
University of Augsburg
Department of Computer Science

Systems and Networking

Timing Analysable Synchronisation Techniques
for Parallel Programs on Embedded Multi-Cores

Phd thesis

Dissertation for the degree of
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

Author:
Dipl.-Inf. Mike Gerdes

Supervisor:
Prof. Dr. Theo Ungerer

2nd Supervisor:
Prof. Dr.-Ing. Rudolf Knorr

Timing Analysable Synchronisation Techniques
for Parallel Programs on Embedded Multi-Cores

Thesis committee:

Supervisor/Examiner: Prof. Dr. Theo Ungerer

2nd Supervisor/Examiner: Prof. Dr.-Ing.Rudolf Knorr

Examiner: Prof. Dr. Bernhard Bauer

Day of defense: July 17, 2013

Nearly every man who develops an idea works it up to the point where it
looks impossible, and then he gets discouraged. That’s not the place to become
discouraged. — Thomas A. Edison

Success is 1% inspiration, 98% perspiration,
and 2% attention to detail. — Phil Dunphy

Abstract
The thesis on hand provides hardware-software co-design of timing analysable synchro-
nisation techniques in embedded shared-memory multi-core processors. In hardware, an
augmented memory controller including the logic to support consistent and atomic Read-
Modify-Write (RMW) primitives for a predictable shared-memory multi-core processor
has been developed. The techniques introduced with the augmented memory controller
are also applicable to further (future) shared-memory multi-core platforms. On top of
these RMW primitives, timing analysable software synchronisation techniques are pro-
vided. On the one hand, hard real-time (HRT) capable, worst-case efficient, lock-based
synchronisation techniques employing busy-waiting (spinning) and blocking (suspend-
ing) are introduced. On the other hand, worst-case efficient barrier implementations for
progress coordination of HRT threads are presented.
The implemented hardware and software techniques are analysed in detail with an

open-source static worst-case execution time (WCET) analysis tool, which supports the
analysis of multithreaded parallel programs on shared-memory multi-cores. The static
timing analysis includes worst-case memory latencies for the concurrent access of threads
to a shared global memory, and allows for analysing multithreaded programs by introduc-
ing worst-case waiting times at synchronisation points. Furthermore, two benchmarking
parallel programs, a parallel matrix multiplication and an Integer Fast Fourier Trans-
formation, have been implemented and analysed using the proposed synchronisation
techniques.
The analyses have shown that busy-waiting spin locks are preferable over locking

techniques with suspension for multithreaded parallel programs on shared-memory multi-
core processors. Also, the static timing analyses indicate that pessimism in the WCET
estimates could be further reduced by providing a technique that prioritises frequent
normal load and store operations over infrequent RMW operations on synchronisation
variables. The optimisation technique, the split-phase synchronisation technique, has
been implemented in the augmented memory controller, and allows for splitting RMW
operations into a load and modification phase and a store phase while maintaining
atomicity and data consistency under a weak consistency model. The WCET analyses
of parallel benchmark programs with the split-phase synchronisation technique applied
shows an additional improvement of WCET guarantees.
The remainder of this thesis introduces an approach towards a novel parallelisation

method for HRT programs using parallel design patterns. The pattern-based paral-
lelisation process integrates the developed HRT capable synchronisation techniques as
synchronisation idioms. The proposed parallelisation approach is envisioned to be fur-
ther evolved and integrated in a software engineering approach that limits the possible
variability in the parallelisation process to well-known, timing analysable structures by
embracing programmer and timing analyser knowledge in forms of design patterns, al-
gorithmic skeletons, and idioms.

Zusammenfassung
Die vorliegende Dissertation behandelt Hardware-Software-Co-Design von zeitlich
vorhersagbaren Synchronisierungstechniken für eingebettete Mehrkernprozessoren mit
gemeinsamen Speicher. Dazu wurde der Speicher-Controller eines echtzeitfähigen einge-
betteten Mehrkernprozessors um die Hardware-Logik zur Behandlung von atomaren
und konsistenten Read-Modify-Write (RMW) Primitiven erweitert. Die entwickelten
Techniken lassen sich auch in weiteren (zukünftigen) Mehrkernprozessoren verwen-
den. Darauf aufbauend werden zeitlich analysierbare, worst-case effiziente Software-
Synchronisationstechniken bereitgestellt. Einerseits werden Synchronisationstechniken
mit Busy-Waiting (Spinning) und Sperren (Aussetzung) und andererseits Barrieren zur
Fortschrittskoordination von HRT (harte Echtzeit) Kontrollfäden vorgestellt.
Die implementierten Hardware- und Software-Techniken werden im Detail mit einem

open-source, statischen worst-case execution time (WCET) Analyse-Tool, das die Anal-
yse von mehrfädigen parallelen Programmen auf Mehrkernprozessoren mit gemeinsamen
Speicher unterstützt, evaluiert. Das benutzte WCET Analyse-Tool verwendet worst-case
Speicherlatenzen zur Behandlung von konkurrierenden Zugriffen mehrerer Programm-
fäden auf einen gemeinsamen Hauptspeicher. Es ermöglicht die Analyse von mehrfädi-
gen Programmen durch die Einführung von worst-case Wartezeiten an Synchronisa-
tionspunkten. Außerdem wurden zwei parallele Benchmark-Programme, eine parallele
Matrixmultiplikation und eine mehrfädige (Ganzzahl) Fast Fourier Transformation, en-
twickelt und unter Verwendung der vorgeschlagenen Synchronisationstechniken evaluiert.
Die Evaluierungen ergeben, dass für die echtzeitfähige Ausführung von mehrfädi-

gen Programmen auf Mehrkernprozessoren mit gemeinsamen Speicher Busy-Waiting
Spinlocks gegenüber den Synchronisationstechniken, die einen aktiven Kontrollfaden
aussetzen, vorzuziehen sind. Außerdem zeigen die vorgenommenen Echtzeitanalysen,
dass der Pessimismus in den WCET Abschätzungen weiter reduziert werden kann,
wenn eine Technik eingesetzt wird, die sehr häufige normale Lade- und Schreibzugriffe
gegenüber selteneren RMW Operationen auf Synchronisationsvariablen priorisiert. Die
Optimierungstechnik ist im erweiterten Speichercontroller implementiert und erlaubt
das Aufspalten von RMW Operationen unter Aufrechterhaltung der Atomarität und
Datenkonsistenz unter einem schwachen Konsistenz-Modell. Die erzielten Ergebnisse
mit der Optimierungstechnik zeigen eine weitere Verbesserung der WCET Garantien.
Am Schluß dieser Dissertation wird ein Ansatz für eine neuartige Methode zur Paral-

lelisierung von HRT-Programmen mit parallelen Entwurfsmuster vorgestellt. Dieses Par-
allelisierungsverfahren beinhaltet die entwickelten HRT-fähigen Synchronisierungstech-
niken als Synchronisations-Idiome. Das vorgeschlagene Parallelisierungsverfahren wird
zukünftig weiterentwickelt um die mögliche Variabilität des Parallelisierungsprozesses
noch weiter auf bekannte, zeitlich analysierbare Strukturen zu begrenzen. Dazu wird
Wissen von Software-Entwicklern und Echtzeit-Analysten in Form von Entwurfsmustern,
algorithmischen Programmskeletten und Idiomen gesammelt und aufgeführt.

Danksagung
In erster Linie bedanke ich mich bei Prof. Dr. Theo Ungerer und Prof. Dr.-Ing. Rudolf
Knorr für die Begutachtung dieser Dissertation.
Besonders möchte ich mich bei Prof. Dr. Theo Ungerer für seine hervorragende Be-

treuung während meiner Promotionsphase bedanken. Seine zahlreichen Hinweise, seine
konstruktive Kritik und seine Tipps zum Inhalt und Aufbau der Dissertation haben
wesentlich dazu beigetragen, dass die Arbeit in dieser Form entstehen konnte. Außerdem
möchte ich mich herzlich bedanken für die Möglichkeit an diversen Tagungen, Konferen-
zen und Workshops teilnehmen zu können. Insbesondere die aktive Teilnahme an zwei
EU-Projekten hat nicht nur zum Gelingen und Vertiefen der Inhalte dieser Arbeit beige-
tragen, sondern auch zu einer äusserst angenehmen und fruchtbaren Zusammenarbeit
mit den Kollegen der Université Paul Sabatier in Toulouse geführt.
Je voudrais me remercier encore une fois particulièrement à Christine Rochange (et

les autres à l’IRIT, Université Paul Sabatier, Toulouse). Les discussions intensives et la
coopération étroite dans les projets et les publications ont m’a beaucoup aidé et contribué
à la réussite de la thèse.
I am also very grateful for the funding received from the European Union-funded FP7-

projects MERASA (under grant agreement no. 216415) and parMERASA (under grant
agreement no. 287519).
Auch möchte ich allen Kollegen in Augsburg und am Lehrstuhl herzlichst danken. Sei

es für die zahlreichen kritischen Diskussionen, auch über mein eigenes Themengebiet
hinaus, die Zusammenarbeit bei Publikationen und die gemeinsamen Dienstreisen (ins-
besondere auch vielen Dank an Petra, die immer hilfreich zur Seite stand), die gemein-
schaftlichen Mittagessen (insbesondere am Fast-Food-Friday), oder auch die zahlreichen
Aktivitäten außerhalb der Arbeitszeit (Badminton, Hardware-Bier, Lehrstuhl-Plärrer
etc.). Ebenso danke ich auch allen Studenten, deren Abschluss- und Projektarbeiten
mir sehr bei der zeitnahen Implementierung und beim Ausprobieren verschiedener Ideen
geholfen haben.
Vielen Dank gilt auch allen Freunden (v.a. denen, die ich leider aufgrund der Ent-

fernung nur noch sehr selten zu Gesicht bekomme: Nadi&Flo, Biggi, Zummi, Ker-
stin&Ingo), die für die nötige Ablenkung und Unterstützung außerhalb der Arbeitszeit
gesorgt haben. Insbesondere möchte ich mich auch noch bei den Freunden bedanken
(Maria, Lexa&Thomas, Julia&Roberto), die während meiner Dienstreisen so liebevoll
auf Krümel aufgepasst haben.
Ich danke auch besonders meiner Familie für ihre Unterstützung, die mir auch er-

möglicht haben ohne große finanzielle Sorgen nochmal ein spätes Studium aufzunehmen.
Danke auch für die vielen Care-Pakete, die mich, trotz der großen Entfernung,
regelmäßig mit Süßigkeiten (und Socken) versorgt haben.

Augsburg im April 2013 ¨̂ Mike Gerdes

Table of Contents

Abstract iv

Table of Contents xiii

1. Introduction 1
1.1. Outline . 3

2. Basics 5
2.1. Real-Time . 5

2.1.1. WCET Analysis . 6
2.2. Synchronisation Techniques . 7

2.2.1. Mutual Exclusion . 8
2.2.2. Event Synchronisation . 10
2.2.3. Software Synchronisation Techniques 11
2.2.4. Read-Modify-Write Operations . 14

3. Hard Real-Time Capable Synchronisation 19
3.1. Synchronisation in Embedded Multi-Core Processors 19

3.1.1. Hard Real-Time Capable Multi-Core Processors 20
3.1.2. Hardware Support for Synchronisation Techniques 22
3.1.3. Consistency in the MERASA Multi-Core Processor 23
3.1.4. Atomicity of RMW Operations . 23

3.2. Augmented Memory Controller . 25
3.2.1. Implementation of the Augmented Memory Controller 25
3.2.2. Read-Modify-Write Operations . 27
3.2.3. FIFO Queue with F&I . 29
3.2.4. Related Work . 30

3.3. Software Synchronisation Techniques . 32
3.3.1. TAS Spin Locks . 33
3.3.2. F&I/F&D Spin Locks . 34
3.3.3. Mutex Locks . 35
3.3.4. Ticket Locks . 36
3.3.5. Semaphores . 38
3.3.6. Software Barriers . 40
3.3.7. Related Work . 44

4. WCET Analysis of Synchronisations 53
4.1. Introduction on WCET Analyses of Parallel Programs 53

4.1.1. Timing Analysability and Timing Predictability 53
4.1.2. Pessimism and Overestimation . 54
4.1.3. Static WCET Analysis of Parallel Programs 55

Table of Contents

4.2. Worst-Case Memory Latencies . 59
4.2.1. Effect of WCMLs on the WCET of Parallel Programs 61

4.3. WCET Analysis of Software Synchronisation Techniques 64
4.3.1. Busy-Waiting Synchronisations . 67
4.3.2. Blocking Synchronisations . 71
4.3.3. Software Barriers . 75
4.3.4. Results and Discussion . 77

4.4. WCET Analyses of Parallelised HRT Programs 81
4.4.1. matmul: Parallelised Matrix Multiplication 81
4.4.2. IFFT: Parallelised Integer Fast-Fourier-Transformation 83

4.5. Related Work . 86

5. Split-phase Synchronisation Technique 89
5.1. Introduction to the Split-phase Synchronisation Technique 90

5.1.1. Discussion on Solutions for Atomicity of RMW Operations 91
5.2. Implementation in the Augmented Memory Controller 92

5.2.1. Incoming Requests . 94
5.2.2. Dispatching . 95
5.2.3. Reordering . 95
5.2.4. Consistency and Atomicity of RMW Operations 96
5.2.5. Related Work . 100

5.3. Split-Phase Synchronisation Technique Evaluations 102
5.3.1. WCMLs with the Split-Phase Synchronisation Technique 102
5.3.2. Impact on Pessimism in the WCET 105
5.3.3. WCET Guarantees of Parallelised HRT Programs 110

6. Application of Synchronisation Techniques 115
6.1. Design Patterns . 116

6.1.1. Programming with Design Patterns 116
6.1.2. Parallel Design Patterns . 117

6.2. Parallel Design Patterns for Hard Real-Time Programs 118
6.2.1. Meta-Patterns . 119
6.2.2. Meta-Pattern for Real-Time Parallel Design Patterns 119
6.2.3. Meta-Pattern for Real-Time Synchronisation Idioms 121
6.2.4. Real-Time Parallel Design Patterns (Layer 1) 124
6.2.5. Real-Time Synchronisation Idioms (Layer 2) 127

6.3. Related Work . 131

7. Conclusion and Future Work 133
7.1. Summary and Conclusion . 133
7.2. Future Work . 137

Table of Contents

A. Appendix: Source Code 139
A.1. Software Synchronisations in the MERASA RTOS 139

TAS Spin Lock . 140
F&D Spin Lock . 141
Ticket Lock . 142
Mutex Lock . 143
Semaphore . 146
Subbarriers . 148
F&I Barriers . 150

B. Appendix: Binary Code 151
B.1. Binary Code of Software Synchronisations 151

TAS Spin Lock . 152
F&D Spin Lock . 152
Ticket Lock . 153
Mutex Lock . 154
Semaphore . 160
Subbarriers . 162
F&I Barriers . 167

C. Appendix: CFGs of SW Synchronisations 169
C.1. CFGs of Software Synchronisations . 169

Ticket Lock . 169
Mutex Lock . 170
Binary Semaphore . 171
Subbarrier . 172
F&I Barrier . 174

Bibliography 175

List of Figures 202

List of Tables 203

List of Algorithms 205

List of Listings 207

Acronyms 209

Curriculum Vitae 213

Time is a great teacher, but unfortunately it kills all its pupils. – Hector Berlioz

1 Introduction

Multi-core processors have been introduced to the market in around 2005 when single-
core processors reached their power limit on frequency scaling. Since then, they success-
fully dominated the domain of general purpose computing and also largely poured into
the embedded space. Today, nearly every new smartphone on the market utilises at least
a dual- or even quad-core processor. Also, the automotive and avionic industry is highly
interested and researches the possible use of multi-core processors in real-time and cyber-
physical systems, because of their promising performance/watt ratio and the possible
capability of quenching their thirst of an increasing demand in higher performance.
In real-time computing, timing requirements and correctness, additional to functional

correctness, need to be satisfied. Hard real-time (HRT) programs and systems violating
their timing correctness can expose catastrophic consequences to users, people or the
environment (cf. Buttazzo 2004, Stankovic and Ramamritham 1990). Therefore, systems
and programs in that category must verify their timing correctness with the help of
intensive testing and/or timing analysis tools. Especially static timing analysis tools (see
a survey on tools and methods by Wilhelm et al. 2008) aim at deriving safe upper
bounds for the execution, even under the worst possible circumstances, so-called worst-
case execution time (WCET) guarantees, taking program flow and microarchitectural
structures into account.
Also, spatial and temporal isolation is one of the major design principle for hardware

and software architectures in the domain of HRT computing. Main reason are the needs
and requirements for functional safety that must be satisfied for certification of such
systems in the industry. That is, for example, the developed software must be certified
against the domain-specific certifications standards: ISO 26262 in the automotive do-
main, EN 50128 for railway systems, IEC 61513 for nuclear power plants, IEC 62061 in
the machinery domain (all based on the IEC 61508 standard), and the DO-178B stan-
dard in the avionic domain. These standards define e.g. criticality levels spanning from
low-criticality to the highest criticality. Thus, if isolation between programs, which can
be categorised into different criticality levels, cannot be assured, these programs need to
be certified against the highest criticality level they share (cf. Baruah et al. 2010).
However, rigorous isolation cannot be fully retained in multi-core processors: not all

resources that are needed to execute one or more HRT programs are duplicated in a
multi-core processor. That is as the main design idea of multi-core processors versus
multiprocessors is that they employ individual processing elements that are tightly cou-
pled through sharing interconnects and memory structures as much as possible. Hence,
to execute HRT programs, singlethreaded or multithreaded, on such multi-core proces-
sors, one need to find ways to safely upper bound accesses to resources, which are shared
or introduce interference and waiting times. Hence, static timing analysis tools for par-
allel HRT programs on multi-core processors need to face the challenge of analysing and
acknowledging such interferences and waiting times from thread-level competition and
synchronisation on shared resources (see Brandenburg et al. 2008, Chattopadhyay et al.
2012, Gerdes et al. 2012b, Gustavsson et al. 2010, Rochange 2011, Wolf et al. 2010a).

2 1. INTRODUCTION

With the advent of multi-core processors in the real-time embedded domain, different
trends have sparked from there: on the one hand the research on deterministic execu-
tion of real-time programs on commercial off-the-shelf (COTS) multi-core processors (e.g.
Boniol et al. 2012, d’Ausbourg et al. 2012, Hardy et al. 2009, Nowotsch and Paulitsch
2012) and Real-Time Operating System (RTOS) support using virtualisation or hyper-
visors (see e.g. LynxSecure, Wind River Hypervisor). On the other hand, research in
academia explores ways on designing and building timing predictable multi-core pro-
cessors (cf. Cullmann et al. 2010, Edwards and Lee 2007, Hansson et al. 2009, Liu et
al. 2010, Pitter and Schoeberl 2010, Ungerer et al. 2010, Wilhelm et al. 2009a), their
interconnects and memory controllers (see Akesson et al. 2007, Paolieri et al. 2009b,
Reineke et al. 2011, Wilhelm et al. 2009b,c), and timing analyses and support for pre-
dictable execution of singlethreaded and multithreaded programs (cf. Chattopadhyay et
al. 2012, Gebhard et al. 2011, Gerdes et al. 2012b, Gustavsson et al. 2012, Kelter et al.
2011, Lickly et al. 2008, Paolieri et al. 2009a, Pitter 2008, Puschner and Schoeberl 2008,
Rochange 2011, Rochange et al. 2010, Staschulat et al. 2007, Thiele and Wilhelm 2004,
Yan and Zhang 2008, Yoon et al. 2011).
Today’s research is focused on how legacy (and) singlethreaded programs can use those

newly available (COTS and predictable) embedded multi-core processors. The work
presented in this thesis already steps ahead, proposing techniques to allow for executing
timing analysable multithreaded parallel HRT programs on predictable shared-memory
multi-core processors. While concurrent (distributed) embedded systems are already
well introduced, e.g. in the automotive domain, fine-grained, thread-level synchronisa-
tion on shared-memory multi-core processors sparks the problem of timing analysability
for multithreaded HRT programs. Also, one might assume that multithreaded programs
do naturally clash with the isolation property, thus worsen the problem of certifica-
tion. But, being tightly coupled and cooperating execution on a fine-grained level is
the key difference between multitasked programs (multiprogrammed workload) versus
multithreaded parallel programs; hence, the threads of a multithreaded parallel program
share the same criticality level per se. Then, summing up, the problem with certifica-
tion caused by interferences still arise, in the same way as for singlethreaded programs,
between different multithreaded programs, but not between the threads of one parallel
program.
Bringing parallelisation and HRT computing together might solve the problem of

higher needs in performance while also keeping energy consumption low, however, new
problems that need to be solved arise. In particular, it motivates to answer the following
questions:
• How can a timing predictable parallelisation process for HRT programs targeting
shared-memory multi-core processors look like?

• How can the problem of timing analysable and predictable synchronisation for
tightly coupled, multithreaded programs on multi-core platforms be solved?

• Is it possible to statically analyse the timing of parallel HRT programs using
thread-level synchronisation techniques producing tight and safe upper bounds?

1. INTRODUCTION 3

In this thesis, answers and approaches that aim to solve the above questions are pre-
sented. The thesis on hand proposes solutions by hardware-software co-design of syn-
chronisation techniques that can be analysed with a static timing analysis tool, revealing
techniques to allow for worst-case efficient execution of parallel HRT programs. The solu-
tions proposed for HRT capable synchronisation in hardware and software are applicable
(with only small changes) in a wide range of possible future shared-memory multi-core
processors. By integrating the proposed synchronisation techniques in an augmented
memory controller, portability to other multi-core platforms seems highly possible, as
far as some restrictions for predictability of the microarchitecture are retained. Fur-
thermore, the presented preliminary parallelisation process embraces programmers and
timing analysers allowing for transferring needed information between them, and, in the
long run, targeting a complete software engineering process for efficiently parallelising
HRT programs in a structured and well-defined way to enable timing predictability on
multi-core processors.

1.1. Outline
The thesis on hand provides the following contributions:

A. A timing analysable shared-memory multi-core processor has been extended to al-
low for executing timing analysable parallel HRT programs. To achieve analysabil-
ity and worst-case performance, the memory controller has been augmented with
the needed logic to support atomic read-modify-write (RMW) operations in a HRT
environment. An existing system software has been extended with various timing
analysable software synchronisation techniques for timing predictable synchroni-
sations in multithreaded parallel HRT programs.

B. Static timing analyses of memory latencies (worst-case memory latencys
(WCMLs)), the implemented hardware/software synchronisation techniques, and
parallel programs benchmarking these synchronisation techniques have been car-
ried out on an embedded shared-memory multi-core processor.

C. An optimisation technique has been implemented in hardware to reduce the pes-
simism in static timing analysis of parallel programs: the split-phase synchroni-
sation technique. It is shown that the split-phase synchronisation technique can
improve the WCET guarantees of parallel programs by reducing the WCMLs of
frequent loads and stores, while sacrificing latency on infrequent RMW operations.

D. First ideas and structures towards a parallelisation approach of HRT programs
on multi-core processors are shortly introduced. The approach uses parallel design
patterns and synchronisation idioms to increase information flow between program-
mers of parallel HRT programs and static timing analysers. This should help to
achieve better worst-case predictability, ease the process of static timing analysis of
parallel programs because of a limited design space for program structures, and the
programmer is highly supported in writing timing analysable parallel programs.

4 1. INTRODUCTION

This thesis is structured as follows: Chapter 2 discloses the basics on embedded real-
time systems and timing analysis, and fundamentals on synchronisation techniques in
hardware and software supporting the execution of parallel (real-time) programs on
(embedded) shared-memory multi-core processors.
Details on the implemented HRT capable synchronisation techniques are presented

in Chapter 3: it provides discussions on consistency and atomicity of RMW operations
integrated in the proposed augmented memory controller, and also highlights the timing
analysable software synchronisations build on top of the underlying hardware techniques.
The chosen software synchronisation techniques include busy-waiting (spinning) and
blocking (suspending) lock-based approaches to secure critical sections, as well as barrier
implementations for progress coordination. It closes with a detailed overview on related
synchronisation techniques, from the high-performance as well as embedded domain.
Besides the static computation of worst-case memory latencies on a predictable shared-

memory multi-core processor (enhanced with the augmented memory controller), Chap-
ter 4 also provides detailed static WCET analyses of the implemented synchronisation
techniques. Furthermore, Chapter 4 includes static timing analyses and comparisons
of parallel HRT programs applying those HRT capable synchronisation techniques; it
closes with related work on timing analysis for access to shared resources, and parallel
execution of real-time programs.
In Chapter 5 an optimisation of the augmented memory controller to speed up the

worst-case latencies of frequent normal loads and stores over infrequent RMW operations
is presented: the split-phase synchronisation technique. After introducing the basic
idea of the split-phase synchronisation technique, the implementation in the augmented
memory controller is described in detail. Chapter 5 finishes by detailing the impact of
the split-phase technique on the worst-case memory latencies, and the WCET guarantees
of parallel HRT programs.
Chapter 6 depicts an introduction on parallel design patterns and synchronisation

idioms as baseline for programmers to support them in producing timing predictable
parallel programs, and foster static timing analyses by providing annotations. By that,
the transfer of knowledge from programmer to timing analyser should be eased, and the
error prone effort of manual annotations by the timing analyser is directly derived from
the used parallel design patterns and synchronisation idioms by the programmer. Thus,
the information loss in analysed binary code should be highly compensated.
Finally, the thesis is concluded with Chapter 7, providing a summary of this thesis,

concluding remarks, and links for future work and research.

In the appendices the source codes (Appendix A) and binaries (Appendix B) of the
implemented software synchronisations are presented. Also, the control flow graphs
(CFGs) of the implemented synchronisation techniques derived from the static WCET
tool OTAWA, as baseline for the static timing analyses in Chapter 4, are depicted in
Appendix C.

You may delay, but time will not. – Benjamin Franklin

2 Basics

This chapter covers the concepts of real-time and timing analyses in Section 2.1, and the
basics of synchronisation of parallel programs, with hardware and software techniques,
in Section 2.2.

2.1. Real-Time
In real-time computing systems, the system’s correctness does not only depend on the
computational result, but also on the correctness in time. Stankovic and Ramamritham
(1990) categorise real-time systems in dimensions; one of them being the strictness of
the deadlines. A deadline of a real-time task is defined as the time after which the
computation needs to be finished. Depending on how critical it is to miss a deadline,
real-time tasks can be separated in soft real-time (SRT) tasks, and hard real-time (HRT)
tasks. The missing of some deadlines of a (periodical) SRT task, e.g. audio/video
streaming, can be tolerated. Whereas for HRT tasks, the missing of a deadline leads
to a situation that could harm people or cause severe damage. In the following, the
distinction HRT task, non-real-time (NRT) task, and non-hard real-time (NHRT) task
for tasks will be used.
A typical misconception of real-time systems is that real-time means fast (see Buttazzo

(2004), Stankovic (1988) for a detailed collection of typical misconceptions in real-time
systems). But, task deadlines (see Table 2.1) may vary between ms, seconds, or even
minutes. Hence, it is not important how fast a HRT task executes, it is more important
that a HRT task:

• finishes before its deadline under any possible circumstances, even the worst, and

• that it is timing analysable.

Thus, timing analysability respectively timing predictability (see Stankovic and Ra-
mamritham 1990, Wilhelm et al. 2008) is the major feature to maintain in HRT systems.

Table 2.1.:
Typical durations of real-time tasks (flight-by-wire) in the Airbus A-340

(see Brause 2004, p. 35).

Task Duration

Acceleration (x,y,z) 5 ms
Rotation angle 40 ms
Display refresh 1 s
Temperature 1 s
GPS position 10 s

6 2. BASICS

Figure 2.1.: Distribution of execution times and their classification (figure taken
from Wilhelm et al. 2008).

2.1.1. WCET Analysis

Figure 2.1 shows an overview of different timing aspects for a real-time task. The lines
show the distribution of execution times varying for different data and code coverage
of the program’s run. The best-case execution time (BCET) is the lowest possible
timing limit, whereas the worst-case execution time (WCET) is the highest possible
timing limit. Both, the BCET and WCET, are not known a-priori and very hard to
determine. Timing predictability of a HRT computing system is defined by Wilhelm et al.
(2008) by the deviation of the estimated upper and lower timing bounds. In this thesis,
this is defined as system predictability whereas timing predictability is defined as the
difference between the real WCET and the estimated WCET guarantee (in Section 4.1
a discussion on timing predictability is detailed). However, for HRT systems it is mostly
more important to compute an upper timing bound, the WCET guarantee, of a HRT
task, instead of a lower timing bound, to predict if deadline misses are possible. Also, the
WCET guarantee is the main factor for dimensioning the needed size and performance
of a HRT computing system. The maximum observed execution time (MOET) depicts
the highest execution time observed for a number of runs of the program. However, it
is possible that the MOET is lower than the actual WCET, as not every architectural
detail might reflect in the program’s runs.

Static WCET Tools

Static WCET analysis tools compute an upper timing bound, which is, in the best case,
close to the real WCET. The term describing how close the computed upper bound
is to the unknown WCET can be defined as WCET tightness or timing predictability.
The computed upper timing bound is called safe, if TUpper timing bound ≥ TW CET . Static
WCET tools compute an upper timing bound using a WCET model of the whole system.
Thus, the model needs to be correct and must reflect the details of the architecture.

2. BASICS 7

Also, the flow facts, which define the control flow of a given program, need to be taken
into account to determine the worst-case path. Then, based on the worst-case path, an
upper timing bound is computed with mathematical methods, for instance by solving
an Integer Linear Programming (ILP) problem.
In this thesis, the static WCET tool Open Toolbox for Adaptive WCET Analysis

(OTAWA) (see Ballabriga et al. 2010) has been used for the computation of upper timing
bounds, the so-called WCET guarantee. More detail on the static timing analysis with
OTAWA, especially for parallel programs, is introduced in Section 4.1.3.
Other static WCET analysis tools, as mentioned by Wilhelm et al. (2008), are aiT

(AbsInt, Saarbrücken), Bound-T (Tidorum, Helsinki), Chronos (National University of
Singapore), Heptane (IRISA, Rennes) and various prototypes from TU Vienna, Florida
State University, and Chalmers University of Technology.

Measurements and Measurement-based WCET Tools

A further set of tools to compute an upper timing bound are measurement-based WCET
tools. In contrast to static WCET tools, measurement-based WCET tools are based on
the measured execution time of basic blocks on the actual hardware platform. The
MOETs of basic blocks are then used to compute an upper timing bound, for instance
by assuming that the execution time of a specific basic block does need the maximum
time that has been observed for that basic block. That is the second step is similar to
the computation of static timing analysis tools, however, the resulting WCET estimates
rely on the measured (observed) execution times. Therefore, measurement-based WCET
tools need a high code and data coverage enabling them to compute a safe upper timing
bound. However, as the computation is done on the actual hardware platform, no model
of the architecture is needed.
An example of a measurement-based WCET tool, which is e.g. used for timing anal-

yses in the industry, is the commercial tool RapiTime (see Rapita Systems Ltd. 2011).

2.2. Synchronisation Techniques

This section presents basics on synchronisation techniques, mostly independent of the
special demands in real-time systems. Details of the HRT capable implementation of
selected hardware/software synchronisation techniques is shown in Chapter 3.
In concurrent respectively parallel systems, threads compete on shared resources, e.g.

the global memory in shared-memory systems, but also cooperate to gain speedups
related to sequential computation of a problem. Competing threads can use mutual
exclusion (see Section 2.2.1) to arbitrate their gain of access on shared resources. For
cooperating threads, event synchronisation mechanisms (see Section 2.2.2) can be used
(see Culler et al. 1997, Taubenfeld 2008, Ungerer 1997). However, the data in shared
memories must be consistent to enforce functional correctness of parallel programs.

8 2. BASICS

Atomicity

The term atomicity—also referred to as linearisability by Herlihy and Wing (1990)—
defines that each atomic operation is seen, e.g. by each core in a multi-core processor, as
if the operation is effective instantaneously (also see Ungerer 1997). Atomic operations
either complete successfully or, when failing, do not have any noticeable effect. Examples
of atomic operations in multiprocessors are the well-known read-modify-write (RMW)
operations (see Kruskal et al. 1988, Mellor-Crummey and Scott 1991a).

Consistency

Consistency is a mandatory requirement for functional correctness in distributed com-
puting, and also for multithreaded parallel programs. Consistency models are describing
characteristics concerning for instance the order of memory operations in shared-memory
systems. Hennessy and Patterson (2003) describe sequential consistency, introduced by
Lamport (1979), as the most forthright model for memory consistency. It requires that
the results of executions from concurrent running threads is the same as if the thread
execute sequentially in order. Dubois et al. (1986) later introduced the notion of weak
ordering (see Adve and Hill (1990) for a refined definition of weak ordering).
The idea of weakly ordered systems is that they appear sequential consistent by order-
ing accesses dispatched from different processors with explicit synchronisation operations
that can be recognised by hardware. Ungerer (1997) gives a detailed overview on con-
sistency models for multiprocessor systems, which also hold for multi-core processors.

2.2.1. Mutual Exclusion
Mutual exclusion guarantees the exclusive access of one of competing threads on a shared
resource. It was originally introduced by Dijkstra (1965) demonstrating the possibility
of reaching mutual exclusion with just read and write operations. In parallel programs,
the following four code sections can be identified (see Taubenfeld 2008):

remainder code
The code executed before/after the critical section, which is not part of the mutual
exclusion, is labelled remainder code.

entry code
The entry code ensures mutual exclusion in the critical section; it can also be
identified as acquire-method.

critical section
The critical section is the code section that is only allowed to be executed by one
thread at a time, e.g. the sequential part of a parallel program that needs to be
executed in isolation.

exit code
The exit code is executed when leaving the critical section; it can also be identified
as release-method.

2. BASICS 9

remainder code

entry code

critical section

exit code

Figure 2.2.: Code sections for mutual exclusion in parallel programs.
(image from Taubenfeld 2006).

Figure 2.2 shows a graphical representation of the above code sections (see Taubenfeld
2006). It also illustrates the whole life-cycle of a parallel program highlighting the
possible contention on the entry code (dotted line), and the program flow after and
before the exit code, the so-called remainder code.
Culler et al. (1997) explain mutual exclusion with an example of a room that can only

be occupied by one person at a time. If a person enters the empty room, the door needs
to be locked to prevent others entering it, which is synonymous with a thread successfully
acquiring a lock for a critical section. All other persons trying to enter the room, will
find the door closed, and it will only open after the person currently occupying it, leaves
the room and unlocks the door—in other words, the thread releases the lock.
In Section 2.2.3, and Section 2.2.4 different software and hardware techniques to

achieve mutual exclusion are shown. However, the releasing/acquiring-method of the
entry respectively exit code highly depends on the used synchronisation techniques, that
is the waiting algorithms. The waiting algorithms implement blocking or busy-waiting
techniques (see Section 2.2.3, Table 2.2), which influence the timing behaviour of a mu-
tual exclusion lock. Finally, the following minimum requirements on general solutions
for critical sections have been identified by Dijkstra (1965):
Mutual exclusion

Only one thread is allowed to execute its critical section at a time. This needs to
be assured by the acquire-method (entry code).

Progress
It is not allowed that blocking of other threads occurs, if one thread “is stopped
well outside its critical section”.

Bounded decision time
It must be assured that if more than one thread is “about to enter its critical sec-
tion”, the decision which thread acquires the lock is not “postponed until eternity”.

10 2. BASICS

Execution speed
No assumptions about the “relative speeds” of threads is allowed, nor assumptions
about “their speeds [being] constant in time”.

However, those minimum requirements do not establish a chronological order, and do
not require bounded waiting to enter (or leave) a critical section. Knuth (1966) has shown
later, that Dijkstra’s requirements, while preventing livelocks, do not cover starvation-
freedom. But, especially for a HRT capable implementation of mutual exclusion, it is
important to enforce starvation-freedom and strong fairness between competing threads,
so that an upper bound on the waiting time to enter (and also to leave) a critical section
can be computed. Hence, a fifth requirement is introduced, which is based on (but
stronger than) the requirement of starvation-freedom (cf. Tanenbaum 2001, p. 102):

Ordering
If more than one thread compete to enter a critical section, an analysable ordering
(e.g. first-come, first-served (FCFS)) that allows each thread to enter (and leave)
the critical section with bounded waiting must be assured.

Not all (typical) solutions for securing critical sections, even in the absence of failures
and interrupts, fulfil the strong fairness, respectively FCFS-order requirement. But,
without strong fairness between competing threads, the waiting algorithms are not tim-
ing predictable, thus hindering a tight WCET analysis, or even rendering it impossible.
In this thesis, strong fairness between competing threads is assured by enforcing a FCFS-
order with first in, first out (FIFO) queues. This is done in hardware (see memory bus
arbitration in Section 3.1), and also in the release/acquire-method (entry/exit code) of
the implemented software synchronisation techniques (see Section 3.3).

2.2.2. Event Synchronisation

Event synchronisations, in contrast to mutual exclusion synchronisation, describe mech-
anisms for cooperating threads. These mechanisms can be separated in two categories
of event synchronisation (see Culler et al. 1997):

Point-to-Point
Point-to-point event synchronisation is used when two (or more) threads explicitly
cooperate. An example in Bull and Ball (2003) depicts the situation of a shared
array used by a number of threads with each thread holding an element of the
shared array. A thread that wants to gain access to a specific element of the
shared array could use a point-to-point synchronisation by only notifying the
thread holding the element. Another example are so-called conditionals (see
POSIX 2008), which can be used for point-to-point synchronisation, but also for
global event synchronisation using broadcast.

2. BASICS 11

Thread 1 Thread 2 Thread n...

...

Tim
e

Barrier

Arrival time

Arrival time

Arrival time

Release time

Figure 2.3.: Global event synchronisation: an example of n threads synchronised
at a barrier with corresponding arrival times and release time of all
n threads when the barrier condition is fulfilled.

Global
The global event synchronisations involve all or a specific group of cooperating
threads. Also categorised in group and barrier event synchronisation. A typical
example is a synchronised start or re-start of threads at a barrier (see Figure 2.3).

Event synchronisation is often used for parallel programs structured with producer-
consumer chains, or using barrier synchronisation (see Section 2.2.3) for delineation
between different sections in the parallel program (see Figure 2.3).

2.2.3. Software Synchronisation Techniques
Software synchronisation techniques are the programmer’s way to use synchronisation in
a simple way. The system software or Real-Time Operating System (RTOS) provides the
interfaces for those synchronisation techniques for the programmer. Mellor-Crummey
and Scott (1991a) present a detailed overview of common software synchronisation tech-
niques (see also Hennessy and Patterson 2003, Ungerer 1997), and also standards like
POSIX (2008) provide skeletons for commonly used synchronisations. However, Chap-
ter 3 depicts the details on a HRT capable implementation of the below introduced
software synchronisation techniques.
Software synchronisation techniques are distinguishable as either busy-waiting or

blocking (also called suspending). Busy-waiting, also called spinning, is a technique
to repeatedly check for a specific condition.

12 2. BASICS

For instance, it is used to spin on a value in the local or global memory until a specific
value is retrieved. Therefore, if a busy-waiting technique is used for mutual exclusion,
the entry code might be a loop that continues until the lock is acquired. A typical
example is the commonly used spin lock implemented with the test-and-set (TAS) prim-
itive (see Section 3.3.1). Contrarily, blocking synchronisation techniques use a waiting
algorithm as acquire-method. Thus, this requires some sort of scheduling for the wait-
ing algorithm (see Sections 3.2.3, 3.3.3, 3.3.5). The advantage of blocking techniques is
that it is possible to spare computational resources by e.g. suspending tasks, instead
of having them spin and constantly access the shared global (off-chip) memory. How-
ever, blocking synchronisation techniques require more complex logic and scheduling,
and might sacrifice performance on short critical section. In some environments or for
kernel operations inside an Operating System (OS) it might not be possible at all to use
blocking synchronisation techniques.
Table 2.2 shows the categorisation of commonly used software synchronisation tech-

niques as either busy-waiting or blocking. Spin locks and ticket locks, which are typically
used for short critical sections, are commonly implemented as busy-waiting, whereas mu-
tex locks, semaphores and barriers are commonly implemented in a blocking manner.
Spin locks are mainly meant to be used internally in a system software or RTOS, and

not by a programmer. This is, as they are implemented in a busy-waiting manner, and
a programmer would need great knowledge of the underlying hardware primitive and
architecture to use busy-waiting synchronisations in an optimal manner. In contrast,
blocking synchronisation techniques, namely mutex locks, semaphores, and barriers, are
the main software synchronisation techniques which ought to be used by a programmer.
Nonetheless, in embedded systems, programmers often employ low-level, close to hard-
ware languages and also have deepened knowledge of the underlying architecture and
architectural features. So, the use of busy-waiting synchronisation techniques, or even
inline assembling is not recognised as unusual (see also the WCET analysis results pre-
sented in Section 4.3.4).

Table 2.2.:
Comparison of commonly used software synchronisation techniques and the typical use
of either busy-waiting (spinning) or blocking (suspending) methods to coordinate the
entry of a critical section or respectively for event synchronisation. The synchronisation
techniques marked with (x) could also be implemented using a busy-waiting strategy.

Synchronisation technique Busy-waiting Blocking

spin lock x -
ticket lock x -
mutex lock (x) x
semaphore (x) x
conditionals (x) x
software barrier (x) x

2. BASICS 13

The summary list below depicts the most common software synchronisation techniques
for mutual exclusion and event synchronisation.

Spin locks
Spin locks are easy and commonly used busy-waiting locks, which spin on a memory
location, e.g. local or off-chip memory, until a specific condition is fulfilled, e.g. a
specific value has been read from memory. Spin locks are mostly used internally
by the RTOS to secure only very short critical sections, and to build more complex
locks, namely mutex locks. They are mostly not intended to be used explicitly by
the programmer because of the lack of fairness (see also Section 3.3.1).

Queued locks
Queued locks, as e.g. from Anderson (1990), MCS locks (see Mellor-Crummey
and Scott 1991a) or CLH locks (see Craig 1993, Scott and Scherer 2001), have
been introduced to overcome the lack of fairness in spin locks. They are either
based on cache coherence protocols, or complex interactions with other core’s local
memories.

Ticket locks
Other locks that have been introduced to overcome the problems of spin locks are
Mellor-Crummey and Scott’s ticket locks. They are based on Lamport’s bakery
algorithm, and are used in the Linux Kernel since version 2.6.25 (January 2008).
Details on their implementation are presented in Section 3.3.4.

Mutex locks
Mutex locks are a blocking synchronisation technique commonly used to enforce
mutual exclusion. The waiting algorithm of a mutex lock implementation needs
to take care of managing waiting threads in an ordered list to achieve fairness and
progress. Details on a HRT capable implementation are presented in Section 3.3.3.

Semaphores
Semaphores were invented by Dijkstra (1968) for controlling multiple accesses
to shared resources. Usually, semaphores are categorised as either counting
semaphores or binary semaphores. Counting semaphores allow an arbitrary value
as counter, e.g. for a number of resources that are free to be commonly used.
Contrarily, binary semaphores restrict the value to be either ’0’ or ’1’, and are
semantically similar to mutex locks (see Section 3.3.5), despite they do not employ
the concept of a lock owner as mutex locks should according to POSIX (2008).

Software barriers
Software barriers are a useful construct for event synchronisation, namely to syn-
chronise starting or re-starting of threads at a specific point, e.g. to organise
progress in different phases of a parallel program (see Hennessy and Patterson
2003, Ungerer 1997). They are more flexible as hardware barriers, and employ lock
techniques or RMW operations like fetch-and-increment (F&I) (see Section 3.3.6).

14 2. BASICS

2.2.4. Read-Modify-Write Operations
Modern instruction set architectures (ISAs) provide instructions performing reads and
subsequent writes atomically. These instructions are called RMW operations, where
modifying stands for logic that is executed between the read and the write. This logic
might be an arithmetic calculation, as needed for fetch-and-add (F&A) operations, or
a comparison as in compare-and-swap (CAS) operations. Other atomic operations,
like TAS or swap, are used for an atomic read and subsequent write access. A more
detailed overview on RMW operations can be found in articles of Kruskal et al. (1988),
Mellor-Crummey and Scott (1991a) or in Computer Architecture: A Quantitative
Approach by Hennessy and Patterson (2003).

In the following, the basics of the main RMW operations are given.

Test-and-Set
TAS reads a value from a memory address and writes subsequently a fixed value,
e.g. a ’0’ or ’1’, to the same memory address. No other write access to the same
memory address is allowed between the read and the write to maintain atomicity.

◦ Test-and-Test-and-Set
A variation of TAS is a primitive with an additional test operation: the test-and-
test-and-set primitive (Rudolph and Segall 1984). The additional test operation
is used to reduce the contention which might occur when spinning on a shared
resource, e.g. the off-chip memory. The additional test operations can then be
used to spin on a local memory value, and the TAS will be issued after the first
test operation succeeded.

Fetch-and-Add
F&A returns the read value and modifies it by adding a constant, that is either
a positive or negative value, and subsequently writes back the sum of constant
and read value. It was first introduced by Gottlieb et al. (1983) as Replace-Add
and later renamed by Gottlieb and Kruskal (1981) to the more descriptive term
Fetch&Add.

◦ Fetch-and-Increment and Fetch-and-Decrement
Variations of the F&A operation are the fetch-and-increment/fetch-and-decrement
(F&I/F&D) primitives. Instead of allowing to add an arbitrary constant to the
read value, only adding a ’1’—called F&I—respectively subtracting a ’1’—called
fetch-and-decrement (F&D)— is allowed.

Swap
The swap operation atomically swaps a data value from the register set with a value
from the memory, in most cases the off-chip memory. Hennessy and Patterson
(2003) also use the name atomic exchange for the swap operation.

2. BASICS 15

Compare-and-Swap
The CAS primitive uses three parameters: the new value, the old value, and the
memory address. It atomically updates the current value at the given memory
address, if, and only if, the current value matches the old value parameter (see e.g.
IBM z/Architecture 2005). The need for three operands, and therefore a minimum
of three registers for the three parameters of CAS, could be considered a drawback
of this operation. CAS is also known as compare-and-exchange in the x86/Itanium
ISA. A variation is the multi-word compare-and-swap (CASN) operation (also
called MCAS) used to update a set of matching values (see Ha-Hoai and Tsigas
2003, Harris et al. 2002).

Load-Linked/Store-Conditional
The load-linked/store-conditional (LL/SC) primitive, introduced by Jensen et al.
(1987), consists of two separated instructions: a load operations (load-linked) and a
store operation (store-conditional) that is guaranteed to fail if the value loaded by a
load-linked operation is accessed before the associated store-conditional operation.
In contrast to a CAS, it also fails when the value has been restored. Therefore,
a LL/SC is regarded stronger than a CAS operation. However, most implemen-
tations in modern ISAs limit other memory accesses between a load-linked oper-
ation and the corresponding store-conditional operation, so the implementations
are called weak or restricted LL/SC (see Michael 2004). Paap and Silha (1993)
state that the LL/SC primitive can be implemented to emulate a CAS primitive in
uniprocessor systems. As stated by Herlihy and Moss (1993), LL/SC can be seen
as baseline for the concepts of transactional memory (see also Section 3.3.7).

Hardware Barriers
A possible implementation of hardware barriers by using a single wired-AND line
is described by Culler et al. (1997). But, the authors also highlight that hard-
ware barriers are problematic when dynamically changing the number of processes
participating in a barrier. Thus, hardware barriers are very inflexible for the use
in parallel programs, and hence bus-based multiprocessors usually do not feature
hardware barriers (see also Section 3.3.6).

Table 2.3 shows different Reduced Instruction Set Computing (RISC) ISAs and the
RMW operations they support. The ARM, MIPS, and PowerPC ISAs all support a
LL/SC operation, but neither of them implements the theoretical strong semantic. In
the strong semantic, a LL/SC is required to fail the conditional-store not only on every
concurrent access to that memory location, but for instance also on context switches.
Therefore, their LL/SC implementations are considered as restricted LL/SC (additional
handling of context switches and memory page faults for LL/SC is needed). Also, for
a correct implementation of LL/SC, load-linked operations need to be monitored at
memory level (local and global memory) so that it can be decided if a conditional-store
is successful or not.

16 2. BASICS

One major drawback of LL/SC operations is that the store-conditional might fail
on concurrent accesses to a loaded value in a multi-core processor. Further details on
the problem of bounding the execution and waiting time of the LL/SC primitive is
presented in Chapter 3 in Section 3.2.4. Michael (2004) and Gao and Hesselink (2007)
show that e.g. for lock-free algorithms, CAS would be sufficient over restricted LL/SC
implementations. The split-phase synchronisation introduced in Chapter 5 is a similar
technique as LL/SC, splitting the load and store phases, however, its target is to reduce
the WCET pessimism in static WCET analyses.

Table 2.3.:
Supported RMW operations of different RISC ISAs in the embedded domain.

ISA TAS F&A F&I/F&D swap CAS LL/SC

ARM v7(ARMv7-M ISA 2010) - - - x1 - x
MIPS32 v3.0(MIPS32 ISA 2003) - - - - - x
Power v2.06(PowerPC ISA 2010) - - - - - x
SPARC v9(SPARCv9 ISA 1994) x - - x x -
TriCore v3.1(TriCore ISA 2008) x - - x - -
SuperH-2A(SuperH-2A ISA 2010) x2 - - - - -
MERASA(cf. TriCore ISA 2008) x3 x3 x3 x3 - -

The TriCore (single-core processor) ISA supports a load-modify-store (LDMST) oper-
ation, that is an atomic operation allowing for use a bitmask to modify a value. It also
includes a store bit instruction (ST.T) that atomically changes one bit of a loaded word.
The MERASA4 multi-core processor (cf. Paolieri et al. 2013, Ungerer et al. 2010)

implements the TriCore ISA and reuses the swap primitive to implement different
RMW operations in the augmented memory controller. The primitives (TAS, F&A,
and F&I/F&D) are then encoded in the augmented memory controller, while the origi-
nal semantic of a swap operation is not retained. Hence, a usual swap, as implemented
in the TriCore ISA, cannot be performed by the swap instruction in the MERASA pro-
cessor after the modification. Details on the implementation of RMW primitives in the
MERASA processor, the augmented memory controller, and specifics of related work and
the support of synchronisation operations in commercial off-the-shelf (COTS) multi-core
processors are presented in detail in Chapter 3. In Section 3.2.4 the possibilities of im-
plementing and reusing instructions of further ISAs, namely for ARM and PowerPC
ISAs, are discussed.

1Only the ARMV7-R ISA and some older ARM ISAs support a swap operation.
2Only pseudo-TAS; the read instruction on a semaphore register automatically triggers a write of a ’0’
in hardware (also see discussion below)

3The implemented primitives are all based on the TriCore swap primitive and are encoded to other
primitives in the augmented memory controller (see below and in more detail in Section 3.2.1).

4The Multi-core Execution of Hard Real-time Applications Supporting Analysability (MERASA) project
has been funded by the European Union as FP-7 project under grant agreement no. 216415. See
also the project website at http://www.merasa.org

http://www.merasa.org

2. BASICS 17

In some architectures, shared atomic registers are used, instead of RMW operation,
to secure critical sections, respectively to implement software synchronisations. In the
SuperH-2A ISA (2010), respectively the dual-core processor SH7265 from Renesas Elec-
tronics5, the instruction TAS.B is used to atomically access special function registers
called semaphore registers. The semaphore registers should be initialised with the value
’1’ (signalling a free resource), and the hardware automatically writes a ’0’ after reading
the semaphore register value. Therefore, the semaphore registers can be used to imple-
ment a TAS-like primitive. Also, it is allowed to write values to the semaphore register,
e.g. to write a ’1’ into a semaphore register to signal that the resource is free again. The
Intel Single-chip Cloud Computer (SCC)6 (see Mattson et al. 2010) also uses this kind
of registers—called TAS registers–for synchronisation shared between two cores in each
tile. Also, the V850E2/MN4 (2013) ISA offers support for mutual exclusion with shared
registers. In other architectures, e.g. in the Cray X-MP processor7, semaphore regis-
ters shared between processors are used for interprocess communication (see for details
Ungerer 1997, p. 258f.).
But, these approaches have several drawbacks for being used in timing predictable

multi-core processors. Firstly, they exhibit a hard limit for the number of concurrently
possible locks, i.e. the number of available shared registers. Secondly, they only al-
low the usage of simple TAS locks, however, in combination with software techniques
it is possible to implement more complex synchronisations. Though, this reduces the
efficiency, especially in the worst-case, due to pessimism in the WCET analysis from
possible concurrent accesses to the shared registers. Another drawback is the rising
complexity for accessing shared registers from an increasing number of cores. Either, a
specific arbitration logic is needed (e.g. as in the SuperH-2A ISA (2010)) so that only
one access per core is allowed to the shared registers, or a crossbar solution could be
used with a number of read and write ports at the shared control registers, as e.g. in
the CarCore processor (cf. Mische et al. 2010, Uhrig et al. 2005). Both approaches have
their disadvantage either in time for accesses (overhead from arbitration), or in space
and hardware costs (crossbar/ports).
Another technique for fine-grained control of shared data in a memory stems from

the supercomputer domain: full/empty bits in hardware (see for more details Smith
1981, Ungerer 1993, p. 325f.). Full/empty bits are e.g. used in the multithreaded
multiprocessor HEP (see Kowalik 1985), and in the many-core processor Godson-T (see
Fan et al. 2012). For synchronisation in the HEP supercomputer, the ISA includes
specific atomic load and store operations. For instance, load operations are implemented
to either wait to complete after a specific state of the accessed memory cell is reached
(full), or fetch the data from the memory cell and change its state to empty. On the
other hand, store operations can check the state before writing data to a memory cell,
and only write if the state of the memory cell is empty and set it to full, otherwise the
store operations waits for the state to change from full to empty.

5see http://www.renesas.com/products/mpumcu/superh/sh7260/sh7265/index.jsp [last retrieved:
April 2013]

6see http://communities.intel.com/community/marc [last retrieved: April 2013]
7see http://www.cray.com/About/History.aspx [last retrieved: April 2013]

http://www.renesas.com/products/mpumcu/superh/sh7260/sh7265/index.jsp
http://communities.intel.com/community/marc
http://www.cray.com/About/History.aspx

18 2. BASICS

This technique is further detailed by Smith (1981) and Ungerer (1993). The Godson-T
provides beside full/empty bit support in hardware also a synchronisation manager (SM)
which handles lock-based synchronisation with queues in hardware to speed up parallel
(scientific) programs in the high-performance domain.
Similar to the concept of full/empty bits are the I-structures (see Arvind et al. 1989)

and M-structures (see Barth et al. 1991) from the dataflow computing domain (see also
Ungerer 1993, p. 156f.). I-structures and M-structures are implemented in the parallel
computing, dataflow language Id (see Nikhil 1991). Arvind et al. (1989) describe I-
structures in detail. They state that two operations on an I-structure storage memory
are provided: an I-fetch tries to read a value, and I-store tries to update a value. Each
value in the I-structure storage is tagged with a status bit that is either ’empty’ or ’non-
empty’, similar to full/empty bits. The I-structure storage controller checks for every
access the state of the tag bit. I-fetch operations are queued by the controller, if the
location is marked as ’empty’, or return a value for ’non-empty’ tagged locations. The
tag bit is only set to ’non-empty’ when a single I-store operation to an ’empty’ location
is recognised; then, queued I-fetch operations are provided (with no specific order) with
the updated value. If an I-store operation on a ’non-empty’ location is detected by the
I-structure storage controller, it generates a runtime error.
M-structures are a similar construct supporting atomic updates, however, introducing

imperative data structures in the functional (declarative) language Id; this allows, as
stated by Barth et al. (1991), for more efficient implementations for specific problems.
The two operations take and put provide implicit synchronisation, but require local
barrier synchronisation to enforce a correct ordering of operations (if not provided by
strictness of operations in Id). Also, Barth et al. (1991) denote that the handling of
the put operation (that writes a value to an ’empty’ location) can be extended to allow
for multiple put operations on an ’empty’ location being queued, e.g. for producer-
consumer interactions. Ungerer (1993) expounds that I-structure storage controller can
also support the M-structure operations take and put.
Related M-structure operations called E-fetch and E-store were introduced at the

same time—independently, as purported by Barth et al. (1991)—by Milewski (1990),
based on the previous work of Arvind et al. (1989). E-fetch operations are implemented
similar to M-structures take operations; after a successful E-fetch, the data location is
tagged ’empty’. The E-store operation, however, is a bit different to the I-structures
I-store operation respectively the M-structures put operation. While Milewski (1990)
also implemented E-stores to disallow the breaking of the “single assignment rule”, the
waiting queues with E-fetches are handled differently than for M-structures, that is only
the first waiting request is served. Milewski 1990’s E-fetch and E-store operations do need
a similar support with a storage controller in hardware as I-structures or M-structures.
Further related primitives used for synchronisation and atomic RMW operations are

the LL/SC pairs, e.g. provided by ARMv6-M ISA (2010), ARMv7-M ISA (2010),
MIPS32 ISA (2003), PowerPC ISA (2010), and the CAS primitive, e.g. provided by
the SPARCv9 ISA (1994); they are presented and discussed in detail in Section 3.2.4.
In Section 3.3.7 a broad view on software synchronisation techniques (also including

hardware support) are presented in detail.

Procrastination is the thief of time. – Edward Young

3 Hard Real-Time Capable Synchronisation

This chapter presents how HRT capability and timing predictability is achieved by collab-
orating hardware and software techniques, that is timing predictable, atomic RMW op-
erations in hardware and worst-case efficient synchronisation techniques in software build
on top of those hardware implementations. In particular, in Section 3.1 the range and
baseline of possible timing analysable synchronisation techniques for embedded multi-
core processors are presented. Section 3.2 depicts the augmented memory controller
which includes the synchronisation logic for atomic RMW operations. In Section 3.3 it
is highlighted how HRT capability and timing predictability for commonly known soft-
ware synchronisation techniques is achieved, like e.g. locks, semaphores, and barriers.
Static timing analyses of the proposed HRT capable synchronisation techniques are

done in Chapter 4. In Chapter 4 also the computations of worst-case memory latencys
(WCMLs) for the augmented memory controller are detailed. In Chapter 5 details on the
split-phase synchronisation technique, that is an improvement for reducing the pessimism
in the WCET guarantees of parallel programs, are shown. The logic of the split-phase
synchronisation technique is also implemented in the augmented memory controller.
Please note that part of this chapter is based on a publication in the proceedings of

Design, Automation and Testing in Europe (DATE) 2012 (see Gerdes et al. 2012b).

3.1. Synchronisation in Embedded Multi-Core Processors
HRT embedded multi-core processors need to fulfil different requirements than today’s
COTS multi-core processors aim at. As for most COTS processors high average per-
formance is the key design goal, it is timing predictability for HRT capable processors.
However, predictability in HRT capable multi-core processors comes with a price. Ac-
tually, HRT multi-core processors are either specifically engineered, as e.g. shown by
Akesson et al. (2007), Liu (2012), Liu et al. (2010), Paolieri et al. (2013, 2009a), Ungerer
et al. (2010), Wilhelm et al. (2009b), or specific restrictions for the access to shared
resources, mostly also accompanied by a complex WCET analysis, are introduced, for
example in Kelter et al. (2011), Yan and Zhang (2008) (see also Section 4.5).
To fulfil requirements for safety and security, various safety standards have been spec-

ified, and the developed software must be certified against them: the ISO 26262 in
the automotive domain, the EN 50128 for railway systems, the IEC 61513 for nuclear
power plants, the IEC 62061 for the machinery domain (all based on the IEC 61508
standard1), and the DO-178B in the avionic domain. Therefore, deterministic execution
models on COTS multi-core processors is an emerging research field, e.g. the research
of Boniol et al. (2012) and Nowotsch and Paulitsch (2012) on the Freescale P4080, as
well as research on timing analysable and predictable multi-core architectures. Further
COTS multi-core processors for the safety-critical domains are the ARM11 MPCore,
the Renesas SH7265 (SuperH-2A ISA 2010) and V850E2/MN4 (2013), and the Infineon
AURIX (2013) multi-core processor.

1see http://en.wikipedia.org/wiki/IEC_61508 for a rough overview on those safety standards.

http://en.wikipedia.org/wiki/IEC_61508

20 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

However, all the above mentioned COTS multi-core processors are not designed to en-
able timing predictable execution of real parallel, multithreaded HRT programs. Beside
being still very difficult to analyse with a static WCET tool, they provide different syn-
chronisation techniques for loosely coupled tasks, that is for multiprogrammed workload.
The switch to multithreaded parallel HRT programs is still to come, and yet the needed
effort to find suitable timing analysable synchronisation techniques and their hardware
and software implementations to be researched. In the following, a possible hardware
technique to ease timing predictable synchronisation in multithreaded parallel HRT pro-
grams is presented, followed in the next section by presenting software synchronisation
techniques that rely on the proposed hardware techniques. Together, this approach yields
to allow for timing predictable execution of tightly coupled, multithreaded parallel HRT
programs on shared-memory multi-core processors.

