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Metric Entropy of Nonautonomous Dynamical

Systems

Christoph Kawan∗†

April 21, 2013

Abstract

We introduce the notion of metric entropy for a nonautonomous dy-
namical system given by a sequence (Xn, µn) of probability spaces and
a sequence of measurable maps fn : Xn → Xn+1 with fnµn = µn+1.
This notion generalizes the classical concept of metric entropy established
by Kolmogorov and Sinai, and is related via a variational inequality to
the topological entropy of nonautonomous systems as defined by Kolyada,
Misiurewicz and Snoha.
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1 Introduction

In the theory of dynamical systems, entropy is an invariant which measures
the exponential complexity of the orbit structure of a system. Undoubtedly,
the most important notions of entropy are metric entropy for measure-theoretic
dynamical systems, sometimes also named Kolmogorov-Sinai entropy by its in-
ventors, and topological entropy for topological systems (cf. Kolmogorov [9],
Sinai [20] and Adler et al. [1]). There exists a huge variety of modifications
and generalizations of these two basic notions. However, most of these only ap-
ply to systems which are governed by time-invariant dynamical laws, so-called
autonomous dynamical systems. In the literature, one basically finds two excep-
tions. In the theory of random dynamical systems, which are nonautonomous
dynamical systems described by measurable skew-products, both notions of en-
tropy, metric and topological, have been defined and extensively studied (see,
e.g., [2, 4, 12, 13, 22]). In particular, the classical variational principle which
relates the two notions of entropy to each other, has been adapted to their
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random versions by Bogenschütz [2]. The second exception is the quantity
introduced in Kolyada and Snoha [10], the topological entropy of a nonau-
tonomous system given as a discrete-time deterministic process on a compact
topological space. The theory founded in [10] has been further developed in
[6, 7, 11, 15, 17, 21, 23, 24] by several authors. In some of these articles, the
definition of entropy has been generalized, in particular to continuous-time sys-
tems, to systems with noncompact state space, systems with time-dependent
state space, and to local processes. Besides that, there have been other in-
dependent approaches (see, e.g., [16, 19]), which essentially lead to the same
notion. Both of the nonautonomous versions of entropy, random and determin-
istic, are intimately related to each other but nevertheless, one cannot draw
direct conclusions from the well-developed random theory to the deterministic
one except for generic statements (saying that something holds for almost every
deterministic system in a large class of such systems parametrized by a random
parameter).

The reason why the deterministic nonautonomous theory of entropy is still quite
poor-developed in particular lies in the fact that the notion of metric entropy
(together with a variational principle) has not yet successfully been established
in that theory. To the best of my knowledge, the only approach in this direction
can be found in Zhu et al. [23]. This work shows that one of the obstacles in
establishing a reasonable notion of metric entropy which allows for a variational
principle lies in the proof of the power rule which relates the entropies of the
time-t-maps (the powers of the system) to that of the time-one-map. The aim
of this paper is to introduce the notion of metric entropy for nonautonomous
measure-theoretic dynamical systems together with a formalism which allows
for a power rule and at least the easier part of the variational principle.

We briefly describe the contents of the paper. In Section 2, we recall the notion
of topological entropy for a nonautonomous dynamical system as defined in
[11] by Kolyada, Misiurewicz and Snoha. This notion of entropy generalizes
the one in [10] by replacing the state space X (a compact metric space) by a
whole sequence Xn of such spaces. The process is then given by a sequence of
continuous maps fn : Xn → Xn+1. As in the classical theory, three equivalent
characterizations of entropy are available, via open covers, via spanning sets, or
via separated sets. However, one crucial point here is that in the open cover
definition, sequences of open covers for the spaces Xn with Lebesgue numbers
bounded away from zero have to be considered. In order to prove the power rule
for this entropy, the additional assumption that the sequence fn be uniformly
equicontinuous is necessary.

In Section 3, the metric entropy is defined. Here the system is given by a
sequence fn : Xn → Xn+1 of measurable maps between probability spaces
(Xn, µn) such that the sequence µn of measures is preserved in the sense that
fnµn = µn+1. The metric entropy with respect to a sequence of finite mea-
surable partitions of the spaces Xn can be defined in the usual way (with the
obvious modifications), and has similar properties as in the autonomous case.
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Similarly as in the topological situation (the definition of entropy via sequences
of covers), one does not get a reasonable quantity by considering all sequences
of partitions. The problem is that information about the initial state can be
generated merely due to the fact that the partitions in such a sequence become
finer very rapidly. Hence, we have to restrict the class of admissible sequences
of partitions, which is done in an axiomatic way by requiring some of the prop-
erties that are satisfied in the topological setting by the class of all sequences
of open covers with Lebesgue numbers bounded away from zero. This leads to
the notion of an admissible class which enjoys some nice and natural properties.
For instance, in the case of an autonomous measure-preserving system, one can
consider the smallest admissible class which contains all constant sequences of
partitions, which leads to the classical notion of metric entropy. Several prop-
erties of the classical metric entropy carry over to its nonautonomous general-
ization. In particular, we can establish invariance under appropriately defined
isomorphisms, an analogue of the Rokhlin inequality, and a power rule.

In Section 4, we prove for equicontinuous systems the inequality between metric
and topological entropy which establishes one part of the variational principle.
We adapt the arguments of Misiurewicz’s elegant proof from [14] by defining
an appropriate admissible class of sequences of partitions which is designed in
such a way that Misiurewicz’s arguments can be applied to its members. This
class depends on the given invariant sequence of measures. In general, it might
be very small, so that our variational inequality would not give any meaningful
information. For this reason we establish different stability conditions for in-
variant sequences of measures which guarantee that the associated Misiurewicz
class contains sequences of arbitrarily fine partitions. These stability conditions
capture the intuitive idea that the initial measure µ1 should not be deformed
too much by pushing it forwards by the maps fn1 = fn ◦ · · · ◦ f1, so that such
sequences become an appropriate nonautonomous substitute of invariant mea-
sures in the autonomous theory. In particular, we show that the expanding
systems studied in Ott, Stenlund, Young [18] satisfy such a stability condition.

2 Preliminaries

2.1 Notation

By a nonautonomous dynamical system we understand a deterministic process
(X1,∞, f1,∞), where X1,∞ = {Xn}n≥1 is a sequence of sets and fn : Xn → Xn+1

a sequence of maps. For all integers k, n ∈ N we write

f0k := idXk , fnk := fk+(n−1) ◦ · · · ◦ fk+1 ◦ fk, f−nk := (fnk )−1.

The last notation will only be applied to sets. We do not assume that the
maps fn are invertible. The trajectory of a point x ∈ X1 is the sequence
{fn1 (x)}n≥0. By fk,∞ we denote the sequence {fk, fk+1, fk+2, . . .} which defines
a nonautonomous system on Xk,∞ = {Xk, Xk+1, Xk+2, . . .}.
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We consider two categories of systems, metric and topological. In a metric sys-
tem, the sets Xn are probability spaces and the maps fn are measure-preserving.
That is, each Xn is endowed with a σ-algebra An and a probability measure µn
such that the maps fn are measurable and fnµn = µn+1 for all n ≥ 1, where
fnµn denotes the push-forward (fnµn)(A) = µn(f−1n (A)) for all A ∈ An+1. In
this case, we call µ1,∞ = {µn}n≥1 an f1,∞-invariant sequence. In a topological
system, each Xn is a compact metric space and the maps fn are continuous.

If X is a compact topological space and U an open cover of X, we denote by
N (U) the minimal cardinality of a finite subcover. If U1, . . . ,Un are open covers
of X, we write

∨n
i=1 Ui for their join, i.e., the open cover consisting of all the

intersections Ui1 ∩ Ui2 ∩ . . . ∩ Uin with Uij ∈ Uj .
In a metric space (X, %), we denote the open ball centered at x with radius ε by
B(x, ε) or B(x, ε; %). We write dist(x,A) for the distance from a point x to a
nonempty set A, i.e., dist(x,A) = infa∈A %(x, a). The closure, the interior, and
the boundary of a set A will be denoted by clA, intA and ∂A, respectively.

Recall that the Lebesgue number of an open cover U of a compact metric space
X is defined as the maximal ε > 0 such that every ε-ball in X is contained in
one of the members of U .

2.2 Topological Entropy

In this subsection, we recall the notion of entropy for a topological nonau-
tonomous dynamical system (X1,∞, f1,∞), as defined in Kolyada et al. [11]. As
in the classical autonomous theory, three equivalent definitions are available.
We denote the metric of Xk by %k and define on each of the spaces Xk a class
of Bowen-metrics by

%k,n(x, y) := max
0≤i≤n−1

%k+i
(
f ik(x), f ik(y)

)
(n ∈ N).

It is easy to see that %k,n is a metric on Xk which is topologically equivalent to
%k. In order to define the topological entropy of f1,∞, we only use the metrics
%1,n. A subset E ⊂ X1 is called (n, ε)-separated if any two distinct points
x, y ∈ E satisfy %1,n(x, y) > ε. A set F ⊂ X1 (n, ε)-spans another set K ⊂ X1 if
for every x ∈ K there is y ∈ F with %1,n(x, y) ≤ ε. We let rsep(n, ε, f1,∞) denote
the maximal cardinality of an (n, ε)-separated subset of X1 and rspan(n, ε, f1,∞)
the minimal cardinality of a set which (n, ε)-spans X1, and we define

hsep(f1,∞) := lim
ε↘0

lim sup
n→∞

1

n
log rsep (n, ε, f1,∞) ,

hspan(f1,∞) := lim
ε↘0

lim sup
n→∞

1

n
log rspan (n, ε, f1,∞) .

The corresponding limits in ε exist, since the quantities rsep(n, ε, f1,∞) and
rspan(n, ε, f1,∞) are monotone (non-increasing) with respect to ε, and this prop-
erty carries over to their exponential growth rates. Hence, the limits can also
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be replaced by the corresponding suprema over all ε > 0. With the same ar-
guments as in the autonomous case, one shows that the numbers hsep(f1,∞)
and hspan(f1,∞) actually coincide. We call their common value the topological
entropy of f1,∞.

The definition of topological entropy via open covers has to be modified a little
bit in order to fit to the nonautonomous case. Consider a sequence U1,∞ = {Un}
such that Un is an open cover of Xn for each n ≥ 1. The entropy of f1,∞ with
respect to the sequence U1,∞ is then defined as

hcov(f1,∞;U1,∞) := lim sup
n→∞

1

n
logN

(
n−1∨
i=0

f−i1 Ui+1

)
.

