
TEMAS –

A Trust-Enabling Multi-Agent System

for Open Environments

Gerrit Anders, Florian Siefert, Nizar Msadek,
Rolf Kiefhaber, Oliver Kosak, Wolfgang Reif,

Theo Ungerer

Institut für Informatik
Universität Augsburg

Report 2013-04 April 2013

Institut für Informatik
D-86135 Augsburg

Copyright © Gerrit Anders, Florian Siefert, Nizar Msadek, Rolf Kiefhaber,
Oliver Kosak, Wolfgang Reif, Theo Ungerer
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

TEMAS –
A Trust-Enabling Multi-Agent System for Open Environments

Gerrit Anders, Florian Siefert, Nizar Msadek, Rolf Kiefhaber,
Wolfgang Reif, Theo Ungerer

Institute of Computer Science

Augsburg University, Germany

E-Mail: {anders, siefert, msadek, kiefhaber, reif, ungerer}@informatik.uni-augsburg.de

Oliver Kosak
Student at the Institute of Computer Science

Augsburg University, Germany

E-Mail: oliverkosak@googlemail.com

The TEMAS – the Trust-Enabling Multi-Agent System – is a multi-agent
system for open environments. It is based on the Trust-Enabling Middle-
ware, which itself is based on the adaptive, organic middleware OCµ that
features self-x properties such as self-healing and self-optimization. Further,
the TEMAS incorporates an infrastructure that provides a variety of multi-
agent system concepts. Apart from facilities for communication in local and
distributed environments and a yellow pages service, it allows itself and the
agents to use application-specific metrics to derive trust values for different
facets from prior experiences with the Trust Metric Infrastructure provided
by the Trust-Enabling Middleware. In the TEMAS, agents can be run on
nodes, a form of container similar to those used in peer-to-peer networks.
Nodes often represent physical devices and can host several agents or reac-
tive services. With respect to the Trust-Enabling Middleware, the TEMAS
serves as a facade because it hides the complexity of the underlying infras-
tructure consisting of nodes and services and dependent interfaces to higher
level applications. This results, e.g., in simpler, more common, and natural
interfaces for messaging and the application of trust in multi-agent systems.

Contents

Contents

1 The Trust-Enabling Multi-Agent System 7

2 The Trust-Enabling Middleware 9
2.1 OcmNode . 9

2.2 Service . 11

2.3 Messaging . 15

2.4 PeriodicService . 16

2.5 FailureDetectorService . 18

2.6 Discovery . 18

2.6.1 Discovery Interface . 18

2.6.2 ServiceAdvertisement . 19

2.6.3 DiscoveryResult . 20

2.7 Trust Metric Infrastructure . 20

2.7.1 Architecture . 22

2.7.2 RawData . 24

2.7.3 Transformer . 24

2.7.4 Interpreter . 25

2.7.5 TrustData . 26

2.7.6 Trust Interface . 27

2.8 Confidence . 31

2.8.1 RatedExperience . 31

2.8.2 ConfidenceValues . 32

2.8.3 ConfidenceMetric . 33

3 Multi-Agent System Concepts 36
3.1 Agent Concepts . 36

3.1.1 IAgent . 36

3.1.2 IMessageRecipient . 38

3.1.3 IMessageHandlingAgent . 38

3.1.4 Agent . 40

3.1.5 AgentIdentifier . 44

3.1.6 AgentComponent . 46

3.2 Sending, Receiving, Processing, and Replying to Messages 49

3.2.1 Primitives . 49

3.2.2 AgentPrimitives . 52

3.2.3 AgentComponentPrimitives . 52

3.2.4 Registering Primitives . 53

3.2.5 Delivery and Processing of Messages 53

3.2.6 MessageProcessingException . 55

3.2.7 ReplyMessageException . 55

3.2.8 IServiceBindingProvider . 56

4

Contents

3.2.9 ServiceBindingProvider . 56

3.3 Discovering Agents . 58

3.3.1 DiscoveryTask . 59

3.3.2 DefaultDiscoveryResult . 59

3.4 Additional Trust Concepts . 60

3.4.1 Interaction . 60

3.4.2 Experience . 62

3.4.3 TrustContext . 63

3.4.4 Trust-Based Scenarios . 63

3.5 Extending Agent Concepts by the Notion of Trust 64

3.5.1 ITrustAgent . 65

3.5.2 TrustAgent . 66

3.6 Time Concepts . 67

3.6.1 ITimeProvider . 67

3.6.2 DefaultTimeProvider . 68

3.6.3 TimeProviderICBased . 68

3.6.4 InternalCalendar . 69

3.6.5 InternalCalendarNotInitializedException 72

3.6.6 TimeInterval . 72

3.7 YellowPages . 73

3.7.1 YellowPages . 74

3.7.2 YellowPagesData . 75

4 Deploying TEMAS-based Applications 77
4.1 TEM and temLight: Two Possible Ways to Run Your Applications 77

4.2 Initializing Agents . 79

4.2.1 AgentInitializer . 80

4.2.2 IConcreteAgentInitializer . 81

4.2.3 TEMAgentInitializer . 81

4.2.4 TemLightAgentInitializer . 82

4.3 Execution Models . 83

4.4 Agent Scheduling in the TEMAS . 83

4.4.1 AgentScheduler . 84

4.4.2 AgentSchedulerAdapter . 86

4.4.3 Scheduling in the temLight Simulation Environment 86

4.4.4 Scheduling in the TEM Execution Environment 87

4.5 Bootstrapping . 88

4.6 Configuring OCµ and the TEM . 91

4.6.1 ocm.properties . 91

4.6.2 tem.properties . 92

4.6.3 log4j.xml . 93

4.6.4 VM Arguments . 94

4.7 Setting up an Eclipse Project . 94

5

Contents

5 Conclusion 95

Acknowledgment 96

Index 97

References 99

6

1 The Trust-Enabling Multi-Agent System

Participants in open, heterogeneous multi-agent systems (MAS) have to deal with nu-
merous uncertainties. These arise from the following properties: In such systems, agents
(1) are embedded in a dynamic, potentially hostile environment, (2) only have very
limited knowledge about the behavior of other agents as well as the underlying infras-
tructure, and (3) only have very limited control over these agents and their environment.
Consequently, agents might be confronted with interaction partners that do not behave
as expected or desired, and there even might be agents that try to cheat or damage the
system. Further, the MAS itself must be able to deal with uncertainties that arise due
to unreliable computational devices constituting the system’s infrastructure such as un-
reliable PCs or smartphones. It is therefore crucial that agents as well as the underlying
infrastructure are able to identify interaction partners and devices they can rely on to
fulfill the agents’ own or the system’s goals.

Trust is a multi-faceted concept that allows system participants to gauge and cope with
these uncertainties. It includes, among others, credibility and reliability [14]. Credibility
specifies an agent’s willingness to participate in an interaction in a desirable manner, and
corresponds to the original notion of trust in MAS [10]. Reliability indicates its quality of
an agent or a device with regard to its availability under disturbances or partial failure.

MAS that are deployed in open environments must be able to provide mechanisms
that allow both the underlying infrastructure as well as the agents to make use the
concept of trust to measure uncertainties at runtime and to take the trustworthiness of
agents and devices into account when making decisions.

On the one hand, an agent that makes decisions on the basis of the trustworthiness
of potential interaction partners (e.g., when searching for a suitable contractor at an
electronic market) can increase its benefit because it is likely that an interaction partner
with a high trust value behaves more beneficial than an agent with a low trust value.
Therefore, the risk to interact with less trustworthy agents might be higher. On the other
hand, a trust-aware MAS can ensure that important services and agents are hosted on
reliable devices in order to increase the overall system’s stability and availability.

The Trust-Enabling Multi-Agent System (TEMAS) is a MAS for open environments.
It is based on the Trust-Enabling Middleware (TEM) [6], which itself is based upon and
extends the adaptive, organic middleware OCµ [11]. While OCµ features self-x properties
such as self-healing and self-optimization, the TEM basically extends OCµ by the notion
of trust. The TEMAS incorporates an infrastructure that allows itself and the agents
to use application-specific metrics to derive trust values for different facets from prior
experiences. In addition to the possibility to derive trust values, the TEMAS allows
to store experiences in persistent data bases, query reputation values (i.e., trust values
that originate from experiences of other system participants), and assess the reliability
of agents and devices out of the box. Besides this mature trust infrastructure and
mechanisms, of course, the TEMAS supports communication in local and distributed
environments, defines basic agent concepts and exhibits common services such as yellow
pages.

In the following, we introduce the most important concepts and basic mechanisms

7

1 The Trust-Enabling Multi-Agent System

MASConcepts4TEM

temLight Simulation
Environment

Trust-Enabling Multi-Agent System

Trust-Enabling Middleware

OCµ
TEM Execution
Environment

Figure 1: The TEMAS architecture

of the TEMAS that are worth knowing when coming into touch with the TEMAS.
We introduce these concepts and mechanisms in an order according to the TEMAS’s
architecture (see Figure 1). The TEMAS basically consists of two layers. The lower
layer is the TEM (see Section 2), whereas the upper layer is called MASConcepts4TEM
(see Section 3). The MASConcepts4TEM layer defines concepts which are necessary
in MAS, but not already available on the middleware, i.e., TEM, layer. Furthermore,
it hides the complexity of the underlying infrastructure and interfaces to higher level
applications. Among others, the MASConcepts4TEM include the concept of agents.
Having introduced the basic concepts, mechanisms, and their interrelations, we give
advice on how to use and create projects on the basis of the TEMAS in Section 4.
Finally, we conclude the technical report in Section 5.

8

2 The Trust-Enabling Middleware

The Trust Enabling Middleware (TEM) enhances the basic OCµ middleware that incor-
porates self-x properties, i.e., the ability to heal, protect, configure, and optimize itself,
with trust capabilities. Integrating trust into such a system can considerably improve the
effectiveness of the self-x properties. An example would be to preferably assign services
to trustworthy nodes during self-configuration. Such as mechanism will reduce the need
for self-healing since trustworthy nodes can be assumed to be more reliable. Therefore,
trust is an important aspect in the TEM.

Figure 2: Concepts of the Trust-Enabling Middleware. The middleware’s trust func-
tionality is encapsulated in the concept TrustMetricInfrastructure which
represents a variety of concepts that implement the actual functionality. A
more detailed view on these concepts is provided in Section 2.7.

The most important concepts of the TEM are depicted in Figure 2. In the following,
we take a closer look at these concepts. The runtime environment provided by the TEM,
called TEM execution environment, and an overview of how systems that are based on
this middleware and the TEMAS can be deployed is explained in Section 4.

2.1 OcmNode

In the TEM, services are registered and run on nodes. A node in the TEM is similar
to a node in a peer-to-peer network which is composed of physical devices such as PCs.
Every node is identified by a unique identifier (id). In the TEM, calling the method
buildTEMNode of the class TEMFactory, extends the given OcmNode to a TEM node, i.e.,
an OcmNode with trust capabilities. To obtain an OcmNode, several factories are available:

� OcmLocalFactory for local nodes that can communicate within a single JVM.

� OcmJxtaFactory for creating nodes with the JXTA1 TransportConnector.

� OcmFailureFactory for a wrapper around all TransportConnectors to inject er-
rors in the transport layer, e.g., missing or delayed messages.

1JXTA: Open source peer-to-peer protocol specification begun by Sun Microsystems in 2001 (see
http://jxta.kenai.com/)

9

2 The Trust-Enabling Middleware

Basic
Services

Application
Services

Service Interface
Trust Service

Connector

Event Dispatcher

Transport Connector

Incoming Monitor
Queue

Outgoing
Monitor Queue

JXTA Transport Connector

Ev
en

tM
es

sa
ge

s
Ev

en
tM

es
sa

ge
s

provides

Figure 3: TEM node Architecture

Figure 3 depicts the architecture of a TEM node. It is split in three main parts:

1. Transport Connector: To decouple the TEM from the underlying communi-
cation infrastructure, the Transport Connector layer provides interfaces for dif-
ferent communication infrastructures (i.e., local or distributed communication).
However, nodes by the distributed version must be able to communicate fast and
reliable with other nodes. The best way to guarantee this is the use of a peer-to-
peer network. In the current implementation, we use JXTA and provide a JXTA
TransportConnector. The implementation of a Transport Connector can be re-
placed depending on the given communication infrastructure, which is transparent
to the rest of TEM and the applications built on top of it. It is also possible to
use multiple TransportConnector implementations for different communication
infrastructures at the same time (e.g., UDP, Bluetooth, Serial Line).

2. Services: Services run on nodes. They implement and provide the functionality of
the system. Furthermore, servies are able to register message monitors. Monitors
can be added for incoming and outgoing messages. All messages are sent through a
monitor queue before being sent to other nodes (outgoing monitor queue) or being
dispatched to services (incoming monitor queue). Services will be discussed later
in more detail in Section 2.2.

3. Trust Service Connector: The ServiceConnector of OCµ provides interfaces

10

2.2 Service

that can be used by the services to interact with the middleware, e.g., to create
and send messages. The TrustServiceConnector extends the ServiceConnector
to provide access to the trust capabilities of the TEM through the Trust interface.
The important methods of the ServiceConnector and TrustServiceConnector

are described below:

� ServiceConnector

– getMessageSender: Used to send messages to other services.

– getServiceBinder: Used to bind services to message bindings. The
bindings are explained in detail in Section 2.2.

– getMessageFactory: Used to retrieve a factory to create objects of type
EventMessage. Messaging is explained in detail in Section 2.3.

– getMonitorManager: Used to register monitors for incoming and out-
going messages.

– getDiscovery: Used to find other services in the network. It is described
in detail in Section 2.6.

� TrustServiceConnector

– getTrust: Used to get an interface to save experiences and start trust
calculations. This interface is explained in detail in Section 2.7.

2.2 Service

In order to receive messages, a service has to register its binding with the TEM, i.e.,
the service is bound to this binding. A binding is a string that serves as an address for
other services to contact it. Furthermore, a binding consists of subbindings separated
by a dot. All messages directed to the service’s registered bindings are dispatched to
it. This also includes messages that contain a registered subbinding. For example, if a
service is registered for the binding de.octrust.service.md5, it receives messages with
the destination service binding de.octrust.service.md5, but also messages with the
destination service binding de.octrust.service.md5.encryptionRequest. In general
the service binds itself on a general binding and receives all messages that are sent to
more specific bindings. To bind itself to a binding, the service needs to call methods on
a ServiceBinder, obtained by the TrustServiceConnector.

A service needs to implement the Service interface to be able to run on the TEM.
It provides methods to interact with the rest of the system and notifications of what
part of the service life cycle (see Figure 4) the service is in. The life cycle consists of the
following three states:

� unregistered: In this state, the service object was just created and can be reg-
istered with the middleware. When the service is registered, its init method is
automatically called. After completion of the method, the service is in the state
“inactive”.

11

2 The Trust-Enabling Middleware

unregistered inactive active

unregister

(destroy)

start
register
(init)

stop

Figure 4: Life cycle of a Service

� inactive: Here, the service is registered and has a service id assigned to it, but
does not yet receive messages. In this state, the service can also be relocated to
another node. If it is unregistered, it is moved back into the state “unregistered”
after automatically calling the destroy method of the service. If the service’s
method start is called, the service changes its state to “active”.

� active: This is the state in which the service can receive messages until it is
stopped again. A service can be stopped by calling its method stop.

The Service interface provides all methods mentioned above, such as init, start,
and stop. These are described in more detail below:

public interface Service

Important Methods

� init: The init method is automatically called when the service is registered on a
TEM node. Several information is provided to interact with the middleware. Here,
the service should register its bindings with the ServiceBinder. It will automat-
ically be bound to its own id (serviceId). The ServiceConnector contains the
interfaces to interact with the middleware. In case of the TEM, it can be down-
casted to TrustServiceConnector. The initialData object is the same as in the
destroy method when the service is started after a relocate. If an error occurs,
the method can throw an InitializationException to notify the middleware.

public void init(String serviceId , ServiceConnector serviceConnector ,

Map <String , Serializable > initialData)

throws InitializationException;

� start: Having called the method start, the service can receive messages. In
this phase, monitors can be registered with the middleware by using the interface
MonitorManager. If an error occurs while starting the service, the middleware can
be notified by throwing a ServiceStartException.

public void start() throws ServiceStartException;

12

2.2 Service

� stop: After a service is stopped, it can no longer receive messages. Messages
are stored on the node until the service is started again. This phase is useful to
unregister all monitors until the service is started again. If an error occurs, a
ServiceStopException can be thrown.

public void stop() throws ServiceStopException;

� destroy: This method is called prior to the removal of the service from the node.
Its bindings will be removed automatically. The service should perform cleanup
operations if needed, i.e., database connections or file streams should be closed.
The service can store its current state in the given map in case it was unregistered
due to a relocation. The same map is then used as a parameter when calling the
init method.

public void destroy(Map <String , Serializable > transferData);

� processMessage: This method is called to dispatch the given message to the
service.

public void processMessage(EventMessage message);

� getName: Through this method the service can define a human readable name for
itself. It is not called by the middleware but can be used, e.g., to display services
in a GUI.

public String getName ();

� getServiceId: After the service is initialized, this method must return the id of
the service which was given as an argument when the init method was called.
The structure of the serviceId is described in more detail further below.

public String getServiceId ();

� getServiceType: Returns the service type of this service. This typically is the
fully qualified class name as specified by the command getClass().getName().

public String getServiceType () {

String result = getClass (). getName ();

return result;

}

The five four mentioned methods from above, i.e., init, start, stop, destroy, and
stop can only be triggered internally.

13

2 The Trust-Enabling Middleware

ServiceId The service id is a globally unique identifier of a service. It consists of two
parts:

1. The service type

2. An additional id part

The service type is defined by the method getServiceType. The id part is generated by
the middleware. Both parts are separated by the character #. The class Util defines
some static helper methods to process service ids, e.g., to split a service id into its parts
or extracting the type from an id.

Usage The following code fragment demonstrates how to create a local TEM node,
i.e., a node that can communicate within a JVM:

// Create a local OcmNode with ascending node ids and extend

//it to a TEM node.

IdFactory idFactory = new AscendingIdFactory ();

OcmNode node1 = OcmLocalFactory.createLocalNode(idFactory);

node1 = TEMFactory.buildTEMNode(node1);

// Create a new service object.

DummyService dummy1 = new DummyService ();

// Register and start the newly created service on the TEM node.

node1.registerService(dummy1);

node1.startService(dummy1);

At first, a new instance of the class AscendingIdFactory is created to provide as-
cending ids for nodes and services.

IdFactory idFactory = new AscendingIdFactory ();

The IdFactory is given as argument to the method createLocalNode to create a
new instance of the class OcmNode (here node1). Alternatively, the method can be
called without an argument, in that case the default IdFactory (IdFactoryImpl), which
creates globally unique, yet somewhat cryptic, ids, is used.

OcmNode node1 = OcmLocalFactory.createLocalNode(idFactory);

In order to extend our generated node1 to a TEM node with trust capabilities, the factory
method buildTEMNode has to be called, which expects the corresponding OcmNode as
argument.

node1 = TEMFactory.buildTEMNode(node1);

Then we create one dummy Service, called dummy1.

DummyService dummy1 = new DummyService ();

By calling the method registerService the service will be registered with the TEM
node. Then startService starts the service.

node1.registerService(dummy1);

node1.startService(dummy1);

14

2.3 Messaging

2.3 Messaging

There are four different ways of addressing and transmitting a message over the TEM
that are described in more detail below:

� Unicast Message with Binding: The message is sent to all services that are
bound to the specified message binding and run on a specific node. A service uses
this kind of message to send a request or response directly to another service.

� Broadcast Message with Binding: The message is sent to all services in the
system that are bound to the specified message binding.

� Unicast Message without Binding: The message is sent to all services that
run on a specific node. It can be used to get an alive response from all services on
that node.

� Broadcast Message without Binding: The message is sent to all services in
the system. It can be used to get an alive response from all running services.

If a message is dispatched to the service, the method processMessage of the service
is called and the message is given as argument. A message in the TEM is always an
EventMessage object. It contains the sender and the receiver as well as the payload. The
sender and receiver are both identified by their node id and service binding. The binding
of the sender is a reply binding where answers should be sent to. An EventMessage

is created by the EventMessageFactory and sent by using the MessageSender, both
obtained from the ServiceConnector. To send an EventMessage, the receiving node
(destinationNodeId) and the receiving service (destinationServiceBinding) have to
be set. Data that is to be sent can also be added (putElement) to the message. If no
destinationNodeId is given, the message is a broadcast to all nodes in the network. If
no binding is given, the message is a broadcast to all services on the destinationNodeId.
Both can be combined so that a message without information about destinationNodeId
and destinationServiceBinding is a broadcast to all services on all nodes. In addition,
a replyBinding has to be set. This replyBinding is the second part of the return
address, besides the node id of the sender (sourceNodeId). The mode of the message
can be set to REQUEST, RESPONSE, EVENT, or FAILURE. The modes are not interpreted
by the TEM, but provide a way to mark the type of a message. If the message is
of type FAILURE, it indicates a fault in the service call, and an error report, e.g., an
exception, has to be added to the fault message with a specific key that is defined as
a constant in the EventMessage (KEY FAILURE). REQUEST and RESPONSE are used for
typical request/response communications, like the call to a md5-hasher. EventMessages
are typically used for one-way messages, like heartbeat messages.

15

2 The Trust-Enabling Middleware

Usage In the following, we demonstrate how to create and send an EventMessage

object from a given node1 to another given node2. First, a new unicast EventMessage

is created. All required arguments are described in more detail below:

� mode: The mode of the EventMessage.

� sourceServiceId: Id of the service, this EventMessage is sent from.

� replyBinding: The serviceBinding the answers to this event should be sent.