3.1.1. Hard Real-Time Capable Multi-Core Processors

An embedded multi-core processor that is HRT capable has to fulfil certain requirements.
The design goal is often to isolate the HRT parts and tasks as much as possible, and
use of real-time capable arbitration techniques when accessing shared resources, e.g. the
shared memory, is needed. In this thesis, a WCET model of a HRT capable multi-core
processor, the MERASA processor (see Paolieri et al. 2013, Ungerer et al. 2010) is used
for the static timing analysis with OTAWA. The modelled multi-core processor features
a configurable number of in-order, dual-issue simultaneous multithreading (SMT) cores.
The use of SMT techniques enables it to execute mixed-critical programs consisting of
HRT and NHRT threads. Moreover, isolation of HRT and NHRT threads in the cores
preserves the HRT capability (see Mische et al. 2010).
The memory controller and interconnect cannot isolate concurrent accesses of different

cores. Instead, the use of isolation here would require partitioning the global memory,
as well as duplicating shared resources, and thus hinder or even disallow communication
between threads. Therefore, the use of shared resources should be allowed.
Interferences are handled by an upper bounding of accesses to shared resources en-

forced by a real-time capable bus as interconnect to memory and cores, as well as a
real-time capable memory controller (see Paolieri et al. 2009a). Scratchpad memories
are used as local memories for each core, namely a data scratchpad (DSP) and a dy-
namic instruction scratchpad (D-ISP) (see Metzlaff et al. 2011), but no caches for the
HRT threads. Figure 3.1 depicts a schematic overview of the MERASA multi-core pro-
cessor. It is binary compatible with the Infineon TriCore architecture (see TriCore ISA
2008), which is widely used in the automotive and construction machinery domain.
In the MERASA project, a high-level processor simulator, a cycle-accurate SystemC

simulator, and a Field-Programmable Gate Array (FPGA) prototype of the MERASA
processor have been built. The simulators offer interfaces to use the measurement-based
WCET tool RapiTime. Furthermore, a WCET model of the MERASA processor has
been developed for static WCET analysis with OTAWA. An important design decision—
augmenting the memory controller with logic supporting synchronisations—is presented
in detail in the following, and WCET analyses in Chapters 4 and 5.

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 21

Core 1

DSP D-ISP

Core 2

DSP D-ISP

Core 3

DSP D-ISP

Core 4

DSP D-ISP

Real-Time Bus Arbitration

Memory Controller with Synchronisation Logic

Shared Memory

Figure 3.1.: Overview of a quad-core MERASA processor, a predictable, bus-
based, shared-memory multi-core processor, stressing the embedded
synchronisation logic in the memory controller.

Restrictions

For the static WCET analyses in this thesis the baseline is restricted to only execute one
single HRT thread per core. A parallelised task or program consists of multiple threads,
but only one HRT program is executed in concert with potential NHRT programs.
Therefore, all parallel threads of one HRT program share the same, highest priority.
Also, it is assumed in this thesis that no interrupts (for HRT threads) occur. Solutions

to interrupt handling in HRT systems—related to aperiodic task execution in the domain
of real-time scheduling—is either to disable interrupts and only allow them in specific
time slots (see Lehoczky and Ramos-Thuel 1992) or to include the overhead in the
WCET of the corresponding task through utilisation bounds and off-line bandwidth
preserving (see Abdelzaher et al. 2004, Liu and Layland 1973, Spuri and Buttazzo 1994).
However, Sandström et al. (1998) state that this might lead to high overestimations in
the estimated WCET or only works for higher response times, and propose a different
solution to cope with interrupts in statically scheduled HRT systems.
The starting of threads of a parallel HRT program needs to be synchronised in a

timing analysable multi-core processor, that is all threads should start at the same time
on each core. In the MERASA processor this has been achieved by creating threads
with a suspension bit in the thread control block (TCB). When all threads are ready to
run, the suspension bit is deleted by a hardware priority manager (cf. Wolf et al. 2010b).
The same behaviour is enforced at other synchronisation points, e.g. at barriers.
Furthermore, for the synchronisation techniques presented in this chapter the absence

of failures is assumed. However, approaches for concurrent programming problems with
fault tolerance exist, e.g. the work on non-blocking algorithms (see Section 3.3.7).

22 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

3.1.2. Hardware Support for Synchronisation Techniques
Synchronisation techniques are often implemented in abstraction layers for the program-
mer, e.g. in an OS, respectively an RTOS or a firmware/system software. However, for
testing and debugging, or if specific control on a low-level hardware layer is needed,
bare metal programming can be and is used. On many COTS multi-core processors,
programming the bare metal is the sole solution to achieve deterministic execution and
timing predictability on those platforms (see Boniol et al. 2012, d’Ausbourg et al. 2012).
Bare metal programming became famous, as it defines the start of the Linux devel-

opment by Linus Torvalds (see Torvalds and Diamond 2002). With the upcoming of
multi-/many-core processors, programming the bare metal becomes highly interesting
again, and often it is the only way to program a new device for which no OS yet exists2.
Consistency and atomicity are key aspects for synchronisation in multi-core processors

(cf. Sections 2.2, 3.1.4 and 3.2). Therefore, these requirements must be fulfilled, e.g.
with the help of atomic hardware primitives in the architectures. The underlying hard-
ware architecture mostly allows for using different primitives for consistent and atomic
synchronisation. More details on how worst-case efficient atomicity for such RMW prim-
itives in a multi-core processor can be achieved are discussed in the next Section 3.1.4.
These primitives are made available through the hardware on diverse software layers
that is either bare metal, firmware/system software support, or a complete RTOS.

Bare Metal programming is mostly used for testing and debugging of “new” architec-
tures and systems. The bare metal layer is in the most cases just above the Basic Input
Output System (BIOS) or after a boot loader sequence, and allows to access the memory
or the interconnect through lightweight and simple interfaces. Then, higher abstracting
software, like a firmware, a system software or an OS are build from there respectively
on top of it. But, bare metal programming is also used to gain specific control over how
something is done, that is hardware-near programming for efficient solutions.
Synchronisations that can be used on this level in multi-cores are mostly limited to:

• Peterson’s algorithm(see Peterson 1981),
• Dekker’s algorithm (cf. Ungerer 1997, page 120ff.),
• shared registers for mutual exclusion, and
• RMW primitives for atomic read/write accesses.

Firmware/System Software provide an abstraction layer for programmers, but still
allow for hardware-near programming. Many embedded devices are running programs
which are directly compiled with the firmware/system software. Synchronisations that
can be used on this level are the same as for bare metal programming, but adding
also software synchronisations, e.g. over application programming interfaces (APIs) like
POSIX (2008). However, the use of hardware-near techniques like shared registers or
RMW primitives might be limited to encapsulate the use of synchronisations in the
firmware/system software.

2The website http://sites.onera.fr/scc/baremetal presents information on bare metal program-
ming on today’s and future’s many-core platforms, e.g. for the Intel SCC (see Mattson et al. 2010).

http://sites.onera.fr/scc/baremetal

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 23

(Real-Time) Operating Systems offer an even higher abstraction level for program-
mers. The synchronisation methods that can be used on this level are mostly the same as
above, and the use of hardware-near techniques, like shared registers or RMW primitives,
to encapsulate the use of synchronisations in the RTOS might be even more restricted
as for a firmware/system software.

3.1.3. Consistency in the MERASA Multi-Core Processor

Sequential consistency, introduced by Lamport (1979), has two requirements: (R1) each
processor issues memory requests in the order specified by its program, and (R2) memory
requests from all processors issued to an individual memory module are serviced from
a single FIFO queue. The HRT capable MERASA multi-core processor fulfils those
two requirements through the arbitration in the cores (R1) and the augmented memory
controller (R2) (see Gerdes et al. (2012a,b), Ungerer et al. (2010)). Furthermore, bringing
the requirements for weakly ordered memory operations stated by Dubois et al. (1986)
together with the MERASA multi-core processor: 1) accesses to global synchronisation
variables are strongly ordered, 2) no access to a synchronisation variable is issued in a
core before all previous global data accesses have been performed and 3) no access to
global data is issued by a core before a previous access to a synchronisation variable has
been performed. One of the major issues for consistency using synchronisations under a
weak consistency model is then atomicity of RMW operations (detailed in the following).

3.1.4. Atomicity of RMW Operations

The use of synchronisation techniques (see the work of Kruskal et al. (1988) for a survey
on software synchronisations, and Molesky et al. (1990) for implementations of pre-
dictable synchronisation techniques in multiprocessors respectively in multi-core pro-
cessors by Gerdes et al. (2012b)), for instance to avoid data races, is mandatory for
functional correctness of parallel programs with locks.
Atomicity can be achieved if the access to the hardware structure or memory region

that provides synchronisation variables assures mutual exclusion, e.g. shared atomic
registers that can be only accesses by one thread at a time. Despite the arguments
discussed already in Section 2.2.4, such shared registers only offer binary values, which
might be sufficient for access control to peripheral devices in concurrent systems, but
do not offer more complex synchronisation support needed for multithreaded parallel
HRT programs on shared-memory multi-core processors. Thus, a more general solution
is needed to implement worst-case efficient synchronisation for a shared-memory multi-
core processor. One common solution is to use software synchronisation techniques in
parallel HRT programs with the support of hardware-implemented RMW operations.
Atomicity ensures that an operation consisting of a read, a modification and a write
cannot be interrupted, and is executed completely. For a bus-based, shared-memory
multi-core two different possibilities to implement atomicity for RMW operations are
conceivable: 1) locking the interconnect and modify in cores, or 2) logic for atomic
operations outside of the cores in a shared resource.

24 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

B M1Core 1 (RMW)

Core 2 (Load)

M2 M3
... Mn B BC M1 M2 M3

... Mm B

BB M1 M2 M3
... MnXXX X X X X X X X X X B......

(a) Locked interconnect

CB M1Core 1 (RMW)

Core 2 (Load)

M2 M3
... Mn M1 M2 M3

... Mm B

B BM1 M2 M3
... MnXX X X X X X XX B

(b) Augmented memory controller

Figure 3.2.: Memory access pattern for RMW operations with a locked inter-
connect (a) respectively with the augmented memory controller (b).

The latter one could be either implemented in the memory controller of the shared
memory, which is further detailed in Section 3.2 (similar as in older multiprocessor
architectures, e.g. in the NYU Ultracomputer presented by Almasi and Gottlieb 1989,
p. 435), or as a dedicated shared memory for synchronisations, e.g. at the interconnect
like shared L2 caches in high-performance systems (see also related work in Section 5.2.5).
Figure 3.2 depicts the memory access pattern of those two solutions and the interfer-

ence that is caused from RMW operations on other memory operations of concurrently
running HRT threads. In detail, Figure 3.2 shows the memory access pattern cycle by
cycle, that is the bus access (labelled ’B’), the actual memory accesses (M1 to Mn rep-
resent a load operation, and M1 to Mm a store access), and the modification of the read
value (labelled ’C’). The red squares (labelled with ’X’) depict the situation in which the
memory accesses of the concurrent executed thread of another core (Core 2) is blocked
from the memory accesses of the core issuing a RMW operation (Core 1).
With a locked interconnect, all request of concurrent threads to the shared mem-

ory need to stall at the core-level until the RMW operation issued and completed the
write operation. The bold squares in Figure 3.2(a) show the additional bus accesses
that are needed with a locked bus compared to the augmented memory controller (see
Figure 3.2(b)). Hence, the worst-case latency for a normal load or store with a locked in-
terconnect increases, while it is lower with the embedded logic in the memory controller.
Thus, embedding the RMW logic in the memory controller helps to achieve atomicity
without too much latency sacrificed from the impact of slow synchronisation accesses,
that is reducing the WCMLs accessing the shared memory (see detailed static timing
analyses in Chapter 4). Also, the computation phase with a locked interconnect (blue
’C’ square in Figure 3.2(a)) might be longer than the depicted one cycle, depending on
how the modification of the RMW operation is done. Additionally, Wolf et al. (2010a,
2011) have shown that locking the memory bus to prevent other cores interrupting a
RMW operation also leads to high contention for all cores and threads in accessing the
shared resources, namely the shared memory or Input/Output (I/O) devices, resulting
in high pessimism for the WCET guarantees.
Further discussions on atomicity and consistency of RMW operations concerning the

split-phase synchronisation technique are detailed in Section 5.1.1.

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 25

3.2. Augmented Memory Controller
The aim of the augmented memory controller, including the needed logic to execute
RMW operation, is two-folded. Firstly, the approach eases the use of today’s available
or future ISAs by reusing already implemented instructions, so, the generality of the ap-
proach is retained. Secondly, it assures worst-case efficiency while maintaining functional
correctness of accesses to shared resources (see Sections 3.1.3 and 3.1.4).

3.2.1. Implementation of the Augmented Memory Controller

The augmented memory controller (see Figures 3.1 and 3.3) implements the needed logic
of atomic RMW operations for synchronisations. In this thesis, the detailed physical im-
plementation of a predictable Synchronous Dynamic Random-Access Memory (SDRAM)
controller is out of scope, but an existing SDRAM controller should mostly not be af-
fected by the proposed augmentation with synchronisation logic. Figure 3.3 depicts
the separation of added synchronisation logic and SDRAM controller, and the inter-
connect to the real-time bus and the SDRAM memory. Akesson et al. (2007), Mutlu
and Moscibroda (2007), Paolieri et al. (2009b), Reineke et al. (2011), Whitham and
Audsley (2009), and Lakis and Schoeberl (2013) propose different solutions concerning
predictable Dynamic Random-Access Memory (DRAM) access and the (detailed physi-
cal) implementation of predictable SDRAM controllers. These could then be interfaced
with the augmented part in the memory controller as shown in Figure 3.3. The aug-
mented memory controller has been exemplarily implemented in the MERASA SystemC
simulator3 with a simplified SDRAM controller for proof of concept. Also, some pro-
posed techniques are implemented in the MERASA FPGA prototype3, for instance to
derive realistic memory latencies.
In the following, the reusing of instructions in the TriCore-based MERASA ISA is

described, but it is possible to apply the presented techniques to other ISAs as well. The
swap instruction of the TriCore ISA (2008) is usually used (in the single-core TriCore) to
atomically swap a data register value with a memory word. As the data, which is usually
swapped by the swap instruction, is not needed for the implemented RMW operations
it is used to encode the corresponding RMW operations. In the augmented memory
controller the data value can be decoded to identify a TAS, a F&I, or a F&D operation
(see ’Decoding RMW operations’ in Figure 3.3) when a RMW operation is detected.
In the MERASA processor this detection is triggered by the read and write signal in
hardware both set to ’1’. It is also possible to add further RMW operations by using the
available bits in the data value to encode the corresponding RMW operations for being
decoded in the augmented memory controller. For example, a F&A operation could be
supported, however, parts of the identifier would then be needed to actually transfer the
summand of the add operation. In detail, two bits of the 32 available bits could be used
to decode the corresponding RMW operation, and the remaining 30 bits could be used
for the summand of an F&A operation.

3The MERASA SystemC simulator and the MERASA FPGA prototype are deliverables of the EU
project MERASA and are available for download at www.merasa.org [last accessed: April 2013]

www.merasa.org

26 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

(Predictable) SDRAM-Controller

Augmented
Memory

Controller

Real-time Bus

Incoming request (load, store, RMW)

Dispatch
(load, store)

Update

From and
to cores

RMW modification feedback1load a
2loadRMW b

mem_buffer

2storeRMW b

3storeRMW b

3loadRMW b

4load c

synchronisation logic
(modification phase)

Decoding RMW
operations

returned value

returned value

SDRAM

(load, store) returned value

Memory
response

Figure 3.3.: Schematic overview of the augmented memory controller with imple-
mented hardware support of RMW operations, and showing separa-
tion of augmented synchronisation logic from an SDRAM controller.

The advantage of this approach is that the generality of this implementation is not lost,
as it is possible to reuse instructions of other ISAs for RMW operations in the memory
controller as well. But, it must be assured that the compiler does not automatically
generate the reused instruction used to encode/decode RMW operations. Otherwise it
could get misinterpreted in the memory controller, as the data value that is used to
decode the corresponding RMW operation might be arbitrary then. Also, the memory
controller must be able to recognise such an instruction, however, in common ISAs for
embedded systems mostly some unused or matching instructions are available for this
modification (see related work in Section 3.2.4 for more details).
The shared memory interconnect (real-time bus in Figure 3.3) arbitrates memory

requests in a round-robin fashion between the cores (see Paolieri et al. (2013, 2009a)
and Ungerer et al. (2010) for details on different arbitration strategies in the MERASA
processor). Memory accesses received over the bus are served on a FCFS basis, that is
the augmented memory controller uses a FIFO queue for received accesses (mem_buffer
in Figure 3.3), and dispatches the corresponding memory operations—either a load, a
store, or a subsequent load and store of a RMW operation—to a (predictable) SDRAM
controller of the shared memory.

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 27

The synchronisation logic in Figure 3.3 handles the modification phase of RMW opera-
tion by updating the value that is returned after the load phase and passes the new value
to the corresponding store operation in the mem_buffer. If this modification concerns
a constant value to be changed for the store operation (e.g. for TAS), the modification
latency is hidden as it can be already started right after the load operation is dispatched.
For RMW primitives that need to actually change the loaded value, that is increment-
ing/decrementing of F&I/F&D operations, an additional latency is added that defers the
subsequent store operation. Depending on the hardware effort and memory frequency,
it should be feasible to assume that such a modification can be done in one cycle (see
also the settings for the timing analyses in Sections 4.1.3 and 4.2).

3.2.2. Read-Modify-Write Operations
To support software synchronisations in parallel programs, the hardware needs to pro-
vide atomic operations. In this section well known RMW operations (see Hennessy
and Patterson 2003, Kruskal et al. 1988, Mellor-Crummey and Scott 1991a) like TAS
and F&I/F&D are detailed, and the changes to their implementation in the augmented
memory controller (see Figure 3.3) to be used in a HRT capable multi-core processor
are explained. Also, LL/SC is discussed in Section 3.2.4, and it is presented how LL/SC
instructions could be reused for the augmented memory controller with other multi-
core platforms with ARM or PowerPC ISA. Table 3.1 shows an overview of the actual
implemented RMW operations that are then presented in detail below.

Table 3.1.:
Overview of the implemented RMW operations in the augmented memory controller.
HW Primitive Short Description

TAS Loads a value and subsequently stores back a ’1’
F&I Loads a value and subsequently stores back the incremented value
F&D Loads a value and subsequently stores back the decremented value

Test-and-set
The TAS primitive is implemented in the augmented memory controller by first loading
the lock value val ∈ {0, 1} from memory address address. Subsequently, the memory
controller stores a ’1’ at address. These operations are executed atomically in the aug-
mented memory controller. Then, the loaded lock value val is returned to the thread
issuing a TAS, where val = 0 signals that the lock is free and the thread got the lock,
whereas val = 1 signals that the lock is held by another thread. The TAS operation
is e.g. used for the TAS spin lock implementation presented in Section 3.3.1, and the
mutex lock implementation in Section 3.3.3. Listing 3.1 shows the TAS implementation
reusing the TriCore ISA’s swap instruction. The source code includes two different in-
line assembler code versions: one for the TASKING C compiler for TriCore, and one
for the tricore-gcc by HighTec. Both only differ in the varying syntax for the use of
inline assembler code. The value of variable uint32_t data is used as identifier in the
augmented memory controller to execute a TAS operation, and also the read value from
the memory will be returned to that variable, that is either ’0’ or ’1’.

28 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

Listing 3.1:
Test-and-Set implementation in the MERASA RTOS using the swap instruction from

the TriCore ISA
stat ic i n l i n e uint32_t te s t−and−s e t (lock_t ∗ l o ck) {

uint32_t data = 1 ;
#i f n d e f GCC //TASKING C compi ler f o r TriCore (Altium Ltd .)
__asm(" swap .w␣%0 ,[%2]0 " : "=d" (data) : " 0 " (r) , " a " ((uint32_t ∗) l o ck) : "memory") ;
#else // t r i c o r e −gcc compi ler (HighTec EDV−Systeme GmbH)
asm volat i le (" swap .w␣ [%2]0 , ␣%0" : "=d" (data) : " 0 " (data) , " a " (l o ck) : "memory") ;
#end i f
return data ;

}

Fetch-and-Increment/Fetch-and-Decrement

The F&I/F&D primitives are implemented slightly different in the MERASA processor
as they typically are: the F&I implementation allows for specifying an upper limit
to enable a cyclic counting behaviour. Therefore, a data word must be initialised in
software before being used with F&I/F&D. That is the upper two bytes of the four byte
memory word are used to store an upper limit value lim, whereas the lower two bytes
are used for the actual count (should be typically initialised with ’0’). At runtime, if
e.g. the augmented memory controller recognises an F&I instruction by the uint32_t
data variable coding (see Listing 3.2), it loads the four bytes word from memory address
address. Then, the augmented memory controller sends the lower two bytes, the actual
count, as fetched value to the core issuing the F&I instruction. Also, the implemented
logic in the augmented memory controller checks if the lower two bytes are already higher
than the initialised upper limit lim (the upper two bytes), i.e. if the counter count would
overflow lim when being incremented. If this is not the case, count is incremented and
stored back together with lim. Else, the counter count is set to ’0’. This behaviour of
the F&I operation is e.g. used in the ticket lock implementation (see Section 3.3.4), and
for the cyclic counting to implement efficient FIFO queues (see Section 3.2.3).

Listing 3.2:
Fetch-and-Increment implementation in the MERASA RTOS (see also Appendix A.1)

reusing the swap instruction from the TriCore ISA
stat ic i n l i n e uint32_t fetch_and_increment (uint32_t ∗ address) {

uint32_t data = 0x0000FFFF ;
#i f n d e f GCC //TASKING C compi ler f o r TriCore (Altium Ltd .)
__asm(" swap .w␣%0 ,[%2]0 " : "=d" (data) : " 0 " (data) ,

" a " ((uint32_t ∗) address) : "memory") ;
#else // t r i c o r e −gcc compi ler (HighTec EDV−Systeme GmbH)
asm volat i le (" swap .w␣ [%2]0 ,%0 " : "=d" (data) : " 0 " (data) ,

" a " (address) : "memory") ;
#end i f
return data & 0x0000FFFF ;

}

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 29

The same holds for F&D (see Listing 3.3) that is recognised in the memory controller
by a different uint32_t data coding then a F&I operation. If a F&D would decrement
the loaded counter count so that count < 0, the lower two bytes of the store back
value count are set to 0, and the upper two bytes are retained at the upper limit value
lim. This cyclic counting allows to implement a busy-waiting spin lock with F&D (see
Section 3.3.2). In that case F&D is executed in a loop, i.e. spins on the synchronisation
variable at memory address address, until a value 6= 0 is returned. The F&D-based spin
lock is used for the semaphore implementation presented in Section 3.3.5.

Listing 3.3:
Fetch-and-Decrement implementation in the MERASA RTOS (see also Appendix A.1)

reusing the swap instruction from the TriCore ISA
stat ic i n l i n e uint32_t fetch_and_decrement (uint32_t ∗ address) {

uint32_t data = 0x70007000 ;
#i f n d e f GCC //TASKING C compi ler f o r TriCore (Altium Ltd .)
__asm(" swap .w␣%0 ,[%2]0 " : "=d" (data) : " 0 " (data) ,

" a " ((uint32_t ∗) address) : "memory") ;
#else // t r i c o r e −gcc compi ler (HighTec EDV−Systeme GmbH)
asm volat i le (" swap .w␣ [%2]0 ,%0 " : "=d" (data) : " 0 " (data) ,

" a " (address) : "memory") ;
#end i f
return data & 0x0000FFFF ;

}

3.2.3. FIFO Queue with F&I

The F&I primitive implementation, proposed in this thesis, can be employed for a concur-
rent FIFO queue. In that case, F&I is used to increment the index for the insert/remove
operation of threads in a FIFO buffer. The only requirement is that the upper limit
of the FIFO queue needs to be known a-priori by the programmer, that is the upper
bound needs to be set for the F&I primitive. As in each case two bytes are used for the
counter and the upper limit, it is possible to count up from 0 to 216−1. With the chosen
implementation of F&I, it is then easily possible to manage a FIFO queue applying the
implemented cyclic counting of F&I.
In detail, the F&I operation is used to increment the index atomically, and, if the last

index is reached, the next fetched index is ’0’ again, as the upper limit for F&I is reached.
This allows, for instance, to implement a FIFO ordered waiting list for HRT threads. In
this example (cf. Figure 3.4), each HRT thread is represented by its unique thread id,
and inserting a HRT thread in the waiting list means inserting the corresponding thread
id. Then, insertion of HRT thread ids into the waiting list increments the index fifo_next
for the next insert location, and removing a HRT thread from the waiting list increments
the next remove location fifo_last in the waiting list (see Figure 3.4). Overwriting of
thread ids in the FIFO queue is not possible, as the number of HRT threads is known
at design time, e.g. restricted by the number of cores in a multi-core processor, and
therefore the upper limit for the F&I primitive can be adjusted accordingly.

30 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

T3T2T1 T4
Insert new thread T4

in FIFO list
T1 T2 T3

fifo_last fifo_last

fifo_next fifo_next

(a) Insert operation

T1 T2 T3

fifo_last

T1 T2X T3
Remove longest waiting

thread T1 from FIFO list

fifo_last

fifo_next fifo_next

(b) Remove operation

Figure 3.4.: Insert(a) and remove(b) operations of threads with the FIFO queue
using F&I to change the position of pointers fifo_next respectively
fifo_last.

The advantage of this approach is that, contrarily to a fully software managed linked
list, the list access does not need to be secured with a critical section as the access to it is
done with an atomic RMW operation, that is F&I. Therefore, computation and waiting
times in the WCET are possibly reduced (see evaluation results in Section 4.3). The
FIFO queue with F&I is used, for example, to manage the waiting list in the semaphore
implementation in Section 3.3.5, and also in the F&I barrier implementation detailed in
Section 3.3.6.

3.2.4. Related Work
ARM proposes local and global monitors4 for their LL/SC implementation. The moni-
tors keep track of on-going load-linked operations, so-called reservations (the load-linked
instruction is called ldrex, a store-conditional instruction strex). While the local mon-
itor observes and manages reservations for local memories, the global monitor does the
same at a global shared memory. There are several limitations on when and how reser-
vations must be cancelled, e.g. for a context switch, or for memory operations (esp.
store operations) that access other, near memory locations. The term near stems from
the Exclusives Reservation Granule (ERG), which stipulates a minimum size of the re-
served (tagged) memory region; the size for ERG is between 8-2048 bytes. That is a
store operation in the range of ERG leads to unpredictable behaviour4.

4see ARM Synchronization Primitives Development Article from http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.dht0008a/index.html). [last retrieved: April 2013]

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/index.html

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 31

Also, only one reservation per processor in a multiprocessor system is allowed in the
global memory, as well as in the local memory. Hence, further reservations from dif-
ferent threads calling ldrex cancel any previous reservations. For context switches, it
is necessary to invalidate reservations from ldrex by calling a clrex instruction (for
the ARMv6-M ISA (2010), which does not provide a clrex instruction, this needs to
be done with a dummy strex instruction). Please note that for non-cache-coherent
ARM processor implementations, the ldrex/strex instructions bypass the cache and
reservations are only done in the global monitor.
The PowerPC ISA (2010) features similar primitives for LL/SC, that is lwarx and

stwcx (also LL/SC pairs for operations on bytes, half-words, and double-words are pro-
vided). Just like the ARM LL/SC primitives, the PowerPC ISA (2010) allows only one
reservation per processor, and the granularity (called reservation granule) is implemen-
tation dependent, but must be of a minimum size of 16 bytes (2n bytes with n ≥ 4).
Several papers, e.g. from Valois (1995) and Engdahl and Chung (2010), evaluated

the average-case performance using LL/SC primitives in multi-core processors for syn-
chronising data exchange. But, a major drawback of LL/SC implementations in HRT
systems is the problem of bounding the waiting time for the conditional store operation.
So far, only highly overestimated upper bounds, if any at all, can be computed, when
LL/SC is used as a hardware synchronisation primitive. This stems from the problem of
limited numbers of reservation, and especially from the conditional nature of the store
operation. In the most multi-core architectures it will be difficult or infeasible for static
timing analyses to find a (preferably tight) upper bound for conditional-store operations.
However, similar to the reusing of the SWAP operation of the TriCore ISA (2008) in the

MERASA processor the ldrex of ARM processor ISAs could be reused to implement the
synchronisation logic in a memory controller. The same holds for the similar instruction
lwarx of PowerPC ISA (2010). This is e.g. done in the EU-project parMERASA5, in
which PowerPC cores are employed, and the lwarx instruction is reused to implement
the needed logic for F&A primitives in a memory controller.
A further RMW operation that might be offered more frequently in future multi-core

architectures is the CAS primitive. Especially the use in non-blocking algorithms seems
promising (see Section 3.3.7). But, even if such a primitive is not implemented, it is
possible to emulate a CAS primitive with LL/SC operations.
The cyclic FIFO buffer, presented in Section 3.2.3, features a similar behaviour as

the two-pointer FIFO queue presented by Valvano (2011). Valvano (2011) presents the
FIFO queue solution for decoupling data exchange between producers and consumers.
However, the advantage of the novel managing of pointers in the FIFO implementation
with atomic RMW operations, in that case with the cyclic counting of the F&I primitive
presented in Section 3.2.3, is the possibility of manipulating the pointers concurrently,
without the need of a critical section to secure the access.

5see the Multi-Core Execution of parallelised Hard Real-Time Applications Supporting Analysability
(parMERASA) project website at www.parmerasa.eu [last accessed: April 2013]

www.parmerasa.eu

32 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

3.3. Software Synchronisation Techniques

Software synchronisation techniques presented in this section are part of an RTOS (see
Gerdes et al. 2012b) that extends the RTOS presented by Wolf et al. (2010a, 2011,
2010b) (see also Appendix A.1). In the following, the implemented synchronisation
constructs are presented, that is F&I/F&D spin locks, ticket locks, semaphores, and
software barriers that are using the F&I/F&D primitives, as well as synchronisation
techniques based on the TAS primitive, namely a TAS spin lock implementation, and
a mutex lock implementation according to POSIX (2008). Table 3.2 gives an overview
of the implemented HRTcapable software synchronisation techniques. The implemented
software synchronisations have been carefully designed to be HRT capable in a shared-
memory multi-core processor.
As described in Chapter 2, synchronisation methods can be separated into two different

categories, that is either blocking or busy-waiting (see Table 2.2). Busy-waiting means
that the thread executes the synchronisation function in a loop until the lock is gained,
whereas blocking means that a thread tries to get the lock and is suspended if not
succeeding. On the one hand, blocking synchronisation methods are handy, as busy-
waiting algorithms can consume a lot of processor time and add contention on the
memory system (and other shared resources which need to be taken into account when
accessing a synchronisation variable). Every non-successful try to gain the lock when
busy-waiting should be avoided for average-case performance. With suspension it is
possible to avoid unnecessary accesses, but suspending and waking up takes longer than
busy-waiting depending e.g. on the hardware. From the view point of static timing
analysis, suspension does not really help. In the real execution path a thread might be
suspended, but, for the worst-case path analysis, it needs to be assumed that it is not.
Therefore, it highly depends on the parallelised HRT programs and length of critical
section that is guarded, if and which busy-waiting or blocking software synchronisation
method should be used (see Gerdes et al. 2012b).

Table 3.2.:
Overview of the implemented software synchronisation techniques for the HRT capable

MERASA multi-core processor.

Software Synchronisation Technique Used RMW Operations

Spin lock (Section 3.3.1) TAS
F&I/F&D spin lock (Section 3.3.2) F&I/F&D
Mutex lock (Section 3.3.3) TAS
Ticket lock (Section 3.3.4) F&I
Semaphore (Section 3.3.5) F&I/F&D
Software Barrier (Section 3.3.6) F&I

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 33

Synchronisation techniques need to fulfil specific requirements for being HRT capable
(see Section 2.2.1). Concerning progress, strong fairness between threads that are com-
peting to access a critical section needs to be achieved. In the following it is shown that
not all typical implementations, e.g. barriers with conditionals, or spin locks respec-
tively mutex locks using the TAS primitive, are strictly fair (see Sections 3.3.1, 3.3.3,
and 3.3.6). Hence, fair progress between competing threads and an upper bounded wait-
ing time for critical sections, that is as low as possible, are both needed to enable a
static WCET analysis at all, respectively to achieve tight WCET guarantees. Chapter 4
presents a comparison of the implemented synchronisations and the gain in the WCET
guarantees of parallelised HRT programs using these software synchronisations.

3.3.1. TAS Spin Locks

Algorithm 3.1 shows a simple, commonly used spin lock implementation with the TAS
primitive. The implementation is busy-waiting, that is all threads that are competing
for a lock issue TAS instructions until they gain the lock.

Algorithm 3.1 Spin locks with TAS
Spin lock() function
1: //Enter critical section
2: while !(test-and-set(addr,reg)) do
3: /* test-and-set: Stores ’1’ at memory address addr and loads value from addr to

register reg */
4: end while
5: //Remainder critical section
6: ...

Spin unlock() function
1: //Leave critical section
2: store(addr,0) // respectively test-and-set(addr,1)

This implementation is possibly the simplest synchronisation function to secure a
critical section, and it is widely used. Lately, other synchronisation functions like ticket
locks, e.g. for the Linux Kernel, and queuing spin locks for real-time systems are used,
because of the lack of fairness in spin locks (see Sections 3.3.4, and 3.3.7). Please
note that the above implementation of a TAS spin lock does not fulfil the requirement
of progress, namely fair progress, for each thread without specific arbitration for the
shared memory. Thus, the computation of a WCET guarantees might not be possible at
all, or introducing a large overestimation if no real-time aware arbitration for the shared
resources is used. However, in the MERASA multi-core processor fairness of TAS spin
locks is assured by the arbitration strategy in the real-time bus, as presented by Paolieri
et al. (2013, 2009a). Nonetheless, using the above TAS spin lock implementation with
other memory interconnects that arbitrate memory requests in a fair manner might
comply real-time requirements (see related work presented in Section 4.5).

34 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

Also, if the computation time between subsequent locking of one thread is very short,
that is for instance there is no computation in between, the fairness condition could
be violated. This behaviour would be similar to the reinitialisation problem of barriers
(see Section 3.3.6), but instead of causing a deadlock, it would hinder other threads to
enter the critical section secured with a TAS spin lock, which e.g. motivated the use of
ticket locks in the Linux Kernel (see also Section 3.3.7). In some implementations, the
store operation used for the unlock() function in Algorithm 3.1 is substituted by a swap
or a different RMW operation, i.e. a TAS or F&I operation. In that way, it is easier
to recognise that access as an access to a synchronisation variable in the static WCET
analysis. However, the WCML of a store is lower than for a RMW operation, and from
the functional point of view a store is sufficient to unlock the spin lock. Though, it is
mandatory that the memory address addr is then marked or automatically detected as
a synchronisation variable for the static WCET analysis tool (see details in Chapter 4).

3.3.2. F&I/F&D Spin Locks
Another busy-waiting spin lock implementation can be build, as stated below in Algo-
rithm 3.2, with the F&I/F&D RMW operations in the MERASA processor with the
augmented memory controller. It is very similar to the above presented TAS spin lock,
and also shares the same requirements for fair progress.

Algorithm 3.2 Spin locks with F&I/F&D
F&I/F&D Spin lock() function
1: //Enter critical section
2: while fetch-and-decrement(addr) do
3:
4: end while
5: //Remainder critical section
6: ...

F&I/F&D Spin unlock() function
1: //Leave critical section
2: fetch-and-increment(addr) // respectively store(addr,1)

The semantic of the F&D operation allows to execute it repetitive, even if the value is
already ’0’, because the implemented F&D operation does not decrement below ’0’ (see
Section 3.2.2). The F&D operation can then be used for a busy-waiting spin lock, and
spins until a value > 0 is fetched (see line 2 in Algorithm 3.2). The unlock operation uses
a F&I operation to signal that the lock is free again, that is writing a 1. This could also be
done by a simple store, however, as the F&I/F&D operations are executed on a specific
representation of data in a 32 bits data word–storing the limit in the first 16 bits and
the actual counter value in the last 16 bits–a F&I operation automatically satisfies this
representation by its implementation in the MERASA RTOS and augmented memory
controller. The F&I/F&D spin lock is used in the semaphore implementation detailed
in Section 3.3.5.

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 35

3.3.3. Mutex Locks

The HRT capable mutex lock is a blocking synchronisation function which has been
implemented compliant to POSIX (2008). It uses a TAS spin lock for the critical sections
inside the mutex lock, and a software based FIFO waiting list to guarantee fairness
between concurrent threads. In detail, acquiring respectively releasing a mutex lock
needs to acquire the TAS spin lock on mutex→guard which secures the critical region
for accessing the global variable mutex→the_lock. Suspension and waking up of threads
is handled from a software managed linked list (see Algorithm 3.3) secured by the same
TAS spin lock on mutex→guard.

Algorithm 3.3 Blocking Implementation of Mutex locks with TAS Spin Locks

Mutex lock() function

1: //Enter critical section
2: while spin_lock(&mutex→guard) do
3:
4: end while
5: if mutex→the_lock 6= 0 then
6: Enter waiting list
7: spin_unlock(&mutex→guard)
8: Suspend thread
9: else

10: mutex→the_lock = 1
11: spin_unlock(&mutex→guard)
12: end if
13: Set as mutex owner
14: //Remainder critical section
15: ...

Mutex unlock() function

1: //Leave critical section
2: while spin lock not acquired do
3: spin_lock(&mutex→guard)
4: end while
5: if thread in waiting list then
6: Wake thread
7: Unset as mutex owner
8: else
9: mutex→the_lock = 0

10: end if
11: spin_unlock(&mutex→guard)

36 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

To acquire a mutex lock all concurrent HRT threads compete for the TAS spin lock to
enter the critical region (line 2 of lock() function in Algorithm 3.3). A HRT thread that
successfully enters this critical region, checks if the global variable mutex→the_lock indi-
cates a free mutex lock (mutex→the_lock == 0) or a taken mutex lock (mutex→the_lock
== 1). If the mutex lock is free, the HRT thread sets mutex→the_lock to ’1’, and re-
leases the TAS spin lock (lines 10,11); this HRT thread now holds the mutex lock—it is
the mutex owner. Other competing HRT threads, on gaining the TAS spin lock inside
the mutex lock, check the global variable mutex→the_lock which is now set to ’1’, and
therefore enter a linked list before suspending. The linked list contains all waiting HRT
threads in FIFO-order to guarantee fairness, i.e. the longest waiting thread wakes up
and acquires the mutex lock when the previous lock holding HRT thread releases it.
Finally, the HRT thread releases the TAS spin lock inside the mutex lock and suspends.
When a HRT thread releases a mutex, it busy-waits on gaining the TAS spin lock for

the critical region in which it wakes the longest waiting HRT thread from the linked
list. To ensure that the woken HRT thread acquires the mutex lock, and not other
HRT threads which are not suspended yet and that are competing for the mutex lock,
the active mutex lock holder does not set mutex→the_lock to ’0’ after waking up a
waiting HRT thread. Instead, it releases the TAS spin lock, and thus, if a HRT thread,
other than the woken HRT thread, acquires the TAS spin lock inside the mutex lock,
it finds mutex→the_lock still set to ’1’ and suspends. The woken HRT thread does
not need to check mutex→the_lock again, and hence acquires the lock becoming the
mutex owner. Taking into account the FIFO-order in the linked waiting list as well,
progress of HRT threads for the mutex lock implementation using a real-time aware
memory bus arbitration—needed for fairness of the TAS spin lock implementation (see
Section 3.3.1)—can be assured.

3.3.4. Ticket Locks

Algorithm 3.4 Busy-Waiting Implementation of Ticket locks with F&I
1: //Enter critical section
2: my_ticket = F&I(ticket_id)
3: while my_ticket 6= now_served do
4:
5: end while
6: //Remainder critical section
7: ...
8: //Leave critical section
9: F&I(now_served)

The semantic of ticket locks (Mellor-Crummey and Scott 1991a), based on Lamport’s
bakery algorithm, is as follows: each HRT thread gets a unique ticket_id when trying to
access a critical region (line 2 in Algorithm 3.4). HRT threads are allowed to enter the
critical region when their ticket_id matches the current value of now_served (line 3).

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 37

The threads are busy-waiting, until their ticket id my_ticket matches the value of
now_served. After a thread leaves a critical section, it increments now_served (line
9), and the thread with the appropriate ticket_id can now enter the critical section.
The atomic incrementing of ticket id and now_served id is done with the F&I primitive

in our implementation (see Algorithm 3.4). Thus, ticket locks implement a busy-waiting
spin lock, which is, contrary to the above presented TAS spin locks, fair, independently
of the arbitration strategy in the memory interconnect. For instance, if a memory bus
arbitrates memory request in a non-round-robin fashion, e.g. randomly, the following
request pattern is possible for a dual-core processor featuring two HRT threads: {Thread
1(T1), T1, T1, Thread 2(T2), T1, T1, T1, T1, T2, T1, ...}. So, thread T2 is only allowed
to access the global memory only very infrequently, whereas thread T1 gains access very
often. Now, the critical section is guarded by a TAS spin lock in one case, and by a
ticket lock in another case. In the first case with a simple TAS lock, thread T1 might
hold the lock every time a request to gain the lock from thread T2 is dispatched to the
memory controller. Also, thread T1 tries to regain the lock just after it released it. So,
thread T2 might never gain the lock guarding the critical section, or, only very rarely.
Hence, a non-fair distribution of accesses to the critical section is possible.

Table 3.3.:
Example of two threads T1 and T2 and their local memory state versus global memory

state when competing for a critical section secured with ticket locks.
thread-local registers global shared memory

Action my_ticket T1 my_ticket T2 ticket_id now_served

init - - 0 0

T1 try acquire 0 - 1 0
T1 acquire successful

T2 try acquire 0 1 2 0
T2 acquire not successful

T1 release 0 1 2 1

T1 try acquire 2 1 3 1
T1 acquire not successful

T1 try acquire 2 1 3 1
T1 acquire not successful

T2 acquire successful

T1 try acquire 2 1 3 1
T1 acquire not successful

T2 release 2 1 3 2

...

38 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

Table 3.3 depicts the latter case, assuming a ticket lock guarding the critical section.
Even if the requests of thread T2 to gain the lock are only dispatched infrequently, it
eventually gets a ticket my_ticket, namely each time the thread is dispatched while not
holding a ticket yet. So, the very frequently dispatched thread T1 finds his ticket id
my_ticket being higher than the actual now_served value after thread T2 has been able
to access the global memory. In summary, ticket locks presume starvation-freedom for
very infrequently dispatched threads. However, one might argue that an equally fair
behaviour of TAS locks might be enforced by using backoff algorithms. A discussion on
the applicability of locks with backoff in HRT systems is done in Section 4.3.1.
For a static timing analysis, the waiting times for threads until successfully gaining

a lock need to be upper bounded. In the above mentioned example, this might not
be possible. Though, if the dispatching of requests to the memory is not strongly fair,
meaning each thread is dispatched at the same frequency, but weakly fair, and an upper
bound delay for the infrequently dispatched thread is known, a static WCET analysis
using ticket locks is possible, whereas using TAS spin locks it is not.

3.3.5. Semaphores

The HRT capable semaphores are implemented according to POSIX (2008), but using
the F&I/F&D primitive. In POSIX (2008), the original P-operation and V-operation
from Dijkstra (1968) are being referred to as wait() and post(), which are also used in
the following. Semaphores are part of the Real-time extensions (IEEE Std 1003.1b-1993)
of POSIX (2008), and are used with the prefix sem_ instead of pthread_ (see Nichols et
al. 1996, p. 54).
The proposed HRT capable semaphore implementation uses a struct sem with the

following members:

• sem→ value: semaphore counter
• sem→ waitlist_lock: binary lock for the waiting list
• sem→ waitlist_fifo[]: FIFO buffer for the waiting HRT threads
• sem→ waitlist_entries: counter for the number of HRT threads waiting

Algorithm 3.5 depicts the wait() and post() method. The wait() method first needs
to check if the resource secured by the semaphore is free. This is done by atomically
fetching and decrementing the semaphore counter sem→ value (line 2 in wait() function
in Algorithm 3.5). A resource is successfully acquired if a value ≥ 0 is fetched, otherwise
the thread enters a waiting list and suspends.
Inserting and removing a thread from the waiting list is secured in a critical section

(lines 3-11 in wait() respectively lines 2-7 in post() function). This is needed as otherwise
a thread freeing a semaphore might conflict with a thread that is currently trying to enter
the waiting list. Contrarily to the mutex lock implementation that secures the waiting
list with a TAS spin lock (see Section 3.3.3), the semaphore implementation uses a
F&I/F&D spin lock (see Section 3.3.2) in lines 3-5 of the wait() function, respectively
in lines 2-4 of the post() function in Algorithm 3.5.

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 39

Algorithm 3.5 Semaphores with F&I/F&D (Blocking)

Semaphores wait() function ≡ P ()

1: //Enter critical section
2: if F&D(&sem→value) ≤ 0 then
3: while !F&D(&sem→waitlist_lock) do
4:
5: end while
6: if F&D(&sem→value) ≤ 0 then
7: //Add to waitlist_fifo
8: sem→waitlist_fifo[F&I(&sem→fifo_next)] =

thread_to_suspend
9: F&I(&sem→waitlist_entries)

10: F&I(&sem→waitlist_lock)
11: suspend()
12: //After wakeup
13: F&I(&sem→waitlist_lock)
14: else
15: F&I(&sem→waitlist_lock)
16: end if
17: end if
18: //Remainder critical section
19: ...

Semaphores post() function ≡ V ()

1: //Leave critical section
2: while !F&D(&sem→waitlist_lock) do
3:
4: end while
5: if F&D(&sem→waitlist_entries) then
6: //Unsuspend longest waiting thread from waitlist_fifo
7: thread_to_unsuspend =

sem→waitlist_fifo[F&I(&sem→fifo_last)]
8: else
9: F&I(&sem→value)

10: F&I(&sem→waitlist_lock)
11: end if

40 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

Furthermore, it is important that a thread leaving the semaphore, that is executing
the sem_post() method, wakes one of the potentially waiting threads that is already
suspended and waiting for the semaphore (lines 5-7 in post() function), as otherwise
a waiting thread could starve. Additionally, the problem that a thread leaving the
semaphore executes the critical section before a thread competing for that resource needs
to be solved. Otherwise, this could also lead to starvation of the latter one. Therefore,
an additional F&D primitive to check if the resource was freed while the thread was
busy-waiting to access the critical section needs to be added (line 6 in wait() function).
The suspended threads are managed in a FIFO queue (line 8 in post() respectively line 7
in wait() function) that uses the cyclic implementation of the F&I operation as detailed
in Section 3.2.3.
A binary semaphore, that is a semaphore that only allows the binary values ’0’ and

’1’, has the same functionality as a mutex lock with the difference that the semaphore
implementation does not use the concept of an owner contrarily to the mutex lock im-
plementation. Beside that, this allows to compare the WCET of waiting times in mutual
exclusion implementations with different RMW operations, namely TAS for mutex locks
and F&I/F&D for binary semaphores, detailed in Chapter 4.
Beside the blocking semaphore implementation, also a busy-waiting semaphore with-

out a waiting list has been implemented, but is not further detailed in this thesis.

3.3.6. Software Barriers
Simple software implementations for barrier synchronisation could lead to deadlocks and
hindering overall progress. They are often prone to the so-called reinitialisation problem,
that is a thread leaving the barrier after successfully resetting the barrier condition might
reenter it immediately again. This could lead to the problem that the reentering threads
resets the barrier condition, and hence other threads that did not leave the barrier
by now could still spin on the now changed barrier condition: a deadlock would be
caused. Hennessy and Patterson (2003) describe such a simple barrier implementation
and behaviour with the Algorithm 3.6 presented below.

Algorithm 3.6 Simple Busy-Waiting Barrier from Hennessy and Patterson (2003)
1: lock (counterlock); // count arriving threads in critical section
2: if count == 0 then
3: release = 0; // first thread: reset release
4: end if
5: count = count + 1; // count arrived threads
6: unlock (counterlock);
7: if (count==total) // all threads arrived then
8: count = 0; // reset counter
9: release = 1; // release all threads

10: else
11: spin (release==1); // wait for total number of threads to arrive
12: end if

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 41

In the Algorithm 3.6 lock() and unlock() should provide a basic spin lock mechanism,
and count counts the number of threads that reached the barrier, whereas total is the
total number of threads that need to reach the barrier before all threads are allowed to
continue. The major drawback of that implementation is, as stated by Hennessy and
Patterson (2003), the spinning of threads in line 11 (spin(release==1);. For example,
assume the program example in Listing 3.4. If a number of threads execute the paral-
lel_code_function(), they enter the barrier at enter_barrier in a loop. The time it takes
for each thread to reach the barrier again depends on the condition, that is the code
they execute depending on that condition: either do_heavy_work() or do_nothing().
Now, Hennessy and Patterson (2003) state that in that kind of example, a thread T1
might reenter the barrier before all other threads have left it. They especially stress
that this could happen if a thread T2, currently spinning on the release value (line 11 in
Algorithm 3.6), is swapped out, and before that thread T2 is swapped in again, another
thread T1 enters that barrier again and resets the release value (line 3 in Algorithm 3.6).
For instance, when the condition of thread T1 changes from true to false in the code
example in Listing 3.4. Or, if for some other reason the code section between two execu-
tions of the same barrier is very short. In any way, if that would happen, the thread T2
is delayed infinitely, because it spins on the meanwhile changed value of release. Even
more severe, if that barrier is executed in a loop, the whole program cannot progress
any more, as the total value of threads that is needed to successfully pass the barrier
cannot be achieved anymore when the thread T2 does not progress.

Listing 3.4:
Parallel Program Example for the Simple Barrier Implementation in Algorithm 3.6

void ∗ para l l e l_code_funct ion (void)
{
. . .

while (t rue)
{

i f (cond i t i on)
{

// t h i s code s e c t i o n w i l l consume a l o t o f p roce s s ing time
do_heavy_work () ;

}
else
{

// t h i s code s e c t i o n w i l l consume hard l y any proce s s ing time
do_nothing () ;

}
// a l l t h reads en ter t h i s b a r r i e r in a loop
en t e r_bar r i e r () ;
. . .
// changes the cond i t i on depending on the thread ID
change (threadID , cond i t i on) ;

}
. . .
}

42 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

A possible solution of also counting all threads when leaving the barrier overcomes
that problem, but, according to Hennessy and Patterson (2003), with huge costs on
latency and contention. Other solutions that achieve better scaling are e.g. sense-
reversing barriers (see Hennessy and Patterson 2003, Hensgen et al. 1988), but they do
not provide a bounded number of remote operations. But, for being HRT capable, a
possible barrier implementation needs to provide bounded waiting times, and those are
equated with bounded operations.
For the case of blocking barriers, a commonly implemented version uses mutex locks

and conditional variables. Algorithm 3.7 shows a pseudo code for such an implemen-
tation. The problem with those implementations, despite that it is deadlock free, is
possible overestimation in static timing analyses. The reason for this is, as in the above
simple barrier implementation, the possible reentering of a thread at the barrier while
another thread is still suspended at that barrier. In detail, this behaviour is based
on the conditional variable (line 9 in Algorithm 3.7) that shares the same mutex lock
barrier→mutex that secures the critical section when entering/leaving the barrier (line
2/12). Also, that implementation does not scale well, because of contention on that
mutex lock from threads entering/leaving the barrier. Thus, such an implementation is
not recommended in highly contended systems, but as well not in HRT systems.

Algorithm 3.7 Blocking Barrier with Conditional Variable
1: // Enter critical section
2: mutex_lock(&barrier→mutex)
3: barrier→called++;
4: if (barrier→called == barrier→needed) then
5: barrier→called = 0;
6: conditional_broadcast(&barrier→cond); // wake all waiting threads
7: else
8: // enter waitlist, suspend and leave critical section
9: conditional_wait(&barrier_cond→, &barrier→mutex);

10: end if
11: // Leave critical section
12: mutex_unlock(&barrier→mutex);

A better solution than barriers with conditionals is to use subbarriers introduced by
Marejka (1994), and e.g. used in the Legion SPARC simulator6. In that implementation
the competition between threads at a barrier in different phases of the parallel program
is solved by switching from one subbarrier to another when all needed threads have
reached the barrier. Thus, the leaving threads are exiting one subbarrier whereas other
threads, which might again execute the barrier code, enter the other subbarrier. The
major goal of the subbarrier implementation is to scale well, but it is also applicable for
parallel HRT programs.

6see http://kenai.com/projects/legion/sources/legion-opensparc/content/src/generic/
barrier.c for the source code in the LEGION SPARC simulator. [last retrieved: April 2013]

http://kenai.com/projects/legion/sources/legion-opensparc/content/src/generic/barrier.c
http://kenai.com/projects/legion/sources/legion-opensparc/content/src/generic/barrier.c

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 43

In Section 4.3.3 static WCET analysis results of the subbarrier implementation (and
WCET guarantees of parallel HRT programs using that implementation) are shown and
compared to the following recommended implementation with the F&I primitive.
The recommended solution for barriers in parallel HRT programs is to implement

barriers with the F&I primitive. This blocking barrier implementation, shown in Algo-
rithm 3.8, uses a waiting list for suspended threads as described for the FIFO queue
with F&I in Section 3.2.3. Using F&I for barriers is a well known concept, e.g. shown
by Hennessy and Patterson (2003), and also overcomes the static timing analyses’ over-
estimation of the implementation of barriers with conditional variables. For the barrier
implementation with F&I the following struct is used:

• barrier → needed: number of threads needed at the barrier to continue
• barrier → runners: counts the number of threads currently waiting at the barrier
• barrier → waitlist_lock: lock that secures the waiting list of suspended threads
• barrier → waitlist[]: waiting list for the suspended threads

Algorithm 3.8 Barriers with F&I
Barrier wait() function
1: //Enter critical section
2: while !F&D(&barrier→waitlist_lock) do
3:
4: end while
5: cur_runner = F&I(&barrier→runners);
6: if (cur_runner ≥ barrier→needed - 1) then
7: //Last thread reaches the barrier
8: Wakes all waiting threads
9: for i = 1→ (barrier_needed - 1) do

10: unsuspend(waitlist_fifo[i]);
11: end for
12: else
13: // Enter waitlist, suspend and leave critical section
14: barrier→waitlist_fifo[cur_runner] = my_threadID;
15: F&I(&barrier→ waitlist_lock)
16: return
17: end if
18: //Leave critical section (only last thread executes this)
19: F&I(&barrier→ waitlist_lock)

44 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

Algorithm 3.8 depicts the behaviour of the F&I barrier implementation. All threads
that enter the barrier are suspended, as long as the needed number of threads is not
reached (lines 5, 8-9 in Algorithm 3.8). The waiting list for threads is organised as for the
blocking semaphores with a FIFO buffer managed with F&I (see Section 3.2.3). When
the last needed thread enters the barrier, it wakes all waiting threads from the waiting
list barrier→waitlist[], and all threads continue their execution (lines 9,10). Then, only
the last thread unlocks barrier→waitlist_lock. Threads that try to reenter the barrier in
the next iteration are busy-waiting at the barrier→waitlist_lock until that last thread
of the previous iteration increments barrier→waitlist_lock and leaves the barrier (lines
2, 18 in Algorithm 3.8).
The advantage of this approach is that busy-waiting of reentering threads is not rel-

evant for the WCET, as the WCET of a code section with barriers depends on the last
thread arriving at the barrier. But, with the above proposed F&I barrier implementation,
only the first thread that reenters the barrier is affected. However, this implementation is
specifically engineered for parallel HRT programs with a shared-memory programming
model, and for worst-case performance. That is, the implementation might not scale
well for a high number of threads (>> 4) and is not recommended when average-case
performance in NHRT systems is the main goal, because of possible contention. More
details on the WCET analysis of this barrier implementation are in Section 4.3.3, and
related busy-waiting and blocking barrier implementations are shown in Section 3.3.7.

3.3.7. Related Work

In the following, related and relevant work on locks, barriers, non-blocking synchroni-
sation techniques, and transactional memory for real-time systems and multiprocessors
respectively multi-core processors is discussed in detail.

Locks

Molesky et al. (1990) present an arbitration for a bus, the Deferred Bus theorem, which
is the baseline for the bus arbitration that is used in this thesis to assure fairness of
spin locks (see Paolieri et al. 2009a). Molesky et al. (1990) show that their Deferred
Bus enables synchronisation mechanisms for mutual exclusion with linear waiting, and
bounded semaphores for predictable synchronisation in multiprocessor systems. Though,
the use of ticket locks is more flexible concerning the bus arbitration, which is also the
reason why ticket locks are used in the Linux Kernel as a fair spin lock mechanism7.
Lubachevsky (1984) introduced software synchronisations, among others semaphores,

which are build on the F&A primitive of ultracomputers (see Schwartz 1980). The
proposed and correctness-proven busy-waiting semaphore with F&A is similar to the
blocking implementation discussed in Section 3.3.5.

7more details are to be found as patch notes of Nick Piggin on ticket locks in the Linux
Kernel at http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=
314cdbefd1fd0a7acf3780e9628465b77ea6a836 [last retrieved: April 2013]

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=314cdbefd1fd0a7acf3780e9628465b77ea6a836
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=314cdbefd1fd0a7acf3780e9628465b77ea6a836

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 45

Anderson (1990) introduces queuing spin locks using unique ids in shared-memory
multiprocessors with cache coherence. The approach is similar to ticket locks established
by Mellor-Crummey and Scott (1991a) despite that the ticket locks are implemented with
the F&I primitive. However, both papers do not feature real-time issues, but it is the
key aspect in the implementation of ticket locks with the F&I primitive proposed in
this thesis. That is the focus on ticket locks in this thesis is on assuring strong fairness
between HRT threads without requiring a specific bus arbitration.
Graunke and Thakkar (1990) present results on busy-waiting locks in a shared mem-

ory multiprocessor system with cache coherence in the high-performance domain. They
analyse the impact of different busy-waiting lock implementations on contention and
average-case performance. Graunke and Thakkar (1990) recommend to not use simple
TAS locks for high contended synchronisations, but using queuing spin locks in that
case. Graunke and Thakkar (1990) also advocate to not use TAS locks in multiproces-
sor systems with cache coherence, as they show a poor average-case performance due
to adding a lot of contention. Furthermore, they show that using backoff algorithms,
or delays as they introduce it, reduces contention and increases the average-case perfor-
mance. However, the use of backoff algorithms for busy-waiting locks does not spark
any gain in the static timing analysis applied in this thesis (see Section 4.3.1).
Further spin lock implementations, which might allow timing predictability in shared-

memory multiprocessors, like MCS locks (see Mellor-Crummey and Scott 1991a) or CLH
locks (see Craig 1993, Scott and Scherer 2001), require a cache coherence protocol or,
for MCS locks, a complex allocation and pointer arithmetic in local memory on non-
cache-coherent systems. However, the HRT capable MERASA multi-core processor (see
Ungerer et al. 2010) used in this thesis does not employ a cache coherence protocol, be-
cause cache coherence protocols need complex hardware and/or software solutions, which
hinder a static WCET analysis or even render it impossible (see Schoeberl and Puschner
2009). Also, the case for queued spin locks is to reduce the overhead and contention
of busy-waiting synchronisation primitives to improve the average-case execution time.
But, for a tight WCET analysis, the focus is on reducing the WCET overestimation and
pessimism introduced from (slower) RMW operations on shared memory. Moreover,
the above mentioned queuing spin lock implementations also use RMW operation on
the shared memory, i.e. a CAS operation, and therefore would still add pessimism for
concurrently running threads in the WCET analysis (see Section 4.3.4 for more details).

Barriers

Barriers are a well-known concept from high-performance computing. Contrarily to
locks, which can be seen as memory barriers, barriers are more general used for progress
coordination. Barriers can be categorised into three classed: centralised, decentralised,
and hierarchical barriers (cf. Sartori and Kumar 2010).
Centralised barriers synchronise on a global counter. This technique does not scale

well for very larger parallel programs, however, for the case of relatively small shared-
memory multi-core processors, e.g. as the MERASA processor used in this thesis is, the
worst-case efficiency is sufficient and they are analysable with static WCET tools.