In contrast to the autonomous case, the upper limit cannot be replaced by a
limit (see [10] for a counterexample). In order to define the topological entropy
of f1,∞ one should not take the supremum of hcov(f1,∞;U1,∞) over all sequences
of open covers. The problem is that the value of hcov(f1,∞;U1,∞) might become
arbitrarily large just by the fact that the maximal diameters of the open sets in
the covers Un exponentially converge to zero for n→∞. In this case, informa-
tion about the initial state can be obtained due to finer and finer measurements
even if the system has very regular dynamics. To exclude this, we restrict our-
selves to sequences of open covers with Lebesgue numbers bounded away from
zero. We denote the family of all these sequences by L(X1,∞) and define

hcov(f1,∞) := sup
U1,∞∈L(X1,∞)

hcov(f1,∞;U1,∞).

We leave the easy proof that this number coincides with the topological entropy
as defined above to the reader. In the rest of the paper, we write htop(f1,∞) for
the common value of hsep(f1,∞), hspan(f1,∞) and hcov(f1,∞).

2.1 Remark: Note that the value of htop(f1,∞) heavily depends on the metrics
%k in contrast to the classical autonomous situation. However, in many relevant
examples, as, e.g., systems defined by time-dependent differential equations, all
of these metrics come from a single metric on a possibly compact space. So in
this case the dependence on the metrics disappears due to a canonical choice.

The topological entropy of an autonomous system given by a map f satisfies
the power rule htop(fk) = k · htop(f) for all k ≥ 1. In order to formulate an
analogue of this property for nonautonomous systems, we have to introduce for
every k ≥ 1 the k-th power system of the nonautonomous system (X1,∞, f1,∞).

This is the system (X
[k]
1,∞, f

[k]
1,∞), where

X
[k]
1,∞ :=

{
X(n−1)k+1

}
n≥1 , f

[k]
1,∞ :=

{
fk(n−1)k+1

}
n≥1

.

In case that the spaces Xn coincide, the following result can be found in [10,
Lem. 4.2]. Since the proof for the general case works analogously, we omit it.
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2.2 Proposition: For every k ≥ 1 it holds that

htop

(
f
[k]
1,∞

)
≤ k · htop (f1,∞) .

In general, the converse inequality in the above proposition fails to hold (see
[10] for a counterexample). However, if we assume that the family {fn} is
equicontinuous, equality holds. Equicontinuity in this context means uniform
equicontinuity, i.e., for every ε > 0 there exists δ > 0 such that %n(x, y) < δ
for any x, y ∈ Xn, n ∈ N, implies %n+1(fn(x), fn(y)) < ε. In [10, Lem. 4.4] this
is proved for the case when the spaces Xn all coincide, by using the definition
via separated sets. Here we present a different proof using the definition via
sequences of open covers, since we want to carry over the arguments later to
the proof of the power rule for metric entropy.

2.3 Lemma: Let U1,∞ ∈ L(X1,∞) and assume that f1,∞ is equicontinuous.

Then for each m ≥ 1 the sequence V1,∞, defined by Vn :=
∨m−1
i=0 f−in Un+i, is an

element of L(X1,∞).

Proof: Let ε > 0 be a common lower bound for the Lebesgue numbers of the
covers Un. Then, for each n ≥ 1, ε is also a lower bound for the Lebesgue
number of Vn with respect to the Bowen-metric %n,m. This is proved as follows:
Let x ∈ Xn and assume that %n,m(x, y) < ε. Then f in(y) is contained in the ball
B(f in(x), ε; %n+i) for i = 0, 1, . . . ,m−1. Since ε is a lower bound of the Lebesgue
number of Un+i for all i, we find sets Ui ∈ Un+i such that B(f in(x), ε; %n+i) ⊂ Ui
for i = 0, 1, . . . ,m− 1, which implies that

B(x, ε; %n,m) ⊂ U0 ∩ f−1n (U1) ∩ f−2n (U2) ∩ . . . ∩ f−(m−1)n (Um−1)

∈
m−1∨
i=0

f−in Un+i = Vn.

It is easy to see that from equicontinuity of f1,∞ it follows that also the family
{f in : n ≥ 1, i = 0, 1, . . . ,m − 1} is equicontinuous. Hence, we can find δ > 0
such that %n(x, y) < δ implies %n+i(f

i
n(x), f in(y)) < ε for all n ≥ 1 and i =

0, 1, . . . ,m − 1. Therefore, every Bowen-ball B(x, ε; %n,m) contains the δ-ball
B(x, δ; %n), which shows that δ is a lower bound for the Lebesgue numbers of
the covers Vn. �

2.4 Lemma: Let {an}n≥1 be a monotonically increasing sequence of real num-
bers. Then for every k ≥ 1 it holds that

lim sup
n→∞

an
n

= lim sup
n→∞

ank
nk

.

Proof: It suffices to prove the inequality “≤”. To this end, consider an arbitrary
sequence {nl}l≥1 of positive integers converging to ∞. For every l ≥ 1 there is
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an ml ∈ N0 with mlk ≤ nl ≤ (ml + 1)k, and ml →∞. This implies

1

nl
anl ≤

1

mlk
a(ml+1)k.

It follows that

lim sup
l→∞

a(ml+1)k

mlk
= lim sup

l→∞

ml + 1

ml

a(ml+1)k

(ml + 1)k
= lim sup

l→∞

amlk
mlk

.

Hence, we conclude that

lim sup
l→∞

anl
nl
≤ lim sup

l→∞

amlk
mlk

≤ lim sup
m→∞

amk
mk

,

which yields the desired inequality. �

2.5 Proposition: If the sequence f1,∞ is equicontinuous, then

htop

(
f
[k]
1,∞

)
= k · htop (f1,∞) for all k ≥ 1. (1)

Proof: It suffices to prove the inequality “≥”. To this end, let U1,∞ ∈ L(X1,∞).

Define a sequence V1,∞ = {Vn} of open covers for X
[k]
1,∞ as follows:

Vn := U(n−1)k+1 ∨ f−1(n−1)k+1U(n−1)k+2 ∨ . . . ∨ f
−(k−1)
(n−1)k+1Unk

=

k−1∨
j=0

f−j(n−1)k+1U(n−1)k+1+j .

Then we find

hcov

(
f
[k]
1,∞;V1,∞

)
= lim sup

n→∞

1

n
logN

(
n−1∨
i=0

f−ik1 Vi+1

)

= lim sup
n→∞

1

n
logN

n−1∨
i=0

f−ik1

k−1∨
j=0

f−jik+1Uik+1+j


= lim sup

n→∞

1

n
logN

n−1∨
i=0

k−1∨
j=0

f
−(ik+j)
1 U(ik+j)+1


= k · lim sup

n→∞

1

nk
logN

(
nk−1∨
i=0

f−i1 Ui+1

)
= k · hcov (f1,∞;U1,∞) .

To obtain the last equality we used Lemma 2.4. By Lemma 2.3, V1,∞ ∈ L(X1,∞),
which implies

htop

(
f
[k]
1,∞

)
≥ hcov

(
f
[k]
1,∞;V1,∞

)
= k · hcov (f1,∞;U1,∞) .

Since this holds for every U1,∞ ∈ L(X1,∞), the desired inequality follows. �
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2.6 Remark: Next to the classical notion of entropy for continuous maps on
compact spaces, the notion of topological entropy introduced above generalizes
several other concepts of entropy. Here are three examples:

(i) Topological entropy for uniformly continuous maps on noncompact metric
spaces (cf. Bowen [3]): Consider a uniformly continuous map f : X → X
on a metric space X. The topological entropy of f is defined by

htop(f) := sup
K⊂X

lim
ε↘0

lim sup
n→∞

1

n
log rspan(n, ε,K),

where the supremum runs over all compact sets K ⊂ X and rspan(n, ε,K)
is the minimal cardinality of a set which (n, ε)-spans K. Alternatively,
one can take maximal (n, ε)-separated subsets of K. If we define for each

compact set K ⊂ X a nonautonomous system f
(K)
1,∞ by

Xn := fn−1(K), f (K)
n := f |Xn : Xn → Xn+1,

we see that htop(f) can be written as

htop(f) = sup
K⊂X

htop(f
(K)
1,∞).

(ii) Topological sequence entropy (cf. Goodman [5]): Here the sequence X1,∞
is constant and the sequence fn is of the form fn = fkn , where f : X → X
is a given continuous map and (kn)n≥1 an increasing sequence of integers.

(iii) Topological entropy of random dynamical systems (cf. Bogenschütz [2]):
Consider a probability space (Ω,F , P ) with an ergodic invertible transfor-
mation ϑ on Ω, and a measurable space (X,B). A mapping ϕ : Z×Ω×X →
X such that (ω, x) 7→ ϕ(n, ω, x) is F ⊗ B-measurable for all n ∈ Z and
ϕ(n+m,ω, x) = ϕ(n, ϑmω, ϕ(m,ω, x)) for all n,m ∈ Z and (ω, x) ∈ Ω×X
is called a random dynamical system on X over ϑ. If X is a compact metric
space, B is the Borel σ-algebra of X, and the maps ϕ(n, ω, ·) are homeo-
morphisms, one speaks of a topological random dynamical system. If U is
an open cover of X, one defines for every ω ∈ Ω

htop(ϕ;U) := lim
n→∞

1

n
logN

(
n−1∨
i=0

ϕ(i, ω)−1U

)
. (2)

From Kingman’s subadditive ergodic theorem it follows that this number
exists for almost every ω ∈ Ω and is constant almost everywhere. Then
one can take this constant value (for each U) and define the topological
entropy of the random dynamical system by taking the supremum over all
open covers U . If we fix one ω ∈ Ω and consider the number (2), replacing
the limit by a lim sup, and then take the supremum over all U , we obtain
the topological entropy of the nonautonomous system (X1,∞, f1,∞) given
by Xn := X, fn := ϕ(1, ϑn−1ω, ·).
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2.7 Remark: It is an interesting fact that not only Bowen’s notion of topolog-
ical entropy for uniformly continuous maps is a special case of the topological
entropy for nonautonomous systems, but that for an equicontinuous nonau-
tonomous system (X1,∞, f1,∞) also the converse statement is true: htop(f1,∞)
can be regarded as the topological entropy of a uniformly continuous map, re-
stricted to a compact noninvariant set. To see this, let X be the disjoint sum
of the spaces Xn, i.e.,

X :=

∞∐
n=1

Xn, %(x, y) :=

{
|n−m| if x ∈ Xn, y ∈ Xm, n 6= m,
%n(x, y) if x, y ∈ Xn

Then a uniformly continuous map f : X → X is given by putting f equal to fn
on Xn, and we have

htop(f1,∞) = htop(f,X1).

