). In MODEA each
component from the computational specification corresponds to an artifact in the technology
specification using the manifest-relationship. The service interfaces of the computational
viewpoint, specifying the communication between the components, are also mapped to artifacts
using the manifest-relationships. The artifacts are then deployed to appropriate nodes, which
represent Applications, Hardware Devices or Communication Mediums.

MODEA | 77

5.5 Methodology for MODEA

In the previous chapters the modeling approach is introduced through an introduction of the
concepts used to describe each of the five RM ODP viewpoints. Now one methodology of how to
create the specifications in a development process is recommended in this chapter. This basic
methodology can be supported by most of the development processes for software engineering
like agile methods, iterative methods or waterfall methods. Therewith the propositions given by
Linington et al. (12) will be taken into account.

The process typically starts with the definition of a first draft of the enterprise and information
specification. After that or in parallel with them, the computational specification is created.
(Lin11)

The computational specification can be defined using a bottom-up approach or a top-down
approach. When using a top-down approach the computational objects, that mean the services
and participants in MODEA, are derived from the enterprise and information specification. In
case of a bottom-up approach the computational objects encapsulate existing functionalities and
are then composed together. (Lin11)

The next step is to define the engineering specification. Therefore a first version of the
computational specification is required, since the engineering viewpoint is build based upon the
identified system parts in the computational specification. For the creation of the engineering
specification first the mapping of the elements in the computational specification to components,
ports and interfaces has to be done. Then additional required functionality for communication,
security and distribution can be integrated.

At least the elements of the engineering specification have to mapped to that ones in the
technology specification. The parts of technology specification describing hardware and
communication mediums can also be defined earlier in the development process, as the provide

also restrictions to the upper viewpoints. [e —] [Information]

Figure 48 shows the sequence of creating the different

(

viewpoints. The development process described here can be
supported through model generation mainly at three points: Computational

[

- Generate a high-level service architecture of the
computational specification Engineering

- Generate a first draft for the component model in the
engineering specification

H

Technology

- Generate the technology specification . -
Figure 48 Steps in the

After defining the Use Case Diagram in the Enterprise developmentprocess
Specification, a generation of the high-level service architecture in the Computational Viewpoint
can be automatically generated. Therefore for each actor as well as the system subject a
participant in the service architecture is created. For each use case a service contract is defined.
The system participant attends in each of the defined service contract. The corresponding
participant of an actor takes part in those service contracts, where the actor is linked to the
appropriate use case.

If the computational specification is finished, a first draft of the component diagram in the
engineering specification can be generated. Each service architecture is mapped to a component;
the contained participants are mapped to subcomponents. For each service contract a service

MODEA | 78

interface is created which is used to type the port at the corresponding component. The roles
defined in the service contracts are used to define the provided and required interfaces at the
ports. This generated component diagram can be used to integrate the required components and
functionalities for communication, distribution and security.

At least the technology specification can be generated from the engineering specification, a
specification of the used infrastructure and some deployment rules. First the components in the
engineering specification are represented as artifacts. Using the defined rules the artifacts are
linked to the corresponding elements of the specified infrastructure.

5.6 Tool Support

In MODEA only a small number of different modeling techniques is used. These are UML 2.0 and
BPMN as well as the UML profiles BMM and SoaML. Since UML 2.0 and BPMN are well-
established modeling techniques there is a quite good tool support for at least the modeling part
of the diagrams. An overview over the used diagrams in each viewpoint of MODEA is given in
Table 16.

Viewpoint Used Modeling Technique
Enterprise OMG Business Motivation Model, UML Use Case Diagram, BPMN
Information UML Class Diagram, UML Object Diagram, UML Behavioral State

Machines, SoaML Message Types
Computational SoaML, UML Sequence Diagram, BPMN
Engineering UML Component Diagram, UML Sequence Diagram

Technology UML Deployment Diagram, BPMN

Table 16 Overview of the diagram types used in MODEA

Each tool that provides at least support for UML 2.0 and BPMN can be used for MODEA. SoaML is
an UML profile and if a modeling tool does not provide a direct support, it can be easily
integrated through the use of the appropriate stereotypes. Also BMM, although there is no UML
profile, can be easily used through serotyping since there are only a few simple concepts and
associations. However to choose a tool that provides also support for BMM and SoaML makes it
easier. Examples for tools providing support for UML 2.0, BPMN and BMM are Modelio, Sparx
System Enterprise Architect, IBM Rational Architect or Select Architect. The first three one
provide also support for SoaML. (Mod11, Sparx12a, Sel12, IBM12)

At the moment there is no tool providing directly support for the model generation proposed in
the previous chapter or enables code generation out of the specification.

Sadovykh et al. (2010) present in their paper an approach to “transform|[...] from the SoaML
SAM to various platforms including Web Services, Multi-Agent Systems and Semantic Web
Services platforms”. The System Architecture Model SAM contains definitions of the service
interfaces, service choreographies, interfaces and messages, software components and service
orchestrations. They use the Modelio CASE tool to generate conventional Web Services, Java
Persistency and SQL.

Application of MODEA | 79

6 Application of MODEA

In the previous chapter a model driven approach for open distributed systems using an
enterprise architecture framework, MODEA, was introduced. In the following, this approach will
be applied to the two example cases introduced in chapter 2.

6.1 Pilot 1: ENVIROFI PEIS

An introduction to the PEIS project was already given in chapter 2.1. In the next section some
specific characteristics of the projects are shortly explained and in the following a partial
specification of PEIS to illustrate the use of MODEA is shown.

6.1.1 Specific Characteristics

In the project the service-oriented architecture paradigm will be used. It will be applied with the
concept of a Multi-Style-SOA. This enables the usage of multiple architectural styles and
communication patterns, like event-driven communication, synchronous request/reply
messaging, asynchronous message oriented, stream oriented and resource-oriented
communication. (PEIS 4.2)

The PEIS system is provided through the usage of functionalities from existing platforms. These
are the FI Ware platform and the ENVIROFI platform. They provide their functionality with use
of so called enablers. (PEIS 4.2)

An enabler is “a software component in implementation architecture with a well-defined
interface that fulfills a given set of functional, informational and qualitative requirements” (PEIS
4.2). An enabler can be a specific enabler for a domain or a generic domain-independent enabler.
The ENVIROFI platform provides the specific enablers, whereas the FI WARE platform provides
the generic enablers. For performing the functionality the enablers require features, which are
mainly resources of environmental data. They are often provided or referenced in the operation
parameters. An enabler can also provide its functionality by using or composing other enablers.
In the PEIS project the existing enablers should be reused and integrated to implement the use
cases. (PEIS 4.2)

The specific enablers provided by the ENVIROFI Platform are classified in environmental
enablers and geospatial enablers. The geospatial enablers relate to geospatial services and data
models, which are existing or emerging standards from OGC and ISO/TC211. Environmental
enablers are built on top of them, tailored to the various environmental disciplines. Both enabler
categories provide its functionality using the generic enablers from the FI WARE core platform.
The relationship between these three enabler categories is shown in Figure 49. The arrows
symbolize use-relationships between the different categories. Environmental Enablers use
Geospatial Enablers and Generic Enablers. Geospatial enablers refer also to Generic Enablers.
(PEIS 4.2)

Application of MODEA |

N
O Environmental Enablers O
ENVIROFI Platform ()
S
~
Geospatial Enablers (>
O 0GC and ISO/TC211 standards
S
y
~
() Generic Enablers (>
O FI WARE Platform
J

Figure 49 Enablers in ENVIROFI (Own contribution based on PEIS 4.2)

The three types of enablers are each categorized by thematic issues.
At the moment there is no common approach for classifying the
enablers in ENVIROFI and FI WARE. Possible suggestions for a
classification are made in D4.1.1:

- Lifecycle based Approach derived from CEN Technical
Report TR15449

- Bus or layered Architecture-based Approach based on ISO
191109.

In the following the classification approach based on ISO 19119 is
used. These different groups of services in this classification
approach are shown in Figure 50. The different colors proposed in
this figure will be used to categorize the service based on this

classification.

6.1.2 Architecture Specification

Security and Privacy

80

Classification

Composition &

8 Workflow

'§ services

3

o

g

E I

g Proc essing

= services

o

g

)

g Data and Model

& Management

= services

1
Communication
services

Figure 50 Architecture-
Based
Approach (IS005)

The architectural specification of PEIS is made with use of the deliverables D4.2 describing the

environmental architecture, D2.1 defining the scenarios and use cases for PEIS as well as D2.3.2

containing the functional and organizational specification of PEIS.

Enterprise Viewpoint

In the following the Enterprise Viewpoint of the MODEA approach is applied to the PEIS Pilot.

First the diagrams from the enterprise perspective are introduced. Figure 51 shows the Business

Motivation Model for the PEIS System.

Application of MODEA | 81

TOGAF_BMM BMM Part1 /
% «Visions <} - _‘5"10262_ e B e |
o isi L
o VIS'P" elers o . «Amplify» 5 Provide cata from any rovide qualitative and
E Parsonalizad Mass e <} """" ‘?f == location quantitative data
c and air quality data are — - -
S - i
® Y ywh «Amplifys | &
S| |- i EEEE s s EE e 1
2 S High relevance of the
Amplifys ¥
c = Interactive system
- 4 ——————— = data for the user ve o
|
L
|
|
| Supports Supports
|
|
|
]
|
|
1
H e] ituati Ensure data securi
% Support individuals in = . _>| ﬂ Personal situstion Yy
3 tailoring information 5 asemment
% relevant to their specific = /v A v -
§ needs g Pl \ S «FormulatedBasedOnx»
> g = _——— k<) Use of standardized
<] @ =
= = ; Tacticn «Tacticn a mmEms
& 3 «Tacticn Siao =
& < [(Pers. exposure Pers. env. Pers. env.
o] forecast monitor
report
g P Chedk user before
§ dats access
v

Figure 51 PEIS - Business Motivation Model

The overall vision of the system is to make personalized meteorological and air quality data
available anytime and anywhere. More details are given through the four goals, which refine the
overall vision. For example one goal is to provide data from any location another one is to
provide qualitative and quantitative data. Additionally the data should have a high relevance for
the user and the system should be designed to be interactive.
To reach the vision with its goals, the system should provide support for individuals in tailoring
information to their specific needs. This is the mission of the system. One strategy for this
mission is to create a personal situation assessment for the user. This will be done by the
creation

- ofapersonal exposure report, which is concerned with past events and data,

- ofapersonal environmental forecast of future events and data and

- ofapersonal environmental monitoring of the current events and data.
When realizing these three tactics there a several business rules, which must be taken into
account. One is to ensure data security, especially for the user data. Furthermore the use of
standardized data formats and a mandatory check of the user data before data access are
business rules, which have to be considered in design and implementation.

