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Biproportional Matrix Scaling and the

Iterative Proportional Fitting procedure

Dedicato alla memoria di Bruno Simeone (1945–2010)

Friedrich Pukelsheim

Abstract Convergence of the Iterative Proportional Fitting procedure is analyzed.
The input comprises a nonnegative weight matrix, and positive target marginals for
rows and columns. The output sought is what is called the biproportional fit, a scaling
of the input weight matrix by means of row and column divisors so as to equate row
and column sums to target marginals. The procedure alternates between the fitting
of rows, and the fitting of columns. We monitor progress with an L1-error function
measuring the distance between current row and column sums and target row and
column marginals. The procedure converges to the biproportional fit if and only if
the L1-error tends zero. In case of non-convergence the procedure appears to oscillate
between two accumulation points. The oscillation result is contingent on the “IPF
conjecture” that row and column divisors are always convergent. The conjecture is
established in the specific case when the even-step subsequence admits an accumulation
point that is connected, but remains open in general.
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1 Introduction

We present a novel, L1-based analysis of the Iterative Proportional Fitting (IPF) pro-
cedure. The IPF procedure is an algorithm for scaling rows and columns of an input
k×` weight matrix A = ((aij)) so that the output matrix B = ((bij)) achieves row sums
equal to a prespecified vector of row marginals, r = (r1, . . . , rk), and column sums
equal to a prespecified vector of column marginals, c = (c1, . . . , c`). All weights are
assumed nonnegative, aij ≥ 0, with at least one entry in each row and column of A
being positive. All marginals are taken to be positive, ri > 0 and cj > 0.

The problem has a continuous variant, the biproportional fitting problem, and a
discrete variant, the biproportional apportionment problem. In the continuous variant,
the entries of the output matrix B are nonnegative real numbers, bij ∈ [0,∞). The
output B is called a biproportional fit of the weight matrix A to the target marginals r
and c. The IPF procedure iteratively calculates scaled matrices A(t) =

((
aij(t)

))
,

where for odd steps row sums are matching, ai+(t + 1) = ri for all i ≤ k, while for
even steps column sums match, a+j(t+ 2) = cj for all j ≤ `. If a biproportional fit B
exists, the sequence of scaled matrices A(t), t ≥ 0, converges to B.

In the discrete problem variant the entries of B are restricted to be nonnegative
integers, bij ∈ {0, 1, 2, . . .}. Then the output matrix B is called a biproportional ap-
portionment, for the weight matrix A and the target marginals r and c. The procedure
to solve the discrete problem is the Alternating Scaling (AS) algorithm. It produces
matrices A(t) with entries aij(t) both, scaled and rounded. There are (rare) instances
when a biproportional apportionment B exists while the AS algorithm stalls and fails
to converge to it. An example is given by Gaffke and Pukelsheim (2008b, page 157).

Our research arose from the desire to better understand the interplay between the
continuous IPF procedure, and the discrete AS algorithm. The present paper focuses
on the continuous fitting problem. Yet our major tool, the L1-error function

f
(
A(t)

)
=

∑
i≤k

∣∣∣ai+(t)− ri

∣∣∣+∑
j≤`

∣∣∣a+j(t)− cj

∣∣∣,
is borrowed from Balinski and Demange’s (1989a, 1989b) inquiry into the discrete
apportionment problem. In the discrete case the error function is quite suggestive,
simply counting how many units are wrongly allocated in step t. For the continuous
problem the L1-error is, at first glance, just one out of many ways to assess lack of fit.
At second glance it is a most appropriate way, as this paper endeavors to show.

1.1 The literature on biproportional fitting

The continuous biproportional fitting problem is the senior member of the two prob-
lem families. It has created an enormous body of literature of which we review only
the papers that influenced the present research. The term IPF procedure prevails in
Statistics, see Fienberg and Meyer (2006), or Speed (2005). Some Statisticians speak
of matrix raking, such as Fagan and Greenberg (1987). In Operations Research and
Econometrics the label RAS method is popular, pointing to a (diagonal) matrix R of
row multipliers, the weight matrix A, and a (diagonal) matrix S of column multipliers,
as mentioned already by Bacharach (1965, 1970). Computer scientists prefer the term
matrix scaling, as in Rote and Zachariasen (2007).
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Deming and Stephan (1940) are first to popularize the IPF procedure though there
are earlier papers on the subject, see Fienberg and Meyer (2006). Deming and Stephan
(1940, page 440) recommend terminating iterations when the table reproduces itself.
This closeness is what is measured by the L1-error function f

(
A(t)

)
, see the remarks

leading to our Lemma 1. While successfully advocating the merits of the algorithm,
Deming and Stephan were somewhat led astray in its analysis, as communicated by
Stephan (1942).

Brown (1959) proposes a convergence proof which Ireland and Kullback (1968)
criticize to lack rigor. The latter authors establish convergence by relating the IPF
procedure to the minimum entropy solution. Csiszár (1975, page 155) notes that their
argument is flawed, and that the generalization to measure-spaces by Kullback (1968)
suffers from a similar deficiency. Csiszár (1975) salvages the entropy approach, and
Rüschendorf (1995) extends it to general measure-spaces. Rüschendorf and Thomsen
(1993, 1997) rectify a technical detail that escaped Csiszár’s (1975) attention.

The ultimate arguments of Ireland and Kullback (1968, eqs. (4·32) and (4·33))
substitute convergence of entropy by convergence in L1, referring to a result of Kullback
(1966). Also Bregman (1967) starts out with entropy, and then uses the L1-error
function. Here we dispose of the entropy detour, and use L1 from start to finish. Ireland
and Kullback (1968, page 184) prove that the entropy criterion decreases monotonically,
as does the likelihood function of Bishop, Fienberg and Holland (1975, page 86), and
the L1-error function, see Bregman (1967, page 197). Marshall and Olkin (1968) and
Macgill (1977) minimize a quadratic objective function. Pretzel (1980) uses a geometric
matrix-mean and makes do with the arithmetic-geometric-mean inequality, as reviewed
after our concluding Theorem 5. The computational complexity of the IPF procedure
is investigated by Kalantari, Lari, Ricca and Simeone (2008).

The question when a biproportional fit exists is discussed by Brualdi, Parter and
Schneider (1966), Schneider (1990), and Brown, Chase and Pittenger (1993). Many of
them use network and graph theory by viewing the issue as a transportation problem,
see the review of Pukelsheim, Ricca, Simeone, Scozzari and Serafini (2012).

Fienberg (1970) opens up a different route by embedding the IPF procedure into
the geometry of the manifold of constant interaction in a (k`− 1)-dimensional simplex
of reference. The author works with the assumption that all input weights are positive,
aij > 0. He points out (page 915) that the extension to problems involving zero weights
is quite complex, which is attested to by much of the literature. Ireland and Kullback’s
(1968, page 182) plea of assuming positive weights in order to simplify the argument is
a friendly understatement, unless it is meant to be the utter truth.

Yet another approach, staying as close to calculus as possible, is due to Bacharach
(1965, 1970), and Sinkhorn (1964, 1966, 1967, 1972, 1974) and Sinkhorn and Knopp
(1967). Much of the present paper is owed to the work of Bacharach and Sinkhorn.

Michael Owen Leslie Bacharach (b. 1936, d. 2002) was an Oxford econometrician.
In 1965 he earned a PhD degree in Mathematics from Cambridge. His thesis was
published as Bacharach (1965), and became Section 4 of Bacharach (1970). Richard
Dennis Sinkhorn (b. 1934, d. 1995) received his Mathematics PhD in 1962 from the
University of Wisconsin–Madison, with a thesis entitled On Two Problems Concern-
ing Doubly Stochastic Matrices. Throughout his career he served as a Mathematics
professor with the University of Houston. Though contemporaries, neither of the two
ever quoted the other.
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1.2 The literature on biproportional apportionment

The discrete biproportional apportionment problem is the junior problem family, first
put forward by Balinski and Demange (1989a, 1989b), see also Balinski and Rachev
(1997) and Simeone and Pukelsheim (2006). The operation of rounding scaled quanti-
ties to integers sounds most attractive for the statistical analysis of frequency tables, as
noted by Wainer (1998) and Pukelsheim (1998). It disposes of any disclaimer that the
adjusted figures are rounded off, hence when summed may occasionally disagree a unit
or so, as warned in Table I of Deming and Stephan (1940, page 433). When calculating
percentages, as in Table 3.6-4 of Bishop, Fienberg and Holland (1975, page 99), the
method finishes off with 100 percent and does not stop short with 99 percent. Yet
Balinski’s motivation was not contingency table analysis in statistics, but proportional
representation systems for parliamentary elections.