This observation in particular allows to conclude the power rule from the corre-
sponding power rule for Bowen’s entropy. Taking the supremum of htop(f,K)
over all compact subsets K of X gives the quantity called the asymptotical
topological entropy of f1,∞ in [10], defined by limn→∞ htop(fn,∞).

3 Metric Entropy

In this section, we introduce the metric entropy of a nonautonomous system.

3.1 The Entropy with Respect to a Sequence of Partitions

Recall that the entropy of a finite measurable partition P = {P1, . . . , Pk} of a
probability space (X,A, µ) is defined by

Hµ(P) := −
k∑
i=1

µ(Pi) logµ(Pi),

where 0·log 0 := 0, and satisfies 0 ≤ Hµ(P) ≤ log k. The equality Hµ(P) = log k
holds iff all members of P have the same measure.

If P and Q are two measurable partitions of X, the joint partition P ∨ Q =
{P ∩Q : P ∈ P, Q ∈ Q} satisfies Hµ(P ∨Q) ≤ Hµ(P) +Hµ(Q).

Now consider a metric nonautonomous system (X1,∞, f1,∞, µ1,∞), where µ1,∞
denotes the sequence of probability measures with fnµn = µn+1. Let P1,∞ =
{Pn} be a sequence such that Pn is a finite measurable partition of Xn for every
n ≥ 1, and define

h(f1,∞;P1,∞) := lim sup
n→∞

1

n
Hµ1

(
n−1∨
i=0

f−i1 Pi+1

)
. (3)
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We call this number the metric entropy of f1,∞ with respect to P1,∞. Note
that in the autonomous case this definition reduces to the usual definition of
metric entropy with respect to a partition. In this case, the lim sup is in fact
a limit, which follows from a subadditivity argument. However, in the general
case considered here, subadditivity does not necessarily hold. (In [10], one finds
a counterexample for the topological case, which can be modified to serve as
a counterexample in the metric case, since this system preserves the Lebesgue
measure.) For an autonomous system given by a map f with an invariant
measure µ and a partition P, we also use the common notations hµ(f ;P) and
hµ(f) = supP hµ(f ;P).

Several well-known properties of the entropy with respect to a partition carry
over to its nonautonomous generalization. In order to formulate these prop-
erties, we have to introduce some notation. We say that a sequence P1,∞ of
measurable partitions is finer than another such sequence Q1,∞ if Pn is finer
than Qn for every n ≥ 1 (i.e., every element of Pn is contained in an element of
Qn). In this case, we write P1,∞ � Q1,∞. If P1,∞ and Q1,∞ are two sequences
of measurable partitions, we define their join P1,∞ ∨ Q1,∞ := {Pn ∨ Qn}n≥1.

For a sequence P1,∞ and m ≥ 1 we define another sequence P〈m〉1,∞(f1,∞) by

m−1∨
i=0

f−i1 Pi+1,

m−1∨
i=0

f−i2 Pi+2, . . . ,

m−1∨
i=0

f−ik Pi+k, . . .

Finally, recall the definition of conditional entropy for partitions of a probability
space (X,A, µ). If A,B ∈ A, then µ(A|B) := µ(A ∩ B)/µ(B). If P and Q are
two partitions of X, the conditional entropy of P given Q is

Hµ(P|Q) := −
∑
Q∈Q

µ(Q)
∑
P∈P

µ(P |Q) logµ(P |Q).

Some well-known properties of the conditional entropy are summarized in the
following proposition (cf., e.g., Katok and Hasselblatt [8]).

3.1 Proposition: Let P, Q and R be partitions of X.

(i) Hµ(P|Q) = 0 iff Q is finer than P (modulo null sets).

(ii) Hµ(P ∨Q|R) = Hµ(P|R) +Hµ(Q|P ∨R).

(iii) If R is finer than Q, then Hµ(P|R) ≤ Hµ(P|Q).

(iv) 0 ≤ Hµ(P|Q) ≤ Hµ(P).

(v) Hµ(P|R) ≤ Hµ(P|Q) +Hµ(Q|R).

Now we can prove a list of elementary properties of h(f1,∞;P1,∞) most of which
are straightforward generalizations of the corresponding properties of classical
metric entropy.
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3.2 Proposition: Let P1,∞ and Q1,∞ be two sequences of finite measurable
partitions for X1,∞. Then the following assertions hold:

(i) 0 ≤ h(f1,∞;P1,∞) ≤ lim supn→∞(1/n)
∑n
i=1 log #Pi.

(ii) h(f1,∞;P1,∞ ∨Q1,∞) ≤ h(f1,∞;P1,∞) + h(f1,∞;Q1,∞).

(iii) If P1,∞ � Q1,∞, then h(f1,∞;P1,∞) ≥ h(f1,∞;Q1,∞).

(iv) For every k ≥ 1 it holds that

h (f1,∞;P1,∞) = lim sup
n→∞

1

nk
Hµ1

(
nk−1∨
i=0

f−i1 Pi+1

)
.

(v) For every m ≥ 1 it holds that h(f1,∞;P1,∞) = h(f1,∞;P〈m〉1,∞(f1,∞)).

(vi) h(f1,∞;P1,∞) ≤ h(f1,∞;Q1,∞) + lim supn→∞(1/n)
∑n
i=1Hµi (Pi|Qi).

(vii) It holds that h(fk,∞;Pk,∞) = h(fl,∞;Pl,∞) for all k, l ∈ N.

Proof: The properties (i)–(iii) follow very easily from the properties of the
entropy of a partition. Property (iv) is a consequence of Lemma 2.4, since the

partitions
∨n−1
i=0 f

−i
1 Pi+1 become finer with increasing n, and hence the sequence

n 7→ Hµ1(
∨n−1
i=0 f

−i
1 Pi+1) is monotonically increasing. To show (v), note that

for every n ≥ 1 we have the identities

Hµ1

(
n−1∨
i=0

f−i1 P
〈m〉
i+1 (f1,∞)

)
= Hµ1

n−1∨
i=0

f−i1

m−1∨
j=0

f−ji+1Pj+i+1


= Hµ1

n−1∨
i=0

m−1∨
j=0

f
−(i+j)
1 Pi+j+1

 = Hµ1

(
n+m−2∨
k=0

f−k1 Pk+1

)
.

This implies

h
(
f1,∞;P〈m〉1,∞(f1,∞)

)
= lim sup

n→∞

1

n
Hµ1

(
n+m−2∨
k=0

f−k1 Pk+1

)

= lim sup
n→∞

1

n
Hµ1

(
n−1∨
k=0

f−k1 Pk+1

)
= h (f1,∞;P1,∞) ,

which concludes the proof of (v). Next, let us prove (vi): From Proposition 3.1
(ii) it follows that

Hµ1

(
n−1∨
i=0

f−i1 Pi+1

)
≤ Hµ1

(
n−1∨
i=0

f−i1 Pi+1 ∨
n−1∨
i=0

f−i1 Qi+1

)

= Hµ1

(
n−1∨
i=0

f−i1 Qi+1

)
+Hµ1

(
n−1∨
i=0

f−i1 Pi+1|
n−1∨
i=0

f−i1 Qi+1

)
.
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For the last term in this expression we further obtain

Hµ1

(
n−1∨
i=0

f−i1 Pi+1|
n−1∨
i=0

f−i1 Qi+1

)

= Hµ1

(
P1 ∨ f−11

n−2∨
i=0

f−i2 Pi+2|
n−1∨
i=0

f−i1 Qi+1

)

= Hµ1

(
P1|

n−1∨
i=0

f−i1 Qi+1

)
+Hµ1

(
f−11

n−2∨
i=0

f−i2 Pi+2|P1 ∨
n−1∨
i=0

f−i1 Qi+1

)
.

Now we use Proposition 3.1 (iii) to see that this expression can be estimated by

≤ Hµ1 (P1|Q1) +Hµ1

(
f−11

n−2∨
i=0

f−i2 Pi+2|
n−1∨
i=0

f−i1 Qi+1

)
.

Using the same arguments again, for this expression we find

= Hµ1
(P1|Q1) +Hµ1

(
f−11 P2 ∨

n−3∨
i=0

f
−(i+2)
1 Pi+3|

n−1∨
i=0

f−i1 Qi+1

)

= Hµ1 (P1|Q1) +Hµ1

(
f−11 P2|

n−1∨
i=0

f−i1 Qi+1

)

+Hµ1

(
n−3∨
i=0

f
−(i+2)
1 Pi+3|f−11 P2 ∨

n−1∨
i=0

f−i1 Qi+1

)
≤ Hµ1

(P1|Q1) +Hµ1

(
f−11 P2|f−11 Q2

)
+Hµ1

(
f−21

n−3∨
i=0

f−i3 Pi+3|
n−1∨
i=0

f−i1 Qi+1

)
.

Using f1µ1 = µ2, we find that Hµ1

(
f−11 P2|f−11 Q2

)
= Hµ2

(P2|Q2). Going on
inductively, we end up with the estimate

Hµ1

(
n−1∨
i=0

f−i1 Pi+1|
n−1∨
i=0

f−i1 Qi+1

)
≤

n∑
i=1

Hµi (Pi|Qi) .

Hence, we obtain

h (f1,∞;P1,∞) ≤ h (f1,∞;Q1,∞) + lim sup
n→∞

1

n

n∑
i=1

Hµi (Pi|Qi) ,

which finishes the proof of (vi). Finally, we prove (vii): For any k ∈ N we find

h(fk,∞;Pk,∞) = lim sup
n→∞

1

n
Hµk

(
Pk ∨

n−1∨
i=1

f−ik Pk+i

)
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≤ lim sup
n→∞

1

n

[
Hµk (Pk) +Hµk

(
n−1∨
i=1

f−ik Pk+i

)]

= lim sup
n→∞

1

n
Hµk

(
f−1k

n−1∨
i=1

f
−(i−1)
k+1 Pk+i

)

= lim sup
n→∞

1

n
Hµk+1

(
n−2∨
i=0

f−ik+1P(k+1)+i

)
= h (fk+1,∞;Pk+1,∞) .

Using the elementary property of the entropy of partitions that H(A) ≥ H(B)
whenever A is finer than B, the converse inequality is proved by

h(fk,∞;Pk,∞) = lim sup
n→∞

1

n
Hµk

(
Pk ∨

n−1∨
i=1

f−ik Pk+i

)

≥ lim sup
n→∞

1

n
Hµk

(
n−1∨
i=1

f−ik Pk+i

)

= lim sup
n→∞

1

n
Hµk

(
f−1k

n−1∨
i=1

f
−(i−1)
k+1 Pk+i

)

= lim sup
n→∞

1

n
Hµk+1

(
n−2∨
i=0

f−ik+1P(k+1)+i

)
= h(fk+1,∞;Pk+1,∞).