The business rules and tactics are realized in the first step through use cases. For example the
tactic of ‘creating a personal exposure report’ is realized by the two use cases ‘display past
meteorological conditions and events’ and ‘display past exposure to air pollution and pollen’.
This relationship as well as all other ones that exist between tactics, business rules and use cases
is shown in Figure 52.

Application of MODEA | 82

uc Tatic-Use Case [EMM-UC) /

Chedk user before data Pers. env. forecast

| wTacticw

aut-05 Change

personal SEtBES

PFO-01 Display predicted PFO-02 Display predicted
meterclogical conditions exposure to air polluticn
and events and pollen

aut-03 Login user faut-02 Register user

on web portal

(from Usze Caze und (from Uze Csze und
EBusinesz Frocezzes) EBuziness Frocezzes)

(from Uze Caze und
Buzinegz Frocezzes) (from Uze Csze und Buziness (from Uze Caeze und Business
Frocezzes) Frocezzes)

wTactics
Pers. env. monitor

wTacticw
Pers. exposure report

RPT-01 Display past
meterclogical conditions

and Eventso_c,

RPT-02 Display past P5M-01 Display current P5M-02 Display current
exposure to air pollution meterclogical conditicns exposure to air pollution
and pollen and events and pollen

(from Usze Csze und Businezz (from Uze Csze und Buszinessz (from Uze Csze und Businezz (from Uze Csze und Buszinessz
Frocezzes) Frocezzes) Frocezzes) Frocezzes)

Figure 52 PEIS - BMM2Use Case Diagram

This diagram is not a UML 2.0 specified diagram, it is just for making the realization-relationship
between tactics, business rues and use cases visible. For example the use cases ‘Login User’,
‘Change personal settings’ and ‘Register user on web portal’ are realizing the ‘Check user before
data access’ business rule. The tactic to create personal environmental reports is realized by the
use cases ‘Display past meteorological conditions and events’ and ‘Display past exposure to air
pollution and pollen’. The business rule ‘check user before data access’ becomes necessary, when
retrieving environmental data. Therefore the rule is realized in the use cases ‘display past,
predicted and current meteorological conditions and events’ as well as the ‘exposure to air
pollution and pollen’.

The defined use cases with their relationships to each other and the participating actors are
shown using a UML Use Case Diagram. Figure 53 shows this diagram for the PEIS System.

Application of MODEA |

uc Use Case ./

User

predicted exposure to
air pollution and polles

aut-03 Login user

wis06 - Provide
wisualization of
requested data

PFO-02 Display

-

is01- Select tempora
extent of requested
information

RPT-02 Display pas:
exposure to air
pollution and polle

«includes

FEIS FilotA

TN
aut-02 Register user
on web portal

4

«includes

aut-05 Change

personal seﬂings

mis-01 Determine
GPS5 position of
mobile device

vis-03 Select
envirenmental
parameter of interest

i5-02 Select location
for requested
information

a_-l Use Case Template

- - windludes

; -
s - -
; Ple dat-03 Check
\ ! - availability of data on
wextends sextends wextends system server
[’ e =
Is} - -
I -

Request personal
assessment

sindudes = dat-05 Store data on

Air Quality Data
system serwver
= t\ /
-~
«includes
M
Hequest air pollutio Request ‘:}_'_'_
and pollen meterclogical
assessment assessment Pollen Data

Data prowide:

PFO0-01 Display predicted

meterological conditions
and events

P5M-02 Display
current exposure to
air pollution and
pollen

RPT-01 Display past
meterclegical conditions

and EventsD_C,

P5M-01 Display current
meterclogical conditions

and events

Figure 53 PEIS - UML Use Case Diagram

Meterclogical Data

83

In PEIS there are mainly two groups of actors. One is the application user and ones are the
environmental data providers. These data providers comprise meteorological, air quality and
pollen data. For example the use case ‘RPT-01 Display past meteorological conditions and
events’ is generalized by the ‘request meteorological assessments’ use case, which is itself a
specialization of the ‘request personal assessment use case’. This use case hierarchy is only used
for structuring the use cases and makes the diagram more readable. This is also the reason why
this generalized use cases do not have a use case identifier. The general use case ‘report personal
assessments’ includes several use cases that deal with the retrieval of the required user data and
the handling with the environmental data.

Each of the use case in the above diagram with an identifier is described more detailed using a
predefined use case template. For example a cut-off from template from the use case dat-03
‘Check availability of data on system server’ is shown in Figure 54.

Goal

Summary

Check availability of data on system server for required temporal and
spatial extent

While making use of PEIS, the user requests data of one or more
atmospheric parameters for a specific temporal and spatial extent.
The system checks the available internally.

Application of MODEA | 84

Category Data Access

Actor All

Primary Actor (initiates) User

Stakeholder

Preconditions User is logged in UC-ENV1.1-auth-01-V01

Triggers User requests data of one or more atmospheric parameters for a

specific temporal and spatial extent

Main success scenario * The system checks the availability of the requested data
* The system informs the user of the outcome

Extensions The data originator is informed that their data has been accessed.
Alternative paths

Post conditions The system provides the user the requested data

Author and date UBIMET, 2011-09-09

Figure 54 PEIS - Use Case Template dat03 Check availability of data on system server (Excerpt from PEIS
2.3.1)

Main parts describing the details of the use case are the goal, the summary, the actors, the
preconditions, triggers and the main success scenario. At least also the author of the use case
and the date are provided. In the next step a use case will be further defied using collaboration
diagrams. Figure 55 visualizes the business process in the Use Case ‘RPT-01 Display past
meteorological conditions and events’. Included use cases are referenced through sub processes.

Colaborston RPT01 Diplay past meterolagica canttons and svents

<Posl» PEIS

<Poel s Data Provider

Figure 55 PEIS - BPMN Collaboration RPT-01 Display past meteorological conditions and events

The pools in the collaboration diagram represent the participating actors in the use case. They
are the user, the data provider and the PEIS system itself. The basic flow is to retrieve first the
required user data as well as time location and parameters. Then the availability of the required
environmental data is checked. If necessary the data is imported into the system and then
processed to provide the report to the user.

Application of MODEA | 85

SeVeral SUb processes I'Efel"enCII’lg Other Collaboration msMSe\ec.nempura\extemnfrequesteumvnrmanm/

included or extended use cases have to be

vis-01 Select temporal extent - User

M

integrated in the process of Figure 55.
Therefore a BPMN collaboration for the
included Use Case is created. The activities of

«Posl » Usar

each actor in a pool are grouped together in an

actor-specific sub process for this use case. In

«Pasl 5 PEIS

the Use Case that includes the other one, these

sub processes can then be reused. For example

the Use Case ‘Select temporal extent' is Figure 56 PEIS - BPMN Collaboration vis-01 Select
included in the Use Case ‘Display past temporal extent

meteorological conditions and events’. To make this visible the process steps are hidden through
usage of a sub process. The definition of the sub processes is shown in Figure 56.

Information Viewpoint

The information types used in PEIS are shown in the class diagram in Figure 57.

class Information View
User Profile
profile
1 _, B
Monitoring
Personal Data Data Profile Envorionmental Assessment ‘ﬁ;-"‘
defined by Data Set comprises
B - S(Foeer
ﬁ % Report
Sportsman Allergic Person
Component Measured Value
type
Air Quality Data Pollen Data Meterclogical
Data

Figure 57 PEIS - Information Type Model

The information types are identified with help of the process diagrams in the enterprise
viewpoint. The information types will be derived from the information objects sent on the
messages flows between the tasks in the process diagram in Figure 55. In PEIS these are the user
profile with personal data and an environmental data profile. In the current version this can be a
sportsmen profile or an allergic person profile. Furthermore there is the type of an
environmental data set, which consists of several components, which can be Pollen Data,
Meteorological Data or Air Quality Data. An assessment is linked to an environmental data set
and consists of several measured values. Each value is related to a component, which is part of
the related data set. An assessment can be a repot about past data, a forecast for future data and
also a monitoring of the current situation.