46 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

Centralised barriers may also perform better than decentralised or hierarchical barri-
ers, as e.g. shown for multiprogrammed workload by Markatos et al. (1991). Also,
the analysis of parallelised HRT programs, which were implemented for the MERASA
multi-core processor, show that the portion of barriers is rather low in comparison to
the residuary code (see Section 4.3.3). For those reasons, in this thesis HRT capable
barriers were only implemented as centralised barriers in software with hardware sup-
port, e.g. specific RMW operations, but not purely in hardware, that is no hard-wired
barriers as, e.g., proposed by Shang and Hwang (1995). The static WCET analysis of
the implemented F&I barriers in Section 4.3.4 shows that they already provide promising
worst-case performance.
Large data-parallel programs from the high-performance domain, which use loop paral-

lelisation for instance, are mostly implemented using either decentralised or hierarchical
barriers, mostly with hardware support. Decentralised barriers, often also called broad-
cast barriers (see Xu et al. 1992), compute termination of a barrier iteration only on
local data, and synchronise globally on broadcast messages.
Hierarchical barriers are mostly implemented using a tree-based hardware or software

structure. Research on hierarchical barrier implementations is mainly targeting increased
average-case performance and average-case efficiency for highly contended resources.
Some prominent examples are Butterfly barriers introduced by Brooks (1986), and, based
on those, tournament barriers proposed by Hensgen et al. (1988). Butterfly barriers
provide a distributed structure without critical sections, but requiring more memory
space than barriers with an accumulating counter. They perform well for a high amount
of processes, especially if they are to the power of two, as they synchronise pair-wise.
Butterfly barriers are also not prone to the reinitialisation problem. For the tournament
barriers, Hensgen et al. (1988) introduce double buffering and sense switching to resolve
the reinitialisation problem. A similar approach has been used for the subbarriers, which
are analysed in this thesis. Also, the implemented F&I barriers are not prone to the
reinitialisation problem (cf. Section 3.3.6).
Ramakrishnan and Scherson (1999) present multiple disjoint barrier synchronizations

(MDBS) to overcome the partitioning problem of nesting in tree-based hardware barri-
ers. The target of their techniques are highly data-parallel programs, which cannot be
executed efficiently with just software barriers, e.g. on the Thinking Machines CM-58.
Sartori and Kumar (2010) propose hybrid hardware/software barrier implementations

for chip multiprocessorss (CMPs). They aim to provide support for adaptive, fine-
grained barrier implementations, without the need of overly expensive hardware barriers
in many-core processors.
Other software barrier implementations9 for shared-memory multiprocessors using the

F&A respectively the CAS primitive are presented and evaluated by Mellor-Crummey
and Scott (1991b) (among other software synchronisation techniques applying the F&A
primitive).

8The CM-5 with 1024 cores was number one in the Top 500 Supercomputers (http://www.top500.
org/list/1993/06/100 in June 1993. [last accessed: April 2013]

9The website http://www.cs.rochester.edu/research/synchronization/pseudocode/ss.html
presents further software barrier implementations including pseudo-code. [last accessed: April 2013]

http://www.top500.org/list/1993/06/100
http://www.top500.org/list/1993/06/100
http://www.cs.rochester.edu/research/synchronization/pseudocode/ss.html

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 47

Non-Blocking Synchronisation Techniques

Several publications cover the use of non-blocking synchronisation techniques instead of
conventional lock-based synchronisations: Anderson et al. (1997), Dechev and Stroustrup
(2009), Fraser and Harris (2007), Gao and Hesselink (2007), Ha-Hoai and Tsigas (2003),
Herlihy (1988, 1991a, 1993), Herlihy et al. (2003), Michael (2004), Valois (1995).
Non-blocking implementations introduce the advantage of allowing progress in the

presence of faulty processes. In lock-based implementations with critical sections, in
general, a process being faulty while accessing shared data in a critical section would
prohibit progress for all processes needing to access that critical section. For non-blocking
concurrent data access, a faulty process either only prevents its own progress, but not
the progress of other processes (lock-free property), or, with the help of completion
checks of other processes, faulty processes are detected and can be restarted (wait-free
property) (see Fraser and Harris 2007, Herlihy 1988, 1991a, 1993, for details). Non-
blocking techniques do not need to mutual exclude other processes so that they could be
seen as optimistic concurrency control, as, on the other hand, lock-based techniques are
pessimistic. However, optimistic concurrency control is yet still difficult for static timing
analysis of parallel HRT programs; non-blocking techniques for parallel HRT programs
are yet still to be researched in depth (see also transactional memory below).
Another advantage of non-blocking techniques is that they prevent deadlocks/live-

locks (cf. Hennessy and Patterson 2003, Ungerer 1997, p. 559, respectively p. 56), as
through optimistic concurrency control it is ensured that processes can not lock each
other, that is the other processes would retry if their accesses fail (see Valois 1995). So,
non-blocking synchronisation is not prone to priority inversion (see Anderson et al. 1997,
Greenwald and Cheriton 1996), which is a common problem for lock-based synchroni-
sation techniques. Nevertheless, there exist a number of solutions to overcome priority
inversion of locked-based techniques in real-time systems, and also multiprocessor real-
time systems with multiprogrammed workload (see Chen and Tripathi 1994, Chen et
al. 1994, Chen and Lin 1990, 1991, Rajkumar 1990, Rajkumar et al. 1988, Sha et al.
1990, 1991). In parallel HRT programs on multi-core processors, which are the baseline
programs in this thesis, all threads of one parallel program share the same priority, so
they are not exposed to priority inversion, and are executed on different cores (one HRT
thread per core, see Section 3.1.1). Also, the scope of this thesis is on the communication
and synchronisation of parallel threads below the scheduling layer; issues on synchro-
nisations, arising from HRT threads with different priorities accessing the same shared
memory location (or being executed on the same core), would need to be handled on
a higher abstraction layer, e.g. with the techniques from the publications cited above.
However, the MERASA multi-core processor allows for executing HRT threads in con-
cert with NHRT threads through the use of SMT-cores. On the core-level, a hardware
scheduler prioritises HRT threads over NHRT threads to enforce isolation (see Mische
et al. 2010). The impact arising from mixed-criticality execution on shared resources,
that is e.g. the global memory, is included in the static timing analysis in this thesis by
computing WCMLs (see Section 4.2). A similar solution could be used to also support
more than one parallel HRT task being executed and analysed on a multi-core processor.

48 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

The prerequisites are then that only one HRT thread of a multithreaded task, respec-
tively one singlethreaded HRT task, is executed per core (isolation), and that the impact
of HRT tasks on shared resources can be statically computed (as shown in Section 4.2).
A major impact on atomic hardware primitives implemented in today’s hardware

architectures has sparked from theoretical observations by Maurice Herlihy. Herlihy
(1988, 1991a) has proven that some atomic hardware primitives—like atomic registers,
TAS, and F&A—are not sufficient for wait-free implementations (for more than two
concurrent processes). Herlihy (1988, 1991a) proposes using the CAS primitive that
is sufficient for universal wait-free implementations, and hence has been implemented
in many hardware architectures and ISAs. Later, Herlihy et al. (2003) introduced an
extenuated property called obstruction-freedom, which Herlihy claims to be of more
practical use than the wait-free property, because of the overly complex implementations
and only theoretical benefit of wait-free algorithms. Obstruction-free data structures
should exhibit the same properties as lock-free variants, however, having the advantage
of being simpler and hence more efficient. Though, the below cited, recent publications
mostly only cover the lock-free property so far.
Massalin and Pu (1992) present an OS for multiprocessors which is based only on

lock-free synchronisations. They implement a two-word CAS to atomically update a
pointer and the location it is pointing to for efficient access in simple data structures like
stacks, queues, and linked lists. Shared data, which is too large for being changed with
a two-word CAS, is accessed by specifically designed shared objects, that is LIFO stacks
and FIFO queues. For processors which do not support a two-word CAS operation, they
provide an emulation of the two-word CAS behaviour through kernel-level operations.
Herlihy (1993) presents implementations for lock-free concurrent data structures, that

is the access to shared objects is not secured by a critical section, but using the LL/SC
primitive to conditionally attempt to access shared data. The lock-free property requires
that after a bounded number of attempts, the access is successful. The presented tech-
niques are intended for fault tolerance, and do not focus on aspects indispensable in real-
time systems. Hence, it is difficult to obtain a (not overly pessimistic) upper bound on
the number of needed attempts for non-blocking data accesses, that are e.g. conditional-
stores, to be successful. Furthermore, the proposed techniques for non-blocking access
still exhibit much lower performance than simple TAS-based spin locks.
An efficient implementation of lock-free linked lists as building blocks for further data

structures is presented by Valois (1995). Valois (1995) only uses the CAS primitive
and claims similar performance of the presented lock-free implementation to typical
lock-based ones. He also points out that for linked lists, the major problem of the
lock-free implementation is the problem of concurrently deleting elements from a linked
list, while insert and traversal operations are more or less straightforward. That is for
a delete operation, not only the node in the linked list must be removed, but also its
next pointer must be invalidated to disable concurrent updates from other processes on
this node (cf. Fraser and Harris 2007). Also, the ABA problem of CAS primitives is
described, and operations to overcome it are introduced. Together, the delete operation
gets rather complicated, including auxiliary nodes to prevent data inconsistencies. One
key aspect, for the scope of real-time systems, learned from the paper is that a single

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 49

operation of a lock-free list is impossible to be bounded, however, it can be bounded for a
number of accesses. Still, it shows how difficult it is—depending on the implementation
even impossible—to compute safe upper bounds for single accesses to lock-free data
structures. Despite claiming that future results could show that the presented lock-
free implementation is competitive to lock-based approaches, no such results have been
published yet.
Anderson et al. (1997) evaluated scheduability of real-time programs with lock-free

access for interprocess communication, called object sharing, on uni-processors. They
show that specific scheduling restrictions could lead to improved performance of lock-free
accesses in comparison to lock-based accesses, especially if lock-based implementations
need to adhere to protocols to prevent priority inversion. The claimed HRT program
analysed is a video conferencing system, which is more likely to have SRT requirements
than HRT ones. The results originate from an uni-processor program, running multiple
threads, and thus cannot be easily adapted to multi-core processors, especially since in-
terference is bounded by only one thread being processed at a time. Retries of optimistic
concurrent accesses increase, if more threads are executed in concert, e.g. as typically on
multi-cores. It might then be complex or infeasible to conduct a static timing analysis.
Michael (2004) introduces so-called hazard pointers for dynamic reuse of memory nodes

for lock-free objects. It is related to the reference counting introduced by Valois (1995),
however, hazard pointers exhibit better average-case performance on up to four proces-
sors, especially if the number of threads per processor is increased. Also, the lock-free
approach with hazard pointers shows better average-case performance than lock-based
synchronisation through dynamic memory reclamation. Though, both approaches still
suffer from possible memory space overhead. Furthermore, for real-time systems, cod-
ing guidelines mostly prohibit or restrict the use of dynamic memory management; the
worst-case performance in real-time systems is difficult to predict then, as is the usability
of hazard pointers in real-time systems.
Proving that lock-free algorithms are correct, is a difficult and error prone task. Gao

and Hesselink (2007) present a reduction theorem to a lock-free pattern applying the CAS
primitive variation based on Herlihy’s LL/SC approach (see Herlihy 1991b, 1993). By
that they claim to reduce the effort to formally prove correctness of lock-free algorithms,
which they state to be worthwhile.
Dechev and Stroustrup (2009) present a study of non-blocking synchronisation with

CAS respectively software transactional memory (STM) for concurrent synchronisation
in embedded real-time software for future robotic spacecraft. Their implementation of
a lock-free shared vector shall achieve higher safety and a performance gain on a COTS
multi-core processor for SRT tasks.
Engdahl and Chung (2010) present lock-free data structures for real-time control pro-

grams on an ARM COTS multi-core processor. They claim that lock-free access to data
structures fits better to the asynchronous behaviour of control applications as traditional
lock-based algorithm do. However, the work-in-progress is missing a formal prove of their
proposed implementations yet. Also, the authors note that the runtime behaviour is not
deterministic due to retries in their enqueue and dequeue implementation, which could
then disqualify them for HRT systems, if a (static) timing analysis is not possible.

50 3. HARD REAL-TIME CAPABLE SYNCHRONISATION

Transactional Memory

Inspired from non-blocking algorithms and to relieve the difficulties of concurrent pro-
gramming, transactional memory has been in the focus of research by a number of
authors: for example Herlihy and Moss (1993) and Fraser and Harris (2007). A sur-
vey on transactional memory systems, that is STM and hardware transactional memory
(HTM), is presented by Harris et al. (2010), Larus and Rajwar (2007), but without
specifically presenting aspects of transactional memory in real-time systems. An ap-
proach on STM for multiprocessors, in the domain of general purpose computing, is
presented by Saha et al. (2006), also without specifically targeting real-time systems.
Lately, various authors tackled the use of transactional memory (STM and HTM) for

real-time systems: Manson et al. (2005), Meawad et al. (2011), Schoeberl et al. (2010),
Schoeberl and Hilber (2010), Sarni et al. (2009), Fahmy et al. (2009), Maldonado et al.
(2011), and Barros and Pinho (2011).
One of the first publication targeting transactional memory in real-time systems has

been presented by Manson et al. (2005). They introduce a restricted STM system, called
Preemtable Atomic Regions (PAR), for multitasking programs in distributed embedded
systems running real-time Java (see Bollella et al. 2000) on uni-processors. The target
of PAR is to reduce worst-case response times (WCRTs) of high priority tasks. PAR
guarantees that a sequence of instructions is executed atomically, whereas actions of a
lower priority task can be undone if a higher priority task is released. The interrupted
task is then re-executed by PAR afterwards. The approach is semantically similar to
priority ceiling protocols (e.g. Chen and Lin 1990, Sha et al. 1990, 1991) when using
a lock-based approach for critical sections, but, as the authors claim, achieving faster
execution times and better scalability for distributed, real-time embedded Java systems.
Further work on Java-based real-time systems, but with HTM support in Java CMPs,

is presented by Meawad et al. (2011), Schoeberl et al. (2010), Schoeberl and Hilber
(2010). Schoeberl et al. (2010) and Schoeberl and Hilber (2010) propose a real-time
transactional memory (RTTM) as an extension to a real-time capable Java CMP. The
authors claim that RTTM provides upper bounds on maximum transaction retries for pe-
riodic threads, while also allowing for more simple programming of concurrent programs
than traditional lock-based programming does. The cited publications focus on wait-
free implementation of queues using the RTTM approach versus CAS-like approaches.
The authors also state, that a wait-free bounded capacity queue, which usually needs
CASN (cf. Ha-Hoai and Tsigas 2003, Harris et al. 2002) (also called MCAS) support, can
be implemented with RTTM using micro-transactions (see Meawad et al. 2011). RTTM
uses late conflict detection in the commit phase, and is only applied on memory opera-
tions in short atomic section. Schoeberl and Hilber (2010) also present a possible timing
analysis when applying the RTTM. In detail, they restrict the number of transactions
per period to one per thread, however, the authors claim that the analysis is also safe for
more transactions in one period, but overly conservative so far; the aim of their future
work is to tighten these bounds.
Sarni et al. (2009) present the RT-STM as the first STM implementation for real-time

scheduling of transactions in SRT programs on multi-core processors.

3. HARD REAL-TIME CAPABLE SYNCHRONISATION 51

They implement a transaction scheduler considering deadlines for transactions, that is
the deadline is incorporated by the scheduler to decide on either a transaction is aborted,
or supported to complete. Sarni et al. (2009) state that their RT-STM implementation
is an enhancement of a previous STM proposed by Fraser (2004). Sarni et al. (2009)
employ for their time measurements a slightly changed red-black tree benchmark (see
Fraser 2004), and LITMUSRT (LInux Testbed for MUltiprocessor Scheduling in Real-
Time systems) (cf. Brandenburg et al. 2008). The RT-STM approach outperforms other
STM approaches under various scheduling policies in terms of keeping SRT deadlines.
However, only around 56% of deadlines are guaranteed to be hold with RT-STM for the
red-black tree benchmark, which might be sufficient as they aim for SRT systems, but
not for HRT systems.
Fahmy et al. (2008) motivate the use of STM in distributed real-time embedded sys-

tems. They especially emphasise the problem of lock-based programming to provide
deadlock-freedom, e.g. in the case of failures. Fahmy et al. (2009) present a framework
that incorporates transactions that consist of so called sub-transactions on every pro-
cessing element (node). The sub-transactions are then subject to crash failures on the
corresponding node. The authors especially focus on WCRT analyses of periodic tasks
(sub-transactions) taking into account remote procedure calls (RPCs) in a distributed
system.
Maldonado et al. (2011) present scheduling mechanisms for reactive programs with

STM, which adaptively adjust the execution mode depending on a task’s laxity and
annotated duration length of its transactions. For that, Maldonado et al. (2011) estimate
the duration of transactions and switch between different transaction handling modes,
that is more optimistic in the beginning, and, if the deadline is near (low laxity), they
switch to more deterministic and pessimistic transaction modes. To achieve such a
behaviour, an existing STM (TinySTM library, see Felber et al. 2008) has been enhanced,
and the Linux OS scheduler has been augmented to allow for prohibiting preemption
and migration for transactions which are close to their deadline.
Based on the above mentioned approaches, Barros and Pinho (2011) state that these

publications do not fully capture and cover all aspects for contention management of
transaction management of transactional memories for parallel embedded real-time sys-
tems. Therefore, they propose first insights on an STM-based approach incorporating
on-line information. Barros and Pinho (2011) claim that their approach can thereby
reduce the overall number of retries and increase the responsiveness of tasks. Also they
state that their approach reduces the wastage of computing power on aborted trans-
actions and guarantees that deadlines are kept. The authors employ a multi-versioned
STM, for which the number of version for each object are computed off-line. Then, the
authors argue that read-only transactions never conflict with other concurrent transac-
tions, as they only rely on consistent snapshots of their prior read-sets (cf. Cachopo and
Rito-Silva 2006). Hence, they state that contention must only be covered for update
transactions. Preliminary, Barros and Pinho (2011) propose a pessimistic solution by
ordering conflicting transactions chronological by an additional algorithm executed in
parallel at each transactional update commit. Beside the theoretical argumentations, no
comparing evaluation results are provided so far by Barros and Pinho (2011).

The strongest of all warriors are these two—Time and Patience. – Leo Tolstoy

4 WCET Analysis of Synchronisations

In this chapter the details on WCET analyses of the proposed software synchronisa-
tion techniques from Chapter 3 are shown. First, in Section 4.1 an introduction on
the principles of WCET analyses for parallel programs are given. In Section 4.1.3 the
settings for the static WCET analyses with OTAWA are introduced, and followed in Sec-
tion 4.2 by the mathematical analysis of WCMLs for memory operations in a bus-based,
shared-memory multi-core processor with the augmented memory controller and RMW
operations (see Section 3.2). The WCMLs are then used in the static timing analyses
and WCET comparisons of the software synchronisations introduced in Section 3.3. The
analysed synchronisation techniques are further evaluated in the static WCET analysis
of two parallel programs in Section 4.4. Related work of WCET analyses of software
synchronisation techniques and parallel HRT programs is presented in Section 4.5.

4.1. Introduction on WCET Analyses of Parallel Programs

The WCET analyses of parallel programs is not too different from WCET analyses
of sequential programs that already share resources, e.g. I/O devices, in distributed
embedded systems. However, additional difficulties are introduced from synchronisation
of memory accesses in parallel programs, and the tight coupling in shared-memory multi-
core processors. The main issue for a static timing analysis of parallel programs is to find
a safe upper bound for concurrent threads that use synchronisations to access shared
resources, and how to keep possible overestimation and pessimism as low as possible.
This is especially difficult, as the analysis has to be done with unknown information
on competing accesses to shared resources, that is one cannot be always sure at which
execution point HRT threads on the cores of a multi-core currently are. However, there
are points in a parallel program, e.g. synchronisation points at barriers, that can be
used in the static WCET analysis to synchronise the state of HRT threads on all cores.

4.1.1. Timing Analysability and Timing Predictability

For WCET analyses, two key terms can be distinguished, that is timing analysability
and timing predictability: a system, program, or function is timing analysable, if it is
possible to compute a safe upper bound, that is an estimated WCET that is greater or
equal to the unknown WCET. Timing predictability extends timing analysability by a
qualitative measure of how good a computed upper bound (estimated WCET) is, or, in
other words, as defined by Thiele and Wilhelm (2004), as the pessimism in the WCET
respectively in the BCET. Often this is also described as how tight an estimated WCET
is, that is how close the estimated WCET is to the real but unknown WCET (see also
Section 4.5). The major drawback of timing predictability or WCET tightness is that it
is difficult to quantify, as the real WCET is not known. However, tightness is, besides
the worst-case performance, an important quality factor in HRT systems.

54 4. WCET ANALYSIS OF SYNCHRONISATIONS

4.1.2. Pessimism and Overestimation

The variations in the WCETs that degrade the timing predictability in the WCET anal-
ysis can be categorised into WCET overestimation and WCET pessimism. Roughly
said, pessimism is introduced from unknown, but realistic behaviour, whereas overesti-
mation stems from unknown and (most likely) unrealistic behaviour or assumptions in
the WCET analysis which are needed to safely upper bound the execution times.
In detail, pessimism in the WCET analysis of parallel programs originates from un-

known but realistic behaviour of concurrently executed threads. For instance, if in a
multi-core processor several threads access shared resources, like a shared global mem-
ory, in the WCET analysis this interference and competition on the shared memory and
the memory interconnect has to be taken into account. Therefore, the WCML of one
thread is based on the access patterns from other threads. Now, if there are memory
accesses that have different access times (e.g. RMW operations and usual load/store
operations), the longest access time has to be assumed for the other threads in the anal-
ysis of the WCML of one thread. Even if not all of those accesses to the shared memory
are RMW operations, the WCET analysis has to assume so, and thus the pessimism
caused by this assumption has to be included. It is mostly not possible to overcome all
possible pessimism, however, in Chapter 5 the Split-Phase Synchronisation Technique is
introduced that aims at reducing the pessimism in the static WCET analysis triggered
from concurrent accesses with differing memory latencies. Additionally to pessimism,
WCET overestimation is introduced from unknown, but (mostly) unrealistic assump-
tions. Overestimation is either triggered if not all information, e.g. on input or user
data, are known at design time for a static timing analysis, or if the analysis would get
to complex to include all possible information and paths and hence being rendered in-
feasible. An example of WCET overestimation could be the interference that is based on
threads or interrupt service routines (ISRs) that are executed only on specific external
conditions, events, or on specific input data or user input at runtime. Thus, in some
cases overestimating the WCET must be accepted, to ensure a safe upper bound.
Pessimism and especially overestimation in parallel HRT programs can be reduced—

with the help of the programmer—by following specific coding guidelines (see for example
Bonenfant et al. 2010, Ozaktas et al. 2013). Coding guidelines were also developed in
the EU-project MERASA1. Also, coding standards, like MISRA-C 2, influenced the de-
velopment of above mentioned coding guidelines, and might also be taken into account.
However, already for sequential programs, the use of coding standards alone, does not
solve all issues for static timing analyses (see Gebhard et al. 2011). Therefore, an ap-
proach to limit possible pessimism and overestimation, and ease static timing analyses
of parallel programs is pursued by applying parallel design patterns and synchronisation
idioms, as part of the EU-project parMERASA3, shortly introduced in Chapter 6.

1See http://www.merasa.org for coding guidelines developed in the EU-project MERASA.
2Specific coding standards for the C and C++ programming language, e.g. for the automotive domain,
are available from the MISRA group for purchase at http://www.misra.org.uk/

3See http://www.parmerasa.eu for coding guidelines and the parallelisation approach for predictable
execution of HRT programs to be developed in the EU-project parMERASA.

http://www.merasa.org
http://www.misra.org.uk/
http://www.parmerasa.eu

4. WCET ANALYSIS OF SYNCHRONISATIONS 55

4.1.3. Static WCET Analysis of Parallel Programs

Hardware architectures used for time-critical tasks in HRT systems were less complex in
the beginning than they are today. As stated by Puschner and Schoeberl (2008), archi-
tectures used in HRT systems became more and more elaborated since the early 90’s,
hence creating a need for sophisticated timing analysis techniques. By then, analysis
of timing behaviour became a major research subject (see Puschner and Burns 2000,
Rochange 2011, Wilhelm et al. 2008). Nowadays, the need for higher performance and
better power efficiency is a driving force of spreading multi-cores into the domain of em-
bedded computing, thus putting additional pressure on analysing the timing behaviour
of critical tasks to cope with multi-core architectures. Rochange (2011) states that tech-
niques to manage scheduling for real-time tasks in multi-processor and multi-core envi-
ronments has drawn much attention in the recent years, mostly assuming the problem of
analysing parallel architectures and parallel programs—essentially interference between
parallel tasks and threads—has been solved. The main point in this observation stems
from the fact that, until recent, timing analysis techniques assumed isolation of the anal-
ysed task. Hence, the analysis of parallel programs, which require some sort of resource
sharing, e.g. synchronising on shared data or competing accesses to shared resources,
needs to take those interferences and interactions into account. Rochange (2011) clarifies
that this does not only hold for static analysis techniques, but for measurement-based
analysis techniques as well: it is highly unlikely that all possible paths in a parallel
program running on a parallel architecture are to be observed.
Static WCET analysis techniques target to determine a safe upper bound on the real,

but unknown WCET (see Section 2.1.1). Figure 4.1 shows the typical computation and
analysis flow for a static WCET analysis in general (cf. Wilhelm et al. 2009c). Wilhelm
et al. (2009c) and Rochange (2011) state that it can be categorised into three phases:
(1) building the control flow graph (CFG) from a flow analysis of the binary executable
code and flow facts, such as loop bounds and infeasible paths from the source code
representation and annotations, (2) low-level (microarchitectural) analysis computes the
bounds of basic blocks, and (3) finding out the longest path and its execution costs in the
global bound analysis of the whole program (the three major phases are the differently
coloured (blue, green, and red), rectangle-shaped elements in Figure 4.1).
In this thesis, the open-source static WCET analysis tool OTAWA is used. It im-

plements state-of-the-art algorithms for WCET analysis (see Ballabriga et al. 2010). It
supports the used target multi-core processor, the TriCore-based MERASA ISA, and
accounts for possible contentions on the shared bus and memory controller by consid-
ering WCMLs. However, in the case of possible timing anomalies (see Reineke and Sen
2009), it is not safe to only account for WCMLs, as then all possible memory laten-
cies need to be considered (cf. Rochange 2011). The microarchitectural analysis step
includes the analysis of the local memories of the MERASA processor, that is the DSP
and the D-ISP. In the following analyses it is assumed that no replacement in the D-ISP
takes place. Thus, once a function has been loaded into the scratchpad, it is persistent
until the end of the analysis; however, Metzlaff (2012) thoroughly analysed the effects
of different replacement strategies of the D-ISP.

56 4. WCET ANALYSIS OF SYNCHRONISATIONS

Binary
Representation

CFG
Construction

CFGSource Code/
Annotations

Loop Bound
Analysis

Control Flow
Analysis

Value
Analysis

Annotated
CFG

Microarchitectural
Model

Microarchitectural
Analysis

Basic Block
Timing Information

Global Bound
Analysis

Figure 4.1.: Typical computational flow of static WCET analysis (cf. Figure 1
from Wilhelm et al. 2009c). The different coloured rectangles repre-
sent computational phases, which can be categorised into three major
phases, and elliptic shaped elements illustrate data representations,
e.g. the Binary Representation as starting point, the constructed
CFG, annotations, and the underlying microarchitectural model.

4. WCET ANALYSIS OF SYNCHRONISATIONS 57

The static WCET analysis with OTAWA for parallel programs is similar to the typical
static WCET analyses of sequential programs. The main difference and also challenge
is that interferences, which induce waiting times for parallel executed threads, need
to be taken into account. In the following analyses, interferences are limited to the
global memory and memory interconnect, that is threads are isolated inside the SMT-
cores, and only the memory interconnect is accessed concurrently from all cores. Similar
actions in the analyses need to be taken into consideration for further shared resources,
e.g. I/O devices. However, techniques introduced in this thesis in the shared memory
controller would not change, but the arbitration techniques in the interconnect might be
different, depending on the interconnect architecture, e.g. single buses, multi buses, or
even Network-on-Chips (NoCs). The access to the shared memory is scheduled through
an arbiter in the real-time bus interconnect (see Paolieri et al. 2009a, Ungerer et al.
2010), and WCMLs (see Section 4.2) are integrated in the WCET analyses (see Gerdes
et al. 2012a,b, Rochange et al. 2010, Wolf et al. 2010a), as e.g. also proposed by Puschner
and Schoeberl (2008) for CMPs. Also, the WCET analyses in this thesis use the concept
of separating execution and waiting times to analyse synchronisations as introduced by
Rochange et al. (2010), Wolf et al. (2010a, 2011) and Gerdes et al. (2012b). They propose
to split the worst-case waiting times (WCWTs) into three subcategories:

• waiting times that are analysed independent of the number of concurrently running
threads and the program context,

• waiting times that are analysed depending on the number of concurrently running
threads, but not depending on the program context, and

• waiting times that are analysed depending on the number of concurrently running
threads, and the program context.

Section 4.3 presents static WCET analyses including WCWTs in detail for the software
synchronisation techniques proposed in Chapter 3.
Another widely spread approach of WCET analyses is based on measurements on the

real hardware. An example of such a measurement-based analysis with the commer-
cial WCET tool RapiTime (see Rapita Systems Ltd. 2011) on the MERASA multi-core
processor is described shortly in a case study on parallelising and analysing the control
software of a large drilling machine by Gerdes et al. (2011). As stated by Wilhelm et
al. (2009c), one drawback of measurement-based timing analyses over static analyses is
the problem of exactly measure execution times for complex processor architectures, e.g.
multi-cores with (shared) caches, or complex memory hierarchies. The main problem is
then not only the code coverage, but also the coverage of all possible hardware states,
especially of all possible initial states (see Wilhelm et al. 2009c). Measurement-based
and static approaches to timing analyses both have to suffer with large variabilities in the
execution time from complex hardware features like branch predictions and caches (see
Colin and Petters 2003). Especially effects from caches highly influence the precision of
WCET estimates as shown by Wilhelm et al. (2009c). Petters et al. (2007) propose a
combination of measurement-based and static WCET analysis. The main problems of
measurement-based approaches are induced by possible missing context and flow infor-
mation, as stated by Petters et al. (2007).

58 4. WCET ANALYSIS OF SYNCHRONISATIONS

In the MERASA1 project a combination of measurement-based and static WCET
analyses has been chosen4. The additional flow facts derived from measurements, which
are difficult or even not possible to be derived from the source/binary code, are included
in the static WCET analysis to produce tighter WCET estimates (see Ungerer et al.
2010). Missing and insufficient annotations from coding guidelines2 could also be bal-
anced with this combined approach. For the parMERASA3 project annotations for the
static timing analysis are derived from applying parallel design patterns (see Chapter 6).

Evaluation Settings for Static WCET Analyses

The memory latencies used in this thesis have been derived from the MERASA FPGA
prototype. In the WCET model of the MERASA multi-core processor, the bus cycle
time is fixed at 1 cycle. The time a load takes in the memory controller is devised to
take 5 cycles, whereas a store takes 4 cycles. A store operation is handled faster than
a load operation, as no actual return value needs to be transferred back to the core.
However, a notification that the store was successfully finished is returned over the bus
to the core, so the store operation will not spare the bus cycle time after the memory
controller finishes the memory operation. The RMW operations—that is the TAS and
the F&I/F&D operations, consist of a load, a modification, and a store—take more time.
For a TAS operation, no actual manipulation needs to be done, therefore a TAS operation
just needs to load a value, and then store back a constant value (e.g. ’0’ or ’1’). Hence, a
TAS operation takes 9 cycles, that is the sum of the 5 cycles (load) and 4 cycles (store).
For a F&I respectively a F&D operation, the loaded value needs to be incremented or
decremented. Thus, an additional cycle is needed to manipulate the loaded value before
it is stored back. So, the time of a F&I/F&D operation sums up to 10 cycles, that is 5
cycles (load), 1 cycle for the increment/decrement, and 4 cycles (store). For other multi-
core processors, the memory latencies are different, depending on the implementation
and memory controller. However, the memory latencies could then be substituted to
compute the WCMLs for further multi-core processors and memory controllers.
In the following, the WCMLs are given as the upper bound delay on a HRT memory

request from when it is ready to be dispatched to the shared memory (over the bus),
until it is successfully finished and a following request could be dispatched. The memory
requests from all cores to the global shared memory are arbitrated by a real-time aware
bus (see Figure 3.1) in the MERASA processor. The bus arbitrates accesses in a round-
robin fashion between cores, that is by time-division multiple access (TDMA). When a
memory request from a core is accepted and dispatched to the bus and subsequently to
the memory controller, follow-up memory requests, from the same core, are dispatched
after the previous access has been finished (cf. Section 4.2.1). The bus is treated as full
duplex, meaning that a request from a core to the memory controller and a result from
the memory controller to a core can be dispatched over the bus at the same time.
Further remarks and details on special restrictions in the evaluation settings are

pointed out in the corresponding section, e.g. the costs of calls and returns for the
analysis of software synchronisations in Section 4.3.

4see public Deliverable D3.6 and D3.7 “WCET tools for the HW demonstrator” at www.merasa.org

www.merasa.org

4. WCET ANALYSIS OF SYNCHRONISATIONS 59

4.2. Worst-Case Memory Latencies

The WCETs of parallelised HRT programs running on shared-memory multi-core proces-
sors are highly depending on the knowledge of competing accesses to the shared memory
and the WCMLs. The latency for a memory request is split into three parts: 1) the time
the bus needs to dispatch the memory request from a core to the memory controller, the
so-called bus cycle time, 2) the time the memory controller needs to execute the memory
request, which is depending on which kind of memory request is executed, either a load,
a store, a TAS, or a F&I/F&D operation, and 3) again the bus cycle time to return a
value to the core that requested the memory operation.
Figure 4.2 depicts the worst-case memory latency of a HRT memory request of one

core, namely Core 1, for a MERASA quad-core processor. The HRT memory request
could be either a normal load/store operation, or a RMW operation. Also, the Figure 4.2
shows the overlapping of accesses when different shared resources—the shared memory
and the bus interconnect—are used. However, memory operations are served sequentially
on a FCFS basis by the augmented memory controller (see Section 3.1.2).
To determine the WCMLs of different HRT memory requests, namely a normal load,

a normal store, or a RMW operation (TAS, F&I, or F&D), two situations need to be
covered: on the one hand, as SMT-cores are employed (see Section 3.1.1), a HRT memory
request might be delayed by a NHRT memory request on the same core that was, in
the worst case, dispatched just one cycle before the HRT memory request is ready to
be dispatched. On the other hand, the delay introduced from memory request of other
cores adds up on the time the HRT memory request of Core 1 takes. For the first case,
the delay introduced from a NHRT request is independent of the number of cores N .
But, it has to be assumed that this NHRT memory request is a slow memory request,
that is the type of memory request that takes the most time. In the following, this delay
will be defined as Tmax, where Tmax = TLoad + TModification + TStore. As mentioned in
Section 4.1.3, a store operation is one cycle faster than a load operation.

NHRT access starts...

HRT access ready... HRT access starts...

Core 1 -1 0 1 5 10 15 20 25 30 35 40 45 50

Core 2 -1 0 1 5 10 15 20 25 30 35 40 45 50

Core 3 -1 0 1 5 10 15 20 25 30 35 40 45 50

Core 4 -1 0 1 5 10 15 20 25 30 35 40 45 50

Load
Store

Bus
from memory controller
to memory controller

F&I/F&D incr./decr. part
F&I/F&D Load part
F&I/F&D Store part

Legend:

Figure 4.2.: Worst-case Memory Latencies for a HRT memory accesses of Core 1
in a MERASA quad-core processor with five cycles load latency.

60 4. WCET ANALYSIS OF SYNCHRONISATIONS

Assuming also one cycle as modification latency TModification for a RMW operations, it
follows that Tmax = 2 · TLoad. So, in the worst case, a delay of Tmax − 1, introduced
from a NHRT memory request, has to be taken in account for the HRT memory request
of Core 1. For the latter case, the introduced delay depends on the number of cores.
That is for an N -core processor it adds an additional delay of (N − 1) · Tmax, as in the
worst case the memory request of each of the other N − 1 cores are handled before the
HRT memory request of Core 1. Also, the extra bus cycle TB to return a value from the
memory controller to the core needs to be taken into account. Finally, the time THRT
that the HRT memory request of Core 1 needs, must be added. The bus cycle time TB
only needs to be taken into account for the NHRT and HRT memory access of Core 1,
as by employing a full duplex bus, the other bus cycle times are hidden (see overlapping
of bus accesses (yellow boxes) in cycles 10, 13, etc. in Figure 4.2).
In summary, the WCML TWCML in the N -core MERASA processor adds up to:

TWCML =
HRT access︷ ︸︸ ︷
THRT + TB +

NHRT acceess︷ ︸︸ ︷
Tmax + TB +

︷ ︸︸ ︷
(N − 1) · Tmax
Other N-1 cores

(4.1)

Equation 4.1 can be easily combined and re-written as:

TWCML = THRT + 2 · TB +N · Tmax (4.2)

Including the bus cycle time, it is possible to derive the WCML TWCML with the
above depicted Equation 4.2. Figure 4.3 shows the WCMLs of a load operation for four
to eight cores, and with a memory latency for a load of five to ten cycles (respectively
four to nine cycles for a store). The grey scale (depicted on the right top side of the
figure) shows the WCMLs: the darker grey depicts a low WCML, whereas the higher
the WCML gets, the lighter the grey is (the numbers are also presented in Table 4.1).
Figure 4.3 shows that doubling up the number of cores or doubling up the load latency

has nearly the same effect on the WCMLs (see lower right corner for ten cycles load
latency and four cores, and upper left corner for five cycles load latency and eight cores
in Figure 4.3 showing the same mid-grey colour, meaning that the WCMLs are in a
close range). Both variables, load latency and amount of cores, are in the dominating
summand N ·Tmax of Equation 4.2, which is the baseline for Figure 4.3. However, when
the load latency is increased the effect on the WCMLs is slightly higher because of the
summand THRT, which includes the load latency, but not the number of cores. This is
discussed in more detail in the following Section 4.2.1.
Please note that the TWCML of a RMW operation, compared to a normal load opera-

tion, is only increased by an additional modification cycle and the store latency. Depend-
ing on the load latency, this is in the range from five to ten cycles. Also, the WCMLs for
load/store operations on a synchronisation variable are the same as for normal loads/s-
tores. However, when the split-phase synchronisation technique is applied, the WCMLs
of loads/stores on synchronisation variables differ (see details in Section 5.3.1).

4. WCET ANALYSIS OF SYNCHRONISATIONS 61

 5

 6

 7

 8

 9

 10

#cycles for a load

 4

 5

 6

 7

 8

#cores

 50

 100

 150

 200

WCMLs

 40

 60

 80

 100

 120

 140

 160

 180

Figure 4.3.: WCMLs of load operations in the MERASA multi-core processor with
the augmented memory controller depending on the number of cores
(4-8) and load latency (5-10 cycles) computed with Equation 4.2.

4.2.1. Effect of WCMLs on the WCET of Parallel Programs

An interesting point about the different configurations is that one cannot make assump-
tions on which configuration might be better in terms of overall WCET, as well as which
configuration has better timing predictability without taking the specific program into
account. However, the WCML includes the pessimism on shared resources in the anal-
ysis: it is assumed that each core is continuously dispatching a worst-case (in terms of
durations) memory operation interfering with the other cores. This assumption safely
upper bounds the possible delay introduced on the WCMLs of one core introduced from
memory accesses of all the other cores, however, that assumption is not very optimistic
and rather unlikely. Then, the timing predictability for eight cores with five cycles load
latency could be actually better than for four cores with five cycles latency. This arises
from the case that in the eight-core processor it might be more frequently the case that
every core dispatches an access to the shared memory, even if it is not a RMW operation
all the time. This is the case as the more cores are connected to the bus the higher the
contention on this bus gets, and that also leads to the situation where the pessimistic
view on WCMLs is becoming more realistic.

62 4. WCET ANALYSIS OF SYNCHRONISATIONS

Table 4.1.:
Parametric worst-case memory latencies in the MERASA WCET model for four, resp.

eight cores, and a memory latency of five, resp. ten cycles (see also Figure 4.3).

Cores Memory Latency for a Load Operation

5 cycles 10 cycles

4 Cores

Memory Operation WCML

load 47
store 46
TAS 51
F&I/F&D 52

Memory Operation WCML

load 92
store 91
TAS 101
F&I/F&D 102

5 cycles 10 cycles

8 Cores

Memory Operation WCML

load 87
store 86
TAS 91
F&I/F&D 92

Memory Operation WCML

load 172
store 171
TAS 181
F&I/F&D 182

Though, please note that the WCMLs, as computed above, are considered in the static
WCET analyses if accesses to the local memories, that is instruction and data scratch-
pads, are found by the data analysis to be misses. For processors that are free of timing
anomalies (see Section 4.1.3), it is, however, safe to upper bound memory accesses with
the above computed WCMLs.
The effect of this pessimism on the WCET guarantee also highly relates to the chosen

arbitration at the bus interconnect to the shared memory, that is either round-robin
arbitration between cores (TDMA), or between accesses (see also Paolieri et al. (2013,
2009a), Ungerer et al. (2010) for the different possible arbitration schemes at the bus
interconnect). If a round-robin arbitration between accesses is chosen, it might be possi-
ble that some cores get to dispatch more accesses than others, as they use the free slots
of other cores. However, this implementation is only useful to speed up the average-case
execution time (ACET), as in the static WCET analysis it is not known when a slot
is free to be used by another core. Even in the case a thread is e.g. suspended and
not issuing any access to the shared memory, it cannot be assumed in the static timing
analysis used in this thesis (cf. Section 4.3.4). If a round-robin arbitration between
accesses is chosen, it might also be the case that this arbitration strategy violates the
strong fairness requirement for synchronisations (critical section requirement) as stated
in Sections 2.2.1 and 3.3.

4. WCET ANALYSIS OF SYNCHRONISATIONS 63

To prevent such a behaviour, the arbitration to the shared memory is done round-
robin between cores in a TDMA fashion, and a free slot, e.g. a core that currently has
no memory request in its TDMA cycle, would be just unused (see Section 3.2.1). In the
static WCET analysis of one core, no free slots are covered, but the pessimistic view that
every competing core issues the worst-case memory operation (a RMW operation) every
time, as far as no other assumptions on the competing accesses can be safely made.
The duration of one slot in the TDMA arbitration schedule for the bus is chosen to

just fit in one memory operation of each core, that is a slot size of one cycle. The
effect and benefit of higher bus cycles in the TDMA arbitration for HRT programs
depends on the program execution. For instance, Wandeler and Thiele (2006) present
an analytical method to determine optimal cycle lengths in a TDMA arbitration scheme
in a multiprocessor environment. If changes in the arbitration scheme are conducted,
the WCET model and analyses must be aware of those cycle lengths and arbitration
schemes to include the effects on the WCMLs in the static timing analysis.
Table 4.1 depicts that the WCML of a load or store is nearly the same as for a RMW

operation–TAS or F&I/F&D. Although load operations are more often triggered (e.g.
for every instruction fetch that is not in the local memory) than RMW operation (which
are only needed for atomic access to (synchronisation) variables), the difference for the
WCMLs does not reflect those occurrences. A solution that takes account for those occur-
rences by prioritising load operations over RMW operations in the augmented memory
controller to reduce pessimism in the WCET analysis—the split-phase synchronisation
technique—is presented and evaluated in detail in Chapter 5.
Another interesting observation can be made from the results in Table 4.1: doubling

the memory latency (from 5 to 10 cycles) leads to a doubling of the WCMLs (e.g. for a
load operation); however, doubling the number of cores does only increase the WCMLs
for a factor around 1.85. That is due to Equation 4.2, in which the memory latency itself
occurs two times as a summand, and the number of cores only in one summand. Hence,
an increased memory latency has a higher negative influence on the WCMLs than a
higher amount of cores. Please note that this is the case as SMT-cores are employed in
the MERASA processor, thus the factor of N cores instead of N−1 cores in Equation 4.2.
If just one thread per core is executed, that is a thread cannot be influenced by other
(NHRT) threads of the same core, the impact on the WCMLs would be different: then,
the WCMLs increases by a factor slightly bigger than 2 for doubling the number of cores,
whereas the factor due to doubling the memory latencies is slightly smaller than 2.
Table 4.1 also shows the baseline configuration for the following analyses and evalua-

tions of software synchronisations and parallel programs in Sections 4.3 and 4.4. That is
the different WCMLs (TWCML) for a load, a store, and the two implemented RMW op-
erations of a core in the quad-core MERASA processor with five cycles memory latency
(top left of Table 4.1). In Chapter 5 these results are then extended with WCMLs when
the split-phase synchronisation technique is applied.

64 4. WCET ANALYSIS OF SYNCHRONISATIONS

4.3. WCET Analysis of Software Synchronisation Techniques
In the following, the implemented software synchronisations are analysed with the static
WCET analysis tool OTAWA. The synchronisation methods are divided into three
subsections, that is for software synchronisations using: busy-wait algorithms in Sec-
tion 4.3.1, blocking algorithms in Section 4.3.2, and software barrier implementations
in Section 4.3.3. Section 4.3.4 discusses and compares the WCET estimates of all ex-
amined software synchronisations. Results of the static WCET analysis of parallelised
HRT programs using those software synchronisations are presented in Section 4.4 and
Section 5.3.3 (with the split-phase synchronisation technique). The estimated WCETs
depicted in Section 4.3.4 are independent of the possible program context, however, the
waiting times can be related to a possible program execution. Therefore, the difference
on the impact of different software synchronisation techniques becomes more evident in
the full static WCET analyses of parallel programs using those software techniques as
shown in Section 4.4.

Evaluation Settings The WCET analyses are done as detailed in Section 4.1.3, us-
ing the computed WCMLs from Section 4.2, where applicable. However, some further
evaluation settings are introduced from the following restrictions. Calls and returns are
expensive in the MERASA prototype (around 80 cycles for each call/return), that is no
special technique is used to speed up context switches as it is mostly done in actual hard-
ware architectures. In the analysis of software synchronisations these additional costs are
omitted, only the costs for filling the D-ISP need to be taken into account when the first
call to a function is a miss. Once in the D-ISP, the function will be persistent and will
always hit in the D-ISP. For the analyses of software synchronisations in Section 4.3.4,
it is assumed that the analysed synchronisation functions have been already loaded to
the D-ISP, and therefore always hit in the D-ISP. Also, function calls and returns are
mostly omitted from the static timing analysis of software synchronisations (as far as
possible), as their overhead in the MERASA architecture is high, and could have been
reduced by implementing techniques that speed up context switches (as in embedded
COTS processors5). In the analyses with the full program context (in Sections 4.4 and
5.3.3), these restrictions on fetches and context switches do not apply.
The source codes, binary codes, and CFGs presenting the worst-case paths, which are

the baseline for the following WCET analyses of software synchronisation functions, are
presented in the Appendices in Sections A.1, B.1, and C.1.

Example of CFG and Schematic CFG The Figure 4.4 shows an example of the CFG
of a worst-case path exported from OTAWA, and a schematic representation of the
CFG. Please note that the CFG presented in Figure 4.4 contains only basic blocks and
no instructions, as the version with instructions is too big to be presented here in a
readable size. The CFG with readable instructions is included in the Appendix C.1.

5For example, the TriCore architecture “can automatically save or store half the register context upon
an interrupt within two cycles.”(cf. TriCore 1.3 2002, p. 8)

4. WCET ANALYSIS OF SYNCHRONISATIONS 65

ENTRY

BB 1

call

BB 3

call

BB 17

call

BB 2

EXIT

return

BB 4

return

BB 5 taken

BB 6

BB 7

taken

BB 18

call

BB 19

BB 20

taken

BB 8

BB 9

BB 10

taken

BB 11

BB 12 BB 13

taken

return

BB 14

taken

BB 15 taken

BB 16

taken

return

(a)

BB′1

BB′2

BB′3

BB′4

(b)

Figure 4.4.: Subfigure (a) shows as example an CFG of the worst-case path of the
lock() function from the fair mutex lock implementation derived from
OTAWA with basic blocks (BB 1 to BB 2) as overlay (original from
.dot file including basic blocks and instructions can be found in the
Appendix C.1), and the transformation of that CFG in a schematic
CFG version in subfigure (b). The dashed edge in subfigure (b) (BB′2
to BB′4) shows a possible path in the execution that is not part of the
worst-case path of the analysed thread (see details in Section 4.3.2).

66 4. WCET ANALYSIS OF SYNCHRONISATIONS

Please note that a general CFG is even larger as it includes all possible paths; the
ones displayed here only show the basic blocks and paths that are in the worst-case
path. The Figure 4.4 displays the CFG of the worst-case path of the lock() function
of the implemented fair mutex lock (see Section 3.3.3) derived from OTAWA in Fig-
ure 4.4(a). The Figure 4.4(b) shows the schematic CFG which was derived from the
CFG from Figure 4.4(a). In the schematic CFGs some of the non-essential basic blocks
and instructions are omitted or merged into one node, e.g. the ones that are specific
to the TriCore-based MERASA ISA, are calls to functions, or inlined functions. For
example, in the case depicted in Figure 4.4, the calls to functions have been merged
(basic blocks BB 1 to BB 20 in Figure 4.4(a)) to one node BB′1 in the schematic CFG
in Figure 4.4(b).
This allows for highlighting the more important relations, e.g. a while-loop represent-

ing a spin lock. The edges in the schematic CFGs show the control flow in the same way as
in the original CFGs. Additionally, self-directed edges are added to represent while-loop
structures which are used in nearly all lock() functions of the implemented busy-waiting
software synchronisations (see node BB′1 in Figure 4.4(b)). However, please note that
the behaviour of this while-loop from the spin lock is not visible in the original CFG (e.g.
the one presented in Figure 4.4(a)), but in the flow facts. That is how often the jump
for the while-loop is taken or not taken in the worst-case path depends on the number
of competing threads and the length of the critical sections protected by this spin lock;
it is part of the static WCET analysis after the CFG is constructed.
Another information that is included in the schematic CFGs are paths that are not

part of the worst-case path of the analysed thread, but are in the worst-case path of
competing threads. As the CFGs of synchronisations presented and analysed below are
executed by all threads in concert, some of these threads execute a different path than
the worst-case path of the analysed thread. This is highlighted by the dashed edges, e.g.
in Figure 4.4(b) between BB′2 and BB′4 representing a possible path from the CFG in
Figure 4.4(a) (the path BB8, BB9, and BB11). The dashed path is in the worst-case
path of one of the other threads that are competing with the analysed one, and by
that influence the WCET of the actual analysed thread. The reason why another thread
executes the dashed path stems from semantic reasons, e.g. for the example of the mutex
lock function in Figure 4.4(b): the worst-case path of the analysed thread includes that
this thread does not gain the lock at first, and has to enter the waiting list. Hence, that
implies that another thread (just) got the lock, and therefore executed the dashed path.
Another interesting detail from the blocking, fair mutex lock implementation is shown

in the example in Figure 4.4(b) in the transition from node BB′3 to BB′4, or better,
in the missing edge from BB′3 to BB′1. The edge BB′3 to BB′4 represents that in the
fair mutex lock implementation the longest waiting suspended thread (BB′3) gains the
lock after being unsuspended from the previous mutex owner (BB′4). A non-fair mutex
lock implementation typically wakes all waiting threads, and they compete again for the
lock (mostly also with other entering threads that have not yet been suspended and just
reached the lock), hence this would be represented by an edge from BB′3 to BB′1. More
details on the fair mutex implementation are presented in Section 3.3.3, and the static
WCET analyses of the fair mutex lock implementations are presented in Section 4.3.2.

4. WCET ANALYSIS OF SYNCHRONISATIONS 67

4.3.1. Busy-Waiting Synchronisations
In this section the three different software synchronisations using busy-wait (spinning)
methods are analysed in detail.

A) Spin Locks with Test-and-Set

At a glance
Pseudo code Algorithm 3.1
Source code Listing A.1
Binary code Listing B.1
CFGs part of Figure C.2
Schematic CFGs Figure 4.5

The spin lock with TAS is a very simple synchronisation method to protect critical
sections. It contains a TAS operation in a while-loop in its lock() function, and a
TAS operation in its unlock() function (see schematic CFG in Figure 4.5). As already
discussed in Section 3.3.1, the main problem of a spin lock with TAS is to assure fair-
ness between competing threads, which in conclusion leads to problems determining the
WCET. In the case of the MERASA architecture, it is mostly possible to analyse TAS-
based spin locks due to the design of the memory interconnect. However, it is possible to
construct situations in which fairness is, at least in the worst-case, not assured for every
thread competing for a TAS spin lock and hence might experience unbounded delays.
For the following analyses, it is assumed that such a behaviour does not occur, but, in
general, it needs to be taken into account.

Lock Operation For the lock() function, the busy-waiting to gain the lock needs to
be taken into account. Therefore, the WCET of the lock() function depends on the
number of competing threads, and also on the WCWT which is defined by the length of
the critical sections executed by the other threads.

BB′1

(a)

BB′1

(b)

Figure 4.5.: Schematic CFG of the spin lock implementation with TAS: (a) shows
the lock() function with a while-loop in which the TAS operation
is executed, and (b) depicts the simple unlock() function which just
contains a TAS (respectively a store) operation to release the lock.

68 4. WCET ANALYSIS OF SYNCHRONISATIONS

The length of the critical section, and therefore also the corresponding WCET, might
be variable for different threads; this depends on the program. Also, the WCET of the
unlock() function executed by the other competing threads adds to the WCET of the
lock() function.

Unlock Operation For the unlock operation, the WCET is easy to compute: As no
busy-waiting is needed to unlock the spin lock, and only one memory operation is used
in the unlock() function, the interference from other threads is included in the WCML
of that TAS (or store) operation, and no waiting times need to be taken into account.
Please note that it is possible to use a simple store operation instead of a RMW operation
to unlock the TAS spin lock, but then it is more difficult for the OTAWA tool to locate
the corresponding synchronisation point (cf. Section 3.3.1).

WCET Estimation In summary, to compute the WCET of one thread, the WCETs of
lock() operation, critical section, and unlock() operation of all the other competing
threads need to be added and the result forms the WCWT for the thread that is under
analysis. Then, adding the WCET of this thread’s lock() operation, critical section,
and unlock operation sums up to the final WCET. In Section 4.3.4 the resulting WCETs
of the lock() and unlock() function are shown.

B) Spin Locks with Fetch-and-Decrement

At a glance
Pseudo code Algorithm 3.2
Source code Listing A.2
Binary code Listing B.2
CFGs part of Figure C.3
Schematic CFGs Figure 4.6

The schematic CFGs of the lock() and unlock() functions of the spin locks with
F&I/F&D, shown in Figure 4.6, are the same as for the spin lock with TAS. However, the
implementation, that is the used atomic RMW primitive, is quite different. Please note
that this spin lock implementation with F&D can only be used if the RMW operations
F&D is implemented as in the augmented memory controller of the MERASA multi-core
processor, that is a repetitive execution of F&D does not decrement any more when a
given limit, e.g. ’0’, is reached (cf. Section 3.2.2).

Lock Operation For the WCET estimation of the lock() function executed by a
thread, the competing other threads have to be taken into account in the same way
as for the other busy-waiting lock with TAS: number of competing threads, and their
WCETs of acquiring the lock, executing the critical section, and releasing the lock. So,
the analysis is nearly the same as for the spin lock with TAS.

4. WCET ANALYSIS OF SYNCHRONISATIONS 69

BB′1

(a)

BB′1

(b)

Figure 4.6.: Schematic CFG of the F&I/F&D lock implementation: (a) shows the
lock() function containing a F&D operation in a while-loop, and (b)
the unlock() function with just a F&I operation to release the lock.

Unlock Operation The unlock() function has been implemented with the F&I prim-
itive. Nonetheless, the unlock() operation could be also implemented, as for the TAS
spin lock, with a simple store operation. However, F&I has been chosen to analyse
its impact on the WCET of an unlock() operation, and to allow the OTAWA tool to
recognise it as a synchronisation operation. Also, the difference is not really big, as the
F&I operation can be executed without waiting, so it shows the same behaviour as for
an unlock() function with a simple store operation, and the WCET only differs in the
WCML of the corresponding memory operation, and the number of instructions needed
to prepare the memory operation.

WCET Estimation For the WCET estimation of spin locks with F&I/F&D, the same
holds as for the spin locks with TAS. The results are shown and discussed in Section 4.3.4.

C) Ticket Locks with Fetch-and-Increment

At a glance
Pseudo code Algorithm 3.4
Source code Listing A.3
Binary code Listing B.3
CFGs Figure C.1
Schematic CFGs Figure 4.7

The CFG of the lock() operation for ticket locks is a bit different to the above
discussed busy-waiting locks, as first a ticket is acquired, and then it is repetitively
checked (spinning in BB′2) if the acquired ticket equals the actual served ticket. The
unlock() CFG is the same as for F&I/F&D spin locks, as only the next served ticket
id needs to be atomically incremented.

Lock Operation The lock operation of ticket locks is organized slightly different to
the lock operations of other busy-waiting synchronisations.

70 4. WCET ANALYSIS OF SYNCHRONISATIONS

BB′1

BB′2

(a)

BB′1

(b)

Figure 4.7.: Schematic CFG of the ticket lock implementation with F&I/F&D: (a)
depicts the lock() function which acquires a new ticket and checks it
against the actual served id; (b) presents the unlock() function which
uses an F&I operation to increment the next served ticket id.

First, a ticket id is acquired with an atomic F&I operation. Then, the acquired local
ticket id is repetitively checked against the global id of the ticket that is currently served.
The first part of the locking operation—acquiring a ticket—is free of waiting introduced
from competing threads (despite the impact captured in the WCML. Then, the spinning
part (BB′2 in Figure 4.7) is analysed similar to the other busy-waiting locks.

Unlock Operation The WCET estimation of the unlock() operation of ticket locks is
as simple as for the other busy-waiting locks: only one atomic F&I operation is used to
increment the next served ticket id, therefore also no waiting time is introduced from
executing the unlock() function. It would also be possible, but not recommended, to
use a store operation to increment the next served ticket id, if the specific data structure
needed for the F&I/F&D primitive is retained.

WCET Estimation In Section 4.3.4 the results of the WCET estimation of ticket locks
are presented and compared to the other busy-waiting lock techniques.

WCET and Backoff Algorithms for Busy-Waiting Synchronisations

In the average-case, the use of a backoff algorithm is a common solution to reduce
contention and/or increase throughput. For busy-waiting synchronisations, the idea of
backoffs could help to reduce contention on shared resources. In an optimal case, the
backoff impedes possible unsuccessful accesses or at least reduces them. Taking the
hardware conditions into account, for example, it might be possible to only access the
lock variables when they are “free”. Or, e.g. for ticket locks, a try-lock could check
how much the actual served ticket id differs from the acquired own ticket id. If the
difference is over a specific threshold, the thread could just wait/sleep for some time
without spinning on the actual served ticket to reduce contention.

4. WCET ANALYSIS OF SYNCHRONISATIONS 71

However, for worst-case situations this is a bit different. For example when analysing
ticket locks with backoff algorithms, no impact on the WCET has been experienced.
This, of course, highly depends on the chosen analysis technique. For the case of the
static WCET analysis with OTAWA, interferences on the bus, that is contention, are
already included in the analysis. Therefore, having one core producing less contention
on the bus does not lead to better worst-case response times for the other cores (see also
the discussion on busy-waiting versus blocking synchronisations in Section 4.3.4).
Beside the case of HRT, NHRT programs and best-effort execution can benefit from

backoff algorithms by the reduction of ACETs. So, it might be promising to use backoff
algorithms for NHRT programs, whereas for HRT programs the overhead from imple-
menting backoff algorithms does not reflect in a reduction of the WCET.

4.3.2. Blocking Synchronisations

In this section the two implemented blocking synchronisations, (fair) mutex locks with
TAS and binary semaphores with F&I/F&D, are discussed in detail.

A) Fair Mutex Locks with Test-and-Set

At a glance
Pseudo code Algorithm 3.3
Source code Listing A.4
Binary code Listing B.4
CFGs Figure C.2
Schematic CFGs Figure 4.8

The blocking synchronisations are different to the previous discussed busy-waiting
synchronisations as they employ a waiting list and suspension of threads instead of
busy-waiting with spinning. For the fair mutex lock implementation that means that
acquiring and releasing the lock also needs to take into account acquiring the guard that
secures the waiting list of suspended threads, that is a spin lock with TAS (BB′1 in both
subfigures in Figure 4.8).

Lock Operation For the lock() operation, first a so-called guard, a spin lock with TAS
in this case, needs to be acquired (BB′1 in Figure 4.8(a)). In the worst-case, the lock
is already taken, and the thread under analysis is the last to reach the mutex lock, and
therefore the last one that enters the waiting list (BB′3 in Figure 4.8(a)). The dashed
path in Figure 4.8(a) (BB′2 to BB′4) shows the path that is executed by the thread
successfully gaining the mutex lock. The WCET to enter the waiting list is similar to
the WCET of a spin lock with TAS. But, the WCWT introduced from the length of the
critical sections of competing threads is not only depending on the program code, but
also on the code (e.g. in the RTOS) to manage the waiting list: it is known without
program knowledge.