� destinationNodeId: the id of the node this EventMessage is assigned to.

� destinationServiceBinding: The string the destination service is bound to on
the destination node. The id of a service can be set here to mark a specific service
as receiver. If null is set, all services on the node will receive this message.

EventMessage dummyMsg = node1

.createUnicastMessage(

//Mode

Mode.REQUEST ,

// SourceServiceId

dummyService.getServiceId (),

// ReplyBinding

"de.octrust.service.md5.encryptionRequest",

// DestinationNodeId

node2.getId(),

// DestinationServiceBinding

"de.octrust.service.md5.encryptionResponse");

In order to send the newly generated dummyMsg to node2, the sendMessage method of
node1 has to be called, which expects the message to send.

node1.getServiceConnector (). getMessageSender (). sendMessage(dummyMsg);

2.4 PeriodicService

public abstract class PeriodicService implements Service

The abstract service PeriodicService is a particular service for proactive behavior that
implements the Service interface and is used, e.g., in multi-agent systems to implement
agents (see Section 3). Figure 5 depicts the life cycle of a PeriodicService.

It consists of the following states:

� idle: This state tells the service to give up any activity and sleep until the given
time, specified in milliseconds, elapses, whereupon the service changes its state
back to “active”.

� active: In this state, the step() method is called once and, after its execution,
the state moves back to “idle”.

16

2.4 PeriodicService

Figure 5: Life cycle of a PeriodicService

Important Members

� timer: Used to schedule the periodic calls of the step method.

private Timer timer;

� exec: Task for the timer to execute the step method in time.

private final TimerTask exec = new TimerTask () {

@Override

public void run() {

step ();

}

};

Important Methods

� start: The start method is overridden in order to create the underlying thread
that calls the step method. This is a final method and cannot be overridden in a
subclass. The startService method, in contrast, can be overridden and is called
by start .

@Override

public final void start () {

timer = new Timer ();

timer.schedule(exec , getInterval (), getInterval ());

startService ();

}

� stop: The stop method is overridden in order to stop the underlying thread to
call the step method. This is a final method as well and can not be overridden in
a subclass. The stopService method, in contrast, can be overridden and is called
by the stop method.

@Override

public final void stop() {

timer.cancel ();

stopService ();

}

17

2 The Trust-Enabling Middleware

� getInterval: This method must return the amount of milliseconds specifying the
frequency with which the underlying thread calls the step method. This only
happens when the service is in the state “active”. The timer is suspended in the
state “inactive”.

protected abstract long getInterval ();

� step: This method is called automatically when the state “active” is entered.
After its execution, the state changes back to “idle”.

protected abstract void step ();

2.5 FailureDetectorService

The service FailureDetectorService is used to monitor other nodes and discover node
failures within the TEM [12]. It does also find other nodes to monitor itself. This is
done by using a lazy heartbeat monitor, which periodically expects heartbeat messages
of nodes to assure they are still alive, while using already existing application messages
to piggy-back heartbeat messages to reduce the amount of required messages. Other
services can receive announcements of node failures by binding themselves to the bind-
ing FailureDetectorService.BINDING FAILED. When such a message is received, the
EventMessage will contain data for the following keys (this data can be accessed by
calling getElement(String key)):

� FailureDetectorService.MESSAGE KEY FAILED NODE: Contains the id
of the node that is marked as failed.

� FailureDetectorService.MESSAGE KEY FAILURE PROBABILITY:
This key contains the probability with which the node has failed, which triggered
the message, a float value between 0 and 1.

The FailureDetectorService can be configured by using the configuration files de-
scribed in Section 4.6.

2.6 Discovery

2.6.1 Discovery Interface

public interface Discovery

The Discovery interface can be obtained from the ServiceConnector interface, which
is obtained by the init method of a Service. It provides the capability to search for
services in the network based on their registered bindings.

18

2.6 Discovery

Important Methods

� discoverServices: This method performs a discovery to find services bound to a
specific binding or subbinding. The discovery is performed asynchronously. There-
fore, the result is available not until the given timeout is elapsed. Further,
a ServiceAdvertisement with omitted data is given as search parameter. The
omitted data is the information to search for.

public void discoverServices(DiscoveryResult result ,

ServiceAdvertisement searched , long timeout);

– result: An interface that is informed about the result of the discovery (i.e.,
a set of discovered services) after the timeout has elapsed.

– searched: The data used for the discovery.

– timeout: A timeout in milliseconds to wait for the result.

2.6.2 ServiceAdvertisement

public class ServiceAdvertisement implements Serializable

A ServiceAdvertisement describes the contact data of a Service, including its service
id, bindings, name, and the id of the node it is running on.

Constructors The only constructor is the default constructor, which creates an empty
ServiceAdvertisement.

public ServiceAdvertisement (){...}

Important Members

� id: The id of the service.

private String id;

� nodeId: The id of the node the service is running on.

private String nodeId;

� bindings: A set of bindings the service has registered itself to.

private Set <String > bindings;

� name: The human readable name of the service.

private String name;

19

2 The Trust-Enabling Middleware

� expirationDate: Defines a date when the data in this ServiceAdvertisement

might not hold anymore.2 This time is based on the constant TIME TO LIVE.

private Date expirationDate;

2.6.3 DiscoveryResult

public interface DiscoveryResult

After the timeout of the DiscoveryResult has elapsed, the DiscoveryResult is notified
with the results of the discovery request. The interface has to be overridden by the
application that issued the discovery request.

Important Methods

� servicesDiscovered: This method is called when the timeout of the discovery
request has elapsed. It contains the result of that request.

public void servicesDiscovered(

List <ServiceAdvertisement > serviceAdvertisments);

� isValid: Returns whether the TIME TO LIVE has passed since the creation of this
ServiceAdvertisement.

public boolean isValid ();

2.7 Trust Metric Infrastructure

Trust is the basis for cooperation within an organization or society. It influences an
individual’s thinking, behavior, and interactions. Thus, as in real life, trust is a key
enabler for cooperation in software systems consisting of multiple interdependent entities,
such as multi-agent systems (MAS) [10].

In MAS, autonomous proactive entities interact with each other in diverse ways to
achieve a mutually favorable outcome. Just like in real life, interactions can be exploited
for the benefit of only one party. One way to counter such detrimental behavior is to
incorporate trust in the system and record the way an interaction partner behaved. If
agents continuously interact with the same interaction partners, they can use their own
interaction history (direct trust) to assess another agent. If interaction partners change
often, a form of reputation [8] is beneficial which allows all agents to profit from the
experiences of a few.

Trust is a complex concept that consists of multiple facets [14] such as credibility
and reliability. Because agents can behave differently towards different agents, trust
is subjective. Moreover, since agents fulfill different functions in a system and their
behavior depends on external factors, an agent’s role and the context of the interaction
need to be regarded [15].

2Whenever a service is relocated to another node, a proxy is set up that temporarily forwards messages
to the relocated service for a predefined amount of time. After that time, the proxy is shut down.

20

2.7 Trust Metric Infrastructure

TrustMetric

TrustContext

TrustValue

Interaction

Agent

Experience
-experience 0..1 -interaction 1

-trustContext 1

0..*

-ratedAgent 1

0..*

«creates»

-interactions 0..*

1-interactionPartner 1

0..*

-metrics 1..*

0..* -trustContext 1

0..*

Figure 6: Concepts for the measurement and use of trust in a MAS [2]

Anders et al. [2] synthesize existing works on the software engineering aspects of trust
and the usage of trust in MAS into patterns that cover various requirements in the very
general setting of MAS. The patterns thus support a software engineer in implementing
these well-established trust concepts into a MAS. From the body of literature and our
their own experience, Anders et al. identified a set of key concepts necessary to measure
and use trust in MAS, depicted in Figure 6. As mentioned before, trust in an Agent

develops through repeated Interactions with it. If no interaction has taken place yet,
initial trust [7] or reputation can be used. For each interaction, an agent can store its
outcome as an Experience. Environmental factors as well as the roles of the interacting
agents are captured in the TrustContext. This concept can comprise any factors that
can change the behavior of an agent, such as the current time of day, the duration of
the interaction, or the type of the interaction partner.

When one or more interactions have been completed and an agent wants to determine
the trustworthiness of one of its interaction partners, a TrustValue for the interaction
partner in a specific trust context is calculated using one of the TrustMetrics. Such
metrics use the experiences with the interaction partner to determine a trust value and
can be used to implement different trust models.

In some cases, the required calculations are complex and it might be necessary to trans-
form the data collected in the experiences, e.g., to statistical data. These intermediate
data can then be interpreted to yield a trust value. The TEM’s Trust Metric Infrastruc-
ture, which is presented in this section, supports the transformation of measured data
into intermediate data and the interpretation to a trust value. More precisely, it allows
to store experiences, provides interfaces for metrics and trust contexts, and allows to
derive trust values [6].

Depending on the concrete requirements of the modeled system, the metrics can also
be specified in a way to be able to deal with some of the aspects of trust mentioned above.
It might, e.g., be beneficial to discount older experiences and base the calculation of the
trust value only on recent ones. Descriptions of different metrics that incorporate this
aspect can be found in [5].

21

2 The Trust-Enabling Middleware

2.7.1 Architecture

The objective of the Trust-Enabling Middleware (TEM) is to collect trust values for
improved self-x algorithms and provide trust information to the application level. The
TEM provides techniques to handle trust operations for different trust contexts and is
usable for measurements of different trust facets. It has to be noted that the TEM
has also the ability to handle those trust values for facets even at runtime. Both trust
values from direct observation and reputation are considered in this report. Trust from
direct observation is derived from experiences gained in direct interactions with a com-
munication partner. Reputation in contrast is a trust value derived from other parties’
experiences. Reputation is especially of use if a potential interaction partner is not
known.

The TEM provides an infrastructure to save trust related information and calculate
trust data from this information in an easy and standardized way. The infrastructure
presented here also allows to define application-specific trust metrics. The basic proce-
dure that is used to derive trust data from a set of experiences, called raw data, is shown
in Figure 7.

Figure 7: Multi-Stage Process: Retrieving Trust Data

Services gather RawData that represent a set of experiences that were gained in in-
teractions with a specific interaction partner. RawData is the input for the calculation
of TrustData, e.g., in the form of a trust value. Therefore, RawData is transformed by
a Transformer into a preprocessed form called TransformedData that contains data
relevant for the calculation of the TrustData (e.g., only the most current measurements
might be of interest (sliding time window)). An Interpreter then derives the TrustData
from the TransformedData. TrustData can either be a simple double value or a more
complex object that, e.g., contains time series analysis data. Figure 8 shows a class
diagram describing the Trust Metric Infrastructure, which is one of the main features of
the TEM.

In general, experiences are application-specific, so the five main concepts (RawData,
Transformer, TransformedData, Interpreter, TrustData) have to be implemented
by the concrete application. However, the TEM provides default implementations for

22

2.7 Trust Metric Infrastructure

R
e

p
u

ta
ti

o
n

R
e

s
u

lt
L

is
te

n
e

r

T
ru

s
tS

e
rv

ic
e

Id
e

n
ti

ty
T

ra
n

s
fo

rm
e

r

M
e

tr
ic

R
a

w
T

ra
n

s
fo

rm
e

d
D

a
ta

S
in

g
le

V
a

lu
e

T
ru

s
tD

a
ta

C
o

n
fi

d
e

n
c

e
M

e
tr

ic
C

o
n

fi
d

e
n

c
e

M
e

tr
ic

Im
p

l

R
a

te
d

E
x

p
e

ri
e

n
c

e
Im

p
l

In
te

rp
re

te
r

T
ra

n
s

fo
rm

e
r

R
a

te
d

E
x

p
e

ri
e

n
c

e

A
b

s
tr

a
c

tT
ru

s
tD

a
ta

«
e

n
u

m
e

ra
ti
o

n
»

F
a

c
e

t

C
o

n
fi

d
e

n
c

e
V

a
lu

e
s

T
ra

n
s

fo
rm

e
d

D
a

ta

M
e

tr
ic

Id
e

n
ti

fi
e

r

T
ru

s
t

R
a

w
D

a
ta

T
ru

s
tD

a
ta

h
o

ld
s
 i
n

 d
a

ta
b

a
s
e

*

0
..

1

«
u

s
e

»

1

0
..

1

0
..

1
1

e
x
p

e
c
ts

11

c
re

a
te

s

11

«
u

s
e

»

s
a

v
e

s

*0
..

1

e
x
p

e
c
ts

1

1
..

*

«
u

s
e

»

c
re

a
te

s

*1

1

0
..

1

e
x
p

e
c
ts

1

1
..

*

c
re

a
te

s

1

1
..

*

c
re

a
te

s

11
..

*

«
u

s
e

»

«
u

s
e

»

Figure 8: Trust Metric Infrastructure: Class Diagram

23

2 The Trust-Enabling Middleware

Transformer and TrustData. One of the transformers the TEM provides is the so-
called IdentityTransformer that returns the given RawData as TransformedData. In
this case, no TransformedData needs to be defined by the application. Instead, the cor-
responding RawData implementation has to use the interface RawDataTransformed. This
class is a RawData as well as a TransformedData. The TEM also provides a TrustData

implementation that only consists of a single double value, the SingleValueTrustData.
Services can call methods to save and get RawData, specify the Transformers and
Interpreters that are to be used when requesting TrustData, and start trust cal-
culations. The TEM provides these methods to the Services in the form of an interface
called Trust. A little example on how to use the Trust Metric Infrastructure can be
found later in Section 2.7.6.

2.7.2 RawData

public interface RawData extends Serializable

Raw Data are experiences gathered by the services about their interaction partners. For
example, the middleware gathers information about the reliability of other nodes in the
form of RawData objects by observing message losses in order to estimate their reliability.

It is important to note that the own RawData implementation has to provide a default
constructor. Otherwise, a IncompatibleRawDataException is thrown when calculating
TrustData (see Section 2.7.6).

Important Methods

� addRawData: This method expects a merging logic to merge two RawData

classes. The service can use the Trust interface to save new data by using the
addRawData method. Raw data are saved per context, facet, source as well as
target node id and both of source and target service id or type, depending on
situation. When calling the addRawData on the trust interface, the addRawData of
the RawData class is called to merge the new data into the already existing one.

public void addRawData(RawData newRawData);

� deleteObsoleteData: On the other hand, the method deleteObsoleteData is
responsible for removing outdated RawData elements. This is especially useful
to reduce the total amount of saved experiences when they tend to accumulate.
Please note that this method can be implemented empty, if the functionality is not
needed.

public void deleteObsoleteData ();

2.7.3 Transformer

public abstract class Transformer <R extends RawData , T extends TransformedData >

24

2.7 Trust Metric Infrastructure

The Transformer transforms RawData into TransformedData. Transformer is an ab-
stract class with two methods to override: getExpectedInputClass and transform (see
below).

Generic Type Parameters

� R: Concrete RawData type used as input for the Transformer.

R extends RawData

� T: Concrete TransformedData type used as output of the Transformer.

T extends TransformedData

Important Methods

� getExpectedInputClass: This method returns the class of the RawData that
is expected as input. Since Java removes generic information on runtime, this
method needs to be implemented within all subclasses.

public abstract Class <R> getExpectedInputClass ();

� transform: Expects a RawData object and transforms it into TransformedData.
This TransformedData contains the RawData in prepared form. TransformedData
also needs to be implemented by the application. If RawData do not need to be
transformed in a specific way, the IdentityTransformer can be used instead. It
takes and returns an object of type RawTransformedData, which is a RawData and
a TransformedData.

protected abstract T transform(R rawData , String targetNodeId);

2.7.4 Interpreter

public abstract class Interpreter <T extends TransformedData , U extends TrustData >

The Interpreter interprets the TransformedData to yield TrustData. The abstract
class Interpreter is similar to Transformer.

Generic Type Parameters

� T: Concrete TransformedData type used as input for the Interpreter.

T extends TransformedData

� U: Concrete TrustData type used as output of the Interpreter.

U extends TrustData

25

2 The Trust-Enabling Middleware

Important Methods

� getExpectedInputClass: Returns the class of the TransformedData that is ex-
pected as input. Since Java removes generic information on runtime, this method
needs to be implemented of all subclasses.

public abstract Class <T> getExpectedInputClass ();

� interpret: Contains the logic to create from the given TransformedData an object
of the class TrustData, which, e.g., represents a single double value.

protected abstract U interpret(T transformedData ,

ConfidenceMetric confidenceMetric);

The confidence metric will be explained later in Section 2.8 (Confidence interface).
If no confidence is needed, the argument can be ignored.

2.7.5 TrustData

public interface TrustData extends Serializable

The TrustData interface should be implemented by any class that represents trust data.
The node id will be automatically set by the TrustService.

Important Methods

� getTargetNodeId: This method returns the id of the target node.

public String getTargetNodeId ();

� getTrustContext: This method returns the TrustContext of the TrustData.

public String getTrustContext ();

� getFacet: This method returns the facet of the TrustData.

public Facet getFacet ();

� getTargetServiceTypeOrId: This method returns the id or type of the service
whose RawData were used for the calculation or null, if node data were used.

public String getTargetServiceTypeOrId ();

� getConfidence: This method returns all confidence values of the trust value. If
no values were set, a object with minus one values is returned.

public ConfidenceValues getConfidence ();

� getTrustValue: Returns the trust value as a single double value.

26

2.7 Trust Metric Infrastructure

public double getTrustValue ();

� getSourceServiceTypeOrId: This method returns the id or type of the service
whose RawData were used for the trust calculation.

public String getSourceServiceTypeOrId ();

2.7.6 Trust Interface

public interface Trust

The Trust Metric Infrastructure can be accessed by using the Trust interface. This
interface can be accessed through the ServiceConnector of OCµ. In the TEM, the
ServiceConnector is extended to a TrustServiceConnector. The ServiceConnector

can be downcast to the TrustServiceConnector when running a service in the TEM.
The Trust interface provides methods to access the Trust Metric Infrastructure, to save
and get RawData, and to trigger trust calculations. In the following, the methods are
discussed in more detail.

Important Methods

� addRawData, getRawData: With addRawData the RawData gathered by the
applications can be saved into the TEM. RawData are saved per context, facet,
target node id and both source and target service id (the source node id is always
the own node for direct trust). If a RawData object for such a combination already
exists, the addRawData method inside the RawData object is called, where the new
data is merged into the existing RawData. The method getRawData accordingly
returns the currently saved RawData.

public void addRawData(String sourceNodeId , String sourceServiceId ,

String targetNodeId , String targetServiceId , Facet facet ,

String trustContext , RawData rawData)

throws IncompatibleRawDataException;

public List <RawData > getRawData(String sourceNodeId ,

String sourceServiceTypeOrId , String targetNodeId ,

String targetServiceTypeOrId , Facet facet ,

String trustContext);

The attributes of the methods are discussed in the following:

– sourceNodeId: The id of the node that made the experience. This can be
different from this node in case of reputation. For direct trust, the source
node is always this node.

– sourceServiceId: The distinctive id of the service that made the interaction
that resulted in this experience.

– targetNodeId: The id of the node the experience was made with.

27

2 The Trust-Enabling Middleware

– targetServiceId: The distinctive id of the service this experience was made
with. This can be null if RawData about a node is saved.

– facet: The facet.

– trustContext: The trust context.

– rawData: The RawData to save.

– sourceServiceTypeOrId: The id of the service that saved the data or the
type of service (all RawData objects from the similar service id or type will
be returned) or null (all RawData independent who saved it relative to the
other ids will be returned).

– targetServiceTypeOrId: The id of the service the data is about, or its
type (all RawData objects from the similar service id or type will be taken
into account) or null, if data about a node should be returned.

� calculateDirectTrust: This method comes in two variants which can be used to
calculate either trust in a node or in a service (see below). Both variants expect
the context, facet, both of source and target service id or type, depending on the
situation, and the node id of the node the TrustData should be calculated for.

public TrustData calculateDirectTrust(String sourceServiceTypeOrId ,

String targetServiceTypeOrId , String targetNodeId , Facet facet ,

String trustContext) throws IncompatibleRawDataException;

public <R extends RawData , T extends TransformedData , U extends TrustData >

U calculateDirectTrust(String sourceServiceTypeOrId ,

String targetServiceTypeOrId , String targetNodeId , Facet facet ,

String trustContext , Transformer <R, T> transformer ,

Interpreter <T, U> interpreter) throws IncompatibleRawDataException;

The IncompatibleRawDataException is thrown, if no RawData object can be dy-
namically created for the Transformer, e.g., it has no default constructor. In
the simpler variant, no other arguments are needed and the Transformer and
Interpreter are used, which are set by the setDirectTrustMetric method (see
method below). If no direct trust metric is set, an IllegalStateException is
thrown. The other version additionally expects the specific Transformer and
Interpreter to be used. This version of the method can be used if an unusual
calculation is needed for a specific facet and context combination. In most cases,
the simpler version that uses the default metric should suffice. If no RawData exists
(i.e., RawData representing experiences that were made with the interaction part-
ners), the metric cycle will be called with an empty list of RawData. Depending
on the implementation of the trust metric, the returned TrustData then can, e.g.,
be an initial trust value.

� setTrustMetric: This method sets a default Transformer and Interpreter for
a facet, service type and context combination. The Interpreter must expect
the TransformedData type returned by the Transformer. The input type of the
Transformer and the export type of the Interpreter can be chosen freely. If a
default metric is set, the simpler version of calculateDirectTrust can be called.