The task of allocating seats of a parliamentary body to political parties does not
tolerate any disclaimer excusing residual rounding errors. Methods must account for
each seat. This is achieved by biproportional methods. In 2003, the Swiss Canton
of Zurich adopted a doubly proportional system, the biproportional divisor method
with standard rounding, see Pukelsheim and Schuhmacher (2004, 2011), and Balinski
and Pukelsheim (2006). The method may be attractive also for other countries as
investigated by Pennisi (2006) for Italy, Zachariassen and Zachariasen (2006) for the
Farœ Islands, Ramı́rez, Pukelsheim, Palomares and Mart́ınez (2008) for Spain, and
Oelbermann and Pukelsheim (2011) for the European Union.

When I had the privilege of advising the Zurich politicians on the amendment of
the electoral law, I felt it inappropriate to present double proportionality as a method
that minimizes entropy, or that is justified through differential geometry of smooth
manifolds in high-dimensional simplexes. The procedure simply does what propor-
tionality is about: Scale and round! Scaling within electoral districts (rows) achieves
proportionality among the parties campaigning in that district. Scaling within par-
ties (columns) secures district lists of any party to be handled proportionally. The
final rounding step is inevitable, since deputies are counted in whole numbers and not
measured in fractions.

That biproportional apportionment also won administrative support is a victory of
the IPF procedure. Its discrete sibling, the AS algorithm, enables officials to calculate
district divisors and party divisors. Once suitable divisors are publicized any voter can
easily double-check the outcome. She or he only needs to take the vote count of the
party of their choice in the district where they live, divide it by the respective district
and party divisors, and round the result to the nearest seat number. A computer pro-
gram for carrying out the apportionment is provided at www.uni-augsburg.de/bazi,
see Pukelsheim (2004), Joas (2005), Maier (2009). The user may choose to run the
AS algorithm, the Tie-and-Transfer (TT) algorithm of Balinski and Demange (1989b),
or various hybrid combinations. The performance of these algorithms is studied by
Maier, Zachariassen and Zachariasen (2010).

In the electoral application the entries aij in the weight matrix A signify vote
counts, and the occurrence of zero counts is unavoidable. When a party j does not
campaign in a district i it enters final evaluations with aij = 0. Zero weights must be
properly dealt with, even if the labor entailed becomes quite complex. It is no longer
appropriate to simplify the argument by assuming all weights to be positive.
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1.3 Section overview

A brief overview of the paper is as follows. Section 2 investigates biproportional scalings
of a given weight matrix A. The additional requirement, of matching prespecified row
marginals r and column marginals c, is treated in Sections 3 and 4.

A scaling of a matrix A as in Section 2 reweighs rows and columns moderately
enough to not totally annihilate any row nor column. If two scalings share the same
row and column sums, then they coincide (Theorem 1). A scaling is called direct when
the limits that are allowed by definition become superfluous. In such a case the input
matrix A and the output matrix B decompose accordingly (Lemma 1), see Balinski
and Demange (1989a), Gietl (2009). Theorem 2 puts forward five conditions to check
for directness. Though not needed in the sequel, Theorems 3 and 4 further explore the
structural properties of matrix scalings. The proof of Theorem 4 refers to the linear
space spanned by cycle matrices, as in Gaffke and Pukelsheim (2008a, page 178).

Section 3 turns to the IPF procedure. The procedure uses biproportional scalings
in order to fit a k × ` weight matrix A to prespecified row marginals r and column
marginals c. In each step t a scaled weight matrices A(t) is produced that either has
matching rows, or matching columns. The goodness-of-fit of A(t) is measured by the
L1-error function mentioned in the beginning. Lemma 2 ascertains that the L1-error
is nonincreasing, and that every row subset I bounds it from below according to

f
(
A(t)

)
≥ rI − cJA(I) + cJA(I)′ − rI′ ,

where rI and cJA(I) are partial sums of row and column marginals, a prime indicating
set complements. Lemma 3 recalls an intriguing set of interlacing inequalities among
row and column divisors that is due to Bacharach (1970).

Section 4 aims to show that the L1-error achieves the lower bound displayed above.
For the case of nonconvergence Jirous̆ek and Vomlel (1995) and Vomlel (2004) report
that the IPF procedure tends to cycle. Our study of the set of accumulation points is
contingent on what we call the “IPF conjecture”, namely that the incremental divisors
of any row constitute a convergent sequence. Lemma 4 proves that the IPF conjecture
holds true when the IPF sequence A(t), t ≥ 0, admits an accumulation point that is
connected. Then the L1-error achieves the lower bound from above (Lemma 5). Finally
Theorem 5 assembles five necessary and sufficient conditions for the IPF sequence to
converge to the biproportional fit sought. Two proofs are provided. The first proof
relies on the IPF conjecture and is short and elegant. Without reference to the IPF
conjecture the second proof becomes a bit more cumbersome.

1.4 Notation

A plus-sign is used as a subscript to indicate summation over the index that otherwise
appears in its place, as in r+ =

∑
i≤k ri, c+ =

∑
j≤` cj , or a++ =

∑
i≤k

∑
j≤` aij .

Partial sums are written with the range of summation in place of the index, rI =∑
i∈I ri, cJ =

∑
j∈J cj , or aI×J =

∑
i∈I

∑
j∈J aij . A prime signifies the complement

of a set, I ′ = {1, . . . , k} \ I. In a matrix A with nonnegative entries, aij ≥ 0, the
columns connected with a row subset I are assembled in the subset JA(I) = { j ≤
` | aij > 0 for some i ∈ I }.
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2 Biproportional scalings

Let A = ((aij)) be a given k×` weight matrix, that is, A is assumed to have nonnegative
entries and no zero row nor zero column. We concentrate on true matrix problems,
k ≥ 2 and ` ≥ 2. Whether row i ≤ k or column j ≤ ` does not vanish is conveniently
read off from their component sums, ai+ > 0 and a+j > 0. Another weight matrix B is
said to preserve the zeros of A when all zeros of A are zeros also of B, aij = 0 ⇒ bij = 0.
Two matrices A and B have the same zeros when aij = 0 ⇔ bij = 0.

Definition A k× ` matrix B = ((bij)) is defined to be a biproportional scaling of A
when for all rows i ≤ k and for all columns j ≤ ` there exist sequences of positive row
divisors ρi(1), ρi(2), . . . and of positive column divisors σj(1), σj(2), . . . satisfying

bij = lim
n→∞

aij
ρi(n)σj(n)

, bi+ > 0, b+j > 0.

A biproportional scaling B is termed direct when its associated divisor sequences can
be chosen to be constant, that is, for all rows i ≤ k and for all columns j ≤ ` there are
positive divisors µi and νj such that bij = aij/(µiνj).

A cell (i, j) is said to be fading when aij > 0 = bij . Fading cells cannot arise with
direct scalings. If they arise with general scalings, then the denominators ρi(n)σj(n)
diverge to infinity. Their speed of growth is damped by the requirement that row and
column sums of B stay positive. Otherwise the divisors could always be exaggerated
so as to annihilate a whole row, or a whole column. No precautions have to be taken
at the other end of the range where the denominators get close to zero. They can
do so only if the numerator vanishes, aij = 0, and then the denominators’ speed of
convergence to zero, or even lack of convergence, is irrelevant.

The side condition that biproportional scalings have positive row and column sums
has consequences for their multitude.

Theorem 1 (Uniqueness) If two biproportional scalings B and C of a weight
matrix A share the same row and column sums, bi+ = ci+ for all rows i ≤ k and
b+j = c+j for all columns j ≤ `, then they coincide, B = C.

Proof The proof is by contraposition. Assuming the two scalings to be distinct,
B 6= C, their difference B − C is nonzero, but has row and column sums vanishing.
We construct a cycle of cells

(i1, j1), (i2, j1), (i2, j2), (i3, j2), . . . , (iq−1, jq−1), (iq, jq−1), (iq, jq), (i1, jq) [CC]

along which the entries in B−C are alternately positive or negative. First we assemble
a “long list” of cells (i1, j1), (i2, j1), (i2, j2), . . . , (iQ, jQ), (i1, jQ), as follows. We
start with a cell (i1, j1) where bi1j1 > ci1j1 . In column j1 there is a cell (i2, j1) with
bi2j1 < ci2j1 . Next we search in row i2 a column j2 where bi2j2 > ci2j2 . Then we look for
a row i3 such that bi3j2 > ci3j2 . The long list terminates when encountering a row iQ
already listed, that is, when for some P < Q we find iQ = iP . The initial P − 1 cells
are discarded, and the remaining “short list” is relabeled as in [CC].