This implies (vii) and finishes the proof of the proposition. �

3.3 Remark: Note that the equality in item (vii) of the preceding proposi-
tion reveals an essential difference between metric and topological entropy of
nonautonomous systems, since in the topological setting only the inequality

htop(fk,∞) ≤ htop(fk+1,∞)

holds. A counterexample for the equality is given by a sequence f1,∞ on the
unit interval such that f1 is constant and all other fn are equal to the standard
tent map. In this case, clearly htop(f1,∞) = 0, but htop(fk,∞) = log 2 for all
k ≥ 2 (see also [10] for a counterexample with htop(fk,∞) < htop(fk+1,∞) for
all k). Therefore, the notion of asymptotical topological entropy, as defined in
[10], has no meaningful analogue for metric systems.

From property (vii) we can conclude a similar result as [10, Thm. A] which
asserts that the topological entropy of autonomous systems is commutative in
the sense that htop(f ◦ g) = htop(g ◦ f).

3.4 Corollary: Consider two probability spaces (X,µ) and (Y, ν) and measur-
able maps f : X → Y , g : Y → X such that fµ = ν and gν = µ. Then µ is an
invariant measure for g ◦ f , ν is an invariant measure for f ◦ g, and it holds that

hν(f ◦ g) = hµ(g ◦ f).
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Proof: We consider the nonautonomous system (X1,∞, f1,∞) defined by
X1,∞ := {X,Y,X, Y, . . .} and f1,∞ := {f, g, f, g, . . .}. The corresponding f1,∞-
invariant sequence of measures is µ1,∞ := {µ, ν, µ, ν, . . .}. Consider a finite
partition Q of Y and put P := f−1Q. Then, by Proposition 3.2 (vii), for
P1,∞ := {P,Q,P,Q, . . .} we have

h(f1,∞;P1,∞) ≤ h(f2,∞;P2,∞) ≤ h(f3,∞;P3,∞) = h(f1,∞;P1,∞). (4)

Using Proposition 3.2 (iv), we find

h (f1,∞;P1,∞) = lim sup
n→∞

1

2n
Hµ

(
2n−1∨
i=0

f−i1 Pi+1

)

= lim sup
n→∞

1

2n
Hµ

(
n−1∨
i=0

f−2i1 P2i+1 ∨
n−1∨
i=0

f
−(2i+1)
1 P2i+2

)

= lim sup
n→∞

1

2n
Hµ

(
n−1∨
i=0

(g ◦ f)−iP ∨
n−1∨
i=0

(g ◦ f)−if−1Q

)

=
1

2
lim sup
n→∞

1

n
Hµ

(
n−1∨
i=0

(g ◦ f)−iP

)
=

1

2
hµ(g ◦ f ;P).

Similarly, we obtain 2h(f2,∞;P2,∞) = hν(f ◦g;Q). Hence, from (4) we conclude

hµ(g ◦ f ;P) = hν(f ◦ g;Q).

Since we can choose Q freely, this implies hν(f ◦ g) ≤ hµ(g ◦ f). Starting with a
partition P of X and putting Q := g−1P, we get the converse inequality. �

We finish this subsection with an example which shows that the entropy
h(f1,∞;P1,∞) can be arbitrarily large even for a very trivial system.

3.5 Example: Let X1,∞, f1,∞ and µ1,∞ be constant sequences given by Xn =
[0, 1], fn = id[0,1] and µn = λ (the standard Lebesgue measure). Consider the
family P1,∞ of partitions given by

Pn = {[0, 1/kn), [1/kn, 2/kn), . . . , [(kn − 1)/kn, 1]}

for a fixed integer k ≥ 2. Then one easily sees that

Hµ1

(
n−1∨
i=0

f−i1 Pi+1

)
= Hλ(Pn) = −

kn∑
k=1

1

kn
log

1

kn
= log kn = n log k,

which implies h (f1,∞;P1,∞) = log k.

From this example one sees that by taking appropriate sequences of partitions,
one obtains arbitrarily large values for the entropy of the identity. Here we have
the same problem as we had in defining the topological entropy via sequences of
open covers. If the resolution becomes finer at exponential speed, one obtains a
gain in information which is not due to the dynamics of the system. Hence, in
the definition of the metric entropy of f1,∞, we have to exclude such sequences.
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3.2 Admissible Classes and Metric Entropy of Nonau-
tonomous Systems

To define the entropy of the system (X1,∞, f1,∞, µ1,∞), we have to choose a
sufficiently nice subclass E from the class of all sequences P1,∞. Then the
entropy can be defined in the usual way by taking the supremum over all P1,∞ ∈
E . In view of the definition of topological entropy in terms of sequences of open
covers and Example 3.5 it is clear that taking all sequences of partitions is too
much. Since there is no direct analogue to Lebesgue numbers for measurable
partitions, we introduce suitable classes of sequences of partitions by axioms
which reflect some properties of the family L(f1,∞) defined in Section 2.

3.6 Definition: We call a nonempty class E of sequences of finite measurable
partitions for X1,∞ admissible (for f1,∞) if it satisfies the following axioms:

(A) For every sequence P1,∞ ∈ E there is a bound N ≥ 1 on #Pn, i.e.,
#Pn ≤ N for all n ≥ 1.

(B) If P1,∞ ∈ E and Q1,∞ is a sequence of partitions for X1,∞ with P1,∞ �
Q1,∞, then Q1,∞ ∈ E .

(C) E is closed with respect to successive refinements via the action of f1,∞.

That is, if P1,∞ ∈ E , then for every m ≥ 1 also P〈m〉1,∞(f1,∞) ∈ E .

From Axiom (A) it follows that the upper bound in Proposition 3.2 (i) is always
finite. Moreover, by adding sets of measure zero, we can assume that #Pn
is constant for every element of E . Axiom (B) says that with every sequence
P1,∞ ∈ E , also the sequences which are coarser than P1,∞ are contained in E .
Axiom (C) will be essential for proving the power rule for metric entropy. It
reflects the property of sequences of open covers stated in Lemma 2.3.

3.7 Definition: If E is an admissible class, we define the metric entropy of
f1,∞ with respect to E by

hE(f1,∞) = hE(f1,∞;µ1,∞) := sup
P1,∞∈E

h(f1,∞;P1,∞). (5)

3.8 Proposition: Given a metric nonautonomous system (X1,∞, f1,∞), let E
be the class of all sequences of partitions for X1,∞ which satisfy Axiom (A).
Then E is an admissible class. E is maximal, i.e., it cannot be extended to a
larger admissible class. Therefore, we denote this class by Emax or Emax(X1,∞).

Proof: It is obvious that E cannot be enlarged without violating Axiom (A).
Hence, it suffices to prove that E satisfies Axioms (B) and (C). If P1,∞ ∈ E
and Q1,∞ is a sequence of partitions which is coarser than P1,∞, it follows that
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#Qn ≤ #Pn for all n ≥ 1, which implies Q1,∞ ∈ E . Now consider for some

P1,∞ ∈ E and m ≥ 1 the sequence P〈m〉1,∞(f1,∞). We have

#

[
m−1∨
i=0

f−in Pi+n

]
≤
m−1∏
i=0

#
[
f−in Pi+n

]
=

m−1∏
i=0

#Pi+n ≤
(

sup
i≥1

#Pi
)m

.

This implies that E satisfies Axiom (C). �

The following example shows that Emax is in general not a useful admissible
class.1

3.9 Example: We show that hEmax(f1,∞) = ∞ whenever the maps fi are bi-
measurable and the spaces (Xn, µn) are nonatomic. Indeed, for every k ≥ 1 we
find a sequence P1,∞ of partitions with #Pn ≡ k such that h(f1,∞;P1,∞) =
log k, which is constructed as follows. On X1 take a partition P1 consisting of k
sets with equal measure 1/k. Then Q2 := f1P1 is a partition of X2 into k sets
of equal measure. Partition each element Qi of Q2 into k sets Qi1, . . . , Qik of
equal measure 1/k2. Then define a new partition P2 of X2 consisting of the sets
P 2
1 := Q11 ∪Q21 ∪ · · · ∪Qk1, P 2

2 := Q12 ∪ · · · ∪Qk2, . . ., P 2
k := Q1k ∪ · · · ∪Qkk.

Also P2 is a partition of X2 into k sets of equal measure 1/k and

1

2
Hµ1

(P1 ∨ f−11 P2) =
1

2
log k2 = log k.

One can proceed this construction by putting Q3 := f2P2 and partitioning every
element of Q3 into k sets of equal measure. Taking appropriate unions as before,
one obtains a partition P3 of X3 such that f−12 P3 and P2 are independent, so

1

3
Hµ1(P1 ∨ f−11 P2 ∨ f−21 P3) =

1

3
log k3 = log k.

Going on in this way, one obtains a sequence P1,∞ ∈ Emax whose entropy is
log k. Since k is arbitrary, this proves the claim.

As this example shows, we have to consider smaller admissible classes. These
are provided by the following proposition whose simple proof will be omitted.

3.10 Proposition: Arbitrary unions and nonempty intersections of admissible
classes are again admissible classes. In particular, for every nonempty subset
F ⊂ Emax there exists a smallest admissible class E(F) which satisfies F ⊂
E(F) ⊂ Emax (defined as the intersection of all admissible classes containing F).
We also call E(F) the admissible class generated by F .

We also have to show that the metric entropy of a nonautonomous system indeed
generalizes the usual notion of metric entropy for autonomous systems. To this
end, we use the following result.

1This example has been presented to the author by Tomasz Downarowicz.
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3.11 Proposition: Let F be a nonempty subset of Emax. Then

H(F) := {Q1,∞ ∈ Emax | ∃P1,∞ ∈ F : h(f1,∞;Q1,∞) ≤ h(f1,∞;P1,∞)} (6)

is an admissible class with F ⊂ H(F) ⊂ Emax. Consequently, E(F) ⊂ H(F)
and it holds that

hE(F)(f1,∞) = hH(F)(f1,∞) = sup
P1,∞∈F

h (f1,∞;P1,∞) .