28

2.7 Trust Metric Infrastructure

public <R extends RawData , T extends TransformedData , U extends TrustData >

void setTrustMetric(String serviceType , Facet facet ,

String trustContext , Transformer <R, T> transformer ,

Interpreter <T, U> interpreter);

� calculateReputation: This method calculates the reputation of one target in-
teraction partner by directly asking all its neighbors (see [4]). For this purpose,
direct trust values from all neighbors of the target interaction partner are gathered
and locally combined to an overall value. The neighbors use the Transformer and
Interpreter to calculate a direct trust value of target interaction partner. These
direct trust values are the basis for the reputation calculation on the requesting
node and are therefore sent back to it. Since the communication with other part-
ners is asynchronous, this method does not return anything immediately. Instead,
a timeout and a ReputationResultListener have to be provided to the method.
After the timeout is elapsed, the currently received data is calculated to yield a
trust value and the result is handed to the listener.

public void calculateReputation(String sourceServiceTypeOrId ,

String targetServiceTypeOrId , String targetNodeId , Facet facet ,

String trustContext , long timeout ,

ReputationResultListener resultListener);

Usage The following example in form of a code fragment illustrates some of the con-
cepts of this section and demonstrates an application that performs four main actions:

1. Create TEM nodes.

2. Create a new service object.

3. Show how a newly created service object can be registered and started on a given
TEM node.

4. Perform direct trust calculation.

First we need an instance of the object IdFactory in order to generate ids for our
OcmNodes.

IdFactory idFactory = new AscendingIdFactory ();

This factory is then given as argument to the method createLocalNode that creates a
new instances of the class OcmNode, namely node1 and node2.

OcmNode node1 = OcmLocalFactory.createLocalNode(idFactory);

OcmNode node2 = OcmLocalFactory.createLocalNode(idFactory);

In order to extend our new generated nodes to TEM nodes with trust capabilities, we
have to call the factory method buildTEMNode in the TEMFactory:

node1 = TEMFactory.buildTEMNode(node1);

node2 = TEMFactory.buildTEMNode(node2);

29

2 The Trust-Enabling Middleware

Then we create two dummy Services, called dummy1 and dummy2.

DummyService dummy1 = new DummyService ();

DummyService dummy2 = new DummyService ();

By calling the method registerService and startService, the Services will be reg-
istered and started on the TEM node.

node1.registerService(dummy1);

node1.startService(dummy1);

node2.registerService(dummy2);

node2.startService(dummy2);

Assume now that dummy1 is interacting with dummy2 and wants to save its gained ex-
periences with dummy2, i.e., RawData, into the Trust Metric Infrastructure. Therefore,
the method addRawData of the Trust interface must be called which is obtained by the
TrustServiceConnector.

// Creates new RawData objects with the had experiences

JUnitTestRawData rd1 = new JUnitTestRawData (1.0f);

JUnitTestRawData rd2 = new JUnitTestRawData (0.0f);

JUnitTestRawData rd3 = new JUnitTestRawData (0.3f);

JUnitTestRawData rd4 = new JUnitTestRawData (0.7f);

// Returns the trust interface for trust interactions

Trust trust1 = dummy1.getServiceConnector (). getTrust ();

// Merges the data in the given RawData with the RawData of this class

trust1.addRawData(node1.getId(), dummy1.getServiceId (), node2.getId(),

dummy2.getServiceId (), Facet.CREDIBILITY , null , rd1);

trust1.addRawData(node1.getId(), dummy1.getServiceId (), node2.getId(),

dummy2.getServiceId (), Facet.CREDIBILITY , null , rd2);

trust1.addRawData(node1.getId(), dummy1.getServiceId (), node2.getId(),

dummy2.getServiceId (), Facet.CREDIBILITY , null , rd3);

trust1.addRawData(node1.getId(), dummy1.getServiceId (), node2.getId(),

dummy2.getServiceId (), Facet.CREDIBILITY , null , rd4);

The function getServiceTypeFromId returns the type of a service from the given service
id which is given as argument to the setTrustMetric function. If the trust metric is
set, the method to calculate direct trust (i.e., calculateDirectTrust) can be called.

// Returns the type of a service from the given serviceId

String serviceType = Util.getServiceTypeFromId(dummy2.getServiceId ());

// Sets a transformer and interpreter to use for the given service type ,

// context and facet combination

trust1.setTrustMetric(serviceType , Facet.CREDIBILITY , null ,

new JUnitTransformerIdentity (), new JUnitInterpreterMean ());

// Calculate direct trust

TrustData td = trust.calculateDirectTrust(dummy1.getServiceId (),

dummy2.getServiceId (), node2.getId(), Facet.CREDIBILITY , null);

// Access the trust value

double trustValue = td.getTrustValue ();

30

2.8 Confidence

2.8 Confidence

Agents can use trust values that characterize the behavior of their interaction partners as
a measure of uncertainty, allowing the agents to make more appropriate decisions. How-
ever, because of the systems’ dynamics and the agents’ limited knowledge, the accuracy
of these trust values is often limited as well, introducing another form of uncertainty.
Thus, agents can make use of the confidence in a trust value [3], which indicates the
degree of certainty that a trust value describes the actual observable behavior of an
agent. While both direct trust or reputation can be used for agents to make decisions,
confidence provides an estimation when to use direct trust or when to use reputation or
can even be used to make a weighted decision. The confidence in a trust value depends
on three different criteria:

� Number of experiences: The more experiences with an interaction partner were
made, the more confidence we have in the trust value. This is the case since – if the
interaction partner does not change its behavior in a severe way – more experiences
mean that the trust value tends to describe the expected observable behavior more
precisely. Outliers therefore do not carry that much weight, similar to the law of
large numbers.

� Age of experiences: Because interaction partners may change their behavior
between two interactions, the older the experiences with an interaction partner,
the less confidence in the trust value. Thus, recent experiences should be considered
more than older experiences as it is likely that they mirror more accurately the
interaction partner’s current behavior.

� Variance of experiences: The more variance in the interaction partner’s be-
havior and thus in the experiences with it, the less confidence in the trust value,
because the actual observable behavior is rather likely to differ from the expected
behavior described by the trust value. This is especially the case when an interac-
tion partner often changes its behavior.

The TEM provides the possibility to calculate the confidence in a trust value by using
the already existing Trust Metric Infrastructure. The most important concepts for using
the confidence are explained in the following.

2.8.1 RatedExperience

public interface RatedExperience

The confidence is calculated from a set of experiences. In the TEM, these experiences
have to be instances of the RatedExperience interface. A RatedExperience provides
information about an experience that is essential for the confidence metric to work.

31

2 The Trust-Enabling Middleware

Important Methods

� getTimestamp: This method returns the time (as a timestamp) when the expe-
rience occurred.

public long getTimestamp ();

� getRating: This method returns the rating of the experience, a value between 0
and 1.

public double getRating ();

2.8.2 ConfidenceValues

public class ConfidenceValues implements Serializable

The ConfidenceValues class contains the total confidence values as well as the values for
the three confidence parts: number, age and variance. This class is returned when call-
ing one of the calculateConfidence methods in the ConfidenceMetric interface (see
Section 2.8.3). This class is immutable as all fields are final and set in the constructor.
Therefore, only getter methods exist.

Important members

� MINUS ONE: A static instance of the class, which contains only -1 values for all
confidence values. This can be used, e.g., to be returned as confidence value from
TrustData as an alternative to null.

public static final ConfidenceValues MINUS_ONE

= new ConfidenceValues (-1, -1, -1, -1);

� confidence: Contains the total confidence.

private final double confidence;

� numberConfidence: Contains the number confidence.

private final double numberConfidence;

� ageConfidence: Contains the age confidence.

private final double ageConfidence;

� varianceConfidence: Contains the age confidence.

private final double varianceConfidence;

32

2.8 Confidence

Important methods

� getConfidence: Returns the total confidence.

public double getConfidence ();

� getNumberConfidence: Returns the number confidence.

public double getNumberConfidence ();

� getAgeConfidence: Returns the age confidence.

public double getAgeConfidence ();

� getVarianceConfidence: Returns the variance confidence.

public double getVarianceConfidence ();

2.8.3 ConfidenceMetric

public interface ConfidenceMetric

The confidence metric to calculate the confidence in a trust value is used through the
ConfidenceMetric interface. This interface can be accessed through the Interpreter

class and provides multiple methods which calculate the confidence depending on the
number, age and variance of experiences.

Important Methods

� calculateNumberConfidence: This method comes in two variants (see below).
Both variants expect a list of RatedExperiences.

public abstract double calculateNumberConfidence(

List <RatedExperience > experiences);

public abstract double calculateNumberConfidence(

List <RatedExperience > experiences , int numberThreshold);

In the simple variant, no other arguments except RatedExperiences are needed
and the numberThreshold (i.e., indicating, that enough experiences were gath-
ered to assume a confidence of 1) is extracted from the configuration file which is
called tem.properties. The more complex version expects the numberThreshold

as additional argument. This version of the method can be used if the variable
numberThreshold needs to be set at runtime.

� calculateAgeConfidence: This method has two different signatures (see below).
Both signatures expect a list of RatedExperiences.

33

2 The Trust-Enabling Middleware

public abstract double calculateAgeConfidence(

List <RatedExperience > experiences);

public abstract double calculateAgeConfidence(List <RatedExperience >

experiences , long upToDateThreshold , long outdatedThreshold);

In the first signature, no other arguments except RatedExperiences are needed
and the time based thresholds (i.e., upToDateThreshold and outdatedThreshold

in milliseconds) are extracted from the configuration file. The other signature
additionally expects both thresholds as argument. This type of the signature can
be used if the time based thresholds need to be set at runtime.

� calculateVarianceConfidence: This method calculates the confidence based
on the variance of the experiences the trust calculation was based upon. The
additional weights list provides weights in case the trust calculation was based on
a weighted mean metric. In this case a weighted variance is used (see below).

public abstract double calculateVarianceConfidence(

List <RatedExperience > experiences , double trustValue);

public abstract double calculateVarianceConfidence(List <RatedExperience >

experiences , List <Double > weights , double trustValue);

� calculateConfidence: This method has four different signatures. All of them
expect a list of RatedExperiences as well as a trustValue. The first one (see
below) is the most simple variant. It needs only experiences and a trust value as
argument and reads all thresholds and weights from the configuration file.

public abstract ConfidenceValues calculateConfidence(

List <RatedExperience > experiences , double trustValue);

public abstract ConfidenceValues calculateConfidence(

List <RatedExperience > experiences , List <Double > weights ,

double trustValue);

public abstract ConfidenceValues calculateConfidence(

List <RatedExperience > experiences , double trustValue ,

float numberConfidenceWeight , float ageConfidenceWeight ,

float varianceConfidenceWeight);

public abstract ConfidenceValues calculateConfidence(

List <RatedExperience > experiences , List <Double > weights ,

double trustValue , float numberConfidenceWeight ,

float ageConfidenceWeight , float varianceConfidenceWeight);

The second one further expects a list of weights which is used as weighted mean
to calculate the trust value. The last two signatures calculate confidence using the
given thresholds which are discussed in the following:

– numberConfidenceWeight: The weight of the number confidence value
when calculating the total confidence.

– ageConfidenceWeight: The weight of the age confidence value when cal-
culating the total confidence.

34

2.8 Confidence

– varianceConfidenceWeight: The weight of the variance confidence value
when calculating the total confidence.

� calculateTotalConfidence: This method calculates a total confidence using the
given weights (see above). The weights can be any number and do not have to
sum to one.

public abstract double calculateTotalConfidence(double numberConfidence ,

double ageConfidence , double varianceConfidence ,

float numberConfidenceWeight , float ageConfidenceWeight ,

float varianceConfidenceWeight);

Usage As was shortly described in Section 2.7.4, the ConfidenceMetric interface is
provided and can be used in the interpret method of the Interpreter. The TEM
provides a default implementation for the ConfidenceMetric interface, which is the
implementation of the interface given in the interpret method of the Interpreter.
The metrics can be parametrized using the property file of the TEM, see Section 4.6.
After calculating the TrustData, the confidence can be calculated by calling one of the
calculateConfidence methods and can be saved in the TrustData class. If a specific
implementation of the ConfidenceMetric is required, such an implementation can be
instantiated and used in the interpret method instead of the provided one. In this case
the applications has to be aware that a non default confidence metric implementation
was used.

The method getConfidence of the TrustData has to return the calculated confi-
dence values using the ConfidenceValues object. The method can return null in case
no confidence values are calculated, but the applications using that TrustData object
should be aware of that. The abstract class AbstractTrustData provides the field and
respective setter method to save the calculated confidence values. The getConfidence

method of AbstractTrustData returns the set confidence values or null, if the setter
was not called.

35

3 Multi-Agent System Concepts

3 Multi-Agent System Concepts

The TEMAS results from a combination of the TEM and some MAS-specific concepts
that extend the TEM to a full-fledged MAS. These additional MAS-specific concepts
are consolidated in the MASConcepts4TEM (see Figure 9). The MASConcepts4TEM
primarily introduce the concept of agents (see Section 3.1), additional trust concepts such
as Trust-Based Scenarios (see Section 3.4 and Section 3.5), and basic time concepts (see
Section 3.6). With respect to the TEM, it further serves as a facade because it hides
the complexity of the underlying infrastructure consisting of nodes and services and
dependent interfaces to higher level applications. This results, e.g., in simpler, more
common, and natural interfaces for messaging and the application of trust in MAS.

The TEMAS provides some functionality implemented in the form of Agents that can
be used out of the box on the one hand, and some concepts that have to be extended
and concretized depending on the individual application on the other hand. Concepts
and functionality that can be used out of the box comprise the InternalCalendar (see
Section 3.6.4) and the YellowPages (see Section 3.7). Application-specific agents can be
implemented by either extending the classes Agent (see Section 3.1.4) or TrustAgent (see
Section 3.5.2), depending whether or not the agent should be able to make trust-aware
decisions.

To be able to debug and test TEMAS-based applications without introducing the
complexity of the TEM’s underlying infrastructure of nodes, system services, and pro-
cessing overhead, the MASConcepts4TEM define a simple simulation environment called
temLight simulation environment which is explained in Section 4.

The additional concepts defined by the MASConcepts4TEM are presented in the fol-
lowing subsections.

3.1 Agent Concepts

In this section, we present interfaces and classes that define an agent’s basic properties,
functionality, and capabilities.

3.1.1 IAgent

public interface IAgent extends ITimeProvider

An IAgent is an interface that defines an agent in its simplest form. Thus, it should be
implemented by any class that represents an agent. The interface IAgent defines that
each agent can be identified by a unique id, called agent identifier, and has a method,
called achieveGoals() that is periodically called by the underlying MAS, allowing the
IAgent to achieve its goals. Because each agent should be aware of the time, it extends
the interface ITimeProvider (see Section 3.6.1).

36

3.1 Agent Concepts

Figure 9: By defining additional concepts and functionality, the MASConcepts4TEM
extend the TEM to the TEMAS. Here, the concept TrustBasedScenarios

(highlighted in red) represents multiple concepts that implement the Trust-
Based Scenarios’ actual functionality (see Section 3.4.4). The concepts
AgentInitializer and AgentScheduler (highlighted in blue) are introduced
in Section 4.1 and Section 4.4.

37

3 Multi-Agent System Concepts

Important Methods

� getAgentIdentifier: This method returns the agent’s unique identifier, such as
provided by the AgentIdentifier (see Section 3.1.5).

public String getAgentIdentifier ();

� achieveGoals: This method is periodically called by the underlying MAS and
informs the agent to pursue its goals, i.e., this method triggers periodic actions
performed by the agent. The frequency depends on the concrete implementation.

public void achieveGoals ();

Usage This interface is extended by the interface IMessageHandlingAgent (see Sec-
tion 3.1.3), an IAgent which is able to send and receive messages.

3.1.2 IMessageRecipient

public interface IMessageRecipient

The IMessageRecipient is an interface that marks classes that are able to receive
messages sent by IMessageHandlingAgents. These classes do not necessarily have to
be an agent, i.e., implement IAgent. It is mandatory that classes implementing this
interface provide a method public static Primitives getPrimitives() that returns
Primitives (see Section 3.2.1), defining what messages the IMessageRecipient can
receive and process.

Usage This interface is extended by the interface IMessageHandlingAgent (see Sec-
tion 3.1.3) and implemented by the class AgentComponent (see Section 3.1.6).

3.1.3 IMessageHandlingAgent

public interface IMessageHandlingAgent extends Serializable ,

IAgent , IMessageRecipient

An IMessageHandlingAgent defines an interface that is used for communication with
other agents within the system. As each agent is able to send and receive messages
in a common multi-agent system, this interface should be implemented by any class
that represents an agent (that is why this interface extends the interfaces IAgent (see
Section 3.1.1) and IMessageRecipient (see Section 3.1.2).

Important Methods

� sendEvent: Sends a message with primitive thePrimitive and payload data to
an agent with identifier agentIdentifier. The sender does not expect the receiver
to reply to this message. The method returns the message’s unique identifier if it
could be sent, or null if it could not be sent.

38

3.1 Agent Concepts

public UUID sendEvent(String agentIdentifier , String thePrimitive ,

Serializable data);

� sendRequest: Sends a message with primitive thePrimitive and payload data

to an agent with identifier agentIdentifier. The sender demands that the re-
ceiver responds to this message. Again, the method returns the message’s unique
identifier if it could be sent, or null if it could not be sent.

public UUID sendRequest(String agentIdentifier , String thePrimitive ,

Serializable data);

� waitForReply: This method waits timeout ms for a reply to a previously sent
message with identifier messageIdentifier and primitive thePrimitive from an
IMessageHandlingAgent with identifier agentIdentifier. If the reply is not
received within the specified time, a java.util.concurrent.TimeoutException

(see Java documentation) is thrown. The specified messageIdentifier unambigu-
ously identifies the reply message. If an exception was thrown while processing the
message that should trigger the reply, this method throws a RuntimeException

that encapsulates the exception’s cause.

public Serializable waitForReply(UUID messageIdentifier ,

String agentIdentifier , String thePrimitive , int timeout)

throws TimeoutException , RuntimeException;

� sendRequestAndWaitForReply: This method is a combination of the calls
sendRequest(...) and waitForReply(...). It sends a message with primitive
thePrimitive and payload data to an agent with identifier agentIdentifier.
Afterwards, the method waits timeout ms for a reply. Again, if the reply is
not received within the specified time, a TimeoutException is thrown, and if
an exception was thrown while processing the message, this method throws a
RuntimeException that encapsulates the exception’s cause.

public Serializable sendRequestAndWaitForReply(String agentIdentifier ,

String thePrimitive , Serializable data , int timeout)

throws TimeoutException , RuntimeException;

� broadcastEvent: This method is similar to sendEvent(...) but addresses mul-
tiple receivers. It broadcasts a message with primitive thePrimitive and pay-
load data to all agents that are bound to the service binding typeOfReceiver.
The sender does not expect the receivers to reply to this message. As with
sendEvent(...), the method returns the message’s unique identifier if it could
be sent, or null if it could not be sent.

public UUID broadcastEvent(String typeOfReceiver , String thePrimitive ,

Serializable data);

39

3 Multi-Agent System Concepts

� broadcastRequest: Sends a message with primitive thePrimitive and payload
data to all agents that are bound to the service binding typeOfReceiver. The
sender demands that the receivers respond to this message. However, since it is
not known how many agents actually receive this message, only one receiver has to
send a response. Note that, even if more than one receiver replies to the broadcast,
the sender can only process one reply by calling waitForReply(...) afterwards.
All other replies are discarded. Again, the method returns the message’s unique
identifier if it could be sent, or null if it could not be sent.

public UUID broadcastRequest(String typeOfReceiver , String thePrimitive ,

Serializable data);

� broadcastRequestAndWaitForReply: This method is a combination of the
calls broadcastEvent(...) and waitForReply(...). It broadcasts a message
with primitive thePrimitive and payload data to all agents that are bound to
the service binding typeOfReceiver. Afterwards, the method waits timeout mil-
liseconds for a reply. Again, if the reply is not received within the specified time,
a TimeoutException is thrown, and if an exception was thrown while processing
the message, this method throws a RuntimeException that encapsulates the ex-
ception’s cause. Only a single reply is returned3. All other replies are discarded.
If multiple replies are received, the reply that is returned is randomly chosen.

public Serializable broadcastRequestAndWaitForReply(String typeOfReceiver ,

String thePrimitive , Serializable data , int timeout)

throws TimeoutException , RuntimeException;

Usage This interface is implemented by the class Agent (see Section 3.1.4) and ex-
tended by ITrustAgent (see Section 3.5.1).

3.1.4 Agent

public abstract class Agent extends PeriodicService

implements IMessageHandlingAgent

This abstract class represents an agent in the MAS that is run on a OCmNode (see Sec-
tion 2.1). It is thus a concrete implementation of the TEM’s PeriodicService (see
Section 2.4) and further provides additional methods to request the current time and
to simplify message handling by implementing the IMessageHandlingAgent interface.
Although the TEMAS hides the complexity of the underlying infrastructure, the Agent

can provide information about the OCmNode it runs on. Note that basic Agents cannot
make use of the TEM’s Trust Metric Infrastructure (see Section 2.7). If an agent should
be able to make use of the Trust Metric Infrastructure, it has to extend the TrustAgent

(see Section 3.5.2).