Biproportional matrix scaling and the IPF procedure 7

A cyclic ratio in a matrix is a ratio having the entries along a given cell cycle
alternately appear in the denominator and in the numerator. Since aij = 0 implies
bij = cij = 0, the cell cycle [CC] touches only upon positive entries of the weight
matrix A. Let ρi(n) and σj(n) denote the divisor sequences for B, and µi(n) and νj(n)
for C. As biproportionality preserves cyclic ratios, the cyclic ratios in A, B, and C are
seen to be equal,

∏
p≤q

aip+1jp

aipjp
=

∏
p≤q

aip+1jp

ρip+1 (n)σjp (n)

aipjp

ρip (n)σjp (n)

=
∏
p≤q

bip+1jp

bipjp
=

∏
p≤q

aip+1jp

µip+1 (n)νjp (n)

aipjp

µip (n)νjp (n)

=
∏
p≤q

cip+1jp

cipjp
,

where iq+1 = i1. The first and third equation signs are obvious. The second equality
involves a passage to the limit as n tends to ∞ and is justified since, by construction,
the limiting denominator is positive, bipjp > cipjp ≥ 0. As the left hand side is positive,
the numerator must be positive, too, bip+1jp > 0. A similar argument establishes the
last equality, with the roles of numerator and denominator interchanged.

However, the construction of the cycle [CC] precludes equality,∏
p≤q

bip+1jp

bipjp
<

∏
p≤q

cip+1jp

cipjp
.

Hence the assumption B 6= C is untenable and uniqueness obtains, B = C.

Directness of a biproportional scaling transpires to be closely related to the notion
of connectedness. A nonzero matrix C is said to be connected when it is not discon-
nected. A nonzero matrix D is called disconnected when a suitable permutation of
rows and a suitable permutation of columns give rise to a row subset I and a column
subset J such that D acquires block structure,

D =

( J J ′

I D(1) 0
I ′ 0 D(2)

)
,

where at least one of the subsets I or J is nonempty and proper, ∅⊂
6=I ⊂

6={1, . . . , k} or

∅⊂
6=J ⊂

6={1, . . . , `}. In most applications both subsets are nonempty and proper.

For keeping track of the nonzero entries in a weight matrix A we associate with
every row subset I ⊆ {1, . . . , k} the set of columns connected in A with I,

JA(I) =
{
j ≤ `

∣∣ aij > 0 for some i ∈ I
}
.

The complement JA(I)
′ embraces the columns j with entries aij = 0 for all i ∈ I. Hence

the I×JA(I)
′ submatrix of A vanishes and the sum of its entries is zero, aI×JA(I)′ = 0.

The extreme settings provide simple examples. If we choose I = {1, . . . , k} then we get
JA(I) = {1, . . . , `}, since no row nor column of A vanishes. If I = ∅ then JA(I) = ∅.

When the input weight matrix A decomposes into several connected components,
the calculation of any biproportional scaling B decomposes into several separate in-
stances. Hence there is no loss of generality of assuming A to be connected. Yet
its associated biproportional scalings may be connected, or disconnected. When B is
disconnected its structure has repercussions on the structure of A, as follows.
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Lemma 1 (Joint decomposition) For every connected weight matrix A and for
every disconnected biproportional scaling B of A there exists a nonempty and proper
subset I of rows, ∅⊂

6=I ⊂
6={1, . . . , k}, such that A acquires blocktriangular structure and B

acquires blockdiagonal structure,

A =

( JA(I) JA(I)
′

I A(1) 0
I ′ A(2,1) A(2)

)
, B =

( JB(I) JB(I)
′

I B(1) 0
I ′ 0 B(2)

)
where the sets of columns connected with I in A or B are equal, JA(I) = JB(I).

Proof Without loss of generality we may assume the largest accumulation point
of the column divisors to be positive and finite, lim supn→∞ σmax(n) = M ∈ (0,∞),
where σmax(n) = max{σ1(n), . . . , σ`(n)}. If need be, we would adjust the divisors
according to ρ̃i(n) = ρi(n)σmax(n) and σ̃j(n) = σj(n)/σmax(n) ≤ 1, and use M = 1.

Let an arrow → indicate a passage to the limit as n tends to infinity. The set I is
defined to contain the rows with divisors not degenerating, in the sense of not diverging
to infinity,

I =
{
i ≤ k

∣∣∣ ρi(n) 6→ ∞
}
, I ′ =

{
i ≤ k

∣∣∣ ρi(n) → ∞
}
.

Likewise the columns connected in B with I will turn out to have their divisors not
degenerating, but in the sense of not converging to zero,

JB(I) =
{
j ≤ `

∣∣∣ σj(n) 6→ 0
}
, JB(I)

′ =
{
j ≤ `

∣∣∣ σj(n) → 0
}
.

With A connected and B disconnected there exists a cell (i, j) that is fading,
aij > 0 = bij . This implies limn→∞ ρi(n)σj(n) = ∞ and, since column divisors stay
bounded by assumption, limn→∞ ρi(n) = ∞. Hence I ′ is not empty, nor is JB(I

′)—
which in the end will turn out to coincide with JB(I)

′. By definition of JB(I
′), the

I ′ × JB(I
′)′ block of B is zero.

The columns j ∈ JB(I
′) have their divisors converge to zero, limt→∞ σj(n) = 0.

Indeed, there exists a row i ∈ I ′ with bij > 0. In this cell we have limn→∞ ρi(n)σj(n) =
aij/bij < ∞. Since the divisors of row i ∈ I ′ diverge to infinity, column j has its divisors
converge to zero.

By assumption the column divisors satisfy σmax(n) > M/2 infinitely often. Thus
there exists a column j with divisors fulfilling σj(n) > M/2 again and again and not
converging to zero. Hence JB(I

′)′ is not empty, nor is I.

Now every column j ∈ JB(I
′)′ has its divisors not converging to zero, lim supn→∞

σj(n) > 0. Indeed, there is a row i ∈ I with bij > 0. In this cell we have limn→∞ ρi(n)
σj(n) = aij/bij > 0. Since column j admits a divisor subsequence bounded away from
zero, the row divisors that go along cannot diverge to infinity.

The I × JB(I
′) top right block of A has aij = 0. Indeed, the case aij > 0

would admit a row divisor subsequence bounded from above, in the presence of column
divisors converging to zero. But aij > 0 and limn→∞ ρi(n)σj(n) = 0 lead to the
contradiction bij = ∞. The top right block of B inherits the zeros of A. The structures
of B and A entail JB(I

′)′ = JB(I) = JA(I).
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Given a biproportional scaling B, there are various ways to check for directness.

Theorem 2 (Directness) For every connected weight matrix A and for every
biproportional scaling B of A the following five statements are equivalent:

(1) The biproportional scaling B is direct.

(2) The matrices A and B have the same zeros.

(3) There exists a weight matrix D sharing the same zeros with A and the same row
and column sums with B.

(4) For every nonempty and proper subset I of rows, ∅⊂
6=I ⊂

6={1, . . . , k}, partial row and

column sums of B fulfill
∑

i∈I bi+ <
∑

j∈JA(I) b+j.

(5) The matrix B is connected.

Proof (1) ⇒ (2). A direct scaling, bij = aij/(µiνj), has the same zeros as has A.

(2) ⇒ (3). The scaling B, sharing all zeros with A, is of the type asked for in (3).

(3) ⇒ (4). For every row subset I we have aI×JA(I)′ = 0, and hence dI×JA(I)′ = 0.
If I is nonempty and proper then dI′×JA(I) > 0, as otherwise D is disconnected and
so would be A. We get

∑
i∈I bi+ = dI×JA(I) < dI×JA(I) + dI′×JA(I) =

∑
j∈JA(I) b+j .

(4) ⇒ (5). The proof is by contraposition. If B is disconnected, then Lemma 1 pro-
vides a nonempty and proper row set I fulfilling

∑
i∈I bi+ = bI×JA(I) =

∑
j∈JA(I) b+j .