Proof: It is obvious that F ⊂ H(F) ⊂ Emax. Clearly, H(F) satisfies Axiom (A).
It also satisfies Axiom (B), since any sequence R1,∞ of partitions coarser than
some Q1,∞ ∈ H(F) satisfies h(f1,∞;R1,∞) ≤ h(f1,∞;Q1,∞) ≤ h(f1,∞;P1,∞)
for some P1,∞ ∈ F . With the same reasoning and Proposition 3.2 (v), we see
that H(F) satisfies Axiom (C) and hence is an admissible class. �

The preceding proposition shows not only that there exists a multitude of ad-
missible classes, but also that the metric entropy of f1,∞ can be equal to any
of the numbers h(f1,∞;P1,∞) by taking the one-point set F := {P1,∞} as a
generator for an admissible class. The next corollary immediately follows.

3.12 Corollary: Assume that the sequences X1,∞, f1,∞, µ1,∞ are constant,
i.e., we have an autonomous system (X, f, µ). Let F be the set of all constant
sequences of finite measurable partitions of X. Then hE(F)(f1,∞) = hµ(f).

3.3 Invariance of Entropy under Isomorphisms

In order to be a reasonable quantity, the metric entropy of a system f1,∞ should
be an invariant with respect to isomorphims. By an isomorphism between se-
quences (X1,∞, µ1,∞) and (Y1,∞, ν1,∞) of probability spaces we understand a
sequence π1,∞ = {πn} of bi-measurable maps πn : Xn → Yn with πnµn = νn.
Such a sequence is an isomorphism between the systems f1,∞ on X1,∞ and g1,∞
on Y1,∞ if additionally for each n ≥ 1 the diagram

Xn
fn−−−−→ Xn+1

πn

y yπn+1

Yn −−−−→
gn

Yn+1

commutes. In this case we also say that the systems f1,∞ and g1,∞ are conjugate.
If the maps πn are only measurable but not necessarily measurably invertible,
we say that the systems f1,∞ and g1,∞ are semiconjugate. The sequence π1,∞
is then called a conjugacy or a semiconjugacy from f1,∞ to g1,∞, respectively.

Given two admissible classes E and F for X1,∞ and Y1,∞, resp., we also define
the notions of E-F-isomorphisms and E-F-(semi)conjugacies via the condition
that π1,∞ respects E and F in the sense that

P1,∞ = {Pn}n≥1 ∈ F ⇒ {π−1n (Pn)}n≥1 ∈ E .
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In the case of an isomorphism or a conjugacy, the implication into the other
direction must hold as well.

3.13 Proposition: Let (X1,∞, f1,∞, µ1,∞) and (Y1,∞, g1,∞, ν1,∞) be metric
nonautonomous systems with admissible classes E and F , respectively. Let
π1,∞ be an E-F-semiconjugacy from f1,∞ to g1,∞. Then

hF (g1,∞) ≤ hE(f1,∞).

Proof: First note that the semiconjugacy identities πn+1 ◦ fn = gn ◦ πn imply
gi1 ◦π1 = πi+1 ◦ f i1 for all i. Let P1,∞ = {Pn} be a sequence of finite measurable
partitions for Y1,∞. Fix n ∈ N and Pji ∈ Pi, i = 1, . . . , n. Then we find

ν1

(
n−1⋂
i=0

g−i1 Pji+1

)
= µ1

(
π−11

n−1⋂
i=0

g−i1 Pji+1

)
= µ1

(
n−1⋂
i=0

(gi1 ◦ π1)−1Pji+1

)

= µ1

(
n−1⋂
i=0

(πi+1 ◦ f i1)−1Pji+1

)
= µ1

(
n−1⋂
i=0

f−i1 π−1i+1Pji+1

)
.

Define Q1,∞ = {Qn} by Qn := {π−1n (P ) : P ∈ Pn} for all n ≥ 1. Then Qn is a
finite measurable partition of Xn and from the preceding computation we get

Hν1

(
n−1∨
i=0

g−i1 Pi+1

)
= Hµ1

(
n−1∨
i=0

f−i1 Qi+1

)
.

Hence, h(f1,∞;Q1,∞) = h(g1,∞;P1,∞). Writing Q1,∞ = π−11,∞(P1,∞), we find

hF (g1,∞) = sup
P1,∞∈F

h(g1,∞;P1,∞) = sup
P1,∞∈F

h(f1,∞;π−11,∞(P1,∞))

≤ sup
Q1,∞∈E

h(f1,∞;Q1,∞) = hE(f1,∞),

as desired. �

3.4 The Rokhlin Inequality

For autonomous systems, Proposition 3.2 (vi) can be used to show that the
entropy depends continuously on the partition, where the set of partitions is en-
dowed with the Rokhlin metric, given by dR(P,Q) = Hµ(P|Q)+Hµ(Q|P). The
nonautonomous analogue of this result is formulated in the next proposition.

3.14 Proposition: For two sequences P1,∞,Q1,∞ ∈ Emax let

dR(P1,∞,Q1,∞) := sup
n≥1

Hµn(Pn|Qn) + sup
n≥1

Hµn(Qn|Pn).

Then dR is a metric on Emax and the function P1,∞ 7→ h(f1,∞;P1,∞) is Lipschitz
continuous with Lipschitz constant 1 on (Emax, dR).
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Proof: The proof that dR is a metric easily follows from the properties of
conditional entropy stated in Proposition 3.1. From Proposition 3.2 (vi) we
conclude the nonautonomous Rokhlin inequality

|h(f1,∞;P1,∞)− h(f1,∞;Q1,∞)|

≤ max

{
lim sup
n→∞

1

n

n∑
i=1

Hµi (Pi|Qi) , lim sup
n→∞

1

n

n∑
i=1

Hµi (Qi|Pi)

}

≤ lim sup
n→∞

1

n

n∑
i=1

Hµi (Pi|Qi) + lim sup
n→∞

1

n

n∑
i=1

Hµi (Qi|Pi)

≤ sup
n≥1

Hµn (Pn|Qn) + sup
n≥1

Hµn (Qn|Pn) ,

which finishes the proof. �

3.5 Restrictions

Given a metric nonautonomous system (X1,∞, f1,∞, µ1,∞), assume that we can
decompose each of the spaces Xn as a disjoint union Xn = Yn∪̇Zn such that
fn(Yn) ⊂ Yn+1, fn(Zn) ⊂ Zn+1 and µn(Yn) ≡ c for a constant 0 < c ≤ 1.
Then let us consider the restrictions of f1,∞ to the sequences Y1,∞ := {Yn} and
Z1,∞ := {Zn}, resp., i.e., the systems defined by the maps

gn := fn|Yn : Yn → Yn+1, hn := fn|Zn : Zn → Zn+1.

It we consider the probability measure νn(A) := µn(A)/c on Yn, it follows that
(Y1,∞, g1,∞, ν1,∞) is also a metric system. If c < 1, we can define a corresponding
invariant sequence of probability measures for the system (Z1,∞, h1,∞) as well.

3.15 Proposition: Let E be an admissible class for (X1,∞, f1,∞) and assume
that P1,∞ ∈ E implies {Pn ∨ {Yn, Zn}} ∈ E . Then

E|Y1,∞ := {Q1,∞ | ∃P1,∞ ∈ E : Qn ≡ {Yn} ∨ Pn}

is an admissible class for (Y1,∞, g1,∞) and

chE|Y1,∞ (g1,∞) ≤ hE(f1,∞).

If c = 1, then equality holds.

Proof: It is clear that E|Y1,∞ satisfies Axiom (A). Let Q1,∞ ∈ E1,∞|Y1,∞ . Then
there exists P1,∞ ∈ E such that the elements of each Qn are the intersections of
the elements of Pn with Yn. Now assume that R1,∞ is a sequence of partitions
for Y1,∞ which is coarser than Q1,∞. Then the elements of each Rn are unions
of elements of Qn. Taking corresponding unions of elements of Pn for each n,
one constructs a sequence S1,∞ ∈ E coarser than P1,∞ such that {Yn}∨S1,∞ =
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R1,∞, which proves that E|Y1,∞ satisfies Axiom (B). Finally, if Qn ≡ {Yn} ∨Pn
for some P1,∞ ∈ E , then for all k,m ≥ 1 it holds that

m−1∨
i=0

g−ik Qi+k =

m−1∨
i=0

f−ik ({Yi+k} ∨ Pi+k) = {Yk} ∨
m−1∨
i=0

f−ik Pi+k,

which implies that E|Y1,∞ satisfies Axiom (C). To prove the inequality of
entropies, consider Q1,∞ ∈ E|Y1,∞ and the corresponding P1,∞ ∈ E with
Qn ≡ {Yn} ∨ Pn. Then

Hν1

(
n−1∨
i=0

g−i1 Qi+1

)
= Hν1

(
{Y1} ∨

n−1∨
i=0

f−i1 Pi+1

)

= −1

c

∑
P∈

∨
i f
−i
1 Pi+1

µ1(P ∩ Y1) log
µ1(P ∩ Y1)

c

= −1

c

 ∑
P∈

∨
i f
−i
1 Pi+1

µ1(P ∩ Y1) logµ1(P ∩ Y1) +
∑

P∈
∨
i f
−i
1 Pi+1

µ1(P ∩ Y1) log c

 .
The last summand gives∑

P∈
∨
i f
−i
1 Pi+1

µ1(P ∩ Y1) log c = µ1(Y1) log c = c log c,

and thus can be omitted in the computation of h(g1,∞;Q1,∞). We obtain

h(g1,∞;Q1,∞) = lim sup
n→∞

1

n

−1

c

∑
P∈

∨
i f
−i
1 Pi+1

µ1(P ∩ Y1) logµ1(P ∩ Y1)

 .
If we consider the sequence P̃1,∞ of partitions P̃n := {P∩Yn : P ∈ Pn}∪{P∩Zn :
P ∈ Pn}, we see that

h(g1,∞;Q1,∞) ≤ 1

c
h(f1,∞; P̃1,∞). (7)

By the assumption on E it follows that P̃1,∞ ∈ E and hence the assertion follows.
In the case c = 1, the measures µn(Zn) are all zero, and hence equality holds in

(7). Since P̃1,∞ is finer than P1,∞, we have

hE(f1,∞) = sup
P̃1,∞

h(f1,∞; P̃1,∞) = c sup
Q1,∞∈E|Y1,∞

h(g1,∞;Q1,∞) = chE|Y1,∞ (g1,∞),

which finishes the proof. �

3.16 Remark: For a topological nonautonomous system given by a sequence
of homeomorphisms, endowed with an invariant sequence of Borel probability
measures, the above proposition can be applied to the decomposition Yn :=
suppµn, Zn := Xn\ suppµn, where suppµn = {x ∈ Xn|∀ε > 0 : µn(B(x, ε)) >
0} is the support of the measure µn.
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3.6 The Power Rule for Metric Entropy

Given a metric nonautonomous system (X1,∞, f1,∞) and k ∈ N, we define the k-

th power system (X
[k]
1,∞, f

[k]
1,∞) in exactly the same way as we did for topological

systems. It is very easy to see that this system is a metric system as well.