Application of MODEA | 86

Figure 58 represents the invariant schema of the User Profile Information Type with an UML
State Machine.

stm StateMachine

/_r.—% profile with user data
register Liser 3

delete User

\a:—me profile

[sportsmen)

delete profile

delete profile

oreate profile
[allergic person]

no dats change profile [sportsmen)
delete user

profile for sportsmen

profile for allergic
person

~———change profile

[allergic person)

delete user

Figure 58 PEIS - State Machine for Information Type User profile

There are three types of user profile in the system: A profile only containing the user data, a
profile specific for allergic persons and a profile specific for sportsmen. The transitions
represent the allowable actions to get from one profile type to another. The corresponding
message type diagram for the actions is shown in Figure 59.

class Message Types /

nwariant S5chema profile = | Inwariant Schema: nwariant S5chema
:Data Profile :_: | User Profile - 1] :Personal Data

1 71 1 1N,

Y B

zhessageTypes zhessageTypes aMessageTypes zMessageTypes
change profile delete profile delete User register User

zhessageTypes
create profile

Figure 59 PEIS - Message Type Diagram

Each action defined on a transition in the State Machine has a corresponding message type in the
above diagram. The message types are defined through a composition of information types. For

example the message type “regist er User” ———0r——o

consists of a Personal Data Information
Profile User 1 : Sportsment Profile :
Ob]ect User Profile Sportsman
The static structure of the information w
objects after creating a user profile is
. . . Data User 1 : Data Set 1 -

represented in Figure 60 using an UML Personal Data —
Object Model. The user profile consists of a —
specific personal data objected and is
linked to the sportsmen profile. This

i) . CO2 -Air Quality Ozon : ‘emperature :
profile is described through Data Set 1, Data = === gical

Dat Data

containing a (€02, an Ozon and a
Temperature component. Figure 60 PEIS - Object Model

Application of MODEA | 87

Computational Viewpoint

In the Computational Viewpoint the functional decomposition of the PEIS system is specified.
The starting point is the service architecture at the highest level, describing collaborations
between PEIS and external participants. This diagram is derived from the Use Case Diagram in
Figure 53. For each actor as well as the PEIS system a participant will be created and for each

viewpoint a service. This service architecture describing PEIS in its environment is shown in
Figure 61.

composite structure PEIS Enwironment /

- wservicesArchitecturen -
L FPEIS Envircnment Service Architecture -

P «wparticipants ~

e log in data user :User ~

g prmld:—r—-' b

- e Data Owner as&EssmEntREquEstm ~
P - -

b
“ ~
- ’ - ~
s ' LY
,’ \ ‘Login Service } ‘\
7 ~ 4 4
’ Semle-T . N
/ i
F

3
! register . Data Store asssssmentF'm\.l:ler \
requ Est:}r -

wparticipants
peis :Peis System|

L]

\
1
|

I

! i
1

[

-
A ~
1 Alreguestol metRequestor pollenRequestor
I .
- b
\ -——— - s — - I
\ - & - T > - N

\ (:/nimaﬂrﬂala\ f K i Pollen Data "J
\ .
. | 2 }} {Wet Data Sennnf}] . /} /!
L - - - - - - ’
_—— = T e ol Fa
*\ .r_ T | oo 4
A si I
A ~ Alprovider metFrovider pollenProvider P 4
. - -
o sparticipants «participants «participants o
\"\“ aq :AGData met :Met Data po :Pollen Data o
-
- -
-

Figure 61 PEIS - Service Architecture PEIS Environment

The assessment creation is provided through the Personal Assessment Service from the PEIS
system. The PEIS System and the User collaborate also in the Login Service and in the User
Profile Management Service. The first one represents the user login. The last one is for creating
and changing the user profile. Also the three different kinds of environmental data services

provided by an Air Quality Provider, a Meteorological Data Provider and a Pollen Data Provider
are included.

The next step is to specify the PEIS System itself in more detail. Therefore the PEIS System
Service Architecture is defined, which describes the internal roles of the PEIS system and how

they collaborate to provide the services. The PEIS System Service Architecture is shown in
Figure 62.

Application of MODEA | 88

composite structure PEIS /

- wservicesArchitectures -
- PEIS Service Architecture -

-
- A : . : ~
- Adaption to user and Provide a common Publish and Discovery ~.
- visualization view of the svailable Hzndle Geospatisl B
- m rescurces Resources >

-y N
4 Ty . aparticipants \
:'-llElDah Servicel" — ~ | met Met Data N
N J

’ o ; B
£ \ H & -~ - A\
I . . K , L, —aus h
/ b ’ / . . \
I ! : . -

b 4 . s !
1 [1 | g 5 - \
- ~ 7 . | S I - \

| ' .

’

. .
i requestor provider p K
= ~ | requestor provider S ool s N

! - -

| - p —
- b _. wparticipants 1
s = rovider

(W™ i «participants «paricipa... | requestor [(SAIF Guality }f——— 2q -AQData I
] user ‘User . MDAF Fusor Scheduler A TEES L :
] D provider . - ~l__-- i
\ data provider T ,f’ = ~ requestor “resource data ™ provider Sausscy 'r
' ‘\ T dlers Py) I requestor requestor " . F

v \c | s B -~ h

N ’ ~ N ~
b \ b . e = N ! . /
\ - - p - I ~
\ AN TN a Y ~u h RN J
N Information = - ——
' & ~ S } = 4 N sparticipants ’
N, ~ L Service ¢ -Pollen Data]pm\.ida ;
% M - - \ Service = |po:Pollen Data ’
" s
N Y T - v s
N 2] e 7
\ - register !
(= = r

N\, T requestor .
—— *. provider
~ -
~ - articipant F
. data storer “PETIGIPAN L

~ User Management] -
~ Fa
™ I— -
~ Fe

Figure 62 PEIS - Service Architecture PEIS System

To make external parts visible they are shaded in yellow. The PEIS System contains four parts.
They are the Mobile Data Acquisition Framework (MDAF), the Fusor, the Scheduler and the User

Management.

- The user management participant is responsible for user authentication and the user
profile management. It requests login data from the user in order to verify it and it
enables the user to create or change a profile.

- The MDAF is the user interface of the provided functionality. It collects the required data
from the user and requests the necessary environmental data from the Fusor and
visualizes it for the user.

- The Fusor provides a common view of the available resources with its different types of
data. It also enables processing on the existing environmental measurements.

- The Scheduler handles the geospatial resources. It enables discovery of the available
environmental data sources and provides the access to them.

The different colors of the services show their category according to the classification shown in
Figure 50. The Login Services belongs to the Category ‘Secruity and Privacy’. The User Profile
Management and the Personal Assessment Service are Boundary Interaction Services.
Furthermore there is one data processing service, the Geospatial Data Services and one
Composition and Workflow Service, the Data Fusion Service. At least there a four services in the
category ‘Data and Model Management Services’. These are the User Information Service, the
Met Data Service, the Air Quality Data Service and the Pollen Data Service. This classification
approach is used is all service architectures in the context of PEIS.

Each of the four participants in the PEIS System Service Architecture is further refined with an
own Service Architecture. The Service Architecture for the Fusor Participant is shown in Figure

63.

Application of MODEA | 89

composite structure Fusor /

- - Fusor Service Architecture o

- - S~ -
- -
- — -
- «participants -
- ~
- MDAF ~.
s | Service Composition
= requestor Sesvice

4 B {-= according to PEIS

p ~

“, _. - | compaosition model)

¥ = k
’ —— Y
¢ o k

Fd ===
-
provider e LY
—_—
_ _requestor «participants l\

- Data Fusion

[~ .requestor
= requestor
-~ - =
- #

! provider
: wparticipants L=
I Prediction Model
I
]
1

- Y
requestor requestor
~
- \ N
| ~
~)
S -~

pes e

requestor~
-

Data Retrieval |
w Service |/

L

i
. "
N executer | provider »
S «participants provider «participants -
Data Processin «participants Mediator -~
~. g _
~ Scheduler -

Figure 63 PEIS - Participant Service Architecture Fusor

The two participants MDAF and Scheduler, that request and provide services from the Fusor are
also represented in the Participant Service Architecture. Additionally internal parts of the Fusor
and their interactions are specified. The Prediction Model, Data Processing and Mediator
provide required functionality for the composition in the Data Fusion. The way the service
composition in the Data Fusion Participant takes place to provide the Data Fusion Service is
defined in a BPMN process diagram. Figure 64 shows this process diagram describing the
behavior of the Data Fusion Participant.

Business Process Fusor

Get pollen data

Get user
location

Get air guality
data

Get user
profile

Get meterclogical
data

Figure 64 PEIS - Service Composition with BPMN

Each incoming fusion request has attached information about the location and the profile. With
use of them the required environmental data concerning pollen, air quality or meteorological
conditions are requested. Afterwards the various data types are mediated and in the following
processed according to the users needs. If the required assessment is a forecast, a prediction of
the required values will be calculated.

To illustrate the specification of services the service contract of the Geospatial Data Services is
shown in Figure 65. The Scheduler provides the Geospatial Data Service and the MDAF as well as
the Fusor requests this service, but with two different roles. The first one is the Discover
Resource Requestor and the second one is the Data Requestor.

Application of MODEA | 90

] : - pr- wserviceContracts e
- wserviceContracts B - # Resource Discovery Service &
e Geospatial Data Services S ,/ R
il - i I y
i ~ . i &_ CONSUMETs «providers \
l,'r ———— . X : requestor :Resource — provider :Resource i
; p - 5 ~ \ " | [Piscovery Requestor| Discovery Provider | |
i esource !
; w_CONSUMETs requestor) Di } N \\ ;
for flm — — = — =\ iscowvery ; 5\ N y
! re_snurc.e requestor : v Service 4 provider \ - g
i Discowver Resource - - - . -
) - =] . -
i Requestor wproviders | e PO
1 provider :Resource r T ——
' i - N
1 and Data Prowider | e sserviceConkache *-\\‘
\ = ! ,’ Environmental Data Retrieval Service \\
\ «_ CONSUMETs _ o ! , 5\
- rovider ! !
\\ data requestor : | _ requestor "Ef i -} B P / _cansumers sproviders y
5 Data Requestor T ALLILL I'I1.EI1 £ ! requestor : providest |
. \ Data Retriewval]' !f Il Environmental Envisonments '
o n_ Service 4 e \ Data Requestor Data Provider [/
- s - v 5 —
e -7 \
L = ~ rl
- P s . -

Figure 65 PEIS - Service Contracts

The Geospatial Data Service is a composite service, which contains two other services: The
Environmental Data Retrieval Services and the Resource Discovery Service. The first one
provides access to the environmental data available, which is requested by the Data Requestor
Role, played by the Fusor. The second is about the available access to environmental data,
requested by the Discover Resource Requestor and played by the MDAF. These two services are
also described using a service contract, where the participating roles are defined.