72 4. WCET ANALYSIS OF SYNCHRONISATIONS

BB′1

BB′2

BB′3
BB′4

(a)

BB′1

BB′2

(b)

Figure 4.8.: Schematic CFG of the mutex lock implementation with TAS: (a)
shows the lock() function, and (b) the unlock() function.

As waiting threads are suspended, their WCWT until acquiring the lock depends on
the program code of critical sections, which is secured by the mutex lock, of the other
competing threads. Also, the time it takes the thread to unsuspend after being woken
must be included in the WCET of the lock() function.

Unlock Operation The worst-case situation for the unlock() operation of a (fair)
mutex lock is more complicated than for the busy-waiting synchronisations, but still
easy enough. The WCET includes the acquiring of the guard to the waiting list (BB′1
in Figure 4.8(b)), as the thread actually releasing the mutex lock first checks if already
other threads are in the waiting list for the mutex lock. If so, the thread holding the
mutex wakes the first thread in the waiting list, and releases the guard without freeing
the mutex lock itself: it will directly be taken by the woken thread for strong fairness
reasons discussed in Section 3.3.3. If no thread is waiting, it would set the mutex lock
to be free, and would release the guarding spin lock. In the worst-case with N HRT
threads, the thread under analysis competes with N − 2 threads for the guard, and
one thread is suspended and waiting, that is one thread entered the waiting list while
the analysed thread held the mutex. The thread under analysis gets the guard after the
other N−2 threads entered the waiting list, and then has to wake up the longest waiting
thread (BB′2 in Figure 4.8(b)), and releases the guard.

WCET Estimation The results of the WCET analyses of the lock() and unlock()
operations of the (fair) mutex lock implementation are shown in Section 4.3.4.

4. WCET ANALYSIS OF SYNCHRONISATIONS 73

B) Semaphores with Fetch-and-Increment/Decrement

At a glance
Pseudo code Algorithm 3.5
Source code Listing A.5
Binary code Listing B.5
CFGs Figure C.3
Schematic CFGs Figure 4.9

In the presented analysis, the focus is on a binary semaphore implementation, not on
the general case of semaphores. This allows for a comparison of the WCET estimates
with the fair mutex lock implementation. The implementation of the binary semaphores
is based on the FIFO waiting list with F&I (cf. Section 3.2.3), and on the special
implementation of F&D as for the F&I/F&D spin locks (see also Section 3.2.2).

Lock Operation The lock operation, or wait() function as it is being called for the
semaphore implementation, first checks if the semaphore is available. This resembles
the behaviour of so-called try-locks, but is fully integrated in the wait() operation of
(binary) semaphores. This relieves contention on the guarding F&D spin lock to reduce
the WCWT.

BB′1

BB′2

BB′3

BB′4

(a)

BB′1

BB′2

(b)

Figure 4.9.: Schematic CFG of the (binary) semaphore implementation with
F&I/F&D: (a) shows the wait() operation, and (b) the post() func-
tion.

74 4. WCET ANALYSIS OF SYNCHRONISATIONS

In the worst-case, the (binary) semaphore is not available so that the schematic CFG
in Figure 4.9(a) starts with a guarding F&D spin lock in BB′1. This F&D spin lock
guards the FIFO waiting list, and, in the worst-case, the analysed thread is the last to
acquire the F&D lock and enters the waiting list (in BB′3 in Figure 4.9(a)).
As already described, the binary semaphore is very similar to the case of the fair mutex

lock implementation. Thus, the dashed path from BB′2 to BB′4 in Figure 4.9(a) shows
the same as for the (fair) mutex lock implementation, that is the path of the thread that
successfully acquired the lock. The management of the FIFO waiting list with F&I/F&D
is different from the management for the waiting list in fair mutex lock implementation,
but the semantic is the same. So, for binary semaphores, the WCWT also depends on
the length of the critical sections of the competing threads that are executed before the
analysed thread (which in the worst-case means that all competing threads get the lock
before the one under analysis). When the thread is finally woken and acquires the lock,
it has to release the guarding lock (executing a F&I operation) which was previously
acquired from the thread that has woken the thread under analysis.

Unlock Operation The post() function, that is the unlock operation of a semaphore,
is semantically identical to the unlock() operation of the mutex lock. First, a thread
executing post() needs to obtain the guard for the waiting list, and competes with all
the other threads for it who are currently trying to enter it. Here, the same case as for
the unlock() operation of the mutex lock holds: for N HRT threads, in the worst-case,
one thread is actually waiting in the FIFO queue, while the other N−2 threads compete
with the thread under analysis for the guard lock of the waiting list. When the analysed
thread finally acquires the guarding lock (after the N − 2 other threads, a second F&D
operation is used to obtain the information if a thread is waiting in the FIFO queue.
In the worst-case this is the case and the thread under analysis hands over the lock
(without incrementing the semaphore counter) by waking the longest waiting thread. It
does not release the guard lock, as this is done by the thread that was woken and now
holds the lock. Else, if no thread is waiting, the actual thread uses two F&I operation to
increment the semaphore counter, and releasing the guard lock. The worst-case stems
from the execution when one thread is waiting, as then the thread under analysis has
to compete with the N − 2 other threads for the guard lock. Thus, in that case the
analysed thread actually uses more F&I/F&D operations (5 F&I/F&D operations) as if
the thread actually finds an empty waiting list (4 F&I/F&D operations), despite that
the thread has to execute more code when a waiting thread has to be unsuspended (cf.
pseudo code in Algorithm 3.5).

WCET Estimation In Section 4.3.4 results on the WCET analysis of binary semaphores
are compared to the fair mutex lock implementations as two different blocking synchro-
nisations, but as well the WCET results of the blocking synchronisations are compared
with the WCET results of busy-waiting synchronisations.

4. WCET ANALYSIS OF SYNCHRONISATIONS 75

4.3.3. Software Barriers
In this Section the WCET analyses of the two different barrier implementations, sub-
barriers with conditionals and F&I barriers, are described in detail.

A) Subbarriers with Conditionals

At a glance
Pseudo code —
Source code Listing A.6
Binary code Listing B.6
CFG Figure C.3
Schematic CFG Figure 4.10

The subbarrier implementation with conditionals has been introduced by Marejka
(1994) to overcome the reinitialisation problem of typical barrier implementations with
conditionals. Their major disadvantage for being used in HRT systems is the application
of conditional variables (see discussion in Section 3.3.6), and the resulting high WCET.

Wait Operation The wait() operation of the subbarrier implementation uses a (fair)
mutex lock when entering the barrier (merged in BB′1 in Figure 4.10). The same mutex
lock is needed to secure the conditional wait (BB′3 in Figure 4.10) for threads waiting for
the last thread to reach the barrier, thus satisfying the barrier condition. The last thread
reaching the barrier needs to reset the current subbarrier and switch to the alternative
subbarrier to overcome the reinitialisation problem.

BB′1

BB′2

BB′3

BB′4

Figure 4.10.: Schematic CFG of the subbarrier implementation with conditionals.

76 4. WCET ANALYSIS OF SYNCHRONISATIONS

Then it signals the other waiting threads to continue by using a conditional broadcast,
and leaves the barrier (BB′4 in Figure 4.10). Thus, the last thread reaching the barrier
defines the overall WCET of the wait() operation. The dashed edges (and BB′3 in
Figure 4.10) show the execution path of the other threads that reach the barrier first, and
enter the waiting list. FIFO ordering is not overly important for barrier implementations,
as all waiting threads continue when the barrier condition (all threads reached the
barrier) is fulfilled.

WCET Estimation The WCET estimation for a thread involved in a barrier with
conditional variables is rather complicated. The reason is the conditional variable that
is used for waiting threads needs the same mutex lock that secures the barriers (see
details in Section 3.3.6). The subbarrier implementations overcomes this problem, as
the last thread switches the subbarriers, and therefore also the needed mutex lock that
guards the entry to the barrier. However, all this additional handling and logic causes
a high WCET for the subbarrier implementation. The results of the WCET analysis of
subbarriers are compared to the barriers that employ the F&I primitive in Section 4.3.4.

B) Barriers with F&I

At a glance
Pseudo code Algorithm 3.8
Source code Listing A.7
Binary code Listing B.7
CFG Figure C.4
Schematic CFG Figure 4.11

F&I barriers are a blocking implementation of barriers not prone to the reinitialisation
problem, using the F&D spin lock, and a FIFO waiting list that is managed with F&I
(as for the semaphores implementation as well, cf. Section 3.2.3).

BB′1

BB′2

Figure 4.11.: Schematic CFG of the barrier implementation with F&I.

4. WCET ANALYSIS OF SYNCHRONISATIONS 77

Wait Operation The wait() function of F&I barriers starts with a F&D spin lock,
which secures the waiting list of the barrier. In the worst-case, the analysed thread
reaches the barrier last, but just after all competing threads. Therefore, it has to wait
to get the F&D spin lock, and then needs to wake up all waiting threads. Thanks to
the specific implementation with cycling counting of F&I (see Section 3.2.3), the thread
does not need to reset anything and continues after releasing the F&D spin lock. The
global waiting queue is then back in the initial state, in which it was before any thread
arrived at the barrier, hence being ready for the next iteration without being prone to
the reinitialisation problem (cf. Section 3.3.6).

WCET Estimation For the WCET of barriers using F&I, the same holds as for the
subbarrier implementation: the last thread reaching the barrier determines the overall
WCET. As mentioned above, without taking the program structure into account, the last
thread entering the barrier also competes with the other threads for the F&D spin lock
guarding the barrier fulfilment check. Either the thread does not yet satisfy the barrier
condition and enters the waiting list, or it does fulfil the barrier condition and wakes
the other waiting threads. However, the program structure might lead to an even worse
situation: depending on how much code the threads need to execute before reaching the
barrier, the overall WCET might be higher due to waiting for the last thread to reach
the barrier. In the analysis presented in Section 4.3.4, it is assumed that all threads
reach the barrier at the same time and compete for the F&D spin lock, thus no waiting
before reaching the barrier is assumed. For the WCET analysis of the parallel IFFT
program in Section 4.4, the program code is included and therefore WCET estimates
of different iterations secured by barriers might vary. However, the WCET guarantee
computed without taking the program code into account is a lower bound for possible
WCET estimates when the program code itself is included in the analysis, that is the
different WCET estimates cannot be lower than the one computed in Section 4.3.4.

4.3.4. Results and Discussion
Wolf et al. (2010a) already presented WCET results on the preliminary implementa-
tions of software synchronisations in the MERASA RTOS, and Rochange et al. (2010)
WCET results on a multithreaded program with these software synchronisations. For the
results presented below, the integrated augmented memory controller, the new RMW
operations (F&I/F&D), software synchronisations using these new RMW operations,
and changes in the source code of software synchronisations fostering their timing pre-
dictability (e.g. for the mutex lock and barriers) have been taken into account (see also
Gerdes et al. 2012b). Beside the changes, the methodology of the WCET analysis of the
above software synchronisations is done as described by Rochange et al. (2010), Wolf
et al. (2010a), and Gerdes et al. (2012b). Some of the formulas for the WCET estima-
tions with OTAWA, using the computed WCMLs as presented in Section 4.2, have been
provided by courtesy of Christine Rochange (University of Toulouse).

78 4. WCET ANALYSIS OF SYNCHRONISATIONS

Table 4.2.:
WCET estimates of software synchronisations in the quad-core MERASA multi-core
processor in number of cycles (load/store operations take five/four cycles, bus cycle

time is one). Program dependencies are treated as a variable: WCETprg.

Software Synchronisation WCETexec WCETwait WCETtotal

TAS lock() 63 3 · 63 252 +WCETprg
TAS unlock() 57 – 57
F&I/F&D lock() 64 3 · 64 256 +WCETprg
F&I/F&D unlock() 62 – 62
ticket lock() 267 3 · 220 927 +WCETprg
ticket unlock() 62 – 62
(fair) mutex lock() 1184 3 · 63 1373 +WCETprg
(fair) mutex unlock() 753 2 · 63 879
binary semaphore wait() 658 2 · 64 786 +WCETprg
binary semaphore post() 357 2 · 65 487
F&I barrier 592 3 · 64 784 +WCETprg

subbarrier 4640 3 · 63 4829 +WCETprg

The results presented in Table 4.2 show the estimated WCETs of the different software
synchronisations split into the WCETexec of the execution itself, and the WCWT, that
is the part of the WCETwait introduced from waiting. For the total WCET of some
software synchronisations (lock and unlock operation), the program structure has to be
included, which is shown by the summand in the last column of Table 4.2. This does
not apply for the unlock operations, as the WCETprg is included in the corresponding
lock operation. For those software synchronisations for that no WCWTs apply, e.g. the
unlock functions of the busy-waiting synchronisations, this is denoted by a ’–’. The
evaluation settings for the WCET analyses, as far as not already mentioned in the
caption of Table 4.2, are described in detail in Section 4.3. Please note thatWCETprg is
the WCET of the critical section secured by a lock, but for the barrier synchronisations
WCETprg depends on the program code that is executed of each thread from the last
synchronisation point until reaching the barrier. As already discussed in Section 4.3.3,
it might be possible that the summand WCETexec + WCETwait is actually lower, if
WCETprg predominates it. However, it is not possible that a lower WCET guarantee
as the depicted is achieved for the given implementations and evaluation settings.
The difference in the estimated WCETs of busy-waiting locks is rather small, at least

for TAS and F&I/F&D spin locks. The only difference stems from the applied RMW
operation: the WCML of a F&I/F&D operation is one cycle higher than for a TAS
operation. Only for ticket locks, the lock() operation has a significant higher estimated
WCET than the other two busy-waiting lock implementations.

4. WCET ANALYSIS OF SYNCHRONISATIONS 79

The reason for this is that more logic needs to be done for a ticket lock compared to
the other two, very simple busy-waiting locks: a ticket is fetched, the padding bits (the
limit in the data word; see Section 3.2.2) need to be masked, and then the ticket lock
operation spins on the actual served ticket id. The spinning does not need any RMW
operations, but the padding bits must be masked each time the actual served ticket id
is retrieved. Also, the ticket lock implementation is not perfectly tuned for efficiency
on the TriCore-based MERASA architecture, therefore the waiting time of the ticket
lock implementation includes five memory operations that increase the execution time;
this is also due to the limited compiler optimisations used to foster the static timing
analysability of the compiled code. However, the implementation is more robust for the
programmer than the other busy-waiting operations, as those are usually only meant
to be used in the system software and not explicitly by the programmer. The waiting
time for all three busy-waiting implementations needs to be multiplied with the number
of competing threads, that is three for the case of a quad-core processor with one HRT
thread per core. NHRT threads, which might be also executed in concert with the
HRT threads in the MERASA multi-core processor, do not compete for the same locks
with HRT threads, as they are not allowed to share critical sections with HRT threads.
However, it would be possible to allow such mixed-criticality execution, but it needs to
be taken into account in the timing analysis. Even if the estimated WCET of the ticket
lock implementation is higher than for the other busy-waiting implementations, it has
the advantage of fairness mostly independent of the arbitration in the interconnect, and
is therefore recommended to be used as busy-waiting spin lock (see Section 3.3.4).
The blocking binary semaphore implementation is very similar to the fair mutex lock

implementation (cf. Section 3.3.5), but they differ by the RMW operations they inter-
nally rely on: the (fair) mutex lock implementation uses TAS spin locks while the binary
(blocking) semaphore implementation is based on F&I/F&D operations. Another main
difference is the way they secure the waiting list of threads to enter the critical section:
the use of F&I/F&D operations makes it possible to implement hardware supported
FIFO queues (see Section 3.2.3) that perform better, in the MERASA multi-core pro-
cessor, than the software linked lists used in the (fair) mutex lock implementation (see
also Section 3.3.3, and Gerdes et al. 2012b). Estimated WCETs in Table 4.2 show that
the implemented semaphores are nearly two times faster than mutex locks for both the
lock() and unlock() operation. The waiting times WCETwait to acquire a lock are
depending on the number of concurrently running threads that compete for that lock.
In the evaluated case with N = 4 cores, this waiting time arises from one basic

block being executed N − 1 = 3 times in the worst-case, as in the worst-case the other
three threads gain the guarding spin lock before the thread under analysis. The only
difference for the binary semaphores stems from the specific implementation of F&D in
the augmented memory controller (cf. Section 3.2.2). By this, the semaphore wait()
operation is enabled to first check if the semaphore counter is greater than 0, before
competing for the waiting list with the other N − 2 = 2 threads that did not gain the
lock (as one of the N = 4 threads must have successfully acquired the lock to enforce the
worst-case). Also, for the unlock() operation of the (fair) mutex lock implementation
respectively the post() operation of the binary semaphore implementation, this waiting

80 4. WCET ANALYSIS OF SYNCHRONISATIONS

time is only enforced by the N − 2 = 2 other threads that can compete for the lock: one
thread must be actually waiting in the waiting list to enforce the worst-case path for the
thread releasing the lock (otherwise the analysed thread would execute a non-worst-case
path without waking up a waiting thread).
In high-performance systems using blocking synchronisations is favoured over busy-

waiting and spinning solutions to decrease traffic on the interconnect and hence con-
tention on shared resources. Therefore, on the one hand, mutex locks and blocking
semaphores are usually preferred over simple busy-waiting locks. On the other hand,
busy-waiting locks that spin on local memories or use backoff strategies are a way to
reduce contention and increase the average-case performance in high performance sys-
tems. But, those solutions are seen unsuitable for static timing analyses of parallelised
HRT programs (see Sections 3.3.7 and 4.3.1), as contrarily to the ACET, the WCET of
a thread is not impacted by the other threads’ busy-waiting. So far it is impossible in a
static WCET analysis of parallel programs on a multi-core processor to fully account for
every operation of every thread on each core in every cycle. Thus, contention on shared
resources, e.g. the memory interconnect, must be treated pessimistically and is included
in the WCMLs. The WCMLs account for maximum possible interference on the shared
memory and memory interconnect, that is all threads permanently issue requests to the
main memory. So, backoff and suspension do not help to reduce a parallel program’s
WCET in the scope of HRT capable shared-memory multi-core processors.
As an alternative, the use of ticket locks as introduced in Section 3.3.4, which imple-

ment a busy-waiting strategy with F&I/F&D instructions, is recommended. Compared
to mutex locks or blocking semaphores, the code of acquiring and releasing a ticket lock
is shorter because it does not include inserting and suspending (respectively extracting)
a thread in (from) a FIFO queue. Also, it seems to be feasible that critical section
are mostly short in parallel HRT programs; this further reduces the benefit of suspen-
sion. In summary, worst-case efficient busy-waiting synchronisations are the medium of
choice. The result is an improved WCET guarantee, as shown for two parallelised HRT
programs in Section 4.4 and the WCET results in Table 4.2.
Table 4.2 also highlights a considerable improvement of WCET guarantees when us-

ing synchronisation barriers implemented with the F&I primitive instead of subbarriers
based on conditions (wait, broadcast), as described in Section 3.3.6. The possibility of
implementing FIFO queues in a very efficient way with F&I/F&D instructions already
made the difference between the worst-case performance of binary semaphores versus
the (fair) mutex lock implementation, and this is also the case for the F&I barrier im-
plementation. The solution with F&I for barriers makes them, in the worst-case, more
than six times faster than the subbarrier implementation. Both barrier implementations
are not prone to the reinitialisation problem, i.e. the problem that threads reentering
the barrier while other threads have not left it yet after the previous round. Hence,
F&I barriers are sufficiently robust and worst-case efficient alternatives to subbarriers.
Please note that while the WCET for F&I barriers is rather low compared to mutex
locks, a major portion of the WCET could be included in theWCETprg part, depending
on the program code. Further results on the improvement of WCET guarantees with
F&I barriers are presented in the following Section 4.4.

4. WCET ANALYSIS OF SYNCHRONISATIONS 81

4.4. WCET Analyses of Parallelised HRT Programs
In this section the static WCET analysis with OTAWA of two parallelelised HRT pro-
grams is shown: matmul and IFFT. The matmul program is a simple parallel matrix
multiplication which secures access to next computations by locks, whereas IFFT is a
parallel, integer version of a Fast-Fourier-Transformation (FFT) using locks to secure
shared data and barriers to separate iterations.

4.4.1. matmul: Parallelised Matrix Multiplication
The matmul program is a parallelised matrix multiplication being used as a benchmark
for the different locking software synchronisations. Thus, it was chosen to use a naïve
parallelisation in which the dispatching of work units—each computing one result cell in
the result matrix (see Figure 4.12)—to threads is secured by a critical section.

a11 a12 . . . a1p

a21 a22 . . . a2p

...
...

an1 an2 . . . anp




A : n rows p columns

b11 b12 . . . b1q

b21 b22 . . . b2q

...
...

bp1 bp2 . . . bpq





B : p rows q columns

c11 c12 . . . c1q

c21 c22 . . . c2q

...
...

cn1 cn2 . . . cnq





a 21
×
b 12

a 22
×
b 22

a 2p
×
b p2

+

+ . . .+

C = A×B : n rows q columns

Figure 4.12.: Falk’s scheme of the naïve parallelisation of matmul. Every cell of
matrix C is secured by a critical section and computed in one step by
one thread. (TikZ source for this figure by courtesy of Alain Matthes,
see http: // altermundus. com/)

http://altermundus.com/

82 4. WCET ANALYSIS OF SYNCHRONISATIONS

Table 4.3.:
WCET estimates (# cycles) of synchronisation techniques in matmul executed on a
quad-core MERASA processor derived from OTAWA with TL = 5 cycles respectively

TL = 10 cycles memory latency for a normal load, and one cycle bus latency.
Configuration Mutex Lock (Binary) Semaphore Ticket Lock

4 cores, TL = 5 1,589,483 1,221,477 1,044,762
4 cores, TL = 10 2,635,908 2,119,687 1,833,392

These locking mechanisms were substituted for each separate WCET analysis, namely
the (fair) mutex lock, the ticket lock, and the binary semaphore implementations have
been used for the comparison.
In the computation of A · B = C, the input matrices A and B can be seen as read-

only, therefore no synchronisation is needed when reading from them. As the work
units are dynamically dispatched to a thread, and each working unit is only distributed
once to a thread, writing the results to the result matrix C is automatically free of
collisions. The matmul program has been chosen as a benchmark for the implemented
synchronisations, thus the focus is not on the efficiency of the parallelisation, but on the
worst-case performance of the different implemented software synchronisations.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

mutex lock

semaphore

ticket lock

1

1.3

1.52

1

1.24

1.44

Normalised WCET guarantee improvement (matmul)

TL = 5 cycles TL = 10 cycles

Figure 4.13.: WCET guarantee improvements on a quad-core MERASA processor
with five and ten cycles latency for a load operation for the paral-
lelised matrix multiplication (matmul) using three different software
synchronisations normalised to the configuration with mutex locks.

4. WCET ANALYSIS OF SYNCHRONISATIONS 83

Table 4.3 shows the WCET estimates for matmul computed by OTAWA with two
configurations, that is four cores and five respectively ten cycles memory latency for a
load operation. The WCMLs have been derived from the equations in Section 4.2.
The improvements of WCET guarantees depicted in Figure 4.13 are normalised on

the version with (fair) mutex lock for both configurations (with either five respectively
ten cycles load latency). The results in Table 4.3 and Figure 4.13 show that ticket locks
perform better than the binary semaphore and the mutex lock implementations for all
configurations. In detail, the improvement of WCET guarantees is 1.44 respectively
1.52 for ticket locks compared to the version with (fair) mutex locks. The comparison
in Figure 4.13 also shows that the difference in the gain for the WCET improvements is
nearly the same for five cycles and ten cycles load latencies: the difference in the gain
is smaller than 6%. These results support the findings from Section 4.3.4, which show
that busy-waiting synchronisations perform better than blocking ones, that is ticket locks
outperform the two blocking software synchronisation techniques.

4.4.2. IFFT: Parallelised Integer Fast-Fourier-Transformation

The IFFT program has been parallelised for the MERASA processor in a master thesis
by Eser (2010). As baseline for the parallelisation, an iterative version of the radix-2
algorithm was used. The algorithm works in place and the sample points are stored in an
array. The iterative version maps the floating-points values from [−1, 1] on fixed-point
numbers in the range [−32767, 32767]. Depending on the number of sample points N ,
the IFFT program computes results in one initialisation and log2(N) calculation steps.

Figure 4.14.: Parallelisation of IFFT: steps are separated by different barrier im-
plementations, and dispatching working units to threads is secured
with different locking techniques for each single WCET analysis.
(Image is a slightly changed version taken from Eser (2010))

84 4. WCET ANALYSIS OF SYNCHRONISATIONS

Table 4.4.:
WCET estimates (# cycles) of different synchronisation techniques in IFFT executed
on a quad-core MERASA processor derived from OTAWA with TL = 5 cycles resp.

TL = 10 cycles memory latency for a normal load, and one cycle bus latency.

(a) IFFT Conditional Subbarriers

Configuration Mutex Lock (Binary) Semaphore Ticket Lock

4 cores, TL = 5 288,781 224,196 204,933
4 cores, TL = 10 463,756 370,626 339,798

(b) IFFT F&I Barriers

Configuration Mutex Lock (Binary) Semaphore Ticket Lock

4 cores, TL = 5 209,572 135,420 120,817
4 cores, TL = 10 335,217 224,345 202,752

In the initialisation step, the sample points are reordered for the following calculation
steps. In each calculation step, partial solutions are computed and combined by one to
N
2 working units. The working units can be computed in parallel, but the distribution of
a fresh working unit to a thread is secured by a lock. Figure 4.14 presents the process of
reordering and combining in the parallelised IFFT program as done by Eser (2010) with
two working units. All steps are separated with barriers, that is either the subbarrier
or the F&I barrier implementation (see details in Section 3.3.6). Combining of results
in the calculation steps is scheduled dynamically to the threads, and secured by critical
sections with either (fair) mutex locks, binary semaphores, or ticket locks.
The WCET estimates from OTAWA are depicted in Table 4.4 for the different con-

figurations with the two different barrier implementations respectively the three locking
mechanisms, and for the same configurations as for the matmul program above, that is a
four-threaded version with five respectively ten cycles load latency. As reference for the
comparison of the chosen barrier and locking implementations in Figure 4.15 the slowest
configuration of the parallelised IFFT program with subbarriers and mutex locks has
been chosen for both configurations, that is a baseline of 288,781 cycles for the version
with five cycles load latency, and 463,756 cycles for the version with ten cycles load
latency. The normalised improvements of WCET guarantees show that the version with
ticket locks and F&I barriers performs best in the worst-case, reaching an improvement
of WCET guarantees of 2.39 for five cycles load latency, respectively 2.29 for ten cycles
load latency. The improvements of the WCET guarantees with ten cycles load latency
are again close to the ones with five cycles load latency: the difference is less than 5%.
Summing up, the results show again that ticket locks are very efficient in the worst-

case, and additionally that F&I barriers perform much better than subbarriers with
conditionals, as already assumed from the WCET results of software synchronisations
in Section 4.3.4.

4. WCET ANALYSIS OF SYNCHRONISATIONS 85

0.9 1 1.1 1.2 1.3 1.4

mutex lock

semaphore

ticket lock

1

1.29

1.41

1

1.25

1.36

Normalised WCET guarantee improvement (IFFT with subbarriers)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

mutex lock

semaphore

ticket lock

1.38

2.13

2.39

1.38

2.07

2.29

Normalised WCET guarantee improvement (IFFT with F&I barriers)

TL = 5 cycles TL = 10 cycles

Figure 4.15.: WCET guarantee improvements on a quad-core MERASA processor
for the parallelised IFFT with subbarriers (top) and F&I barri-
ers (bottom) using different software locking techniques, and a load
memory latency of five respectively ten cycles. The improvement
of WCET guarantees are normalised to the configuration with (fair)
mutex locks and subbarriers.

86 4. WCET ANALYSIS OF SYNCHRONISATIONS

4.5. Related Work

Timing predictability is defined diverse in literature: Thiele and Wilhelm (2004) define
timing predictability as the pessimism in the WCET, respectively in the BCET. That
definition is also used in this thesis. Wilhelm et al. (2008) defines (timing) predictability
as the difference between the lower bound and upper bound of a system, or, in other
words, how much variation between the estimated best- and worst-case in a system is
possible. In this thesis, this definition will be used as system predictability, however,
Wilhelm et al. (2008) state that not only the system and architecture influences the
predictability, but also the method or WCET tool that were used to compute or estimate
such lower and upper bounds. The terms timing analysability and timing predictability
are defined as safety for timing analysability, and precision for timing predictability by
Wilhelm et al. (2008). A further definition of timing predictability is given by Kirner and
Puschner (2010); they summarise different definitions and define timing predictability as
based on the model used in the WCET analysis. A short survey on timing predictability
has been recently published by Schoeberl (2012).
To estimate WCMLs, a predictable arbitration scheme for shared resources, for ex-

ample a shared memory, is mandatory. The WCET model of the MERASA multi-core
processor used in this thesis maintains predictable arbitration by a round-robin arbi-
tration in the bus interconnect (Paolieri et al. 2009a, Ungerer et al. 2010). In a recent
publication, Yoon et al. (2011) refined round-robin arbitration proposing a harmonic
round-robin arbitration. In that way, memory intensive programs are given access to
the bus more frequently by prioritising them in the bus scheduling. Further approaches
for predictable bus arbitration using a TDMA scheme are presented by Andrei et al.
(2008), Schranzhofer et al. (2010). Staschulat et al. (2007) state a different method for
estimating upper bounds for memory latencies by linking task- and system-level analyses.
A number of publications (see e.g. Cullmann et al. 2010, Ferdinand et al. 2001, Hansson

et al. 2009, Hardy et al. 2009, Heckmann et al. 2003, Kelter et al. 2011, Mohan et al. 2011,
Puschner and Schoeberl 2008, Rosen et al. 2007, Wilhelm et al. 2009a,b, Yan and Zhang
2008) target timing analyses of multi-core processors, especially shared cache memories,
scratchpad memories, (shared bus) interconnects, and memory controllers, but without
the scope for multithreaded parallel programs.
Chattopadhyay et al. (2012) introduce a unified WCET analysis framework for multi-

core platforms, extending their previous presented work (see Chattopadhyay et al. 2010).
They start with a multi-core processor build from a simple-scalar processor (see Austin
et al. 2002) with shared cache memories and a shared bus. For the WCET analysis they
employ the chronos tool (cf. Li et al. 2007) in an updated version for multi-core proces-
sors. They analyse multiprogrammed (singlethreaded) workload, that is the Mälardalen
WCET benchmarks6. Chattopadhyay et al. (2012) focus on the microarchitectural influ-
ences of the pipeline and cache on the estimated WCET, but do not cover multithreaded
parallel program execution so far.

6see http://www.mrtc.mdh.se/projects/wcet/benchmarks.html for the source code and details on
the Mälardalen WCET benchmarks [last accessed: April 2013]

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

4. WCET ANALYSIS OF SYNCHRONISATIONS 87

Li et al. (2009) present WCRT analyses of a concurrent program running on shared-
memory multi-core processors with a shared instruction cache. The communication is
handled by message passing, and shared-memory synchronisation is not examined. Li et
al. (2009) focus on the interference on a shared cache of multiple tasks of one application,
and they derive WCRTs for different cache policies on abstract representations—Message
Sequence Charts (MSC)— that allow for introducing communication between tasks.
The problem of (static) timing analyses of multithreaded parallel HRT programs has

only recently started to get more attention in the research community, for example Lisper
(2012) presents a short survey on the analysability of different parallel programming
models for HRT systems, e.g. bulk synchronous parallel (BSP) (cf. Skillicorn et al.
1997) and CUDA7.
An example that incorporates predictable architectures, that is the precision timed

(PRET) architecture (cf. Edwards and Lee 2007), for predictable programming for HRT
embedded systems is presented by Lickly et al. (2008). They also present how e.g.
mutual exclusion can be handled in their approach. On the one hand, they argue that
accesses to memory are always atomic by the use of a memory wheel implementation
in PRET architectures. On the other hand, they apply timing instructions to enforce
correct ordering of memory accesses for mutual exclusion. That is by providing distinct
offsets as deadline at the beginning of the program, Lickly et al. (2008) enforce that e.g.
a read and a write operation of a consumer-producer communication are executed in
different rotations of the PRET architecture’s memory wheel.
Gustavsson et al. (2010) present the chain of a possible static WCET analysis of

multi-core architectures. They use timed automata to model the various components
of a multi-core architecture, including private and shared caches, but also software-level
shared resources like spin locks. The WCET of a program is then derived by model
checking. In a later publication, Gustavsson et al. (2012) then present a possible static
timing analysis of parallel HRT programs using abstract interpretations. So far, they
introduce and proof their concept on those abstract representations, but yet no locks in
parallel programs have been studied.
Mittermayr and Blieberger (2012) present a framework to analyse concurrent pro-

grams using so-called concurrent program graphs (CPGs). The CPGs are created from
Refined Control Flow Graphs which, in turn, are based on CFGs. Then, the timing anal-
ysis is done using a dataflow analysis approach based on previous work by Blieberger
(2002). In contrast to most other static WCET analysis frameworks, which start from
representations of the binary code, their framework starts from source code representa-
tion. However, taking into account that the underlying timing analysis abstracts from
microarchitectural properties (pipeline, caches, memory hierarchy etc), this might be
reasonable for the approach, but most likely not practical. The approach seems overly
pessimistic in that case and might lead to highly overestimated upper bounds. This
influence of a compiler, thus the differences in source and binary code representations,
and the microarchitectural properties are not discussed by the authors.

7More details on CUDA are available at NVIDIA’s website at https://developer.nvidia.com/
category/zone/cuda-zone [last accessed: April 2013]

https://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/category/zone/cuda-zone

88 4. WCET ANALYSIS OF SYNCHRONISATIONS

But, the abstraction from microarchitectural properties and the use of a source code
representation might lead to non-safe upper bounds. That is in the case of timing
anomalies (cf. Reineke and Sen 2009), but also depending on properties of the pipeline,
local instruction and data memories, the memory interconnect, shared resources, etc.
Then, the requirement of a constant timing of a basic block execution, as assumed
in the approach presented by Blieberger (2002), might not hold. Thus, it is possible
that the control flow and data flow changes with variable execution times of one basic
block, and that the abstract representation constructed from source code representation
is not sound. Also, the authors present a proof for an example with two threads and a
semaphore secured communication between them in a theoretical way. It is questionable
if such a representation could actually cover the interaction of atomic hardware primitives
and software synchronisation techniques in practice.
Wolf et al. (2010a, 2011) introduce the basic principles of analysing the WCWTs in

synchronisation functions. The idea is to determine all the paths on which a thread
holds any system-level or application-level synchronisation variable, and their estimated
WCETs are combined to compute the WCWTs at synchronisation points. Rochange et
al. (2010) present first results on the static WCET analysis of an industrial, parallel HRT
program with a static WCET analysis. Rochange et al. (2010) consider a limited set of
synchronisation functions based on the swap instruction. The grain of the parallelism in
their program is more coarse-grained than in the programs considered in this thesis so
that the cost of synchronisations compared to the computation time is relatively small.
Gerdes et al. (2012b) then extended and further investigated predictable HRT capable
implementation of common software and hardware synchronisation techniques, and their
impact on the program’s WCET. Gerdes et al. (2012b) use TAS, and F&I/F&D as hard-
ware primitives, and mutex locks, semaphores, and barriers as software synchronisation
techniques. Chapter 3 (and parts of this chapter) are based on that publication, but
show further extensions and refinements. Gerdes et al. (2011) present WCET results on
a parallelised large drilling machine control code using the commercial, measurement-
based WCET tool Rapitime (see Rapita Systems Ltd. 2011).
Brandenburg et al. (2008) investigated in a survey real-time resource sharing in multi-

processors with lock-based and non-blocking techniques. They compare spinning busy-
waiting locks against blocking (suspension-based) locks against lock-free and wait-free
algorithms. The study has been conducted on their Linux test-bed called LITMUSRT

(LInux Testbed for MUltiprocessor Scheduling in Real-Time systems) on a COTS sym-
metric multiprocessing (SMP) system (four cache-coherent Intel XeonTM processors).
They conclude that, concerning resource sharing, suspension-based locking is “never
preferable” over busy-waiting locking using state-of-the-art analysis techniques, and if
not more than 20% of the entire program is spent in critical sections (which Bran-
denburg et al. (2008) state to be highly unlikely). Although the study is based on
measurements on the one hand, and on a system that is not sufficiently predictable to
be used in real-time systems on the other hand, the results are similar to the findings in
this thesis for synchronisation in multithreaded parallel HRT programs on a predictable
shared-memory multi-core processor.

Time is what keeps everything from happening at once. – Raymond King Cummings

5 Split-phase Synchronisation Technique

The idea of the split-phase synchronisation technique is to speedup the very frequent
loads from a slow (off-chip) memory by a technique that slightly defers the infrequent
synchronisation (RMW) accesses. As detailed in the chapters before, a major ratio of
pessimism is introduced from using WCMLs in the WCET analysis, that is including
overly pessimistic interferences on shared resources in the static analysis. The split-
phase synchronisation technique alleviates the effect of slower memory operations in the
execution itself, however, the main advantage stems from its effect in the static WCET
analysis of parallel programs, that is a vast reduction of pessimism for the WCMLs of
faster memory operation, thus, a reduction of the overall estimated WCET.
As stated by Cullmann et al. (2010):

“[It] is an open problem how to limit the information loss about concurrently running
tasks by suitable abstractions. Hence, limiting inherent interferences must be a high-
priority design goal: if there can be no interferences at all in the concrete system, it
is easy for an analysis to exclude interferences even when abstracting completely from
other tasks. One first principle for predictable architecture design is to strive for a good
compromise between cost, performance, and predictability, concerning the sharing or
duplication of resources.”.
In the case of analysing the timing of parallel programs executing on multi-core pro-

cessors, one main problem is to estimate the WCET of a concurrent code region in which
synchronisation functions are used. In a static WCET analysis it has to be assumed that
faster memory accesses like data loads, data stores or instruction fetches, which are usu-
ally the most frequent memory operations in a program, are executed with concurrent
slower synchronisation operations of other cores. Thus, this core suffers from pessimism
for every memory operation in the WCET analysis. One well-known solution to reduce
the latency of memory operations from a global memory is duplicating data to local
memories. In the case of the MERASA multi-core processor, this is done through tim-
ing predictable scratchpad memories (see e.g. Metzlaff et al. 2011, Ungerer et al. 2010,
Whitham and Audsley 2009). It is, however, also a well-known fact that not all data can
be replicated to local memories without reaching memory space limitations or increasing
the latencies of local memories. Therefore, in this chapter, the split-phase synchronisa-
tion technique is introduced as an alternative solution to duplicating shared resources.
The split-phase technique achieves a reduction of the pessimism in the WCET by split-
ting atomic RMW operations into three phases (load phase, modification phase, and
store phase). This allows for execution of other memory operation, e.g. load operations,
in between these phases. It is important that data consistency and the atomicity of the
split RMW operation is not invalidated by an advanced memory operation that is exe-
cuted in between these phases. In Section 5.2.4 it is shown that atomicity and memory
consistency are adhered with the weak consistency model of Adve and Hill (1990).
Please note that this chapter presents extended work on the split-phase technique

based on a publication at the 18th IEEE Int’l Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’12) (see Gerdes et al. 2012a).

90 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

In Section 5.1, different solutions for atomicity of RMW operations as mandatory
primitives for software synchronisations are discussed, including locking of the complete
interconnect and implementing synchronisation logic outside of the core, e.g. as the aug-
mented memory controller (introduced already in Section 3.2). In Section 5.2 a possible
implementation of the split-phase synchronisation technique is presented. The aim is
to achieve a timing predictable, and atomicity/consistency maintaining implementation
of the split-phase synchronisation technique in the augmented memory controller. The
split-phase synchronisation technique is independent of the MERASA architecture: it is
adaptable for being used in other shared memory multi-core processors as well.
Section 5.3 presents an evaluation of the split-phase synchronisation technique. Firstly,
the computation of WCMLs with the split-phase technique is shown (see also Sec-
tion 4.2), and the impact on WCET guarantees is quantified. Concluding, results of
the WCET computation for two parallelised HRT programs are presented to show the
beneficial impact of the split-phase synchronisation technique on WCET estimates com-
puted with a static timing analysis tool.

5.1. Introduction to the Split-phase Synchronisation Technique

In the augmented memory controller, all upcoming requests are queued and executed
in FIFO ordering maintaining fairness between cores by the arbitration strategy of the
memory bus. Accesses are categorised into single memory accesses like a load or a store,
and in RMW accesses on synchronisation variables composed of a load, a possible data
modification, and a subsequent store. The RMW accesses are split in a load/modifica-
tion phase and a store phase, and the memory address of a RMW access is buffered. If
consecutive RMW accesses request the same memory address, that is the same synchro-
nisation variable, the actual RMW access needs to complete the store phase before the
next RMW access begins its load phase to retain correctness. Also, single load and store
operation might access synchronisation variables (see e.g. Algorithms 3.1, 3.2). There-
fore, they are also not allowed to interrupt an ongoing RMW operation, that is when the
load phase of the RMW operation has already started. In case of an upcoming memory
access to a different address, that is a different variable then the synchronisation vari-
ables accessed before, that access can be executed in between the load and store phase
of the previous access without violating data consistency and atomicity of the synchro-
nisation primitive. Then, to achieve reduced WCMLs for normal loads/stores, memory
operations are reordered in the augmented memory controller. Load/store operations
are prioritised over RMW operations, while keeping consistency with weak ordering as
defined by Adve and Hill (1990). Additionally, an extra data bit, the reorder flag, is
attached to every memory operation. The reorder flag prevents RMW operations from
being delayed infinitely, while also guaranteeing the best possible worst-case for the pri-
oritised load/store operations. In summary, the split-phase synchronisation technique
allows to reduce the WCMLs for faster memory accesses, e.g. an instruction fetch or data
load, but with the sacrifice of an increased impact on the WCMLs of RMW operations.

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 91

B M1Core 1 (RMW)

Core 2 (Load)

M2 M3
... Mn B BC M1 M2 M3

... Mm B

BB M1 M2 M3
... MnXXX X X X X X X X X X B......

(a) Locked interconnect

CB M1Core 1 (RMW)

Core 2 (Load)

M2 M3
... Mn M1 M2 M3

... Mm B

B BM1 M2 M3
... MnXX X X X X X XX B

(b) Augmented memory controller

CB M1Core 1 (RMW)

Core 2 (Load)

M2 M3
... Mn M1 M2 M3

... Mm B

B BM1 M2 M3 MnX X X

...X X X
...X B ...

...

(c) Augmented memory controller with Split-Phase Synchronisation

Figure 5.1.: Memory access pattern for RMW operations with a locked intercon-
nect (a), with the augmented memory controller (b), and with the
split-phase synchronisation technique implemented in the augmented
memory controller (c).

5.1.1. Discussion on Solutions for Atomicity of RMW Operations

The Figures 5.1(a) and 5.1(b) have been already discussed in Section 3.1.4. Including
the split-phase synchronisation technique and its impact on the latency introduced to
competing cores on the memory interconnect, presented in Figure 5.1(c), a comparison
of the three different approaches is done.

As already discussed in Section 3.1.4, the augmented memory controller reduces the
WCML for every memory access in comparison to a solution with a locked interconnect.
However, due to needed pessimism in the WCET analysis to compute safe upper bounds,
the WCML of normal load and store operations are still high, as it is assumed they
compete with concurrent (slower) RMW operations at the bus interconnect to access
the shared memory. This pessimism in the static timing analysis can be reduced by
applying the split-phase synchronisation technique.

Figure 5.1(c) shows the reduction of the WCMLs of normal loads and stores, as they
are allowed to execute in between the load and store phase of a RMW operation. In
detail, the store phase of the RMW operation in Core 1 is deferred (red boxes with
’X’ in Figure 5.1(b)) by the split-phase synchronisation technique, and executed in the
memory controller after the load in Core 2 is finished. Thus, normal load and store op-
erations, that are not accessing the same synchronisation variable as memory operations
dispatched before them, suffer less latency from competing RMW operations. Further
discussions on the impact of the split-phase synchronisation technique on the WCMLs
and the estimated WCETs of parallel programs are presented in Section 5.3.

92 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

5.2. Implementation in the Augmented Memory Controller

The split-phase synchronisation technique has been implemented in the augmented mem-
ory controller of the MERASA multi-core processor. In detail, the RMW operations are
split into three phases: a load phase, a modification phase, and a store phase. Other
memory operations that do not access the same variable are allowed to be brought for-
ward and executed before the store phase of the RMW operation. The target of the
split-phase synchronisation is to achieve WCMLs for loads/stores that are, in a manner
of speaking, the best possible worst-case. That means that the WCMLs of loads/stores
only depends on concurrent (fast) loads/stores and not on concurrent (slower) RMW
operations from other cores. Memory requests are handled as described in Section 3.1.1.
For the split-phase synchronisation, further hardware changes in the augmented memory
controller are needed to allow reordering while preserving atomicity (see Section 5.2.4).
The following proposed implementation does not claim to be the best possible tech-

nical solution. Further enhancements might decrease the needed logic and space, or
even increase the average-case performance. However, from the worst-case timing anal-
ysis perspective the aim is to proof that a working technical implementation is possible
that fulfils the requirements of consistency and atomicity for the split-phase synchro-
nisation technique. Therefore, the focus is not on the details and size of the technical
implementation, but on the approval of predictable worst-case timing.
The proposed hardware implementation in the augmented memory controller uses two

register files as FIFO buffers for memory requests (see Figure 5.2). One register file, the
mem_buffer, is used to store all memory requests, whereas the other register file, the
reorder_buffer, is used as a temporary buffer to reorder the load/store requests of split
RMW operations and load/store accesses on synchronisation variables. Also, an addi-
tional buffer (sync_buffer) is used to store synchronisation variables and a counter for
each ongoing synchronisation access. Synchronisation accesses are either RMW opera-
tions, or also load/store operations on synchronisation variables, as e.g. a store in the
unlock() operation of a TAS spin lock (cf. Section 5.3.1). Please note that for sim-
plification of the proposed implementation and the static WCET analysis it would be
possible to prohibit the use of load/store accesses on synchronisation variables in coding
guidelines for the programmer. Also, replacing the above mentioned store in TAS locks
with a RMW operation is possible. However, in the following those load/store accesses
on synchronisation variables are allowed, and are considered in the implementation and
evaluation of the split-phase synchronisation technique. The split-phase synchronisation
technique is integrated in the augmented memory controller, that is between the memory
interconnect–the real-time bus–and the SDRAM (see Figure 5.2). The SDRAM logic
is retained as standard SDRAM and is not subject to any changes by the split-phase
technique. Without the split-phase synchronisation technique, the reorder_buffer and
the sync_buffer would not be needed, but the mem_buffer and synchronisation logic
is already included in the augmented memory controller (see Section 3.2). Despite the
implementation in the memory controller of an SDRAM, it would also be possible to
include the techniques in the controller of a shared (data) cache memory, e.g. an L2
cache, as long as predictability can be assured.

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 93

reorder_buffer

(Predicable) SDRAM-Controller

Augmented
Memory

Controller

Real-time Bus

2storeRMW b 0

SDRAM

1load a 0
2loadRMW b 0

mem_buffer

Incoming request (load, store, RMW)

Reorder phase
(after dispatch)

Dispatch (load, store)

Update

2storeRMW b 1

Memory
response

From and
to cores

RMW modification feedback

3storeRMW b 1

3loadRMW b 1

4load c 0

3loadRMW b 1
3storeRMW b 1

b 4
sync_buffer

synchronisation logic
(modification phase)

returned value

returned value

(load, store) returned value

Decoding RMW
operations

Figure 5.2.: Schematic overview of the augmented memory controller with ad-
ditional implemented hardware for the split-phase synchronisation
technique (see also Figure 3.3).

Memory requests are distinguished between load/store and RMW operations in the
augmented memory controller. In Figure 5.2 the following syntax for different memory
requests is used: 1load a for a load from core 1 on memory address a, 2loadRMW b and
2storeRMW b for the load respectively the store phase of a RMW operations on memory
address b from core 2. In the mem_buffer, respectively the reorder_buffer, each row
represents a memory operation (in the first column) associated with a reorder flag (second
column). The reorder flag is either ’0’ to flag a memory operation that should never be
reordered (e.g. for normal load and store operations that do not access synchronisation
variables), whereas a ’1’ as reorder flag allows reordering for the corresponding memory
operation.
In the following sections, the course of events for memory operations with the split-

phase technique are described, that is the handling of incoming requests, the dispatching
of memory requests to the SDRAM logic, and the reordering of memory requests in case
the split-phase synchronisation technique is applied to RMW operations.

94 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

5.2.1. Incoming Requests

For an incoming load/store operation the augmented memory controller first checks if the
memory operation accesses a synchronisation variable that is already being accessed and
therefore would be in the sync_buffer (see Figure 5.2). If not, the load/store operation
is just added to the mem_buffer without setting the reorder flag. In the other case, it is
added with the reorder flag set, and the counter of the accessed synchronisation variable
is incremented in the sync_buffer (second column in each row of the sync_buffer). The
reorder flag is used in the reorder phase (see Section 5.2.3), and memory accesses with
the reorder flag set are not allowed to be brought forward as that could possibly breach
data consistency. For example, if a store operation at memory address a arrives after
a previous arrived RMW operation on the same memory address a, the store operation
must be dispatched either before the RMW operation, or after it, but not in between.
Please note that if normal load or store operations on synchronisation variables are

forbidden, e.g. by coding guidelines (see also discussions in Sections 3.3 and 4.3), it
would be possible to simplify the above presented process. Then, in the case only
RMW operations are allowed to access synchronisation variables, the other load/store
operations do not need to check whether they access a synchronisation variable, and thus
are just appended to the mem_buffer without the reorder flag set. This could be useful if
the comparison of accessed memory addresses with the content of the sync_buffer takes
too long, which mostly depends on the size of the sync_buffer and the frequency at
which the memory controller operates. Then, that additional latency would only apply
to RMW operations, but does not influence normal load and store operations. However,
then it must be assured that memory operations on synchronisation variables are always
and only done with RMW operations, as otherwise data inconsistencies are possible.
When a RMW operation is detected, the load and store accesses are split, and, if no

other synchronisation request on that variable is stored in the sync_buffer, the memory
address of the RMW operation is added to the sync_buffer with the counter set to two.
In the mem_buffer both accesses are stored, where only the reorder flag of the storeRMW
is set, but not for the loadRMW access. On the other hand, if there is already an access
to that synchronisation variable in the sync_buffer, the counter for that address will be
increased by two (e.g. to four as depicted in Figure 5.2 for the synchronisation variable
b), and both split accesses are stored in the mem_buffer with the reorder flag set. This
is done as in the reordering phase it must be assured that this RMW operation must not
start before the store phase of the previous ongoing RMW operation on the same memory
address is completed to maintain data consistency. Nonetheless, memory operations that
are not accessing the same synchronisation variable can be executed in between the latter
RMW operation, or even before it (details are presented in Section 5.2.3).
The size of the sync_buffer must be sufficient to hold N entries, where N is the

maximum number of concurrently executed hardware threads in the multi-core proces-
sor. For the case of the MERASA multi-core processor, which only allows one HRT
thread to be executed on each core, it is sufficient to reserve one row for each core in
the sync_buffer. However, in a more general case, the number of rows needed in the
sync_buffer corresponds with the number of possible concurrently executed threads.

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 95

5.2.2. Dispatching

Each time the memory controller is ready to dispatch a new request from the
mem_buffer, it checks the reorder flag of the first entry in the mem_buffer. If the
reorder flag is not set, that memory request is dispatched. Else, the next memory re-
quest without the reorder flag set will be selected from the mem_buffer and dispatched,
and the reordering starts. If there is no request without the flag set, the first entry is
dispatched and also the reordering phase starts.
An example in which only memory operations with the reorder flag set are in the

mem_buffer can be constructed from Figure 5.2. If the memory access 4load c would
not be in the mem_buffer, and no new memory accesses enter the memory controller,
only memory operations with the reorder flag set would be in the mem_buffer after the
first two accesses (1load a and 2loadRMW b) are dispatched. Then, the next memory
operation dispatched would be 2storeRMW b, even with the reorder flag set, as it will be
the first in the list, and the other two remaining memory operations (3loadRMW b and
3storeRMW b) also have the reorder flag set.
When a memory access to a synchronisation variable is dispatched, the counter of the

corresponding memory address in the sync_buffer is decremented (see edge labelled Up-
date from mem_buffer to sync_buffer in Figure 5.2). Furthermore, the synchronisation
logic is notified what kind of memory access is currently processed. This is needed as
either the memory access will be finished and dispatched directly to the cores over the
real-time bus (dotted edge in Figure 5.2), e.g. for a normal load or store operations.
Or, for a RMW operation that does not need the loaded value for modification, that
is a TAS operation, the synchronisation logic updates the corresponding store in the
mem_buffer without losing an extra cycle for the modification in the synchronisation
logic. All other RMW operations, for instance an F&I/F&D operation, need to modify
the loaded value and then transfer it to the corresponding store of that RMW operation
in the mem_buffer. Dispatched memory accesses are standard SDRAM accesses, and
are handled in the same way as without the split-phase synchronisation technique (also
see Section 5.2.5).

5.2.3. Reordering

The reordering phase is the main phase of the split-phase synchronisation technique. It
assures the best possible worst-case for load and store operations, that is for N cores
only load/store operations of the N − 1 other cores are executed before each load/store
operation. Also, the reordering ensures that the load and store phase of RMW operations
are not deferred infinitely and are eventually dispatched with the best possible WCML
that can be achieved under the requirement that load/store operations are handled with
priority. The reordering phase kicks in if the memory access on top of the mem_buffer
has the reorder flag set. However, this means that that access is not executed as long as
other memory requests without the reorder flag set are in the mem_buffer. In Section 5.3
details on the worst-case access behaviour and the corresponding WCMLs for normal
memory accesses and those on synchronisation variables are presented.

96 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

In the reordering phase all accesses in the mem_buffer with the reorder flag set are
moved to the reorder_buffer. For the first access that is moved to the reorder_buffer,
e.g. 2storeRMW b in Figure 5.2, the reorder flag is set to ’0’. It is instantly dispatched if
no other memory request without reorder flag, that is a normal load/store operation, is
waiting in the mem_buffer. The deletion of the reorder flag is needed, as otherwise the
waiting load/store phase of a RMW operation might be deferred infinitely by incoming
concurrent normal load/stores of other cores that would be executed before that waiting
store (see also the worst-case access pattern in Figure 5.3). When all accesses in the
mem_buffer are processed, the accesses in the reorder_buffer are appended, with the
updated reorder flags, to the mem_buffer.
For instance, in Figure 5.2 the reorder phase would start after the two accesses 1load a

and 2loadRMW b are finished, and the first access on top of the mem_buffer would be
an access (2storeRMW b) with the reorder flag set. Then, the accesses with the reorder
flag set are moved to the reorder_buffer, and the 4load c access would advance to the
top of the mem_buffer. The reorder flag of the 2storeRMW b access, that is the first
memory operation in the reorder_buffer, is deleted (as depicted in Figure 5.2), and then
the three accesses in the reorder_buffer are moved and enqueued in the mem_buffer.
The implication of reordering on data consistency is discussed in detail in Section 5.2.4.

5.2.4. Consistency and Atomicity of RMW Operations

A mandatory requirement is to maintain atomicity and consistency of RMW operations,
meaning that the parallel program must be still functional correct when using the split-
phase synchronisation technique.

Atomicity

Atomicity of split RMW operations is trivially satisfied. That means that 1) neither the
accessed variable is changed by other accesses than the ongoing RMW operation, and
2) nor can the RMW operation finish incomplete (e.g. meaning that the store phase
never finishes). Load/store accesses to other variables are brought forward and executed
in between the load/modification phase and the store phase of a split RMW operation.
However, this means that also load or store phases of a split RMW operation could
access other variables than an ongoing other RMW operation, and therefore those load
or store accesses could also be executed in between or before the other RMW operation.
Though, the accessed variable is not changed between the load/modification phase and
the store phase, and requirement 1) holds. Through the logic in the reordering phase it is
achieved that every waiting memory request is dispatched eventually, that is the waiting
time for every access to be finished has an upper bound. So, 2) is also satisfied, and
thus the split-phase synchronisation technique does not breach the atomicity of RMW
operations. The atomicity of normal load/store operations is trivially asserted in the
MERASA multi-core processor as loads/stores only access one memory word at a time.
Please note that for processors that read or write in bursts (e.g. to fetch a complete
cache line), this might not be the case.

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 97

Consistency

It is assumed that the programmer takes care of explicit synchronisation, e.g. critical
sections are secured with locks and temporal dependencies are handled with barriers—
both implemented with RMW operations as detailed in Chapter 3. Also, it is presumed
that the hardware and software implement consistency as described in Section 2.2, that is
the weak consistency model–weak ordering–as proposed by Adve and Hill (1990). They
define weak ordering “[i]n a multiprocessor system” as follows: “[...] storage accesses are
weakly ordered if (1) accesses to global synchronizing variables are strongly ordered, (2)
no access to a synchronizing variable is issued by a processor before all previous global
data accesses have been globally performed, and if (3) no access to global data is issued
by a processor before a previous access to a synchronizing variable has been globally
performed.”
It must be assured that the split-phase synchronisation technique maintains these

requirements to adhere to the weak ordering consistency model. The MERASA multi-
core processor, due to in-order program execution in the cores, only dispatches one
memory request from a core at a time to the memory controller. Shared data is only
stored in one memory location, the global memory, so memory operations on shared
data are complete (and hence visible) for all cores after the memory operation finishes.
Also, as stated above, critical sections need to be secured by the programmer, e.g. with
locks as described in Chapter 3: in Section 3.1.3 consistency has been discussed for
synchronisation operations without the split-phase synchronisation technique. Access to
shared synchronisation variables is done with RMW operations, which are implemented
atomically. The split-phase synchronisation technique splits a RMW operation into two
memory operations, a load and a store operation, and allows to execute other memory
operations in between.
The requirement (1), strongly ordered accesses to synchronisation variables, is main-

tained by the use of reorder flags in the augmented memory controller and atomicity
of RMW operations. For each incoming memory access to a synchronisation variable,
either a load, store, or RMW operation, an entry in the sync_buffer is added or updated.
According to already ongoing or waiting memory requests on synchronisation variables,
reorder flags of incoming memory accesses are assigned (see Section 5.2.1). Together
with the FIFO logic of the mem_buffer and reorder_buffer, the logic of the reordering
phase, and atomicity of memory operations as detailed above, it is assured that the ac-
cess to synchronisation variables is strongly ordered by a first come, first serve (FCFS)
policy. Though, the FCFS policy only holds from the view of the memory controller, as
depending on the arbitration of memory requests in the interconnect—in the case of the
MERASA multi-core processor this is a round-robin arbitration between cores at the
bus interconnect—memory requests might not be answered in the order they are ready
at the core level, but in the order they arrive at the memory controller. Nonetheless, to
maintain weak ordering consistency, it is sufficient that accesses to shared synchronisa-
tion variables are strongly ordered in the memory controller, as the “storage access” (see
Adve and Hill 1990) is executed directly after the arbitration in the memory controller,
and thus requirement (1) is satisfied.

98 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

In the following it is shown that weak consistency requirements (2) and (3) are also
retained with the split-phase synchronisation technique. As an example a parallel pro-
gram part with Pthreads from POSIX (2008) is used in which each thread/core executes
the same worker function with concurrent accesses to a lock-secured critical section (see
Listing 5.1), respectively a barrier (see Listing 5.2).

Listing 5.1:
Example parallel code parts for critical sections secured by locks for discussions on

consistency with the split-phase synchronisation technique.
Core 1 Core 2

A1) pre−c r i t i c a l s e c t i o n code B1) pre−c r i t i c a l s e c t i o n code

A2) lock entry code B2) lock entry code
A3) c r i t i c a l s e c t i o n B3) c r i t i c a l s e c t i o n
A4) lock e x i t code B4) lock e x i t code

A5) post−c r i t i c a l s e c t i o n code B5) post−c r i t i c a l s e c t i o n code

Listing 5.2:
Example parallel code parts for barriers for discussions on consistency with the

split-phase synchronisation technique.
Core 1 Core 2

C1) pre−ba r r i e r code D1) pre−ba r r i e r code

C2) b a r r i e r entry code D2) b a r r i e r entry code
C3) wai t ing B8) wai t ing
C4) b a r r i e r e x i t code B9) b a r r i e r e x i t code

C5) post−ba r r i e r code D5) post−ba r r i e r code

With the help of the example in Listings 5.1 and 5.2 it is shown, that neither global
shared data accesses, e.g. from the critical sections (see lines A3/B3) in Listing 5.1),
conflict with accesses on global shared synchronisation variables (requirement (2) in the
weak consistency model), that is memory operations on synchronisation variables in the
lock entry/exit code (see lines A2/B2 and lines A4/B4 in Listing 5.1), nor the other way
around (requirement (3) in the weak consistency model). The same must hold for the
code sections C1/D1 to C5/D5 for barriers in Listing 5.2.
As a reminder, it is mandatory that an access to global shared data is explicitly secured

with locks by the programmer, which is part of the demands of the weak consistency
model. If, for instance, in the example in Listing 5.1, the programmer would not secure
the access to shared data accessed in lines A3/B3 within a critical section, e.g. lines A2
and A4 would not be existent, requirement (2) and (3) of the weak consistency model
could fail.