If E is an admissible class for (X1,∞, f1,∞), we denote by E [k] the class of all

sequences of partitions for X
[k]
1,∞ which are defined by restricting the sequences

in E to the spaces in X
[k]
1,∞, i.e., P1,∞ = {Pn} ∈ E iff

P [k]
1,∞ := {P(n−1)k+1}n≥1 ∈ E [k].

3.17 Proposition: If E is an admissible class for (X1,∞, f1,∞), then E [k] is an

admissible class for (X
[k]
1,∞, f

[k]
1,∞) and

hE[k]
(
f
[k]
1,∞

)
= k · hE (f1,∞) .

Proof: It is clear that E [k] satisfies Axiom (A). To verify Axiom (B), consider

P [k]
1,∞ ∈ E [k] for some P1,∞ ∈ E . If Q1,∞ is a sequence of partitions for X

[k]
1,∞

which is coarser than P [k]
1,∞ (i.e., Qn � P(n−1)k+1 for all n ≥ 1), we can extend

Q1,∞ to a sequence R1,∞ of partitions for X1,∞ which is coarser than P1,∞.
This can be done in a trivial way by putting

Rn :=

{
Pn if n− 1 is not a multiple of k,
Q1+(n−1)/k if n− 1 is a multiple of k.

Then it follows thatRn = Pn � Pn in the first case, andRn = Q1+(n−1)/k � Pn
in the second one. Since E satisfies Axiom (B), we know that R1,∞ ∈ E , which

implies that Q1,∞ = R[k]
1,∞ ∈ E [k]. To show that E [k] satisfies Axiom (C), let

P1,∞ ∈ E and m ≥ 1. We have to show that the sequence Q1,∞ defined by

Qn :=

m−1∨
i=0

f−ik(n−1)k+1P(i+n−1)k+1

is an element of E [k]. To this end, first note that

Qn �
mk−1∨
i=0

f−i(n−1)k+1P(n−1)k+1+i =: Rn.

The sequence R1,∞ can be extended to an element S1,∞ of E , which is given by

Sn :=

mk−1∨
i=0

f−in Pn+i.
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Indeed, S1,∞ ∈ E , since E satisfies Axiom (C). Hence, R1,∞ = S [k]1,∞ ∈ E [k] and

since E [k] satisfies Axiom (B), this implies Q1,∞ ∈ E [k]. Now let us prove the
formula for the entropies. Let P1,∞ ∈ E . We define a sequence Q1,∞ of finite

measurable partitions for X
[k]
1,∞ as follows:

Qn :=

k−1∨
j=0

f−j(n−1)k+1P(n−1)k+1+j .

The sequence Q1,∞ is an element of E [k], since it is of the form Q1,∞ = R[k]
1,∞

with R1,∞ ∈ E . This follows by combining the facts that P1,∞ ∈ E and E
satisfies Axiom (C). We find that

h
(
f
[k]
1,∞;Q1,∞

)
= lim sup

n→∞

1

n
Hµ1

(
n−1∨
i=0

f−ik1 Qi+1

)

= lim sup
n→∞

1

n
Hµ1

n−1∨
i=0

f−ik1

k−1∨
j=0

f−jik+1Pik+1+j


= lim sup

n→∞

1

n
Hµ1

n−1∨
i=0

k−1∨
j=0

f
−(ik+j)
1 P(ik+j)+1


= k · lim sup

n→∞

1

nk
Hµ1

(
nk−1∨
i=0

f−i1 Pi+1

)
= k · h (f1,∞;P1,∞) .

To obtain the last equality we used Proposition 3.2 (iv). Now consider also

the sequence P [k]
1,∞. It is obvious that Q1,∞ is finer than P [k]

1,∞. Hence, using
Proposition 3.2 (iii), we find

h
(
f
[k]
1,∞;P [k]

1,∞

)
≤ h

(
f
[k]
1,∞;Q1,∞

)
= k · h (f1,∞;P1,∞) .

Taking the supremum over all P [k]
1,∞ on the left-hand side and over all P1,∞ on

the right-hand side, the inequality

hE[k]
(
f
[k]
1,∞

)
≤ k · hE

(
f
[k]
1,∞

)
follows. The converse inequality follows from

hE[k]
(
f
[k]
1,∞

)
≥ h

(
f
[k]
1,∞;Q1,∞

)
= k · h (f1,∞;P1,∞) ,

which holds for every P1,∞ ∈ E . �

4 A Variational Inequality

In order to prove a variational inequality, we consider a topological nonau-
tonomous system (X1,∞, f1,∞) with an f1,∞-invariant sequence µ1,∞ = {µn}
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of Borel probability measures. When speaking of measurable partitions in this
context, we mean “exact” partitions and not partitions in the sense of measure
theory, where different elements of the partition may have a nonempty overlap
of measure zero. We will frequently use the property of inner regularity of Borel
measures, i.e., µ(A) = sup{µ(K) : K ⊂ A compact} for any Borel subset of a
compact metric space.

4.1 The Misiurewicz Class

In this subsection, we introduce a special admissible class which we will use to
prove the variational inequality. This class is constructed in such a way that its
elements are just perfect to apply the arguments of Misiurewicz’s proof of the
variational principle to them. Therefore, we call it the Misiurewicz class.

Let (X1,∞, f1,∞) be a topological nonautonomous system with an f1,∞-invariant
sequence of Borel probability measures µ1,∞ = {µn}.
We define the Misiurewicz class EM ⊂ Emax as follows. A sequence P1,∞ ∈ Emax,
Pn = {Pn,1, . . . , Pn,kn}, is an element of EM iff for every ε > 0 there exist δ > 0
and compact sets Cn,i ⊂ Pn,i (n ≥ 1, 1 ≤ i ≤ kn) such that for every n ≥ 1 the
following two hypotheses are satisfied:

(a) µn(Pn,i\Cn,i) ≤ ε.

(b) The minimal distance between the sets Cn,i is at least δ, i.e.,

min
1≤i<j≤kn

min {%n(x, y) : (x, y) ∈ Cn,i × Cn,j} ≥ δ.

4.1 Proposition: If f1,∞ is equicontinuous, then EM is an admissible class.

Proof: First note that EM is nonempty, since it contains the trivial sequence
defined by Pn := {Xn} for all n ≥ 1. To show that EM satisfies Axiom (B),
assume that P1,∞ = {Pn} ∈ EM, Pn = {Pn,1, . . . , Pn,kn}, and let Q1,∞ be a
sequence which is coarser than P1,∞. Let Qn be given by

Qn = {Qn,1, . . . , Qn,ln}.

Then every element of Qn must be a disjoint union of elements of Pn:

Qn,i =

Nn,i⋃
α=1

Pn,jα .

Since P1,∞ ∈ EM, we can choose compact sets Cn,i ⊂ Pn,i and δ > 0 depending
on a given ε = ε̃/(maxn≥1 #Pn) such that (a) and (b) hold for P1,∞. Define

Dn,i :=

Nn,i⋃
α=1

Cn,jα , n ≥ 1, i = 1, . . . , ln.
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It is clear that Dn,i is a compact subset of Qn,i. Moreover, it holds that

µn (Qn,i\Dn,i) = µn

Nn,i⋃
α=1

Pn,jα\
Nn,i⋃
α=1

Cn,jα


= µn

Nn,i⋃
α=1

[Pn,jα\Cn,jα ]

 =

Nn,i∑
α=1

µn (Pn,jα\Cn,jα) ≤ Nn,iε̃

maxn≥1 #Pn
≤ ε̃.

For i 6= j we have

min

%n(x, y) : (x, y) ∈
Nn,i⋃
α=1

Cn,jα ×
Nn,j⋃
β=1

Cn,jβ


= min

α,β
min

{
%n(x, y) : (x, y) ∈ Cn,jα × Cn,jβ

}
≥ δ,

since each Cn,jα is disjoint from all Cn,jβ . Hence, Q1,∞ ∈ EM. To show that
Axiom (C) holds, let P1,∞ = {Pn} ∈ EM, Pn = {Pn,1, . . . , Pn,kn}, and m ≥ 1.

Consider the sequence P〈m〉1,∞(f1,∞). For given ε = (1/m)ε̃ > 0 choose δ > 0 and
compact sets Cn,i ⊂ Pn,i such that (a) and (b) hold for P1,∞. For every r ≥ 1
and (j0, . . . , jm−1) ∈ {1, . . . , kr} × · · · × {1, . . . , kr+m−1} define

Dr,(j0,...,jm−1) :=

m−1⋂
i=0

f−ir (Cr+i,ji).

These sets are obviously compact subsets of Xr and each element of P〈m〉k (f1,∞)
contains exactly one such set. We have

µr

(
m−1⋂
i=0

f−ir (Pr+i,ji)\
m−1⋂
i=0

f−ir (Cr+i,ji)

)

= µr

(
m−1⋃
l=0

[(
m−1⋂
i=0

f−ir (Pr+i,ji)

)
\f−lr (Cr+l,jl)

])

≤
m−1∑
l=0

µr
(
f−lr (Pr+l,jl)\f−lr (Cr+l,jl)

)
=

m−1∑
l=0

f lrµr (Pr+l,jl\Cr+l,jl) =

m−1∑
l=0

µr+l (Pr+l,jl\Cr+l,jl) ≤ mε = ε̃.

Finally, in order to show that (b) holds for P〈m〉(f1,∞), we need the assumption
of equicontinuity for f1,∞, which yields a number ρ > 0 such that %r(x, y) < ρ
implies %r+i(f

i
r(x), f ir(y)) < δ for all r ≥ 1 and i = 0, 1, . . . ,m− 1 (cf. the proof

of Lemma 2.3). Now consider two sets Dr,(j0,...,jm−1) and Dr,(l0,...,lm−1). These
sets are disjoint iff there is an index α ∈ {0, 1, . . . ,m − 1} such that jα 6= lα.
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This implies %r+α(fαr (x), fαr (y)) ≥ δ, and hence %r(x, y) ≥ ρ. Thus, we have
found that for every r ≥ 1 it holds that

min
(j0,...,jm−1)6=

(l0,...,lm−1)

min
{
%r(x, y) : (x, y) ∈ Dr,(j0,...,jm−1) ×Dr,(l0,...,lm−1)

}
≥ ρ,

which completes the proof. �

In [10, Thm. B] it is shown that an equiconjugacy preserves the topological
entropy of a topological nonautonomous system. An equiconjugacy between
systems f1,∞ and g1,∞ is an equicontinuous sequence π1,∞ = {πn} of home-
omorphisms such that also {π−1n } is equicontinuous and πn+1 ◦ fn = gn ◦ πn.
The following proposition shows that an equiconjugacy also preserves the Misi-
urewicz class and hence the associated metric entropy.