3While it is undefined which reply is returned, usually the first reply that is received should be returned

40

3.1 Agent Concepts

Constructors Creates a new Agent and an instance of the given timeProviderClass

used to retrieve the current time. The serviceBindingProvider (see Section 3.2.9) can
be used later on to generate and query the service bindings of specific types of Agents.
In general, service bindings specify the agent or a group of agents that should receive a
message.

public Agent(ServiceBindingProvider serviceBindingProvider ,

Class <? extends DefaultTimeProvider > timeProviderClass) {...}

Important Members

� identifier: A unique identifier that unambiguously identifies this agent (see Sec-
tion 3.1.5).

protected AgentIdentifier identifier;

� timeProvider: The DefaultTimeProvider from which the current time is re-
trieved (see Section 3.6.2).

private DefaultTimeProvider timeProvider;

� SIMULATE TEM MESSAGE TRANSPORT: Switches serialization and de-
serialization of data sent via messages on or off. This should only be activated if
the application is deployed in the temLight simulation environment (see Section 4).

public static final boolean SIMULATE_TEM_MESSAGE_TRANSPORT = false;

� DEFAULT TIMEOUT: A predefined amount of time (in ms) Agents wait for
reply messages.

public static final int DEFAULT_TIMEOUT = 5000;

Important Methods

� initAgent: Initializes an Agent with the given data, which might be null if no
data is necessary. If a customized initialization of an Agent implementation is
necessary, this method must be overridden.

public void initAgent(Map <String , Serializable > initData) {...}

� achieveGoals: The method periodically called by the underlying MAS that in-
forms the agent to pursue its goals. For example, in the TEM execution envi-
ronment (see Section 4), this method is triggered when the PeriodicService’s
step() method is called (see Section 2.4). Consequently, all actions that should
be periodically performed by this Agent should be called in this method in the
right order. This method is declared in the interface IAgent (see Section 3.1.1).

41

3 Multi-Agent System Concepts

public void achieveGoals () {...}

Because it is not ensured that the default implementation of achieveGoals() is
empty, subclasses of Agent should always call super.achieveGoals() first:

public class MyAgent extends Agent {

...

/**

* Overriding the achieveGoals method in a subclass of Agent.

*/

public void achieveGoals () {

// call super method first

super.achieveGoals ();

// call MyAgent -specific methods afterwards

...

}

}

� getPrimitives: A static method that gets the Agent’s primitives, which define the
messages the Agent can receive. By default, this is an instance of AgentPrimitives.
This method is similar to the getPrimitives() method declared in the class
AgentComponent (see Section 3.1.6).

public static AgentPrimitives getPrimitives () {...}

Subclasses of Agent can specify a subclass of AgentPrimitives and refine the
getPrimitives() method. If the primitives of an imaginary class MyAgent are de-
fined in an imaginary class MyAgentPrimitives, MyAgent refines getPrimitives()
as follows:

public class MyAgent extends Agent {

...

/**

* A refined getPrimitives () method defined in an imaginary subclass of

* Agent called MyAgent.

* MyAgent can receive messages with primitives specified in the classes

* MyAgentPrimitives and AgentPrimitives.

*/

public static MyAgentPrimitives getPrimitives () {

return new MyAgentPrimitives(MyAgent.class);

}

}

� getAgentIdentifier: Gets the unique identifier in the form of a string that
unambiguously identifies this Agent (see Section 3.1.5).

public String getAgentIdentifier () {...}

� getActualAgentIdentifier: Gets, in contrast to getAgentIdentifier(...), the
Agent’s unique identifier in the form of an AgentIdentifier (see Section 3.1.5).

42

3.1 Agent Concepts

public AgentIdentifier getActualAgentIdentifier () {...}

� getCurrentTime: Returns the current time in form of a GregorianCalendar

(see Java documentation). The time is requested from the Agent’s timeProvider
(see Section 3.6.2).

public GregorianCalendar getCurrentTime () {...}

� getInterval: Returns the time in milliseconds for the interval between the calls
of the step() method triggered by the TEM. This value is only regarded when
using the asynchronous execution model in the TEM execution environment (see
Section 4.1 and Section 4.3).

protected long getInterval () {...}

� getServiceId: Gets the service id of the service represented by this agent (see
Section 3.1.5).

public String getServiceId () {...}

� getServiceType: Returns the service type of this service (Agents implement the
interface Service, presented in Section 2.2). The service type is a part of the
service id. By default, the service type of all agents is the Java fully qualified class
name of the class Agent (see method getServiceTypeForClass).

public String getServiceType () {...}

� getServiceTypeForClass: Returns the service type of this Agent. By default,
this is the Java fully qualified class name of the class Agent.

public static String getServiceTypeForClass () {...}

� getNodeId: Gets the identifier of the OcmNode that currently hosts this agent
(see Section 3.1.5).

protected String getNodeId () {...}

� discoverAgents: This method uses the Discovery functionality of OCµ (see
Section 2.6). Calling this method starts a discovery of Agents that are bound to
at least one of the given service bindings. Note that this method might not find
all Agents in the system that are bound to one of the service bindings if the TEM
simulation environment is used (see Section 4). Waits at most timeout milliseconds
for the results. The method returns a DiscoveryTask (see Section 3.3.1) running in
a separate thread that returns the result in the form of a DefaultDiscoveryResult

(see Section 3.3.2) if finished. The DefaultDiscoveryResult can be evaluated
with the method evaluateDiscoveryResult below.

43

3 Multi-Agent System Concepts

protected DiscoveryTask discoverAgents(int timeout ,

String ... serviceBindings) {...}

� evaluateDiscoveryResult: Evaluates a DefaultDiscoveryResult by extracting
and returning a set of AgentIdentifiers of Agents that have been identified in
the course of a discovery. For an example how to use this and the method above,
see Section 3.3.

protected Set <AgentIdentifier > evaluateDiscoveryResult(

DefaultDiscoveryResult discoveryResult) {...}

� sendEvent, sendRequest, waitForReply, sendRequestAndWaitForReply,
broadcastEvent, broadcastRequest, broadcastRequestAndWaitForReply:
These methods implement the messaging functionality (see Section 3.1.3) on the
basis of OCµ’s MessageSender and EventMessages. Note that the Agent throws,
in contrast to the IMessageHandlingAgent, a ReplyMessageException instead of
a common RuntimeException.

public UUID sendEvent(String agentIdentifier , String thePrimitive ,

Serializable data) {...}

public UUID sendRequest(String agentIdentifier , String thePrimitive ,

Serializable data) {...}

public Serializable waitForReply(UUID messageIdentifier ,

String agentIdentifier , String thePrimitive , int timeout)

throws TimeoutException , ReplyMessageException {...}

public Serializable sendRequestAndWaitForReply(String agentIdentifier ,

String thePrimitive , Serializable data , int timeout)

throws TimeoutException , ReplyMessageException {...}

public UUID broadcastEvent(String typeOfReceiver , String thePrimitive ,

Serializable data) {...}

public UUID broadcastRequest(String typeOfReceiver , String thePrimitive ,

Serializable data) {...}

public Serializable broadcastRequestAndWaitForReply(String typeOfReceiver ,

String thePrimitive , Serializable data , int timeout)

throws TimeoutException , ReplyMessageException {...}

Usage The Agent is the major concept of the TEMAS. If you want to implement a
trust-aware Agent, extend the concept TrustAgent (see Section 3.5.2).

3.1.5 AgentIdentifier

public class AgentIdentifier implements Cloneable

Each Agent can be uniquely identified by its AgentIdentifier. This identifier consists
of the Agent’s type (that is, by default, its class name), its service id, and its node

44

3.1 Agent Concepts

id. Note that two AgentIdentifiers are equal if and only if the service id of both
AgentIdentifiers is equal (the type and node id is not regarded) so that an Agent’s
identity does not change if it is moved from one OcmNode to another. The type is not
needed to check for equality as the service id unambiguously identifies an Agent. The
Agent’s AgentIdentifier is automatically created and set in its init(...) method.
An AgentIdentifier’s String representation, which should be sufficient in most cases,
can be requested by calling the Agent’s method getAgentIdentifier(). However, the
class AgentIdentifier also provides a static method to create an AgentIdentifier

object using a given String representation.

Constructors Creates a new instance of AgentIdentifier on the basis of the given
type, serviceId, and nodeId.

public AgentIdentifier(String type , String serviceId , String nodeId) {...}

Important Members

� type: Holds the type (i.e., the Java fully qualified class name) of the Agent rep-
resented by this AgentIdentifier.

private final String type;

� serviceId: Holds the service id of the Agent represented by this AgentIdentifier.
The service id unambiguously identifies an Agent.

private final String serviceId;

� nodeId: Holds the node id of the Agent represented by this AgentIdentifier.
As an Agent might migrate from one OcmNode to another, the node id is not used
to check for equality. It is thus not guaranteed that an AgentIdentifier’s node
id is always up to date.

private final String nodeId;

� TYPE SEPARATOR: A special String sequence used to separate the type of
the AgentIdentifier from its serviceId and nodeId in its String representation.

private static final String AGENT_IDENTIFIER_SEPARATOR;

� AGENT IDENTIFIER SEPARATOR: A special String sequence used to
separate the AgentIdentifier’s serviceId from its nodeId in its String repre-
sentation.

private static final String TYPE_SEPARATOR;

45

3 Multi-Agent System Concepts

Important Methods

� getType: Returns the AgentIdentifier’s type.

public String getType () {...}

� getServiceId: Returns the AgentIdentifier’s serviceId.

public String getServiceId () {...}

� getNodeId: Returns the AgentIdentifier’s nodeId.

public String getNodeId () {...}

� createAgentIdentifier: Creates a new AgentIdentifier from the given String

representation of an AgentIdentifier (as returned by the toString() method in
this class).

If the String representation is not a valid representation of an AgentIdentifier,
an IllegalArgumentException is thrown.

public static AgentIdentifier createAgentIdentifier(String

stringRepresentation) {...}

� toString: Returns a String representation of this AgentIdentifier in the fol-
lowing form:

public String toString () {

return this.type + TYPE_SEPARATOR + this.serviceId +

AGENT_IDENTIFIER_SEPARATOR + this.nodeId;

}

Usage An Agent’s AgentIdentifier can be requested by calling the Agent’s method
getActualAgentIdentifier(). The String representation of this AgentIdentifier

can be requested by calling the Agent’s getAgentIdentifier() method. If such a
String should be used to create an AgentIdentifier, createAgentIdentifier(...)
is to be called.

3.1.6 AgentComponent

public abstract class AgentComponent <T extends IMessageHandlingAgent >

implements IMessageRecipient

The AgentComponent is an abstract class that represents and encapsulates a special ca-
pability that can be incorporated by IMessageHandlingAgents to extend their default
capabilities such as messaging. An IMessageHandlingAgent can incorporate the capa-
bility defined by an AgentComponent by creating an instance of the AgentComponent.
The agent can then use this capability by calling the AgentComponent’s methods that im-
plement the functionality. Because AgentComponents might have to access information

46

3.1 Agent Concepts

from the agent that incorporates the represented functionality, each AgentComponent

is associated with the agent that holds it. This agent is called the AgentComponent’s
owner. To be able to access agent-specific information, the owner’s type is parameter-
ized. Importantly, AgentComponents can send and receive messages to and from other
AgentComponents or IMessageHandlingAgents. The class AgentComponent therefore
implements the interface IMessageRecipient. An AgentComponent can send messages
via its owner, i.e., it calls its owner’s methods to send messages and wait for replies.
If an AgentComponent should be able to receive and react to messages, a concrete im-
plementation of AgentComponentPrimitives is needed (see Section 3.2.3). This imple-
mentation defines the messages the corresponding AgentComponent can receive. If a
concrete implementation of the AgentComponentPrimitives class exists, these prim-
itives can be automatically registered with its owner when instantiating the corre-
sponding AgentComponent. If the owner receives a message with a primitive one of
its AgentComponents is registered for, it “redirects” this message to the corresponding
AgentComponent. Further details are given in Section 3.2.1.

Generic Type Parameters

� T: The type of the AgentComponent’s owner so that type-specific information can
be retrieved.

T extends IMessageHandlingAgent

Constructors

� public AgentComponent(T owner): Creates an AgentComponent, associates
it with its owner, and automatically registers the AgentComponent for its primitives
with the owner if a corresponding implementation of AgentComponentPrimitives
is available.

public AgentComponent(T owner) {...}

� public AgentComponent(T owner, boolean registerWithOwner): Here,
the user can specify whether or not the AgentComponent and its primitives should
be registered with the owner. If registerWithOwner is true, the AgentComponent

is automatically registered with its owner.

public AgentComponent(T owner , boolean registerWithOwner) {...}

Important Members

� T owner: The IMessageHandlingAgent that owns the AgentComponent and in-
corporates its functionality. T specifies the concrete type of the owner so that the
AgentComponent can access agent-specific methods.

private T owner;

47

3 Multi-Agent System Concepts

Important Methods

� public T getOwner(): Gets the AgentComponent’s owner.

public T getOwner () {...}

� public static AgentComponentPrimitives getPrimitives(): This is a static
method that gets the AgentComponent’s primitives, i.e., a concrete implementation
of AgentComponentPrimitives, which define the messages the AgentComponent

can receive. By default, an AgentComponent can not receive specific messages, so
that null is returned.

/**

* The default getPrimitives ()-Method defined in AgentComponent.

*/

public static AgentComponentPrimitives getPrimitives () {

return null;

}

Subclasses of AgentComponent, however, can specify a subclass of the abstract
class AgentComponentPrimitives and “refine”4 the getPrimitives() method.
For example, in case the primitives of a class MyComponent are defined in a class
MyPrimitives, MyComponent “refines” getPrimitives() as follows:

public class MyComponent extends AgentComponent <Agent > {

...

/**

* A refined getPrimitives () method defined in a subclass of

* AgentComponent called MyComponent.

* MyComponent can receive messages with primitives specified in the

* class MyPrimitives.

*/

public static MyPrimitives getPrimitives () {

return new MyPrimitives(MyComponent.class);

}

}

If an AgentComponent can not receive messages, the refined getPrimitives()

method should return null. If this AgentComponent extends another concrete
implementation of AgentComponent, this has to be done explicitly as otherwise
the AgentComponentPrimitives of the superclass are returned.

Usage Should be extended by all special capabilities of an Agent. For instance, the
DefaultTimeProvider is a subclass of AgentComponent (see Section 3.6.2).

4Since getPrimitives() is a static method, subclasses just hide the getPrimitives() method of their
superclass.

48

3.2 Sending, Receiving, Processing, and Replying to Messages

3.2 Sending, Receiving, Processing, and Replying to Messages

Each Agent is able to send, receive, process, and reply to messages. This functionality is
based on the messaging capabilities of the TEM (see Section 2.3). However, the Agent

hides the complexity of messaging on the TEM layer to upper layers by implementing
the IMessageHandlingAgent interface, which provides – from the perspective of MAS
– a more common and natural interface. In the following, we introduce the Primitives

concept, which is used to define which messages an Agent or AgentComponent is able
to process on the one hand, and what the sender asks the message’s receiver to do on
the other hand. Further, we discuss technical details worth knowing to understand the
Agent’s behavior when dealing with messages and to support debugging.

3.2.1 Primitives

public abstract class Primitives

An IMessageRecipient’s Primitives define the messages it can receive and process.
While an IMessageRecipient can basically receive messages with arbitrary primitives,
“can receive a message” means in this context that the IMessageRecipient knows
the sender’s intention, i.e., how to react to the message. Due to the fact that mes-
sages are processed by using a primitive string to identify the method that is to be
called by the message’s recipient by using Java reflection, each subclass of Primitives

acts as a container holding and defining these primitive strings. To enable a specific
IMessageRecipient, i.e., a specific subclass of Agent or AgentComponent, to process
specific messages and to outline the messages it can react to to potential interaction part-
ners as well as the programmer, usually each subclass of Agent and AgentComponent

needs to define a corresponding subclass of Primitives. To establish a clear nam-
ing convention, Primitives classes should be named according to the corresponding
IMessageRecipient. For example, primitives of the class Agent are collected in the
Primitives class AgentPrimitives, and primitives of the class AgentComponent are
defined in AgentComponentPrimitives. To simplify programming with respect to mes-
sages, the possible messages an Agent or AgentComponent can process are listed by
calling the following method:

// T extends AgentPrimitives or AgentComponentPrimitives

public static T getPrimitives () {

// A is the IMessageRecipient whose primitives are listed in T

// and thus either of type Agent or AgentComponent

return new T(A.class);

}

The static method getPrimitives() is to be implemented – and thus some kind of
“overridden” – in each instance of IMessageRecipient5. It returns a new instance of
the corresponding Primitives class, containing all primitive strings of messages that can

5Note that this is not mandatory if a subclass does not modify the set of messages its direct superclass
can react to.

49

3 Multi-Agent System Concepts

be processed by the IMessageRecipient. Obviously, as Agents are allowed to incorpo-
rate multiple AgentComponents, it should not be mandatory that the names of methods
declared in incorporated AgentComponents or the Agent are unique (recall that we use
Java reflection to react to incoming messages). Consequently, the IMessageRecipient

that should process a specific message must be unambiguously identified. To avoid such
name resolution conflicts, each Primitives class holds a prefix initialized in its construc-
tor. This prefix specifies the name of the class of the corresponding IMessageRecipient

(see example of getPrimitives() above). To clarify the constellation and outline how
primitive strings look like, take a look at the following example:

// Message receiver:

public class MyReceiverAgent extends Agent {

...

// This method is to be called via messages.

// Note that this method must be public!

public void receiverMethod () {...}

...

// Gets the Primitives class of the MyReceiverAgent

public static MyReceiverAgentPrimitives getPrimitives () {

return new MyReceiverAgentPrimitives(MyReceiverAgent.class);

}

}

// Message receivers primitive class:

public class MyReceiverAgentPrimitives extends AgentPrimitives {

...

// prefix here is MyReceiverAgent.class.getName () + "."

public final String RECEIVER_METHOD = this.prefix + "receiverMethod";

...

}

// Message sender:

public class MySenderAgent extends Agent {

...

public void anyMethod () {

...

// The AgentIdentifier of the message ’s recipient sent below

AgentIdentifier myReceiverAgentId = ...;

// MySenderAgent sends an event to MyReceiverAgent that triggers

// a call of MyReceiverAgent ’s receiverMethod.

// The call "MyReceiverAgent.getPrimitives ()" returns a Primitives object

// that includes all primitives MyReceiverAgent can react to.

this.sendEvent(myReceiverAgentId ,

MyReceiverAgent.getPrimitives (). RECEIVER_METHOD , null);

...

}

...

}

The primitive string used by the message’s sender to address and by the message’s
recipient to identify the correct method is encoded in the following String:

public final String RECEIVER_METHOD = this.prefix + "receiverMethod";

The String thus consists of MyReceiverAgent’s fully qualified class name concatenated
with “receiverMethod”. Consequently, a primitive string starts with the type of the
IMessageRecipient and ends with the method that should be called via Java reflection.

50

3.2 Sending, Receiving, Processing, and Replying to Messages

This method has to be publicly accessible. By establishing this convention, Agents are
able to receive messages and identify the addressed methods correctly even if they hold
different AgentComponents with equally named methods. To increase code flexibility
and to avoid redundant code, the specific Primitives classes should reflect the class
hierarchy of the corresponding IMessageRecipients. Following this convention avoids
inconsistencies and simplifies code refactoring. The idea is that every specific subclass
of Primitives automatically contains the primitive strings of its superclass and only
has to declare new primitive strings for methods that should be additionally enabled
for messaging. As a consequence, each IMessageRecipient is able to receive messages
addressing methods that are declared by one of its superclasses by also inheriting the cor-
responding primitives. The following example demonstrates the Primitives hierarchy
concept:

public class AgentA extends Agent {

...

public void methodOfA () {...}

...

// Gets the Primitives class of AgentA

public static AgentAPrimitives getPrimitives () {

return new AgentAPrimitives(AgentA.class);

}

}

// A subclass of AgentA

public class AgentB extends AgentA {

...

public void methodOfB () {...}

...

// Gets the Primitives class of AgentB

public static AgentBPrimitives getPrimitives () {

return new AgentBPrimitives(AgentB.class);

}

}

public class AgentAPrimitives extends AgentPrimitives {

...

// all Primitives of Agent are inherited

public final String METHOD_OF_A = this.prefix + "methodOfA";

...

}

// A subclass of AgentAPrimitives:

// inherits primitives declared in AgentAPrimitives

public class AgentBPrimitives extends AgentAPrimitives {

...

// METHOD_OF_A is inherited , only the new method has to be added

public final String METHOD_OF_B = this.prefix + "methodOfB";

...

}

Because Primitives declare all messages that can be processed by an Agent or an
AgentComponent, programming message-based interactions gets more intuitive and ro-
bust. When an IMessageRecipient-specific Primitives object is created by calling
the corresponding IMessageRecipient’s method getPrimitives(), all possible mes-
sages that can be processed by the IMessageRecipient are shown to the programmer.

51

3 Multi-Agent System Concepts

Constructors Creates a new instance of a concrete Primitives class that holds all
declared primitive strings as static entries. The given class theClass initializes the
prefix of each primitive string with the Java fully qualified class name of theClass.

public Primitives(Class <?> theClass) {...}

Important Members

� prefix: The unique prefix of the Primitives class, enabling unique primitive
strings even if different IMessageRecipients feature equally named methods.

protected final String prefix;

3.2.2 AgentPrimitives

public abstract class AgentPrimitives extends Primitives

AgentPrimitives is a subclass of Primitives (see Section 3.2.1). It declares the mes-
sages that can be processed by a generic Agent. For every specialization of Agent, a
special Primitives class has to be created that extends the class AgentPrimitives.
In these classes, additional primitive strings can be declared. As mentioned in Sec-
tion 3.2.1, the agent-specific AgentPrimitives classes should reflect the class hierarchy
of the corresponding Agents. Adhering to this convention avoids redundant code and
enables Agents to receive and process messages addressing methods that are declared
within their superclasses.

Constructors Creates a new instance of AgentPrimitives that defines all message
primitives the corresponding Agent is able to process. The given class theAgent initial-
izes the prefix with the Java fully qualified class name of theAgent.

public AgentPrimitives(Class <?> theAgent) {...}

Important Members Although the class AgentPrimitives defines two generic primi-
tives, namely ENABLE STEP METHOD and ACHIEVE GOALS, these primitives should not be
used by the programmer.