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 99

That is the lines A3 and B2/B3/B4 are then executed concurrently by Core 1 and
Core 2 without the required mutual exclusion. Please note that this would even conflict
with the weak consistency model when no reordering is performed by the split-phase
synchronisation technique.
Requirement (3) of the weak consistency model prohibits to access shared global data

before correct access synchronisation has been performed, e.g. in the example in List-
ing 5.1 the access to memory operations in line A3 is only allowed after the synchroni-
sation operation in line A2 is successfully finished. Vice versa, requirement (2) of the
weak consistency model implies that synchronisation operations are only started after
previous memory operations on global shared data are finished. For instance, the syn-
chronisation operations in line A4 that unlock the critical section need to be executed
after all memory operations from line A3 are finished. This is trivially true for one core,
as memory operations issued from a core are ordered, and only one memory operation
is dispatched at a time: no other memory operation from that core is dispatched until
the previous is finished (cf. Section 4.1.3). Thus, also no memory operation from line
A1 are executed after or in between memory operations A3, as well as no memory oper-
ations from line A5 are executed before or in between memory operation from line A3,
respectively A1.
Moreover, if Core 1 executes a memory operation from line A3, that is in the critical

section, Core 2 must not execute memory operations from line B3 as well to not break
the consistency requirement. Core 1 only executes memory operations from line A3, if
and only if the previous synchronisation in the lock entry code in line A2 are completely
and successfully finished, that is Core 1 holds the lock for the critical section (lines
A3/B3). To retain the requirements of the weak consistency model, Core 1 must not
execute operations from line A3, as long Core 2 has not finished the lock exit code in
B4. This holds, as Core 1 can only progress from line A2 to A3 if the lock is successfully
gained, and that is only true after the lock has been successfully released by Core 2, so,
all synchronisation operations in line B4 are finished. This also holds with the split-phase
synchronisation technique as accesses to the same synchronisation variable are strongly
ordered as presented above. Therefore, when Core 1 is in the critical section (line A3),
Core 2 has either not acquired the lock and is executing memory operation from line
B2 or before, or Core 2 already released the lock for the critical section and therefore
executes line B5.
The very same holds for the barrier example beginning in lines C1/D1, as possibly

accessed global data in the pre-barrier code in lines C1/D1 must be executed before
accesses in the post-barrier code in lines C5/D5. This holds with the split-phase syn-
chronisation technique, as only one memory request per core is processed in the memory
at a time, so no memory requests from lines C5, respectively D5, can execute before
memory requests from line C1, and accordingly D1. In addition, no memory requests
from D5 are executed before memory requests from C1, and correspondingly for memory
requests from C5 and D1, as this could only happen if Core 2, respectively Core 1, would
both execute memory requests from lines C2/D2 to C4/D4, which is, in the same case
as above, not possible, as only one memory request per core is handled at a time (also
see discussion on software barriers in Section 3.3.6).

100 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

5.2.5. Related Work
The term split-phase synchronisation technique, introduced in this chapter, is not related
to the commonly known split-phase access introduced by Culler et al. (1993) in Split-C.
The split-phase synchronisation technique uses a similar technique as the LL/SC prim-

itive (also see Sections 2.2.4 and 3.2.4), which is e.g. used in the Alpha AXP (Sites 1993),
PowerPC (PowerPC ISA 2010), ARM (ARMv6-M ISA 2010, ARMv7-M ISA 2010), and
MIPS (MIPS32 ISA 2003) ISAs. The LL/SC implementations apply a coarse-grained
approach, namely they do not monitor changes on the granularity of memory words,
but lines of memory or even complete memory pages. LL/SC was initially intended to
scale well on large multiprocessors with distant shared memory. In summary, LL/SC
is a RMW operation implemented as part of the ISA, whereas the split-phase synchro-
nisation is a technique used on all implemented RMW operations inside the memory
controller. It splits their load, modification and store phases to reduce the worst-case
memory latencies of loads/stores by prioritising them over concurrent RMW operations,
and uses a fine-grained approach monitoring accessed synchronisation variables in the
memory controller.
Split-phase memory operations are also known from dataflow computing. The so-

called I-structures (see Arvind et al. 1989, Culler et al. 1991, Ungerer 1993) for the
access on big data structures in dataflow computers use read operations (I-Fetch) with
split phases, that is the actual read request is queued if the data element is not available
yet (marked with an empty bit). The process, however, can meanwhile progress, and the
requested value from the I-Fetch is returned as soon at is available (see also Section 3.2.4).
Akesson and Goossens (2011) introduce a pre-emptive service enabled by an atomizer

to maintain robustness in a predictable memory controller implementation using a static-
priority scheduler. This technique is similar to the split-phase synchronisation technique.
Though, the main goal of the split-phase synchronisation is to reduce the pessimism and
overestimation in the WCET analysis arising from the loss of information concerning
the concurrent accesses of cores at shared resources (see Cullmann et al. 2010), e.g. the
global memory.
Monchiero et al. (2005) present an augmented global memory controller, the

Synchronisation-operation Buffer (SB), to reduce contention for busy-waiting synchroni-
sation primitives in future mobile systems with complex NoCs. Their focus is on reducing
contention, and therefore enabling an efficient use of busy-waiting synchronisations like
spin locks. The goal of their technique is to decrease the average-case execution time
by speeding up slow synchronisation primitives, while also enabling fine-grained syn-
chronisations. Opposing to that, the focus of the augmented memory controller and the
split-phase synchronisation technique introduced in this thesis is on speeding up frequent
memory operations, like loads and stores, while slower synchronisation primitives, that
is RMW operations, are potentially delayed, resulting in an improved overall worst-case
performance, that is a lower worst-case guarantee. In conclusion, timing predictability
is highly influenced by the timing variability of different memory response times rather
than it is impacted by contention with the static timing analysis applied in this thesis.

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 101

A likewise approach of a synchronisation buffer technique, the Request-Store-Forward
(RSF) model, is proposed by Liu and Gaudiot (2007). Their RSF synchronisation model
splits synchronisations in three phases. In the request phase a process sends a synchro-
nisation request to the synchronisation buffer. Then, in the second phase, the request is
stored in a FIFO queue if the request cannot be served immediately while also switch-
ing the requesting process into sleep mode to eliminate contention. In the third phase,
the forward phase, the synchronisation buffer notifies a waiting process from the wait-
ing queue and sends the requested data, after the previous synchronisation request is
finished. The RSF model is, similar to I-structures and M-structures introduced in
dataflow computing (cf. Section 3.1.2), a more coarse-grained approach of splitting syn-
chronisation accesses compared to the fine-grained splitting of RMW operations with
the split-phase synchronisation technique proposed in this thesis.
Zhu et al. (2007) introduces a further synchronisation buffer, the Synchronisation

State Buffer (SSB), to achieve efficient fine-grained synchronisations in many-core pro-
cessors. Also, the aim of the SSB is to achieve better average-case performance for high
performance many-core processors. The SSB resides at each memory bank and caches
memory locations that are currently accessed by SSB synchronisation operations.
Though, the focus of the above techniques with synchronisation buffers is to decrease

the average-case execution time by speeding up slow synchronisation primitives, while
also enabling a fine-grained synchronisation. Furthermore, I-Structures and the RSF
model additionally aim to eliminate contention by suspending the waiting processes.
Contrarily, the split-phase synchronisation technique works on a even more fine-grained
level by splitting atomic RMW operations in the augmented memory controller. The
split-phase synchronisation technique aims at reducing the impact of pessimism in static
timing analyses introduced from the interference of slow memory operations with faster
ones. Hence, it supports WCET-efficient HRT capable synchronisation primitives, while
also reducing the pessimism and overestimation in static WCET analyses (see also Sec-
tion 4.1.2).
Although memory buffers, e.g. for store operations, are not implemented in the

MERASA multi-core processor employed in this thesis, the split-phase synchronisation
technique reorders memory accesses based on their nature, that is normal load/store ac-
cesses are prioritised over RMW memory operations. The reordering in the augmented
memory controller meets the demands of a weak consistency and data-race-free memory
model (see Adve and Hill 1990, cf. Section 5.2.4), as detailed in Section 5.2.4. To fur-
ther ease writing parallel programs, Devietti et al. (2011) propose a relaxed consistency
deterministic computer (RCDC) based on deterministic shared-memory multiprocessing
(DMP) (see Devietti et al. 2010). Their approach (DMP-HB) uses the data-race-free
relaxed memory model (see Adve and Hill 1990) with making use of happens-before (HB)
relations to achieve a lower amount of required memory fences. It might be interesting to
explore how such techniques can be implemented in the augmented memory controller
proposed in this thesis (see Section 3.2) in concert with the split-phase synchronisa-
tion technique, and also to investigate the impact of the DMP-HB algorithm on timing
predictability in embedded shared-memory multi-core processors in general.

102 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

5.3. Split-Phase Synchronisation Technique Evaluations

In the following the WCMLs of memory operations with the split-phase synchronisation
technique are formally determined, and WCET guarantees of two parallelised HRT pro-
grams are compared for their execution with different synchronisation techniques and
with and without the split-phase synchronisation technique. The evaluation settings for
the following sections are the same as introduced in Section 4.1.3.

5.3.1. WCMLs with the Split-Phase Synchronisation Technique

Two cases to determine the WCMLs of a HRT thread’s memory requests with the
split-phase synchronisation technique can be distinguished: 1) load/store operations
on non-synchronisation variables, and 2a) RMW operations respectively 2b) load/store
operations on synchronisation variables.
By prioritising load/store operations in the augmented memory controller with the

split-phase synchronisation technique, the WCML of a load/store from Equation 4.2
decreases, that is the load/store operation has to wait for the NHRT memory request
of its own core, and load/store operations of other cores, but not for RMW operations
of other cores. As a load operation TL takes longer than a store operation, it has to be
assumed that, in the worst-case, the other cores issue load operations, respectively a load
phase of a split RMW operations. Therefore, for case 1), the WCML for a load/store
on non-synchronisation variables is calculated rather simply as follows:

TWCML = THRT + 2 · TB + Tmax + (N − 1) · TL (5.1)

For the cases 2a) and 2b) the worst-case scenario is more complex. Figure 5.3 depicts
that worst-case scenario for case 2a), however, it also shows the case 2b) that, in the
worst-case, finishes in cycle 60 (59) for a load (store) on a synchronisation variable. To
explain that worst-case scenario in detail, an ordered list of operations σ is introduced,
where Lσx is a load operation of core x, and LPσy and SPσy are the load phase and
store phase of a RMW operations of core y. SPσ

∗
y stands for the store phase of a RMW

operation of core y with the reorder flag set (see Section 5.2.3), that is an operation
with lower priority. Now, it is necessary to keep in mind that in the reorder phase of
the split-phase synchronisation technique an operation SPσ

∗
y transforms into SPσy when

the reorder flag is deleted. With the consistency requirement in the MERASA processor
that only one memory operation of a core can be active at a time, and with N cores,
an ordered list of memory operations Lσ2 >L σ3 > ... >L σN >LP σ1 >SP σ∗1 in the
memory controller is achieved, with Lσ2 >L σ3 meaning that Lσ2 is executed before Lσ3.
For the worst-case scenarios in Section 4.2 without the split-phase synchronisation

technique that ordered list was never changed, as no σ∗ operations were involved, that
is memory operations with reorder flag set. Therefore, the worst-case was rather simple
to compute. For the cases 2a) and 2b) σ∗ operations need to be covered. The worst-case
scenario for a memory operation of core 1 is then after cycle 14 in Figure 5.3 as follows:
LPσ2 >SP σ∗2 > ... >LP σ∗N >SP σ∗N >LP σ∗1 >SP σ∗1.

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 103

NHRT access starts...

HRT access ready... HRT access starts...

Core 1

Core 2

Core 3

Core 4

-1 0 1 5 10 15 20 25 30 35 40

-1 0 1 5 10 15 20 25 30 35 40

-1 0 1 5 10 15 20 25 30 35 40

-1 0 1 5 10 15 20 25 30 35 40

Core 1

Core 2

Core 3

Core 4

40 45 50 55 60 65 70 75 80

40 45 50 55 60 65 70 75 80

40 45 50 55 60 65 70 75 80

40 45 50 55 60 65 70 75 80

Load StoreBus
from memory controller
to memory controller

F&I/F&D incr./decr. partF&I/F&D Load part F&I/F&D Store part

Legend:

HRT access continues ...

Figure 5.3.: WCMLs for a HRT RMW operation of Core 1 in a quad-core proces-
sor with the split-phase synchronisation technique.

Now, it needs to be assumed that once one of the other cores finishes its memory
operation, it sends a new memory request. To represent the worst-case, these memory
operations need to be σ operations (e.g. the loads of core 2 in cycles 26, 40, 59), as
then these memory operations are executed before the σ1 operations (see cycles 54 and
74 of core 1 in Figure 5.3). For σ∗ operations of the other cores this would not hold, as
they would be executed after the σ∗ operations of core 1, and therefore not representing
the worst-case. Taking this into account, in the worst-case

∑N−1
i=1 i operations Lσ are

executed before the SPσ
∗
1 operation. In summary, for an N -core processor with N > 2,

the WCML can then be computed as:

TWCML = 2 · TB + (N + 1) · Tmax + N · (N − 1)
2 · TL − (N − 1) (5.2)

104 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

For case 2b), as mentioned above, the WCML of loads/stores on synchronisation
variables is similar to the WCML of RMW operations. But, the store and modification
phase is omitted. An access to a synchronisation variable then starts, in the worst-
case, in the same cycle as the load phase of a RMW operation in Core 1 as depicted in
Figure 5.3, but finishes already in cycle 59 (store) respectively in cycle 60 (load). The
WCML is then calculated for N > 2 as:

TWCML = THRT + 2 · TB +N · Tmax + (N − 1) · TL − (N − 2) (5.3)

In Table 5.1 the WCMLs of memory accesses on a quad-core respectively an eight-
core MERASA processor with and without the split-phase synchronisation technique
are depicted. For both configurations, the memory latency of a load operation has
been fixed to either five cycles or ten cycles (for a store operation that means four
respectively nine cycles latency). The WCMLs for normal loads/stores is decreased
for every configuration, i.e. up to 40% for an eight-core with ten cycles load latency
(bottom right of Table 5.1). Other memory operations on synchronisation variables, that
is load/store operations or RMW operations, have higher WCMLs with the split-phase
synchronisation technique. The impact of the split-phase synchronisation technique on
the pessimism in the WCETs, and under which circumstances the split-phase technique
is proven to be beneficial in terms of WCET guarantees, is discussed below.

Table 5.1.:
Parametric WCMLs for different memory operations (Mem.Op.) in the MERASA

WCET model for four, resp. eight cores, and a memory latency of five, resp. ten cycles
with (denoted as WCMLSPS) and without the split-phase synchronisation technique.

Cores Memory Latency for a Load Operation

5 cycles 10 cycles

4 Cores

Mem.Op. WCML WCMLSPS

load 47 32
store 46 31
ld/st(sync) 47/46 60/59
TAS 51 79
F&I/F&D 52 79

Mem.Op. WCML WCMLSPS

load 92 62
store 91 61
ld/st(sync) 92/91 118/117
TAS 101 159
F&I/F&D 102 159

5 cycles 10 cycles

8 Cores

Mem.Op. WCML WCMLSPS

load 87 52
store 86 51
ld/st(sync) 92/91 119/118
TAS 91 225
F&I/F&D 92 225

Mem.Op. WCML WCMLSPS

load 172 102
store 171 101
ld/st(sync) 172/171 234/233
TAS 181 455
F&I/F&D 182 455

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 105

Figures 5.4, 5.5, 5.6, and 5.7 depict the WCMLs of different configurations in more
detail. The impact on the WCET of parallel programs can be derived from Table 5.3 (see
Section 5.3.3): the augmented memory controller with the split-phase synchronisation
technique improves the overall WCET guarantee by 1.03 to 1.30.

5.3.2. Impact on Pessimism in the WCET
One major impact on the pessimism in the WCET stems from the lack of knowledge on
parallel accesses to shared resources in parallel programs. From Table 5.1 the correlation
of types of memory accesses and the impact on the estimated WCET in a quad-core
MERASA processor can be calculated. If n depicts the percentage of executed normal
loads/stores, and m the percentage of executed RMW and load/store operations on
synchronisation variables in the worst-case path of a parallelised HRT program, the
split-phase synchronisation technique produces better upper bounds if:

32 · n+ 79 ·m ≥ 47 · n+ 52 ·m
⇒ 32 · n+ 79 · (1− n) ≥ 47 · n+ 52 · (1− n)

⇒ n ≥ 27
42 (5.4)

with n,m ∈ [0, 1] ∧ n+m = 1.

So, for four cores, the split-phase technique achieves lower upper bounds, if more
than 64.3% of all memory operations in the worst-case path of a parallel program are
load/stores, or, in other words, if less than 35.7% are RMW operations.
In the general case, the impact can be calculated from Equations 4.2 (WCMLs of

loads/stores/RMWs without the split-phase synchronisation technique), 5.1 and 5.2
(WCMLs of loads/stores/RMWs with the split-phase synchronisation technique). Using
again n for the percentage of normal loads, and m for the percentage of RMW opera-
tions, the following inequation (that is also depending on the number of cores N , and
the latency TL of a load operation) holds:

(TL + 2 · TB + 2 ·N · TL) · n + (2 · TL + 2 · TB + 2 ·N · TL) ·m

≥ (TL + 2 · TB + (N − 1) · TL) · n + (2 · TB + (N + 1) · 2 · TL + N · (N − 1)
2 · TL

−(N − 1)) ·m

with Tmax = 2 · TL and n,m ∈ [0, 1] ∧ n+m = 1.

⇒ (TL + 2 ·N · TL) · n + (2 · TL + 2 ·N · TL) ·m

≥ (TL + (N − 1) · TL) · n + ((N + 1) · 2 · TL + N · (N − 1)
2 · TL − (N − 1)) ·m

106 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

⇒ N · TL · n ≥ TL · n+ (N · (N − 1)
2 · TL −N + 1) ·m

⇒ n

m
≥ N

2 −
N + 1

(N − 1) · TL

Now, if TL increases, that is the latency of a normal load operation increases in the
memory controller, the percentage of how many normal loads n need to be executed (so
that the split-phase synchronisation technique is beneficial) converges. For simplification,
the following assumption TL →∞, with n+m = 1⇔ m = 1− n leads to:

n

1− n ≥
N

2 ⇒ 2 · n ≥ N · (1− n)⇒ n · (2 +N) ≥ N

⇒ n ≥ N

N + 2 (5.5)

Solving Inequation 5.5 shows (that is if TL → ∞): if at least N
N+2 of the executed

memory operations in the worst-case path are loads/stores, the split-phase synchronisa-
tion technique produces lower upper bounds. Please note that this fraction is an upper
bound on the percentage of needed executed normal memory operation in the worst-case
path and would decrease if TL <∞.
Table 5.2 presents the results of how many normal loads/stores are needed in the worst-

case path for three to eight cores in the MERASA multi-core processor. Certainly, this
may not hold for any number of cores, as e.g. the equation for the WCMLs of RMW
operations on synchronisation variables includes the number of cores N as a quadratic
term. However, eight cores connected over a shared bus to one memory controller is a
feasible limit for a shared-memory multi-core processor (see Ungerer et al. 2010), and the
split-phase technique is still beneficial if not more than 20% of all memory operations
in the worst-case path are RMW operations on synchronisation variables.

Table 5.2.:
WCET impact of the split-phase synchronisation technique for N cores in the

MERASA multi-core processor. n depicts how many percentage of memory operations
in the worst-case path need to be normal loads/stores to produce lower upper bounds in

the WCET with the split-phase synchronisation technique.

Number of Cores N Minimum Percentage n for (Normal) Loads/Stores

3 60.0%
4 66.6%
5 71.4%
6 75.0%
7 77.7%
8 80.0%

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 107

These results, however, only give a hint when looking at the source or binary code
of a parallel program, as it denotes the correlation between executed memory opera-
tions in the worst-case path of the program. That is, to decide whether the split-phase
synchronisation technique achieves better WCET guarantees, the really executed RMW
operations versus the total memory operations in the worst-case path need to be taken
into account. This is most likely different compared to a ratio that could be computed
by just counting memory operations in the source/binary code, as loops and branches
must be acknowledged. Still, comprising that parallel programs mostly contain only
few synchronisation operations, e.g. many load operations are needed for instruction
fetches, it can be concluded that the split-phase synchronisation technique is beneficial
for the estimated WCETs of almost all parallelised programs. To quantify the different
ratios, the OTAWA tool has been enhanced to output the number of RMW and total
memory operations in the worst-case path. This allows for making practical decisions
about the usefulness of the split-phase synchronisation technique. The evaluations in
Section 5.3.3 show that the number of RMW operations in the worst-case path of those
programs is between 2.82% and 32.16% for a quad-core MERASA processor. So, the
requirement of more than 66.6% of all memory operations in the worst-case path are
normal loads/stores (see Table 5.2) holds for those examples.
The reduction of the WCMLs of a load operation with the split-phase synchronisation

technique is depicted in the difference of Figures 5.4 and 5.5, whereas the increase of
WCMLs for a RMW operation is shown by comparing Figures 5.6 and 5.7. The memory
latency (x-axis in all figures) describes the number of cycles per load in the augmented
memory controller. The number of cores (y-axis) is changed from four to eight cores,
and the corresponding WCMLs (z-axis) are then presented as a 3D map. The WCMLs
are computed on the basis of Equation 5.1 for the WCMLs of a load operation, and
Equation 5.2 is used to compute the WCMLs of a RMW operation. The hue of grey
colour in the figures depicts the WCMLs, that is a higher WCML results in a lighter
grey, and a darker grey depicts a lower WCML. In the Figures 5.4, 5.5, 5.6, and 5.7 this
grey scale is shown on the right hand side of each figure.
For the two different operations, that is load and RMW operations, the differences that

are caused in the WCMLs when applying the split-phase technique versus not using the
split-phase technique are easy to spot in the figures. For load operations in Figures 5.4
and 5.5, the WCMLs are much lower when using the split-phase synchronisation tech-
nique, and the impact of increasing the memory latency or the number of cores is not as
high as for the case without the split-phase technique. However, for RMW operations,
the results are different. As shown in Figures 5.6 and 5.7, the split-phase technique
increases the WCMLs by a high factor, and as the number of cores is a quadratic term
(see Equation 5.2), it does not scale well for a higher number of cores. Nonetheless, with
and without the split-phase technique, the increase in the WCML of RMW operations
is more sensitive to the number of cores than it is to the memory latency of a load
operation (see also Section 4.2).

108 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

 5
 6

 7
 8

 9
 10

#cycles for a load
 4

 5

 6

 7

 8

#cores

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

WCMLs

 40

 60

 80

 100

 120

 140

 160

 180

Figure 5.4.: WCMLs of load operations without the split-phase synchronisation
technique represented in a 3D map. The hue of the grey squares
represents the WCML for that configuration (see also the scale on
the right side).

 5
 6

 7
 8

 9
 10

#cycles for a load
 4

 5

 6

 7

 8

#cores

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

WCMLs

 30

 40

 50

 60

 70

 80

 90

 100

 110

Figure 5.5.: WCMLs of load operations with the split-phase synchronisation tech-
nique represented in a 3D map. The hue of the grey squares represents
the WCML for that configuration (see also the scale on the right side).

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 109

 5
 6

 7
 8

 9
 10

#cycles for a load
 4

 5

 6

 7

 8

#cores

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

WCMLs

 40

 60

 80

 100

 120

 140

 160

 180

 200

Figure 5.6.: WCMLs of RMW operations on synchronisation variables without the
split-phase synchronisation technique represented in a 3D map. The
hue of the grey squares represents the WCML for that configuration
(see also the scale on the right side).

 5
 6

 7
 8

 9
 10

#cycles for a load
 4

 5

 6

 7

 8

#cores

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

WCMLs

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Figure 5.7.: WCMLs of RMW operations on synchronisation variables with the
split-phase synchronisation technique represented in a 3D map. The
hue of the grey squares represents the WCML for that configuration
(see also the scale on the right side).

110 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

5.3.3. WCET Guarantees of Parallelised HRT Programs
In this section WCET guarantees of two parallelised programs, matmul and IFFT, are
presented. Both have been implemented with three kinds of primitives to guard critical
sections: mutex locks (see Section 3.3.3), binary blocking semaphores (see Section 3.3.5)
and ticket locks (see Section 3.3.4). In addition, IFFT includes software barriers and
was compiled with barriers implemented using either subbarriers and conditionals or the
F&I primitive (see Section 3.3.6). Details on the two parallelised programs and WCET
analyses without the split-phase synchronisation technique are presented in Section 4.4;
estimated WCETs with the split-phase synchronisation technique are discussed below.
The WCET guarantees have been computed for a quad-core MERASA processor, with

a bus latency of one cycle. In the WCET model no real SDRAM memory is simulated,
but the upper bounded latency time for each memory access is used for the WCET
estimates, that is five cycles for a load, and four cycles for a store. These values are
typical for embedded SDRAM operating with up to 200 MHz and those values were
derived with an in-house build FPGA prototype of the MERASA multi-core processor.
For the synchronisation primitives nine (5+4) cycles for a TAS and ten (5+1+4) cycles
for F&I/F&D are accounted for (also see Section 4.1.3). For a F&I/F&D operation
the loaded value needs to be incremented or decremented, and the manipulated value
is stored back. Therefore, the latency of a F&I/F&D is higher than for a TAS. In
detail, one extra cycle needs to be taken into account in the memory controller to
increment/decrement the loaded value. The WCWTs, introduced from the different
software synchronisations, are included as detailed in Section 4.3.

Table 5.3.:
WCET estimates (# cycles) of synchronisation techniques for a quad-core MERASA
processor from OTAWA with and without the split-phase synchronisation technique.

matmul Mutex Semaphore Ticket Lock

without split-phase 1,589,483 1,221,477 1,044,762
split-phase(WCET improv.) 1,348,313(1.18) 1,058,139(1.15) 803,544(1.30)

IFFT Conditional Subbarriers Mutex Semaphore Ticket Lock

without split-phase 288,781 224,196 204,933
split-phase (WCET improv.) 258,883 (1.12) 207,219 (1.08) 175,698 (1.17)

IFFT F&I Barriers Mutex Semaphore Ticket Lock

without split-phase 209,572 135,420 120,817
split-phase (WCET improv.) 169,816 (1.08) 131,760 (1.03) 102,850 (1.17)

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 111

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

mutex lock

semaphore

ticket lock

1

1.3

1.4

1.1

1.4

1.6

1.6

2.1

2.4

1.7

2.2

2.8

Normalised WCET improvement (IFFT)

without split-phase (subbarrier) with split-phase (subbarrier)
without split-phase (F&I barrier) with split-phase (F&I barrier)

Figure 5.8.: WCET guarantee improvements on a quad-core MERASA processor
for the parallelised IFFT using different software synchronisations
with and without the split-phase synchronisation technique.

Figures 5.8 and 5.9 depict the improvement of WCET guarantees for the analysed
four-threaded IFFT and matmul program. The WCET improvement is normalised on
the reference WCET estimate derived from the parallelised IFFT, respectively matmul,
with mutex locks, conditional subbarriers (only for IFFT ; matmul uses no barriers), and
without the split-phase synchronisation technique. On the one hand, F&I barriers out-
perform subbarriers, and ticket locks outperform binary semaphores and mutex locks,
but the main point is the WCET improvement when using the split-phase synchronisa-
tion technique. The results in Table 5.3 show an improvement of the WCET guarantee
when using the split-phase synchronisation technique of up to 1.17 for the IFFT pro-
gram with ticket locks and both barrier implementations. From Table 5.3, the WCET
improvement for matmul with the split-phase synchronisation is up to 1.30, that is for
the matmul program with ticket locks. Also, the results in Table 5.3, and Figures 5.8
and 5.9 show that a WCET improvement with the split-phase technique is achieved for
all used software synchronisations.
Figure 5.8 shows that applying different barrier implementations for IFFT yields in

high changes in the normalised WCET improvement. The use of F&I barriers, instead
of using conditional subbarriers, produces better WCET guarantees—with and without
the split-phase synchronisation technique—no matter which locking technique is used.

112 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

Overall, when taking all software synchronisations into consideration, the improve-
ment of the WCET guarantees using the split-phase synchronisation technique is up to
2.8 for the parallelised IFFT program, that is the IFFT version with conditional sub-
barriers, mutex locks and without the split-phase synchronisation technique compared
to the version with F&I barriers, ticket locks, and with the split-phase synchronisation
technique used (cf. Figure 5.8).
For matmul (see Figure 5.9) a similar improvement of the WCET guarantees is

reached. The baseline for the normalised WCET improvement is again the version
of matmul with mutex locks and without the split-phase synchronisation technique. The
impact of the split-phase synchronisation technique is higher for matmul than for IFFT
for all three locking techniques (cf. Table 5.3), that is up to 1.3 for ticket locks with
versus without the split-phase technique. The overall WCET improvement for matmul
when using ticket locks and the split-phase technique of 2.0 is similar to the improve-
ment of IFFT, when the different barrier implementation are not taken into account.
That is the WCET improvement of IFFT using F&I barriers and ticket locks with the
split-phase technique vs. mutex lock without the split-phase technique is also around 2.
To discuss the effect of the split-phase synchronisation technique on the improvement

of worst-case guarantees, Table 5.4 depicts the ratios of synchronisation operations, that
is RMW operations against total memory operations in the worst-case path of the two
analysed parallel programs.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

mutex lock

semaphore

ticket lock

1

1.3

1.5

1.2

1.5

2

Normalised WCET improvement (matmul)
without split-phase synchronisation technique
with split-phase synchronisation technique

Figure 5.9.: WCET guarantee improvements on a quad-core MERASA processor
for the parallelised matrix multiplication (matmul) using different
software synchronisations with and without the split-phase synchro-
nisation technique.

5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE 113

Table 5.4.:
Ratio of synchronisation operations vs. total memory operations in the worst-case path

for matmul and IFFT derived from OTAWA. The special cases which show higher
improvements in the WCET guarantees are in bold type (versions with ticket lock).

(a) matmul (30x30 matrix)

Synchronisation Total Mem. Operations Sync. Operations Ratio

mutex lock 19,345 2,057 10.63%
binary semaphore 16,258 2,732 16.80%
ticket lock 16,710 472 2.82 %

(b) IFFT with subbarriers

Synchronisation Total Mem. Operations Sync. Operations Ratio

mutex lock 1,835 279 15.20%
binary semaphore 1,583 392 24.76%
ticket lock 1,673 212 12.67 %

(c) IFFT with F&I barriers

Synchronisation Total Mem. Operations Sync. Operations Ratio

mutex lock 1,280 204 15.94%
binary semaphore 883 284 32.16%
ticket lock 1,088 92 8.46 %

Table 5.3 shows that the improvement of worst-case guarantees with the split-phase
synchronisation technique is higher for matmul as it is for IFFT, that is 1.30 for matmul
versus 1.17 for IFFT. Also, the highest gain is achieved for the program configurations
which apply the ticket lock synchronisation. The reason for this effect is the ratio
of synchronisation memory operations to the total memory operations in the worst-
case path of the parallelised programs, depicted in Table 5.4: for matmul this ratio is
lower (between 2.82% and 16.80%) than for IFFT (between 8.46% and 32.16%). As
already discussed above, the possible gain with the split-phase synchronisation technique
is sensitive to the number of synchronisation operations in the worst-case path. The
critical ratio for which a benefit can be achieved depends on the number of cores, and
for the used settings in the evaluation above with four cores it is 66.6%. From the ratios
presented in Table 5.4, it is easy to see that for the IFFT program with subbarrier
and binary semaphores this ratio is only just satisfied. Therefore, the gain for this
configuration with the split-phase synchronisation technique is rather low, that is 1.03
(cf. Table 5.3). On the other hand, the configuration of matmul with ticket locks shows
a very low ratio of 2.82%, and hence the highest improvement of worst-case guarantees
of 1.30 (see Table 5.3).

114 5. SPLIT-PHASE SYNCHRONISATION TECHNIQUE

Please keep in mind that both analysed programs have been chosen to benchmark
the WCET of synchronisation primitives, hence ratios of RMW versus total memory
operations in the worst-case path of other, real-world parallel HRT programs might be
actually lower. Thus, even higher improvements of WCET guarantees might then be
achieved.

The past may not repeat itself, but it sure does rhyme. – Mark Twain

6 Application of Synchronisation Techniques

Writing parallel programs is still a difficult and error prone effort. This is true for
functional correctness, however, in real-time embedded systems further challenges arise
from the requirement to fulfil non-functional properties, i.e. predictable timing and
fault tolerance. In this thesis, the focus is on timing properties of synchronisations
in parallel programs, though the functional behaviour and correctness also influences
the timing behaviour of parallel HRT programs. In the previous chapters the basics and
requirements for synchronisation of parallel programs in real-time systems are introduced
(cf. Chapters 2 and 3), implementations for timing predictable synchronisations in
hardware and software and their static timing analyses are presented (cf. Chapters 3
and 4), and optimisations for better worst-case performance described (cf. Chapter 5).
Besides the challenges in static timing analyses introduced from hardware complex-

ity, coping with software complexity needs to be taken into account as well. One
observation—e.g. as stated below by Gebhard et al. (2011)—is that standard coding
guidelines are not sufficient to enforce predictable timing (even more so for parallel HRT
programs):

“Our experience with static timing analysis of embedded software systems shows
that the analysis complexity varies greatly. As discussed above, the software structure
strongly influences the analyzability of the overall system. Existing coding guidelines,
such as the MISRA-C standard, partially address tier-one challenges encountered during
WCET analysis. However, solely adhering to these guidelines does not suffice to achieve
worst-case execution time bounds with the best precision possible. We usually suggest
to document the software system behaviour as early as possible—desirably during the
software design phase—to tackle the tier-two WCET analysis challenges. Otherwise,
achieving precise analysis results during the software development testing and valida-
tion phase might become a costly and time consuming process.” (Gebhard et al. 2011)

Yet, it is still challenging for a programmer to produce timing predictable parallel
code, as well as statically analysing the WCET of the parallel code on a multi-core
processor is a complex task. One problem in static timing analyses stems from missing
information on concurrent execution.
In this chapter an approach is presented to ease the effort of static WCET analysis,

and timing analysable and predictable parallelisation. The approach compromises the
transfer of information from the point of view of a programmer to the timing analysis
(and vice versa), as well as only using parallel design patterns and synchronisation idioms
to enforce robust, timing analysable parallel program code. The use of pre-defined, tim-
ing predictable synchronisation idioms helps, on the one hand, programmers in choosing
the right synchronisation mechanisms for a given platform, and, on the other hand, also
includes the necessity of providing annotations for the static timing analysing. In sum-
mary, applying synchronisation techniques that are timing analysable and well-known
to the timing analyser, enables to fabricate timing predictable parallel HRT programs.

116 6. APPLICATION OF SYNCHRONISATION TECHNIQUES

In Section 6.1 a short introduction to design patterns in the domain of general purpose
computing is given. Section 6.2 details how parallel design patterns for HRT systems
are envisioned, and especially links the hardware and software implementations for pre-
dictable synchronisation, presented in this thesis, in the synchronisation idioms layer of
those design patterns. The chapter closes with related work on parallel design patterns
and parallelisation of real-time programs in Section 6.3.

6.1. Design Patterns

Design patterns have been first introduced by Alexander et al. (1977), providing ex-
perience and knowledge on how to build places and estate that are “alive”. The novel
approach of Alexander et al. (1977) involves the residents in the conceptional design.
Later, the idea of design patterns has been adapted in software engineering with the
change that not the user is in the centre point of design, but the programmer.
According to Baroni et al. (2003), design patterns were first introduced to the domain

of software engineering by Beck and Cunningham (1987) for graphical user interfaces for
the object-oriented programming language Smalltalk. The final advent of design patterns
in programming has been achieved by the so-called Gang of Four (GoF) with their pub-
lication of “Design Patterns - Elements of Reusable Object-Oriented Software” (Gamma
et al. 1995). Also, the yearly conference on Pattern Languages of Programs (PLoP) and a
series of books (Coplien and Schmidt (1995), Vlissides et al. (1996), Martin et al. (1997),
Harrison et al. (2000), and Manolescu et al. (2006)) emerging from these events, made
design patterns very popular in the domain of software engineering. Later also followed
a series of books on POSA - Pattern-Oriented Software Architecture by Buschmann et
al. (1996), and among others, for concurrent programming in JAVA (Lea 2003), Patterns
in JAVA (Grand 2002), and design patterns for real-time systems by Douglass (2006).

6.1.1. Programming with Design Patterns
In the domain of software engineering, design patterns provide widely approved, reusable
solutions to recurring problems (cf. Baroni et al. 2003), and examples and descriptions
how they could and should be used. Therefore, design patterns should reflect forces
and motivations, and state clearly which problem context they affect. Design patterns
are preferably independent of platforms, architecture, etc., hence abstract representa-
tions. Design patterns should also be mostly independent of programming languages;
however, design patterns, for example in the scope of object-oriented programming lan-
guage, might be a bit different for JAVA respectively Smalltalk, C# or C++. In con-
trast, idioms also solve recurring problems, but with a limited scope, as e.g. presented
by Coplien (1992) for C++. Idioms are mostly more specific about underlying exe-
cution platforms, application domains, or programming languages. In this thesis, also
two layers of abstractions (see Section 6.2) are introduced: the parallel design patterns
as platform-independent solutions, and synchronisation idioms as a platform-dependent
solution for timing predictable synchronisation techniques, e.g. provided by an OS or
API for a given multi-core platform.

6. APPLICATION OF SYNCHRONISATION TECHNIQUES 117

Classification Design patterns are usually integrated in a pattern catalogue, a pattern
system, or even more sophisticated in a pattern language. A pattern catalogue typically
just collects and lists a number of design patterns, but does not reflect the connections
between those design patterns. Pattern systems can be seen as an extension to pat-
tern catalogues, allowing for simplification of extending existing patterns, and showing
relations between them. Also, pattern systems reflect contextual dependencies and clas-
sifications, e.g. on different abstraction levels. Pattern languages are more complex
and “[...] they also initiate with their users to guide them through the solution spaces
they span.” (Buschmann et al. 2007, p. 290) Pattern languages are a “real” language
with grammar, syntax and context. They integrate the software engineer and lead him
through different pattern systems to compose complex systems. References to other
(diverse) design patterns form a network of design patterns.

Anti-Pattern Another kind of design patterns are so-called anti-patterns. They high-
light what a programmer or user must not do. Often coding guidelines (see e.g. Holzmann
2006) rely on such anti-patterns, however, (good) anti-patterns go one step further, that
is they do not only point out why a solution is a bad solution, but they also point out
forces and motivation for it, and reference better solutions or fitting design patterns.
Anti-patterns often motivate their application (or not-application) with what sounds
like a good idea in the first place, but turns out to be a bad idea later. An example for
such a motivation for an anti-pattern is the famous Brooks’ law: “Adding manpower to
a late software project makes it later.” (see Brooks (1975) and the updated and revised
20th anniversary edition by Brooks (1995)).

6.1.2. Parallel Design Patterns
In an interview with John Hennessy and David Patterson in 2006, Hennessy stated: “[...]
when we start talking about parallelism and ease of use of truly parallel computers, we’re
talking about a problem that’s as hard as any that computer science has faced.” (see
Olukotun 2006) In this context, Asanovic et al. (2009) present an outlook on future
programming for highly parallel systems. They state that they envision that the general-
purpose parallel programmer will work on frameworks, which are itself based on one
specific parallel design pattern. As example Asanovic et al. (2009) cite the very successful
use of Ruby on Rails for sequential processors, which is a framework based on the Model-
View-Controller design pattern.
Mostly, the approaches incorporating parallel design patterns also include ideas from

the structured parallelisation approaches from Carriero and Gelernter (1989) and Foster
(1995) (a detailed summary on those approaches is given by Ungerer 1997, p.87ff). A
structured integration of parallelisation approaches into a design pattern language for
(general-purpose) high-performance computing is done by Mattson et al. (2004) (based
on previous work of Massingill et al. (1999, 2001a,b)).

118 6. APPLICATION OF SYNCHRONISATION TECHNIQUES

Mattson et al. (2004) present their pattern language categorised into three abstrac-
tion layers1. A high-level layer lists structural patterns (e.g. Map Reduce and Process
Control) and computational patterns (Dense Linear Algebra and Sparse Linear Algebra
for example). A mid-level layer consists of parallel algorithm strategy patterns (e.g. task
parallelism and data parallelism and implementation strategy patterns, which is further
split into program and data structure. The program structure patterns include master-
worker and fork-join patterns, while the data structure layer consists of patterns like
shared hash table or distributed array. On the low-level, concurrent execution patterns
(formerly parallel execution patterns) are introduced. They are also split into two cate-
gories, that is Advancing Program Counters patterns like dataflow and speculation, and
coordination patterns like message passing and transactional memory.

6.2. Parallel Design Patterns for Hard Real-Time Programs

So far, parallelisation approaches for HRT programs are still in an early research phase.
One approach is currently investigated in the EU-project parMERASA2, and in the
following the preliminary baseline of that approach is presented. The parallelisation
approach is split into two layers to meet the specific needs of real-time systems. On
the lower level synchronisation idioms, that is platform-dependent solutions to ease
the computation of WCET guarantees for synchronisations, are introduced, while on
the higher level parallel design patterns provide platform-independent practices to form
the overall structure of timing predictable parallel HRT programs. However, (parallel)
design patterns provide reusable solution to recurring problems, hence, they allow for
variability in the solution, meaning that not only one distinct solution might be derived
from them, but different classes of solutions are possible. So, applying parallel design
patterns might still allow for too much variation in the resulting parallel HRT program
to enable the computation of tight WCET guarantees with static timing analysis tools.
Therefore, one issue, which is so far not accounted for in the presented preliminary par-

allelisation approach, is to further reduce the possible variability of solutions to tighten
the possible design space to more distinct structures that can be more easily analysed
with static timing analysis tools. But, design patterns are limited in providing such tight
structures, without losing the reusability property. Thus, it might be advantageous to
expand the pattern-based parallelisation approach by an additional layer between the
higher-level of applying design patterns and the lower level of platform-dependent syn-
chronisation technique.
A possible additional layer or additional part of parallel design patterns, currently un-

der investigation in the parMERASA project, might be formed from algorithmic skele-
tons (see Jahr et al. 2013a,b, and also Sections 6.2.2 and 6.3 for more details).

1see also Our Pattern Language (OPL), a pattern language for parallel programming (version 2.0) at
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns [last accessed: April 2013]

2see parMERASA project website at www.parmerasa.eu [last accessed: April 2013]

http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
www.parmerasa.eu

6. APPLICATION OF SYNCHRONISATION TECHNIQUES 119

6.2.1. Meta-Patterns

In the following, meta-patterns for the two layers of the real-time capable parallelisation
approach are shown. They are based on the structure proposed by Mattson et al. (2004)
and Keutzer et al. (2010), who describe the following scheme as meta-pattern (e.g. for
their pattern language OPL1):

1. Name
2. Problem
3. Context
4. Forces
5. Solution
6. Invariants
7. Example
8. Known uses
9. Related patterns

10. References
11. Authors

A meta-pattern provides the skeleton for writing design patterns in a form that is
reused for all patterns (of a pattern catalogue, system or language). This eases the
usability, readability and application of those design patterns, while also allowing for
experts to introduce new—and edit existing—design patterns.
Modifications to the above presented meta-pattern structure, for the approach de-

picted in the following, are introduced from a real-time perspective. That is how to
include the mandatory real-time requirements for programmers, and how to include
the possible output for (static) timing analysis tools, too. Also, the forces/motivation
part includes motivational aspects that are necessary or helpful in the real-time domain.
Furthermore, the meta-patterns for the introduced parallel design patterns and synchro-
nisation idioms are slightly different, that is both meta-patterns are adjusted to their
abstraction level. The meta-patterns should be well-defined to not enforce later modi-
fications to their structure, as this would lead to rewriting all existing design patterns
and idioms to fulfil those structure. However, changes in the design patterns and idioms
itself are sincerely welcome, that is design patterns evolve and including best-practices
from a wide range of experts promises to bring ahead the best solutions.

6.2.2. Meta-Pattern for Real-Time Parallel Design Patterns

The proposed meta-pattern scheme for parallel design patterns is based on state-of-the-
art meta-pattern, as e.g. the one proposed by Keutzer et al. (2010), Mattson et al.
(2004) (see 6.2.1). Additional items (6-8) are introduced to respect requirements arising
from a real-time perspective and the impact on the static timing analysis. They provide
information for programmers, and also highlight annotations and details that should or
need to be provided by the programmer for the static timing analysis.

120 6. APPLICATION OF SYNCHRONISATION TECHNIQUES

1. Name
Give your design pattern a unique name which should reflect what the pattern does.
Using unique names here helps to distinguish between patterns for discussions.

2. Problem
State which parallelisation problem the design pattern solves.

3. Context
Give examples and hints in which context this design pattern is helpful. For
instance, in which real-time domain or for which specific real-time problems could
this pattern be possible used (e.g. automotive domain, avionic domain, etc.)

4. Forces/Motivation
Motivate why this design pattern is a good solution to the above problem. Also
highlight if and how the design pattern helps to foster timing predictability.

5. Solution
Present the solution, describe the design pattern in detail. If the solution leaves
too much room for variance, check if it is better to split those into two separated
design patterns to foster timing analysable program structures.

6. Real-Time Prerequisites
State which prerequisites are mandatory, and which requirements arise from real-
time perspective.

7. Synchronisation Idioms
Give a list of synchronisation idioms which have to (can) be used for timing
analysable data exchange or progress coordination when applying this pattern.

8. WCET Hints
Generate input for the WCET analysis. Give hints to the WCET analysis from
what is decided by this design pattern, e.g. which parts of the parallelised code
need to be annotated, and which information are needed in the annotation files.

9. Example
Present an example (code and graphical representation) on how the design pattern
is used on a fitting problem. Also show in the example what information is needed
for the WCET analyses, e.g. how and which annotations are needed, or how the
application might influence the timing behaviour.

10. Known Uses
Put references to exemplary known uses of this design pattern.

11. Related Patterns
Name related design patterns which might also be of interest for the programmer.

12. References
Add references which are helpful for the programmer, including publications de-
scribing the algorithm in detail, prove correctness or analyse the timing behaviour.

13. Authors
State your names and contact info.

6. APPLICATION OF SYNCHRONISATION TECHNIQUES 121

The synchronisation idioms category (item 7) should provide a list of stand-alone
idioms on synchronisation techniques. E.g. when using a specific parallel design pattern,
the programmer might have different requirements on how the data between concurrently
parallel HRT threads is exchanged, or how the progress is coordinated. That might be,
for instance, a last is best strategy, or it might be required that the threads notify each
other on each change of the data. Those different cases would then result in different
synchronisation idioms. Also, the use of the synchronisation idioms, or in more detail
their property of timing analysability, highly depends on the chosen ISA, the RTOS,
and the programming model. For example it might be possible that a given platform
supports the use of real-time transactional memory, whereas another platform requires
lock-based synchronisation. So, each synchronisation idiom presents different timing
analysable solutions, e.g. lock-based or non-blocking synchronisation techniques, on
different platforms.
Also, as already discussed above, it could be advisable to further extend parallel

design patterns with algorithmic skeletons to reduce the possible design space of resulting
programs. One possibility would be to integrate them, similar to synchronisation idioms,
as a separated item in each pattern. This could allow for providing platform-depended
code skeletons that are applicable for the chosen design pattern.
Another possibility could be to integrate such programming skeleton in very specific

examples (item 9), which then provide a tight structure, and only allow for adding
user code in between given or generated code structures. Both approaches could be
even further extended to build complete frameworks from—or on top of—specific design
patterns, an approach which is for instance proposed by Asanovic et al. (2009) to support
and ease the development of parallel programs for highly parallel platforms.

6.2.3. Meta-Pattern for Real-Time Synchronisation Idioms

The data exchange and progress coordination between threads of a parallel program
at synchronisation points is an important factor concerning the estimation of WCET
guarantees (e.g. worst-case waiting times). On the one hand, for being able to compute
upper bounds at all, synchronisation techniques used at synchronisation points in a
parallel program need to be designed for timing analysability, and mostly also need to
be clearly understood by a static timing analyser or static timing analysis tool. On
the other hand, the overestimation and pessimism introduced from synchronisations
ought to be as low as possible to gain worst-case efficiency and performance, and timing
predictable behaviour.
Synchronisation techniques are very specific for a given execution platform, ISA, and

RTOS/system software, and the used programming model, that is mostly shared-memory
or message passing. Therefore, the programmer should select the synchronisation tech-
niques in dependence of those parameters. In the EU-project parMERASA2, an extended
pattern system (also including a number of different timing analysable synchronisation
idioms for the parMERASA processor architecture) is in development. The proposed id-
ioms should be used by application programmers as an interface for timing predictability
of synchronisations.

122 6. APPLICATION OF SYNCHRONISATION TECHNIQUES

Therefore, it is important to describe for an application programmer in detail (and
with examples) what a specific synchronisation idiom does, whereas it is important
for the static timing analysis to assure that the given synchronisation idiom is timing
analysable. By using the given, specific synchronisation idioms, it is possible to re-
duce the pessimism, which arises in the static timing analysis when using non-standard
synchronisations. And, even more severe, the use of non-standard, manually coded syn-
chronisation constructs might lead to a situation in which it is not possible for a static
timing analysis tool to compute a WCET guarantee at all, for instance when it is not
possible to recognise the semantic of that manually coded synchronisation construct. An
example for this is, when a programmer writes his own constructs for progress coordi-
nation, but is not aware that a solution exists, which already solves the same problem
(e.g. a barrier), and for which it is known how to analyse its timing behaviour. Then,
using the known, timing analysable barrier implementation would not change anything
for the semantic of the parallel program, but fosters a static WCET analysis with as
less pessimism as possible. Also, some synchronisation techniques might be preferred
over others, depending on their timing behaviour or availability on a given platform
respectively for a given RTOS, e.g. busy-waiting locks over blocking locks, or even
transactions or non-blocking algorithms. Please note that due to the tight link of the
synchronisation techniques to the chosen programming model, architecture, and even
the specific RTOS/system-software, the categorisation as idioms fits better than calling
them synchronisation patterns.

In the following, a meta-pattern scheme for the synchronisation idioms is described
with slight changes to the above introduced meta-pattern for the parallel design patterns.

1. Name
Give your synchronisation idiom a unique name which should reflect what the
idiom does.

2. Problem
State which synchronisation/communication problem the idiom solves, e.g. data
exchange or progress coordination.

3. Solution
Present the solution the idiom provides and describe the idiom in detail.

4. Requirements, Real-Time Prerequisites and WCET Recommendations
Describe what the specific requirements of the idiom are, and give details on what
the programmer should keep in mind when using this idiom, e.g. specific coding
guidelines (WCET recommendations). Also state which prerequisites are manda-
tory, and which ones arise from real-time perspective (WCET requirements).

5. Implementations
Give implementation details on the idiom and examples on how they are used,
e.g. describe in a list which programming models, architectures, RTOS versions,
etc. have to be used, respectively are guaranteed to be analysable for a given
platform/ISA/RTOS/...

6. APPLICATION OF SYNCHRONISATION TECHNIQUES 123

Implementation Example:
a) Programming Model: shared-memory [message passing, ...] Pthreads

[MPI, OpenMP, ...]
b) ISA: TriCore v1.3 [PowerPC v2.06, ...]
c) Processor: MERASA multi-core (Version T2) [Freescale P4080

(NSE1MMB), ...]
d) RTOS: MERASA system software (Version 1.0), [Wind River VxWorks

(Version 6.9), ...]
e) Types: type_t,

Initialisation: init_function(type_t);
Functions: acquire_function(type_t), release_function(type_t)

f) Pseudo-Code: Some lock function
1: acquire_lock //Enter critical section
2: //Remainder critical section
3: ...
4: release_lock //Leave critical section

6. WCET Annotation
Generate input for the WCET analysis. Give annotations for the static WCET
analysis from what is decided by this idiom that is for instance the number of
cooperating or competing threads, ids at synchronisation points to refer from the
source code to the annotation file, etc. If annotations depend on the above chosen
implementation, state it here. If annotations require specific formatting for a given
timing analysis tool, then add an example.

7. Example
Present an example (code and graphical representation) on how this idiom is used
on a fitting synchronisation (data exchange/coordinate) problem, and how it is
annotated for the WCET analysis.

8. Known Uses
Put references to exemplary known uses of this idiom in as most detail as possible.

9. Related Synchronisation Idioms Name related synchronisation idioms which
might also be of interest for the programmer.

10. References
Add references which are helpful for the programmer. Also add e.g. refer-
ences to specific coding guidelines which are relevant when using this idiom
(ISA/RTOS/...).

11. Authors
State your names and contact info.

124 6. APPLICATION OF SYNCHRONISATION TECHNIQUES

6.2.4. Real-Time Parallel Design Patterns (Layer 1)
In this section an example of a real-time design pattern, the Periodic Task Parallelism
Pattern, is presented. In the EU-project parMERASA further parallel design patterns
are currently under investigation, and the here presented example has been derived from
a case study with Bauer Maschinen AG for a large drilling machine control code (Gerdes
et al. 2011), and is still under development.

1. Name
Periodic Task Parallelism Pattern

2. Problem
A number of tasks are executed periodically, either after each other in a random
order, or in a specific order. In the sequential case, the tasks are scheduled either
without a specific period, that is in some priority order, or, they are scheduled
by a given period. This period might be the same for all tasks; however, it is
also possible that different tasks have different periods, e.g. arising from their
deadlines. Often the tasks are executed inside a while(true)-loop (control loop)
on a sequential processor, and therefore interrupt the code that is executed in the
loop. Typically, the response time of tasks is an important factor.

3. Context
This problem occurs in the domain of machinery control systems, e.g. the control
code of large drilling machines of Bauer Maschinen (see [1]). In a control loop, the
design and flow of the program is directly derived from the tasks.

4. Forces/Motivation
Decomposing the sequential program into tasks is quite intuitive for such control
loop programs as they mostly already provide such a task structure. Therefore,
load balancing and distribution of tasks over a number of cores comes more or less
naturally. Moving tasks from a single-core processor environment to a multi-core
processor facilitates the potential of executing more tasks without increasing the
response time of those tasks too much.

5. Solution
Decompose the sequential program or problem into tasks. If a sequential version
already exists, there are most likely tasks that are scheduled in a given order.
These sequentially scheduled tasks could then be the tasks for the parallel version.
However, if further task dependencies exist, they need to be taken into account.
Also, it might be beneficial to further decompose specific computational intensive
tasks, e.g. by applying the Data Parallel Pattern. For communication and data ex-
change between tasks, respectively synchronisation of tasks, only the below stated
methods (7. Synchronisation) should be used for a given architecture/ISA/RTOS.
Now, the WCET of each task can be computed; in a first step this can be done
without accounting for worst-case communication and waiting times (or by just
assuming architecture depending constant worst-case latencies). The WCETs of
each task could then be used to account for a first mapping of tasks to threads/-
cores and a schedulability analysis. With those WCETs as a baseline, a further
agglomeration and load-balancing of tasks to cores might be needed.

6. APPLICATION OF SYNCHRONISATION TECHNIQUES 125

In a next step, the communication vs. computation ratio can be computed. If
possible, tasks that communicate very often or exchange much data should be
agglomerated into one core (localisation), or having low (worst-case) latencies.

6. Real-Time Prerequisites
The tasks need to be scheduled and mapped statically. To achieve an improved
worst-case performance, the agglomeration of tasks to threads, and the mapping
of threads to cores should be load-balanced on WCETs. Function calls which may
potentially suffer high latencies, e.g. by accessing slow I/O devices, should be
annotated for the parallelisation and also for the static timing analysis.

7. Synchronisation Idioms

a) Ticket locks (or other locking techniques) can be used to secure shared
access to resources and data by enforcing mutual exclusion, especially to en-
force atomicity of shared data access (the usability of blocking or busy-waiting
locking techniques depends on the platform and the analysis tool/method).

b) Semaphores can be used to coordinate accesses to resources, e.g. I/O de-
vices. Binary semaphores can be used to enforce mutual exclusion.

c) Barriers can be used to establish an order in which tasks should be executed.
d) Read/write locks can be used for access to shared data/resources allowing

multiple concurrent readers, but only one writer.
e) Blackboards can be used to allow for concurrent access when the accuracy

of the read values is of less importance.

8. WCET Hints
To compute an estimated WCET of every thread, the static timing analysis tool
needs to know which tasks are agglomerated into one thread/core, and also where
the data is located. Depending on the chosen synchronisation idioms, further
annotations and WCET hints must be provided as specified in the corresponding
synchronisation idiom.

9. Example
An example is the parallelisation of the large drilling machine control code of
Bauer Maschinen presented in [1], which was done in the EU-project MERASA
(see www.merasa.org). The sequential program was split into several tasks. The
new tasks have been derived directly from the sequential version (see Figure 1).
Each task on the right side of Figure 1, that is the main task, pulse-width modula-
tion (PWM) tasks, I/O tasks, and controller area network (CAN) tasks, have been
handled in a task array for a software scheduler in the sequential version. For the
parallelisation, these tasks have been agglomerated into threads, and then each
thread was mapped to one core of the quad-core MERASA processor; Figure 2
depicts the distribution of selected tasks. The bottom of Figure 2 shows a parallel
program version with included barriers after each thread has executed one task.
By this, memory contention is relaxed, and the program with synchronised releases
resembles the sequential version. However, the second step of load balancing was
not completed. In that second step, load balancing and further agglomeration of
tasks to threads could be done to increase the worst-case performance.

www.merasa.org

126 6. APPLICATION OF SYNCHRONISATION TECHNIQUES

Figure 1: The sequential task structure of the large drilling machine control
code (figure taken from [1]). On the left side: The main loop that
is interrupted by a scheduler at specific times (Ticks). On the right
side: The tasks and their classification in task arrays.

Figure 2: The distribution of tasks to the four cores of the MERASA quad-core
processor (figure taken from [1]). Top: Unsynchronised execution of
tasks. Bottom: Synchronised release of tasks enforced with barriers.

6. APPLICATION OF SYNCHRONISATION TECHNIQUES 127

For instance, from Figure 2, the tasks pwm1 and I/O2 could be executed both on
the same core, if the sum of the estimated WCETs of those two tasks would be
smaller than the WCET of the longest task in that iteration, that is can1.
Remark: This example should be further explored and detailed (e.g. with the
lessons learnt from case studies in the EU-project parMERASA).

10. Known Uses
Parallelisation of large drilling machine control code (see [1)).

11. Related Patterns

• Task Parallelism Pattern (high-performance domain) as stated in [2]
• Embarrassingly Parallel Pattern (high-performance domain) as stated in [3]
• Data Parallelism Pattern

12. References
[1] M. Gerdes, J. Wolf, I. Guliashvili, T. Ungerer, M. Houston, G. Bernat, S.
Schnitzler, and H. Regler: Large Drilling Machine Control Code—Parallelisation
and WCET Speedup. In 6th IEEE International Symposium on Industrial Em-
bedded Systems (SIES), pages 91-94, June 2011.
[2] T. Mattson, B. Sanders, and B. Massingill: Patterns for parallel programming.
Addison-Wesley Professional, 1st Edition, 2004. – ISBN 0321228111
[3] Berna L. Massingill, Timothy G. Mattson, Beverly A. Sanders: Parallel pro-
gramming with a pattern language. International Journal on Software Tools for
Technology Transfer (STTT), Volume 3, Number 2, pages 217-234, 2001.

13. Authors
Mike Gerdes (gerdes@informatik.uni-augsburg.de)
Ralf Jahr (jahr@informatik.uni-augsburg.de)
Andreas Hugl (Bauer Maschinen AG)

6.2.5. Real-Time Synchronisation Idioms (Layer 2)

As an example of synchronisation idioms, the ticket lock idiom is presented below.
It includes the implementation used in this thesis for the shared-memory, multi-core
MERASA processor, and the implementation for the parMERASA processor as well
(item 5). The parMERASA implementation is still preliminary; it needs to be updated
when the system software is finally released. The requirements and real-time prereq-
uisites (item 4), as well as the implementation category (item 5) should also contain
information and proofs that the given implementation and real-time prerequisites hold
(e.g. by referencing publications or even ISA manuals, if necessary). The presented
WCET annotations (item 6) are still preliminary and are depending on the used timing
analysis tool. In this case, a possible annotation format to be used with the OTAWA
timing analysis tool has been assumed.
In general, it should be assured that the programmer catches the semantic and usage

of the specific synchronisation idiom. As well, the timing analysers or timing analysis
tools need to understand the implication of the used idiom on the (binary) code, so that
it can be analysed (correctly).