(5) ⇒ (1). Row divisors µi and column divisors νj for B are constructed in the
course of a scanning process. The process is initialized by standardizing the given
divisor sequences according to ρ̃i(n) = ρi(n)/ρ1(n) and σ̃j(n) = ρ1(n)σj(n), thus
equipping the first row with constant divisor unity, ρ̃1(n) = 1 = µ1, n ≥ 1. Then the
process scans all columns j with b1j > 0, and sets

0 < νj =
a1j
µ1b1j

=
limn→∞ ρ̃1(n)σ̃j(n)

limn→∞ ρ̃1(n)
= lim

n→∞
σ̃j(n), whence b1j =

a1j
µ1νj

.

Next all unscanned rows i with bij > 0 for some scanned column j are scanned, setting

0 < µi =
aij
bijνj

=
limn→∞ ρ̃i(n)σ̃j(n)

limn→∞ σ̃j(n)
= lim

n→∞
ρ̃i(n), whence bij =

aij
µiνj

.

Thereafter the process turns to columns again, then rows. In this fashion it keeps
enlarging the scanned sets of rows and columns, terminating after at most k+ ` steps.
The terminal scanned row set I and column set J enforce a block structure upon B,

B =

( J J ′

I B(1) 0
I ′ 0 B(2)

)
.

Connectedness of B lets the scanned sets be exhaustive, I = {1, . . . , k} and J =
{1, . . . , `}. All rows and all columns having constant divisors, the scaling is direct.

Generally a biproportional scaling B may decompose into several connected com-
ponents. Theorem 3 permutes these components in such a way that A acquires block-
triangular structure, and that row and column divisors are grouped by the order with
which they diverge to infinity, or converge to zero.
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Theorem 3 (Connectedness structure) For every weight matrix A and for every
biproportional scaling B of A, the K ≥ 1 connected components of B may be permuted
in such a way that A acquires blocktriangular structure,

A =


J1 J2 · · · JK

I1 A(1) 0 · · · 0
I2 A(2,1) A(2) · · · 0
...

...
...

. . .
...

IK A(K,1) A(K,2) · · · A(K)

, B =


J1 J2 · · · JK

I1 B(1) 0 · · · 0
I2 0 B(2) · · · 0
...

...
...

. . .
...

IK 0 0 · · · B(K)

.

Moreover, there exist positive scalars µ1, . . . , µk and ν1, . . . , ν` such that B results from
using the divisors ρi(n) = µin

m−1 for rows i ∈ Im and σj(n) = νj/n
m−1 for columns

j ∈ Jm, for all n ≥ 1 and for all connected components m ≤ K. Within every
component m ≤ K, one of the row scalars µi, i ∈ Im, may be standardized to be unity.

Proof In case A is disconnected, we may treat each of its connected components
as a separate instance. In case B is connected, K = 1, the current assertions reduce
to those of Theorem 2.

In case B is disconnected, we recursively apply Lemma 1. Indeed, if block B(1)

of Lemma 1 is connected, then we copy it into the present display. If block B(1) of
Lemma 1 is disconnected, then we first decompose block A(1) of Lemma 1 into its (that
is, those of A(1)) connected components, and thereafter operate on each of the evolving
instances separately by again applying Lemma 1. This recursive process terminates
after finitely many steps, and eventually leaves us with a structure as displayed above.

Moreover, the connected component B(m) is a biproportional scaling of the block
A(m). Hence Theorem 2 secures the existence of constant divisors µi and νj , for all
i ∈ Im and j ∈ Jm. As row divisors ρi(n) diverge of order nm−1 and column divisors
σj(n) vanish with the same order, diagonal blocks remain unaffected and lower diagonal
blocks are annihilated.

We adjoin a result, not needed in the sequel, to elucidate the interplay of bipro-
portional scalings and cyclic ratios. Two weight matrices A and B are said to be
biproportionally equivalent when they are direct biproportional scalings of each other.
The support set of a weight matrix A is constituted by the cells where the entry is
positive, supp(A) =

{
(i, j) ∈ {1, . . . , k} × {1, . . . , `}

∣∣ aij > 0
}
. If A and B are bipro-

portionally equivalent, then they have the same support sets.

Let S ⊆ {1, . . . , k}×{1, . . . , `} denote a subset of cells. A cell cycle on S is defined
to consist of a sequence of 2q cells, as in display [CC] in the proof of Theorem 1,
involving q ≥ 2 distinct rows i1, . . . , iq and distinct columns j1, . . . , jq that satisfy
(ip, jp) ∈ S and (ip+1, jp) ∈ S for all p ≤ q. We adopt the convention of always setting
iq+1 = i1. Two weight matrices A and B are said to be cyclically equivalent when they
share a common support set, supp(A) = supp(B) = S say, and all cell cycles on S
fulfill

∏
p≤q aip+1jp/aipjp =

∏
p≤q bip+1jp/bipjp .
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Theorem 4 (Equivalence) Any two weight matrices A and B are biproportionally
equivalent if and only if they are cyclically equivalent.

Proof As in the proof of Theorems 1 the direct part is a one-liner,∏
p≤q

aip+1jp

aipjp
=

∏
p≤q

aip+1jp

µip+1νjp

aipjp

µipνjp

=
∏
p≤q

bip+1jp

bipjp
.

For the converse part let S denote the support set common to A and B. We need
to establish the existence of some positive numbers µi and νj such that aij/bij = µiνj .
That is, we are looking for solutions xi = logµi and yj = log νj to the system of linear
equations xi + yj = log (aij/bij) for all (i, j) ∈ S.

Denoting by Eij the k × ` Euclidean unit matrix with entry unity in cell (i, j)
and zeros elsewhere, we work in the linear space V = span

{
Eij

∣∣ (i, j) ∈ S
}
with inner

product 〈C,D〉 = traceC ′D. Consider the subspace

L =
{∑

(i,j)∈S
(xi + yj)Eij

∣∣∣ x1, . . . , xk, y1, . . . , y` ∈ R
}
.

It suffices to show that C =
∑

(i,j)∈S log(aij/bij)Eij lies in L. Equivalently, we verify

that C is orthogonal to L⊥. The orthogonal complement L⊥ consists of all matrices D
in V having vanishing row and column sums. Indeed, the inner products〈 ∑

(i,j)∈S

(xi + yj)Eij , D

〉
=

∑
(i,j)∈S

(xi + yj)dij =
∑
i≤k

xidi+ +
∑
j≤`

yjd+j

vanish for all xi and yj if and only if all di+ = 0 and d+j = 0.

For a cell cycle (i1, j1), . . . , (iq, jq) the cycle matrixD
(
(i1, j1), . . . , (iq, jq)

)
=

∑
p≤q(

Eipjp−Eip+1jp

)
is defined to have entry 1 in cells (ip, jp) and entry−1 in cells (ip+1, jp).

The cycle matrices from cell cycles in S provide a spanning set for L⊥,

L⊥ = span
{
D
(
(i1, j1), . . . , (iq, jq)

) ∣∣∣ (i1, j1), . . . , (iq, jq) cell cycle in S
}
.

Evidently the right hand subspace is included in L⊥ since every cycle matrix has all
row and column sums equal to zero. Conversely, every nonzero matrix B ∈ L⊥ can
be represented as a linear combination of cycle matrices, as follows. Since B has
vanishing row and column sums, we may identify an initial cell cycle in supp(B) ⊆ S
by proceeding just as in the proof of Theorem 1. The initial cell cycle induces a cycle
matrix D(0) with supp

(
D(0)

)
⊆ supp(B). We choose some cell (i, j) in the support

of D(0) and set λ(0) = bij/dij(1) 6= 0. Now B(1) = B − λ(0)D(0) has a support set
strictly smaller than that of B, supp

(
B(1)

)⊂
6= supp(B). In case B(1) is a cycle matrix

or zero, B = λ(0)D(0) + B(1) lies in the right hand span. Otherwise, the reduction
processes is applied to B(1), and leads to B = λ(0)D(0) + λ(1)D(1) + B(2). The
reduction process may have to be repeated, but terminates after finitely many steps.

Hence it suffices to show that C =
∑

(i,j)∈S log(aij/bij)Eij is orthogonal to every

cycle matrix D =
∑

p≤q

(
Eipjp − Eip+1jp

)
. But this follows from cyclic equivalence,

〈C,D〉 =
∑
p≤q

(
cipjp − cip+1jp

)
= log

∏
p≤q

aipjp
bipjp

bip+1jp

aip+1jp

= log 1 = 0.
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3 The IPF procedure

Let A be a k×` weight matrix. Furthermore let r = (r1, . . . , rk) and c = (c1, . . . , c`) be
vectors with positive entries, called target row marginals and target column marginals.