Each role in the service contract is typed with a defined consumer and provider interface. The
interfaces for roles in the Geospatial Data Service as well as for the two nested services are
shown in Figure 66.

«__CONsSumers
Service Architecture PEIS
Systemn::Discowver Resource

sproviders
e e e — = — — = = = — —| S@TViCe Architecture PEIS
- Systemn::Resource and Data

Requestor 'E::——-——————‘__————-'—___———'______'_:_ Provider
[=7 = = T
| T =T - I
| == — P |
| «_CONSUIMErs e I - - |
' Service Architecture PEIS | —~ e !
1 System::Data Requestor - - I
1 - |
1 =" |
I M~ |
I ,/'"(-5 - v
v A «_consumers | T = == «providers
«_ CONSUMETs F———— = aproviders En;rirnn menial Envircnmental
Resource Discovery Resource Discovery Data Requestor -ﬁ— = — —| Data Prowvider
Requestor = ————1 Provider

Figure 66 PEIS - Consumer and Provider Interfaces

The three upper interfaces belong to the Geospatial Resource Service. The four lower services
belong to the two nested services of the Geospatial Resource Service. The roles of the Geospatial
Resource Service have to realize the roles defined in the two nested services. In a two-way-
service each consumer interface uses the provider interface and also vice versa. In a one-way
service there will be no consumer interface defined, since the provider does not need a
consumer interface.

Engineering Viewpoint

In the Oil Spill Pilot we will have four systems interacting together. The structure is the same as
already specified in the Computational Viewpoint. Figure 67 shows the four systems interacting
together for Oil Spill as well as the external required ones.

Application of MODEA |

91

cmp PEIS

xServices User Profi
Management
User Nanagement

aServices

Login Service

wrequests Lser
Profile Management

User

«reguests Personal
Assessment Servics
I

arequests I:
Login Servics]

5

[
User Infermaticn
Service

areguests Dats
Fusicn Service
1

MDAF

]

L&
«Services Perscnal
Assessment Service

arequests Geospatial
Data Services O~

&

«Services Data —

Fusicn Service
Fusor

g]

arequests Geospatial
Data Services D

L.
wServices Geospatial E
Scheduler

Met Data
Service

Air Quality

Data Service Service

(O]

Met Data

Met Data

—O—{]

1
p‘i\ Pollen Dsts
L

Follen Data
Pollen Data

AQData
AG Data

Figure 67 PEIS - Component Diagram PEIS and Environment

The interaction between the components is specified using ports and exposed provided and
required interfaces. The assembly connector is used to link the interfaces and ports. The
interfaces for typing the ports with their provided and required interfaces are shown in Figure

66.

The ports at the components are
typed with service interfaces. These
service fulfill the
appropriate services contracts in

interfaces

the computational specification. For
example the Service Contract for
the Geospatial Data Services (Figure
65) be fulfilled the
engineering specification through
the interface Geospatial
Data Service (Figure 68).

will in

service

«_CONSUMErs
Service Architecture
PEIS System:Discowver
Resource Requestor

«Sericelnterfaces

Geospatial Data Services

|
r | %
s ! N
N
s | \
/j \‘llr N
%_CONSUMETs "\
Service Architecture W
PEIS System::Data !
Requestng AN
=
- -
SR
= 3 aproviders

>~ Service Architecture PEIS
System::Resource and Data
Provider

Figure 68 PEIS - Service Interface

The provided and required interfaces at the ports are typed with the consumer and provider
roles defined in the computational specification (Figure 66).

Application of MODEA | 92

Each of the subsystem components of PEIS can be further refined with an own component
diagram. The composite structure diagram of the Scheduler is shown in Figure 69 as an example
for those.

cmp Scheduler ./

Rescurce and
Data Provider

Discaver Data
Resource

Requestor
Requestor

«Services GeospdtiasNata Services g]
Scheduler

Geospatial data
provisioning and
storage::0GC3 storage
services

]

asubsystems
Metadata
= Preprocessin
-7 P g

«Services Resource

Geo-referenced data] from Data)
collection
applications:GEQ1 fes — = — =
Environmental
geo-referenced -
observation -
collection service -

Catalogue

- Geo-referenced data
collection
applications::GED2
Environmental
geo-referenced
observation
catalogue service

collection Data Service| Service
applications::GED3
Environmental
geo-referenced
observation retrieval
service

Geo-referenced data et Dats I‘w Quaitiy | Pollen Data

Figure 69 PEIS - Component Diagram Scheduler

The Scheduler consists of the Data Archive and the Catalogue, corresponding to the participants
in the Service Architecture in the Computational Viewpoint.

The Data Archive requires data from the Met Data Service, the Air Quality Data Service and the
Pollen Data Service. The two components collaborate together in the Resource Discovery
Services, which is provided by the Catalogue also to Scheduler-external components. Together
with the Environmental Data Retrieval Services, provided by the Data Archive the Geospatial
Data Services is provided by the Fusor.

Furthermore at this abstraction level of the component diagram a mapping of the specified
components with platform capabilities is done. The PEIS system will be based upon the
ENVIROFI and FI WARE platform. These platforms provide both, processing capabilities but also
capabilities to deal with the distribution of the overall system. Use-relationships from PEIS
components to capabilities from these two platforms are defined to make the dependencies
between them visible. For example the Data Archive uses OGC3 data storage services to be
enable to store the environmental data

The current deliverables of the PEIS project do not provide further details about the distribution
mechanisms in the system as well as the used technology.

Application of MODEA | 93

6.2 Pilot2: ENVISION Oil Spill

The Oil Spill project was already introduced in chapter 2.2. The current specification approach
was illustrated in chapter 4.3.2. The Oil Spill Decision support system is built in two steps. In the
first step the ENVISION portal is used to create Models as a Service for calculating the Oil Spill
and the effects on the Cod population. In the next step these deployed services are used to
provide the Oil Spill Decision Support System with use of the ENVISION infrastructure.
Therefore the specification of the project in the next chapter is also divided in a Run-Time-Part
showing the provisioning of the Oil Spill System and a Design-Time-Part showing the
provisioning of the two Model-Services.

6.2.1 Oil Spill Decision Support System (Runtime)

In the following the provisioning of the Oil Spill Decision Support System is specified using
MODEA. The models are created based on the Oil Spill specification in ENV 1.1, ENV 1.2 and ENV
1.4.

Enterprise Viewpoint

In the Enterprise Viewpoint there are no big differences between the Oil Spill and the PEIS
project. The 0Oil Spill Project will be also defined with the use of a BMM to define the motivation
and furthermore Use Cases and Business Processes to show it will be realized. The overall vision
of the 0il Spill System is to support the decision-making in case of an oil spill on the operational

level.
EMM
Amplify;
c «Wisions ﬂ'—“—‘{—;ﬁ ___________________________ |
i Vision::Support the decision <]——1H—E—m— ——————————— |
& = Supp 1
:: ok c‘.asf. Dfalr: ™ Ispllls Provide better acoess Creste Enhance the accessibility and
= R <]._ to relevant analysis maodels that fit interoperability of the models with
"5 sAmplifys models to the situation other data and models
| L
1 I I
1 | |
1 | |
L] T T
1 | |
| | |
-+ - - — — — _ _ 4 - |
«Missions 5 T |
) (1) " S A I P
Provide access to the | q‘,f | \l,lf |
prediction of the fate - - . |
E and effects of the Ffr:}\rl::!e E}.I'I|II'II:— Creste spill specific Frovide Models
= spilled il - —-EB' wisulaization and forecasts :
o P . a5 a Service
@ é analysis tools
a G
: 3 ab i B
! \
E E «Implements almplemsimplements 1
& E i} 1 - - «lmplements
g 3 wTactic® «Implements wTacticn wTacticn II
o 3 daption of the i Adaptive Integrate current \
E wvisible map ‘1 Execution of data sources and
o section §ervice Chains informations «Tactics
% «Tackics laa 5 composition
Change visible 2 sgr.vice
Bma chaining

Figure 70 Oil Spill - Business Motivation Model

The vision will be realized by providing access to the prediction of the fate and effects on cod
population of the spilled oil. Therefore an online visualization and analysis tool will be provided,
which enables a tailoring of the map section as well as the visible time. To enable well-fitting
models a spill specific forecast should be create. This should be done by an adaptive execution of
a service chain and the integration of current data sources and information about the oil spill. At

Application of MODEA |

94

least the required models should be provided as a Service (MaaS) to enhance the
interoperability between them. Therefore the system should support a MaaS composition and

service chaining.

The identified uses cases and actors for the Oil Spill system are presented in Figure 71.

uc Use Case Diagram -

/

il Sgill

Interact with

Execute

User

Configure
Model
Parameter

Medel
-

L=
‘.’i ~wincludes

Cod effect __
Prediction
xincludexs

Envircnmental

0il Spill
Prediction

Norwegian
Metecrolegical Insititute

B s

Horwegian Mapping
Authority

Morwegian Costal

Administrati
Institute of Maring oo

Research

J—

Figure 71 0il Spill - Use Case Diagram

Medel Provider

In the use cases of the oil spill systems three types of actors participate in. There is the user, who
interacts with the scenario website in two ways. He can execute an environmental model and he
can interact with the map. The model execution can be a Code Effect Prediction or an Oil Spill
prediction. Both require the configuration of model parameters from the user. In the model
execution also Data Providers and a Model Provider participate. In the first step the predictions
made in the Oil Spill System are restricted to spills in the Norwegian Sea. Following the Data
Providers include the Norwegian Meteorological Institute for wind and current forecasts, the
Norwegian Mapping Authority for sea depth and costal line data as well as sanctuaries, the
Norwegian Costal Administration for ship location data and the Institute of Marine Research for
cod species and location data. The prediction models required for a simulation of oil spill or the
effects on the cod population are both provided by SINTEF MET.