3.2.3 AgentComponentPrimitives

public abstract class AgentComponentPrimitives extends Primitives

Like AgentPrimitives, AgentComponentPrimitives is a subclass of Primitives (see
Section 3.2.1). The class AgentComponentPrimitives declares the messages that can be
processed by a generic AgentComponent. For every specialization of AgentComponent,
an AgentComponent-specific subclass of AgentComponentPrimitives has to be created.
In these classes, additional primitive strings can be declared that extend the range of

52

3.2 Sending, Receiving, Processing, and Replying to Messages

messages that can be processed by the AgentComponent. As mentioned in Section 3.2.1
and Section 3.2.2, AgentComponent-specific AgentComponentPrimitives classes should
reflect the class hierarchy of corresponding AgentComponents. This avoids redundant
code and enables AgentComponents to receive and process messages addressing methods
that are declared within their superclasses.

Constructors Creates a new instance of AgentComponentPrimitives that defines all
message primitives the corresponding AgentComponent is able to process. The given
class theComponent initializes the prefix with the Java fully qualified class name of
theComponent.

public AgentComponentPrimitives(Class <?> theComponent) {...}

3.2.4 Registering Primitives

As mentioned in Section 3.2.1, the primitives defined in the class Primitives as well
as its subclasses refer to methods which are implemented in corresponding classes of
type IMessageRecipient. In order to determine whether the Agent itself or a spe-
cific, incorporated AgentComponent is responsible for processing an incoming message
with a specific primitive, the Agent as well as all incorporated AgentComponents reg-
ister their primitives contained in the corresponding concrete Primitives classes with
the Agent. If an Agent receives a message, it identifies which IMessageRecipient is
responsible for processing the message. If there is no IMessageRecipient that reg-
istered for the message’s primitive, a MessageProcessingException is thrown. The
registration of Primitives with an Agent is done automatically when creating a new
instance of Agent or AgentComponent (note that an Agent registers AgentPrimitives

with itself). The primitives that are registered are all String values listed in an
instance of the corresponding Primitives class that is retrieved by calling the pre-
viously mentioned method getPrimitives(), which has to be implemented in and
adjusted by every IMessageRecipient. This automatic process makes modification
of an IMessageRecipient’s Primitives rather simple. Regarding AgentComponents,
the automatic registration of primitives can be suppressed by using the constructor
AgentComponent(T, boolean).

3.2.5 Delivery and Processing of Messages

Whenever an Agent receives a message, this message is processed within its own thread.
Each Agent can thus process multiple messages simultaneously. Further, an Agent pro-
cesses a message in parallel to its other actions. These two characteristics imply that it
is of utmost importance that all data access triggered by messaging is implemented in a
thread-safe way.

When an agent receives a message which is no reply but an event or a request, the
agent searches the object, i.e., the target, that has been registered for this primitive. If
no such target exists, a MessageProcessingException is thrown. If a target was found,

53

3 Multi-Agent System Concepts

the agent searches a public method in the target’s class whose name equals the part
of the specified primitive that identifies the method and whose parameter is assignable
from the payload. As mentioned above, this procedure is based on using Java reflection.
If such a method was found, the agent invokes this method with the message’s payload.
That implies that a method to be triggered by messages has to have either zero or
exactly one parameter that implements the interface Serializable. If the payload is
null, then it is expected that the method to be called does not await any parameter.
Vice versa, whenever the method awaits a parameter, the payload must not be null. If
no appropriate method could be found, a MessageProcessingException is thrown.

If a message is marked as a request, then the object that is returned by the invoked
method is automatically sent back as a reply. The agent that awaits the reply has to
cast the returned object to its concrete type. So the sender of a message has to know
the type of the data with which the message’s receiver responds. If a method returns
void but the sender awaits a reply, the reply’s payload is null. To simplify debugging,
it is recommended that methods invoked by request messages do not return void.

Whenever an exception is thrown in the course of processing a method that was
invoked by a request message, this exception is caught by the receiver, the exception’s
cause is put into a ReplyMessageException, and sent back to the sender as reply.
As exceptions are forwarded to the request’s sender, the sender has the possibility to
react to and treat failures. When the sender receives a reply that informs about a
failure, it is identified that the message contains an exception, whereupon the contained
ReplyMessageException is thrown on the sender’s side. Therefore, the sender should
catch ReplyMessageExceptions.

If a sender does not receive a reply within the specified time, a TimeoutException

is thrown. If the reply is received with a delay that exceeds the timeout, it is dis-
carded. Consequently, besides catching ReplyMessageExceptions, it is necessary to
catch TimeoutExceptions.

Let us take a closer look at message delivery and processing. In the following example,
MySenderAgent is an Agent that wants to request information from MyReceiverAgent

with identifier receiverAgentIdentifier. MySenderAgent chooses the corresponding
primitive (SAY HELLO TO ME) contained in MyReceiverAgentPrimitives. Furthermore,
MySenderAgent needs to know that the reply sent by MyReceiverAgent is a String and
the payload consists of exactly one String object. MySenderAgent calls the method
sendRequestAndWaitForReply(...) using the right arguments. Having received the
reply, it casts the returned object to String. In this case, the replyString states “Hello
you!”.

// agent sending a message

public class MySenderAgent extends Agent {

...

public void doSomething () {

...

try {

// send a request with primitive SAY_HELLO_TO_ME and payload

// "you" to the agent with identifier receiverAgentIdentifier

// and wait for its reply which is known to be a String

String replyString = (String) this.sendRequestAndWaitForReply(

54

3.2 Sending, Receiving, Processing, and Replying to Messages

receiverAgentIdentifier ,

MyReceiverAgent.getPrimitives (). SAY_HELLO_TO_ME , "you",

Agent.DEFAULT_TIMEOUT);

}

// catch TimeoutExceptions

catch (TimeoutException te) {

...

}

// catch ReplyMessageExceptions

catch (ReplyMessageException re) {

...

}

// print the reply

System.out.println(replyString);

}

}

// agent receiving the message

public class MyReceiverAgent extends Agent {

...

// methods that are invoked by messaging need to be public

public String sayHelloToMe(String me) {

return "Hello " + me + "!";

}

...

// the getPrimitives () method necessary for proper messaging

public static MyReceiverAgentPrimitives getPrimitives () {

// MyReceiverAgentPrimitives would contain the primitive SAY_HELLO_TO_ME

return new MyReceiverAgentPrimitives(MyReceiverAgent.class);

}

}

The agent MyReceiverAgent has to implement the getPrimitives() method in order
to inform others about its primitives. In this example, the primitive SAY HELLO TO ME

refers to the method sayHelloToMe. It is mandatory that this method is public. As
MySenderAgent has sent the correct payload for the method sayHelloToMe (a String

object), this method is correctly invoked and the returned String is automatically sent
back to MySenderAgent.

3.2.6 MessageProcessingException

public class MessageProcessingException extends RuntimeException

This exception is thrown if an error occurs while an Agent processes a message it
received. A message whose primitive has not been registered for a specific target, i.e.,
the Agent itself or its AgentComponents, or whose payload is of the wrong type so
that the associated target method cannot be invoked, are typical situations in which a
MessageProcessingException is thrown.

3.2.7 ReplyMessageException

public class ReplyMessageException extends RuntimeException

55

3 Multi-Agent System Concepts

This exception is used to inform the sender of a request message that an exception
was thrown while the request message was processed by the receiver. The sender throws
this exception again when it receives the reply.

3.2.8 IServiceBindingProvider

public interface IServiceBindingProvider <T>

This interface is responsible for providing a service binding for a specific class that ex-
tends T. Service bindings play an important role for the correct delivery of messages to
services (see Section 2.2) and thus Agents. A Service can only receive those messages
addressing service bindings it is bound to. The IServiceBindingProvider is espe-
cially useful for addressing broadcast messages to specific Services because messages
are delivered to every Service in the system bound to the specified service binding or
a subbinding of it.

Generic Type Parameters

� T: The type for which service bindings can be requested.

T extends IMessageHandlingAgent

Important Methods

� getServiceBindingForClass: Returns the service binding for the given class or
null if the class is not of a valid type, i.e., if it does not extend T.

public String getServiceBindingForClass(Class <? extends T> aClass);

� getServiceBindingsForClass: Returns a Set of service bindings (including sub-
bindings) for the given class or an empty Set if the class is not of a valid type, i.e.,
if it does not extend T.

public Set <String > getServiceBindingsForClass(Class <? extends T> aClass);

Usage ServiceBindingProvider (see Section 3.2.9) implements this interface.

3.2.9 ServiceBindingProvider

public class ServiceBindingProvider implements IServiceBindingProvider <Agent >

This class is an implementation of the interface IServiceBindingProvider and provides
service bindings for a given type in the form of a class. Valid types are restricted to
subclasses of Agent. The most specific service binding for a given class consists of
a string representation of the reverse class hierarchy down to the class Agent and a
project-specific suffix that prevents name resolution conflicts. Less specific subbindings

56

3.2 Sending, Receiving, Processing, and Replying to Messages

are generated on the basis of the superclasses of this class. Each object of a specific
class has thus the same service bindings. If we have a class hierarchy Agent → A
→ B → C and a project-specific suffix “myProject”, then the most specific service
binding of B is “B.A.Agent.myProject”. subbindings are “A.Agent.myProject” and
“Agent.myProject”.

As in some cases, e.g., when using Repast’s GUI, different system class loaders are
used which possibly cannot get information about the class hierarchy of some classes, a
ClassLoader has to be specified when a service binding is queried. This implies that
exactly one subclass of ServiceBindingProvider is needed for each project (an example
is given below). This subclass is then set in the constructor of Agent classes defined the
corresponding project (see Section 3.1.4).

The ServiceBindingProvider is implemented as Singleton.

Constructors The constructor is empty and protected as this class is an implemen-
tation of the Singleton pattern. This class and its subclasses are thus accessed via the
method getInstance(...).

protected ServiceBindingProvider () { }

Important Methods

� getInstance: Returns a reference to the Singleton object of this class with the
given project-specific suffix and ClassLoader.

public static ServiceBindingProvider getInstance(String suffix ,

ClassLoader cl) {...}

� getServiceBindingForClass: Returns the most specific (cached) service binding
for the given class or null if the class is not an Agent. The service binding is a
String representing the inverse class hierarchy down to Agent with the suffix at
the end (see example below). Thus, each object of the same class has the same
service binding.

public String getServiceBindingForClass(Class <? extends Agent >

aClass) {...}

� getServiceBindingsForClass: Returns the (cached) service bindings (including
subbindings) for the given class or an empty Set if the class is not an Agent.

public Set <String > getServiceBindingsForClass(Class <? extends Agent >

aClass) {...}

Usage This class should be extended in every project by a project-specific implementa-
tion of ServiceBindingProvider with a project-specific suffix and ClassLoader. The
TEMAS project already provides such an extension, the TEMASServiceBindingProvider.
Subclasses in other projects can be implemented according to the following example of
the TEMASServiceBindingProvider:

57

3 Multi-Agent System Concepts

// a project -specific service binding provider

public class TEMASServiceBindingProvider extends ServiceBindingProvider {

private final static ServiceBindingProvider SERVICE_BINDING_PROVIDER;

static {

// use project -specific parameters

SERVICE_BINDING_PROVIDER = ServiceBindingProvider.getInstance("temas",

TEMASServiceBindingProvider.class.getClassLoader ());

}

// override method with project -specific service binding provider

public static ServiceBindingProvider getInstance () {

return SERVICE_BINDING_PROVIDER;

}

}

To request the service binding of a specific Agent, the ServiceBindingProvider

should be used as follows. Let SomeAgent be an extension of Agent located within the
project of TEMASServiceBindingProvider:

public class SomeAgent extends Agent {

...

public SomeAgent () {

// call super (...) with project -specific service binding provider

super(TEMASServiceBindingProvider.getInstance (),

TimeProviderICBased.class);

...

}

...

}

Then the following call (which can be anywhere in the application, independent of the
project structure) would return the most specific service binding of SomeAgent, namely
“SomeAgent.Agent.temas”:

// get service binding for SomeAgent

ServiceBindingProvider.getServiceBindingForClass(SomeAgent.class);

3.3 Discovering Agents

Discovery is a concept orthogonal to the YellowPages (see Section 3.7). The TEMAS
discovery functionality differs from the functionality provided by the YellowPages in
the way that it provides a mechanism to discover agents that are bound to at least one
of a set of specific service bindings, instead of providing functionality to discover agents
according to their type. The TEMAS discovery functionality is based on the TEM’s
discovery infrastructure (see Section 2.6). Agent discovery is performed in a dedicated
thread that runs a DiscoveryTask (see Section 3.3.1). After a certain amount of time,
a DefaultDiscoveryResult can be retrieved from the DiscoveryTask.

The discovery functionality can be accessed via the Agent’s methods discoverAgents,
to trigger a discovery, and evaluateDiscoveryResult, to process the result of the dis-
covery (see Section 3.1.4).

58

3.3 Discovering Agents

3.3.1 DiscoveryTask

public class DiscoveryTask extends FutureTask <DefaultDiscoveryResult >

A DiscoveryTask is a FutureTask6 running in its own thread. It provides a simple
interface to retrieve the result of a terminated Discovery. This result is returned in the
form of a DefaultDiscoveryResult when the Agent’s method discoverAgents(...)

is called.

Important Methods

� waitForDiscoveryResult: Waits for the Discovery to terminate. The time to
wait depends on the timeout stated when calling the method discoverAgents(...)

at an Agent.

public DefaultDiscoveryResult waitForDiscoveryResult () {...}

Usage This class is returned when the Agent’s method discoverAgents(...) is
called. For a complete example how to discover Agents, look at the in Section 3.3.2.

3.3.2 DefaultDiscoveryResult

public class DefaultDiscoveryResult implements DiscoveryResult

This class is an implementation of OCµ’s DiscoveryResult (see Section 2.6.3) and is
therefore able to receive requested discoveries. A DefaultDiscoveryResult of a started
Discovery can be obtained from the DiscoveryTask (see Section 3.3.1) returned by the
Agent’s method discoverAgents(...). It can then be further evaluated by calling the
Agent’s method evaluateDiscoveryResult(...).

Usage Assume that some arbitrary Agent wants to discover Agents that are registered
for SomeAgent’s service binding as well as Agents that are registered for AnotherAgent’s
service binding:

// get service bindings of SomeAgent and AnotherAgent

String [] bindings = new String [] { TEMASServiceBindingProvider.getInstance ().

getServiceBindingForClass(SomeAgent.class), TEMASServiceBindingProvider.

getInstance (). getServiceBindingForClass(AnotherAgent.class) };

Then a call of discoverAgents(...) returns a DiscoveryTask which itself returns a
DefaultDiscoveryResult when calling its method waitForDiscoveryResult(). The
obtained DefaultDiscoveryResult then can be further evaluated in the Agent’s method
evaluateDiscoveryResult(...) which returns the set of AgentIdentifiers retrieved
in the discovery:

6A cancellable asynchronous computation running its own thread. Information about the interface
java.util.concurrent.Future and the class java.util.concurrent.FutureTask can be found in
the Java documentation.

59

3 Multi-Agent System Concepts

// start a discovery with the specified service bindings to discover and a given

// timeout of 100 ms , wait for its result , and evaluate it

Set <AgentIdentifier > ids = this.evaluateDiscoveryResult(

this.discoverAgents (100, bindings). waitForDiscoveryResult ());

In the example, the set of AgentIdentifiers contains only those agents that are bound
to a service binding included in bindings.

3.4 Additional Trust Concepts

The TEMAS extends the TEM’s Trust Metric Infrastructure (see Section 2.7) by im-
plementing those key concepts necessary to measure and use trust in MAS (see [2] and
Figure 10) that are not represented in the TEM yet. These are explicit representations
of Interactions, Experiences, and TrustContexts. The members of these classes are
derived from the associations between these concepts. As mentioned in Section 2.7,
the TrustMetric depicted in Figure 10 is represented in the TEM by a combination of
Transformer (see Section 2.7.3) and Interpreter (see Section 2.7.4). The TrustValue

corresponds to the TEM’s TrustData.

TrustMetric

TrustContext

TrustValue

Interaction

Agent

Experience
-experience 0..1 -interaction 1

-trustContext 1

0..*

-ratedAgent 1

0..*

«creates»

-interactions 0..*

1-interactionPartner 1

0..*

-metrics 1..*

0..* -trustContext 1

0..*

Figure 10: Concepts for the measurement and use of trust in a MAS [2]

3.4.1 Interaction

public abstract class Interaction <TC extends TrustContext ,

E extends Experience <?>> implements Serializable

This is an abstract class representing an Interaction that takes place between an
interaction initiator and an interaction partner in a specific TrustContext. The outcome
of this Interaction is stored as an Experience.

Generic Type Parameters

� TC: The concrete type of TrustContext in which this Interaction takes place.

TC extends TrustContext

� E: The concrete type of Experience which holds the outcome of this Interaction.

E extends Experience <?>

60

3.4 Additional Trust Concepts

Constructors Creates a new Interaction that took place in a specific TrustContext

between an interactionInitiator and an interactionPartner. The given Strings
interactionInitiator and interactionPartner both represent the AgentIdentifier
of the corresponding Agents (see Section 3.1.5).

public Interaction(TC trustContext , String interactionInitiator ,

String interactionPartner)

Important Members

� experience: The Experience that was gained after evaluating this Interaction.
This experience is null if the Interaction has not been evaluated yet.

private E experience;

� interactionInitiator: The initiator of this Interaction in the form of a string
representation of the corresponding AgentIdentifier.

private final String interactionInitiator;

� interactionPartner: The partner in this Interaction in the form of a string
representation of the corresponding AgentIdentifier.

private final String interactionPartner;

� trustContext: The TrustContext this Interaction was made in.

protected final TC trustContext;

Important Methods

� getExperience: Returns the associated Experience.

public E getExperience () {...}

� setExperience: Sets the associated Experience. Having set an Experience, it
cannot be replaced afterwards. Returns true if and only if the Experience has
been associated with the Interaction.

public boolean setExperience(E experience) {...}

� hasExperience: Returns true if this Interaction has an associated Experience,
false if not.

public boolean hasExperience () {...}

� getInteractionInitiator: Returns the interactionInitiator, i.e., its identifier.

61

3 Multi-Agent System Concepts

public String getInteractionInitiator () {...}

� getInteractionPartner: Returns the interactionPartner, i.e., its identifier.

public String getInteractionPartner () {...}

� getTrustContext: Returns the TrustContext this Interaction was made in.

public TC getTrustContext () {...}

Usage This abstract class needs to be extended by a concrete Interaction.

3.4.2 Experience

public abstract class Experience <I extends Interaction <?, ?>>

implements Serializable

This is an abstract class representing an Experience that was made in the course of an
Interaction with a specific interaction partner.

Generic Type Parameters

� I: The concrete type of Interaction associated with this Experience.

I extends Interaction <?, ?>

Constructors Creates a new Experience for a specific Interaction and associates
the Experience with the Interaction. If the given Interaction already has an
Experience, an IllegalArgumentException is thrown. Note that the Interaction

has also be associated with the Experience by calling setExperience(...).

public Experience(I interaction)

Important Members

� interaction: The Interaction for which the Experience was made.

private final I interaction;

Important Methods

� getInteraction: Gets the Interaction associated with this Experience.

public I getInteraction () {...}

62

3.4 Additional Trust Concepts

Usage This abstract class needs to be extended by a concrete Experience.

3.4.3 TrustContext

public abstract class TrustContext

Instances of this abstract class represent contexts in which Interactions take place
and Experiences are gained. The representation of different trust contexts by different
classes allows to establish relationships between different trust contexts. In the Trust
Metric Infrastructure of the TEM (see Section 2.7), the TrustContext is stored as a
String. Therefore, every TrustContext needs a String representation which returns
an equal String for Interactions made in the same TrustContext. We decided to
represent trust context by the class TrustContext instead of a string because this allows
to be able to properly describe the relations between different trust contexts.

Important Methods

� getStringRepresentation: The default implementation of this method returns
the Java fully qualified class name of this TrustContext.

In case subclasses override this method, it is essential that this method returns an
equal String for TrustContext objects that are of the same type.

public String getStringRepresentation () {

return this.getClass (). getName ();

}

Usage This abstract class needs to be extended by a concrete TrustContext. In
case the default implementation of getStringRepresentation() is not sufficient, this
method has to be overridden.

3.4.4 Trust-Based Scenarios

In this section, we briefly introduce the most important concepts used to generate Trust-
Based Scenarios (TBS) [1]. TBS are an instrument to predict an agent’s, a subsystem’s,
or the environment’s future behavior by approximating the underlying stochastic process.
Each TBS gives information about a specific future development and a probability of
occurrence.

Because TBS can be used to make predictions about multiple future time steps, ex-
periences are not only gained once at the end of an interaction. Instead, in the course
of an interaction, an experience is gained in and for each single time step. Interactions
and experiences are thus separated into distinct concepts called AtomicInteraction

and InteractionContainer, and AtomicExperience and ExperienceContainer (see
Figure 11). All these concepts are subclasses of Interaction (see Section 3.4.1) or
Experience (see Section 3.4.2). AtomicInteractions or AtomicExperiences are in-
teractions or experiences that take place or are gained in a single time step. The

63

3 Multi-Agent System Concepts

InteractionContainer or ExperienceContainer contain all AtomicInteractions or
AtomicExperiences that belong to a specific interaction that takes place over multiple
time steps.