Definition A k × ` nonnegative matrix B = ((bij)) is said to match the target
marginals r and c when its row sums are equal to r and its column sums are equal to
c, that is, bi+ = ri for all i ≤ k and b+j = cj for all j ≤ `. A weight matrix B is called
a biproportional fit of the weight matrix A to the target marginals r and c when B is a
biproportional scaling of A and B matches the target marginals r and c.

The Iterative Proportional Fitting (IPF) procedure calculates a biproportional
fit, if existing, of the weight matrix A to the target marginals r and c. It operates
alternately on the rows and columns of A, in that odd steps scale rows to match target
row marginals, and even steps scale columns to match target column marginals.

The notation B(A, r, c) for a biproportional fit would exhibit the input more visi-
bly, but is dismissed as too cumbersome. If a biproportional fit exists then it is unique,
since by Theorem 1 there is at most one. An existing fit B necessitates equal marginal
totals, r+ = b++ = c+. It would seem tempting to demand equality of marginal
totals right from the beginning. We do not do so, though, since the IPF procedure
may well be run without target marginals sharing the same total, and since different
marginal subtotals evolve naturally when IPF subsequences converge to limit matrices
that decompose into several connected components.

We initialize the IPF procedure by scaling the given weight matrix A into a matrix
A(0) which has column sums equal to target column marginals. The initialization
routine uses column divisors βj(0) = a+j/cj and sets aij(0) = aij/βj(0), for all columns
j ≤ ` and rows i ≤ k. This fits columns, a+j(0) = cj , and the sum of the initialized
weights becomes a++(0) = c+. Thereafter the procedure advances in pairs of an odd
step t+ 1 and an even step t+ 2, for t = 0, 2, . . .:

• Odd steps t + 1 fit row sums to target row marginals by calculating row divisors
αi(t+ 1) from the preceding even step t, and scaled weights aij(t+ 1):

αi(t+ 1) =
ai+(t)

ri
, [IPF1]

aij(t+ 1) =
aij(t)

αi(t+ 1)
, [IPF2]

for all rows i ≤ k and for all columns j ≤ `.

• Even steps t+2 fit column sums to target column marginals by calculating column
divisors βj(t+2) from the preceding odd step t+1, and scaled weights aij(t+2):

βj(t+ 2) =
a+j(t+ 1)

cj
, [IPF3]

aij(t+ 2) =
aij(t+ 1)

βj(t+ 2)
, [IPF4]

for all columns j ≤ ` and for all rows i ≤ k.
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Definitions [IPF1] and [IPF3] are reminiscent of likelihood ratios, of fitted dis-
tributions relative to target distributions. All divisors stay positive since no row nor
column of A is allowed to vanish. When weighted by their corresponding marginal
distributions, row and column divisors have means that are ratios of marginal totals,∑

i≤k

αi(t+ 1)
ri
r+

=
a++(t)

r+
=

c+
r+

,
∑
j≤`

βj(t+ 2)
cj
c+

=
a++(t+ 1)

c+
=

r+
c+

.

It follows that the divisor products, αi(t+1)βj(t+2), have mean unity relative to the
marginal product distribution,∑

i≤k

∑
j≤`

αi(t+ 1)βj(t+ 2)
ri
r+

cj
c+

=
c+
r+

r+
c+

= 1.

The mean is unity also relative to the probability distribution (1/c+)A(t+2). Indeed,
with aij(t) = αi(t+ 1)βj(t+ 2)aij(t+ 2) from [IPF2] and [IPF4] we get

1

c+

∑
i≤k

∑
j≤`

αi(t+ 1)βj(t+ 2) aij(t+ 2) =
a++(t)

c+
= 1.

The incremental row divisors αi(1), αi(3), . . . from [IPF1] give rise to cumulative
row divisors ρi, and the incremental column divisors βj(2), βj(4), . . . from [IPF3] gen-
erate cumulative column divisors σj , defined for steps t = 0, 2, . . . through

αi(1)αi(3) · · · αi(t+ 1) = ρi(t+ 1) = ρi(t+ 2),

βj(0)βj(2)βj(4) · · · βj(t+ 2) = σj(t+ 2) = σj(t+ 3).

Adjoining ρi(0) = 1 and σj(0) = σj(1) = βj(0), cumulative divisors are defined for all
steps t ≥ 0. The scaled weights take the form aij(t) = aij/

(
ρi(t)σj(t)

)
. The scaled

weight matrices A(t) =
((
aij(t)

))
, t ≥ 0, constitute the IPF sequence, for the fitting of

the weight matrix A to the target marginals r and c.

An L1-error function f is employed to assess the goodness-of-fit of a scaled weight
matrix A(t). It checks whether any row is underfitted, ai+(t) < ri, or overfitted,
ai+(t) > ri, as well as whether any column is under- or overfitted, and then totals the
absolute deviations between current sums and target marginals,

f
(
A(t)

)
=

∑
i≤k

∣∣∣ai+(t)− ri

∣∣∣+∑
j≤`

∣∣∣a+j(t)− cj

∣∣∣.
Odd steps t have row sums matching their target marginals, whence the L1-error
f
(
A(t)

)
is equal to the (second) column-error sum. For even steps t, the (first) row-

error sum is decisive.

The L1-error admits another interpretation, as the L1-distance between a scaled
weight matrix and its successor. To see this for an even step t, we substitute ri =
ai+(t)/αi(t+ 1) from [IPF1] and aij(t)/αi(t+ 1) = aij(t+ 1) from [IPF2] to obtain

f
(
A(t)

)
=

∑
i≤k

∣∣∣1− 1

αi(t+ 1)

∣∣∣ai+(t) = ∑
i≤k

∑
j≤`

∣∣∣aij(t)− aij(t+ 1)
∣∣∣.

Definitions [IPF3] and [IPF4] confirm the result for odd steps t. Deming and Stephan
(1940, page 440) recommend that the IPF procedure is continued until the table re-
produces itself. This is exactly what is captured by the error function f : The table
reproduces itself, A(t) = A(t+ 1), if and only if the L1-error is zero, f

(
A(t)

)
= 0.
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Lemma 2 shows that the L1-error is nonincreasing, and decreasing when a mass
transport between under- and overfitted rows (or columns) becomes feasible. It admits
a transparent lower bound, which Lemma 5 proves to be attained in the limit.

Lemma 2 (Monotonicity) Let A(t), t ≥ 0, be the IPF sequence for the fitting of
the weight matrix A to the target marginals r and c. Then we have for all steps t ≥ 0:

(i) The L1-error function is nonincreasing, f
(
A(t)

)
≥ f

(
A(t+ 1)

)
.

(ii) If A(t) is connected and features an underfitted row as well as an overfitted
row, then the L1-error decreases at the latest after another k − 1 steps, f

(
A(t)

)
>

f
(
A(t+ k − 1)

)
.

(iii) Any row subset I ⊆ {1, . . . , k} bounds the L1-errors from below via

f
(
A(t)

)
≥ rI − cJA(I) + cJA(I)′ − rI′ .

Equality holds if and only if (a) the set I contains all currently underfitted rows and
no currently overfitted rows, U(t) ⊆ I ⊆ O(t)′ with U(t) = {i ≤ k | ai+(t) < ri} and
O(t) = {i ≤ k | ai+(t) > ri}, and (b) the weight matrix A is blockdiagonal according to

A =

( JA(I) JA(I)
′

I A(1) 0
I ′ 0 A(2)

)
.

Proof (i) Let step t ≥ 0 be even, whence A(t) has fitted columns and its L1-error
originates from rows. From [IPF1] and ai+(t) = αi(t+ 1)ri we get

f
(
A(t)

)
=

∑
i≤k

∣∣∣ai+(t)− ri

∣∣∣ = ∑
i≤k

∣∣∣αi(t+ 1)− 1
∣∣∣ri.

Inserting ri =
∑

j≤` aij(t+ 1) we apply the triangle inequality within each column j,

∑
j≤`

∑
i≤k

∣∣∣1− αi(t+ 1)
∣∣∣aij(t+ 1) ≥

∑
j≤`

∣∣∣∑
i≤k

(
1− αi(t+ 1)

)
aij(t+ 1)

∣∣∣. [TI]

From [IPF2] and
∑

i≤k αi(t+ 1)aij(t+ 1) = a+j(t) = cj we conclude

∑
j≤`

∣∣∣a+j(t+ 1)− cj

∣∣∣ = f
(
A(t+ 1)

)
.