The relationship between the Use Cases and the tactics defined in the BMM are illustrated in the
BMM2Use Case Diagram in Figure 72.

ue Tactic2UseCase

wTactics
Change visible time

«Tacticn
Adaptive

Service Chains

Interact with Map

(from Uze Cseze Disgram)

«Tacticn

Execution of

Execute Environmental

Model

(from Uze Caze Disgram)

Maa 5 composition and
service chaining

wTacticn
Integrate current data
sources and
informations

«Tacticn

Configure Model
Parameters

(from Uze Csze Disgram)

Figure 72 0il Spill - BMM2Use Case Diagram

The Use Case Interact with Map realizes the two tactics Change visible time and adaption of the
visible map section. The tactic adaptive execution of service chains as well as MaaS composition

Application of MODEA | 95

and service chaining are both realized in the Execute Environmental Model. With a configuration
of the model parameters the tactic to integrate current data sources and information is realized.

The use cases of the Oil Spill project are also further refined using BPMN Collaborations in the
same manner as in the PEIS project. Thereby for each use case one business process is defined,
despite of the generalized use case execute environmental model. This use case has not a direct
corresponded business process. Included use cases are realized through the use of sub processes
as it is shown in the PEIS project in Figure 55 and Figure 56.

Information Viewpoint

The Information Viewpoint in Oil Spill can be modeled in the same way as the one for PEIS. For a
better understanding of the ongoing example the class diagram representing the information
types used in Oil Spill is shown in Figure 73.

Oil Amount Geogrpahical Time Qil Type
coordinates

N

location spill Time oil Type

am:}unt\ 1' /

User Input Coast Line Wind forecast Sea Current Sea depth
Forecast

—= =
‘\q:-\ \ /b dependent from

dependent from dependent from

dEPE“dE"QEm J dependent from Mass balance
I0il Drift Prediction calculated with Oil Drift Q”//
Model Prediction “':}_‘—'—-—-—._.___‘_ 0il slick
position
Lipid Content
il concentration
in water column
dependent from
Spawning _<>CDE| population Cod species
Areas
B

dependent from

dependent from

Cod Effects caloculated with Cod Effects Lethality

Prediction Model Prediction -

Figure 73 0il Spill - Invariant Schema Information Type Diagram

This diagram is created based on the Oil Spill Ontology defined in Deliverable 4.3 (ENV4.3). The
prediction of the oil drift consists of three parts. These are the mass balance, the oil slick position
and the oil concentration in water column. Therefore information from the user about the
amount of spilled oil, the geographical coordinates of the spill, the time and the oil type are
required. Additionally coastline data, wind and current sea forecast as well as sea depth data are
required to create the prediction. Each predication of an oil spill is calculated with the use of a oil
spill prediction model. For the cod effect prediction data about the cod population, the cod
species as well as the oil spill prediction is required. The prediction is calculated based on a Cod
Effects Prediction Model and consists of the lethality.

Application of MODEA | 96

Computational Viewpoint

The high level service architecture of the computational specification is derived from the use
case diagram in Figure 71 using the same methodology as in PEIS, which is described in chapter
5.5. The user, the data provider and the model provider as well as the Oil Spill System are
represented as participants. The Oil Spill Prediction, Cod Effects Prediction and Map Interaction
Use Cases are represented as Service Contracts. The overall service architecture showing the
collaborations of the oil spill system with external participants is shown in Figure 74.

composite structure Owerall Service Ar-:‘.hiteu:‘.ture/
- - Owerall Service Architecture T -
- T
- -
- e
- "
-~ .
-~ et
kY
- data ~
- T T ol - i 2 ™
; / - / Data provider [. Participants 5
/ {2l Spill] \ sorvices 5 00D .) b

r; \ Service . FVIG-EE"J :Data Provider 5

i - Jf e 5
/ L S r \
! f-’ \\ I !

/ - s ‘data)
I . i | !
I requestor P provider |requestar e —— i
I Ll o S cod prediction ~ |

- .
| | «Participa. . |requestor (“Cod Efects’| provider «Participants | model requestor, “000 Effects &, I
| == \ Service ;, — i T —rrediction I'u'lndell, I
| ‘User ~ s -0l Spill Systen . Service I
| 2 - = b PR !
map change -
% z & map chENgE iy prediction | f
, requestor - provider | —
\ S P model requestor | ced prediction !
5 B - I | model provider /£
o N = I P o
- ~ o
k. f’ Map ™ < -0l Spill \}_ | «Farticipants ///
b \ Interacticn Prediciticn - :Model Provider -
\\ S e Model Servigaf spill prEdICI.IE}I'I -
- e ~ - model provider -
\ - P
- -
T -~
. -
e o~
e -

Figure 74 0il Spill - Overall Service Architecture

In the following the Oil Spill System will be further refined through the definition of a service
architecture for the Oil Spill System Participant. Therefore the internal parts Web Site
Navigation, Composition Execution, Oil Spill Prediction Executable and Cod Effects Prediction
Executable are specified. The Web Site Navigation is responsible for the visualization of the
predicted model as well as for the user interactions with the visualized prediction. The
composition execution triggers and monitors the execution of the two prediction compositions.
These compositions are represented in the Oil Spill Prediction Executable as well as in the Cod
Effects Prediction Executable. The two parts specify the composition of data and model provider
for calculating the required prediction. Figure 75 shows the service architecture of the oil spill
system with these internal components and the service contracts that exist between them.

Application of MODEA | 97

composite structure Oil Spill Decision Suppnrt/
- -=" Oil Spill Service Architecture h""*_.“
=T e
- T~
- -
/’/ T
- ~
- S~
i «Participants S
7 “Model Provider S
// «Participants - ~
i :Data Provider spill P’Edic‘_i on cod prediction \\
s — - medel provider model provider N
r P i data provider i % i
’ [Map) i ot Q h
£ \Interactions __ map change | 7.0l Spill > \\ \
/ =" = =~ .. provider i L N\
! Vi = — «Particinants | , Predicition) A)
! / = p I Wodel Servics’ N Y
! ;/ ‘Web Site Navigation 1 ~ - \\ \
! I |

4 map d!sngfs = result 2 dere ! - \\ \\
! requestor ,_' ~ wisualizer P reenlt L AT T T 5pill predicticn N 1
] ques | ‘Cod Effects |~ result * Data model requestor \ 1
{ — __——_Service)/ visualizer rEguester o EE) ' e |

1 «Participants fracicoor - P | \‘_5‘3"""“EE 4 == _ _spilldata «Participants - ~
1 u *\ - \ ~-==Z requestor | . R M s Cod Effects ™ |
! -User N - L . :0il Spill Prediction Prediction Model| I
1 " \ - - ~ o . ition Executable \ Service ¢ I

requestor - - S ~ J ~ -

' . 0 { :Composition ~ provider , == !
‘\ \ N\ ‘Result Service, TR 5 if
\ N S S -7 A7 cod prediction /
L Ky e o \ ! /’ cod data model requestor i
A // = “ rf _// /

A 20l Spill - - - Fa
\ f\ SEN:)GE /] c:}:l\\ ; ,.’:Oil Spill "~ «F'smc:psnt.» . ;

\\ ~ Al effects. ! | Prediction ——— - compasition [Cod Effect Prediction /f
N ~. Executer result =N Service . requestor _~| Executable r;
~ spill executer i provider cempasition e il s
hY =T L s
% «Participants cam!msman - 4
~ provider -

\\ :Composition Execution , /’
~ . o
~ | & -

\\\. = itien = ,’/

. requestar < - _ #Cod Effects™ L
~— ! Prediction | .

S \Eervice,/ o -

e = Pte
B e

Figure 75 0il Spill - Oil Spill System Service Architecture

The participants Web Site Navigation and Composition Execution are further refined using a
service architecture. The Oil Spill Prediction Executable as well as the Cod Effect Predication
Executable represents deployed BPEL processes. The logic of the composition in these

executables is specified using BPMN Process Diagrams. The process for the Oil Spill Prediction
Executable is shown in Figure 76.

Business Process Qil Spill Prediction Execufable/

0il type and amount

il Spill

.
| | Fredi
I Wind and cument sea | :
= : | —
Retrieve wind and | :
\

cumrent sea forecast

Retrieve cost line
data
. |
Retreive sea depth |
dats I |
|
[T A S ’ :
Coast line : :
_________________ g o
|
|
|
|

Figure 76 0il Spill - Composition Process for the Oil Spill Prediction Executable

This diagram represents the overall workflow of PEIS shown in Figure 8, chapter 2.2.1. It shows
how the various service are composed together to provide the required functionality for the Oil
Spill Prediction Service. It also defines the flow of the information types within this process. The
executables are created during Design Time of the Oil Spill System and with use of the ENVISION

Application of MODEA | 98

portal. The portal enables the user to create such BPMN composition diagrams and deploys
them to executable BPEL processes. How this functionality is provided will be described in
another MODEA specification in chapter 6.2.2.

Engineering Viewpoint

The next step, based on the methodology for MODEA (chapter 5.5) is to define the engineering
specification. Figure 77 shows the component diagrams specifying the oil spill system.

cmp Oil Spill System + extra /

Cod Effects Prediction Oil Spill Prediction Map Change

Tooming time
Cod Effe M
Prediction Qil Spil| Prediction ep
Interacticn
Qil 8p
sdelegates wdelegates

udE'EﬂETEN/ T «delegates

executiol ecution visualizatiqn

B

visyalization

L5 E
Composition Execution Web Site Nawigation

Portlets::Model L — —
Execution Portlet {:)

Composition
Result Service
Il

—
L
Datg Semvices
Cod Effects Oil Spill Execution
Exe?.ltmn Request Request Service Semantic
S Medistion 2]

L Serice Web Services:
Mediation Service

Web Services: Service Orchestration Engin

ibraries:: Semantic
Context Space
Engine

il
Cod Effects il Spill
Execution Execution Read/Write
Semantic
Data

Cod Effect il Spill Prediction
Prediction Exectuable
Executable

Cod Effects Prediction 0il Spill Prediction Data ioas
Model Service Meodel Service

Figure 77 0il Spill - Component Diagram 0il Spill System

Despite the already known parts Composition Execution, Website Navigation, Oil Spill Prediction
Executable and Cod Effects Prediction Executable there are also further components integrated.
These components are provided by the ENVISION infrastructure are used to cope with the
distribution and therefore also heterogeneity of the various components. For example the
Service Orchestration Engine “enable[s the] distributed execution of environmental models as
BPEL-based service chains” (ENV6.1). Therewith it is required to execute the two executables
for Oil Spill and Cod Effects. Following the Oil Spill Prediction Service from the computational
viewpoint will be realized through two service interfaces. These service interfaces together with
the realized and used consumer and provider interfaces from the computational specification
are shown in Figure 78.