128 6. APPLICATION OF SYNCHRONISATION TECHNIQUES

1. Name
Ticket Lock

2. Problem
Ticket locks can be used as a fair spin lock mechanism in real-time systems to
secure critical section and provide mutual exclusion [1].

3. Solution
The semantic of ticket locks [2], based on Lamport’s bakery algorithm [3], is as
follows. Each thread gets a unique ticket id when trying to access a critical region
(line 2 in pseudo code of implementation example 1). Threads are allowed to enter
the critical region when their ticket id matches the current value of now served
(line 3). The threads are busy-waiting, until their ticket id my ticket matches the
value of now served. After a thread leaves a critical section, it increments now
served (line 9), and the thread with the appropriate ticket id can now enter the
critical section. The atomic incrementing of ticket id and now served id can be
done with the F&I primitive. Thus, ticket locks implement a busy-waiting spin
lock, which is, contrary to e.g. test-and-set spin locks, fair independently of the
arbitration strategy in the memory interconnect in a shared-memory multi-core
processor (e.g. in the MERASA processor).

4. Requirements, Real-Time Prerequisites and WCET Recommendations
The given platform must allow for atomic and consistent use of RMW operations,
that is e.g. a F&I primitive as in the implementation examples (see also [1]). The
critical section secured with a ticket lock should be as short as possible.

5. Implementations

Implementation Example 1:

a) Programming Model: shared-memory (global address space), Pthreads[4]
b) ISA: MERASA, based on TriCore v1.3.1 [5]
c) Processor: MERASA multi-core (Version T2)
d) RTOS: MERASA RTOS (updated version of [6])
e) Types: typedef uint32_t ticket_t,

Initialisation: ticket_lock_init(ticket_t *lock);
Functions: static uint8_t ticket_lock_acquire(ticket_t *lock),
static uint8_t ticket_lock_release(ticket_t *lock)

f) Pseudo-Code: Ticket lock with F&I
1: //Enter critical section
2: my ticket = F&I(ticket_id)
3: while my_ticket != now_served do
5: end while
6: //Remainder critical section
7: ...
8: //Leave critical section
9: F&I(now_served)

6. APPLICATION OF SYNCHRONISATION TECHNIQUES 129

Implementation Example 2:
a) Programming Model: (distributed) shared-memory (global address

space), Message Passing
b) ISA: PowerISA v2.03 [7]
c) Processor: parMERASA multi-core (preliminary) [8]
d) RTOS: parMERASA system software (preliminary) [9]
e) Types: typedef uint32_t ticketlock_t,

Initialisation: static void spin_init (ticketlock_t *lock);
Functions: static uint8_t spin_lock (ticketlock_t *lock),
static uint8_t spin_unlock (ticketlock_t *lock)

f) Pseudo-Code: Ticket lock with F&I
1: //Enter critical section
2: my ticket = F&I(ticket_id)
3: while my_ticket != now_served do
5: end while
6: //Remainder critical section
7: ...
8: //Leave critical section
9: F&I(now_served)

g) Remark: The parMERASA system software currently only allows for one
type of spin lock, therefore the function call spin_lock invokes a ticket lock
mechanism.

6. WCET Annotation
Annotate the entry code in every thread competing for a ticket lock with the same
unique ID and maximum number of threads competing for that lock.
Example annotation for OTAWA [10]:
// $OTAWA$ UID 234, $num_threads$ 4

7. Example

For implementation example 1 (MERASA platform):

// Initialisation (only done by one thread)
ticket_t spatial_lock;
ticket_lock_init(spatial_lock);
// Declaration of shared variables
uint32_t i_am_shared_counter = 0;
...
uint32_t my_counter = 0;
// parallel code section executed by 4 threads
ticket_lock_acquire(spatial_lock); // $OTAWA$ UID=234, num_threads=4
i_am_shared_counter += 4;
my_counter = i_am_shared_counter;
ticket_lock_release(spatial_lock); // $OTAWA$ UID=234, num_threads=4
...

130 6. APPLICATION OF SYNCHRONISATION TECHNIQUES

8. Known Uses
MERASA RTOS, parMERASA system software, Linux Kernel since version 2.6
(same semantic, but non-real-time implementation for x86 architectures)

9. Related Synchronisation Idioms
glsfd Spin Locks, TAS Spin Locks, Mutex Locks, Binary Semaphores

10. References
[1] Mike Gerdes, Florian Kluge, Theo Ungerer, Christine Rochange, Pascal Sainrat:
Time Analysable Synchronisation Techniques for Parallelised Hard Real-Time Ap-
plications. In Proceedings of Design, Automation and Test in Europe (DATE’12),
pages 671-676, 2012.
[2] John M. Mellor-Crummey, Michael L. Scott: Synchronization Without Con-
tention. In Proceedings of the 4th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS’91), pages
269-278, 1991.
[3] Leslie Lamport: A New Solution of Dijkstra’s Concurrent Programming Prob-
lem. In: Communications of the ACM, Volume 17, Number 8, pages 453–455,
August, 1974.
[4] POSIX 2008: IEEE Std 1003.1, 2008 Edition. The Open Group Base Specifi-
cations Issue 7, 2008.
[5] Infineon Technologies AG: TriCore 1 Architecture Volume 1: Core Architecture
V1.3 & V1.3.1. http://www.infineon.com/dgdl/tc_v131_instructionset_
v138.pdf?folderId=db3a304412b407950112b409b6cd0351&fileId=
db3a304412b407950112b409b6dd0352. January 2008.
[6] Julian Wolf, Florian Kluge and Irakli Guliashvili: Final System-Level Software
for the MERASA Processor. Technical Report No. 2010-08, Institute of Computer
Science, University of Augsburg, http://opus.bibliothek.uni-augsburg.de/
opus4/frontdoor/index/index/docId/1451, October 2010.
[7] Power.org: Power Instruction Set Architecture v2.03. http://www.power.org/
resources/reading/. September 2006.
[8] see www.parmerasa.eu for deliverables and publications on the parMERASA
hardware architecture.
[9] Christian Bradatsch and Florian Kluge: parMERASA Multi-core RTOS Ker-
nel. Technical Report No. 2013-02, University of Augsburg, Department of Com-
puter Science, http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/
index/index/year/2013/docId/2230, February 2013.
[10] see www.otawa.fr for more details.

11. Authors
Mike Gerdes (gerdes@informatik.uni-augsburg.de)

http://www.infineon.com/dgdl/tc_v131_instructionset_v138. pdf?folderId=db3a304412b407950112b409b6cd0351&fileId=db3a304412b407950112b409b6dd0352
http://www.infineon.com/dgdl/tc_v131_instructionset_v138. pdf?folderId=db3a304412b407950112b409b6cd0351&fileId=db3a304412b407950112b409b6dd0352
http://www.infineon.com/dgdl/tc_v131_instructionset_v138. pdf?folderId=db3a304412b407950112b409b6cd0351&fileId=db3a304412b407950112b409b6dd0352
http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/1451
http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/1451
http://www.power.org/resources/reading/
http://www.power.org/resources/reading/
www.parmerasa.eu
http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/year/2013/docId/2230
http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/year/2013/docId/2230
www.otawa.fr
gerdes@informatik.uni-augsburg.de

6. APPLICATION OF SYNCHRONISATION TECHNIQUES 131

6.3. Related Work
In the following, parallelisation approaches and methodologies that are relevant to the
embedded domain and real-time systems are presented (the Section 4.5 already presented
related work with the scope on static timing analysis of parallel HRT programs in detail).
However, the first presented work in this section by Douglass (2006) does not really

cover real-time capable parallelisation or multi-core processors as a target, but presents
design patterns for real-time systems, which are also relevant for the parallel design
pattern layer of the above presented preliminary approach. Though, Douglass (2006)
also presents design patterns that target concurrent execution, e.g. for access to shared
resources and critical sections, the main goal is on providing design patterns using Unified
Modeling Language (UML) to create software for embedded real-time systems with
single-core processors. Beside that the presented design patterns of Douglass (2006) are
general enough to be easy understandable and (re)usable, they do not enforce a tight
structure to foster static timing analyses needed for HRT systems. That is Douglass’
approach is not focused on HRT systems, HRT capable parallelisation for multi-core
processors, nor timing analysability in detail, but on general software development in
embedded systems. It eases the burden on programming and documenting through the
use of UML, and the proposed design patterns are useful to be kept in mind when
programming software used in real-time embedded systems. The presented preliminary
approach in this thesis goes a step further: on the one hand, embedded multi-core
processors are the target platform, and on the other hand a parallelisation approach
using design patterns, skeletons, and idioms is envisioned to enforce tight structures to
facilitate static timing analysability.
Cordes et al. (2010) present an approach for automatic decomposition and paralleli-

sation of sequential programs for embedded multi-processor system-on-chips (MPSoCs).
They use hierarchical task graphs, introduced by Girkar and Polychronopoulos (1994),
as intermediate representation of a sequential program and then apply ILP to parallelise
on a coarse-grained, task parallel level including the constraints of the embedded do-
main, e.g. power consumption or limited memory space. They abstract communication
between different hierarchy levels through communication nodes to enable parallelisation
of each node independently. In a later publication by Cordes and Marwedel (2012), the
authors expand their parallelisation approach by employing genetic algorithms for multi-
objective parallelisation. Beside easing the parallelisation of sequential programs with
constraints from the embedded domain on a coarse-grained level, they do yet not cover
the timing analysability of their approach. Also, it is (until today) highly unlikely, that
automatic parallelisation approaches can produce fine-grained parallelisation structures,
even on the low-level, that also demonstrate timing predictability and thus low WCET
guarantees on embedded multi-core processors.
The preliminary parallelisation approach presented in this chapter is extended and

gone after in the EU-project parMERASA2. It is based on parallel design patterns and
synchronisation idioms, and involves the programmer and the timing analyser. Jahr
et al. (2013a,b) show the current state of the general pattern-supported parallelisation
approach and the implication for the programmer, while Ozaktas et al. (2013) show how

132 6. APPLICATION OF SYNCHRONISATION TECHNIQUES

requirements and prerequisites could be included in that approach from a timing analysis
perspective. In detail, the parMERASA parallelisation approach mostly relies on paral-
lelisation of a programmer with (deep) domain knowledge, and well-defined structures
are enforced by application of only specifically allowed parallel design patterns, algo-
rithmic skeletons and synchronisation idioms. Hence, timing analysability is guaranteed
by enforcing well-known timing analysable structures, and needed WCET annotations
for the static timing analysis. In the pattern-supported parallelisation approach, the
WCET annotations and real-time requirements are integrated in the parallelisation ap-
proach. The parMERASA approach, similar to the approach by Cordes et al. (2010)
and UPPAAL3 (more details on UPPAAL are presented in Section 4.5), is also based
on abstract representation of parallel programs. That is activity diagrams from UML
(using UML is e.g. also proposed by Douglass (2006) for software development in the
real-time systems’ domain) are augmented an additional node type with parallel design
patterns, called Activity Pattern Diagram (APD) (cf. Jahr et al. 2013a). Hence, the
above presented parallelisation approach is applied to a UML model and APD of an
existing sequential program, or used to create a UML model and activity diagram of a
problem to be parallelised. Also, in contrast to the work of Cordes et al. (2010) and
Cordes and Marwedel (2012), the parallelisation approach is split into two steps, and the
first step is (mostly) not constrained by the underlying platform, but targeting a max-
imum possible parallelisation degree. Then, in a second step, the parallelisation degree
is adjusted to a reasonable level concerning the worst-case performance on a given plat-
form while also the design space is tightened and structured by enforcing less variability
through, e.g., algorithmic skeletons and platform-specific idioms.
Besides the availability of a wide range of (parallel) design patterns, the field of HRT

capable synchronisation techniques for multi-core processors is still rather limited, and
so far not well-defined. Reason for this are the high dependency on the underlying plat-
form, the lack of parallel (multithreaded) HRT programs, and the fact that developing
such programs is still in research (see also Section 3.3.7). However, in the domain of
high-performance computing, such synchronisation techniques are already available in li-
braries and collections. As one example, the website http://www.concurrencykit.org/
collects hardware and software synchronisation techniques, including non-blocking data
structures, for a number of different platforms to ease the development and programming
of high performance parallel programs. The same idea is pursued by providing synchro-
nisation idioms in the parMERASA parallelisation approach, with the additional aim of
providing only synchronisation techniques that are known to be timing analysable and
predictable for a given (embedded) multi-core platform.

3see more details and publications on UPPAAL at http://www.uppaal.org/ [last accessed: April 2013]

http://www.concurrencykit.org/
http://www.uppaal.org/

Time moves in one direction, memory in another. – William Gibson

7 Conclusion and Future Work

In this chapter the presented work of this thesis is summarised and concluded. Also,
future work related to the key points of this thesis is shortly introduced.

7.1. Summary and Conclusion

The thesis on hand provides details on how to design timing analysable synchronisation
techniques for parallel HRT programs on embedded shared-memory multi-core proces-
sors, and a preliminary approach towards pattern-supported HRT parallelisation. The
proposed techniques have been implemented in the MERASA multi-core processor, and
static timing analyses have been done with OTAWA, an open-source, static WCET tool.
In Chapter 3 the hardware-software co-design of HRT capable synchronisation tech-

niques is presented in detail. The key aspect for those synchronisation techniques is
to assure timing guarantees, that is upper bounds on the execution and waiting times
for competing and cooperating HRT threads in a parallel program. The implemented
software and hardware techniques need to fulfil specific requirements to achieve fair-
ness on interfering accesses for being timing analysable with a static WCET tool on a
shared-memory multi-core. Beside the timing analysability property, the techniques also
aim to allow for tight upper bounds, that is timing predictability (see more details in
Section 4.1.1). Therefore, the support for atomic memory access has been pursued by
integrating the logic for RMW operations in an augmented memory controller. Thus, it
is possible to enable atomicity and data consistency—under a weak consistency model(cf.
Adve and Hill 1990)—without blocking the shared memory interconnect. Beside the gain
in memory access time, this approach also fosters the portability of techniques to other
(future) multi-core processors. For the handling of RMW operations, the implemented
augmented memory controller reuses the swap instruction of the TriCore ISA. The im-
plementation in the TriCore-based MERASA multi-core processor has been designed
with minimum invasive changes allowing for also work with other processors’ ISAs, as
long as the reused instruction can be recognized in the memory controller. For instance,
as detailed in Section 3.2.4, the ldrex instruction of the ARMv7-M ISA (2010) or the
lwarx instruction of the PowerPC ISA (2010) are candidates for such modifications.
On top of the implemented RMW operations, namely TAS, F&I, and F&D, different

lock-based software synchronisations have been implemented with regard to the require-
ments for timing analysable execution. On the one hand, busy-waiting spin locks and
ticket locks are detailed, and, on the other hand, suspending locks (mutex locks and
semaphores) are depicted (see Section 3.3). Additionally, different software barrier im-
plementations are denoted in Section 3.3.6. Furthermore, a FIFO queue implementation
using the F&I primitive has been introduced in Section 3.2.3. It is used to efficiently
manage the waiting lists for threads in the blocking (binary) semaphore implementation,
and to compare the impact of such a supporting structure versus the more traditional
implementation of waiting lists with software-managed linked lists, which is used in the

134 7. CONCLUSION AND FUTURE WORK

(fair) mutex lock implementation. The possibility to easily build FIFO queues with F&I
stems from the cyclic-counting implementation of the F&I primitive: it increments a
shared counter value until a given, priority initialised upper limit is reached, and auto-
matically resets the counter value to ’0’. A similar behaviour for decrementing has been
implemented in the F&D primitive (see details in Section 3.2.2).
The timing analysability property of the proposed software synchronisations (relying

on the different RMW operations) is then verified with a static WCET tool in Chapter 4
by formally computing upper bounds on the interferences of the different memory op-
erations, namely normal load/store operations and RMW operations (see Section 4.2).
Taking the FIFO order of memory operations in the augmented memory controller, and
the round-robin arbitration between cores at the memory interconnect into account, it is
possible to derive a WCML for each kind of memory operation. These WCMLs are then
applied in the static WCET analyses of each software synchronisation method, detailed
in Section 4.3. In the first analysis step, the synchronisation techniques are analysed
independently of the program code to allow for some first impressions on their worse-case
performance. The results in Section 4.3.4 show that busy-waiting locks exhibit a better
worst-case performance than suspending locks. This stems from the analysis method,
that is the WCET analysis cannot account for the lower interferences when threads are
suspended. On the one hand, this is due to the employed SMT-core in the MERASA
processor: if a HRT thread is suspended in one core, the other NHRT threads on that
core might still be active and dispatch memory operations to the shared memory. On
the other hand, the main issue is the limited knowledge of concurrent execution in a
multi-core. When one thread is analysed, it is mostly not possible to make any assump-
tions about the execution state of other threads, hence, the worst-case scenario must be
assumed to safely upper bound interferences.
The presented estimated WCETs also show that the (binary) semaphore implementa-

tion performs noticeably better than the (fair) mutex lock implementation, both, for the
lock and unlock function. The reason is not the use of different spin lock techniques, e.g.
TAS spin locks for the mutex locks and F&I/F&D spin locks for the (binary) semaphores,
but the difference in the management of waiting threads. Mutex locks employ software-
managed linked lists, and the semaphore implementation relies on the above mentioned
FIFO queues with F&I (more details are discussed in Section 4.3.4). A similar posi-
tive effect of the F&I primitive can be observed from the comparison of F&I barriers
versus subbarriers. While the subbarrier implementation uses conditional variables and
mutex locks, the F&I barrier implements a light-weight logic which still ensures to be
not prone to the reinitialisation problem (cf. Section 3.3.6). In comparison, the sub-
barrier implementation exhibits a more than five times higher WCET guarantee than
F&I barriers. However, even more interesting is to compare the timing predictability or
WCET tightness, that is the difference between the real WCET and the computed safe
upper bound (the WCET guarantee). Regretfully, it is not possible to compute the real
WCET; it is an NP-hard problem and the computation is prone to the halting problem.
Therefore, to allow for making statements on timing predictability and WCET tightness,
two benchmarking parallel programs have been used to evaluate the impact of different
synchronisation techniques on their WCET guarantee.

7. CONCLUSION AND FUTURE WORK 135

Please note that this still does not allow for making precise statements on WCET
tightness for the individual program execution. The problem therein is that by changing
the programs, even by minor changes of just small code sections that include the acquire
and release functions for locks, the real WCET might differ. Although that would be
rather unlikely, the following example is conceivable: The WCET of a program version
A with lock method X might be actually higher than for a program version B using
lock method Y. Though, as this is not known, one cannot decide by the estimated
WCETs of both individual program versions, which one exhibits tighter estimated upper
bounds. In that case it might be possible that the WCET estimate of program version
A is very high whereas it is very low for the other version. However, then it is still
possible that the real but unknown WCET of program A is very close to its WCET
estimated, but the estimated WCET of program version B differs vastly from its real
wcet. Then, the assumption that a lower WCET estimate indicates a tighter WCET
would be wrong. Nonetheless, following the definitions of Kirner and Puschner (2010) on
timing predictability, one can then say that program version A exhibits better stability.
Taking these consideration into account, the two benchmarking programs, a parallel

matrix multiplication and a parallelised Integer Fast-Fourier-Transformation (IFFT),
are only slightly changed by either substituting the used locking method (for matmul
and IFFT), or, for the case of IFFT, also the used barrier implementation. Then, it seems
valid to assume that a lower WCET guarantee corresponds with an equal gain in WCET
tightness, thus better timing predictability. Therefore, by comparing the improvement of
WCET guarantees, choosing the program version with the highest estimated WCET as
baseline, it should be feasible to conclude on which synchronisation technique achieves
the lowest WCET guarantee, or, in other words, the highest improvement of WCET
guarantees. Accordingly, from the results presented in Section 4.4, it can be concluded
that busy-waiting ticket locks outperform the other suspending lock techniques. Ticket
locks achieve an improvement of WCET guarantees of up to 1.52 compared to the same
program version with (fair) mutex lock synchronisations. Additionally, in combination
with F&I barriers, ticket locks achieve an improvement of up to 2.39 for the IFFT
program in comparison to the version using mutex locks and subbarriers.
Motivated by the outcome of the computation of WCMLs—frequent normal load and

store operations suffer from concurrent infrequent slower RMW operations—an opti-
misation technique to reduce the pessimism in the WCET analysis is introduced in
Chapter 5: the split-phase synchronisation technique. To reduce the impact of slower
(and infrequent) RMW operations in the WCMLs of frequent memory operations, and
thus the resulting pessimism in the WCET estimates, the RMW operations are split into
three phases in the augmented memory controller: a load phase, a modification phase,
and a store phase.
The idea of splitting RMW operations allows for executing more frequent normal

load/store operations in between the load and store phase of a RMW operation in
the augmented memory controller. Thus, as shown in Section 5.3.1, the WCMLs of
load and store operations are reduced, which is beneficial for the WCET guarantees
of parallel HRT programs. Even so, it must be assured that splitting atomic memory
operations does not introduce any data inconsistencies or destroy the atomic property.

136 7. CONCLUSION AND FUTURE WORK

Therefore, it is shown in Sections 5.2 and 5.2.4 that atomicity and consistency for the
split-phase synchronisation technique can be retained under the weak consistency model
with specific (hardware) solutions in the augmented memory controller. The split-phase
technique has been exemplary implemented in the MERASA processor, but, just as well
as for the synchronisation logic of the augmented memory controller, the split-phase
technique should be applicable for further multi-core processors as well.
However, infrequent RMW operation now suffer from higher WCMLs. To still achieve

better WCET guarantees for parallel programs with the split-phase technique, the
impact of higher WCMLs for RMW operation must be taken into account (see Sec-
tion 5.3.2). It can be shown that the split-phase technique is beneficial, if, depending
on the number of cores and memory latency, less than a specific minimum percentage of
all executed memory operations in the worst-case path of a program are RMW opera-
tions (on synchronisation variables). Beside counting normal memory operations versus
RMW operations in the source code of a parallel program gives first hints on the possible
usability of the split-phase technique, these occurrences do not reflect precisely in the
executed worst-case path. Therefore, firstly the OTAWA tool has been enhanced (by
the colleagues at University of Toulouse who maintain the OTAWA tool) to output the
precise occurrences of RMW operations and total memory operations in the worst-case
path of an analysed parallel program. And, secondly the two benchmarking parallel pro-
grams have been analysed again with the split-phase technique and the corresponding
WCMLs.
Results of WCET guarantees and improvements with the split-phase technique, and

the ratio of RMW operations in their worst-case path are presented in Section 5.3.3. In
detail, the ticket lock configurations achieve the highest gain—up to an improvement of
WCET guarantees of 1.3—with the split-phase technique. Surprisingly, the lowest gain
is attained for the (binary) semaphores (1.03 to 1.15), being slightly lower than for the
program version with mutex locks (1.08 to 1.18). This is then explained by taking the
ratios of RMW operations over total memory operations into account: for ticket locks,
the ratio is the lowest (2.82% to 12.67%), whereas for semaphores it is the highest
(16.80% to 32.16%). Combining the results achieved with the worst-case efficiency of
ticket locks and F&I barriers in concert with the split-phase synchronisation technique,
a total WCET guarantee improvement of 2.8 for IFFT, respectively 2.0 for matmul, can
be reached.
In summary, all program versions with each lock-based synchronisation and each bar-

rier implementation achieve better WCET guarantees with the split-phase technique,
compared to the WCET guarantees without the split-phase technique (as derived in the
analysis in Section 4.4). That is the needed minimum percentage of non-RMW opera-
tions is exceeded for all configurations of the two parallel benchmark programs. Keeping
in mind that the two programs do exhibit a high ratio of synchronisations, it is assumed
that similar or even better results are achieved for other, real-world multithreaded par-
allel HRT programs with the split-phase synchronisation technique.

7. CONCLUSION AND FUTURE WORK 137

In Chapter 6 an introduction to a novel parallelisation approach for HRT programs tar-
geting multi- and many-core platforms is presented. The parallelisation approach is envi-
sioned as a two-layered process, based on parallel design patterns on a higher, platform-
independent abstraction layer, and employing platform-dependent, timing analysable
synchronisation idioms on the lower layer. Inspired from parallelisation approaches in
the high-performance domain (cf. Foster 1995, Mattson et al. 2004), aims to achieve
maximum possible parallelisation in a first step, which is then refined and tailored to a
reasonable level on specific target platforms in a second step. But, instead of average-
case performance in traditional parallelisation approaches, the approach targets timing
predictability and worst-case performance. Therefore, the pattern-supported approach
embraces the domain and program knowledge of software engineers and the requirements
and guidelines provided from the perspective of static timing analysis to create timing
analysable parallel HRT programs. Thus, information helpful for either the programmer
or the timing analyser are collected and transferred between the two domains through
real-time prerequisites and WCET hints in the design patterns and idioms on the one
hand, and WCET annotations on the other hand. Additionally to the presented design
patterns and idioms depicted in Sections 6.2.4 and 6.2.5, further patterns and idioms
are collected and examined.
A possible weakness in the current state of the parallelisation approach could be that

it still allows for a too wide range of potential resulting parallel program structures. A
conceivable solution might be introducing further elements in the process, e.g. algorith-
mic skeletons, to further tighten the resulting variety of program structures (see also
further discussions in the Section 7.2 on future work below).
The pattern-supported parallelisation approach is currently under investigation and

further refinement in the EU-project parMERASA. Together with industrial partners
from the automotive, avionic, and construction machinery domain the target is to achieve
a well-defined and sound software engineering process for the parallelisation of HRT
programs for future predictable many-core platforms.

7.2. Future Work
One interesting research direction, already discussed shortly in Section 3.3.7, is the use
of optimistic concurrency control for parallel HRT programs in embedded multi- and
many-core processors. Optimistic concurrency control, that is non-blocking techniques
to access (large) data structures or transactional memory, promises, on the one hand, to
ease the burden on programming and designing parallel programs. While, on the other
hand, such techniques could also be used to allow for better integration of failure handling
in the execution of parallel programs on multi-core architectures. Beside failure handling
is out of scope in this thesis, it is a mandatory property to be satisfied in industrial
HRT systems. Transactional memory and non-blocking techniques both promise such
behaviour, even possibly allowing for very fine-grained failure handling and less expensive
redundancy than today available redundant systems provide (e.g. lockstep execution (cf.
Mukherjee 2008, p. 212f.) provided by the recently released Infineon AURIX (2013)
multi-core processor for the automotive domain).

138 7. CONCLUSION AND FUTURE WORK

Techniques and software engineering approaches that help in the complex task of
writing functional correct parallel programs are warmly welcome, especially when the
additional requirements of timing correctness of embedded (hard) real-time systems are
concerned. Chapter 6 introduces first steps for such an approach, however, until now it
is mostly based on lock-based techniques to secure (short) critical sections by applying
timing analysable synchronisation idioms. With an increasing amount of possible future
programs to be parallelised, further techniques for worst-case efficient access to data
structures might be satisfied using non-blocking (wait-free, lock-free, or obstruction-
free) techniques, or even transactional memory. Research on using such techniques for
embedded real-time systems already started (see Section 3.3.7 for a short survey on cur-
rent research topics), however, yet it is still unknown if they also are timing analysable
and worst-case efficient for multithreaded parallel HRT programs on shared-memory
multi-core processors using static timing analysis tools. It might be interesting to quan-
tise if and in which cases non-blocking techniques show better worst-case efficiency over
lock-based techniques in shared-memory multi-core processors, e.g. depending on the
size of critical sections or shared data structures.
Also, future research on further easing the manual effort for static timing analysis of

parallel programs is a key point to establish such techniques, not only in academia, but
also for industrial use. One very challenging but interesting research field sparks from
the uncertainty on simultaneous execution of threads in a multi-core processor. Finding
techniques to incorporate information on those unknown execution states could ease
the problem of overestimation and pessimism in static timing analysis, e.g. techniques
similar to the concepts of timing barriers (see Kirner and Puschner 2010) or temporal
firewalls (see Kopetz and Nossal 1997).
One other future work concerns the proposed pattern-based parallelisation approach

presented in Chapter 6. In the EU-project parMERASA this approach is researched in
more detail in the following years, and focuses on providing a programming framework
to engineer timing analysable parallel HRT programs, e.g. for exemplary industrial
programs from the automotive, avionic, and construction machinery domain. Research
on integrating the pattern-supported parallelisation approach on the higher abstraction
levels in the well-known modelling language UML has already started (see Jahr et al.
2013a,b), and possible lock-based synchronisation techniques on the lower level have
been proposed in this thesis. But, future research is needed to further tighten the
possible design space and variability of resulting parallel programs to allow for timing
predictable worst-case execution on many-core platforms. That is, as already denoted in
Section 6.2, the link between high level design patterns on abstract representation, i.e.
models, of a problem to be parallelised, and low-level synchronisation support needs to
be filled. Yet, it seems promising to integrate algorithmic skeletons in the parallelisation
approach, to enforce timing predictable parallel program structures. One other solution
to that problem might be inspired from the proposals of Asanovic et al. (2009) for high-
performance parallelisation. Asanovic et al. (2009) envision future parallel programming
frameworks that are e.g. derived from just one parallel design pattern. As example they
mention the very successful Ruby on Rails framework for single-core processors that is
based on the Model-View-Controller pattern.

A Appendix: Source Code

A.1. Software Synchronisations in the MERASA RTOS
This Section lists the source code of implemented timing analysable software synchroni-
sations as part of the MERASA RTOS. Each listing presents the lock() and unlock()
functions for locking synchronisations, as well as functionalities used for barriers. Also,
declarations of global variables or helper functions are added where necessary.

If not mentioned differently (e.g. for the subbarier implementation in Listing A.6) all
the below published source code is made available under the New BSD License:

Copyright (c) 2008-2013 Mike Gerdes, Julian Wolf, Florian Kluge
All rights reserved.

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:
• Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.
• Redistributions in binary form must reproduce the above copyright no-

tice, this list of conditions and the following disclaimer in the documen-
tation and/or other materials provided with the distribution.

• Neither the name of the University of Augsburg nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
<COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

140 A. APPENDIX: SOURCE CODE

Listing A.1:
Source Code: Spin lock implementation with test-and-set in the MERASA RTOS

stat ic i n l i n e uint32_t cc_s l_ in i t (cc_spinlock_t ∗ l o ck) {
∗ l o ck = 0 ;
return 0 ;

}

stat ic i n l i n e uint32_t cc_s l_try lock (cc_spinlock_t ∗ l o ck) {
uint32_t r = 1 ;
#i f n d e f GCC
__asm(" swap .w␣%0 ,[%2]0 " : "=d" (r) : " 0 " (r) , " a " ((uint32_t ∗) l o ck) :

"memory") ;
#else
asm volat i le (" swap .w␣ [%2]0 , ␣%0" : "=d" (r) : " 0 " (r) , " a " (l ock) :

"memory") ;
#end i f

return r ;
}

stat ic i n l i n e uint32_t cc_sl_lock (cc_spinlock_t ∗ l o ck) {
while (cc_s l_try lock (l ock)) ;
{ }
return 0 ;

}

stat ic i n l i n e uint32_t cc_sl_unlock (cc_spinlock_t ∗ l o ck) {
uint32_t r = 0 ;
#i f n d e f GCC
__asm(" swap .w␣%0 ,[%2]0 " : "=d" (r) : " 0 " (r) , " a " ((uint32_t ∗) l o ck) :

"memory") ;
#else
asm volat i le (" swap .w␣ [%1]0 , ␣%0" : "=d" (r) : " a " (l o ck) , " 0 " (r) :

"memory") ;
#end i f
return 0 ;

}

A. APPENDIX: SOURCE CODE 141

Listing A.2:
Source Code: Spin lock implementation with fetch-and-increment/fetch-and-decrement

in the MERASA RTOS
stat ic i n l i n e uint32_t fd_lock (uint32_t ∗ l o ck) {

while (! fetch_and_decrement (l ock))
{ }
return 0 ;

}

stat ic i n l i n e uint32_t fd_unlock (uint32_t ∗ l o ck) {
fetch_and_increment (l ock) ;
return 0 ;

}

stat ic i n l i n e uint32_t fetch_and_add_init (uint32_t ∗data , uint32_t l im i t) {
∗data = l im i t <<16;
return 0 ;

}

stat ic i n l i n e uint32_t fetch_and_increment (uint32_t ∗ address) {
uint32_t data = 0x0000FFFF ; // id f o r the augmented memory c o n t r o l l e r
#i f n d e f GCC
__asm(" swap .w␣%0 ,[%2]0 " : "=d" (data) : " 0 " (data) , " a "

((uint32_t ∗) address) : "memory") ;
#else
asm volat i le (" swap .w␣ [%2]0 , ␣%0" : "=d" (data) : " 0 " (data) , " a "

(address) : "memory") ;
#endif

return data & 0x0000FFFF ;
}

stat ic i n l i n e uint32_t fetch_and_decrement (uint32_t ∗ address) {
uint32_t data = 0x70007000 ; // id f o r the augmented memory c o n t r o l l e r
#i f n d e f GCC
__asm(" swap .w␣%0 ,[%2]0 " : "=d" (data) : " 0 " (data) , " a "

((uint32_t ∗) address) : "memory") ;
#else
asm volat i le (" swap .w␣ [%2]0 , ␣%0" : "=d" (data) : " 0 " (data) , " a "

(address) : "memory") ;
#end i f

return data & 0x0000FFFF ;
}

142 A. APPENDIX: SOURCE CODE

Listing A.3:
Source Code: Ticket lock implementation in the MERASA RTOS

typedef struct {
volat i le uint32_t next_t icket ;
volat i le uint32_t now_serving ;

} t i cke t_t ;

stat ic uint32_t t i c k e t_ lo ck_ in i t (t i cke t_t ∗ t i c k e t) {
t i c k e t −>next_t icket = (t i cke t_t) (0 x7FFF0000) ;
t i c k e t −>now_serving = (t i cke t_t) (0 x7FFF0000) ;
return 0 ;

}

stat ic i n l i n e uint8_t t i cket_lock_acqu i re (volat i le t i cke t_t ∗ t i c k e t) {
t i cke t_t ∗my_ticket ;
my_ticket−>next_t icket = fetch_and_increment (t i c k e t−>next_t icket) ;
my_ticket−>se rv ing ;

do {
my_ticket−>se rv ing = (t i cke t_t) ((∗ t i c k e t −>now_serving) & 0x0000FFFF) ;

}
while (t i c k e t −>my_ticket != my_ticket−>se rv ing) ;
{ }

return 0 ;
}

stat ic i n l i n e uint8_t t i ck e t_ lo ck_re l e a s e (volat i le t i cke t_t ∗ t i c k e t) {
fetch_and_increment (t i c k e t−>now_serving) ;
return 0 ;

}

A. APPENDIX: SOURCE CODE 143

Listing A.4:
Source Code: (Fair) Mutex lock implementation with TAS in the MERASA RTOS

typedef struct thread_control_block_t tcb_t ;
typedef thread_handler pthread_t ;
typedef uint32_t sched_t ;

typedef struct pthread_mutex {
volat i le uint32_t the_lock ;
cc_spinlock_t guard ;
thread_handler owner ;
sched_t prev_sched ;
/∗ !< Schedu l ing parameters b e f o r e the guarded c r i t i c a l b l o c k ∗/
tcb_t ∗ wa i t l i s t_ f i r s t_ou t ;
tcb_t ∗wa i t l i s t_ la s t_out ;

} pthread_mutex_t ;

int32_t ccthread_mutex_init (pthread_mutex_t∗ mutex) {
mutex−>the_lock = 0 ;
cc_s l_ in i t (&mutex−>guard) ;
mutex−>owner = NO_OWNER;
mutex−>wa i t l i s t_ f i r s t_ou t = NULL;
mutex−>wa i t l i s t_ la s t_out = NULL;
return 0 ;

}

int32_t ccthread_mutex_lock (pthread_mutex_t∗ mutex) {
thread_handler th = get_current_thread_handler () ;
cc_sl_lock(&mutex−>guard) ;
threadptr thread = get_thread4handler (th) ;
tcb_t ∗my_tcb = TH2TCB(th) ;

while (mutex−>the_lock == 1) {
// Thread i n t o wa i t ing l i s t , and p laced behind o ther wa i t ing threads
i f (mutex−>wa i t l i s t_ la s t_out != NULL) { // not the f i r s t in l i s t

// connect wi th o ther th reads
mutex−>wai t l i s t_ la s t_out−>sync l i s t_next = my_tcb ;
my_tcb−>sync l i s t_prev = mutex−>wa i t l i s t_ la s t_out ;

// s e t t h i s thread as l a s t thread in the whole l i s t
mutex−>wa i t l i s t_ la s t_out = my_tcb ;
// w a i t l i s t _ f i r s t _ o u t i s a l r eady s e t
}
else { // thread i s the f i r s t one in l i s t
mutex−>wa i t l i s t_ f i r s t_ou t = my_tcb ;
mutex−>wa i t l i s t_ la s t_out = my_tcb ;
}
// now go to s l e e p
_tie () ;
set_suspended (my_tcb) ;
cc_sl_unlock(&mutex−>guard) ;
_untie () ;

144 A. APPENDIX: SOURCE CODE

// a f t e r wakeup gain l o c a l s p i n l o c k (guard)
cc_sl_lock(&mutex−>guard) ;
#i f d e f FAIR_MUTEX
/∗ In the f a i r mutex implementation , the thread un lock ing the mutex

∗ does not s e t mutex−>the_lock = 0 , as a thread t h a t i s a l r eady
∗ wai t ing f o r the mutex shou ld g e t i t , not a thread t h a t might be
∗ t r y i n g to g e t i t (Enforc ing FIFO) . ∗/

mutex−>owner = th ;
cc_sl_unlock(&mutex−>guard) ;
return 0 ;
#end i f

}
// l o c k gained
mutex−>the_lock = 1 ;
mutex−>owner = th ;
cc_sl_unlock(&mutex−>guard) ;
return 0 ;

}

int32_t ccthread_mutex_unlock (pthread_mutex_t∗ mutex) {
thread_handler th = get_current_thread_handler () ;
i f ((mutex−>owner != th) && (th != SYSTEM_THREAD_HANDLER)) {

return EPERM;
}
cc_sl_lock(&mutex−>guard) ;
i f (mutex−>wa i t l i s t_ f i r s t_ou t != NULL) { // the r e are th reads wa i t ing

tcb_t ∗ tcb_to_unsuspend = mutex−>wa i t l i s t_ f i r s t_ou t ;
i f (tcb_to_unsuspend−>sync l i s t_next != NULL) {

// the r e i s more than one thread wa i t ing

// s e t second thread in w a i t l i s t as " f i r s t out "
mutex−>wa i t l i s t_ f i r s t_ou t = tcb_to_unsuspend−>sync l i s t_next ;
// remove connec t ions to second thread
mutex−>wa i t l i s t_ f i r s t_ou t −>sync l i s t_prev = NULL;

}
else { // the r e i s on ly one thread wai t ing , so s e t l i s t to NULL

mutex−>wa i t l i s t_ f i r s t_ou t = NULL;
mutex−>wa i t l i s t_ la s t_out = NULL;

}
tcb_to_unsuspend−>sync l i s t_next = NULL;
unset_suspended (tcb_to_unsuspend) ;

#i f d e f FAIR_MUTEX
/∗ In the f a i r mutex implementation , the thread un lock ing the mutex

∗ does not s e t mutex−>the_lock = 0 , as a thread t h a t i s a l r eady
∗ wai t ing f o r the mutex shou ld g e t i t , not a thread t h a t might be
∗ t r y i n g to g e t i t (Enforc ing FIFO) . ∗/

cc_sl_unlock(&mutex−>guard) ;
return 0 ;
#end i f

}

A. APPENDIX: SOURCE CODE 145

mutex−>owner = NO_OWNER;
mutex−>the_lock = 0 ;
cc_sl_unlock(&mutex−>guard) ;

return 0 ;
}

int32_t ccthread_mutex_trylock (pthread_mutex_t∗ mutex) {
cc_sl_lock(&mutex−>guard) ;
int32_t rv = E_OK;
i f (mutex−>the_lock == 0) {

thread_handler th = get_current_thread_handler () ;
mutex−>owner = th ;

}
else {

rv = EBUSY;
}
cc_sl_unlock(&mutex−>guard) ;
return rv ;

}

146 A. APPENDIX: SOURCE CODE

Listing A.5:
Source Code: Semaphore implementation with

fetch-and-increment/fetch-and-decrement in the MERASA RTOS

typedef struct {
uint32_t value ;
uint32_t temp ;
uint32_t wa i t l i s t_ e n t r i e s ;
uint32_t wa i t l i s t_ l o c k ;
uint32_t f i f o_next ;
uint32_t f i f o_ l a s t ;
tcb_t ∗ wa i t l i s t _ f i f o [NO_CORES] ;

} pthread_sem_s_t ;

stat ic i n l i n e uint32_t pthread_sem_init_suspend (
pthread_sem_s_t ∗sem ,
int32_t pshared ,
uint32_t value) {

sem−>value = value<<16 ^ value ;
fetch_and_add_init(&sem−>wa i t l i s t_ l o ck , 1) ;
fetch_and_increment(&sem−>wa i t l i s t_ l o c k) ;
fetch_and_add_init(&sem−>fi fo_next , pshared) ;
fetch_and_add_init(&sem−>f i f o_ l a s t , pshared) ;
fetch_and_add_init(&sem−>wa i t l i s t_en t r i e s , pshared) ;

uint32_t i ;
for (i =0; i < pshared ; i++) {

sem−>wa i t l i s t _ f i f o [i] = NULL;
}
return 0 ;

}

stat ic i n l i n e int32_t pthread_sem_wait_suspend (pthread_sem_s_t ∗sem) {
i f ((fetch_and_decrement(&sem−>value)) <= 0) {

/∗ s l e e p and enter wa i t ing l i s t ;
waking up from other thread c a l l i n g sem_post∗/
while (! fetch_and_decrement(&sem−>wa i t l i s t_ l o c k))
{ }
i f ((fetch_and_decrement(&sem−>value)) <= 0) {

thread_handler th = get_current_thread_handler () ;
tcb_t ∗my_tcb = TH2TCB(th) ;
sem−>wa i t l i s t _ f i f o [
fetch_and_increment(&sem−>f i f o_next)] = my_tcb ;
fetch_and_increment(&sem−>wa i t l i s t_ e n t r i e s) ;

_tie () ;
set_suspended (my_tcb) ;
fetch_and_increment(&sem−>wa i t l i s t_ l o c k) ;
_untie () ;

fetch_and_increment(&sem−>wa i t l i s t_ l o c k) ;
return 0 ;

}

A. APPENDIX: SOURCE CODE 147

else {
fetch_and_increment(&sem−>wa i t l i s t_ l o c k) ;
return 0 ;

}
}
return 0 ;

}

stat ic i n l i n e int32_t pthread_sem_post_suspend (pthread_sem_s_t ∗sem) {
while (! fetch_and_decrement(&sem−>wa i t l i s t_ l o c k))
{ }

i f (fetch_and_decrement(&sem−>wa i t l i s t_ e n t r i e s)) {
tcb_t ∗ tcb_to_unsuspend = (tcb_t ∗) sem−>wa i t l i s t _ f i f o [
fetch_and_increment(&sem−>f i f o_ l a s t)] ;
unset_suspended (tcb_to_unsuspend) ;

return 0 ;
}
else {

fetch_and_increment(&sem−>value) ;
fetch_and_increment(&sem−>wa i t l i s t_ l o c k) ;
return 0 ;

}
return 0 ;

}

148 A. APPENDIX: SOURCE CODE

Listing A.6:
Source Code: Subbarrier implementation in the MERASA RTOS (based on the source
code from the LEON OpenSPARC simulator (http://kenai.com/projects/legion/
sources/legion-opensparc/content/src/generic/barrier.c?rev=7) which in turn

is based on a version from Marejka (1994))

/∗
∗ OpenSPARC T2 Processor F i l e : b a r r i e r . c
∗ Copyright (c) 2006 Sun Microsystems , Inc . A l l Righ ts Reserved .
∗ DO NOT ALTER OR REMOVE COPYRIGHT NOTICES.
∗
∗ The above named program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or
∗ modify i t under the terms o f the GNU General Pub l i c
∗ License ve r s i on 2 as p u b l i s h e d by the Free Sof tware Foundation .
∗
∗ The above named program i s d i s t r i b u t e d in the hope t h a t i t w i l l be
∗ u s e f u l , but WITHOUT ANY WARRANTY; wi thou t even the imp l i ed warranty o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
∗ General Pub l i c License f o r more d e t a i l s .
∗
∗ You shou ld have r e c e i v e d a copy o f the GNU General Pub l i c
∗ License a long wi th t h i s work ; i f not , wr i t e to the Free Sof tware
∗ Foundation , Inc . , 51 Frank l in St , F i f t h Floor , Boston , MA 02110−1301 , USA.
∗/

int ba r r i e r_ i n i t (pthread_barr ier_t ∗ ba r r i e r , int needed) {
int32_t n = 0 ;
uint32_t i = 0 ;

i f (needed < 1)
return EINVAL;

ba r r i e r−>maxcnt = needed ;
ba r r i e r−>subbar r i e rp = &bar r i e r−>subba r r i e r [0] ;

for (i = 0 ; i < 2 ; i++) {
struct _subbarr ier ∗ subbar r i e rp = &(ba r r i e r−>subba r r i e r [i]) ;
subbarr i e rp−>runners = needed ;

i f (n = pthread_mutex_init(&subbarr i e rp−>wait_lock , NULL)) {
return n ;

}

i f (n = pthread_cond_init(&subbarr i e rp−>wait_cond , NULL)) {
return n ;

}
}
return 0 ;

}

http://kenai.com/projects/legion/sources/legion-opensparc/content/src/generic/barrier.c?rev=7
http://kenai.com/projects/legion/sources/legion-opensparc/content/src/generic/barrier.c?rev=7

A. APPENDIX: SOURCE CODE 149

int barr i e r_wai t (pthread_barr ier_t ∗ ba r r i e r) {
struct _subbarr ier ∗ subbar r i e rp = bar r i e r−>subbar r i e rp ;

pthread_mutex_lock(&subbarr i e rp−>wait_lock) ;

i f (subbarr i e rp−>runners == 1) {
// l a s t thread to reach b a r r i e r
i f (ba r r i e r−>maxcnt > 1) {

// r e s e t runner count and sw i t ch s u b b a r r i e r s
subbarr i e rp−>runners = bar r i e r−>maxcnt ;
ba r r i e r−>subbar r i e rp = (ba r r i e r−>subbar r i e rp ==

&bar r i e r−>subba r r i e r [0])
? &bar r i e r−>subba r r i e r [1] : &ba r r i e r−>subba r r i e r [0] ;

// wake up wa i t ing th reads
pthread_cond_broadcast(&subbarr i e rp−>wait_cond) ;

}
}
else {

subbarr i e rp−>runners −−; // one l e s s running thread

while (subbarr i e rp−>runners != ba r r i e r−>maxcnt) {
pthread_cond_wait(&subbarr i e rp−>wait_cond ,
&subbarr i e rp−>wait_lock) ;
// wai t u n t i l l a s t thread to reach b a r r i e r

}
}

pthread_mutex_unlock(&subbarr i e rp−>wait_lock) ;

return 0 ;
}

150 A. APPENDIX: SOURCE CODE

Listing A.7:
Source Code: Barrier implementation with fetch-and-increment in the MERASA RTOS

typedef struct {
uint32_t needed ;
uint32_t runners ;
uint32_t wa i t l i s t_ l o c k ;
tcb_t ∗ wa i t l i s t _ f i f o [NO_CORES] ;

} pthread_barr ier_t ;

int ba r r i e r_ i n i t (pthread_barr ier_t ∗ ba r r i e r , int needed) {
i f (needed < 1) {

return EINVAL;
}
fetch_and_add_init(&bar r i e r−>runners , needed −1);
ba r r i e r−>needed = needed ;

fetch_and_add_init(&bar r i e r−>wa i t l i s t_ l o ck , 1) ;
fetch_and_increment(&bar r i e r−>wa i t l i s t_ l o c k) ;

uint32_t i ;
for (i =0; i < needed −1; i++) {

ba r r i e r−>wa i t l i s t _ f i f o [i] = NULL;
}

}

int barr i e r_wai t (pthread_barr ier_t ∗ ba r r i e r) {
while (! fetch_and_decrement(&bar r i e r−>wa i t l i s t_ l o c k))
{ }
uint32_t cur_runner = fetch_and_increment(&bar r i e r−>runners) ;
uint32_t needed = (uint32_t) ba r r i e r−>needed ;

i f (cur_runner >= (needed − 1)) {
// l a s t needed thread to reach b a r r i e r

uint32_t i = 0 ;
for (i = 0 ; i < needed −1; i++) {

tcb_t ∗ tcb_to_unsuspend = (tcb_t ∗) ba r r i e r−>wa i t l i s t _ f i f o [i] ;
unset_suspended (tcb_to_unsuspend) ;

}
fetch_and_increment(&bar r i e r−>wa i t l i s t_ l o c k) ;

}
else {

thread_handler th = get_current_thread_handler () ;
tcb_t ∗my_tcb = TH2TCB(th) ;
ba r r i e r−>wa i t l i s t _ f i f o [cur_runner] = my_tcb ;

_tie () ;
set_suspended (my_tcb) ;
fetch_and_increment(&bar r i e r−>wa i t l i s t_ l o c k) ;
_untie () ;

}
return 0 ;

}

B Appendix: Binary Code

B.1. Binary Code of Software Synchronisations
The following binary codes are the compiled version of the source code in Appendix A.1
(Some output of the compiler has been omitted for visual reasons). The binary codes
presented in this Appendix are the baseline for the static timing analyses of software
synchronisations in Chapter 4.

If not mentioned differently all the below published binary code is made available under
the New BSD License:

Copyright (c) 2008-2013 Mike Gerdes, Julian Wolf, Florian Kluge
All rights reserved.

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:
• Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.
• Redistributions in binary form must reproduce the above copyright no-

tice, this list of conditions and the following disclaimer in the documen-
tation and/or other materials provided with the distribution.

• Neither the name of the University of Augsburg nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
<COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

152 B. APPENDIX: BINARY CODE

Listing B.1:
Binary code: Spin lock with test-and-set

<cc_sl_lock >:
a0002c60 : 82 1 f mov %d15 , 1

// r = 1;
#i fndef GCC
__asm(" swap.w␣%0 ,[%2]0 " : "=d" (r) : " 0 " (r) , " a " ((uint32_t ∗) lock)

: "memory") ;
#else
asm v o l a t i l e (" swap.w␣ [%2]0 , ␣%0" : "=d" (r) : " 0 " (r) , " a " (lock)

: "memory") ;
#endif

a0002c62 : 49 f f 00 08 swap.w [%a15]0 ,%d15

<cc_sl_unlock >:
a0002c92 : 82 0 f mov %d15 , 0

// r = 0;
#i fndef GCC
__asm(" swap.w␣%0 ,[%2]0 " : "=d" (r) : " 0 " (r) , " a " ((uint32_t ∗) lock)

: "memory") ;
#else
asm v o l a t i l e (" swap.w␣ [%1]0 , ␣%0" : "=d" (r) : " a " (lock) , " 0 " (r)

: "memory") ;
a0002c94 : 49 f f 00 08 swap.w [%a15]0 ,%d15

Listing B.2:
Binary code: Spin lock with fetch-and-increment/fetch-and-decrement

a0002a5e : 1b 00 00 f7 addi %d15 ,%d0 ,28672
#i fndef GCC
__asm(" swap.w␣%0 ,[%2]0 " : "=d" (data) : " 0 " (data) ,

" a " ((uint32_t ∗) address) : "memory") ;
#else
asm v o l a t i l e (" swap.w␣ [%2]0 , ␣%0" : "=d" (data) : " 0 " (data) ,

" a " (address) : "memory") ;
a0002a62 : 49 c f 00 08 swap.w [%a12]0 ,%d15
a0002a66 : bb f0 f f 1 f mov.u %d1 ,65535
a0002a6a : 26 1 f and %d15 ,%d1
a0002a6c : 6e f 9 jz %d15 , a0002a5e

B. APPENDIX: BINARY CODE 153

Listing B.3:
Binary code: Ticket lock

<ticket_lock_acqui re>
a00048a4 : 91 b0 00 3a movh.a %a3 ,40971
a00048a8 : bb f0 f f f f mov.u %d15 ,65535
a00048ac : d9 33 a4 b1 lea %a3 ,[% a3]6884 <a00b1ae4 <next_ticket>>
a00048b0 : 49 3 f 00 08 swap.w [%a3]0 ,%d15
a00048b4 : bb f0 f f 0 f mov.u %d0 ,65535
a00048b8 : 26 0 f and %d15 ,%d0
a00048ba : 78 0b st .w [%sp]44 ,%d15

a00048bc : 91 b0 00 2a movh.a %a2 ,40971
a00048c0 : d9 22 b8 21 lea %a2 ,[% a2]6328 <a00b18b8 <now_serving>>
a00048c4 : 4c 20 ld .w %d15 ,[% a2] 0
a00048c6 : bb f0 f f 0 f mov.u %d0 ,65535
a00048ca : 26 0 f and %d15 ,%d0
a00048cc : 78 0a st .w [%sp]40 ,%d15
a00048ce : 19 a0 2c 00 ld .w %d0 ,[% sp] 44
a00048d2 : 58 0a ld .w %d15 , [% sp] 40
a00048d4 : 5 f f 0 f 4 f f jne %d0,%d15 , a00048bc <f ix_f f t_thread+0x44>

<t i cke t_ lock_re l ea s e>
a0004974 : bb f0 f f f f mov.u %d15 ,65535
a0004978 : 49 5 f 00 08 swap.w [%a2]0 ,%d15

154 B. APPENDIX: BINARY CODE

Listing B.4:
Binary code: (fair) Mutex lock with test-and-set

<pthread_mutex_lock>:
a0002c50 <ccthread_mutex_lock >:
a0002c50 : cd 92 00 0e mtcr $0xe009 (unknown SFR),%d2
int32_t ccthread_mutex_lock (Pthread_mutex_t∗ mutex) {
a0002c54 : 40 4c mov.aa %a12 ,%a4

thread_handler th = get_current_thread_handler () ;
a0002c56 : 6d 00 5d 02 c a l l a0003110 <get_current_thread_handler>
a0002c5a : 02 28 mov %d8,%d2
s t a t i c i n l i n e uint32_t cc_sl_lock (cc_spinlock_t ∗ lock) {
a0002c5c : d9 c f 04 00 lea %a15 , [% a12] 4
a0002c60 : 82 1 f mov %d15 , 1
a0002c62 : 49 f f 00 08 swap.w [%a15]0 ,%d15 // l o c k (guard)
a0002c66 : ee fd jnz %d15 , a0002c60 <ccthread_mutex_lock+0x10>
a0002c68 : 3c 25 j a0002cb2 <ccthread_mutex_lock+0x62>

cc_sl_lock(&mutex−>guard) ;
threadptr thread = get_thread4handler (th) ;
tcb_t ∗my_tcb = TH2TCB(th) ;
whi le (mutex−>the_lock == 1) {

// Thread coming i n t o wa i t ing l i s t
// Thread must be p laced behind o ther wa i t ing th reads
i f (mutex−>wa i t l i s t_ la s t_out != NULL) { // not the f i r s t in l i s t

a0002c6a : 99 c3 18 00 l d . a %a3 ,[% a12]24
a0002c6e : bc 36 j z . a %a3 , a0002c7a <ccthread_mutex_lock+0x2a>

// connect wi th o ther threads
mutex−>wai t l i s t_ la s t_out−>sync l i s t_next = my_tcb ;

a0002c70 : 89 32 90 09 s t . a [%a3]16 ,%a2
my_tcb−>sync l i s t_prev = mutex−>wa i t l i s t_ la s t_out ;

a0002c74 : 4c c6 ld .w %d15 ,[% a12]24
a0002c76 : 6c 23 st .w [%a2]12 ,%d15

// s e t myse l f as l a s t thread in the whole l i s t
mutex−>wa i t l i s t_ la s t_out = my_tcb ;

a0002c78 : 3c 03 j a0002c7e <ccthread_mutex_lock+0x2e>
// w a i t l i s t _ f i r s t _ o u t i s a l r eady s e t and s t a y s the same

}
else { // thread i s the f i r s t one in l i s t

mutex−>wa i t l i s t_ f i r s t_ou t = my_tcb ;
a0002c7a : 89 c2 90 09 s t . a [%a12]16 ,%a2

mutex−>wa i t l i s t_ la s t_out = my_tcb ;
a0002c7e : 89 c2 98 09 s t . a [%a12]24 ,%a2
a0002c82 : 0d 00 .hword 0x000d
a0002c84 : 80 07 mov.d %d7,%a0
}
s t a t i c i n l i n e void set_suspended (tcb_t ∗ tcb) {

tcb−>sched_f lags |= SF_SUSPENDED;
a0002c86 : 19 20 10 10 ld .w %d0 ,[% a2]80
a0002c8a : 8 f 20 40 01 or %d0,%d0 , 2
a0002c8e : 59 20 10 10 st .w [%a2]80 ,%d0

s t a t i c i n l i n e uint32_t cc_sl_unlock (cc_spinlock_t ∗ lock) {
uint32_t r = 0 ;

a0002c92 : 82 0 f mov %d15 , 0

B. APPENDIX: BINARY CODE 155

#i fndef GCC
__asm(" swap.w␣%0 ,[%2]0 " : "=d" (r) : " 0 " (r) , " a " ((uint32_t ∗) lock)

: "memory") ;
#else
asm v o l a t i l e (" swap.w␣ [%1]0 , ␣%0" : "=d" (r) : " a " (lock) , " 0 " (r)

: "memory") ;
a0002c94 : 49 f f 00 08 swap.w [%a15]0 ,%d15
a0002c98 : 0d 00 .hword 0x000d
a0002c9a : c0 07 .hword 0x07c0
a0002c9c : d9 c2 04 00 lea %a2 ,[% a12] 4
a0002ca0 : 82 1 f mov %d15 , 1
a0002ca2 : 49 2 f 00 08 swap.w [%a2]0 ,%d15 // unlock (guard)
a0002ca6 : ee fd jnz %d15 , a0002ca0 <ccthread_mutex_lock+0x50>

}
// now go to s l e e p
_tie () ;
set_suspended (my_tcb) ;
cc_sl_unlock(&mutex−>guard) ;
_untie () ;
// a f t e r wakeup gain l o c a l s p i n l o c k
cc_sl_lock(&mutex−>guard) ;
mutex−>owner = th ;

a0002ca8 : 59 c8 08 00 st .w [%a12]8 ,%d8
#i fndef GCC
__asm(" swap.w␣%0 ,[%2]0 " : "=d" (r) : " 0 " (r) , " a " ((uint32_t ∗) lock)

: "memory") ;
#else
asm v o l a t i l e (" swap.w␣ [%1]0 , ␣%0" : "=d" (r) : " a " (lock) , " 0 " (r)

: "memory") ;
a0002cac : 49 2 f 00 08 swap.w [%a2]0 ,%d15 // l o c k (guard)
[fa i rmutex]

cc_sl_unlock(&mutex−>guard) ;
re turn 0 ;

a0002cb0 : 3c 17 j a0002cde <ccthread_mutex_lock+0x8e>
a0002cb2 : 02 84 mov %d4,%d8
a0002cb4 : 6d 00 12 02 c a l l a00030d8 <get_thread4handler>
a0002cb8 : 8 f 88 20 f0 sha %d15 ,%d8 , 8
a0002cbc : 91 00 00 49 movh.a %a4 ,36864
a0002cc0 : 60 f3 mov.a %a3 ,%d15
a0002cc2 : d9 44 00 40 lea %a4 ,[% a4]256

<90000100 <__HEAP_MIN+0x8f f80100>>
a0002cc6 : 54 c0 ld .w %d0 ,[% a12]
a0002cc8 : 01 43 10 20 add.a %a2 ,%a3 ,%a4
a0002ccc : df 10 c f 7 f j eq %d0 , 1 , a0002c6a
<ccthread_mutex_lock+0x1a>
}
// gained l o c k
mutex−>the_lock = 1 ;

a0002cd0 : 82 1 f mov %d15 , 1
a0002cd2 : 6c c0 st .w [%a12]0 ,%d15

mutex−>owner = th ;
a0002cd4 : 59 c8 08 00 st .w [%a12]8 ,%d8

s t a t i c i n l i n e uint32_t cc_sl_unlock (cc_spinlock_t ∗ lock) {
uint32_t r = 0 ;

156 B. APPENDIX: BINARY CODE

a0002cd8 : 82 0 f mov %d15 , 0
#i fndef GCC
__asm(" swap.w␣%0 ,[%2]0 " : "=d" (r) : " 0 " (r) , " a " ((uint32_t ∗) lock)