With definitions [IPF3] and [IPF4] the argument carries over to odd steps t ≥ 1. Thus
monotonicity is established.
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(
− a11(t) · · ·
+ a21(t) · · ·

) − a11(t) 0 · · ·
= a21(t) a22(t) · · ·
+ 0 a32(t) · · ·




− a11(t) 0 0 · · ·
= a21(t) a22(t) 0 · · ·
= 0 a32(t) a33(t) · · ·
+ 0 0 a43(t) · · ·


k = 2 k = 3 k = 4

Exhibit 1: Mass transport. A connected weight matrix A(t) is shown, with k = 2, 3, 4 rows, together
with a longest path linking an underfitted row (−) via fitted rows (=) to an overfitted row (+). Zeros
indicate void cells. All other entries are assumed positive, aij(t) > 0.

(ii) To keep the notation simple let row 1 be underfitted, and row k be overfitted.
By [IPF1] under- and overfittedness are reflected by how the divisors relate to unity,

a1+(t) < r1 ⇐⇒ α1(t+ 1) < 1, ak+(t) > rk ⇐⇒ αk(t+ 1) > 1.

The proof is by induction on the number of rows. In case k = 2, connectedness of A(t)
gives rise to some column, j = 1 say, where the weights a11(t + 1) and a21(t + 1)
are positive. This injects two nonzero terms of opposite sign into the jth sum in
display [TI]. Hence the triangle inequality turns strict, f

(
A(t)

)
> f

(
A(t+ 1)

)
.

The case k = 3 reduces to the previous case whenever there is a single column
connecting the under- and overfitted rows. Otherwise a connecting path involves two
columns, j = 1, 2 say, and visits an intermediate row that is fitted, see Exhibit 1.
Column 1, intersecting only such rows that are fitted or underfitted, acquires a divisor
larger than unity, β1(t+2) > 1. In contrast column 2, meeting only fitted or overfitted
rows, gets a divisor smaller than unity, β2(t + 2) < 1. By interchanging the roles of
rows and columns we recover the previous case, and get f

(
A(t+ 1)

)
> f

(
A(t+ 2)

)
.

The case k = 4 indicates how to complete the induction. Unless it reduces to the
previous case, we need to contemplate a path involving three columns, j = 1, 2, 3 say,
see Exhibit 1. With such a path step t+2 has column 1 overfitted, column 2 fitted, and
column 3 underfitted. This is the previous case, with the roles of rows and columns
interchanged. Continuing as in the previous case step t+3 has rows 2 and 3 connect in
column 2, with α2(t+3) < 1 and α3(t+3) > 1. This yields f

(
A(t+2)

)
> f

(
A(t+3)

)
.

(iii) Because of monotonicity we may assume step t to be even. Let I be any row
subset. As

∑
i∈I

(
ai+(t)− ri

)
+
∑

i∈I′

(
ai+(t)− ri

)
=

∑
i≤k

(
ai+(t)− ri

)
= c+− r+, the

complement I ′ satisfies
∑

i∈I′

(
ai+(t)− ri

)
= c+ − r+ +

∑
i∈I

(
ri − ai+(t)

)
. We get

f
(
A(t)

)
≥

∑
i∈I

(
ri − ai+(t)

)
+

∑
i∈I′

(
ai+(t)− ri

)
= c+ − r+ + 2

∑
i∈I

(
ri − ai+(t)

)
.

Equality holds if and only if condition (a) applies. The sum
∑

i∈I ai+(t) is broken up
into four terms,

∑
i∈I

(
ri − ai+(t)

)
= rI −

∑
i∈I

∑
j∈JA(I)

+
∑
i∈I

∑
j∈JA(I)′

+
∑
i∈I′

∑
j∈JA(I)

−
∑
i∈I′

∑
j∈JA(I)

 aij(t)

≥ rI − cJA(I) − 0 + 0.

The last line uses aI×JA(I)′(t) = 0 that is inherited from aI×JA(I)′ = 0. It also employs
the estimate aI′×JA(I)(t) ≥ 0, where equality holds if and only if condition (b) applies.

This proves f
(
A(t)

)
≥ c+ − r+ + 2

(
rI − cJA(I)

)
= rI − cJA(I) + cJA(I)′ − rI′ .



16 Friedrich Pukelsheim

Bacharach (1970, page 50) establishes an intriguing succession of interlacing in-
equalities between incremental row divisors and incremental column divisors. As the
IPF procedure advances, the smallest of the incremental divisors is nondecreasing, the
largest, nonincreasing. The smallest incremental row and column divisors are denoted
by αmin(t+ 1) and βmin(t+ 2), and the largest by αmax(t+ 1) and βmax(t+ 2).

Lemma 3 (Bacharach inequalities) Let step t = 0, 2, 4, . . . be even.

(i) The following interlacing inequalities hold true:

αmin(t+ 1)
(1)

≤
1

βmax(t+ 2)

(2)

≤ αmin(t+ 3) ≤
c+

r+
≤ αmax(t+ 3)

(3)

≤
1

βmin(t+ 2)

(4)

≤ αmax(t+ 1).

(ii) If A is connected and the smallest or largest row divisors stay constant over
k − 1 subsequent row adjustments, αmin(t + 1) = αmin

(
t + 2k − 1

)
or αmax(t + 1) =

αmax

(
t+ 2k − 1

)
, then all row divisors are identical, αi(t+ 1) = c+/r+ for all i ≤ k.

Proof (i) We start from a+j(t) = a+j(t+2) = cj and ai+(t+1) = ai+(t+3) = ri,
for all columns j ≤ ` and all rows i ≤ k. This yields

1 =
a+j(t+ 2)

cj
=

1

cj

∑
p≤k

apj(t)

αp(t+ 1)βj(t+ 2)

≤ 1
αmin(t+ 1)βj(t+ 2)

, (1j)

≥ 1
αmax(t+ 1)βj(t+ 2)

; (4j)

1 =
ai+(t+ 3)

ri
=

1

ri

∑
q≤`

aiq(t+ 1)

βq(t+ 2)αi(t+ 3)

≤ 1
βmin(t+ 2)αi(t+ 3)

, (3i)

≥ 1
βmax(t+ 2)αi(t+ 3)

. (2i)

Maxima and minima over j ≤ ` in (1j) and (4j), and over i ≤ k in (3i) and (2i) yield

αmin(t+ 1)βmax(t+ 2)
(1)

≤ 1
(4)

≤ αmax(t+ 1)βmin(t+ 2),

βmin(t+ 2)αmax(t+ 3)
(3)

≤ 1
(2)

≤ βmax(t+ 2)αmin(t+ 3).

This establishes inequalities (1)–(4) of the assertion. The middle inequalities follow
from definition [IPF1], αmin(t+ 3) ≤

∑
i≤k αi(t+ 3)ri/r+ = c+/r+ ≤ αmax(t+ 3).

(ii) The proof is by contraposition. Assuming αmin(t+1) < αmax(t+1), we show
that the concurrence with αmin(t+ 1) = αmin(t+ 2k− 1) forces A to be disconnected.
The decomposition of A is afforded by the row subsets I(z) where the row divisor is
minimum, and the column subsets J(z) where the column divisor is maximum,

I(z) =
{
i ≤ k

∣∣ αi(z) = αmin(z)
}

for z odd,

J(z) =
{
j ≤ `

∣∣ βj(z) = βmax(z)
}

for z even.

These sets are nonempty. Due to the first assumption, αmin(t+ 1) < αmax(t+ 1), the
row subset I(t+ 1) is proper, {1, . . . , k} 6= I(t+ 1).
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The second assumption turns inequalities (3) and (4) into equations, αmin(t+1) =
1/βmax(t + 2) = αmin(t + 3) = · · · = αmin(t + 2k − 3) = 1/βmax(t + 2k − 2) =
αmin(t+ 2k − 1). We work our way in sets of three,

αmin(t+ z + 1) =
1

βmax(t+ z + 2)
= αmin(t+ z + 3), with z = 0, 2, . . . , 2k − 4.