Figure 11: Trust-Based Scenarios

By using a trust metric consisting of a transformer and interpreter as shown in Sec-
tion 2.7, ExperienceContainers previously stored in the TEM are transformed into
a TransformedExperienceContainer, a subclass of TransformedData, which basically
serves as a wrapper for the set of ExperienceContainers that are to be interpreted
by the interpreter. Here, the interpreter instantiates a new TrustScenarioGenerator,
a subclass of TrustData, with the TransformedExperienceContainer as parameter.
The TrustScenarioGenerator provides an interface to generate TBS by evaluating
the given TransformedExperienceContainer. The TBS are represented by the class
TrustScenario. A TrustScenario is a TrustScenarioPath with a probability of occur-
rence. A TrustScenarioPath is a list of ScenarioStates. Each ScenarioState belongs
to a specific future time step that depends on the position in the list. A ScenarioState

is thus a prediction of the rating of an agent’s, a subsystem’s, or the environment’s fu-
ture behavior in a specific TBS and a specific time step. However, the ScenarioState

does not predict the rating of the future behavior in the form of a single value but by
a range of expected values described by an upper and lower threshold, i.e., an interval.
Consequently, a TrustScenario represents a corridor of expected behavior.

Several TrustScenarios can be represented by a TrustScenarioTree that consists of
TrustScenarioNodes, each representing a particular ScenarioState.

3.5 Extending Agent Concepts by the Notion of Trust

On the basis of the TEM’s Trust Metric Infrastructure (see Section 2.7) and the trust
concepts defined by the TEMAS, the concept Agent can be extended to a TrustAgent,
i.e., an agent that is able to gain Experiences in Interactions and derive trust values

64

3.5 Extending Agent Concepts by the Notion of Trust

and other trust-related data from this information. While the interface ITrustAgent

defines the general capabilities a trust-aware agent should have, the TrustAgent extends
the class Agent and provides a concrete implementation of the ITrustAgent interface.

3.5.1 ITrustAgent

public interface ITrustAgent extends IMessageHandlingAgent

An ITrustAgent is an extension of the IMessageHandlingAgent and is an interface that
should be implemented by any class that represents an agent that is able to retrieve trust
values and trust-based scenarios from the TEM.

Important Methods

� setDirectTrustMetric: Sets a direct trust metric, given in the form of a combina-
tion of Transformer and Interpreter, for the combination of targetAgentType,
Facet, and TrustContext. The trust metric can be used later on to evaluate
collected Experiences. Details depend on the concrete implementation.

public <R extends RawData , T extends TransformedData , U extends TrustData >

void setDirectTrustMetric(String targetAgentType , Facet facet ,

TrustContext context , Transformer <R, T> transformer ,

Interpreter <T, U> interpreter);

� addDirectTrustRawData: This method adds RawData that contain a list of
Experiences this ITrustAgent gained in Interactions with another Agent (iden-
tified by the given targetAgentIdentifier) in the specified TrustContext and
for the given Facet in a data base containing the ITrustAgent’s Experiences.
Details depend on the concrete implementation.

public void addDirectTrustRawData(String targetAgentIdentifier ,

Facet facet , TrustContext trustContext , RawData rawData);

� getDirectTrustValue: This method retrieves TrustData describing the trust-
worthiness of an Agent (identified by the given targetAgentIdentifier) regard-
ing a specific Facet and TrustContext. The TrustData is based on Experiences
gained by this ITrustAgent. Details depend on the concrete implementation.

public TrustData getDirectTrustValue(String targetAgentIdentifier ,

Facet facet , TrustContext trustContext);

� getTrustBasedScenarios: This method retrieves an ITrustScenarioGenerator

which can be used to generate trust-based scenarios for a specific Agent (identi-
fied by the given targetAgentIdentifier), Facet, and TrustContext. Details
depend on the concrete implementation.

public ITrustScenarioGenerator <?> getTrustBasedScenarios(

String targetAgentIdentifier , Facet facet , TrustContext trustContext);

65

3 Multi-Agent System Concepts

Usage This interface is implemented by the class TrustAgent.

Note Please note that the ITrustAgent and its subclasses currently do not feature an
interface for obtaining reputation values provided by the TEM.

3.5.2 TrustAgent

public abstract class TrustAgent extends Agent implements ITrustAgent

A TrustAgent is an Agent that implements the ITrustAgent interface and thus provides
additional methods which allow the TrustAgent and assigned AgentComponents to store
Experiences in the form of RawData in the TEM and derive trust values and trust-based
scenarios by using individual trust metrics.

Constructors Creates a new instance of TrustAgent (see also Section 3.1.4).

public TrustAgent(ServiceBindingProvider serviceBindingProvider ,

Class <? extends DefaultTimeProvider > timeProviderClass) {...}

Important Methods

� setDirectTrustMetric: This method is defined by the ITrustAgent interface.
It sets the direct trust metric that is used to evaluate collected Experiences pre-
viously stored in the TEM and is based on the method setTrustMetric(...)

defined in the interface Trust of the TEM. The specified targetAgentType can
either be a service type (as given by Agent.getServiceType()), a service id (as
given by Agent.getServiceId()), or a String representation of the agent iden-
tifier (as given by Agent.getAgentIdentifier()). No matter which information
is actually given, the service type is extracted and the trust metric, given in the
form of a Transformer and Interpreter, is registered for the given combination
of service type, Facet, and TrustContext.

public <R extends RawData , T extends TransformedData , U extends TrustData >

void setDirectTrustMetric(String targetAgentType , Facet facet ,

TrustContext context , Transformer <R, T> transformer ,

Interpreter <T, U> interpreter) {...}

� addDirectTrustRawData: This method is defined by the ITrustAgent inter-
face. The method adds RawData that contain Experiences this TrustAgent gained
in Interactions with an Agent represented by the given targetAgentIdentifier

in the specified TrustContext and for the given Facet in the TEM.

public void addDirectTrustRawData(String targetAgentIdentifier ,

Facet facet , TrustContext trustContext , RawData rawData) {...}

66

3.6 Time Concepts

� getDirectTrustValue: This method is defined by the ITrustAgent interface.
The data used to calculate the trust value are Experiences previously stored in
the TEM by calling addDirectTrustRawData(...). The trust value is derived by
means of a trust metric set by calling setDirectTrustMetric(...).

public TrustData getDirectTrustValue(String targetAgentIdentifier ,

Facet facet , TrustContext trustContext) {...}

� getTrustBasedScenarios: This method is defined by the ITrustAgent interface.
As is the case with getDirectTrustValue(...), the ITrustScenarioGenerator

returned by this method is based on Experiences stored in the TEM.

public ITrustScenarioGenerator <?> getTrustBasedScenarios(String

targetAgentIdentifier , Facet facet , TrustContext trustContext) {...}

Usage This class should be extended by every agent in the system that is able to use
trust concepts.

3.6 Time Concepts

In this section, we present interfaces and classes in the TEMAS that enable agents to
use basic time concepts.

3.6.1 ITimeProvider

public interface ITimeProvider

This interface provides a method to request the current time. This information is re-
turned in form of a GregorianCalendar.

Important Methods

� getCurrentTime: Returns the current time in form of a GregorianCalendar.

public GregorianCalendar getCurrentTime ();

� initTimeProvider: Initializes this ITimeProvider.

public void initTimeProvider ();

Usage This interface is extended by the interface IAgent (as every agent should be
able to request the current time) and implemented by the class DefaultTimeProvider

and its extension, the TimeProviderICBased (see Section 3.6.3).

67

3 Multi-Agent System Concepts

3.6.2 DefaultTimeProvider

public class DefaultTimeProvider extends AgentComponent <IMessageHandlingAgent >

implements ITimeProvider

This class is an AgentComponent and an implementation of the interface ITimeProvider.
Agent can use the DefaultTimeProvider to request the current local system time. This
class should be extended by all application-specific ITimeProvider implementations that
are to be used by an Agent.

Constructors Creates a new instance of the DefaultTimeProvider. As this class is a
subclass of AgentComponent, the constructor of AgentComponent is called.

public DefaultTimeProvider(IMessageHandlingAgent owner) {...}

Important Methods

� getCurrentTime: Returns the current local system time as returned by new

GregorianCalendar().

public GregorianCalendar getCurrentTime () {...}

� initTimeProvider: This method is empty as nothing has to be initialized.

public void initTimeProvider () { }

Usage This class is extended by the TimeProviderICBased.

3.6.3 TimeProviderICBased

public class TimeProviderICBased extends DefaultTimeProvider

This extension of the DefaultTimeProvider and implementation of the ITimeProvider

gets the current time from a unique Agent, called the InternalCalendar, that provides
the global system time (see Section 3.6.4). The time is consequently communicated via
messages. For performance reasons and less message overhead, the InternalCalendar

sends, whenever the current time is updated, the current time to all registered instances
of TimeProviderICBased. The instances of TimeProviderICBased that receive this
message then cache the updated time. As long as the time is not updated, an instance
of TimeProviderICBased provides its owner with the cached time.

Constructors Creates a new instance of the TimeProviderICBased. As this class is a
subclass of AgentComponent, the constructor of AgentComponent is called.

public TimeProviderICBased(IMessageHandlingAgent owner) {...}

68

3.6 Time Concepts

Important Members

� cachedCurrentTime: Holds the current time in form of a GregorianCalendar

that is sent by the InternalCalendar whenever the time changes.

private GregorianCalendar cachedCurrentTime;

Important Methods

� getCurrentTime: Returns the current time that is stored in cachedCurrentTime,
or, if no cachedCurrentTime is set, the TimeProviderICBased requests the cur-
rent time from the InternalCalendar.

public GregorianCalendar getCurrentTime () {...}

� initTimeProvider: Registers this AgentComponent for time updates sent by the
system-wide unique InternalCalendar. From then on, this AgentComponent is
informed about the current time by the InternalCalendar every time the time
changes. This method has to be called once. This method is automatically called
when an Agent that uses the TimeProviderICBased as DefaulTimeProvider is
initialized.

public void initTimeProvider () {...}

� informCurrentTime: Updates cachedCurrentTime with the given currentTime.
The method is called when the InternalCalendar sends a message with an up-
dated current time.

public void informCurrentTime(GregorianCalendar currentTime) {...}

Usage Agents that want to use this implementation of DefaultTimeProvider have to
specify this class when calling the Agent’s constructor.

3.6.4 InternalCalendar

public class InternalCalendar extends Agent

This Agent represents a clock that provides a global system time to all Agents. There-
fore, there must not be more than one InternalCalendar in the entire system. The
InternalCalendar holds the current time in form of a GregorianCalendar. In con-
trast to the DefaultTimeProvider (see Section 3.6.2), the InternalCalendar mea-
sures the time in discrete time steps called ticks. Each time the InternalCalendar

executes its achieveGoals() method, a tick has passed and the current time hold in
the InternalCalendar is updated accordingly. More precisely, the current time is up-
dated by incrementing the prior current time by an application-specific number of sec-
onds. If desired, the InternalCalendar is able to skip a predefined time interval, e.g.,

69

3 Multi-Agent System Concepts

if the simulation should skip a specific time frame, e.g., the night. Before using the
InternalCalendar, it has to be created and initialized by calling the initialize(...)

method. Otherwise, if the InternalCalendar has not been initialized, it does not ex-
ist and an InternalCalendarNotInitializedException is thrown. For performance
reasons and less message overhead, the InternalCalendar sends, whenever the current
time is updated, the current time to all registered instances of TimeProviderICBased.

The InternalCalendar is implemented according to the singleton pattern. However,
this does not prevent the creation of multiple instances in a distributed system. This is
why the method initialize(...) must be called multiple times on different nodes.

Constructors The private constructor creates a new instance of InternalCalendar

and is called when calling the method initialize(...). The InternalCalendar’s
time theCalendar is set to simulationStartTime, thus defining the simulation start
time. The given secondsPerTick defines the amount of time theCalendar is incre-
mented by each tick. If avoidTimeInterval is true, the time interval specified by the
given avoidTimeIntervalStart (the hour of the start date to be skipped) and the given
avoidTimeIntervalDuration (the number of hours to skip) is skipped when increment-
ing the time.

private InternalCalendar(GregorianCalendar simulationStartTime ,

int secondsPerTick , boolean avoidTimeInterval ,

int avoidTimeIntervalStart , int avoidTimeIntervalDuration) {...}

Important Members

� theCalendar: Holds the current time in form of a GregorianCalendar that is
incremented by secondsPerTick (except if the time interval to skip is reached)
each tick.

private GregorianCalendar theCalendar;

� currentTick: Holds the current tick of the simulation.

private long currentTick;

� secondsPerTick: Holds the seconds theCalendar is incremented by each tick.

private static int secondsPerTick;

� registeredTimeProviders: Holds identifiers of registered instances of the class
TimeProviderICBased that are informed about current time updates.

private HashSet <String > registeredTimeProviders;

70

3.6 Time Concepts

Important Methods

� initialize: This method needs to be called before accessing the InternalCalendar
in order to instantiate and initialize it. The method calls the private constructor
of InternalCalendar with a given simulation start time simulationStartTime,
the secondsPerTick the time is incremented by in each tick, and whether or not
a specific time interval should be skipped.

public static void initialize(GregorianCalendar simulationStartTime ,

int secondsPerTick , boolean avoidTimeInterval ,

int avoidTimeIntervalStart , int avoidTimeIntervalDuration) {...}

� getInstance: Returns the singleton instance of InternalCalendar. However,
before first calling this method, the InternalCalendar has to be initialized, else
an InternalCalendarNotInitializedException is thrown.

public static synchronized InternalCalendar getInstance () {...}

� registerForCurrentTimeUpdates: Adds the given timeProviderId, i.e., the
string representation of an TimeProviderICBased’s owner’s AgentIdentifier, to
registeredTimeProviders. From then on, the registered TimeProviderICBased

does not need to request the current time manually by calling getCalendar() but is
informed every time the InternalCalendar updates the global system time. The
InternalCalendar calls this method when it receives a message with primitive
“registerForCurrentTimeUpdates”.

public void registerForCurrentTimeUpdates(String timeProviderId) {...}

� getCalendar: Returns the current time. However, the current time should not
be requested by a method call but by a message with primitive “getCalendar”.

public GregorianCalendar getCalendar () {...}

� getCurrentTick: Returns the number of ticks since the start of the simulation.

public long getCurrentTick () {...}

� getSecondsPerTick: Returns the seconds that theCalendar is incremented by
in each tick.

public static int getSecondsPerTick () {...}

� ceilToNextTick: Returns the Date for the next tick in the scheme of discrete
time steps after the given date or date itself if it corresponds to a Date that fits
into the scheme.

public static Date ceilToNextTick(Date date) {...}

71

3 Multi-Agent System Concepts

� tickAfter: Returns the Date for the next tick after date. Again, the returned
Date fits into the scheme of discrete time steps.

public static Date tickAfter(Date date) {...}

Usage Agents that want to request the current time from the InternalCalendar

should set the TimeProviderICBased (see Section 3.6.3) as their DefaultTimeProvider,
which uses the InternalCalendar to request and cache the current time.

3.6.5 InternalCalendarNotInitializedException

public class InternalCalendarNotInitializedException extends RuntimeException

This extension of RuntimeException is thrown when the InternalCalendar is tried to
be accessed without having been initialized before.

3.6.6 TimeInterval

public class TimeInterval implements Serializable , Iterable <Date >

This class defines a time interval of discrete points in time with a specified start date
and end date. The discretization between the start and end date is given by the
InternalCalendar’s scheme of discrete time steps, called ticks (see Section 3.6.4). The
time interval is iterable.

Constructors

� Creates a new instance of TimeInterval with a given startDate and endDate.

public TimeInterval(Date startDate , Date endDate) {...}

� If only one date is given, a new instance of TimeInterval comprising only one
point in time, i.e., the start and end date are the same, is created.

public TimeInterval(Date date) {...}

� This class also provides a constructor for creating a so-called empty TimeInterval

(with no point in time included). In this case, start and end date are set to null.

public TimeInterval () {...}

Important Members

� startDate: Holds the interval’s start date.

private final Date startDate;

� endDate: Holds the interval’s end date.

private final Date endDate;

72

3.7 YellowPages

Important Methods

� getStartDate: Returns the startDate of this TimeInterval.

public Date getStartDate () {...}

� getEndDate: Returns the endDate of this TimeInterval.

public Date getEndDate () {...}

� containsDate: Returns true if the given date is contained in this TimeInterval.

public boolean containsDate(Date date) {...}

� containsTimeInterval: Checks whether otherInterval is fully contained in
this TimeInterval. If otherInterval is an empty interval, it is contained in this
TimeInterval. Otherwise, otherInterval is contained in this interval if and only
if its start date is not before this interval’s start date and its end date is not after
this interval’s end date.

public boolean containsTimeInterval(TimeInterval otherInterval) {...}

� overlaps: Returns true if the given TimeInterval otherInterval overlaps with
this TimeInterval.

public boolean overlaps(TimeInterval otherInterval) {...}

� getLength: Returns the number of discrete points in time between the startDate
(included) and endDate (included).

public int getLength () {...}

� get: Returns the i-th date within this TimeInterval, e.g., get(0) returns the
startDate.

public Date get(int i) {...}

3.7 YellowPages

Sometimes it is necessary for a system participant to find out which agents of a spe-
cific type exist in the system. This information can often be requested from a central
knowledge source similar to the well known yellow pages. The MASConcepts4TEM pro-
vides an Agent that is responsible for this functionality, the YellowPages. Despite the
YellowPages is a central facility and thus might seem to be a source of single point of
failure, in future work, the TEM provides mechanisms to identify situations in which
mandatory services are unavailable and restart such services on more reliable nodes.
Please note that the YellowPages are an orthogonal concept to the discovery func-
tionality of OCµ (see Section 2.6). While the discovery functionality allows to identify
Agents that are bound to specific service bindings, the YellowPages allows to identify
Agents that belong to a specific type.

73

3 Multi-Agent System Concepts

3.7.1 YellowPages

public class YellowPages extends Agent

The YellowPages is an Agent which provides information about which Agents in the
system are of a specific requested type, e.g., which agents implement the interface
ITrustAgent. New Agents are automatically registered with the YellowPages by send-
ing YellowPagesData (see Section 3.7.2) to the YellowPages when the Agent’s method
initAgent(...) is called.

Constructors Creates a new YellowPages Agent.

public YellowPages () {...}

Important Members

� registeredAgentData: Holds all YellowPagesData of Agents registered with
the YellowPages.

private Set <YellowPagesData > registeredAgentData;

Important Methods

� getAgentIDsOfType: Returns the AgentIdentifiers of Agents that are regis-
tered with the YellowPages and are of the type clazz.

public Set <AgentIdentifier > getAgentIDsOfType(Class <? extends IAgent >

clazz) {...}

� registerAgentData: Dependent on the given argument, this method registers
either a Collection of YellowPagesData . . .

public void registerAgentData(Collection <YellowPagesData >

agentDataToRegister) {...}

. . . or a single YellowPagesData with the YellowPages.

public void registerAgentData(YellowPagesData agentDataToRegister) {...}

� unregisterAgentData: Removes an Agent’s YellowPagesData from the regis-
tered YellowPagesData, i.e., unregisters the Agent.

public void unregisterAgentData(YellowPagesData agentDataToUnregister)

{...}

� getYellowPagesDataForAgentId: Returns YellowPagesData that belong to
Agents that are identified by the given AgentIdentifiers. Returns an empty list
if there is no Agent registered with the YellowPages that can be identified with
the given AgentIdentifiers.

74

3.7 YellowPages

public List <YellowPagesData > getYellowPagesDataForAgentId(

List <AgentIdentifier > agentIds) {...}

� getYellowPagesDataForServiceId: Gets the YellowPagesData that belong to
Agents that are identified by the given service ids. Returns an empty list if there
is no Agent registered with the YellowPages that can be identified with the given
service ids.

public List <YellowPagesData > getYellowPagesDataForServiceId(List <String >

serviceIds) {...}

Usage Registering and unregistering Agents as well as requesting other information
from the YellowPages should be handled via messages and the corresponding primitives
of the class YellowPages.

3.7.2 YellowPagesData

public class YellowPagesData implements Serializable

This class represents data of an Agent which is used to register the Agent with the
YellowPages.

Constructors Creates new data used to register with the YellowPages.

public YellowPagesData(Class <?> theClazz , AgentIdentifier theAgentIdentifier)

{...}

Important Members

� classOfRepresentedAgent: Holds the class of the Agent that registers with the
YellowPages.

private final Class <?> classOfRepresentedAgent;

� identifierOfRepresentedAgent: Holds the Agent’s AgentIdentifier.

private final AgentIdentifier identifierOfRepresentedAgent;

Important Methods

� getClazz: Gets the class of the Agent this YellowPagesData belongs to.

public Class <?> getClazz () {...}

� getAgentIdentifier: Gets the Agent’s AgentIdentifier this YellowPagesData

belongs to.

public AgentIdentifier getAgentIdentifier () {...}

75

3 Multi-Agent System Concepts

Usage When an Agent’s initAgent(...) method is called, the Agent automatically
creates an instance of YellowPagesData and registers with the YellowPages.

76

4 Deploying TEMAS-based Applications

The TEMAS is a combination of the TEM and additional concepts and functionality
consolidated in the MASConcepts4TEM (see Figure 12). While it is possible to deploy
your applications on the basis of the TEM in a local or distributed runtime environment
called TEM execution environment, you might be interested in testing your applications
in a runtime environment, called temLight simulation environment, that is deployed
locally and totally abstracts from infrastructural considerations like nodes. In the fol-
lowing, we present these two runtime environments in detail (see Section 4.1), explain
how to initialize Agents dependent on the runtime environment you want to use (see
Section 4.2), introduce the different execution models available in the runtime environ-
ments (see Section 4.3), give an overview of agent scheduling in the TEMAS depending
on the used runtime environment (see Section 4.4), explain how to bootstrap your ap-
plications (see Section 4.5), show how to configure the TEM (see Section 4.6), and give
some information on how to set up an Eclipse project when using the TEMAS (see
Section 4.7).