: "memory") ;
#else
asm v o l a t i l e (" swap.w␣ [%1]0 , ␣%0" : "=d" (r) : " a " (lock) , " 0 " (r)

: "memory") ;
a0002cda : 49 f f 00 08 swap.w [%a15]0 ,%d15 // unlock_guard
[mutex_unlock]

cc_sl_unlock(&mutex−>guard) ;
re turn 0 ;

}
a0002cde : 82 02 mov %d2 , 0
a0002ce0 : 00 90 ret
a0002ce2 : 00 00 nop
a0002ce4 : 00 00 nop

<ccthread_mutex_unlock >:
a0002ce8 <ccthread_mutex_unlock >:
a0002ce8 : cd 6e 00 0e mtcr $0xe006 (unknown SFR),%d14
int32_t ccthread_mutex_unlock (pthread_mutex_t∗ mutex) {
a0002cec : 40 4 f mov.aa %a15 ,%a4

thread_handler th = get_current_thread_handler () ;
a0002cee : 6d 00 11 02 c a l l a0003110 <get_current_thread_handler>

i f ((mutex−>owner != th) && (th != SYSTEM_THREAD_HANDLER))
re turn EPERM;

a0002c f2 : 4c f 2 ld .w %d15 , [% a15] 8
a0002c f4 : 0b 2 f 10 f1 ne %d15 ,%d15 ,%d2
a0002cf8 : 8b 02 20 22 ne %d2,%d2 , 0
a0002c fc : 87 f2 00 20 and. t %d2,%d2 ,0 ,%d15 , 0
a0002d00 : 82 1 f mov %d15 , 1
a0002d02 : 6 f 02 28 80 j n z . t %d2 , 0 , a0002d52
<ccthread_mutex_unlock+0x6a>

s t a t i c i n l i n e uint32_t cc_sl_lock (cc_spinlock_t ∗ lock) {
a0002d06 : d9 f2 04 00 lea %a2 ,[% a15] 4
a0002d0a : 82 1 f mov %d15 , 1
a0002d0c : 49 2 f 00 08 swap.w [%a2]0 ,%d15 // l o c k (guard)
[mutex_unlock]
a0002d10 : ee fd jnz %d15 , a0002d0a
<ccthread_mutex_unlock+0x22>

cc_sl_lock(&mutex−>guard) ;
i f (mutex−>wa i t l i s t_ f i r s t_ou t != NULL) { // the r e are th reads wa i t ing

a0002d12 : c8 44 l d . a %a4 ,[% a15]16
a0002d14 : bd 04 18 00 j z . a %a4 , a0002d44
<ccthread_mutex_unlock+0x5c>

tcb_t ∗ tcb_to_unsuspend = mutex−>wa i t l i s t_ f i r s t_ou t ;
i f (tcb_to_unsuspend−>sync l i s t_next != NULL) {

// the r e i s more than one thread wa i t ing
a0002d18 : 99 43 10 00 l d . a %a3 , [% a4]16
a0002d1c : bc 36 j z . a %a3 , a0002d28
<ccthread_mutex_unlock+0x40>

// s e t second thread in w a i t l i s t as " f i r s t out "

B. APPENDIX: BINARY CODE 157

mutex−>wa i t l i s t_ f i r s t_ou t = tcb_to_unsuspend−>sync l i s t_next ;
a0002d1e : e8 43 s t . a [%a15]16 ,%a3

// remove connec t ions to second thread
mutex−>wa i t l i s t_ f i r s t_ou t −>sync l i s t_prev = NULL;

a0002d20 : 82 00 mov %d0 , 0
a0002d22 : 59 30 0c 00 st .w [%a3]12 ,%d0
a0002d26 : 3c 04 j a0002d2e <ccthread_mutex_unlock+0x46>

}
else { // the r e i s on ly one thread wai t ing ,

// so s e t l i s t to NULL
mutex−>wa i t l i s t_ f i r s t_ou t = NULL;
mutex−>wa i t l i s t_ la s t_out = NULL;

a0002d28 : 82 0 f mov %d15 , 0
a0002d2a : 68 6 f s t .w [%a15]24 ,%d15
a0002d2c : 68 4 f s t .w [%a15]16 ,%d15
s t a t i c i n l i n e void set_suspended (tcb_t ∗ tcb) {

tcb−>sched_f lags |= SF_SUSPENDED;
}
s t a t i c i n l i n e void unset_suspended (tcb_t ∗ tcb) {

tcb−>sched_f lags &= ~SF_SUSPENDED;
a0002d2e : 19 4 f 10 10 ld .w %d15 ,[% a4]80
a0002d32 : 8 f 2 f c0 f 1 andn %d15 ,%d15 , 2
a0002d36 : 59 4 f 10 10 st .w [%a4]80 ,%d15

}
tcb_to_unsuspend−>sync l i s t_next = NULL;

a0002d3a : 82 00 mov %d0 , 0
a0002d3c : 59 40 10 00 st .w [%a4]16 ,%d0

s t a t i c i n l i n e uint32_t cc_sl_unlock (cc_spinlock_t ∗ lock) {
uint32_t r = 0 ;

a0002d40 : 82 0 f mov %d15 , 0
#i fndef GCC
__asm(" swap.w␣%0 ,[%2]0 " : "=d" (r) : " 0 " (r) , " a " ((uint32_t ∗) lock)

: "memory") ;
#else
asm v o l a t i l e (" swap.w␣ [%1]0 , ␣%0" : "=d" (r) : " a " (lock) , " 0 " (r)

: "memory") ;
a0002d42 : 3c 05 j a0002d4c <ccthread_mutex_unlock+0x64>

unset_suspended (tcb_to_unsuspend) ;
cc_sl_unlock(&mutex−>guard) ;
re turn 0 ;
}
mutex−>owner = NO_OWNER;
mutex−>the_lock = 0 ;

a0002d44 : 82 00 mov %d0 , 0
a0002d46 : 68 00 st .w [%a15]0 ,%d0
a0002d48 : 82 f0 mov %d0,−1
a0002d4a : 68 20 st .w [%a15]8 ,%d0

#i fndef GCC
__asm(" swap.w␣%0 ,[%2]0 " : "=d" (r) : " 0 " (r) , " a " ((uint32_t ∗) lock)

: "memory") ;
#else
asm v o l a t i l e (" swap.w␣ [%1]0 , ␣%0" : "=d" (r) : " a " (lock) , " 0 " (r)

: "memory") ;
a0002d4c : 49 2 f 00 08 swap.w [%a2]0 ,%d15 // unlock (guard)

158 B. APPENDIX: BINARY CODE

[mutex_unlock]
cc_sl_unlock(&mutex−>guard) ;
re turn 0 ;

a0002d50 : 82 0 f mov %d15 , 0
}
a0002d52 : 02 f2 mov %d2,%d15
a0002d54 : 00 90 ret

<set_suspended >:
sub.a %sp , 8
s t . a [%sp]4 ,%a4
l d . a %a2 ,[% sp] 4
l d . a %a15 , [% sp] 4
ld .w %d15 ,[% a15]80
or %d15 , 2
s t .w [%a2]80 ,%d15
ret

<unset_suspended >:
sub.a %sp , 8
s t . a [%sp]4 ,%a4
l d . a %a2 ,[% sp] 4
l d . a %a15 , [% sp] 4
ld .w %d15 ,[% a15]80
andn %d15 ,%d15 , 2
s t .w [%a2]80 ,%d15
ret

<_tie >:
.hword 0x000d
mov.d %d7,%a0
ret

<_untie >:
.hword 0x000d
.hword 0x07c0
ret

<get_current_thread_handler >:
sub.a %sp , 8
c a l l <get_current_tcb>
mov.aa %a15 ,%a2
s t . a [%sp]4 ,%a15
ld.w %d15 ,[% sp] 4
addih %d15 ,%d15 ,28672
add %d15 ,%d15 ,−256
sh %d15 ,−8
st .w [%sp]0 ,%d15
ld.w %d15 ,[% sp] 0
mov %d2,%d15
ret

B. APPENDIX: BINARY CODE 159

<get_thread4handler >:
sub.a %sp , 16
s t .w [%sp]12 ,%d4
ld.w %d15 ,[% sp] 12
mov %d0 ,256
mul %d15 ,%d0
addih %d15 ,%d15 ,36864
addi %d15 ,%d15 ,256
st .w [%sp]8 ,%d15
l d . a %a15 , [% sp] 8
ld .w %d15 ,[% a15] 4
and %d15 , 2
jnz %d15 , a000526a <get_thread4handler+0x28>
mov.a %a15 , 0
add.a %a15 ,−1
s t . a [%sp]4 ,%a15
j <get_thread4handler+0x2e>
l d . a %a15 , [% sp] 8
ld .w %d15 ,[% a15] 8
s t .w [%sp]4 ,%d15
l d . a %a2 ,[% sp] 4 <a00b0002 <_SMALL_DATA_+0x27422>>
ret

160 B. APPENDIX: BINARY CODE

Listing B.5:
Binary code: Semaphore with fetch-and-increment/fetch-and-decrement

s t a t i c i n l i n e int32_t pthread_sem_wait_suspend (pthread_sem_s_t ∗sem)
{
a0004534 : 91 b0 00 2a movh.a %a2 ,40971
a0004538 : d9 2 f c0 f1 lea %a15 , [% a2]8128 <a00b1fc0 <sem_s>>
a000453c : 1b 0a 00 f7 addi %d15 ,%d10 ,28672
a0004540 : 49 f f 00 08 swap.w [%a15]0 ,%d15 // f&i (sem−>va lue ())
a0004544 : bb f0 f f 0 f mov.u %d0 ,65535
a0004548 : 26 0 f and %d15 ,%d0
a000454a : ee 4a jnz %d15 , a00045de <worker_col_sem_s+0xde>

// suspending
i f ((fetch_and_decrement(&sem−>value)) <= 0)
{

// s l e e p and enter wa i t ing l i s t ; waking up from other thread
// c a l l i n g sem_post

whi le (! fetch_and_decrement(&sem−>wa i t l i s t_ l o c k)){
a000454c : 1b 09 00 07 addi %d0,%d9 ,28672
a0004550 : 02 0 f mov %d15 ,%d0
a0004552 : 49 c f 00 08 swap.w [%a12]0 ,%d15
a0004556 : bb f0 f f 1 f mov.u %d1 ,65535

// l o c k (guard)
a000455a : 26 1 f and %d15 ,%d1
a000455c : 6e f a jz %d15 , a0004550 <worker_col_sem_s+0x50>
a000455e : 02 0 f mov %d15 ,%d0
a0004560 : 49 f f 00 08 swap.w [%a15]0 ,%d15
a0004564 : bb f0 f f 0 f mov.u %d0 ,65535
a0004568 : 26 0 f and %d15 ,%d0
a000456a : ee 36 jnz %d15 , a00045d6 <worker_col_sem_s+0xd6>

}

i f ((fetch_and_decrement(&sem−>value)) <= 0)
{

thread_handler th = get_current_thread_handler () ;
a000456c : 6d f f c6 f5 c a l l a00030f8 <get_current_thread_handler>

tcb_t ∗my_tcb = TH2TCB(th) ;
a0004570 : 8 f 82 20 20 sha %d2,%d2 , 8
a0004574 : 91 00 00 f9 movh.a %a15 ,36864
a0004578 : 60 23 mov.a %a3 ,%d2
a000457a : d9 f f 00 40 lea %a15 , [% a15]256 <90000100

<__HEAP_MIN+0x8f f80100>>
a000457e : 01 f3 10 20 add.a %a2 ,%a3 ,%a15
a0004582 : 91 b0 00 fa movh.a %a15 ,40971
a0004586 : d9 f f d0 f1 lea %a15 , [% a15]8144 <a00b1fd0 <sem_s+0x10>>
a000458a : bb f0 f f f f mov.u %d15 ,65535
a000458e : 49 f f 00 08 swap.w [%a15] 0 <a00b0000

<_SMALL_DATA_+0x27418>>,%d15
a0004592 : bb f0 f f 0 f mov.u %d0 ,65535
a0004596 : 26 0 f and %d15 ,%d0
a0004598 : 86 2 f sha %d15 , 2

B. APPENDIX: BINARY CODE 161

a000459a : 91 b0 00 3a movh.a %a3 ,40971
a000459e : 8b 8 f 01 f0 add %d15 ,%d15 ,24
a00045a2 : d9 33 c0 f1 lea %a3 ,[% a3]8128 <a00b1fc0 <sem_s>>
a00045a6 : 10 3 f addsc .a %a15 ,%a3 ,%d15 , 0
a00045a8 : e8 02 s t . a [%a15]0 ,%a2
a00045aa : bb f0 f f f f mov.u %d15 ,65535
a00045ae : 49 df 00 08 swap.w [%a13]0 ,%d15
a00045b2 : 0d 00 .hword 0x000d
a00045b4 : 80 07 mov.d %d7,%a0
}

∗/

s t a t i c i n l i n e void set_suspended (tcb_t ∗ tcb) {
tcb−>sched_f lags |= SF_SUSPENDED;

a00045b6 : 19 20 10 10 ld .w %d0 ,[% a2]80
a00045ba : 8 f 20 40 01 or %d0,%d0 , 2
a00045be : 59 20 10 10 st .w [%a2]80 ,%d0
a00045c2 : bb f0 f f f f mov.u %d15 ,65535
a00045c6 : 49 c f 00 08 swap.w [%a12]0 ,%d15
a00045ca : 0d 00 .hword 0x000d

// unlock (guard)
a00045cc : c0 07 .hword 0x07c0
a00045ce : 91 b0 00 ca movh.a %a12 ,40971
a00045d2 : d9 cc cc f1 lea %a12 , [% a12]8140 <a00b1fcc <sem_s+0xc>>
a00045d6 : bb f0 f f f f mov.u %d15 ,65535
a00045da : 49 c f 00 08 swap.w [%a12] 0 <a00b0000

<_SMALL_DATA_+0x27418>>,%d15
{

pthread_sem_wait_suspend(&sem_s) ;
sem−>wa i t l i s t _ f i f o [fetch_and_increment(&sem−>f i f o_next)]

= my_tcb ;
fetch_and_increment(&sem−>wa i t l i s t_ e n t r i e s) ;
_tie () ;
set_suspended (my_tcb) ;
fetch_and_increment(&sem−>wa i t l i s t_ l o c k) ;
_untie () ;
fetch_and_increment(&sem−>wa i t l i s t_ l o c k) ;
re turn 0 ;

}
else
{

fetch_and_increment(&sem−>wa i t l i s t_ l o c k) ;
re turn 0 ;

}
}
return 0 ;

}

162 B. APPENDIX: BINARY CODE

Listing B.6:
Binary code: Subbarrier (including also the binary code of conditional variables)

/∗
∗∗∗ COPYRIGHT NOTICE FOR FUNCTION <barr ier_wait> ∗∗∗
∗
∗ OpenSPARC T2 Proces sor F i l e : b a r r i e r . c
∗ Copyright (c) 2006 Sun Microsystems , I n c . Al l Rights Reserved.
∗ DO NOT ALTER OR REMOVE COPYRIGHT NOTICES.
∗
∗ The above named program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or
∗ modify i t under the terms o f the GNU General Public
∗ License ve r s i on 2 as publ i shed by the Free Software Foundation.
∗
∗ The above named program i s d i s t r i b u t e d in the hope that i t w i l l be
∗ use fu l , but WITHOUT ANY WARRANTY; w i thout even the imp l i ed warranty o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
∗ General Public License f o r more d e t a i l s .
∗
∗ You should have r e c e i v ed a copy o f the GNU General Public
∗ License along with this work ; i f not , wr i t e to the Free Sof tware
∗ Foundation , Inc . , 51 Frankl in St , F i f th Floor , Boston , MA 02110−1301 , USA.
∗/

a0002a50 <barr ier_wait >:
a0002a50 : cd 68 00 0e mtcr $0xe006 (unknown SFR),%d8

int barr i e r_wai t (pthread_barr ier_t ∗ ba r r i e r)
{

s t r u c t _subbarr ier ∗ subbar r i e rp = bar r i e r−>subbar r i e rp ;
a0002a54 : 99 4 f 1c 10 l d . a %a15 , [% a4]92
a0002a58 : 40 4c mov.aa %a12 ,%a4

pthread_mutex_lock(&subbarr i e rp−>wait_lock) ;
a0002a5a : d9 fd 0c 00 lea %a13 , [% a15]12
a0002a5e : 40 d4 mov.aa %a4 ,%a13
a0002a60 : 6d f f 4c f f c a l l a00028f8 <pthread_mutex_lock>

i f (subbarr i e rp−>runners == 1)
// l a s t thread to reach b a r r i e r

a0002a64 : 48 a0 ld .w %d0 ,[% a15]40
a0002a66 : df 10 17 80 jne %d0 , 1 , a0002a94 <barr i e r_wai t+0x44>

{
i f (ba r r i e r−>maxcnt > 1)
// r e s e t runner count and sw i t ch sub−b a r r i e r s

a0002a6a : 54 c1 ld .w %d1 ,[% a12]
a0002a6c : bf 21 21 00 j l t %d1 , 2 , a0002aae <barr i e r_wai t+0x5e>

{
subbarr i e rp−>runners = bar r i e r−>maxcnt ;
ba r r i e r−>subbar r i e rp =
(ba r r i e r−>subbar r i e rp == &bar r i e r−>subba r r i e r [0])

a0002a70 : 80 c0 mov.d %d0,%a12
a0002a72 : 9a 40 add %d15 ,%d0 , 4
a0002a74 : 19 c0 1c 10 ld .w %d0 ,[% a12]92
a0002a78 : 68 a1 st .w [%a15]40 ,%d1

B. APPENDIX: BINARY CODE 163

a0002a7a : 80 c2 mov.d %d2,%a12
a0002a7c : 0b f0 00 01 eq %d0,%d0,%d15

? &bar r i e r−>subba r r i e r [1] : &ba r r i e r−>subba r r i e r [0] ;
// wake up wa i t ing th reads
pthread_cond_broadcast(&subbarr i e rp−>wait_cond) ;

a0002a80 : 40 f4 mov.aa %a4 ,%a15
a0002a82 : 8b 02 03 10 add %d1,%d2 ,48
a0002a86 : 2b f1 40 00 s e l %d0,%d0,%d1,%d15
a0002a8a : 59 c0 1c 10 st .w [%a12]92 ,%d0
a0002a8e : 6d f f 4d f f c a l l a0002928 <pthread_cond_broadcast>
a0002a92 : 3c 0e j a0002aae <barr i e r_wai t+0x5e>

}
}
else
{

subbarr i e rp−>runners−−; // one needed thread l e s s
a0002a94 : c2 f0 add %d0,−1
a0002a96 : 68 a0 st .w [%a15]40 ,%d0

whi l e (subbarr i e rp−>runners != ba r r i e r−>maxcnt)
a0002a98 : 4c c0 ld .w %d15 , [% a12] 0
a0002a9a : 5 f f 0 0a 00 j eq %d0,%d15 , a0002aae <barr i e r_wai t+0x5e>

{
pthread_cond_wait(&subbarr i e rp−>wait_cond ,
&subbarr i e rp−>wait_lock) ;

// wai t u n t i l l a s t thread to reach b a r r i e r
a0002a9e : 40 f4 mov.aa %a4 ,%a15
a0002aa0 : 40 d5 mov.aa %a5 ,%a13
a0002aa2 : 6d f f 63 f f c a l l a0002968 <pthread_cond_wait>
a0002aa6 : 48 a0 ld .w %d0 ,[% a15]40
a0002aa8 : 4c c0 ld .w %d15 , [% a12] 0
a0002aaa : 5 f f 0 f a f f jne %d0,%d15 , a0002a9e <barr i e r_wai t+0x4e>

}
}
pthread_mutex_unlock(&subbarr i e rp−>wait_lock) ;

a0002aae : 40 d4 mov.aa %a4 ,%a13
a0002ab0 : 6d f f 34 f f c a l l a0002918 <pthread_mutex_unlock>

return 0 ;
}

a0002ab4 : 82 02 mov %d2 , 0
a0002ab6 : 00 90 ret

a0002928 <pthread_cond_broadcast >:
a0002928 : cd 0a 00 0e mtcr $dpm0_0,%d10
int pthread_cond_broadcast (pthread_cond_t ∗cond){

re turn ccthread_cond_broadcast (cond) ;
a000292c : 6d 00 5a 01 c a l l a0002be0 <ccthread_cond_broadcast>
a0002930 : 00 90 ret

164 B. APPENDIX: BINARY CODE

a0002be0 <ccthread_cond_broadcast >:
a0002be0 : cd 38 00 0e mtcr $dpm0_3,%d8
int32_t ccthread_cond_broadcast (pthread_cond_t∗ cond) {

i f (cond == NULL) return EINVAL ;
a0002be4 : 3b 60 01 20 mov %d2 ,22
a0002be8 : bd 04 17 00 j z . a %a4 , a0002c16

<ccthread_cond_broadcast+0x36>
tcb_t ∗ tcb = cond−>wa i t l i s t_ f i r s t_ou t ;

a0002bec : 99 42 04 00 l d . a %a2 , [% a4] 4
tcb_t ∗tcb_tmp ;
whi le (tcb != NULL) {

a0002bf0 : bc 2 f j z . a %a2 , a0002c0e
<ccthread_cond_broadcast+0x2e>

s t a t i c i n l i n e void set_suspended (tcb_t ∗ tcb) {
tcb−>sched_f lags |= SF_SUSPENDED; }

s t a t i c i n l i n e void unset_suspended (tcb_t ∗ tcb) {
tcb−>sched_f lags &= ~SF_SUSPENDED;

a0002bf2 : 19 2 f 10 10 ld .w %d15 , [% a2]80
a0002bf6 : 8 f 2 f c0 f1 andn %d15 ,%d15 , 2
a0002bfa : 40 2 f mov.aa %a15 ,%a2
a0002bfc : 59 2 f 10 10 st .w [%a2]80 ,%d15

unset_suspended (tcb) ;
tcb_tmp = tcb ;
tcb = tcb_tmp−>sync l i s t_next ;
tcb_tmp−>sync l i s t_next = NULL;
tcb_tmp−>sync l i s t_prev = NULL;

a0002c00 : 82 0 f mov %d15 , 0
a0002c02 : 99 22 10 00 l d . a %a2 ,[% a2]16
a0002c06 : 68 3 f s t .w [%a15]12 ,%d15
a0002c08 : 68 4 f s t .w [%a15]16 ,%d15
a0002c0a : bd 02 f4 f f j n z . a %a2 , a0002bf2

<ccthread_cond_broadcast+0x12>
}

cond−>wa i t l i s t_ f i r s t_ou t = NULL;
cond−>wa i t l i s t_ la s t_out = NULL;

a0002c0e : 82 0 f mov %d15 , 0
a0002c10 : 6c 42 st .w [%a4]8 ,%d15
a0002c12 : 6c 41 st .w [%a4]4 ,%d15

return E_OK;
}
a0002c14 : 82 02 mov %d2 , 0
a0002c16 : 00 90 ret

a0002968 <pthread_cond_wait >:
a0002968 : cd 0a 00 0e mtcr $dpm0_0,%d10
int pthread_cond_wait (pthread_cond_t ∗cond , pthread_mutex_t ∗mutex){

re turn ccthread_cond_wait (cond , mutex) ;
a000296c : 6d 00 d6 00 c a l l a0002b18 <ccthread_cond_wait>
a0002970 : 00 90 ret

B. APPENDIX: BINARY CODE 165

a0002b18 <ccthread_cond_wait >:
a0002b18 : cd 80 00 0e mtcr $0xe008 (unknown SFR),%d0

return EBUSY;
re turn E_OK;

}
int32_t ccthread_cond_wait (pthread_cond_t∗ cond , pthread_mutex_t∗ mutex) {
a0002b1c : 40 5c mov.aa %a12 ,%a5

i f (cond == NULL)
a0002b1e : 3b 60 01 20 mov %d2 ,22
a0002b22 : bd 04 3a 00 j z . a %a4 , a0002b96 <ccthread_cond_wait+0x7e>

return EINVAL ;
i f ((cond−>mutex != NULL) && (cond−>mutex != mutex))

a0002b26 : cc 40 l d . a %a15 , [% a4] 0
a0002b28 : bc f3 j z . a %a15 , a0002b2e

<ccthread_cond_wait+0x16>
a0002b2a : 7d 5 f 36 80 j n e . a %a15 ,%a5 , a0002b96

<ccthread_cond_wait+0x7e>
s t a t i c i n l i n e tcb_t ∗ get_current_tcb (void) {

re turn (tcb_t ∗) MSS_MY_TCB;
a0002b2e : 85 9 f 08 08 l d . a %a15 ,90000008 <__HEAP_MIN+0x8f f80008>

return EINVAL ;
tcb_t ∗my_tcb = get_current_tcb () ;
thread_handler th = TCB2TH(my_tcb) ;

a0002b32 : 7b 00 00 27 movh %d2 ,28672
a0002b36 : 80 f1 mov.d %d1,%a15
a0002b38 : 1b 02 f0 2 f addi %d2,%d2 ,−256

i f (mutex−>owner != th)
a0002b3c : 19 c0 08 00 ld .w %d0 ,[% a12] 8
a0002b40 : 1a 21 add %d15 ,%d1,%d2
a0002b42 : 06 8 f sh %d15 ,−8
a0002b44 : 82 12 mov %d2 , 1
a0002b46 : 5 f f 0 28 80 jne %d0,%d15 , a0002b96

<ccthread_cond_wait+0x7e>
return EPERM;

cond−>mutex = mutex ;
a0002b4a : f 4 4c s t . a [%a4] ,%a12

// Thread coming i n t o wa i t ing l i s t
// Thread must be p laced behind o ther wa i t ing th reads
i f (cond−>wa i t l i s t_ la s t_out != NULL) { // not the f i r s t in l i s t

a0002b4c : 99 42 08 00 l d . a %a2 ,[% a4] 8
a0002b50 : bc 27 j z . a %a2 , a0002b5e <ccthread_cond_wait+0x46>

// connect wi th o ther th reads
cond−>wai t l i s t_ la s t_out−>sync l i s t_next = my_tcb ;

a0002b52 : ec 24 s t . a [%a2]16 ,%a15
my_tcb−>sync l i s t_prev = cond−>wa i t l i s t_ la s t_out ;

a0002b54 : 19 42 08 00 ld .w %d2 ,[% a4] 8
a0002b58 : 68 32 st .w [%a15]12 ,%d2

// s e t myse l f as l a s t thread in the whole l i s t
cond−>wa i t l i s t_ la s t_out = my_tcb ;

a0002b5a : ec 42 s t . a [%a4]8 ,%a15
a0002b5c : 3c 03 j a0002b62 <ccthread_cond_wait+0x4a>

// w a i t l i s t _ f i r s t _ o u t i s a l r eady s e t and s t a y s the same
}

166 B. APPENDIX: BINARY CODE

else { // coming HRT thread i s the f i r s t one in l i s t
cond−>wa i t l i s t_ f i r s t_ou t = my_tcb ;
cond−>wa i t l i s t_ la s t_out = my_tcb ;

a0002b5e : ec 42 s t . a [%a4]8 ,%a15
a0002b60 : ec 41 s t . a [%a4]4 ,%a15
a0002b62 : 0d 00 .hword 0x000d
a0002b64 : 80 07 mov.d %d7,%a0

}
_tie () ;
ccthread_mutex_unlock (mutex) ;

a0002b66 : 40 c4 mov.aa %a4 ,%a12
a0002b68 : 6d 00 b8 00 c a l l a0002cd8 <ccthread_mutex_unlock>

tcb−>sched_f lags &= ~SF_SWAPOUT;
}
s t a t i c i n l i n e void set_suspended (tcb_t ∗ tcb) {
a0002b6c : 8 f 8 f 20 f0 sha %d15 ,%d15 , 8
a0002b70 : 91 00 00 39 movh.a %a3 ,36864
a0002b74 : 60 f2 mov.a %a2 ,%d15
a0002b76 : d9 33 00 40 lea %a3 ,[% a3]256

<90000100 <__HEAP_MIN+0x8f f80100>>
a0002b7a : 01 32 10 f0 add.a %a15 ,%a2 ,%a3

tcb−>sched_f lags |= SF_SUSPENDED;
a0002b7e : 19 f0 10 10 ld .w %d0 ,[% a15]80
a0002b82 : 8 f 20 40 01 or %d0,%d0 , 2
a0002b86 : 59 f0 10 10 st .w [%a15]80 ,%d0
a0002b8a : 0d 00 .hword 0x000d
a0002b8c : c0 07 .hword 0x07c0

set_suspended (TH2TCB(th)) ;
_untie () ;
ccthread_mutex_lock (mutex) ;

a0002b8e : 40 c4 mov.aa %a4 ,%a12
a0002b90 : 6d 00 58 00 c a l l a0002c40 <ccthread_mutex_lock>

return E_OK;
a0002b94 : 82 02 mov %d2 , 0
}
a0002b96 : 00 90 ret

B. APPENDIX: BINARY CODE 167

Listing B.7:
Binary code: Barriers with fetch-and-increment

a0002a50 <barr ier_wait >:
a0002a50 : cd a4 00 0e mtcr $0xe00a (unknown SFR),%d4
int barr i e r_wai t (pthread_barr ier_t ∗ ba r r i e r)
{
a0002a54 : 40 4d mov.aa %a13 ,%a4
a0002a56 : d9 4c 08 00 lea %a12 , [% a4] 8
a0002a5a : 7b 00 00 07 movh %d0 ,28672

#endif
re turn data & 0x0000FFFF ;

}
s t a t i c i n l i n e uint32_t fetch_and_decrement (uint32_t ∗ address) {

uint32_t data = 0x70007000 ;
a0002a5e : 1b 00 00 f7 addi %d15 ,%d0 ,28672

#i fndef GCC
__asm(" swap.w␣%0 ,[%2]0 " : "=d" (data) : " 0 " (data) ,

" a " ((uint32_t ∗) address) : "memory") ;
#else
asm v o l a t i l e (" swap.w␣ [%2]0 , ␣%0" : "=d" (data) : " 0 " (data) ,

" a " (address) : "memory") ;
a0002a62 : 49 c f 00 08 swap.w [%a12]0 ,%d15
a0002a66 : bb f0 f f 1 f mov.u %d1 ,65535
a0002a6a : 26 1 f and %d15 ,%d1
a0002a6c : 6e f 9 jz %d15 , a0002a5e <barr i e r_wai t+0xe>
a0002a6e : d9 df 04 00 lea %a15 , [% a13] 4
a0002a72 : bb f0 f f f f mov.u %d15 ,65535
a0002a76 : 49 f f 00 08 swap.w [%a15]0 ,%d15

whi l e (! fetch_and_decrement(&bar r i e r−>wa i t l i s t_ l o c k))
{ }
uint32_t cur_runner = fetch_and_increment(&bar r i e r−>runners) ;
uint32_t needed = (uint32_t) ba r r i e r−>needed ;

a0002a7a : 54 d0 ld .w %d0 ,[% a13]
a0002a7c : 26 1 f and %d15 ,%d1

i f (cur_runner >= (needed − 1)) // l a s t needed thread to reach b a r r i e r
a0002a7e : c2 f 0 add %d0,−1
a0002a80 : 3 f 0 f 1a 80 j l t . u %d15 ,%d0 , a0002ab4 <barr i e r_wai t+0x64>

{
uint32_t i ;
f o r (i = 0 ; i < needed −1; i++)

a0002a84 : bf 10 13 80 j l t . u %d0 , 1 , a0002aaa <barr i e r_wai t+0x5a>
a0002a88 : 60 04 mov.a %a4 ,%d0
a0002a8a : d9 43 f f f f lea %a3 ,[% a4]−1
a0002a8e : 3b c0 00 00 mov %d0 ,12

{
tcb_t ∗ tcb_to_unsuspend = (tcb_t ∗) ba r r i e r−>wa i t l i s t _ f i f o [i] ;

a0002a92 : 60 0 f mov.a %a15 ,%d0
a0002a94 : 01 fd 10 f0 add.a %a15 ,%a13 ,%a15
a0002a98 : c8 02 l d . a %a2 ,[% a15] 0
s t a t i c i n l i n e void set_suspended (tcb_t ∗ tcb) {

tcb−>sched_f lags |= SF_SUSPENDED;
}

168 B. APPENDIX: BINARY CODE

s t a t i c i n l i n e void unset_suspended (tcb_t ∗ tcb) {
tcb−>sched_f lags &= ~SF_SUSPENDED;

a0002a9a : 19 2 f 10 10 ld .w %d15 , [% a2]80
a0002a9e : 8 f 2 f c0 f1 andn %d15 ,%d15 , 2
a0002aa2 : 59 2 f 10 10 st .w [%a2]80 ,%d15
a0002aa6 : c2 40 add %d0 , 4
a0002aa8 : f c 35 loop %a3 , a0002a92 <barr i e r_wai t+0x42>
a0002aaa : bb f0 f f f f mov.u %d15 ,65535
a0002aae : 49 c f 00 08 swap.w [%a12]0 ,%d15
a0002ab2 : 3c 1 f j a0002af0 <barr i e r_wai t+0xa0>

unset_suspended (tcb_to_unsuspend) ;
}
fetch_and_increment(&bar r i e r−>wa i t l i s t_ l o c k) ;

}
else
{

thread_handler th = get_current_thread_handler () ;
a0002ab4 : 6d 00 2e 03 c a l l a0003110 <get_current_thread_handler>

tcb_t ∗my_tcb = TH2TCB(th) ;
a0002ab8 : 8 f 82 20 20 sha %d2,%d2 , 8
a0002abc : 91 00 00 49 movh.a %a4 ,36864

ba r r i e r−>wa i t l i s t _ f i f o [cur_runner] = my_tcb ;
a0002ac0 : 86 2 f sha %d15 , 2
a0002ac2 : 60 23 mov.a %a3 ,%d2
a0002ac4 : 8b c f 00 f0 add %d15 ,%d15 ,12
a0002ac8 : 10 d2 addsc .a %a2 ,%a13 ,%d15 , 0
a0002aca : d9 44 00 40 lea %a4 ,[% a4]256

<90000100 <__HEAP_MIN+0x8f f80100>>
a0002ace : 01 43 10 f0 add.a %a15 ,%a3 ,%a4
a0002ad2 : ec 20 s t . a [%a2]0 ,%a15
a0002ad4 : 0d 00 .hword 0x000d
a0002ad6 : 80 07 mov.d %d7,%a0
}
s t a t i c i n l i n e void set_suspended (tcb_t ∗ tcb) {

tcb−>sched_f lags |= SF_SUSPENDED;
a0002ad8 : 19 f0 10 10 ld .w %d0 ,[% a15]80
a0002adc : 8 f 20 40 01 or %d0,%d0 , 2
a0002ae0 : 59 f0 10 10 st .w [%a15]80 ,%d0
a0002ae4 : bb f0 f f f f mov.u %d15 ,65535
a0002ae8 : 49 c f 00 08 swap.w [%a12]0 ,%d15
a0002aec : 0d 00 .hword 0x000d
a0002aee : c0 07 .hword 0x07c0

_tie () ;
set_suspended (my_tcb) ;
fetch_and_increment(&bar r i e r−>wa i t l i s t_ l o c k) ;
_untie () ;

}
return 0 ;

}
a0002af0 : 82 02 mov %d2 , 0
a0002af2 : 00 90 ret

C Appendix: CFGs of SW Synchronisations

C.1. CFGs of Software Synchronisations
In this appendix the CFGs derived from the static WCET tool OTAWA, which are used
as baseline for the static timing analyses in Chapter 4, are presented.
The CFGs of spin locks with TAS and spin locks with F&I/F&D are shown as part

of the mutex lock CFG. For example BB3 and BB13 of Figure C.2(a) and BB5 of
Figure C.2(b) show the control flow of a TAS spin lock. BB8 of Figure C.2(b) presents
the control flow of the TAS spin unlock. BB8 of Figure C.3(a) shows the F&D spin lock
control flow, and e.g. BB14 of Figure C.3(a) the F&I unlock control flow of a F&I/F&D
spin lock. The ticket unlock CFG is not shown here, as the instructions in the binary
are very similar to the F&D unlock CFG.

BB 3 (a0004936)

a0004936 lea a15,[a7]8168
a000493a mov.u d15,65535
a000493e swap.w a4,0,d15
a0004942 mov.u d0,65535
a0004946 and d15,d0
a0004948 st.w a10,#1,d15

ENTRY

call

BB 5 (a000494a)

a000494a ld.w d15,[a15]0
a000494c mov.u d0,65535
a0004950 and d15,d0
a0004952 st.w a10,#0,d15
a0004954 ld.w d0,[a10]4
a0004958 ld.w d15,a10,#0
a000495a jne d0, d15, 0xa000494a # a000494a

taken

EXIT

return

Figure C.1.: OTAWA Ouput: CFG of ticket lock function with F&I/F&D

170 C. APPENDIX: CFGS OF SW SYNCHRONISATIONS

ENTRY

BB 1 (a0002c50)

ccthread_mutex_lock:
a0002c50 mtcr 57353,d2
a0002c54 mov.aa a12,a4
a0002c56 call #1210 # get_current_thread_handler

call

BB 15 (a0003110)

get_current_thread_handler:
a0003110 mtcr 57345,d6
a0003114 movh d15,28672
a0003118 addi d15,d15,65280
a000311c ld.w d2,-114680
a0003120 add d2,d15
a0003122 sh d2,#-8
a0003124 ret

call

BB 2 (a0002c5a)

a0002c5a mov d8,d2
a0002c5c lea a15,[a12]4

return

BB 3 (a0002c60)

a0002c60 mov d15,1
a0002c62 swap.w a15,0,d15
a0002c66 jnz d15,-6 # a0002c60

taken

BB 4 (a0002c68)

a0002c68 j 74 # a0002cb2

BB 5 (a0002cb2)

a0002cb2 mov d4,d8
a0002cb4 call #1060 # get_thread4handler

taken

BB 16 (a00030d8)

get_thread4handler:
a00030d8 mtcr 57346,d6
a00030dc sha d4,d4,#8
a00030e0 movh.a a15,36864
a00030e4 mov.a a2,d4
a00030e6 lea a15,[a15]256
a00030ea add.a a3,a2,a15
a00030ee ld.w d15,[a3]1
a00030f0 and d15,#2
a00030f2 mov.a a2,0
a00030f4 add.a a2,#15
a00030f6 jz d15,3 # a00030fc

call

BB 17 (a00030f8)

a00030f8 ld.a a2,[a3]8

BB 18 (a00030fc)

a00030fc ret

taken

BB 6 (a0002cb8)

a0002cb8 sha d15,d8,#8
a0002cbc movh.a a4,36864
a0002cc0 mov.a a3,d15
a0002cc2 lea a4,[a4]256
a0002cc6 ld.w a12,[d0]
a0002cc8 add.a a2,a3,a4
a0002ccc jeq d0,1,-98 # a0002c6a

BB 7 (a0002cd0)

a0002cd0 mov d15,1
a0002cd2 st.w d15,[a12],0
a0002cd4 st.w d8,[a12]8
a0002cd8 mov d15,0
a0002cda swap.w a15,0,d15

BB 8 (a0002c6a)

a0002c6a ld.a a3,[a12]24
a0002c6e jz.a d3,12 # a0002c7a

taken

BB 9 (a0002cde)

a0002cde mov d2,0
a0002ce0 ret

BB 10 (a0002c70)

a0002c70 st.a [a3],16,a2
a0002c74 ld.w d15,[a12]6
a0002c76 st.w d15,[a2],3
a0002c78 j 6 # a0002c7e

BB 11 (a0002c7a)

a0002c7a st.a [a12],16,a2

taken

EXIT

return

BB 12 (a0002c7e)

a0002c7e st.a [a12],24,a2
a0002c82 tie
a0002c86 ld.w d0,[a2]80
a0002c8a or d0,d0,#2
a0002c8e st.w d0,[a2]80
a0002c92 mov d15,0
a0002c94 swap.w a15,0,d15
a0002c98 untie
a0002c9c lea a2,[a12]4

taken

BB 13 (a0002ca0)

a0002ca0 mov d15,1
a0002ca2 swap.w a2,0,d15
a0002ca6 jnz d15,-6 # a0002ca0

taken

BB 14 (a0002ca8)

a0002ca8 st.w d8,[a12]8
a0002cac swap.w a2,0,d15
a0002cb0 j 46 # a0002cde

taken

return

(a)

ENTRY

BB 1 (a0002ce8)

ccthread_mutex_unlock:
a0002ce8 mtcr 57350,d14
a0002cec mov.aa a15,a4
a0002cee call #1058 # get_current_thread_handler

call

BB 13 (a0003110)

get_current_thread_handler:
a0003110 mtcr 57345,d6
a0003114 movh d15,28672
a0003118 addi d15,d15,65280
a000311c ld.w d2,-114680
a0003120 add d2,d15
a0003122 sh d2,#-8
a0003124 ret

call

BB 2 (a0002cf2)

a0002cf2 ld.w d15,[a15]2
a0002cf4 ne d15,d15,d2
a0002cf8 ne d2,d2,#0
a0002cfc and.t d2,d2,0,d15,0
a0002d00 mov d15,1
a0002d02 jnz.t d0,0,80 # a0002d52

return

BB 3 (a0002d06)

a0002d06 lea a2,[a15]4

BB 4 (a0002d52)

a0002d52 mov d2,d15
a0002d54 ret

taken

BB 5 (a0002d0a)

a0002d0a mov d15,1
a0002d0c swap.w a2,0,d15
a0002d10 jnz d15,-6 # a0002d0a

EXIT

return

taken

BB 6 (a0002d12)

a0002d12 ld.a a4,[a15]4
a0002d14 jz.a a4,48 # a0002d44

BB 7 (a0002d18)

a0002d18 ld.a a3,[a4]16
a0002d1c jz.a d3,12 # a0002d28

BB 8 (a0002d44)

a0002d44 mov d0,0
a0002d46 st.w d0,[a15],0
a0002d48 mov d0,15
a0002d4a st.w d0,[a15],2

taken

BB 9 (a0002d1e)

a0002d1e st.a a15,4,a3
a0002d20 mov d0,0
a0002d22 st.w d0,[a3]12
a0002d26 j 8 # a0002d2e

BB 10 (a0002d28)

a0002d28 mov d15,0
a0002d2a st.w d15,[a15],6
a0002d2c st.w d15,[a15],4

taken

BB 11 (a0002d4c)

a0002d4c swap.w a2,0,d15
a0002d50 mov d15,0

BB 12 (a0002d2e)

a0002d2e ld.w d15,[a4]80
a0002d32 andn d15,d15,#2
a0002d36 st.w d15,[a4]80
a0002d3a mov d0,0
a0002d3c st.w d0,[a4]16
a0002d40 mov d15,0
a0002d42 j 10 # a0002d4c

taken

taken

(b)

Figure C.2.: OTAWA Ouput: CFG of (fair) mutex lock function (a) and (fair)
mutex unlock function (b) from matmul program

C. APPENDIX: CFGS OF SW SYNCHRONISATIONS 171

ENTRY

call

BB 3 (a0004534)

a0004534 movh.a a2,40971
a0004538 lea a15,[a2]8128
a000453c addi d15,d10,28672
a0004540 swap.w a15,0,d15
a0004544 mov.u d0,65535
a0004548 and d15,d0
a000454a jnz d15, 0xa00045de # a00045de

BB 5 (a000454c)

a000454c addi d0,d9,28672

BB 8 (a0004550)

a0004550 mov d15,d0
a0004552 swap.w a12,0,d15
a0004556 mov.u d1,65535
a000455a and d15,d1
a000455c jz d15, -1610594992 # a0004550

taken

BB 11 (ffffffffa000455e)

a000455e mov d15,d0
a0004560 swap.w a15,0,d15
a0004564 mov.u d0,65535
a0004568 and d15,d0
a000456a jnz d15, 0xa00045d6 # a00045d6

BB 13 (a000456c)

a000456c call 0xa00030f8 # get_current_thread_handler

BB 14 (a00045d6)

a00045d6 mov.u d15,65535
a00045da swap.w a12,0,d15

taken

BB 21 (a00030f8)

get_current_thread_handler:
a00030f8 mtcr 57345,d6
a00030fc movh d15,28672
a0003100 addi d15,d15,65280
a0003104 ld.w d2,-114680
a0003108 add d2,d15
a000310a sh d2,#-8
a000310c ret

call

BB 17 (a0004570)

a0004570 sha d2,d2,#8
a0004574 movh.a a15,36864
a0004578 mov.a a3,d2
a000457a lea a15,[a15]256
a000457e add.a a2,a3,a15
a0004582 movh.a a15,40971
a0004586 lea a15,[a15]8144
a000458a mov.u d15,65535
a000458e swap.w a15,0,d15
a0004592 mov.u d0,65535
a0004596 and d15,d0
a0004598 sha d15,##2
a000459a movh.a a3,40971
a000459e add d15,d15,#24
a00045a2 lea a3,[a3]8128
a00045a6 addsc.a a15,a3,d15,0
a00045a8 st.a a15,0,a2
a00045aa mov.u d15,65535
a00045ae swap.w a13,0,d15
a00045b2 tie
a00045b6 ld.w d0,[a2]80
a00045ba or d0,d0,#2
a00045be st.w d0,[a2]80
a00045c2 mov.u d15,65535
a00045c6 swap.w a12,0,d15
a00045ca untie
a00045ce movh.a a12,40971
a00045d2 lea a12,[a12]8140

return

EXIT

return

(a)

ENTRY

call

BB 6 (a00045de)

a00045de ld.w d7,[a14]8228
a00045e2 add d15,d7,#1
a00045e4 st.w d15,[a14]8228
a00045e8 mov d0,30
a00045ec ge.u d15,d0,d15
a00045f0 movh.a a2,40971
a00045f4 cmovn d8,d15,#0
a00045f6 lea a15,[a2]8128
a00045fa addi d0,d9,28672

BB 9 (a00045fe)

a00045fe mov d15,d0
a0004600 swap.w a12,0,d15
a0004604 mov.u d1,65535
a0004608 and d15,d1
a000460a jz d15, -1610594818 # a00045fe

taken

BB 12 (a000460c)

a000460c mov d15,d0
a000460e swap.w a13,0,d15
a0004612 mov.u d0,65535
a0004616 and d15,d0
a0004618 jz d15, -1610594740 # a000464c

BB 15 (a000461a)

a000461a movh.a a15,40971
a000461e lea a15,[a15]8148
a0004622 mov.u d15,65535
a0004626 swap.w a15,0,d15
a000462a and d15,d1
a000462c sha d15,##2
a000462e movh.a a2,40971
a0004632 add d15,d15,#24
a0004636 lea a2,[a2]8128
a000463a addsc.a a15,a2,d15,0
a000463c ld.a a2,[a15]0
a000463e ld.w d15,[a2]80
a0004642 andn d15,d15,#2
a0004646 st.w d15,[a2]80
a000464a j 0xa000465c # a000465c

BB 16 (a000464c)

a000464c mov.u d15,65535
a0004650 swap.w a15,0,d15
a0004654 mov.u d0,65535
a0004658 swap.w a12,0,d0

taken

BB 18 (a000465c)

a000465c jeq d8, 0, 0xa00046b6 # a00046b6

taken

EXIT

return

(b)

Figure C.3.: OTAWA Ouput: CFG of Binary Semaphores with F&I/F&D.
sem_wait() in (a) and sem_post() in (b).

172 C. APPENDIX: CFGS OF SW SYNCHRONISATIONS

ENTRY

BB.s.fa---ja5-#

barrier_wait:
a---ja5-.mtcr.57z5-ud8
a---ja5q.ldga.as5u[aq]9j
a---ja58.movgaa.asjuaq
a---ja5a.lea.aszu[as5]sj
a---ja5e.movgaa.aquasz
a---ja6-.call.-xa---j8f8.9.pthread_mutex_lock

call

BB.7.fa---j8f8#

pthread_mutex_lock:
a---j8f8.mtcr.57zqquds-
a---j8fc.call.-xa---jcq-.9.ccthread_mutex_lock

call

BB.9.fa---jcq-#

ccthread_mutex_lock:
a---jcq-.mtcr.57z5zudj
a---jcqq.movgaa.asjuaq
a---jcq6.call.-xa---zs--.9.get_current_thread_handler

call

BB.jz.fa---zs--#

get_current_thread_handler:
a---zs--.mtcr.57zq5ud6
a---zs-q.movh.ds5uj867j
a---zs-8.addi.ds5uds5u65j8-
a---zs-c.ldgw.djukssq68-
a---zss-.add.djuds5
a---zssj.sh.dju9k8
a---zssq.ret

call

BB.8.fa---j9--#

a---j9--.ret

return

BB.s-.fa---jcqa#

a---jcqa.mov.d8udj
a---jcqc.lea.as5u[asj]q

return

BB.ss.fa---jc5-#

a---jc5-.mov.ds5us
a---jc5j.swapgw.as5u-uds5
a---jc56.jnz.ds5u.-xa---jc5-.9.a---jc5-

taken

BB.sj.fa---jc58#

a---jc58.j.-xa---jcaj.9.a---jcaj

BB.sz.fa---jcaj#

a---jcaj.mov.dqud8
a---jcaq.call.-xa---z-c8.9.get_threadqhandler

taken

BB.jq.fa---z-c8#

get_threadqhandler:
a---z-c8.mtcr.57zq6ud6
a---z-cc.sha.dqudqu98
a---z-d-.movhga.as5uz686q
a---z-dq.movga.ajudq
a---z-d6.lea.as5u[as5]j56
a---z-da.addga.azuajuas5
a---z-de.ldgw.ds5u[az]s
a---z-e-.and.ds5u9j
a---z-ej.movga.aju-
a---z-eq.addga.aju9s5
a---z-e6.jz.ds5u.ks6s-6--jsj.9.a---z-ec

call

BB.j5.fa---z-e8#

a---z-e8.ldga.aju[az]8

BB.j6.fa---z-ec#

a---z-ec.ret

taken

BB.sq.fa---jca8#

a---jca8.sha.ds5ud8u98
a---jcac.movhga.aquz686q
a---jcb-.movga.azuds5
a---jcbj.lea.aqu[aq]j56
a---jcb6.ldgw.asju[d-]
a---jcb8.addga.ajuazuaq
a---jcbc.jeq.d-u.su.-xa---jc5a.9.a---jc5a

BB.s5.fa---jcc-#

a---jcc-.mov.ds5us
a---jccj.stgw.ds5u[asj]u-
a---jccq.stgw.d8u[asj]8
a---jcc8.mov.ds5u-
a---jcca.swapgw.as5u-uds5

BB.s6.fa---jc5a#

a---jc5a.ldga.azu[asj]jq
a---jc5e.jzga.dzu.-xa---jc6a.9.a---jc6a

taken

BB.s7.fa---jcce#

a---jcce.mov.dju-
a---jcd-.ret

BB.s8.fa---jc6-#

a---jc6-.stga.[az]us6uaj
a---jc6q.ldgw.ds5u[asj]6
a---jc66.stgw.ds5u[aj]uz
a---jc68.j.-xa---jc6e.9.a---jc6e

BB.s9.fa---jc6a#

a---jc6a.stga.[asj]us6uaj

taken

return

BB.j-.fa---jc6e#

a---jc6e.stga.[asj]ujquaj
a---jc7j.tie
a---jc76.ldgw.d-u[aj]8-
a---jc7a.or.d-ud-u9j
a---jc7e.stgw.d-u[aj]8-
a---jc8j.mov.ds5u-
a---jc8q.swapgw.as5u-uds5
a---jc88.untie
a---jc8c.lea.aju[asj]q

taken

BB.js.fa---jc9-#

a---jc9-.mov.ds5us
a---jc9j.swapgw.aju-uds5
a---jc96.jnz.ds5u.-xa---jc9-.9.a---jc9-

taken

BB.jj.fa---jc98#

a---jc98.stgw.d8u[asj]8
a---jc9c.swapgw.aju-uds5
a---jca-.j.-xa---jcce.9.a---jcce

taken

return

C. APPENDIX: CFGS OF SW SYNCHRONISATIONS 173

BB8i8uaTTTia64k

aTTTia648ldXw8dTg[af5]fT
aTTTia668jne8dTg8fg8TxaTTTia948p8aTTTia94
aTTTia6a8ldXw8afig[df]
aTTTia6c8jlt8dfg8ig8TxaTTTiaae8p8aTTTiaae

BB8-8uaTTTia7Tk

aTTTia7T8movXd8dTgafi
aTTTia7i8add8df5gdTgp4
aTTTia748ldXw8dTg[afi]9i
aTTTia788stXw8dfg[af5]gfT
aTTTia7a8movXd8digafi
aTTTia7c8eq8dTgdTgdf5
aTTTia8T8movXaa8a4gaf5
aTTTia8i8add8dfgdigp48
aTTTia868sel8dTgdTgdfgdf5
aTTTia8a8stXw8dTg[afi]9i
aTTTia8e8call8TxaTTTi9i88p8pthread_cond_broadcast

BB848uaTTTiaaek

aTTTiaae8movXaa8a4gaf-
aTTTiabT8call8TxaTTTi9f88p8pthread_mutex_unlock

taken

BB8i78uaTTTi9i8k

pthread_cond_broadcast:
aTTTi9i88mtcr857-44gdfT
aTTTi9ic8call8TxaTTTibeT8p8ccthread_cond_broadcast

call

BB8-48uaTTTi9f8k

pthread_mutex_unlock:
aTTTi9f88mtcr857-44gdfT
aTTTi9fc8call8TxaTTTicd88p8ccthread_mutex_unlock

call

BB8i98uaTTTibeTk

ccthread_cond_broadcast:
aTTTibeT8mtcr857-47gd8
aTTTibe48mov8digii
aTTTibe88jzXa8a4g8TxaTTTicf68p8aTTTicf6

call

BB8-68uaTTTicd8k

ccthread_mutex_unlock:
aTTTicd88mtcr857-5Tgdf4
aTTTicdc8movXaa8af5ga4
aTTTicde8call8TxaTTT-fTT8p8get_current_thread_handler

call

BB858uaTTTia9ik

aTTTia9i8j8TxaTTTiaae8p8aTTTiaae

taken

BB868uaTTTiab4k

aTTTiab48mov8digT
aTTTiab68ret

EXIT

return

BB8-T8uaTTTibeck

aTTTibec8ldXa8aig[a4]4
aTTTibfT8jzXa8dig8TxaTTTicTe8p8aTTTicTe

BB8-f8uaTTTicf6k

aTTTicf68ret

taken

BB8i88uaTTTi9-Tk

aTTTi9-T8ret

return

BB8-i8uaTTTibfik

aTTTibfi8ldXw8df5g[ai]8T
aTTTibf68andn8df5gdf5gpi
aTTTibfa8movXaa8af5gai
aTTTibfc8stXw8df5g[ai]8T
aTTTicTT8mov8df5gT
aTTTicTi8ldXa8aig[ai]f6
aTTTicT68stXw8df5g[af5]g-
aTTTicT88stXw8df5g[af5]g4
aTTTicTa8jnzXa8aig8TxaTTTibfi8p8aTTTibfi

BB8--8uaTTTicTek

aTTTicTe8mov8df5gT
aTTTicfT8stXw8df5g[a4]gi
aTTTicfi8stXw8df5g[a4]gf
aTTTicf48mov8digT

taken

return

taken

BB8488uaTTT-fTTk

get_current_thread_handler:
aTTT-fTT8mtcr857-45gd6
aTTT-fT48movh8df5gi867i
aTTT-fT88addi8df5gdf5g65i8T
aTTT-fTc8ldXw8digEff468T
aTTT-ffT8add8digdf5
aTTT-ffi8sh8digpE8
aTTT-ff48ret

call

BB8-58uaTTTi9iTk

aTTTi9iT8ret

return

BB8-78uaTTTiceik

aTTTicei8ldXw8df5g[af5]i
aTTTice48ne8df5gdf5gdi
aTTTice88ne8digdigpT
aTTTicec8andXt8digdigTgdf5gT
aTTTicfT8mov8df5gf
aTTTicfi8jnzXt8dig8Tg8TxaTTTid4i8p8aTTTid4i

return

BB8-88uaTTTicf6k

aTTTicf68lea8aig[af5]4

BB8-98uaTTTid4ik

aTTTid4i8mov8digdf5
aTTTid448ret

taken

BB84T8uaTTTicfak

aTTTicfa8mov8df5gf
aTTTicfc8swapXw8aigTgdf5
aTTTidTT8jnz8df5g8TxaTTTicfa8p8aTTTicfa

return

taken

BB84f8uaTTTidTik

aTTTidTi8ldXa8a4g[af5]4
aTTTidT48jzXa8a4g8TxaTTTid-48p8aTTTid-4

BB84i8uaTTTidT8k

aTTTidT88ldXa8a-g[a4]f6
aTTTidTc8jzXa8d-g8TxaTTTidf88p8aTTTidf8

BB84-8uaTTTid-4k

aTTTid-48mov8dTgT
aTTTid-68stXw8dTg[af5]gT
aTTTid-88mov8dTgf5
aTTTid-a8stXw8dTg[af5]gi

taken

BB8448uaTTTidTek

aTTTidTe8stXa8af5g4ga-
aTTTidfT8mov8dTgT
aTTTidfi8stXw8dTg[a-]fi
aTTTidf68j8TxaTTTidfe8p8aTTTidfe

BB8458uaTTTidf8k

aTTTidf88mov8df5gT
aTTTidfa8stXw8df5g[af5]g6
aTTTidfc8stXw8df5g[af5]g4

taken

BB8468uaTTTid-ck

aTTTid-c8swapXw8aigTgdf5
aTTTid4T8mov8df5gT

BB8478uaTTTidfek

aTTTidfe8ldXw8df5g[a4]8T
aTTTidii8andn8df5gdf5gpi
aTTTidi68stXw8df5g[a4]8T
aTTTidia8mov8dTgT
aTTTidic8stXw8dTg[a4]f6
aTTTid-T8mov8df5gT
aTTTid-i8j8TxaTTTid-c8p8aTTTid-c

taken

taken

return

Figure C.3.: OTAWA Ouput: CFG of Subbariers

174 C. APPENDIX: CFGS OF SW SYNCHRONISATIONS

BB 151 (a0002a50)

barrier_wait:
a0002a50 mtcr 57354,d4
a0002a54 mov.aa a13,a4
a0002a56 lea a12,[a4]8
a0002a5a movh d0,28672

BB 152 (a0002a5e)

a0002a5e addi d15,d0,28672
a0002a62 swap.w a12,0,d15
a0002a66 mov.u d1,65535
a0002a6a and d15,d1
a0002a6c jz d15, -1610601890 # a0002a5e

taken

BB 153 (a0002a6e)

a0002a6e lea a15,[a13]4
a0002a72 mov.u d15,65535
a0002a76 swap.w a15,0,d15
a0002a7a ld.w a13,[d0]
a0002a7c and d15,d1
a0002a7e add d0,#15
a0002a80 jlt.u d15, d0, -1610601804 # a0002ab4

BB 154 (a0002a84)

a0002a84 jlt.u d0, 1, 0xa0002aaa # a0002aaa

BB 155 (a0002ab4)

a0002ab4 call 0xa0003110 # get_current_thread_handler

taken

BB 156 (a0002a88)

a0002a88 mov.a a4,d0
a0002a8a lea a3,[a4]-1
a0002a8e mov d0,12

BB 157 (a0002aaa)

a0002aaa mov.u d15,65535
a0002aae swap.w a12,0,d15
a0002ab2 j 0xa0002af0 # a0002af0

taken

BB 161 (a0003110)

get_current_thread_handler:
a0003110 mtcr 57345,d6
a0003114 movh d15,28672
a0003118 addi d15,d15,65280
a000311c ld.w d2,-114680
a0003120 add d2,d15
a0003122 sh d2,#-8
a0003124 ret

call

BB 159 (a0002a92)

a0002a92 mov.a a15,d0
a0002a94 add.a a15,a13,a15
a0002a98 ld.a a2,[a15]0
a0002a9a ld.w d15,[a2]80
a0002a9e andn d15,d15,#2
a0002aa2 st.w d15,[a2]80
a0002aa6 add d0,#4
a0002aa8 loop a3, -1610601838 # a0002a92

BB 160 (a0002af0)

a0002af0 mov d2,0
a0002af2 ret

taken

BB 158 (a0002ab8)

a0002ab8 sha d2,d2,#8
a0002abc movh.a a4,36864
a0002ac0 sha d15,##2
a0002ac2 mov.a a3,d2
a0002ac4 add d15,d15,#12
a0002ac8 addsc.a a2,a13,d15,0
a0002aca lea a4,[a4]256
a0002ace add.a a15,a3,a4
a0002ad2 st.a a2,0,a15
a0002ad4 tie
a0002ad8 ld.w d0,[a15]80
a0002adc or d0,d0,#2
a0002ae0 st.w d0,[a15]80
a0002ae4 mov.u d15,65535
a0002ae8 swap.w a12,0,d15
a0002aec untie

return taken

return

call

Figure C.4.: OTAWA Ouput: CFG of F&I barriers

Bibliography

[Abdelzaher et al. 2004] Abdelzaher, Tarek F. ; Sharma, Vivek ; Lu, Chenyang:
A Utilization Bound for Aperiodic Tasks and Priority Driven Scheduling. In: IEEE
Transactions on Computers 53 (2004), March, No. 3, p. 334–350. – DOI http:
//dx.doi.org/10.1109/TC.2004.1261839. – ISSN 0018-9340 (page 21)