The first set has z = 0. For rows i ∈ I(t + 3) we get 1/βmax(t + 2) = αmin(t + 3) =
αi(t+3). Therefore equality holds in (2i), and all q 6∈ J(t+2) have aiq(t+1) = 0 and
hence aiq = 0. For columns j ∈ J(t+2) equality obtains in (1j), whence all p 6∈ I(t+1)
fulfill apj(t) = 0 and hence apj = 0. Any row i ∈ I(t + 3) \ I(t + 1) would vanish,
having aij = 0 for j ∈ J(t + 2) as well as for j 6∈ J(t + 2). Since vanishing rows in A
are not allowed, we get I(t + 1) ⊇ I(t + 3). The argument carries forward to build a
chain of k − 1 inclusions,

{1, . . . , k} 6= I(t+ 1) ⊇ I(t+ 3) ⊇ · · · ⊇ I(t+ 2k − 3) ⊇ I(t+ 2k − 1) 6= ∅.

At most k − 2 inclusions can be strict. Somewhere between z = 0 and z = 2k − 4
equality obtains, I(t+ z + 1) = I(t+ z + 3). This forces A to be disconnected,

A =

( J(t+ z + 2) J(t+ z + 2)′

I(t+ z + 1) A(1) 0
I(t+ z + 3)′ 0 A(2)

)
.

Hence the first assumption is untenable. Instead we must have αmin(t+1) = αmax(t+1),
meaning that all incremental row divisors αi(t+1) are identical. As then they cannot
but equal their mean, we finally get αmin(t+ 1) = c+/r+ for all i ≤ k.

Lemma 3(ii) offers a sufficient condition for the IPF sequence to finally stabilize.
If the weight matrix A is connected and and if after some even step t the smallest
or largest divisors stay put long enough, then the fitting has come to an end and the
remainder of the IPF sequence oscillates between A(t) and A(t + 1). The condition
proves instrumental when applied to an accumulation point B of the IPF sequence.

4 Accumulation points

For the fitting of a weight matrix A to the target marginals r and c, the induced
IPF sequence A(t), t ≥ 0, stays in the compact set [0, h]k×` of the matrix space
R

k×`, where h = max{r+, c+}. All row sums stay uniformly bounded away from zero.
Indeed, for t even we have ai+(t) = αi(t + 1)ri ≥ αmin(1)ri > 0, by Lemma 3(i), and
ai+(t + 1) = ri > 0. The same is true of column sums. Hence every accumulation
point B = limn→∞ A(tn) has row sums and column sums nonvanishing, bi+ > 0 and
b+j > 0. Thus B is a biproportional scaling of A, and the structural results of Section 2
apply. Furthermore B is a legitimate input matrix on which to run the IPF procedure.
Without loss of generality we concentrate on even-step accumulation points which, by
definition, emerge as the limit along even steps tn. Hence column sums of B match
column marginals, b+j = cj for all j ≤ `.
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For the fitting of an even-step accumulation point B = limn→∞ A(tn) to the
target marginals r and c let B(z), z ≥ 0, designate the induced IPF sequence. The
initialization is B(0) = B. The incremental row divisors are denoted by γi(z + 1), the
column divisors by δj(z+2). Let an arrow → indicate a passage to the limit as n tends
to infinity. Induction on z = 0, 2, . . . proves convergence of the incremental divisors:

αi(tn + z + 1) =
ai+(tn + z)

ri
→ bi+(z)

ri
= γi(z + 1),

aij(tn + z + 1) =
aij(tn + z)

αi(tn + z + 1)
→ bij(z)

γi(z + 1)
= bij(z + 1),

βj(tn + z + 2) =
a+j(tn + z + 1)

cj
→ b+j(z + 1)

cj
= δj(z + 2),

aij(tn + z + 2) =
aij(tn + z + 1)

βj(tn + z + 2)
→ bij(z + 1)

δj(z + 2)
= bij(z + 2).

[CID]

On the grounds of empirical calculations and simulation studies we claim that the
incremental divisors converge not only along certain subsequences, but unconditionally
and in any case. Pukelsheim and Simeone (2009) and Pukelsheim (2012) contain some
worked examples. Yet the claim is a conjecture rather than an established result.

IPF conjecture Every sequence of incremental divisors is convergent.

The IPF conjecture has rather strong consequences, as testified by Lemmas 4
and 5. Lemma 4 shows that an even-step accumulation point B actually is an even-
step limit, and that its IPF sequence oscillates between B and B(1).

Lemma 4 (Even-step convergence) Let A(t), t ≥ 0, be the IPF sequence for the
fitting of the weight matrix A to the target marginals r and c. Then we have:

(i) If there is a connected accumulation point, then the IPF conjecture holds true.

(ii) If the IPF conjecture holds true, then the entire even-step IPF subsequence
is convergent, limt=0,2,4,... A(t) = B say. The IPF sequence induced by B oscillates,
B(z) = B(z+2) and B(z+1) = B(z+3) for all even z. The accumulation point B(1)
is the limit of the entire odd-step IPF subsequence, B(1) = limt=1,3,5,... A(t).

Proof (i) Let B = limn→∞ A(tn) be an even-step accumulation point that is
connected. Invoking [CID] and Lemma 3(i) we see that, for all steps z = 0, 2, 4, . . .,

γmin(z + 1) = lim
n→∞

αmin(tn + z + 1) = lim
t=1,3,5,...

αmin(t),

γmax(z + 1) = lim
n→∞

αmax(tn + z + 1) = lim
t=1,3,5,...

αmax(t).

That is, the smallest and largest incremental row divisors for B stay constant forever.
Due to connectedness Lemma 3(ii) lets the incremental divisors of B share the common
value, γi(1) = c+/r+ for all rows i ≤ k, giving

c+
r+

= lim
t=1,3,5,...

αmin(t) ≤ lim inf
t=1,3,5,...

αi(t) ≤ lim sup
t=1,3,5,...

αi(t) ≤ lim
t=1,3,5,...

αmax(t) =
c+
r+

.

Hence the incremental row divisors of A converge unconditionally, limt=1,3,5,... αi(t) =
c+/r+ for all i ≤ k.
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(ii) The IPF hypothesis provides the existence of the limits limt=1,3,5,... αi(t) = γi
say, for all rows i ≤ k. Let B and D be two even-step accumulation points. Their
column sums are the same, b+j = cj = d+j . By [CID] so are the row sums, bi+ =
γiri = di+. Theorem 1 yields B = D. Admitting just a unique accumulation point,
the entire even-step IPF subsequence is convergent, limt=0,2,4,... A(t) = B.

Let B decompose into the Im × Jm connected components B(m), m ≤ K. Within
each component, [CID] implies that the row divisors stay constant forever. Then
Lemma 3(ii) says that they are equal, γi = cJm/rIm for all rows i ∈ Im and all
blocks m ≤ K. Hence the matrix B(1) has connected components

(
B(1)

)
(m) =

(rIm/cJm)B(m). It follows that the induced IPF sequence oscillates, B(z) = B(z + 2)
and B(z + 1) = B(z + 3) for all even z. Moreover B(1) is the entire odd-step limit of
the original IPF sequence A(t).

The last paragraph of the proof shows that the incremental divisors of the even-
step limit B depend on its Im × Jm connected components B(m) only through the
partial sums of their row and column marginals,

γi(1) =
cJm

rIm
, δj(2) =

rIm
cJm

,

for all rows i ∈ Im and columns j ∈ Jm, and all blocks m ≤ K.

Lemma 5 (L1-Error limit) Suppose the IPF conjecture holds true. For the fitting
of the weight matrix A to the target marginals r and c the induced IPF sequence A(t),
t ≥ 0, has limiting L1-error given by

lim
t→∞

f
(
A(t)

)
= max

I⊆{1,...,k}

(
rI − cJA(I) + cJA(I)′ − rI′

)
.

Proof Let B = limt=0,2,4,... A(t) denote the even-step accumulation point of the
IPF sequence A(t). By Lemma 2(i) its L1-error is minimum, limt→∞ f

(
A(t)

)
=

limt=0,2,4,... f
(
A(t)

)
= f(B). The L1-error of B originates from its rows, f(B) =∑

i≤k

∣∣bi+ − ri
∣∣.

Lemma 2(iii) calls for some row subset I such that

f(B) = rI − cJA(I) + cJA(I)′ − rI′ . [†]

In case all rows of B are underfitted or fitted, bi+ ≤ ri for all i ≤ k, the error is
f(B) = r+ − c+ and [†] holds with I = {1, . . . , k}. In case all rows of B are fitted or
overfitted, bi+ ≥ ri for all i ≤ k, the error is f(B) = c+ − r+ and I = ∅ verifies [†].