MASConcepts4TEM

temLight Simulation
Environment

Trust-Enabling Multi-Agent System

Trust-Enabling Middleware

OCµ
TEM Execution
Environment

Figure 12: The TEMAS architecture

4.1 TEM and temLight: Two Possible Ways to Run Your Applications

As mentioned above, there are two possible ways to run a TEMAS-based application:
The first possibility is to run the application on the basis of the execution environment
provided by an instance of the TEM, called TEM execution environment. Such an
environment consists of OcmNodes, Services, and Agents. This instance can be locally
or distributively executed so that all Agents, Services, and OcmNodes are hosted either
on a single machine or multiple computers. In such a local or distributed TEM execution
environment, at least a single OcmNode must be run per computer. Basic mechanisms
like agent scheduling, the Trust Metric Infrastructure, message transport, and discovery
of Services and Agents on the basis of service bindings are realized by the TEM (see
Table 1 and Section 2.6). The TEM’s message transport serializes a message’s payload

77

4 Deploying TEMAS-based Applications

on the sender’s side and deserializes it afterwards on the recipient’s side.

The second possibility is to run the application without a TEM instance in the tem-
Light simulation environment (see Table 2). Although there is no actively running
instance of the TEM and thus no OcmNodes, the temLight simulation environment pro-
vides the TEM’s Trust Metric Infrastructure. Agent scheduling, discovery on the basis
of service bindings, and message transport is, however, realized by the temLight simula-
tion environment instead of the TEM execution environment. Regarding the temLight’s
message transport, the object references are sent from one agent to another.

In the TEM execution environment as well as the temLight simulation environment,
the discovery of Services and Agents is implemented in an asynchronous fashion. Note
that the temLight simulation environment always discovers all agents that are bound
to at least one of the specified service bindings, while the TEM execution environment
might only discover a subset of these agents in case a timeout occurs.

Scheduling Trust Metric Message Agent
Nodes

of Agents Infrastructure Transport Discovery

temLight
YES

TEM × × × ×

Table 1: TEM execution environment: responsibilities

Scheduling Trust Metric Message Agent
Nodes

of Agents Infrastructure Transport Discovery

temLight × × ×
NO

TEM ×

Table 2: temLight simulation environment: responsibilities

Figure 13 summarizes the most important interfaces defined by the TEM and the
MASConcepts4TEM. Here, the term “interface” denotes generic architectures or func-
tionality that is provided by the TEMAS and can be used by TEMAS-based applica-
tions out of the box. Interfaces highlighted in blue are interfaces of the TEM that are
redefined by interfaces provided by the MASConcepts4TEM, meaning that the inter-
faces are adjusted to the needs of a MAS. In such cases, it is recommended to use the
refined interfaces. Interfaces highlighted in green indicate those that provide function-
ality that can be easily used by your applications. The TEM basically defines five ma-
jor interfaces: the TrustServiceConnector, the ServiceConnector, Discovery func-
tionality, the FailureDetectorService, and the TrustMetricInfrastructure. Apart
from the FailureDetectorService and the basic architecture for trust metrics pro-
vided by the TrustMetricInfrastructure, the MASConcepts4TEM use and redefine
all of these interfaces. So if you want to detect malfunctioning nodes and services
you have to directly use the FailureDetectorService, and if you want to specify
your own trust metrics you have to do this according to the architecture defined by

78

4.2 Initializing Agents

the TrustMetricInfrastructure. The Agent uses and redefines the TEM’s interfaces
ServiceConnector (used to send and receive messages) and Discovery (used to discover
other Agents and Services that are bound to specific service bindings). The Agent sim-
plifies access to this functionality as shown in Section 3.1.4. The discovery functionality
is realized separately in the TEM execution environment and the temLight simulation
environment. The TrustAgent extends the interface provided by the Agent by the func-
tionality to configure trust metrics, gather experiences, and calculate trust values as well
as trust-based scenarios. This functionality is based on functionality provided by the
TrustServiceConnector and the generic architecture for trust management provided
by the TrustMetricInfrastructure.

Figure 13: Relevant interfaces of the TEMAS defined by the TEM and the
MASConcepts4TEM

4.2 Initializing Agents

The most important concepts for agent initialization are depicted in Figure 14. In-
dependently of whether the TEM execution environment or temLight simulation envi-
ronment is used, Agents have to be initialized using the AgentInitializer (see Sec-
tion 4.2.1). In order to take the characteristics of the underlying runtime environment
into account, the AgentInitializer makes use of an IConcreteAgentInitializer.
The TEMAS provides two IConcreteAgentInitializers out of the box, namely the

79

4 Deploying TEMAS-based Applications

TEMAgentInitializer (see Section 4.2.3) and the TemLightAgentInitializer (see Sec-
tion 4.2.4). In case of the TEM execution environment, the AgentInitializer has to be
initialized with the TEMAgentInitializer. If the temLight simulation environment is
used, the AgentInitializer must be initialized with the TemLightAgentInitializer.
The TEMAgentInitializer automatically starts new OcmNodes and registers Agents with
them, whereas the TemLightAgentInitializer initializes agents independently of un-
derlying OcmNodes because these do not exist in the temLight simulation environment.
Just like the TEMAgentInitializer, the TemLightAgentInitializer ensures that each
TrustAgent can make use of the TEM’s Trust Metric Infrastructure.

Figure 14: Concepts for initializing agents

4.2.1 AgentInitializer

public abstract class AgentInitializer

The AgentInitializer is the class that is responsible for initializing Agents. In order to
initialize Agents, it uses an implementation of the interface IConcreteAgentInitializer
(see Section 4.2.2). This is necessary since Agents that run in the TEM execution en-
vironment have to be initialized differently than Agents that run in the temLight sim-
ulation environment. Initializing Agents using the AgentInitializer is mandatory in
order to be able to send and receive messages and use the trust concepts provided by
the TEM.

Important Methods

� initialize: Initializes the AgentInitializer with an IConcreteAgentInitializer.
The IConcreteAgentInitializer is then used to initialize all Agents in the sys-
tem.

public static void initialize(IConcreteAgentInitializer ai) {...}

80

4.2 Initializing Agents

� initializeAgent: Initializes the given agent using the implementation of the spec-
ified IConcreteAgentInitializer. initData is used to initialize agent and might
be null if no such data is required.

public static void initializeAgent(Agent agent ,

Map <String , Serializable > initData) {...}

Usage Before use, the AgentInitializer has to be initialized once when starting the
system with an implementation of the IConcreteAgentInitializer that is to be used
to initialize agents:

// in this example , we use the TEMAgentInitializer

AgentInitializer.initialize(new TEMAgentInitializer ());

In this example, the agents are deployed in the TEM execution environment so that the
TEMAgentInitializer is used. From then on, every Agent implementation has to be
initialized as follows:

// create new agent

SomeAgent a = new SomeAgent ();

// initialize the agent afterwards (do not forget that!)

AgentInitializer.initializeAgent(a, null);

Note that initializing agents after creation is mandatory.

4.2.2 IConcreteAgentInitializer

public interface IConcreteAgentInitializer

This interface provides a method to actually initialize an Agent.

Important Methods

� initializeAgent: Initializes the given agent with initData. initData might be
null if no such data is required.

public void initializeAgent(Agent agent , Map <String , Serializable > initData);

Usage This interface is extended by the TemLightAgentInitializer (see Section 4.2.4)
and the TEMAgentInitializer (see Section 4.2.3).

4.2.3 TEMAgentInitializer

public class TEMAgentInitializer implements IConcreteAgentInitializer

This class is an implementation of the interface IConcreteAgentInitializer (see Sec-
tion 4.2.2). It can be used to initialize Agents in a local TEM execution environment.
Agents are registered and started on automatically created OcmNodes (see Section 2.1).

81

4 Deploying TEMAS-based Applications

Constructors Creates a new instance of TEMAgentInitializer. The given parameter
nbOfAgentsPerNode specifies how many Agents are registered and started on an OcmNode

before a new OcmNode is created.

public TEMAgentInitializer(int nbOfAgentsPerNode) {...}

Important Methods

� initializeAgent: Registers and starts the agent on an OcmNode. initData is used
to initialize the agent by calling its method initAgent(initData) and might be
null if no such data is required. The TEM automatically calls the agent’s init

method. If the number of agents running on the current node equals the specified
maximum number of agents per node, a new node is created.

If the TEMAgentInitializer is set as IConcreteAgentInitializer when initializ-
ing the AgentInitializer (see Section 4.2.1), this method is automatically called
when the method initializeAgent(...) is called on the AgentInitializer.

public void initializeAgent(Agent agent , Map <String , Serializable > initData)

{...}

Usage This AgentInitializer should be used to initialize Agents if the system is to
be executed in a local TEM execution environment. For an example, see Section 4.2.1. If
you want to use the distributed TEM execution environment, the TEMAgentInitializer
has to be modified since, in a distributed TEM execution environment, only a single
OcmNode per Java VM is allowed (see Section 4.3).

4.2.4 TemLightAgentInitializer

public class TemLightAgentInitializer implements IConcreteAgentInitializer

This class is an implementation of the interface IConcreteAgentInitializer (see Sec-
tion 4.2.2). It can be used to initialize Agents in the temLight simulation environment.

Important Methods

� initializeAgent: Initializes underlying concepts that enable message transport in
the temLight simulation environment, the underlying trust functionality provided
by the TEM if agent is a TrustAgent, and calls the agent’s init method. Again,
initData is used to initialize the agent by calling its method initAgent(initData)

and might be null if no such data is required.

If the TemLightAgentInitializer is set as IConcreteAgentInitializer when
initializing the AgentInitializer (see Section 4.2.1), this method is automatically
called when the method initializeAgent(...) is called on the AgentInitializer.

public void initializeAgent(Agent agent , Map <String , Serializable > initData)

{...}

82

4.3 Execution Models

Usage This AgentInitializer should be used to initialize Agents if the system is to
be executed in the temLight simulation environment. For an example, see Section 4.2.1.

4.3 Execution Models

Depending on whether an application is run in the TEM execution environment or tem-
Light simulation environment, there are two possible execution models: The synchronous
execution model ensures that, in each time step, the Agents’ achieveGoals() method
is called one after another, so that an Agent’s achieveGoals() method is called if and
only if its predecessor’s achieveGoals() method has finished processing in this time
step, i.e., if it returned void. This execution model is available for both TEM execu-
tion environment and temLight simulation environment. In case of the TEM execution
environment, synchronous execution is realized by an additional agent that repeatedly
informs the other agents to call their achieveGoals() method by sending an corre-
sponding message to them (see Section 4.4). The asynchronous execution model allows
concurrent execution of agents. This execution model is only available in the TEM ex-
ecution environment. The Agents’ achieveGoals() method is triggered directly by the
TEM with a frequency as stated by Agent’s method getInterval().

Table 3 states the availability of the execution models depending on whether the
TEM or temLight simulation environment is used. The TEM execution environment
can be deployed locally on a single or in a distributed manner on multiple computers.
The temLight simulation environment can only be deployed on a single computer. If
the TEM execution environment is deployed locally, multiple nodes can be hosted on a
single machine. The concrete number depends on the available resources. If the TEM
execution environment is deployed in a distributed manner, it is still possible to host
multiple nodes on a single machine, but it is mandatory that each node is started in its
own JVM.

local TEM distributed TEM temLight

Synchronous × × ×
Asynchronous × ×
Number of Nodes > 0 per computer 1 per JVM and computer > 0 per computer

Table 3: Execution models: the TEM execution environment can be deployed on a single
(local TEM) or multiple (distributed TEM) computers, whereas the temLight
simulation environment (temLight) can only be deployed locally.

4.4 Agent Scheduling in the TEMAS

As explained in Section 4.3, there are several ways to schedule agents in the TEMAS. If
your system should be deployed in the TEM execution environment in an asynchronous
fashion, the scheduling concepts presented in this section are irrelevant. In such a setting,
the TEM execution environment automatically schedules your agents by periodically

83

4 Deploying TEMAS-based Applications

calling the agents’ step method (see Section 2.4 and Figure 5). Otherwise, in case of
a synchronous execution model in the TEM execution environment, you have to use
the SyncTEMSchedulerAdapter, and, in case of a synchronous execution model in the
temLight simulation environment, you have to use the SyncTemLightSchedulerAdapter.
In the following subsections, we introduce the concepts necessary for the scheduling of
agents. These are also depicted in Figure 15.

Figure 15: Concepts for agent scheduling

4.4.1 AgentScheduler

public abstract class AgentScheduler <T>

This is an abstract class that allows to schedule Agents in a sequential fashion. The
AgentScheduler provides the option to schedule a list of Agents before another list of
Agents. Moreover, it can be specified whether or not these two lists of Agents should
be shuffled initially and/or periodically in order to schedule Agents in changing order.

Generic Type Parameters

� T: The type of information used to represent and schedule an Agent.

Constructors Creates a new instance of an AgentScheduler. Agents contained in the
list agents1 are scheduled before agents contained in the list agents2. The boolean

parameters indicate whether the corresponding list of agents should be shuffled initially
before the first call of triggerAgents() and/or periodically whenever triggerAgents()
is called.

public AgentScheduler(boolean shuffle1Initially , boolean shuffle1Periodically ,

boolean shuffle2Initially , boolean shuffle2Periodically , List <T> agents1 ,

List <T> agents2) {...}

84

4.4 Agent Scheduling in the TEMAS

Important Members

� agents1: A list of agents that should be scheduled before agents contained in
agents2 are scheduled.

protected List <T> agents1;

� agents2: A list of agents that should be scheduled after all agents contained in
list agents1 were scheduled.

protected List <T> agents2;

� shuffle1Periodically: Indicates whether or not to shuffle agents1 whenever the
method triggerAgents() is called.

protected boolean shuffle1Periodically;

� shuffle2Periodically: Indicates whether or not to shuffle agents2 whenever the
method triggerAgents() is called.

protected boolean shuffle2Periodically;

Important Methods

� triggerAgents: Schedules all agents contained in agents1 and agents2. Agents
contained in agents1 are scheduled before agents contained in agents2. Lists are
shuffled before the agents are scheduled as indicated by shuffle1Periodically

and shuffle2Periodically. Details on how the agents are scheduled depend on
the concrete implementation.

public void triggerAgents () {...}

� addAgentAtRuntime: Adds an agent to the AgentScheduler at runtime. Note
that the agent is added to the end of the list agents1.

public void addAgentAtRuntime(T agentToAdd) {...}

� removeAgentAtRuntime: Removes an agent from the AgentScheduler at run-
time. Note that the agent is removed from agents1. If it was not contained in
agents1, the list is left unchanged.

public void removeAgentAtRuntime(T agentToRemove) {...}

Usage This class is extended by the SyncTemLightScheduler (see Section 4.4.3) and
the SyncTEMSchedulerComponent (see Section 4.4.4) which use different ways of schedul-
ing the agents.

85

4 Deploying TEMAS-based Applications

4.4.2 AgentSchedulerAdapter

public abstract class AgentSchedulerAdapter extends AgentComponent <Agent >

The abstract class AgentSchedulerAdapter is an AgentComponent and thus able to
send and receive messages. Each AgentSchedulerAdapter has a form of reference to
an underlying AgentScheduler that actually takes over responsibility for scheduling
agents. The AgentSchedulerAdapter’s purpose is to hide the differences of variants of
the AgentScheduler (see Section 4.4.3 and Section 4.4.4) as best as possible. Each sub-
class of AgentScheduler should thus bring its own concrete AgentSchedulerAdapter.
Thus, it is possible to easily test different implementations of an AgentSchedulers by
replacing the corresponding concrete AgentSchedulerAdapter.

Constructors Creates a new AgentSchedulerAdapter with the given owner. The
owner might be null if the concrete AgentSchedulerAdapter does not have to send
or receive messages. When creating a new AgentSchedulerAdapter a form of reference
to an underlying AgentScheduler must be set.

public AgentSchedulerAdapter(Agent owner) {...}

Important Methods

� addAgentAtRuntime: Informs the underlying AgentScheduler to add the agent
ra. This means that the AgentSchedulerAdapter somehow calls the underlying
AgentScheduler’s method addAgentAtRuntime(ra).

public abstract void addAgentAtRuntime(IAgent ra);

� removeAgentAtRuntime: Informs the underlying AgentScheduler to remove
the agent ra, i.e., this AgentSchedulerAdapter somehow calls the underlying
AgentScheduler’s method removeAgentAtRuntime(ra).

public abstract void removeAgentAtRuntime(IAgent ra);

Usage This class is extended by the TemLightSchedulerAdapter (see Section 4.4.3)
and the SyncTEMSchedulerAdapter (see Section 4.4.4) which both build upon different
implementations of AgentScheduler.

4.4.3 Scheduling in the temLight Simulation Environment

The temLight simulation environment provides synchronous scheduling of agents on the
basis of the TemLightSchedulerAdapter that builds upon a SyncTemLightScheduler.
The SyncTemLightScheduler is a concrete implementation of AgentScheduler. It di-
rectly calls the achieveGoals() method of registered Agents in the order defined by the
AgentScheduler.

86

4.4 Agent Scheduling in the TEMAS

When the temLight simulation environment is to be deployed in combination with
Repast Simphony, an additional class, called RepastScheduler, has to be defined in
the Repast Simphony Project. The RepastScheduler class is needed as Repast can not
schedule methods in classes that are defined outside the Repast Simphony Project. The
RepastScheduler can be defined as follows:

// Wrapper class to enable scheduling in the temLight simulation environment

// in combination with Repast Simphony.

public class RepastScheduler {

// An instance of the TemLightSchedulerAdapter used for scheduling.

private final TemLightSchedulerAdapter mySchedulerAdapter;

public RepastScheduler(TemLightSchedulerAdapter mySchedulerAdapter) {

this.mySchedulerAdapter = mySchedulerAdapter;

}

// Triggers the underlying TemLightSchedulerAdapter

public void triggerAgents () {

this.mySchedulerAdapter.triggerAgents ();

}

}

The idea is that Repast periodically triggers the method triggerAgents() of an in-
stance of the RepastScheduler, which in turn calls the triggerAgents() method of
the underlying TemLightSchedulerAdapter. Scheduling can then be set up in Repast
in the following way:

// Setting up agent scheduling in Repast Simphony

ISchedule schedule = RunEnvironment.getInstance (). getCurrentSchedule ();

ScheduleParameters stepParams = ScheduleParameters.createRepeating (1d, 1d,

ScheduleParameters.FIRST_PRIORITY);

// Create a TemLightSchedulerAdapter

TemLightSchedulerAdapter = new TemLightSchedulerAdapter(null , true , true ,

false , false , agents1 , agents2);

// Create a RepastScheduler

RepastScheduler repastScheduler = new RepastScheduler(mySchedulerAdapter);

// Inform Repast to schedule the repastScheduler by calling "triggerAgents"

schedule.schedule(stepParams , repastScheduler , "triggerAgents");

4.4.4 Scheduling in the TEM Execution Environment

The TEM execution environment provides synchronous scheduling of agents on the basis
of the SyncTEMSchedulerAdapter that builds upon an instance of the SyncTEMScheduler.
The SyncTEMScheduler is an Agent that incorporates a SyncTEMSchedulerComponent

– a concrete implementation of the AgentScheduler – to schedule Agents. Synchronous
scheduling is realized in the TEM execution environment as explained in the follow-
ing. In synchronous scheduling mode, the TEMAS ensures that – apart from the
SyncTEMScheduler – calling the Agent’s step() method has no effect. Whenever the
SyncTEMScheduler’s step() method is triggered by the TEM execution environment’s
inherent asynchronous scheduling, it uses its SyncTEMSchedulerComponent to sequen-
tially call the achieveGoals() method of registered Agents in the order defined by the
AgentScheduler.

87

4 Deploying TEMAS-based Applications

Synchronous scheduling is set up in the TEM execution environment as follows:

// Create a TEMSchedulerComponent which automatically creates

// its own SyncTEMScheduler

SyncTEMSchedulerComponent temSC = new SyncTEMSchedulerComponent(true , true ,

false , false , agents1Identifier , agents2Identifier);

Note that the SyncTEMSchedulerComponent creates a SyncTEMScheduler on its own
and that there must be exactly one SyncTEMSchedulerComponent in a synchronous
TEM execution environment.

4.5 Bootstrapping

There are different ways to bootstrap a system that is deployed on the basis of the tem-
Light simulation environment or the TEM execution environment. In case a TEMAS-
based application is to be deployed locally, bootstrapping is rather straight forward:
new nodes are created as needed on which services and agents can be started as desired.
This is possible since all nodes run on a single machine. When using the TEM execu-
tion environment in a distributed environment, there are generally two ways for boot
strapping:

1. Every node is responsible for its services: Start the service on their respective
nodes. When starting an OcmNode all required services can be registered and
started programmatically on it, using the registerService and startService

methods.

2. One node starts the services for all nodes: When using a single node to
initialize all services, an OcmNode provides the interface RemoteControl for meth-
ods to remotely register, start, stop and unregister services on other nodes. The
OcmNode provides the method getRemoteControl() to obtain this interface.

In both cases, the TEMAS ensures that the agents’ achieveGoals() method is not
triggered until the agent receives a message with the primitive enableStepMethod.

RemoteControl

public interface RemoteControl

The interface to handle all remote service operations.

Important methods

� registerServiceOnRemoteNode: This method instantiates a service by reflec-
tion on the target node identified by the given node id and registers the service
on it. The given RemoteResult object is notified of the result of the remote regis-
tration, either success or failure. This notification happens asynchronously, since
messages have to be sent to the target node. The generated service id is returned.
There exist several versions of the method, where some parameters can be omitted.
The most detailed method is:

88

4.5 Bootstrapping

public <I extends Map <String , Serializable > & Serializable >

String registerServiceOnRemoteNode(

String fullyQualifiedClassName , String serviceType , I initialData ,

Serializable [] constructorData , String destinationNodeId ,

RemoteResult remoteResult

);

The parameters in detail:

– fullyQualifiedClassName: The fully qualified class name of the service to
instantiate.