Application of MODEA | 99

class Service Interfaces /
*_CONSUMers aproviders o_ CONSUMETs aproviders
composition request accepter pxecutable compostion executable composition
requestor requestor prowvider
S 4 N <
s J * L
) i N 4
N . A3
wServicelnterfaces wServicelnterfaces
il Spill Execution Request il Spill Execution Service
Service

Figure 78 0il Spill - Service Interfaces

The Oil Spill Execution Request Service and the Oil Spill Execution Service together fulfill the
service contract of the Oil Spill Prediction Service. The provided and required interfaces at the
Composition Execution and the Oil Spill Executables are the same as defined roles in the service
contract in the computational specification.

Technology Viewpoint

Since the specification of the 0il Spill Project is more far advanced in development than PEIS a
first specification of the technology viewpoint is possible. The following figure shows the
deployment diagram for the Oil Spill System.

Service = Service Orchestration Engine
Orchestration ———— T Porfief Servsy
Deploy
OGC
Webser) OGC | fModel Execution Map Viewer Timeline Viewer
Webservice Portlet Portlet Portlet
— _H--Z <-——t--——__| =--L__
- - TS JsRme
oGe - 1 standerd
N T 7 iy R
«Deploys «Deploys «Deploys «Deploys «Deploys
: !
Cod Effect [oil Spill 5 Composition [Msp Viewer [Timeline
Prediction Frediction Execution Viewer
Executable Executable

Figure 79 0il Spill - Deployment Diagram

The components defined in the engineering specification are represented as artifacts. Each of the
artifacts is then deployed to a node. For example the Code Effect Prediction Executable is
deployed as an OGC Webservice. Therewith the OGC standards have to consider. The
Composition Execution, the Map Viewer and the Time Line Viewer are deployed as Portlets
using the JSR 286 standard. Each of these Portlets will be then run on a Portlet Server. (ENV 1.2)

6.2.2 ENVISION portal (Oil Spill Design Time)

As already mentioned above the Oil Spill System is build in two steps. The first one, the
provisioning of the scenario website using deployed compositions for the functionality is
explained in the previous chapter. Now the second step, i.e. the step to provision these deployed
compositions, will be shortly described. Therefore only the computational viewpoint will be
used to provide a short overview, how the ENVISION portal is provided. The Service
Architecture describing the ENVISION portal is shown in Figure 80.

Application of MODEA | 100

composite structure ENVISICN /
_'_4—-"-};_' _“_-‘-‘_h\._‘_
= ENVISION Service Architecture .
- -
“J h"h.
J'; "“.“‘
- T~
o User -
-\
-~ .
- - ~ .
,/ compaosition designer ressource mansager \\
- S
4 _,.—"I’ ™. —_—— ™
& - ~ - *
y P T ; Resource ™ \\
-~
f" I./Cnmpnsitinn A | Management " \
F] 1 Management 1 _‘_Servic.e‘_/ A
!-‘ N, Service T ‘l\
- - - __‘--._“ -

{ T / ‘-Fl = ~ rescurce management \
I compositicn R:snllfr‘sis 1 provider 1
I management provider ssource | .~ =~ N ," T == - resource .1
| _requestor = provider = Resgurce I
: Service i Repository
\ Composition | _ resource fin< - |
\ ::I:—pl:})n'len_!:_ /,a—‘--—-.‘ ‘__,,--pr:m::ler provider [}

requestor == W= I i

1 q 1 Deploy e F

A ' Compasition, o T i

v e - #Publish and “ J
—
\ T , Unpublish] /
\\ | w_ Service ¢ ;’
deployment executer e
\\ L) Uy Fi
\ i LY /.ﬁ‘
\\ Execution requestor requestor #
= s
™ ¥
N Processing Model Data Prowider| o
M Provider o
""\.“ - . “’,
= -
-"""._‘_ "'_,.
o P o
~— G
e — I

Figure 80 ENVISION Portal - Service Architecture

There are two main users roles that interact with the ENVISION portal. One is the composition
designer, who creates, edits and requests the deployment of the composition. The other one is
the resource manager, who import and exports resources in the repository and annotates them
using ontologies. The Service Composition Module enables a visual service chaining of the
resource in the repository. At least it provides support for generate executable compositions
that can be deployed as a web service. The Execution Module provides the deployment. The
Resource Repository administrates the resources that used in the service composition module.
An interface to the user enables the management of the resources. This includes service
discovery, import, export and visual semantic annotation of services using ontologies.

Conclusion and future work | 101

7 Conclusion and future work

7.1 Summary

In the previous chapters first the problems occurring in the development and specification
process of open distributed systems are examined. Among these are the heterogeneity of the
components and the high complexity and scope of the system. Furthermore providing the right
functionality and an effective collaboration between the vendors are challenges in the
development process. At least enabling global optimization, integrating distribution
transparencies and the need for flexible architecture are issues that have to consider.

To cope with these problems one suggestion is the use of an enterprise architecture framework
with adequate standardized modeling techniques. Thereby the frameworks provide the
foundation with defining viewpoints and the concepts that are described within them as well as
the correspondences between the viewpoints. Typically a framework does not specify
techniques for its application.

MODEA, as a model-driven approach for open distributed systems extending an enterprise
architecture framework, provides a proposal of how to use OMG standards when modeling
Enterprise Architectures. The Reference Model for Open Distributed Systems with its five
viewpoints Enterprise, Information, Computational, Engineering and Technology is used as
foundation in MODEA.

An overview of MODEA showing the modeling techniques used to describe each viewpoint is
given in Table 17. In the left column of each viewpoint the concepts described in this viewpoint
are shortly mentioned. In the right column the used modeling techniques are listed.

Enterprise Viewpoint

Goals, Strategies, Requirements and Business Business Motivation Model, UML Use Cases,
Process, Actors Use Case Templates, BPMN Collaborations
Information Computational
Information Types, UML Class and Object | Functional SoaML, UML
Information Objects, Diagrams, UML State Decompositions in Sequence
Actions, Semantics of Machines, SoaML terms of provided and Diagrams, BPMN
Information Processing Message Types required services Processes
Engineering
Distribution of system components, UML Component Diagram, SoaML Service
communication technologies Interfaces, UML Sequence Diagram
Technology
Specification of the hard- and software UML Deployment Diagram, BPMN
infrastructure, deployment process Processes

Table 17 Summary of MODEA

The Actors in the Enterprise Viewpoint, representing roles that interact with the system, are
linked to Use Cases in the UML Use Case Diagram as well as to pools in the Business Process
refining those Use Cases. Each use case will realize at least one tactic or business rule defined in
the BMM.

Conclusion and future work | 102

Each use case will have a correspondent service in the computational viewpoint realizing the
required functionality. The service can be composed of other service for providing the
functionality. Such a composition will be specified with BPMN processes. The participants
providing or requesting service are in the first step derived from the actors and then can then be
further refined. The structure of the service and participants is defined in a service architecture,
which can be used on different abstraction levels. The interaction between two participants
related to a service, which is specified through a service contract, is defined in the UML Sequence
Diagram.

The information viewpoint provides a common set of information types and actions and well as
constraints on those. All the other viewpoints have to be consistent to this definition and using
these actions to specify interfaces or information types for information flows.

In the engineering viewpoint system components are specified for the participants in the
computational viewpoint. These components communicate through ports, which are realized by
a service interface. At least these components are mapped to processing nodes in the technology
viewpoint with use of UML Artifacts.

In chapter 6 the modeling approach is illustrated using the Personal Environmental Information
System PEIS as well as the 0Oil Spill Decision Support System.

The current specification of MODEA does not encompass all model elements defined in the
several specification of the modeling techniques. For the beginning the focus lies on the main
concepts and how to enable the creation of a coherent specification with them. Further work will
be required to expand this approach for a full support of the UML, SoaML, BMM and BPMN
specifications.

7.2 Evaluation

The current degree of detail in the MODEA specification is enough to make a first comparison
with the requirements defined in chapter 3. This evaluation of MODEA is shown in Table 18.

Requirement MODEA | ArchiMate | UPDM UML40DP
1. Use of different Viewpoints ++ ++ ++ ++
2. “Smart” Diagrams + + 0 0
3. Use of existing standards ++ - 0 0
4. Formal specified modeling
++ 0 ++ ++
techniques
5. Tool support for modeling s s s s
techniques
6. Tool support for model
.) 0 -- ())
transformation, code generation
7. Assignment of responsibilities + - ++ ++
8. Integrate motivation and
’ ++ 0 ++ o)
requirements
9. Support Use Cases ++ -- -- --
10. Set up a system-wide set of
++ ++ ++ ++
vocabulary

Conclusion and future work | 103

11. Specification, integration of

different architectural styles and + o 0 0
patterns
12. Decomposition of Components ++ 0 ++ 0
13. Support a service oriented
i ++ 0))
architectural style
14. Support specification of
PP p ++ 0 0] ++

distribution transparencies
Table 18 Evaluation of MODEA and other modeling approaches

As it can be easily seen in Table 17 MODEA provides fully support for the specification of the
motivation and requirements and use cases. It is defined using different viewpoints, including
the engineering viewpoint to specify distribution transparencies and the information viewpoint
for setting up a system-wide set of vocabulary. With only the use of latest OMG standards all
modeling techniques are standardized and with the use UML and BPMN two well-established
and well-known modeling techniques are used. For all the modeling techniques there is quite
good tool support also code and model generation could possible since all modeling techniques
have a formal defined specification.