The case left has some rows of B underfitted, others, overfitted. We show that
[†] holds for the set of underfitted or fitted rows, I =

{
i ≤ k

∣∣ bi+ ≤ ri
}
. The set I

is the union of the row subsets Im of the connected components B(m) of B where
γi(1) = cJm/rIm ≤ 1. The L1-error turns into

f(B) = rI − cJB(I) + cJB(I)′ − rI′ .

Thus [†] follows as soon as the sets of columns connected with I in B and in A are
seen to be the same, JB(I) = JA(I).
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The direct inclusion JB(I) ⊆ JA(I) holds since always bij > 0 comes with aij > 0.
For the converse inclusion we note that rows i ∈ I satisfy γi(1) ≤ 1, while rows
i ∈ I ′ fulfill γi(1) > 1. Therefore columns j ∈ JB(I) satisfy δj(2) ≥ 1, while columns
j ∈ JB(I)

′ fulfill δj(2) < 1. Denoting, by abuse of notation, the I × JB(I) block by
B(1) and the I ′ × JB(I)

′ block by B(2) the state of affairs is depicted as follows:

B =

JB(I) JB(I)
′

I
I ′

(
B(1) 0
0 B(2)

)
γi(1) ≤ 1
γi(1) > 1

δj(2) ≥ 1 δj(2) < 1

.

Consider a row i ∈ I and a column j ∈ JB(I)
′, and choose some positive ε such that

δj(2) < 1 − ε. Since limt=1,3,5,... αi(t) = γi(1) ≤ 1 and limt=0,2,4,... βj(t) = δj(2) < 1
there exists an even step t0 such that all even steps t ≥ t0 satisfy αi(t+1) < 1+ ε and
βj(t+ 2) < 1− ε. This bounds the denominator of aij(t) = aij/

(
ρi(t)σj(t)

)
,

ρi(t)σj(t) < ρi(t0)σj(t0)
(
1− ε2

)
(t−t0)/2.

In fact the denominator converges to zero, limt→∞ ρi(t)σj(t) = 0. This necessitates
aij = 0, thereby entailing the converse inclusion, JA(I) ⊆ JB(I).

We are now in a position to annunciate the necessary and sufficient conditions
for the convergence of the IPF procedure. The arrangement of the five statements
mimics the conditions of Theorem 2 securing directness. We present two proofs, the
first assuming that the IPF conjecture holds true, the second making do without it.

Theorem 5 (Convergence) For the fitting of a weight matrix A to the target
marginals r and c the following five statements are equivalent:

(1) The IPF sequence A(t), t ≥ 0, is convergent.

(2) The biproportional fit of A to r and c exists.

(3) There exists a weight matrix D preserving the zeros of A and matching the target
marginals r and c.

(4) Marginal totals are equal, r+ = c+ and, for every row subset I ⊆ {1, . . . , k},
marginal partial row and column sums fulfill rI ≤ cJA(I).

(5) The L1-errors of the IPF sequence A(t), t ≥ 0, tend to zero, limt→∞ f
(
A(t)

)
= 0.

First proof, assuming the IPF conjecture to hold true

(1) ⇒ (2). If the IPF sequence converges then its limit B is a biproportional scaling
of A. It inherits matching row sums along odd steps and matching column sums along
even steps. By Theorem 1, B is the unique biproportional fit.

(2) ⇒ (3). The biproportional fit clearly qualifies for a matrix D asked for in (3).

(3) ⇒ (4). As in the proof of Theorem 2, the definition of JA(I) yields dI×JA(I)′ =
0 ≤ dI′×JA(I), and rI = dI×JA(I) + dI×JA(I)′ ≤ dI×JA(I) + dI′×JA(I) = cJA(I).

(4) ⇒ (5). Equal marginal totals entail rI − cJA(I) + cJA(I)′ − rI′ = 2
(
rI − cJA(I)

)
.

Assuming the IPF conjecture to hold true Lemma 5 applies and leads to (5), 0 ≤
limt→∞ f

(
A(t)

)
= 2maxI⊆{1,...,k}

(
rI − cJA(I)

)
≤ 0.
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(5) ⇒ (1). Let B be an accumulation point along a subsequence A(tn), n ≥ 1.
From (5) we get f(B) = limn→∞ f

(
A(tn)

)
= limt→∞ f

(
A(t)

)
= 0. With row and

column sums fitted, B is a biproportional fit. By Theorem 1 there is but one. Hence
the IPF sequence A(t), t ≥ 0, has B for its unique accumulation point, and converges.

Second proof, not referring to the IPF conjecture

(3) ⇔ (4). The Feasibility Theorem of Gale (1957, page 1075) states that (3) a
feasible mass distribution exists if and only if (4) the flow inequalities hold true.

(3) ⇒ (5). The implication that the existence of a feasible mass distribution D
forces the limiting L1-error to vanish is essentially Csiszár’s (1975, page 154) Theo-
rem 3.2 and Pretzel’s (1980, page 380) Theorem 1. The arguments of Pretzel (1980)
may be condensed as follows. With a feasible distribution D as in (3), let g

(
A(t)

)
be

the geometric mean of the entries aij(t), with exponents dij/d++,

g
(
A(t)

)
=

∏
i≤k

∏
j≤`

aij(t)
dij
d++ .

A base zero has exponent zero, aij(t) = 0 ⇒ aij = 0 ⇒ dij = 0, and contributes
the factor 00 = 1. Thus all means stay positive, g

(
A(t)

)
> 0. For the passage from

an even step t to the next even step t + 2 definitions [IPF2] and [IPF4] yield aij(t)
= αi(t+ 1)βj(t+ 2)aij(t+ 2). From di+ = ri, d+j = cj , and d++ = r+ = c+, we get

g
(
A(t)

)
=

∏
i≤k

αi(t+ 1)
ri
r+

∏
j≤`

βj(t+ 2)
cj
c+

 g
(
A(t+ 2)

)
≤ g

(
A(t+ 2)

)
.

The estimate twice employs the geometric-arithmetic-mean inequality,∏
i≤k

αi(t+ 1)
ri
r+ ≤

∑
i≤k

αi(t+ 1)
ri
r+

= 1,
∏
j≤`

βj(t+ 2)
cj
c+ ≤

∑
j≤`

βj(t+ 2)
cj
c+

= 1.

Therefore the even-step matrix-mean sequence is positive, isotonic, and bounded, 0 <
g
(
A(t)

)
≤ g

(
A(t + 2)

)
≤ d++, and converges to a nonzero and finite value. In the

limit the geometric-arithmetic-mean inequalities thus hold with equality. Now the
divisors αi(t+ 1) converge to a common value, as do βj(t+ 2). Since in Section 3 we
have seen that their mean is unity, the common value must be unity, too. We obtain
limt=1,3,... αi(t) = 1 for all rows i ≤ k, and limt=0,2,... βj(t) = 1 for all columns j ≤ `.
Hence row sums converge to row marginals and column sums to column marginals,
and the limiting L1-error is zero.

In the language of the present paper Pretzel’s arguments may be paraphrased by
saying that if a feasible distribution D exists, then the IPF conjecture holds true.

If all entries in the weight matrix A are positive and the target marginals share
the same total, r+ = c+ = h say, then the matrix D with entries dij = ricj/h > 0
verifies statement (3) of Theorems 5 and 2. Hence the IPF sequence converges to the
biproportional fit and the fit is direct, if A is positive and r+ = c+.
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Probabilitá e Statistiche Applicate, Universitá di Roma. Preprint Nr. 5/2009, Institut für Math-
ematik, Universität Augsburg.

Pukelsheim, F., Ricca, F., Simeone, B., Scozzari, A. & Serafini, P. (2012). Network flow methods for
electoral systems. Networks, 59, 73–88.

Ramı́rez, V., Pukelsheim, F., Palomares, A. & Mart́ınez, J. (2008). The bi-proportional method ap-
plied to the Spanish Congress. Mathematical and Computer Modelling, 48, 1461–1467.

Rockafellar, R.T. (1984). Network, Flows, and Monotropic Optimization. Wiley, New York.
Rote, G. & Zachariasen, M. (2007). Matrix scaling by network flow. Pages 848–854 in: Proceedings of

the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Proceedings in Applied
Mathematics, 125.
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