– serviceType: The type of the service. This is needed to create the service id.
If omitted (by calling the respective method), the fullyQualifiedClassName
parameter is used as type. The type returned by the instantiated service must
be identical to the one given here, otherwise the registration fails.

– initialData: The initialData map for the init method. This can be null.
The type I of this parameter expects the map to be serializable.

– constructorData: The parameter of the constructor to call. If no construc-
tor with the given parameters is found, the registration fails. There can only
be objects as constructor parameters, i.e., no primitive types. Their respec-
tive object classes have to be used instead. If this parameter is omitted (by
calling the respective method), the default constructor is used.

– destinationNodeId: The id of the node, where the service shall be started.

– remoteResult: The result object to notify, whether the registration was a
success or not.

� startServiceOnRemoteNode: This method starts a registered service on a re-
mote node. The service id that was created by the registerServiceOnRemoteNode
method has to be used for this method. The result of the operation, whether the
start was successful or not, is notified to the RemoteResult object.

public void startServiceOnRemoteNode(String remoteServiceId ,

String destinationNodeId , RemoteResult remoteResult);

� stopServiceOnRemoteNode: This method stops a started service on a remote
node. The service id that was created by the registerServiceOnRemoteNode

method has to be used for this method. The result of the operation, whether the
stop was successful or not, is notified to the RemoteResult object.

public void stopServiceOnRemoteNode(String remoteServiceId ,

String destinationNodeId , RemoteResult remoteResult);

� unregisterServiceOnRemoteNode: This method unregisters a stopped service
on a remote node. The service id to use for this method is the one created by
registerServiceOnRemoteNode. The result of the operation, whether the unreg-
ister was successful or not, is notified to the RemoteResult object.

89

4 Deploying TEMAS-based Applications

public void unregisterServiceOnRemoteNode(String remoteServiceId ,

String destinationNodeId , RemoteResult remoteResult);

RemoteResult

public interface RemoteResult

This interface is used for notification of the result of remote operations. Every application
has to write its own RemoteResult object to react to the events.

Important methods

� remoteActionSucceded: When a remote operation succeeded, this method is
asynchronously called. It provides the service id of the service that was remotely
registered, started, stopped or unregistered as well as the node id of the node,
where that operation took place.

public void remoteActionSucceded(String serviceId , String destinationNodeId);

� remoteActionFailed: If a remote operation failed, this method is asynchronously
called. Beside the service id and node id, it also provides the Exception that lead
to the failure of the operation.

public void remoteActionSucceded(String serviceId , String destinationNodeId ,

Exception exception);

Usage As an example, assume we have a Service with fully qualified class name
de.octrust.service.MyService that we want to start on node2. The Service requires
an Integer as constructor parameter but no initialData for the init(...) method.

public class MyService implements Service {

public MyService(Integer myInt} {

...

}

...

}

Note that it is important to use the Integer class instead of the int primitive type.
Otherwise, the instantiation of the service will not work because Java reflection is used.
We now also need a RemoteResult object to asynchronously receive the result of the
remote registration.

public class MyResult implements RemoteResult {

public void remoteActionSucceded(String serviceId) {

System.out.println("It worked!");

}

public void remoteActionFailed(String serviceId , Exception exception) {

System.out.println("Oh no , registering failed!");

90

4.6 Configuring OCµ and the TEM

exception.printStackTrace ();

}

}

Under the assumption that we already have an instance of a node named localNode,
we can now obtain the RemoteControl interface from the OcmNode and call the method
registerServiceOnRemoteNode(...) on it.

RemoteControl control = localNode.getRemoteControl ();

RemoteResult myResult = new MyResult ();

control.registerServiceOnRemoteNode(

"de.octrust.service.MyService",

"de.octrust.service.MyService",

null ,

"node2",

new Serializable []{2} ,

myResult

);

MyService is then initialized with myInt = 2 and registered on node2. After some time,
the RemoteResult object is notified whether or not the operation was successful.

4.6 Configuring OCµ and the TEM

The TEM can be configured by the use of three different configuration files:

� ocm.properties: allows to configure OCµ-specific properties

� tem.properties: allows to configure trust-related properties

� log4j.xml: allows to configure the logging framework used by the TEM

In the following sections, we have a closer look at these configuration files.

4.6.1 ocm.properties

The ocm.properties file defines all properties that are specific to OCµ. They include
the following properties:

� Properties for JXTA

– ocm.jxta.tcp.port: Defines the port on which JXTA listens for incoming
messages.

– ocm.jxta.principal, ocm.jxta.password: A user name and password in-
ternally used by JXTA, these should not be changed.

– ocm.transportConnector: Defines which TransportConnector to use when
invoking the TEM with the provided TEM.java. If using a self written main
method, this property has no effect.

� Properties for the FailureDetector

91

4 Deploying TEMAS-based Applications

– ocm.failuredetector.enabled: This property defines whether or not a TEM
node should start the FailureDetectorService on creation. If set to true,
the failure detector is started, if set to false it is not.

– ocm.failuredetector.amount monitoring: Defines the minimal number
of other nodes this node is monitoring.

– ocm.failuredetector.amount monitored: Defines the number of other
nodes this node wants to be monitored by.

– ocm.failuredetector.heartbeat interval: Defines the maximal time in mil-
liseconds which can elapse between two heartbeats until a heartbeat is con-
sidered delayed or lost.

– ocm.failuredetector.heartbeat samplesize: Defines the amount of heart-
beat samples to use for the failure calculation.

– ocm.failuredetector.threshold: Defines the threshold, when the probabil-
ity of a node failure is high enough to be sure enough to warrant a broadcast
that the node has failed. This is a value between 0 and 1.

– ocm.failuredetector.waitingtime: Defines the time in seconds between
broadcasts to find suitable monitors in case the required number of monitors
were not found in one period.

4.6.2 tem.properties

The tem.properties file includes all properties that are trust-related.

� tem.persistence.database: With this property the database that stores all ex-
periences can either be file based (file) or an in-memory database (memory).

� Properties for the reputation metric, all values are between 0 and 1:

– tem.reputation.maxAdjustment: The maximal change of the weight per
transaction (θ in [4]), a value between 0 and 1.

– tem.reputation.positiveThreshold: Threshold for positive weight adjust-
ments (τ). When a direct experience differs between ones own experience and
the one given by a neighbor by a maximum of this amount (a value between
0 and 1), then the weight gets increased and the opinion of that interaction
partner is weighted higher in the next reputation request.

– tem.reputation.negativeThreshold: Threshold for negative weight ad-
justments (τ∗). When the direct experience differs between ones own expe-
rience and the one given by a neighbor more than by the aforementioned
amount but less than by this amount, the weight gets reduced, but less than
defined per tem.reputation.maxAdjustment (This value must be greater
that tem.reputation.positiveThreshold and between 0 and 1).

– tem.reputation.initial weight: The initial value to start for the weight, a
value between 0 and 1.

92

4.6 Configuring OCµ and the TEM

� Properties for the Delayed-Ack Plugin:

– tem.delayed ack.timeout: Time in milliseconds until a message is consid-
ered as not received, when no return message with an ack arrives.

– tem.delayed ack.interpreter: The trust metric to use, either a normal
mean metric (mean), a weighted mean with newer values weighted higher
(weighted mean) or a weighted mean metric with older values weighted higher
(inverted weighted mean).

– tem.delayed ack.experiences amount: The amount of experiences to use
for the trust calculation (history length).

� Properties for the confidence metric:

– tem.confidence.weight.number: The weight for the number confidence in
the total confidence calculation (a positive double).

– tem.confidence.weight.age: The weight for the age confidence in the total
confidence calculation (a positive double).

– tem.confidence.weight.variance: The weight for the variance confidence
in the total confidence calculation (a positive double).

– tem.confidence.threshold.number: The threshold for the number confi-
dence, when enough experiences are gathered (a positive integer).

– tem.confidence.threshold.age.recent: A threshold in milliseconds, up un-
til experiences are considered up to date and have an age confidence value of
1.

– tem.confidence.threshold.age.outdated: A threshold in milliseconds, af-
ter that experiences are considered out of date and have an age confidence
value of 0. Please note that this threshold has to be higher than the threshold
tem.confidence.threshold.age.recent.

4.6.3 log4j.xml

In this file the logging of the TEM is defined, using log4j7 as logging framework. Logging
can be configured per package or even class by adding appropriate <category> tags,
similar to the ones already defined. The log levels of log4j are (in ascending order of
versatility, the top with least output and the bottom with the most output):

� FATAL

� ERROR

� WARN

� INFO

7https://logging.apache.org/log4j/2.x/manual/configuration.html

93

https://logging.apache.org/log4j/2.x/manual/configuration.html

4 Deploying TEMAS-based Applications

� DEBUG

� TRACE

4.6.4 VM Arguments

Beside the configuration files, the following VM properties can be used when starting
the TEM:

� -Docm.node.id=[self-defined id]: By using this VM argument, the id to use
for the TEM node can be defined, instead of a generated id from the IdFactory.
This VM argument is considered by IdFactory implementations. For example, the
AscendingIdFactory and IdFactoryImpl (default) are considering this argument.

� -Docm.organic.manager.disabled=true: This VM argument disables the plan-
ner of the organic manager. If enabled, the planer relocates services according to
their objectives.

4.7 Setting up an Eclipse Project

Please regard the following points when setting up an Eclipse project that is based on
the TEMAS:

� The project TEMReadyInfrastructure is based on the project MASConcepts.

� The Project TEMReadyInfrastructure has to be included in the build path of the
project that should be based on the TEMAS

� The TEMReadyInfrastructure includes the TEM as well as the OCµ libraries and
exports them so that a TEMAS-based application has access to TEM- and OCµ-
related classes. Further, a log4j library is included.

� OCµ and TEM sources can be found on https://swt.informatik.uni-augsburg.

de:8443/artifactory/webapp/browserepo.html under “Artifacts” and then un-
der “libs-releases-local” or “libs-snapshots-local” for snapshot releases.

If an application is executed in the TEM execution environment and debugged in
eclipse’s debug mode, methods or methods that call other methods in which a message
is sent and a reply awaited afterwards must not be stepped over with Eclipse’s “step
over” functionality but with “resume”. Otherwise, a deadlock occurs.

94

https://swt.informatik.uni-augsburg.de:8443/artifactory/webapp/browserepo.html
https://swt.informatik.uni-augsburg.de:8443/artifactory/webapp/browserepo.html

5 Conclusion

In this technical report, we presented the Trust-Enabling Multi-Agent System (TEMAS),
a multi-agent system (MAS) for open environments. The TEMAS provides basic MAS
concepts such as communication and feeling for time. Moreover, the TEMAS defines
concepts that allow agents to assess the trustworthiness of others by defining application-
specific trust metrics and gathering experiences gained in interactions. By making in-
formed decisions that take the trustworthiness of other agents into account, the partici-
pants of a TEMAS-based system can thus deal with uncertainties at runtime.

The TEMAS has a two-layered architecture that consists of the Trust-Enabling Mid-
dleware on the lower layer and the MASConcepts4TEM on the upper layer. While
the TEM is a full-fledged middleware on the basis of a node-centric infrastructure, the
MASConcepts4TEM specify additional concepts common in MAS on the one hand, and,
with regard to the TEM, serves as a facade by hiding the complexity of the underlying
infrastructure consisting of nodes and services and dependent interfaces to higher level
applications on the other hand. In this technical report, we presented those concepts of
the TEMAS which are of interest when implementing a TEMAS-based application.

In future work, we will port the TEMAS to Android-based systems, so that the infras-
tructure that hosts TEMAS-based applications can be equipped with mobile devices. We
will further extend the TEMAS by a framework that allows to control emergent behavior
of self-organizing systems. Such a framework includes a generic observer/controller archi-
tecture that allows to set up application-specific corridors of wanted or correct behavior
on the basis of weak or hard constraints and define application-specific reactions that
should be triggered if these corridors are left at runtime (see, e.g., [9] and [13]). Based on
this framework, we will provide another framework that provides generic functionality
to generate norms, observe norm compliance, and sanction behavior that contradicts
existing norms at runtime.

95

Acknowledgment

Acknowledgment

This research is partly sponsored by the research unit “OC-Trust” (FOR 1085) of the
German Research Foundation (DFG).

96

Index

Agent, 39
TrustAgent, 64

Agent Concepts, 35
AgentComponent, 45
AgentComponentPrimitives, 51
AgentIdentifier, 43
AgentInitializer, 78

IConcreteAgentInitializer, 79
TEMAgentInitializer, 79
TemLightAgentInitializer, 80

AgentPrimitives, 51
AgentScheduler, 82

AgentSchedulerAdapter, 84
SyncTemLightScheduler, 84
SyncTEMScheduler, 85

AgentSchedulerAdapter, 84
SyncTEMSchedulerAdapter, 85
TemLightSchedulerAdapter, 84

AtomicExperience, 62
AtomicInteraction, 62

Bootstrapping, 86

DefaultDiscoveryResult, 58
DefaultTimeProvider, 66
Discovery, 57

DefaultDiscoveryResult, 58
DiscoveryTask, 57

DiscoveryTask, 57

Execution Models, 81
Experience, 61

AtomicExperience, 62
ExperienceContainer, 62

ExperienceContainer, 62

FailureDetectorService, 18

IAgent, 35
IMessageHandlingAgent, 37

IConcreteAgentInitializer, 79
IMessageHandlingAgent, 37

Agent, 39
ITrustAgent, 63

IMessageRecipient, 37
AgentComponent, 45
IMessageHandlingAgent, 37

Interaction, 59
AtomicInteraction, 62
InteractionContainer, 62

InteractionContainer, 62
InternalCalendar, 68

InternalCalendarNotInitializedExcep-
tion, 70

InternalCalendarNotInitializedException,
70

IServiceBindingProvider, 54
ServiceBindingProvider, 55
TEMASServiceBindingProvider, 56

ITimeProvider, 66
DefaultTimeProvider, 66
IAgent, 35
TimeProviderICBased, 67

ITrustAgent, 63
TrustAgent, 64

MASConcepts4TEM, 35
Agent Concepts, 35
Execution Models, 81
Messaging Concepts, 47
Time Concepts, 35, 66
Trust Concepts, 35, 58

MessageProcessingException, 54

Primitives, 48
AgentComponentPrimitives, 51
AgentPrimitives, 51
Registering Primitives, 52

ReplyMessageException, 54

ScenarioState, 62
ServiceBindingProvider, 55

TEMASServiceBindingProvider, 56

97

Index

SyncTemLightScheduler, 84

SyncTEMScheduler, 85

SyncTEMSchedulerAdapter, 85

SyncTEMSchedulerComponent, 85

TEM, 75

Bootstrapping, 86

Configuration, 88

Execution Models, 81

Logging, 90

VM Arguments, 91

TEM Execution Environment, 75

TEMAgentInitializer, 79

TEMAS, 35, 75

MASConcepts4TEM, 35

TEM Execution Environment, 75

temLight Simulation Environment,
75

TEMASServiceBindingProvider, 56

temLight Simulation Environment, 75

TemLightAgentInitializer, 80

TemLightSchedulerAdapter, 84

TimeInterval, 71

TimeProviderICBased, 67

TransformedExperienceContainer, 62

Trust-based Scenarios, 62

ScenarioState, 62

TransformedExperienceContainer, 62

TrustScenario, 62

TrustScenarioGenerator, 62

TrustScenarioNode, 62

TrustScenarioPath, 62

TrustScenarioTree, 62

Trust-Enabling Middleware, see TEM

Trust-Enabling Multi-Agent System, see
TEMAS

TrustAgent, 64

TrustContext, 61

TrustScenario, 62

TrustScenarioGenerator, 62

TrustScenarioNode, 62

TrustScenarioPath, 62

TrustScenarioTree, 62

YellowPages, 72
YellowPagesData, 74

98

References

[1] G. Anders, F. Siefert, J.-P. Steghöfer, and W. Reif. Trust-Based Scenarios – Pre-
dicting Future Agent Behavior in Open Self-Organizing Systems. In Proc. of the
7th International Workshop on Self-Organizing Systems (IWSOS 2013), May 2013.

[2] G. Anders, J.-P. Steghofer, F. Siefert, and W. Reif. Patterns to measure and utilize
trust in multi-agent systems. In 2011 Fifth IEEE Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW), pages 35 –40, oct. 2011.

[3] R. Kiefhaber, G. Anders, F. Siefert, T. Ungerer, and W. Reif. Confidence as a Means
to Assess the Accuracy of Trust Values . In IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications, pages 690–697,
Augsburg Univ., Augsburg, Germany, 2012. IEEE Computer Society.

[4] R. Kiefhaber, S. Hammer, B. Savs, J. Schmitt, M. Roth, F. Kluge, E. André, and
T. Ungerer. The neighbor-trust metric to measure reputation in organic computing
systems. In Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems
Workshops (SASOW 2011), pages 41 – 46, october 2011.

[5] R. Kiefhaber, B. Satzger, J. Schmitt, M. Roth, and T. Ungerer. Trust Measurement
Methods in Organic Computing Systems by Direct Observation. In IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing, pages 105–111,
Los Alamitos, CA, USA, 2010. IEEE Computer Society.

[6] R. Kiefhaber, F. Siefert, G. Anders, T. Ungerer, and W. Reif. The Trust-Enabling
Middleware: Introduction and Application. Technical Report 2011-10, Univer-
sitätsbibliothek der Universität Augsburg, 2011.

[7] D. McKnight, L. Cummings, and N. Chervany. Initial Trust Formation in New
Organizational Relationships. The Academy of Management Review, 23(3):473–
490, 1998.

[8] L. Mui, M. Mohtashemi, and A. Halberstadt. A Computational Model of Trust
and Reputation. In Proc. of the 35th Hawaii International Conference on System
Sciences, pages 188–196, 2002.

[9] F. Nafz, H. Seebach, J.-P. Steghöfer, G. Anders, and W. Reif. Constraining Self-
organisation Through Corridors of Correct Behaviour: The Restore Invariant Ap-
proach. In C. Müller-Schloer, H. Schmeck, and T. Ungerer, editors, Organic Com-
puting — A Paradigm Shift for Complex Systems, Autonomic Systems, pages 79–93.
Springer Basel, 2011.

[10] S. Ramchurn, D. Huynh, and N. Jennings. Trust in Multi-Agent Systems. The
Knowledge Engineering Review, 19(01):1–25, 2005.

99

References

[11] M. Roth, J. Schmitt, R. Kiefhaber, F. Kluge, and T. Ungerer. Organic Computing
Middleware for Ubiquitous Environments. In Organic Computing – A Paradigm
Shift for Complex Systems, pages 339–351. Springer Basel, 2011.

[12] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer. A lazy monitoring approach
for heartbeat-style failure detectors. Benjamin Satzger and Andreas Pietzowski and
Wolfgang Trumler and Theo Ungerer, 6:404–409, 2009.

[13] J.-P. Steghöfer, B. Eberhardinger, F. Nafz, and W. Reif. Synthesis of Observers
for Autonomic Evolutionary Systems from Requirements Models. In Proceedings of
the 6th International Workshop on Distributed Autonomous Network Management
Systems. IEEE Computer Society, 2013.

[14] J.-P. Steghöfer, R. Kiefhaber, K. Leichtenstern, Y. Bernard, L. Klejnowski, W. Reif,
T. Ungerer, E. André, J. Hähner, and C. Müller-Schloer. Trustworthy Organic
Computing Systems: Challenges and Perspectives. In Proc. of the 7th International
Conference on Autonomic and Trusted Computing (ATC 2010). Springer, Oct. 2010.

[15] Y. Wang and J. Vassileva. Trust and Reputation Model in Peer-to-Peer Networks.
In Proc. of the 3rd International Conference on Peer-to-Peer Computing, 2003.

100

	The Trust-Enabling Multi-Agent System
	The Trust-Enabling Middleware
	OcmNode
	Service
	Messaging
	PeriodicService
	FailureDetectorService
	Discovery
	Discovery Interface
	ServiceAdvertisement
	DiscoveryResult

	Trust Metric Infrastructure
	Architecture
	RawData
	Transformer
	Interpreter
	TrustData
	Trust Interface

	Confidence
	RatedExperience
	ConfidenceValues
	ConfidenceMetric

	Multi-Agent System Concepts
	Agent Concepts
	IAgent
	IMessageRecipient
	IMessageHandlingAgent
	Agent
	AgentIdentifier
	AgentComponent

	Sending, Receiving, Processing, and Replying to Messages
	Primitives
	AgentPrimitives
	AgentComponentPrimitives
	Registering Primitives
	Delivery and Processing of Messages
	MessageProcessingException
	ReplyMessageException
	IServiceBindingProvider
	ServiceBindingProvider

	Discovering Agents
	DiscoveryTask
	DefaultDiscoveryResult

	Additional Trust Concepts
	Interaction
	Experience
	TrustContext
	Trust-Based Scenarios

	Extending Agent Concepts by the Notion of Trust
	ITrustAgent
	TrustAgent

	Time Concepts
	ITimeProvider
	DefaultTimeProvider
	TimeProviderICBased
	InternalCalendar
	InternalCalendarNotInitializedException
	TimeInterval

	YellowPages
	YellowPages
	YellowPagesData

	Deploying TEMAS-based Applications
	TEM and temLight: Two Possible Ways to Run Your Applications
	Initializing Agents
	AgentInitializer
	IConcreteAgentInitializer
	TEMAgentInitializer
	TemLightAgentInitializer

	Execution Models
	Agent Scheduling in the TEMAS
	AgentScheduler
	AgentSchedulerAdapter
	Scheduling in the temLight Simulation Environment
	Scheduling in the TEM Execution Environment

	Bootstrapping
	Configuring OCµ and the TEM
	ocm.properties
	tem.properties
	log4j.xml
	VM Arguments

	Setting up an Eclipse Project

	Conclusion
	Acknowledgment
	Index
	References