As well as SoaML in the Computational Viewpoint and also UML Component Diagrams in the
Engineering Viewpoint enable the specification of composition and decomposition. Both
approaches enable the definition of interfaces and interaction protocols to specify the behavior.
With BPMN processes and collaborations the composition behavior in terms of orchestration
and choreography can be described.

Nearly all requirements in the context of the support for a service-oriented architectural style
are fulfilled by concepts of SoaML. SoaML provides support for identification, reuse and the
specification of services. The last two ones are enabled through the service contract concept.
(OMG12a) For the classification of services there are two possibilities in MODEA. One is to color
the uses of a service contract in a defined color. The other one is to use compound service
contracts for a classification. Such a compound service contract can also be used to specify and
use design patterns.

For a full support of different architectural styles UML lacks methods for defining
communication details between components. For example it is not possible to differ between a
rest-oriented communication, a stream-oriented communication, an event-oriented
communication or a simple request and reply.

Concluding one can see that MODEA, comparing to UPDM, UML40ODP and ArchiMate, fulfills
more of the defined requirements. Especially in the fields where the three other frameworks are
weak MODEA contains concepts to deal with them. These are the use existing standards, the
possibility of specifying distribution transparencies as well as a full support for a service
oriented architectural style. Also when dealing with the requirements, especially the popular
concept of use cases, MODEA is stronger than the three other ones. In the case of support for
model and code generation, MODEA is on the same stage as UPDM and UML40DP. All the
frameworks are based on formal specifications, especially UML, and therefore code generation is
possible, but not yet commercially implemented.

Conclusion and future work | 104

7.3 Future Work

This concludes in one point, where future work can be done. In chapter 5.4 a first mapping of
concepts from the different viewpoint to each other and possibilities of how to derive one model
out of another (chapter 5.5) are introduce. Further work has to be done to first include all
specification elements of the used techniques in the MODEA approach and then in a second step
define formal rules for model transformation. Finally concepts have to be specified of how to
generate code out of these models.

Beside this issue concerning the overall framework, there are also some aspects for future work
specific for each viewpoint.

Enterprise Viewpoint

Since agile techniques are an important issue in current software development, further work can
be done to include their requirements specification concepts. In Leffingwell (2011) the
requirements descriptions is done in terms of Themes, Epics, Features and Stories. One proposal
for their integration is to use the UML Use Case as basic modeling concept and apply it on
different abstraction levels. The highest abstraction level of use cases will be Themes. They will
be refined into Epics, Features and then into Stories. How this can be definitely adapted in
MODEA is subject for future work.

Information Viewpoint

Another way than using loosely coupled services to gain a high interoperability in open
distributed systems is the use of ontologies to enable semantic interoperability and integration.
Especially in the context of heterogeneous systems ontologies provide several advantages since
they contain “computer-usable definitions of basic concepts in the domain and the relationships
among them” (Obr03). Such ontologies can be used in the context of service composition, as it is
already done in ENVISION, but also for a model and also code generation for the overall MODEA
specification. How this can be done and also integrated in the modeling approach has to be done
in future.

Computational Viewpoint

The computational viewpoint provides a lot of possibilities for code generation that have to
considered in future work. First it would be possible to generate the highest abstraction level of
service architecture out of the use case diagram defined in the enterprise viewpoint. Afterwards,
when the computational specification is finished, it could be transformed to an initial draft for
the engineering viewpoints.

Engineering Viewpoint

A major issue for future work in context of the Enterprise Viewpoint is the integration of more
details about characteristics of the communication between the components. Aspects to
consider here are for example whether the communication is asynchronous or synchronous and
persistent or transient. A second characteristic to be defined is how the communication takes
place. For example the communication can take place as messaging, request/response or stream.
(Cro96) The current UML specification does not allow a visible definition of those characteristics
in the models. Future work has to elaborate if the introduction of new icons or connector type is
necessary to specify such details.

Conclusion and future work | 105

7.4 Conclusion

In summary MODEA is a coherent model driven approach for specifying and designing
enterprise architectures, especially those of open distributed systems. It is built upon the
enterprise architecture framework RM ODP, which provides a sound basis of how to structure
the overall specification. The concepts of the framework are modeled using the latest OMG
standards and also with the integration of a service-oriented architectural style. These
techniques provide a common foundation to cope with the heterogeneity and complexity and
enable an effective collaboration between the various vendors and a flexible, optimized
architecture. Although there is a quite good tool support for modeling, further work is required
to enhance the support for model and code generation.

Literature | 106

8 Literature

Ado02 Steve Adolph, Paul Bramble, Alistair Cockburn, Andy Pols (2002):
Patterns for Effective Use Cases.
Addison-Wesley Professional, 1st edition

Ams08 Jim Amsden (2008): Capturing requirements with Business Motivation Model,
IBM Rational RequisitePro, and IBM Rational Software Modeler.
In:https://www.ibm.com/developerworks/rational/library/08/0401_amsden/,
accessed on 10.08.2012

And01 Bente Anda, Dag Sjgberg, Magne Jgrgensen (2001): Quality and
Understandability of Use Case Models.
In: J. Lindskov Knudsen (Ed.): ECOOP 2001 - Object oriented programming, Vol.
2072, pp. 402-428, Springer-Verlag Berlin Heidelberg

Bar(06 Alistair Barros, Marlon Dumas, Phillipa Oaks (2006): Standards for Web
Service Choreography and Orchestration: Status and Perspectives.
In: C. Bussler et al. (Eds.): BPM Workshops, Vol. 3812, pp. 61-74, Springer-Verlag
Berlin Heidelberg

Ber08 Birol Berkem (2008): From The Business Motivation Model (BMM) To Service
Oriented Architecture (SOA).
In: Journal of Object Technology, Vol. 7, No. 8

Bro08 Alan W. Brown (2008): MDA Redux: Practical Realization of Model Driven
Architecture.
In: Seventh International Conference on Composition-Based Software Systems,
ICCBSS2008, pages 174-183

Cen12 PrfCEN/TR 15449-4: Geographic information - Spatial Data Infrastructure (SDI) -
Service centric view.
Under approval, Publication Jan 2013

Coc00 Cockburn, A. (2000): Writing Effective Use Cases.
Addison-Wesley, 1st edition

Cou05 George Coulouris, Jean Dollimore, Jim Kindberg (2005): Distributed Systems,
Concepts and Design.
Addison Wesley, 4. rev. edition

Cro96 Jon Crowcroft (1996): Open Distributed Systems.
Artech House

Den89 Peter]J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder, Allen
Tucker, Joe A. Turner, Paul R. Young (1989): Computing as a Discipline.
In: Communications of the ACM, Volume 32, Number 1, pages 9-23

Englil Wilco Engelsman, Dick Quartel, Henk Jonkers, Marten van Sinderen (2011):
Extending enterprise architecture modelling with business goals and
requirements.

In: Enterprise Information Systems, Volume 4, Number 3, pages 9-36

ENV 1.1

ENV 1.2

ENV 1.4

ENV 3.1

ENV 4.3

ENV 6.1

ENV12a

ENV12b

ENV12c

Erl08

FI-PPP12

FIWiki12

FMC12

Literature | 107

ENVISION Consortium (2010): D1.1 Report presenting definition of pilot cases.
In: http://www.envision-project.eu/wp-content/uploads/2010/01/D1.1-
FINAL.pdf, accessed on 10.07.2012

ENVISION Consortium (2011): D1.2 Environmental Services and Models
Scenarios and Pilots, Requirements specification.
In: http://www.envision-project.eu/wp-content/uploads/2011/06/D1.2-v02.pdf,
accessed on 10.07.2012

ENVISION Consortium (2012): D1.4 Development of an operational system by
applying the ENVISION results to the oil spill and landslide pilot cases.
In: http://www.envision-project.eu/wp-content/uploads/2010/01/D1.4-
revised.pdf, accessed on 10.07.2012

ENVISION Consortium (2012): D3.1 MaaS Composition Portal - Architecture
specification.

In: http://www.envision-project.eu/wp-content/uploads/2010/01/D3.1-
FINAL.pdf, accessed on 10.07.2012

ENVISION Consortium (2012): D4.3 Ontologies and Annotations for
Environmental Models.
In: http://www.envision-project.eu/wp-content/uploads/2012/05/D4.3-2.0.pdf,
accessed on 10.07.2012

ENVISION Consortium (2010): D6.1 ENVISION Adaptive Execution
Infrastructure - Architecture Specification.
In: http://www.envision-project.eu/wp-content/uploads/2010/01/D6.1-
FINAL.pdf, accessed on 10.07.2012

ENVISION Consortium (2012): Deliverables
In: http://www.envision-project.eu/resources/deliverables, accessed on
14.08.2012

ENVISION Consortium (2012): Frequently asked questions.
In: http://www.envirofi.eu/FrequentlyAskedQuestions/tabid /4685 /Default.aspx,
accessed on 14.08.2012

ENVISION Consortium (2012): About the project.
In: http://www.envirofi.eu/AbouttheProject/tabid/3924 /Default.aspx, accessed
on 14.08.2012

Thomas Erl (2008): SOA design patterns.
Prentice Hall

Future Internet PPP (2012): About us.
In: http://www. fi-ppp.eu/about-us, accessed on 13.08.2012

FI-Ware Forge Wiki (2012): FI-WARE Architecture and Open Specifications.
In: https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FI-
WARE_Architecture_and_Open_Specifications, accessed on 13.08.2012

FMC Consortium (2012): What is FMC about?
In: http://www.fmc-modeling.org/, accessed on 13.08.2012

IBM12

[S098a

ISO98b

ISO05
ISO09

[SO10a

ISO10b

[SO11

Kai05

Kar10

Kho09

Kra05

Lan07

Literature | 108

IBM (2012): Rational Software Architect: Features
In: http://www-142.ibm.com/software/products/de/de/ratisoftarch/, accessed
on 18.08.2012

ITU-T X.901 | ISO/IEC 10746-1 (1998): Information Technology - Open
Distributed Processing - Reference Model: Overview
Version 1

ITU-T X.904 | ISO/IEC 10746-4 (1998): Information Technology - Open
Distributed Processing - Reference Model: Architectural Semantics
Version 1

IS0 19119:2005 (2005): Geographic information - Service

ITU-T Recommendation X.906 | ISO/IEC 19793 (2009): Information
technology — Open distributed processing — Use of UML for ODP system
specifications

Version 02.01, 2009

ITU-T X.902 | ISO/IEC 10746-2 (2010): Information Technology - Open
Distributed Processing - Reference Model - Foundations
Version v01.04, FDIS

ITU-T X.903 | ISO/IEC 10746-3 (2010): Information Technology - Open
Distributed Processing - Reference Model - Architecture
Version v01.04, FDIS

ISO/IEC/IEEE 42010:2011 (2011): Systems and software engineering —
Architecture description

Stephen H. Kaisler, Frank Armour, Michael Valivullah (2005): Enterprise
Architecting: Critical Problems.