4.2 Proposition: Consider two equicontinuous topological nonautonomous
systems (X1,∞, f1,∞) and (Y1,∞, g1,∞). Assume that π1,∞ is an equisemicon-
jugacy from f1,∞ to g1,∞, i.e., it holds that πn+1 ◦ fn = gn ◦ πn for all n ≥ 1
and the sequence {πn} is equicontinuous. Then, if µ1,∞ is an f1,∞-invariant
sequence, ν1,∞ = {νn}, νn := πnµn, is g1,∞-invariant and π1,∞ is an EM(f1,∞)-
EM(g1,∞)-semiconjugacy. Hence,

hEM(g1,∞) ≤ hEM(f1,∞).

Proof: We have gnνn = gn(πnµn) = πn+1fnµn = πn+1µn+1 = νn+1 and
hence, ν1,∞ is g1,∞-invariant. To show that π1,∞ is an EM(f1,∞)-EM(g1,∞)-
semiconjugacy, consider some Q1,∞ ∈ EM(g1,∞) and let Pn := {π−1n (Q) : Q ∈
Qn} for all n ≥ 1. To show that P1,∞ ∈ EM(f1,∞), let ε > 0. Then, if
Qn = {Qn,1, . . . , Qn,kn}, we find compact sets Cn,i ⊂ Qn,i and δ > 0 such that
νn(Qn,i\Cn,i) ≤ ε and

min
1≤i<j≤kn

min {%Yn(y1, y2) : (y1, y2) ∈ Cn,i × Cn,j} ≥ δ. (8)

Since {πn} is equicontinuous, there exists ρ > 0 such that %Xn(x1, x2) < ρ
implies %Yn(πn(x1), πn(x2)) < δ for all n ≥ 1 and x1, x2 ∈ Xn. Now consider
the closed (and hence compact) sets π−1n (Cn,i) ⊂ π−1n (Qn,i) =: Pn,i ∈ Pn. We
have µn(Pn,i\π−1n (Cn,i)) = νn(Pn,i\Cn,i) ≤ ε. Assume to the contrary that
there exist n ∈ N, i 6= j, and x1 ∈ π−1n (Cn,i), x2 ∈ π−1n (Cn,j), such that
%Xn(x1, x2) < ρ. This implies %Yn(πn(x1), πn(x2)) < δ. Since πn(x1) ∈ Cn,i
and πn(x2) ∈ Cn,j this contradicts (8). Hence, P1,∞ ∈ EM(f1,∞) and the rest
follows from Proposition 3.13. �

4.2 The Variational Inequality

Now we are in position to prove the general variational inequality following the
lines of Misiurewicz’s proof [14].
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4.3 Theorem: For an equicontinuous topological nonautonomous system
(X1,∞, f1,∞) with an invariant sequence µ1,∞ it holds that

hEM(f1,∞) ≤ htop(f1,∞).

Proof: Let P1,∞ ∈ EM. By adding sets of measure zero, we may assume
that each Pn has the same number k of elements, Pn = {Pn,1, . . . , Pn,k}. By
definition of the Misiurewicz class, we find compact sets Qn,i ⊂ Pn,i (for all n, i)
such that

µn(Pn,i\Qn,i) ≤
1

k log k
, i = 1, . . . , k, n ≥ 1,

and δ > 0 with

min
1≤i<j≤k

min {%n(x, y) : (x, y) ∈ Qn,i ×Qn,j} ≥ δ. (9)

By setting Qn,0 := Xn\
⋃k
i=1Qn,i we can define another sequence Q1,∞ of

measurable partitions Qn := {Qn,0, Qn,1, . . . , Qn,k}. As in Misiurewicz’s proof
one finds Hµn (Pn|Qn) ≤ 1, which by Proposition 3.2 (vi) leads to the inequality

h (f1,∞;P1,∞) ≤ h (f1,∞;Q1,∞) + 1. (10)

Define a sequence U1,∞ of open covers Un of Xn by

Un := {Qn,0 ∪Qn,1, . . . , Qn,0 ∪Qn,k} .

To see that the sets Qn,0∪Qn,i are open, consider their complements Qn,1∪. . .∪
Qn,i−1 ∪Qn,i+1 ∪ . . . ∪Qn,k, which are finite unions of compact sets and hence
closed. For a fixed m ≥ 1, let Em ⊂ X1 be a maximal (m, δ)-separated set.
From (9) it follows that each (δ/2)-ball in Xn intersects at most two elements of
Qn for any n ≥ 1. Hence, we can associate to each x ∈ Em at most 2m different
elements of

∨m−1
i=0 f−i1 Qi+1, which implies

#

[
m−1∨
i=0

f−i1 Qi+1

]
≤ 2mrsep

(
m,

δ

2
, f1,∞

)
.

Consequently, we obtain

Hµ1

(
m−1∨
i=0

f−i1 Qi+1

)
≤ log #

[
m−1∨
i=0

f−i1 Qi+1

]
≤ log rsep

(
m,

δ

2
, f1,∞

)
+m log 2.

Using (10), we therefore have

h (f1,∞;P1,∞) ≤ lim sup
m→∞

1

m
log rsep

(
m,

δ

2
, f1,∞

)
+ log 2 + 1

≤ htop(f1,∞) + log 2 + 1.
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Taking the supremum over all P1,∞ ∈ EM, we find

hEM(f1,∞) ≤ htop(f1,∞) + log 2 + 1.

That the constant term log 2 + 1 can be omitted in this estimate now follows
from a careful application of the power rules for topological and metric entropy.
Inspecting the definition of the Misiurewicz class, one sees that for every k ≥ 1

the admissible class E [k]M is contained in the Misiurewicz class of f
[k]
1,∞. Therefore,

the arguments that we have applied to the system (X1,∞, f1,∞) can equally be

applied to all of the power systems (X
[k]
1,∞, f

[k]
1,∞), k ≥ 1. Hence, using the power

rules (Proposition 2.2 and Proposition 3.17), we obtain

hEM(f1,∞) ≤ htop(f1,∞) +
log 2 + 1

k
.

Since this holds for every k ≥ 1, sending k to infinity gives the result. �

An interesting corollary of Theorem 4.3 is the following generalized variational
principle for autonomous systems.

4.4 Corollary: For a topological autonomous system (X, f) it holds that

sup
µ1,∞

hEM(f,µ1,∞)(f) = htop(f),

where the supremum is taken over all sequences µ1,∞ with fµn ≡ µn+1.

Proof: The inequality “≤” holds by Theorem 4.3. The converse inequality
follows from the classical variational principle, if we consider only the constant
sequences µ1,∞, i.e., the invariant measures of f , and assure ourselves that the
associated Misiurewicz classes contain all constant sequences. �

4.5 Corollary: Let f1,∞ be an equicontinuous sequence of (not necessarily
strictly) monotone maps fn : X → X where X is either a compact interval or a
circle. Then for every f1,∞-invariant sequence µ1,∞ it holds that hEM(f1,∞) = 0.

Proof: This follows from [10, Thm. D], which asserts that the corresponding
topological entropy is zero. �

4.3 Large Misiurewicz Classes

Up to now, we only know that the Misiurewicz class EM contains the trivial
sequence of partitions. If it would contain no further sequences, Theorem 4.3
would not give any valuable information on the metric or topological entropy.
The aim of this subsection is to find conditions on invariant sequences of mea-
sures which give rise to a large Misiurewicz class. The simplest case consists
in a system (X1,∞, f1,∞, µ1,∞), where both X1,∞ and µ1,∞ are constant, say
Xn ≡ X and µn ≡ µ. Then any finite measurable partition P of X gives rise to
a constant sequence Pn ≡ P of partitions which is obviously contained in EM.
The following proposition slightly generalizes this situation.
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4.6 Proposition: Let (X1,∞, f1,∞) be an equicontinuous nonautonomous sys-
tem with an f1,∞-invariant sequence µ1,∞. If X1,∞ is constant and the closure
of {µn} with respect to the strong topology on the space of probability measures
is compact, then EM contains all constant sequences of partitions.

Proof: We first show that every Borel set A ⊂ X can be approximated by
compact subsets uniformly for all µn. The strong topology is characterized by

µn → µ ⇔ µn(A)→ µ(A) for every Borel set A ⊂ X.

Let C be the strong closure of µ1,∞, and let A ⊂ X be a Borel set and ε > 0.
For each µ ∈ C there exists a compact set Bµ ⊂ A such that µ(A\Bµ) ≤ ε/2.
Now take a neighborhood Uµ of µ in C such that |ν(A\Bµ) − µ(A\Bµ)| ≤ ε/2
for all ν ∈ Uµ. Then for every ν ∈ Uµ we have

ν(A\Bµ) ≤ µ(A\Bµ) +
ε

2
≤ ε.

We can cover the compact set C by finitely many of such neighborhoods, say
Uµ1

, . . . ,Uµr . Then B :=
⋃r
i=1Bµi is a compact subset of A which satisfies

ν(A\B) ≤ ε for all ν ∈ C, so in particular for all ν = µn. Now let P =
{P1, . . . , Pk} be a finite measurable partition of the state space X. Then for
any given ε > 0 we find compact sets Ci ⊂ Pi such that µn(Pi\Ci) ≤ ε for all
n ≥ 1 and i = 1, . . . , k. Moreover, since the sets Ci are pairwisely disjoint,

min
1≤i<j≤k

min {%(x, y) : (x, y) ∈ Ci × Cj} > 0.

This implies that the constant sequence Pn ≡ P is an element of EM. �

4.7 Example: Consider a system which is given by a periodic sequence

f1,∞ = {f1, f2, . . . , fN , f1, f2, . . . , fN , . . .} .

Let µ1 be an fN1 -invariant probability measure on X (which exists by the the-
orem of Krylov-Bogolyubov). Define

µ2 := f1µ1, µ3 := f2µ2, . . . , µN := fN−1µN−1,

and extend this to an N -periodic sequence

µ1,∞ = {µ1, µ2, . . . , µN , µ1, µ2, . . . , µN , . . .} .

Then µ1,∞ is an f1,∞-invariant sequence, which follows from

fNµN = fNfN−1µN−1 = fNfN−1fN−2µN−2 = · · · = fN1 µ1 = µ1.

Clearly, {µ1, . . . , µN} is compact.