In: Proceedings of the 38th Hawaii International Conference on System Sciences
(HICSS 05), pages 224b

N. Karcanias, A.G. Hessami (2010): Complexity and the notion of system of
systems: Part (II): defining the notion of system of system
In: World Automation Congress (WAC), pages.1-7

Sedigheh Khoshnevis, Fereidoon Shams Aliee, Pooyan Jamshidi (2009):
Model Driven Approach to Service Oriented Enterprise Architecture.

In: IEEE Asia-Pacific Services Computing Conference (APSCC 2009), pages 279-
286

Dirk Krafzig, Karl Banke, Dirk Slama (2005): Enterprise SOA: Service-Oriented
Architecture Best Practices.
Prentice Hall International

Marc Lankhorst, Hans van Drunen (2007): Enterprise Architecture
Development and Modelling.

In: via-nova-archiecture.org, Magazine, published 21.March 2007, accessed at
http://www.via-nova-architectura.org/files/magazine/Lankhorst.pdf on
10.06.2012

Lan09

Lefll

Lei06

Lin11

Lib08

Mod11

Mod12

Naw06

Obr03

OMGO7

OMG10

OMG11

OMG12a

Literature | 109

Marc M. Lanckhorst (2009): Enterprise architecture at work modelling,
communication and analysis.
Springer Verlag, 2nd edition

D. Leffingwell (2011): Agile Software Requirements: Lean Requirements
Practices for Teams, Programs, and the Enterprise (Agile Software Development
Series).

In: Addison-Wesley Professional; 1 edition

Susanne Leist, Gregor Zellner (2006): Evaluation of Current Architecture
Frameworks.

In: Proceedings of the 2006 ACM symposium on Applied computing (SAC 06),
pages 1546 - 1553

Peter F. Linington, Zoran Milosevic, Akira Tanaka, Antonio Vallecillo (2011):
Building Enterprise Systems with ODP: An Introduction to Open Distributed
Processing.

Chapman & Hall/CRC Press

Daniel Liibke, Kurt Schneider, Matthias Weidlich (2008): Visualizing Use Case
Sets as BPMN Processes.
In: Requirements Engineering Visualization (REV'08), pages 21 - 25

Modeliosoft (2011): About Modelio: Features.
In: http://www.modelio.org/about-modelio/features.html, accessed on
10.08.2012

Modeliosoft (2012): Enterprise Architecture tool: Goal diagrams - Definition and
example using BMM standard.

In: http://www.modeliosoft.com/en/download/132.html], accessed on
10.08.2012

Jerzy Nawrocki, Tomasz Nedza, Miroslaw Ochodek, Lukasz Olek (2006):
Describing Business Processes with Use Cases.
In: Proceedings of Business Information Systems (BIS 2006), pages 13-27

Leo Obrst (2003): Ontologies for Semantically Interoperable Systems.
In: Proceedings of the twelfth international conference on Information and
knowledge management (CIKM’03), pages 366-369

OMG Group (2007): Unified Modeling Language Superstructure
Version 2.1.2, in: http://www.omg.org/spec/ UML/2.1.2 /Superstructure/,
accessed on 20.04.2012

OMG Group (2010): Business Motivation Model
Version 1.1, http://www.omg.org/spec/ BMM/1.1/, accessed on 20.04.2012

OMG Group (2011): Business Process Modeling Notation
Version 2.0, http://www.omg.org/spec/BPMN/2.0/, accessed on 20.04.2012

OMG Group (2012): Service oriented architecture Modeling Language
Version 1.0, in http://www.omg.org/spec/SoaML/1.0/, accessed on 20.04.2012

Literature | 110

OMG12b OMG Group (2012): Unified Profile for DoDAF and MODAF (UPDM)
Version 2.0, in: http://www.omg.org/spec/UPDM/2.0/, accessed on 20.04.2012

Openl1 The Open Group (2011): TOGAF Version 9.1
Catalog Number: G116, accessed via

https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?cat
alogno=g116 on 29.05.2012

Openl2a The Open Group (2012): ArchiMate 2 Specification
Catalog Number C118, accessed via
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?pub
licationid=12480 on 29.05.2012

Openl2b The Open Group (2012): What is ArchiMate?
In:http://www.archimate.nl/en/about_archimate/what_is_archimate.html,
accessed on 22.07.2012

Pap07 Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Leymann
(2007): Service-Oriented Computing: State of the Art and Research Challenges.
In: Computer, Volume 40, Issue 11, p 38 - 45

PEIS2.1 ENVIROFI Consortium (2011): D2.1 Scenario Description and Use Cases
Specification, restricted document

PEIS ENVIROFI Consortium (2012): D 2.3.1 Use Case Requirements Report WP2
2.3.1 Anney, restricted document

PEIS ENVIROFI Consortium (2012): D2.3.2 Functional and Organisational

2.3.2 Specification for PIS Pilot II.

In:http://www.envirofi.eu/Portals/89/Docs/Project/Public_deliverables/ENVIR
OF1%20D2.3.2_Functional_and_Organisational_Specification_for_PIS_Pilot_II.pdf,
accessed on 23.06.2012

PEIS ENVIROFI Consortium (2011): D4.1.1 Environmental Requirements I.
4.1.1 In:http://www.envirofi.eu/Portals /89 /Docs/Project/Public_deliverables/ENVIR
OF1%20D4.1.1_Environmental_Requirements_l.pdf, accessed on 23.06.2012

PEIS4.2 ENVIROFI Consortium (2012): D4.2 Environmental Architecture
In:http://www.envirofi.eu/Portals /89 /Docs/Project/Public_deliverables/ENVIR
OF1%20D4.2_Environmental_Architecture.pdf, accessed on 23.06.2012

PEIS ENVIROFI Consortium (2012): D5.2.1 Initial Specification of the Specific
5.2.1 Enablers for Environmental Domain I, restricted document

PEIS ENVIROFI Consortium (2012): D5.2.2 Initial Specification of the Specific
5.2.2 Enablers for Environmental Domain I, restricted document

PEIS ENVIROFI Consortium (2011): D6.1.1 Sketch of the ENVIROFI Architecture,
6.1.1 restricted document

Rom05 J.R. Romero, A. Vallecillo (2005): Modelling the ODP Computational Viewpoint
with UML 2.0: The Templeman Library Example.
In: Proceedings of the 2nd International Workshop on ODP and Enterprise
Computing (WODPEC 2005)

Rom12

Sad10

Sel12

Sparx12a

Sparx12b

Ste05

Tan04

Zach87

Zach99

Zach12

Literature | 111

José Raill Romero, Juan Ignacio Jaén, Antonio Vallecillo (2012): A Tool for the
Model-Based Specification of Open Distributed Systems.
In: The Computer Journal, 2012

Andrey Sadovykh, Brian Elvesater, Philippe Desfray, Arne-Jgrgen Berre,
Einar Landre (2010): Enterprise Architecture Modeling with SoaML Using BMM
and BPMN - MDA Approach in Practice.

In: 6th Central and Eastern Europe Software Engineering Conference (CEE-SECR
10), pages 79 - 85

Select Business Solutions (2012): Select Architect (BMM, BPMN, UML)
In: http://www.selectbs.com/analysis-and-design/select-architect, accessed on
14.08.2012

Sparx Systems (2012): Features at a glance
In: http://www.sparxsystems.com/, accessed on 14.08.2012

Sparx Systems (2012): TOGAF MDG Technology: Features
In:http://www.sparxsystems.com.au/products/mdg/tech/togaf/index.html,
accessed on 14.08.2012

M.W.A. Steen, P. Strating, M.M. Lankhorst, H. ter Doest, M.-E. Iacob (2005):
Service-Oriented Enterprise Architecture.

In: Zoran Stojanovic, Ajantha Dahanayake (Ed.): Service-Oriented Software
System Engineering: Challenges and Practices, pages 132-154

IGI Global

A. Tang, Jun Han, Pin Chen (2004): A Comparative Analysis of Architecture
Frameworks.
In: 11th Asia-Pacific Software Engineering Conference, pages 640-647

John A. Zachman. (1987): A framework for information systems architecture.
In: IBM Systems Journal, Volume 26, Issue 3,pages 276-295.

John A. Zachman (1999): A Framework for Information Systems Architecture.
In: IBM Systems Journal, Volume 38, Issue 3, pages 454-70

John A. Zachman (2008): John Zachman's Concise Definition of The Zachman
Framework

In: http://www.zachman.com/about-the-zachman-framework, accessed on
21.05.2012