The assumption that the closure of {µn} should be compact still seems to be
very restrictive. The next result provides another condition.
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4.8 Lemma: Let (X, %) be a compact metric space with a Borel probability
measure µ. Let A ⊂ X be a Borel set with µ(∂A) = 0. Then A can be
approximated by compact subsets without boundary, i.e.,

µ(A) = sup {µ(K) : K ⊂ A compact with µ(∂K) = 0} .

Proof: We can assume without loss of generality that ∂A 6= ∅, since otherwise
A is closed and hence compact itself. For every ε > 0 define the set

Kε := {x ∈ intA : dist(x, ∂A) ≥ ε} .

We claim that each Kε is a closed subset of X and hence compact. To this end,
consider a sequence xn ∈ Kε with xn → x ∈ X. By continuity of dist(·, ∂A),
it follows that dist(x, ∂A) ≥ ε and x ∈ clA. Assume to the contrary that
x ∈ ∂A. Then ε ≤ dist(x, ∂A) = 0, a contradiction. Hence, x ∈ Kε. We further
claim that µ(Kε) → µ(A) for ε → 0. To show this, take an arbitrary strictly
decreasing sequence εn → 0. Then Kεn ⊂ Kεn+1

for all n ≥ 1. Hence, by
continuity of the measure µ and the assumption that µ(∂A) = 0, it follows that

µ(A) = µ(intA) = µ

⋃
n≥1

Kεn

 = lim
n→∞

µ(Kεn).

To conclude the proof, it suffices to show that one can choose the sequence
εn such that µ(∂Kεn) = 0. To this end, we first show that for δ1 < δ2 the
boundaries of Kδ1 and Kδ2 are disjoint. Assume to the contrary that there exists
x ∈ ∂Kδ1 ∩ ∂Kδ2 . Then, by continuity of the dist-function, dist(x, ∂A) ≥ δ1
and dist(x, ∂A) ≥ δ2. However, if one of these inequalities would be strict, the
point x would be contained in the interior of the corresponding set. Hence,
dist(x, ∂A) = δ1 < δ2 = dist(x, ∂A), a contradiction. Now, we can construct
the desired sequence εn → 0 as follows. Fix n ∈ N and assume to the contrary
that µ(∂Kε) > 0 for all ε ∈ (1/(n + 1), 1/n). Define the sets Im := {ε ∈
(1/(n+1), 1/n) : µ(∂Kε) ≥ 1/m}. Then (1/(n+1), 1/n) =

⋃
m∈N Im and hence

one of the sets Im, say Im0
, must be uncountable. However, since the boundaries

of the Kε are disjoint, this would imply that the set
⋃
ε∈Im0

∂Kε has an infinite

measure. Hence, we can take εn ∈ (1/(n+ 1), 1/n) with µ(∂Kεn) = 0. �

4.9 Proposition: Let (X1,∞, f1,∞) be an equicontinuous system such that
X1,∞ is constant and let µ1,∞ = {µn} be an f1,∞-invariant sequence. As-
sume that the measures in the weak∗-closure of {µn} are pairwisely equivalent.
Then EM contains all constant sequences of partitions whose members have zero
boundaries (with respect to the measures µn).

Proof: Let C denote the weak∗-closure of {µn}. Consider a finite measurable
partition P = {P1, . . . , Pk} of the state space X such that ν(∂Pi) = 0, 1 ≤ i ≤ k,
for one and hence all ν ∈ C. Fix ε > 0 and pick ν ∈ C. By Lemma 4.8, we find
compact sets Cν,i ⊂ Pi with ν(∂Cν,i) = 0, 1 ≤ i ≤ k, and

ν(Pi\Cν,i) ≤ ε/2, 1 ≤ i ≤ k.
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Since ∂(Pi\Cν,i) ⊂ ∂Pi ∪ ∂Cν,i and hence ν(∂(Pi\Cν,i)) = 0, the Portmanteau
theorem yields a weak∗-neighborhood Uν ⊂ C of ν such that for every µ ∈ Uν
it holds that |ν(Pi\Cν,i) − µ(Pi\Cν,i)| ≤ ε/2. Therefore, µ(Pi\Cν,i) ≤ ε for all
µ ∈ Uν . Since C is weakly∗-compact, we can cover C with finitely many of these
neighborhoods, say Uν1 , . . . ,Uνr . Then Ci :=

⋃r
i=1 Cνi is a compact subset of

Pi for 1 ≤ i ≤ k and for every µ ∈ C it holds that µ(Pi\Ci) ≤ ε, in particular
for all µ = µn. This implies that the constant sequence Pn ≡ P is in EM. �

4.10 Remark: Note that every compact metric space admits finite measurable
partitions of sets with arbitrarily small diameters and zero boundaries (cf. [8,
Lem. 4.5.1]).

4.11 Example: An example for systems with invariant sequences satisfying
the assumption of Proposition 4.9, can be found in [18]: Let M be a compact
connected Riemannian manifold. By d(·, ·) denote the Riemannian distance
and by m the Riemannian volume measure. For simplicity, we will assume that
m(M) = 1, so m is a probability measure. For constants λ > 1 and Γ > 0
consider the set

E(λ,Γ) :=
{
f ∈ C2(M,M) : f expanding with factor λ, ‖f‖C2 ≤ Γ

}
,

where “expanding with factor λ” means that |Dfx(v)| ≥ λ|v| holds for all x ∈M
and all tangent vectors v ∈ TxM . We will consider a nonautonomous system
f1,∞ = {fn} on M with fn ∈ E(λ,Γ) for fixed λ > 1 and Γ > 0. It is clear that
such a system is equicontinuous. We define

D :=

{
ϕ : M → R : ϕ > 0, Lipschitz,

∫
ϕdm = 1

}
and for every L > 0 the set

DL :=

{
ϕ ∈ D :

∣∣∣∣ϕ(x)

ϕ(y)
− 1

∣∣∣∣ ≤ Ld(x, y) if d(x, y) < ε

}
,

where ε > 0 is a fixed number (depending on λ and Γ). Note that

D =
⋃
L>0

DL,

since for every ϕ ∈ D we have∣∣∣∣ϕ(x)

ϕ(y)
− 1

∣∣∣∣ =
1

ϕ(y)
|ϕ(x)− ϕ(y)| ≤ Lip(ϕ)

minϕ
d(x, y).

For any expanding C1-map f : M →M we write

Pf (ϕ)(x) =
∑

y∈f−1(x)

ϕ(y)

|detDf(y)|
, Pf (ϕ) : M → R,
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for the Perron-Frobenius operator associated with f acting on densities ϕ ∈ D.
Note that this makes sense, since the expanding maps are covering maps, and
hence the sets f−1(x) are finite, all having the same number of elements.

Now let ϕ ∈ D. We claim that the f1,∞-invariant sequence, defined by µ1 :=
ϕdm and µn := fn−11 µ1 for all n ≥ 2, has the property that the elements of the
weak∗-closure of {µn}n∈N are pairwisely equivalent. To show this, let L > 0 be
chosen such that ϕ ∈ DL and note that µn+1 = Pfn1 (ϕ)dm for all n. By [18,
Prop. 2.3], there exist L∗ > 0 and τ ≥ 1 such that Pfn1 (ϕ) ∈ DL∗ for all n ≥ τ .
Hence, we may assume that Pfn1 (ϕ) ∈ DL∗ for all n. We will first show that the
densities in DL∗ are uniformly bounded away from zero and infinity and that
they are equicontinuous. Assume to the contrary that there are ϕn ∈ DL∗ and
xn ∈M such that ϕn(xn) ≥ n. Without loss of generality, we may assume that
ϕn(xn) = maxx∈M ϕn(x). Choosing δ ∈ (0, ε] with Lδ < 1, we obtain

1 =

∫
M

ϕndm ≥
∫
B(xn,δ)

ϕn(x)dm(x) =

∫
B(xn,δ)

ϕn(x)

ϕn(xn)
ϕn(xn)dm(x)

≥ n

∫
B(xn,δ)

(1− Ld(x, xn)) dm(x)

≥ n

∫
B(xn,δ)

(1− Lδ) dm = n (1− Lδ)m(B(xn, δ)).

Since m(B(xn, δ)) is bounded away from zero, this is a contradiction. Hence, the
functions in DL∗ are uniformly bounded by some constant K. This immediately
implies equicontinuity, since for x, y ∈M with d(x, y) < ε we have

|ϕ(x)− ϕ(y)| = ϕ(y)

∣∣∣∣ϕ(x)

ϕ(y)
− 1

∣∣∣∣ ≤ KLd(x, y).

To show that the ϕ ∈ DL∗ are uniformly bounded away from zero, assume to
the contrary that there exist ϕn ∈ DL∗ and xn ∈M such that ϕn(xn)→ 0. By
compactness, we may assume that xn → x. Then

|ϕn(x)− ϕn(xn)| ≤ KLd(x, xn)→ 0 ⇒ ϕn(x)→ 0.

Now pick some y ∈ B(x, ε). Then

|ϕn(x)− ϕn(y)| = ϕn(x)

∣∣∣∣1− ϕn(y)

ϕn(x)

∣∣∣∣ ≤ ϕn(x)Lε→ 0.

Using the theorem of Arzelá-Ascoli, we can choose a uniformly convergent sub-
sequence ϕmn → ϕ. The above argument shows that the closed set ϕ−1(0) is
open, and by assumption it is nonempty. Hence, it is equal to M . This is a
contradiction to the integral condition

∫
ϕmndm = 1, which implies

∫
ϕdm = 1.

Now we prove the claim: Let ν be a weak∗ limit point of {µn} and let ϕ1 := ϕ,
ϕn+1 := Pfn1 ϕ. Then, for a subsequence mn and for every continuous g : M → R
we have ∫

M

gϕmndm→
∫
M

gdν.
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On the other hand, by the theorem of Arzelá-Ascoli, we may assume that ϕmn
converges uniformly to some ϕ∗, which is bounded away from zero and satisfies∫
ϕ∗dm = 1. Hence, ∫

M

gϕmndm→
∫
M

gϕ∗dm,

implying ν = ϕ∗dm.

4.12 Remark: In view of Proposition 4.9 and Proposition 4.2, the most gen-
eral criterion which guarantees a large Misiurewicz class for an equicontinuous
system (X1,∞, f1,∞) with invariant sequence µ1,∞ is the existence of an equicon-
jugacy to a system which satisfies the assumptions of Proposition 4.9. That is,
there exists a compact metric space X and an equicontinuous sequence {πn} of
homeomorphisms πn : Xn → X such that all elements of the weak∗-closure of
the set {πnµn} are equivalent.
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