[Adve and Hill 1990] Adve, Sarita V. ; Hill, Mark D.: Weak Ordering - A New
Definition. In: Proceedings of the 17th Annual International Symposium on Computer
Architecture. New York, NY, USA : ACM, 1990 (ISCA ’90), p. 2–14. – DOI http:
//doi.acm.org/10.1145/325164.325100. – ISBN 0-89791-366-3 (page 8, 89, 90, 97,
101, 133)

[Akesson and Goossens 2011] Akesson, Benny ; Goossens, Kees: Architectures and
Modeling of Predictable Memory Controllers for Improved System Integration. In:
Proceedings of Design, Automation and Test in Europe. Leuven, Belgium : European
Design and Automation Association, March 2011 (DATE ’11), p. 851–856. – ISSN
1530-1591 (page 100)

[Akesson et al. 2007] Akesson, Benny ; Goossens, Kees ; Ringhofer, Markus:
Predator: A Predictable SDRAM Memory Controller. In: Proceedings of the 5th
IEEE/ACM International Conference on HW/SW Codesign and System Synthesis.
New York, NY, USA : ACM, 2007 (CODES+ISSS ’07), p. 251–256. – DOI http:
//doi.acm.org/10.1145/1289816.1289877. – ISBN 978-1-59593-824-4 (page 2, 19,
25)

[Alexander et al. 1977] Alexander, Christopher ; Ishikawa, Sara ; Silverstein,
Murray ; Jacobson, Max ; Fiksdahl-King, Ingrid ; Angel, Shlomo: A Pattern
Language - Towns, Buildings, Construction. New York, NY, US : Oxford University
Press, 1977. – ISBN 0-19-501919-9, 978-0-19-501919-3 (page 116)

[Almasi and Gottlieb 1989] Almasi, George S. ; Gottlieb, Allan: Highly Parallel
Computing. Redwood City, CA, USA : Benjamin-Cummings Publishing Co., Inc.,
1989. – ISBN 0-8053-0177-1 (page 24)

[Anderson et al. 1997] Anderson, James H. ; Ramamurthy, Srikanth ; Jeffay,
Kevin: Real-Time Computing with Lock-Free Shared Objects. In: ACM Transactions
on Computer Systems (TOCS) 15 (1997), May, No. 2, p. 134–165. – DOI http:
//doi.acm.org/10.1145/253145.253159. – ISSN 0734-2071 (page 47, 49)

[Anderson 1990] Anderson, Thomas E.: The Performance of Spin Lock Alternatives
for Shared-Memory Multiprocessors. In: IEEE Transactions on Parallel Distributed
Systems 1 (1990), January, No. 1, p. 6–16. – DOI http://dx.doi.org/10.1109/71.
80120. – ISSN 1045-9219 (page 13, 44)

http://dx.doi.org/10.1109/TC.2004.1261839
http://dx.doi.org/10.1109/TC.2004.1261839
http://doi.acm.org/10.1145/325164.325100
http://doi.acm.org/10.1145/325164.325100
http://doi.acm.org/10.1145/1289816.1289877
http://doi.acm.org/10.1145/1289816.1289877
http://doi.acm.org/10.1145/253145.253159
http://doi.acm.org/10.1145/253145.253159
http://dx.doi.org/10.1109/71.80120
http://dx.doi.org/10.1109/71.80120

176 Bibliography

[Andrei et al. 2008] Andrei, Alexandru ; Eles, Petru ; Peng, Zebo ; Rosen, Jakob:
Predictable Implementation of Real-Time Applications on Multiprocessor Systems-on-
Chip. In: Proceedings of the 21st International Conference on VLSI Design. Wash-
ington, DC, USA : IEEE Computer Society, 2008 (VLSID ’08), p. 103–110. – DOI
http://dx.doi.org/10.1109/VLSI.2008.33. – ISBN 0-7695-3083-4 (page 86)

[ARM11 MPCore] ARM Ltd.: ARM11 MPCore Processor, Technical Reference
Manual, Revision: r2p0. http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0360f/index.html. – Last Retrieved: April 2013 (page 19)

[ARMv6-M ISA 2010] ARM Ltd.: ARMv6 Instruction Set Architecture.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/
index.html. September 2010. – Last Retrieved: April 2013 (page 18, 31, 100)

[ARMv7-M ISA 2010] ARM Ltd.: ARMv7 Instruction Set Architecture. http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0403c/index.html. Febru-
ary 2010. – Last Retrieved: April 2013 (page 16, 18, 100, 133)

[Arvind et al. 1989] Arvind ; Nikhil, Rishiyur S. ; Pingali, Keshav K.: I-Structures:
Data Structures for Parallel Computing. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 11 (1989), October, No. 4, p. 598–632. – DOI
http://doi.acm.org/10.1145/69558.69562. – ISSN 0164-0925 (page 18, 100)

[Asanovic et al. 2009] Asanovic, Krste ; Bodik, Rastislav ; Demmel, James ; Keav-
eny, Tony ; Keutzer, Kurt ; Kubiatowicz, John ; Morgan, Nelson ; Patterson,
David ; Sen, Koushik ; Wawrzynek, John ; Wessel, David ; Yelick, Katherine: A
View of the Parallel Computing Landscape. In: Commun. ACM 52 (2009), October,
No. 10, p. 56–67. – DOI http://doi.acm.org/10.1145/1562764.1562783. – ISSN
0001-0782 (page 117, 121, 138)

[Austin et al. 2002] Austin, Todd ; Larson, Eric ; Ernst, Dan: SimpleScalar:
An Infrastructure for Computer System Modeling. In: IEEE Computer 35 (2002),
February, No. 2, p. 59–67. – DOI http://dx.doi.org/10.1109/2.982917. – ISSN
0018-9162 (page 86)

[Ballabriga et al. 2010] Ballabriga, Clément ; Cassé, Hugues ; Rochange, Chris-
tine ; Sainrat, Pascal: OTAWA: An Open Toolbox for Adaptive WCET Analy-
sis. In: Min, Sang (Pub.) ; Pettit, Robert (Pub.) ; Puschner, Peter (Pub.) ;
Ungerer, Theo (Pub.): Proceedings of the 8th IFIP WG 10.2 International Con-
ference on Software technologies for Embedded and Ubiquitous Systems. Berlin /
Heidelberg, Germany : Springer-Verlag, 2010 (SEUS ’10), p. 35–46. – DOI
http://dl.acm.org/citation.cfm?id=1927882.1927891. – ISBN 3-642-16255-X,
978-3-642-16255-8 (page 7, 55)

[Baroni et al. 2003] Baroni, Aline L. ; Guéhéneuc, Yann-Gaël ; Albin-Amiot,
Hervé: Design Patterns Formalization / Ecole Nationale Supérieure des Techniques

http://dx.doi.org/10.1109/VLSI.2008.33
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0360f/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0360f/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403c/index.html
http://doi.acm.org/10.1145/69558.69562
http://doi.acm.org/10.1145/1562764.1562783
http://dx.doi.org/10.1109/2.982917
http://dl.acm.org/citation.cfm?id=1927882.1927891

Bibliography 177

Industrielles et des Mines de Nantes. June 2003 (No. 03/3/INFO). – Technical Report
(page 116)

[Barros and Pinho 2011] Barros, António ; Pinho, Luis M.: Software Transac-
tional Memory as a Building Block for Parallel Embedded Real-Time Systems. In:
Proceedings of the 37th EUROMICRO Conference on Software Engineering and Ad-
vanced Applications. Washington, DC, USA : IEEE Computer Society, September
2011 (SEAA ’11), p. 251–255. – DOI http://dx.doi.org/10.1109/SEAA.2011.46
(page 50, 51)

[Barth et al. 1991] Barth, Paul S. ; Nikhil, Rishiyur S. ; Arvind: M-Structures:
Extending a Parallel, Non-strict, Functional Language with State. In: Proceedings
of the 5th ACM Conference on Functional Programming Languages and Computer
Architecture. London, UK : Springer-Verlag, 1991, p. 538–568. – DOI http://dl.
acm.org/citation.cfm?id=645420.652538. – ISBN 3-540-54396-1 (page 18)

[Baruah et al. 2010] Baruah, Sanjoy K. ; Li, Haohan ; Stougie, Leen: Towards
the Design of Certifiable Mixed-criticality Systems. In: Proceedings of the 2010 16th
IEEE Real-Time and Embedded Technology and Applications Symposium. Washington,
DC, USA : IEEE Computer Society, 2010 (RTAS ’10), p. 13–22. – DOI http:
//dx.doi.org/10.1109/RTAS.2010.10. – ISBN 978-0-7695-4001-6 (page 1)

[Beck and Cunningham 1987] Beck, Kent ; Cunningham, Ward: Using Pattern
Languages for Object-Oriented Programs. 1987 (No. CR-87-43). – Technical Report
(page 116)

[Blieberger 2002] Blieberger, Johann: Data-Flow Frameworks for Worst-Case Exe-
cution Time Analysis. In: Real-Time Syst. 22 (2002), May, No. 3, p. 183–227. – DOI
http://dx.doi.org/10.1023/A:1014535317056. – ISSN 0922-6443 (page 87, 88)

[Bollella et al. 2000] Bollella, Gregory ; Gosling, James ; Brosgol, Benjamin M.:
The Real-Time Specification for Java. Amsterdam, The Netherlands : Addison-Wesley
Longman, 2000. – ISBN 0201703238, 978-0201703238 (page 50)

[Bonenfant et al. 2010] Bonenfant, Armelle ; Broster, Ian ; Ballabriga, Clé-
ment ; Bernat, Guillem ; Cassé, Hugues ; Houston, Michael ; Merriam, Nicholas ;
Michiel, Marianne de ; Rochange, Christine ; Sainrat, Pascal: Coding guidelines
for WCET analysis using measurement-based and static analysis techniques / IRIT,
Université Paul Sabatier, Toulouse. March 2010 (IRIT/RR–2010-8–FR). – Technical
Report (page 54)

[Boniol et al. 2012] Boniol, Frédéric ; Cassé, Hugues ; Noulard, Eric ; Pagetti,
Claire: Deterministic execution model on COTS hardware. In: Proceedings of the 25th
International Conference on Architecture of Computing Systems. Berlin / Heidelberg,
Germany : Springer-Verlag, 2012 (ARCS ’12), p. 98–110. – DOI http://dx.doi.
org/10.1007/978-3-642-28293-5_9. – ISBN 978-3-642-28292-8 (page 2, 19, 22)

http://dx.doi.org/10.1109/SEAA.2011.46
http://dl.acm.org/citation.cfm?id=645420.652538
http://dl.acm.org/citation.cfm?id=645420.652538
http://dx.doi.org/10.1109/RTAS.2010.10
http://dx.doi.org/10.1109/RTAS.2010.10
http://dx.doi.org/10.1023/A:1014535317056
http://dx.doi.org/10.1007/978-3-642-28293-5_9
http://dx.doi.org/10.1007/978-3-642-28293-5_9

178 Bibliography

[Brandenburg et al. 2008] Brandenburg, Björn B. ; Calandrino, John M. ; Block,
Aaron ; Leontyev, Hennadiy ; Anderson, James H.: Real-Time Synchronization
on Multiprocessors: To Block or Not to Block, to Suspend or Spin? In: Proceedings of
IEEE Real-Time and Embedded Technology and Applications Symposium. Los Alami-
tos, CA, USA : IEEE Computer Society Press, 2008 (RTAS ’08), p. 342–353. – DOI
http://dx.doi.org/10.1109/RTAS.2008.27. – ISSN 1545-3421 (page 1, 51, 88)

[Brause 2004] Brause, Rüdiger W.: Betriebssysteme - Grundlagen und Konzepte. 3.
Berlin / Heidelberg, Germany : Springer-Verlag, 2004. – ISBN 3642185312 (page 5)

[Brooks 1986] Brooks, Eugene D.: The Butterfly Barrier. In: International Journal
on Parallel Programming 15 (1986), October, No. 4, p. 295–307. – DOI http://dx.
doi.org/10.1007/BF01407877. – ISSN 0885-7458 (page 46)

[Brooks 1975] Brooks, Frederick P.: The mythical man-month : essays on software
engineering. Boston, MA, USA : Addison-Wesley, 1975. – ISBN 0201006502 (page 117)

[Brooks 1995] Brooks, Frederick P.: The mythical man-month : essays on software
engineering. Anniversary Edition. Boston, MA, USA : Addison-Wesley, 1995. – ISBN
0201835959 (page 117)

[Bull and Ball 2003] Bull, J. M. ; Ball, Carwyn: Point-to-Point Synchronisation on
Shared Memory Architectures. 2003. – Technical Report. http://www.compunity.
org/events/ewomp03/omptalks/Monday/Session2/T10p.pdf (page 10)

[Buschmann et al. 2007] Buschmann, Frank ; Henney, Kevlin ; Schmidt, Dou-
glas C.: Pattern-Oriented Software Architecture: On Patterns and Pattern Languages.
Volume 5, 1st Edition. West Sussex, GB : John Wiley & Sons, Inc., 2007. – ISBN
0471486485, 978-0-471-48648-0 (page 117)

[Buschmann et al. 1996] Buschmann, Frank ; Meunier, Regine ; Rohnert, Hans ;
Sommerlad, Peter ; Stal, Michael: Pattern-Oriented Software Architecture: A
System of Patterns. Volume 1, 1st Edition. West Sussex, GB : John Wiley & Sons,
Inc., 1996. – ISBN 0471958697, 9780471958697 (page 116)

[Buttazzo 2004] Buttazzo, Giorgio C.: Hard Real-time Computing Systems: Pre-
dictable Scheduling Algorithms And Applications (Real-Time Systems Series). Santa
Clara, CA, USA : Springer-Verlag TELOS, 2004. – ISBN 0387231374 (page 1, 5)

[Cachopo and Rito-Silva 2006] Cachopo, João ; Rito-Silva, António: Versioned
Boxes as the Basis for Memory Transactions. In: Sci. Comput. Program. 63 (2006),
December, No. 2, p. 172–185. – DOI http://dx.doi.org/10.1016/j.scico.2006.
05.009. – ISSN 0167-6423 (page 51)

[Carriero and Gelernter 1989] Carriero, Nicholas ; Gelernter, David: How to
Write Parallel Programs: A Guide to the Perplexed. In: ACM Comput. Surv. 21
(1989), September, No. 3, p. 323–357. – DOI http://doi.acm.org/10.1145/72551.
72553. – ISSN 0360-0300 (page 117)

http://dx.doi.org/10.1109/RTAS.2008.27
http://dx.doi.org/10.1007/BF01407877
http://dx.doi.org/10.1007/BF01407877
http://www.compunity.org/events/ewomp03/omptalks/Monday/Session2/T10p.pdf
http://www.compunity.org/events/ewomp03/omptalks/Monday/Session2/T10p.pdf
http://dx.doi.org/10.1016/j.scico.2006.05.009
http://dx.doi.org/10.1016/j.scico.2006.05.009
http://doi.acm.org/10.1145/72551.72553
http://doi.acm.org/10.1145/72551.72553

Bibliography 179

[Chattopadhyay et al. 2012] Chattopadhyay, Sudipta ; Kee, Chong L. ; Roychoud-
hury, Abhik ; Kelter, Timon ; Marwedel, Peter ; Falk, Heiko: A Unified WCET
Analysis Framework for Multi-core Platforms. In: Proceedings of the IEE Real-Time
and Embedded Technology and Applications Symposium (2012), p. 99–108. – ISSN
1080-1812 (page 1, 2, 86)

[Chattopadhyay et al. 2010] Chattopadhyay, Sudipta ; Roychoudhury, Abhik ;
Mitra, Tulika: Modeling shared cache and bus in multi-cores for timing analysis.
In: Proceedings of the 13th International Workshop on Software and Compilers for
Embedded Systems. New York, NY, USA : ACM, 2010 (SCOPES ’10), p. 6:1–6:10.
– DOI http://doi.acm.org/10.1145/1811212.1811220. – ISBN 978-1-4503-0084-1
(page 86)

[Chen and Tripathi 1994] Chen, Chia-Mei ; Tripathi, Satish K.: Multiprocessor
Priority Ceiling Based Protocols. College Park, MD, USA : University of Maryland
at College Park, 1994 (No. UMIACS-TR-94-42). – Technical Report (page 47)

[Chen et al. 1994] Chen, Chia-Mei ; Tripathi, Satish K. ; Blackmore, Alex: A
Resource Synchronization Protocol for Multiprocessor Real-Time Systems. In: Pro-
ceedings of the 1994 International Conference on Parallel Processing - Volume 03.
Washington, DC, USA : IEEE Computer Society, 1994 (ICPP ’94), p. 159–162. –
DOI http://dx.doi.org/10.1109/ICPP.1994.44. – ISBN 0-8493-2493-9 (page 47)

[Chen and Lin 1990] Chen, Min-Ih ; Lin, Kwei-Jay: Dynamic Priority Ceilings: A
Concurrency Control Protocol for Real-Time Systems. In: Real-Time Syst. 2 (1990),
October, No. 4, p. 325–346. – DOI http://dx.doi.org/10.1007/BF01995676. –
ISSN 0922-6443 (page 47, 50)

[Chen and Lin 1991] Chen, Min-Ih ; Lin, Kwei-Jay: A Priority Ceiling Protocol
for Multiple-Instance Resources. In: Proceedings of the Twelfth Real-Time Systems
Symposium. Los Alamitos, CA, USA : IEEE Computer Society Press, December 1991,
p. 140–149. – DOI http://dx.doi.org/10.1109/REAL.1991.160367 (page 47)

[Colin and Petters 2003] Colin, Antoine ; Petters, Stefan M.: Experimental Eval-
uation of Code Properties for WCET Analysis. In: Proceedings of the 24th IEEE
International Real-Time Systems Symposium. Washington, DC, USA : IEEE Com-
puter Society, 2003 (RTSS ’03), p. 190–. – DOI http://dl.acm.org/citation.cfm?
id=956418.956585. – ISBN 0-7695-2044-8 (page 57)

[Coplien and Schmidt 1995] Coplien, James (Pub.) ; Schmidt, Douglas C. (Pub.):
Pattern Languages of Program Design. Boston, MA, USA : Addison-Wesley, 1995. –
ISBN 0201607344 (page 116)

[Coplien 1992] Coplien, James O.: Advanced C++ Programming Styles and Idioms.
Boston, MA, USA : Addison-Wesley Longman Publishing Co., Inc., 1992. – ISBN
0-201-54855-0 (page 116)

http://doi.acm.org/10.1145/1811212.1811220
http://dx.doi.org/10.1109/ICPP.1994.44
http://dx.doi.org/10.1007/BF01995676
http://dx.doi.org/10.1109/REAL.1991.160367
http://dl.acm.org/citation.cfm?id=956418.956585
http://dl.acm.org/citation.cfm?id=956418.956585

180 Bibliography

[Cordes and Marwedel 2012] Cordes, Daniel ; Marwedel, Peter: Multi-Objective
Aware Extraction of Task-Level Parallelism Using Genetic Algorithms. In: Proceedings
of Design, Automation and Test in Europe. Leuven, Belgium : European Design and
Automation Association, March 2012 (DATE ’12), p. 394–399 (page 131, 132)

[Cordes et al. 2010] Cordes, Daniel ; Marwedel, Peter ; Mallik, Arindam: Au-
tomatic Parallelization of Embedded Software Using Hierarchical Task Graphs and
Integer Linear Programming. In: Proceedings of the eighth IEEE/ACM/IFIP In-
ternational Conference on Hardware/software codesign and system synthesis. New
York, NY, USA : ACM, 2010 (CODES/ISSS ’10), p. 267–276. – DOI http:
//doi.acm.org/10.1145/1878961.1879009. – ISBN 978-1-60558-905-3 (page 131,
132)

[Craig 1993] Craig, Travis S.: Queuing Spin Lock Algorithms to Support Timing
Predictability. In: Real-Time Systems Symposium 1993, DOI http://dx.doi.org/
10.1109/REAL.1993.393505, December 1993, p. 148–157 (page 13, 45)

[Culler et al. 1993] Culler, David E. ; Dusseau, Andrea ; Goldstein, Seth C. ; Kr-
ishnamurthy, Arvind ; Lumetta, Steven S. ; Eicken, Thorsten H. von ; Yelick,
Katherine A.: Parallel Programming in Split-C. In: Proceedings of Supercomput-
ing ’93, DOI http://dx.doi.org/10.1109/SUPERC.1993.1263470, November 1993,
p. 262–273. – ISSN 1063-9535 (page 100)

[Culler et al. 1997] Culler, David E. ; Gupta, Anoop ; Singh, J. P.: Parallel
Computer Architecture: A Hardware/Software Approach. 1st Edition. San Francisco,
CA, USA : Morgan Kaufmann Publishers Inc., 1997. – ISBN 1-55860-343-3 (page 7,
9, 10, 15)

[Culler et al. 1991] Culler, David E. ; Sah, Anurag ; Schauser, Klaus E. ; Eicken,
Thorsten von ; Wawrzynek, John: Fine-Grain Parallelism with Minimal Hardware
Support: A Compiler-Controlled Threaded Abstract Machine. In: Proceedings of the
fourth International Conference on Architectural Support for Programming Languages
and Operating Systems. New York, NY, USA : ACM, 1991 (ASPLOS-IV), p. 164–
175. – DOI http://doi.acm.org/10.1145/106972.106990. – ISBN 0-89791-380-9
(page 100)

[Cullmann et al. 2010] Cullmann, Christoph ; Ferdinand, Christian ; Gebhard,
Gernot ; Grund, Daniel ; Maiza, Claire ; Reineke, Jan ; Triquet, Benoît ; Wil-
helm, Reinhard: Predictability Considerations in the Design of Multi-Core Embedded
Systems. In: Proceedings of Embedded Real Time Software and Systems, May 2010,
p. 36–42 (page 2, 86, 89, 100)

[d’Ausbourg et al. 2012] d’Ausbourg, Bruno ; Boyer, Marc ; Noulard, Eric ;
Pagetti, Claire: Deterministic Execution on Many-Core Platforms: application to
the SCC. In: Proceedings of the 4th Many-core Applications Research Community
(MARC) Symposium. Potsdam, Germany : Universitätsverlag Potsdam, 2012, p. 43–
48. – ISBN 978-3-86956-169-1 (page 2, 22)

http://doi.acm.org/10.1145/1878961.1879009
http://doi.acm.org/10.1145/1878961.1879009
http://dx.doi.org/10.1109/REAL.1993.393505
http://dx.doi.org/10.1109/REAL.1993.393505
http://dx.doi.org/10.1109/SUPERC.1993.1263470
http://doi.acm.org/10.1145/106972.106990

Bibliography 181

[Dechev and Stroustrup 2009] Dechev, Damian ; Stroustrup, Björn: Reliable and
Efficient Concurrent Synchronization for Embedded Real-Time Software. In: Pro-
ceedings of the Third IEEE International Conference on Space Mission Challenges
for Information Technology. Washington, DC, USA : IEEE Computer Society, 2009
(SMC-IT ’09), p. 323–330. – DOI http://dx.doi.org/10.1109/SMC-IT.2009.45. –
ISBN 978-0-7695-3637-8 (page 47, 49)

[Devietti et al. 2010] Devietti, Joseph ; Lucia, Brandon ; Ceze, Luis ; Oskin, Mark:
DMP: Deterministic Shared-Memory Multiprocessing. In: Micro, IEEE 30 (2010),
No. 1, p. 40–49. – DOI http://dx.doi.org10.1109/MM.2010.14. – ISSN 0272-1732
(page 101)

[Devietti et al. 2011] Devietti, Joseph ; Nelson, Jacob ; Bergan, Tom ; Ceze,
Luis ; Grossman, Dan: RCDC: A Relaxed Consistency Deterministic Computer.
In: Proceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems. New York, NY, USA : ACM, 2011
(ASPLOS XVI), p. 67–78. – DOI http://doi.acm.org/10.1145/1950365.1950376.
– ISBN 978-1-4503-0266-1 (page 101)

[Dijkstra 1965] Dijkstra, Edsger W.: Solution of a Problem in Concurrent Pro-
gramming Control. In: Commun. ACM 8 (1965), September, p. 569–. – DOI
http://doi.acm.org/10.1145/365559.365617. – ISSN 0001-0782 (page 8, 9)

[Dijkstra 1968] Dijkstra, Edsger W.: Cooperating Sequential Processes. In:
Genuys, F. (Pub.): Programming Languages: NATO Advanced Study Institute. Aca-
demic Press, 1968, p. 43–112 (page 13, 38)

[Douglass 2006] Douglass, Bruce P.: Real-time design patterns. 6th Edition. Boston,
MA, USA : Addison-Wesley, 2006. – ISBN 0-201-69956-7, 978-0-201-69956-2 (page 116,
131, 132)

[Dubois et al. 1986] Dubois, Michel ; Scheurich, Christoph ; Briggs, Faye A.:
Memory Access Buffering in Multiprocessors. In: Proceedings of 13th Annual Inter-
national Symposium on Computer Architecture Vol. 14. Los Alamitos, CA, USA :
IEEE Computer Society Press, June 1986, p. 434–442. – DOI http://dl.acm.org/
citation.cfm?id=17407.17406. – ISBN 0-8186-0719-X (page 8, 23)

[Edwards and Lee 2007] Edwards, Stephen A. ; Lee, Edward A.: The case for
the precision timed (PRET) machine. In: Proceedings of the 44th Annual Design
Automation Conference. New York, NY, USA : ACM, 2007 (DAC ’07), p. 264–265.
– DOI http://doi.acm.org/10.1145/1278480.1278545. – ISBN 978-1-59593-627-1
(page 2, 87)

[Engdahl and Chung 2010] Engdahl, Jonathan R. ; Chung, Dukki: Lock-Free Data
Structure for Multi-core Processors. In: Proceedings of International Conference on
Control Automation and Systems, October 2010 (ICCAS ’10), p. 984–989 (page 31,
49)

http://dx.doi.org/10.1109/SMC-IT.2009.45
http://dx.doi.org10.1109/MM.2010.14
http://doi.acm.org/10.1145/1950365.1950376
http://doi.acm.org/10.1145/365559.365617
http://dl.acm.org/citation.cfm?id=17407.17406
http://dl.acm.org/citation.cfm?id=17407.17406
http://doi.acm.org/10.1145/1278480.1278545

182 Bibliography

[Eser 2010] Eser, Arthur: Evaluierung paralleler Anwendungen auf dem
MERASA Prozessor, University of Augsburg, Master thesis, September 2010.
– http://www.informatik.uni-augsburg.de/lehrstuehle/sik/publikationen/
finished_thesises/201009_eser/ (page 83, 84)

[Fahmy et al. 2009] Fahmy, Sherif F. ; Ravindran, Binoy ; Jensen, E. D.: Re-
sponse Time Analysis of Software Transactional Memory-Based Distributed Real-
Time Systems. In: Proceedings of the 2009 ACM symposium on Applied Comput-
ing. New York, NY, USA : ACM, 2009 (SAC ’09), p. 334–338. – DOI http:
//doi.acm.org/10.1145/1529282.1529353. – ISBN 978-1-60558-166-8 (page 50,
51)

[Fahmy et al. 2008] Fahmy, Sherif F. ; Ravindran, Binoy ; Jensen, E. D.: On Scal-
able Synchronization for Distributed Embedded Real-Time Systems. In: Proceedings
of the 6th International Workshop on Software Technologies for Embedded and Ubiq-
uitous Systems. Berlin / Heidelberg, Germany : Springer-Verlag, 2008 (SEUS ’08),
p. 394–405. – DOI http://dx.doi.org/10.1007/978-3-540-87785-1_35. – ISBN
978-3-540-87784-4 (page 51)

[Fan et al. 2012] Fan, Dongrui ; Zhang, Hao ; Wang, Da ; Ye, Xiaochun ; Song,
Fenglong ; Li, Guojie ; Sun, Ninghui: Godson-T: An Efficient Many-Core Processor
Exploring Thread-Level Parallelism. In: Micro, IEEE 32 (2012), No. 2, p. 38–47. –
DOI http://dx.doi.org/10.1109/MM.2012.32. – ISSN 0272-1732 (page 17)

[Felber et al. 2008] Felber, Pascal ; Fetzer, Christof ; Riegel, Torvald: Dynamic
Performance Tuning of Word-Based Software Transactional Memory. In: Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming. New York, NY, USA : ACM, 2008 (PPoPP ’08), p. 237–246. –
DOI http://doi.acm.org/10.1145/1345206.1345241. – ISBN 978-1-59593-795-7
(page 51)

[Ferdinand et al. 2001] Ferdinand, Christian ; Heckmann, Reinhold ; Langenbach,
Marc ; Martin, Florian ; Schmidt, Michael ; Theiling, Henrik ; Thesing, Stephan ;
Wilhelm, Reinhard: Reliable and Precise WCET Determination for a Real-Life
Processor. In: Proceedings of the First International Workshop on Embedded Software.
London, UK : Springer-Verlag, 2001 (EMSOFT ’01), p. 469–485. – DOI http:
//dl.acm.org/citation.cfm?id=646787.703893. – ISBN 3-540-42673-6 (page 86)

[Foster 1995] Foster, Ian: Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering. Boston, MA, USA : Addison-Wesley
Longman, 1995. – ISBN 0201575949 (page 117, 137)

[Fraser 2004] Fraser, Keir: Practical lock-freedom / University of Cambridge, Com-
puter Laboratory. February 2004 (UCAM-CL-TR-579). – Technical Report (page 51)

[Fraser and Harris 2007] Fraser, Keir ; Harris, Tim: Concurrent Programming
Without Locks. In: ACM Transactions on Computer Systems (TOCS) 25 (2007),

http://www.informatik.uni-augsburg.de/lehrstuehle/sik/publikationen/finished_thesises/201009_eser/
http://www.informatik.uni-augsburg.de/lehrstuehle/sik/publikationen/finished_thesises/201009_eser/
http://doi.acm.org/10.1145/1529282.1529353
http://doi.acm.org/10.1145/1529282.1529353
http://dx.doi.org/10.1007/978-3-540-87785-1_35
http://dx.doi.org/10.1109/MM.2012.32
http://doi.acm.org/10.1145/1345206.1345241
http://dl.acm.org/citation.cfm?id=646787.703893
http://dl.acm.org/citation.cfm?id=646787.703893

Bibliography 183

May, No. 2. – DOI http://doi.acm.org/10.1145/1233307.1233309. – ISSN 0734-
2071 (page 47, 48, 50)

[Freescale P4080] Freescale Semiconductor Inc.: P4080 Fact Sheet. http:
//www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080. – Last
Retrieved: April 2013 (page 19)

[Gamma et al. 1995] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides,
John: Design Patterns: Elements of Reusable Object-Oriented Software. Boston, MA,
USA : Addison-Wesley Longman Publishing Co., Inc., 1995. – ISBN 0-201-63361-2
(page 116)

[Gao and Hesselink 2007] Gao, Hui ; Hesselink, Wim H.: A general lock-free
algorithm using compare-and-swap. In: Inf. Comput. 205 (2007), February, No. 2,
p. 225–241. – DOI http://dx.doi.org/10.1016/j.ic.2006.10.003. – ISSN 0890-
5401 (page 16, 47, 49)

[Gebhard et al. 2011] Gebhard, Gernot ; Cullmann, Christoph ; Heckmann, Rein-
hold: Software Structure and WCET Predictability. In: Lucas, Philipp (Pub.) ;
Thiele, Lothar (Pub.) ; Triquet, Benoit (Pub.) ; Ungerer, Theo (Pub.) ; Wil-
helm, Reinhard (Pub.): Bringing Theory to Practice: Predictability and Perfor-
mance in Embedded Systems Vol. 18. Dagstuhl, Germany : Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2011, p. 1–10. – DOI http://dx.doi.org/10.
4230/OASIcs.PPES.2011.1. – ISBN 978-3-939897-28-6 (page 2, 54, 115)

[Gerdes et al. 2012a] Gerdes, Mike ; Kluge, Florian ; Rochange, Christine ; Un-
gerer, Theo: The Split-Phase Synchronisation Technique: Reducing the Pessimism
in the WCET Analysis of Parallelised Hard Real-Time Programs. In: Proceedings of
the eighteenth IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications. Washington, DC, USA : IEEE Computer Society, August
2012 (RTCSA ’12), p. 88–97. – DOI http://dx.doi.org/10.1109/RTCSA.2012.11.
– ISSN 1533-2306 (page 23, 57, 89)

[Gerdes et al. 2012b] Gerdes, Mike ; Kluge, Florian ; Ungerer, Theo ; Rochange,
Christine ; Sainrat, Pascal: Time Analysable Synchronisation Techniques for Par-
allelised Hard Real-Time Applications. In: Proceedings of Design, Automation and
Testing in Europe. Leuven, Belgium : European Design and Automation Association,
March 2012 (DATE ’12), p. 671–676. – DOI http://dx.doi.org/10.1109/DATE.
2012.6176555 (page 1, 2, 19, 23, 32, 57, 77, 79, 88)

[Gerdes et al. 2011] Gerdes, Mike ; Wolf, Julian ; Guliashvili, Irakli ; Ungerer,
Theo ; Houston, Michael ; Bernat, Guillem ; Schnitzler, Stefan ; Regler,
Hans: Large Drilling Machine Control Code - Parallelisation and WCET Speedup.
In: Proceedings of the 6th IEEE International Symposium on Industrial Embedded
Systems, DOI http://dx.doi.org/10.1109/SIES.2011.5953688, June 2011 (SIES
’11), p. 91–94 (page 57, 88, 124)

http://doi.acm.org/10.1145/1233307.1233309
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080
http://dx.doi.org/10.1016/j.ic.2006.10.003
http://dx.doi.org/10.4230/OASIcs.PPES.2011.1
http://dx.doi.org/10.4230/OASIcs.PPES.2011.1
http://dx.doi.org/10.1109/RTCSA.2012.11
http://dx.doi.org/10.1109/DATE.2012.6176555
http://dx.doi.org/10.1109/DATE.2012.6176555
http://dx.doi.org/10.1109/SIES.2011.5953688

184 Bibliography

[Girkar and Polychronopoulos 1994] Girkar, Milind ; Polychronopoulos, Con-
stantine D.: The Hierarchical Task Graph as a Universal Intermediate Representa-
tion. In: Int. J. Parallel Program. 22 (1994), October, No. 5, p. 519–551. – DOI
http://dx.doi.org/10.1007/BF02577777. – ISSN 0885-7458 (page 131)

[Gottlieb and Kruskal 1981] Gottlieb, Allan ; Kruskal, Clyde P.: Coordinating
parallel processors: a partial unification. In: SIGARCH Computer Architecture News
9 (1981), October, No. 6, p. 16–24. – DOI http://doi.acm.org/10.1145/859515.
859517. – ISSN 0163-5964 (page 14)

[Gottlieb et al. 1983] Gottlieb, Allan ; Lubachevsky, Boris D. ; Rudolph,
Larry: Basic Techniques for the Efficient Coordination of Very Large Numbers
of Cooperating Sequential Processors. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 5 (1983), April, No. 2, p. 164–189. – DOI
http://doi.acm.org/10.1145/69624.357206. – ISSN 0164-0925 (page 14)

[Grand 2002] Grand, Mark: Patterns in Java. A Catalog of Reusable Design Pat-
terns Illustrated with UML. 2nd Edition, Volume 1. Indianapolis, IN, USA : Wiley
Publishing, Inc., September 2002. – ISBN 0471227293, 978-0471227298 (page 116)

[Graunke and Thakkar 1990] Graunke, Gary ; Thakkar, Shreekant: Synchroniza-
tion Algorithms for Shared-Memory Multiprocessors. In: IEEE Computer 23 (1990),
June, No. 6, p. 60–69. – DOI http://dx.doi.org/10.1109/2.55501. – ISSN 0018-
9162 (page 45)

[Greenwald and Cheriton 1996] Greenwald, Michael ; Cheriton, David: The
Synergy Between Non-Blocking Synchronization and Operating System Structure. In:
Proceedings of the Second USENIX Symposium on Operating Systems Design and
Implementation. New York, NY, USA : ACM, 1996 (OSDI ’96), p. 123–136. – DOI
http://doi.acm.org/10.1145/238721.238767. – ISBN 1-880446-82-0 (page 47)

[Gustavsson et al. 2010] Gustavsson, Andreas ; Ermedahl, Andreas ; Lisper,
Björn ; Pettersson, Paul: Towards WCET Analysis of Multicore Architectures
using UPPAAL. In: Lisper, Björn (Pub.): Proceedings of the 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010) Vol. 15. Dagstuhl,
Germany : Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010, p. 101–112. –
DOI http://dx.doi.org/10.4230/OASIcs.WCET.2010.101. – The printed version
of the WCET’10 proceedings are published by OCG (www.ocg.at) - ISBN 978-3-
85403-268-7. – ISBN 978-3-939897-21-7 (page 1, 87)

[Gustavsson et al. 2012] Gustavsson, Andreas ; Gustafsson, Jan ; Lisper,
Björn: Toward Static Timing Analysis of Parallel Software. In: Vardanega, Tullio
(Pub.): Proceedings of the 12th International Workshop on Worst-Case Execution-
Time (WCET) Analysis Vol. 23. Dagstuhl, Germany : Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, July 2012, p. 38–47. – ISBN 978-3-939897-41-5 (page 2,
87)

http://dx.doi.org/10.1007/BF02577777
http://doi.acm.org/10.1145/859515.859517
http://doi.acm.org/10.1145/859515.859517
http://doi.acm.org/10.1145/69624.357206
http://dx.doi.org/10.1109/2.55501
http://doi.acm.org/10.1145/238721.238767
http://dx.doi.org/10.4230/OASIcs.WCET.2010.101

Bibliography 185

[Ha-Hoai and Tsigas 2003] Ha-Hoai, Phuong ; Tsigas, Philippas: Fast, Reactive and
Lock-free Multi-Word Compare-and-Swap Algorithms. 2003 (2003-06). – Technical
Report (page 15, 47, 50)

[Hansson et al. 2009] Hansson, Andreas ; Goossens, Kees ; Bekooij, Marco ;
Huisken, Jos: CoMPSoC: A template for composable and predictable multi-processor
system on chips. In: ACM Trans. Des. Autom. Electron. Syst. 14 (2009), January,
No. 1, p. 2:1–2:24. – DOI http://doi.acm.org/10.1145/1455229.1455231. – ISSN
1084-4309 (page 2, 86)

[Hardy et al. 2009] Hardy, Damien ; Piquet, Thomas ; Puaut, Isabelle: Us-
ing Bypass to Tighten WCET Estimates for Multi-Core Processors with Shared In-
struction Caches. In: 30th IEEE Real-Time Systems Symposium. Washington, DC,
USA : IEEE Computer Society, December 2009 (RTSS ’09), p. 68–77. – DOI
http://dx.doi.org/10.1109/RTSS.2009.34. – ISBN 978-0-7695-3875-4 (page 2,
86)

[Harris et al. 2010] Harris, Tim ; Larus, James R. ; Rajwar, Ravi: Transactional
Memory. 2nd Edition. San Rafael, CA, USA : Morgan and Claypool Publishers, 2010
(Synthesis Lectures on Computer Architecture). – ISBN 1608452352, 9781608452354
(page 50)

[Harris et al. 2002] Harris, Tim L. ; Fraser, Keir ; Pratt, Ian A.: A Practical
Multi-Word Compare-and-Swap Operation. In: Proceedings of the 16th International
Symposium on Distributed Computing. London, UK : Springer-Verlag, 2002 (DISC
’02), p. 265–279. – DOI http://dl.acm.org/citation.cfm?id=645959.676137. –
ISBN 3-540-00073-9 (page 15, 50)

[Harrison et al. 2000] Harrison, Neil ; Foote, Brian ; Rohnert, Hans: Pattern
Languages of Program Design. Vol. 4. Boston, MA, USA : Addison Wesley, 2000. –
ISBN 0201433044 (page 116)

[Heckmann et al. 2003] Heckmann, Reinhold ; Langenbach, Marc ; Thesing,
Stephan ; Wilhelm, Reinhard: The influence of processor architecture on the design
and the results of WCET tools. In: Proceedings of the IEEE 91 (2003), July, No. 7,
p. 1038–1054. – DOI http://dx.doi.org/10.1109/JPROC.2003.814618. – ISSN
0018-9219 (page 86)

[Hennessy and Patterson 2003] Hennessy, John L. ; Patterson, David A.: Computer
Architecture - A Quantitative Approach. 3rd Edition. San Francisco, CA, USA :
Morgan Kaufmann Publishers Inc., 2003. – ISBN 978-1-55860-596-1 (page 8, 11, 13,
14, 27, 40, 41, 42, 43, 47)

[Hensgen et al. 1988] Hensgen, Debra ; Finkel, Raphael ; Manber, Udi: Two
Algorithms for Barrier Synchronization. In: International Journal on Parallel Pro-
gramming 17 (1988), February, No. 1, p. 1–17. – DOI http://dx.doi.org/10.1007/
BF01379320. – ISSN 0885-7458 (page 42, 46)

http://doi.acm.org/10.1145/1455229.1455231
http://dx.doi.org/10.1109/RTSS.2009.34
http://dl.acm.org/citation.cfm?id=645959.676137
http://dx.doi.org/10.1109/JPROC.2003.814618
http://dx.doi.org/10.1007/BF01379320
http://dx.doi.org/10.1007/BF01379320

186 Bibliography

[Herlihy 1988] Herlihy, Maurice P.: Impossibility and Universality Results for Wait-
Free Synchronization. In: Proceedings of the Seventh Annual ACM Symposium on
Principles of distributed computing. New York, NY, USA : ACM, 1988 (PODC ’88),
p. 276–290. – DOI http://doi.acm.org/10.1145/62546.62593. – ISBN 0-89791-
277-2 (page 47, 48)

[Herlihy 1991a] Herlihy, Maurice P.: Wait-Free Synchronization. In: ACM Trans.
Program. Lang. Syst. 13 (1991), January, No. 1, p. 124–149. – DOI http://doi.acm.
org/10.1145/114005.102808. – ISSN 0164-0925 (page 47, 48)

[Herlihy 1991b] Herlihy, Maurice P.: Wait-Free Synchronization. In: ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 13 (1991), January, No. 1,
p. 124–149. – DOI http://doi.acm.org/10.1145/114005.102808. – ISSN 0164-0925
(page 49)

[Herlihy 1993] Herlihy, Maurice P.: A Methodology for Implementing Highly Con-
current Data Objects. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 15 (1993), November, No. 5, p. 745–770. – DOI http://doi.acm.org/
10.1145/161468.161469. – ISSN 0164-0925 (page 47, 48, 49)

[Herlihy et al. 2003] Herlihy, Maurice P. ; Luchangco, Victor ; Moir, Mark:
Obstruction-Free Synchronization: Double-Ended Queues as an Example. In: Pro-
ceedings of the 23rd International Conference on Distributed Computing Systems.
Washington, DC, USA : IEEE Computer Society, 2003 (ICDCS ’03), p. 522–. –
DOI http://dl.acm.org/citation.cfm?id=850929.851942. – ISBN 0-7695-1920-2
(page 47, 48)

[Herlihy and Moss 1993] Herlihy, Maurice P. ; Moss, J. Eliot B.: Transactional
Memory: Architectural Support for Lock-Free Data Structures. In: Proceedings of
the 20th Annual International Symposium on Computer Architecture. New York, NY,
USA : ACM, 1993 (ISCA ’93), p. 289–300. – DOI http://doi.acm.org/10.1145/
165123.165164. – ISBN 0-8186-3810-9 (page 15, 50)

[Herlihy and Wing 1990] Herlihy, Maurice P. ; Wing, Jeannette M.: Linearizability:
A Correctness Condition for Concurrent Objects. In: ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 12 (1990), July, No. 3, p. 463–492. – DOI
http://doi.acm.org/10.1145/78969.78972. – ISSN 0164-0925 (page 8)

[Holzmann 2006] Holzmann, Gerard J.: The Power of 10: Rules for Developing
Safety-Critical Code. In: IEEE Computer 39 (2006), June, No. 6, p. 95–97. – DOI
http://dx.doi.org/10.1109/MC.2006.212. – ISSN 0018-9162 (page 117)

[IBM z/Architecture 2005] IBM: z/Architecture. Principles of Op-
eration. https://www-304.ibm.com/support/docview.wss?uid=
isg2b9de5f05a9d57819852571c500428f9a. September 2005. – 5th edition,
Last Retrieved: April 2013 (page 15)

http://doi.acm.org/10.1145/62546.62593
http://doi.acm.org/10.1145/114005.102808
http://doi.acm.org/10.1145/114005.102808
http://doi.acm.org/10.1145/114005.102808
http://doi.acm.org/10.1145/161468.161469
http://doi.acm.org/10.1145/161468.161469
http://dl.acm.org/citation.cfm?id=850929.851942
http://doi.acm.org/10.1145/165123.165164
http://doi.acm.org/10.1145/165123.165164
http://doi.acm.org/10.1145/78969.78972
http://dx.doi.org/10.1109/MC.2006.212
https://www-304.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
https://www-304.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

Bibliography 187

[Infineon AURIX 2013] Infineon Technologies: Infineon AURIX (AUtomotive
Realtime Integrated NeXt Generation Architecture). http://www.infineon.com/cms/
en/product/channel.html?channel=db3a30433727a44301372b2eefbb48d9. 2013. –
Last Retrieved: April 2013 (page 19, 137)

[Jahr et al. 2013a] Jahr, Ralf ; Gerdes, Mike ; Ungerer, Theo: A Pattern-
supported Parallelization Approach. In: Proceedings of the 2013 International Work-
shop on Programming Models and Applications for Multicores and Manycores. New
York, NY, USA : ACM, February 2013 (PMAM ’13), p. 53–62. – DOI http:
//doi.acm.org/10.1145/2442992.2442998. – ISBN 978-1-4503-1908-9 (page 118,
131, 132, 138)

[Jahr et al. 2013b] Jahr, Ralf ; Gerdes, Mike ; Ungerer, Theo: An Approach
for Parallelisation with Parallel Design Patterns. In: Journal on Parallel Computing
(ParCo), Special Issue (2013). – Submitted and under review (page 118, 131, 138)

[Jensen et al. 1987] Jensen, Eric H. ; Hagensen, Gary W. ; Broughton, Jeffrey M.:
A New Approach to Exclusive Data Access in Shared Memory Multiprocessors /
Lawrence Livermore National Laboratory. November 1987 (UCRL-97663). – Technical
Report (page 15)

[Kelter et al. 2011] Kelter, Timon ; Falk, Heiko ; Marwedel, Peter ; Chattopad-
hyay, Sudipta ; Roychoudhury, Abhik: Bus-Aware Multicore WCET Analysis
through TDMA Offset Bounds. In: Proceedings of the 23rd Euromicro Conference
on Real-Time Systems. Washington, DC, USA : IEEE Computer Society, July 2011
(ECRTS ’11), p. 3–12. – DOI http://dx.doi.org/10.1109/ECRTS.2011.9. – ISSN
1068-3070 (page 2, 19, 86)

[Keutzer et al. 2010] Keutzer, Kurt ; Massingill, Berna L. ; Mattson, Timo-
thy G. ; Sanders, Beverly A.: A design pattern language for engineering (parallel)
software: merging the PLPP and OPL projects. In: Proceedings of the 2010 Workshop
on Parallel Programming Patterns. New York, NY, USA : ACM, 2010 (ParaPLoP
’10), p. 9:1–9:8. – DOI http://doi.acm.org/10.1145/1953611.1953620. – ISBN
978-1-4503-0127-5 (page 119)

[Kirner and Puschner 2010] Kirner, Raimund ; Puschner, Peter: Time-Predictable
Computing. In: Proceedings of the 8th IFIP WG 10.2 International Conference on
Software technologies for Embedded and Ubiquitous Systems. Berlin / Heidelberg,
Germany : Springer-Verlag, 2010 (SEUS ’10), p. 23–34. – DOI http://dl.acm.
org/citation.cfm?id=1927882.1927890. – ISBN 3-642-16255-X, 978-3-642-16255-8
(page 86, 135, 138)

[Knuth 1966] Knuth, Donald E.: Additional Comments on a Problem in Concurrent
Programming Control. In: Communications of the ACM 9 (1966), May, No. 5,
p. 321–322. – DOI http://doi.acm.org/10.1145/355592.365595. – ISSN 0001-
0782 (page 10)

http://www.infineon.com/cms/en/product/channel.html?channel=db3a30433727a44301372b2eefbb48d9
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30433727a44301372b2eefbb48d9
http://doi.acm.org/10.1145/2442992.2442998
http://doi.acm.org/10.1145/2442992.2442998
http://dx.doi.org/10.1109/ECRTS.2011.9
http://doi.acm.org/10.1145/1953611.1953620
http://dl.acm.org/citation.cfm?id=1927882.1927890
http://dl.acm.org/citation.cfm?id=1927882.1927890
http://doi.acm.org/10.1145/355592.365595

188 Bibliography

[Kopetz and Nossal 1997] Kopetz, Hermann ; Nossal, Roman: Temporal Firewalls
in Large Distributed Real-Time Systems. In: Proceedings of the 6th IEEE Workshop
on Future Trends of Distributed Computing Systems. Los Alamitos, CA, USA : IEEE
Computer Society, 1997 (FTDCS ’97), p. 310–. – DOI http://dx.doi.org/10.1109/
FTDCS.1997.644743. – ISSN 1071-0485 (page 138)

[Kowalik 1985] Kowalik, Janusz S.: Parallel MIMD Computation: The HEP Super-
computer and Its Applications. Cambridge, MA, USA : The MIT Press, 1985. – ISBN
0-262-11101-2 (page 17)

[Kruskal et al. 1988] Kruskal, Clyde P. ; Rudolph, Larry ; Snir, Marc: Efficient
Synchronization of Multiprocessors with Shared Memory. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) 10 (1988), October, p. 579–601. –
DOI http://doi.acm.org/10.1145/48022.48024. – ISSN 0164-0925 (page 8, 14,
23, 27)

[Lakis and Schoeberl 2013] Lakis, Edgar ; Schoeberl, Martin: An SDRAM Con-
troller for Real-Time Systems. In: Proceedings of the 9th Workshop on Software
Technologies for Embedded and Ubiquitous Systems, 2013 (SEUS ’13) (page 25)

[Lamport 1974] Lamport, Leslie: A New Solution of Dijkstra’s Concurrent Pro-
gramming Problem. In: G.Bell, S.H. F. (Pub.): Communications of the ACM
Vol. 17. New York, NY, USA : ACM, August 1974, p. 453–455. – DOI http:
//doi.acm.org/10.1145/361082.361093 (page 13)

[Lamport 1979] Lamport, Leslie: How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. In: IEEE Transactions on Computers
C-28 (1979), September, No. 9, p. 690–691. – DOI http://dx.doi.org/10.1109/TC.
1979.1675439. – ISSN 0018-9340 (page 8, 23)

[Larus and Rajwar 2007] Larus, James R. ; Rajwar, Ravi ; Hill, Mark D. (Pub.):
Transactual Memory. First Edition. San Rafael, CA, USA : Morgan & Claypool,
2007. – ISBN 1598291246 (page 50)

[Lea 2003] Lea, Doug: Concurrent Programming in JAVA. 2nd Edition. Boston, MA,
USA : Addison-Wesley Longman Publishing Co., Inc., 2003. – ISBN 0-201-31009-0
(page 116)

[Lehoczky and Ramos-Thuel 1992] Lehoczky, John P. ; Ramos-Thuel, Sandra: An
Optimal Algorithm for Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemptive
Systems. In: Proceedings of Real-Time Systems Symposium. Washington, DC, USA :
IEEE Computer Society, December 1992 (RTSS ’92), p. 110–123. – DOI http:
//dx.doi.org/REAL.1992.242671 (page 21)

[Li et al. 2007] Li, Xianfeng ; Liang, Yun ; Mitra, Tulika ; Roychoudhury, Abhik:
Chronos: A Timing Analyzer for Embedded Software. In: Sci. Comput. Program. 69
(2007), December, No. 1-3, p. 56–67. – DOI http://dx.doi.org/10.1016/j.scico.
2007.01.014. – ISSN 0167-6423 (page 86)

http://dx.doi.org/10.1109/FTDCS.1997.644743
http://dx.doi.org/10.1109/FTDCS.1997.644743
http://doi.acm.org/10.1145/48022.48024
http://doi.acm.org/10.1145/361082.361093
http://doi.acm.org/10.1145/361082.361093
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/REAL.1992.242671
http://dx.doi.org/REAL.1992.242671
http://dx.doi.org/10.1016/j.scico.2007.01.014
http://dx.doi.org/10.1016/j.scico.2007.01.014

Bibliography 189

[Li et al. 2009] Li, Yan ; Suhendra, V. ; Liang, Yun ; Mitra, T. ; Roychoudhury,
A.: Timing Analysis of Concurrent Programs Running on Shared Cache Multi-Cores.
In: Proceedings of the 2009 30th IEEE Real-Time Systems Symposium. Washington,
DC, USA : IEEE Computer Society, 2009 (RTSS ’09), p. 57–67. – DOI http://dx.
doi.org/10.1109/RTSS.2009.32. – ISBN 978-0-7695-3875-4 (page 87)

[Lickly et al. 2008] Lickly, Ben ; Liu, Isaac ; Kim, Sungjun ; Patel, Hiren D. ; Ed-
wards, Stephen A. ; Lee, Edward A.: Predictable Programming on a Precision Timed
Architecture. In: Proceedings of the 2008 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems. New York, NY, USA : ACM, 2008
(CASES ’08), p. 137–146. – DOI http://doi.acm.org/10.1145/1450095.1450117.
– ISBN 978-1-60558-469-0 (page 2, 87)

[Lisper 2012] Lisper, Björn: Towards Parallel Programming Models for Predictability.
In: Vardanega, Tullio (Pub.): Proceedings of the 12th International Workshop on
Worst-Case Execution-Time (WCET) Analysis Vol. 23. Dagstuhl, Germany : Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012, p. 48–58. – DOI http://dx.doi.
org/10.4230/OASIcs.WCET.2012.48. – ISBN 978-3-939897-41-5 (page 87)

[Liu and Layland 1973] Liu, Chang L. ; Layland, James W.: Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environment. In: Journal of the ACM
(JACM) 20 (1973), January, No. 1, p. 46–61. – DOI http://doi.acm.org/10.1145/
321738.321743. – ISSN 0004-5411 (page 21)

[Liu 2012] Liu, Isaac: Precision Timed Machines, EECS Department, University of
California, Berkeley, phd thesis, May 2012 (page 19)

[Liu et al. 2010] Liu, Isaac ; Reineke, Jan ; Lee, Edward A.: A PRET architec-
ture supporting concurrent programs with composable timing properties. In: 2010
Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems
and Computers, DOI http://dx.doi.org/10.1109/ACSSC.2010.5757922, Novem-
ber 2010 (ASILOMAR ’10), p. 2111–2115. – ISSN 1058-6393 (page 2, 19)

[Liu and Gaudiot 2007] Liu, Shaoshan ; Gaudiot, Jean-Luc: Synchronization
Mechanisms on Modern Multi-core Architectures. Berlin / Heidelberg, Germany :
Springer-Verlag, 2007 (ACSAC’07), p. 290–303. – DOI http://dx.doi.org/10.
1007/978-3-540-74309-5_28. – ISBN 3-540-74308-1, 978-3-540-74308-8 (page 101)

[Lubachevsky 1984] Lubachevsky, Boris D.: An Approach to Automating the Veri-
fication of Compact Parallel Coordination Programs. In: Acta Informatica 21 (1984),
p. 125–169. – DOI http://dx.doi.org/10.1007/BF00289237. – ISSN 0001-5903
(page 44)

[LynxSecure] LynuxWorks: LynxSecure Embedded Hypervisor. http://www.
lynuxworks.com/virtualization/hypervisor.php. – Last Retrieved: April 2013
(page 2)

http://dx.doi.org/10.1109/RTSS.2009.32
http://dx.doi.org/10.1109/RTSS.2009.32
http://doi.acm.org/10.1145/1450095.1450117
http://dx.doi.org/10.4230/OASIcs.WCET.2012.48
http://dx.doi.org/10.4230/OASIcs.WCET.2012.48
http://doi.acm.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743
http://dx.doi.org/10.1109/ACSSC.2010.5757922
http://dx.doi.org/10.1007/978-3-540-74309-5_28
http://dx.doi.org/10.1007/978-3-540-74309-5_28
http://dx.doi.org/10.1007/BF00289237
http://www.lynuxworks.com/virtualization/hypervisor.php
http://www.lynuxworks.com/virtualization/hypervisor.php

190 Bibliography

[Maldonado et al. 2011] Maldonado, Walther ; Marlier, Patrick ; Felber,
Pascal ; Lawall, Julia ; Muller, Giller ; Rivière, Etienne: Deadline-Aware
Scheduling for Software Transactional Memory. In: Proceedings of the IEEE/I-
FIP 41st International Conference on Dependable Systems Networks. Washington,
DC, USA : IEEE Computer Society, June 2011 (DSN ’11), p. 257–268. – DOI
http://dx.doi.org/10.1109/DSN.2011.5958224. – ISSN 1530-0889 (page 50, 51)

[Manolescu et al. 2006] Manolescu, Dragos ; Voelter, Markus ; Noble, James:
Pattern Languages of Program Design. Vol. 5. Upper Saddle River, NJ, USA : Addison-
Wesley, 2006. – ISBN 0321321944 (page 116)

[Manson et al. 2005] Manson, Jeremy ; Baker, Jason ; Cunei, Antonio ; Jagan-
nathan, Suresh ; Prochazka, Marek ; Xin, Bin ; Vitek, Jan: Preemptible Atomic
Regions for Real-Time Java. In: Proceedings of the 26th IEEE International Real-
Time Systems Symposium. Washington, DC, USA : IEEE Computer Society, 2005
(RTSS ’05), p. 62–71. – DOI http://dx.doi.org/10.1109/RTSS.2005.34. – ISBN
0-7695-2490-7 (page 50)

[Marejka 1994] Marejka, Richard: A Barrier for Threads. In: SunOpsis - The
Solaris 2.0 Migration Support Centre Newsletter 4 (1994), November, No. 1 (page 42,
75, 148)

[Markatos et al. 1991] Markatos, Evangelos P. ; Crovella, Mark ; Das, Prakash ;
Dubnicki, Cezary ; LeBlanc, Thomas J.: The Effects of Multiprogramming on
Barrier Synchronization. In: Proceedings of the Third IEEE Symposium on Parallel
and Distributed Processing. Los Alamitos, CA, USA : IEEE Computer Society Press,
December 1991, p. 662–669. – DOI http://dx.doi.org/10.1109/SPDP.1991.218199
(page 46)

[Martin et al. 1997] Martin, Robert C. (Pub.) ; Riehle, Dirk (Pub.) ; Buschmann,
Frank (Pub.): Pattern Languages of Program Design. Vol. 3. Boston, MA, USA :
Addison-Wesley, 1997. – ISBN 0-201-31011-2 (page 116)

[Massalin and Pu 1992] Massalin, Henry ; Pu, Calton: A Lock-Free Multiprocessor
OS Kernel. In: SIGOPS Oper. Syst. Rev. 26 (1992), April, No. 2, p. 8–. – DOI
http://dl.acm.org/citation.cfm?id=142111.993246. – ISSN 0163-5980 (page 48)

[Massingill et al. 1999] Massingill, Berna L. ; Mattson, Timothy G. ; Sanders,
Beverly A.: Patterns for Parallel Application Programs. In: Proceedings of the 6th
Pattern Languages of Programs Workshop, August 1999 (PLoP ’99) (page 117)

[Massingill et al. 2001a] Massingill, Berna L. ; Mattson, Timothy G. ; Sanders,
Beverly A.: More Patterns for Parallel Application Programs. In: Proceedings of the
8th Pattern Languages of Programs Workshop, September 2001 (PLoP ’01) (page 117)

[Massingill et al. 2001b] Massingill, Berna L. ; Mattson, Timothy G. ; Sanders,
Beverly A.: Parallel programming with a pattern language. In: International Journal

http://dx.doi.org/10.1109/DSN.2011.5958224
http://dx.doi.org/10.1109/RTSS.2005.34
http://dx.doi.org/10.1109/SPDP.1991.218199
http://dl.acm.org/citation.cfm?id=142111.993246

Bibliography 191

on Software Tools for Technology Transfer (STTT) 3 (2001), No. 2, p. 217–234. –
DOI http://dx.doi.org/10.1007/s100090100045 (page 117)

[Mattson et al. 2010] Mattson, Timothy G. ; Riepen, Michael ; Lehnig, Thomas ;
Brett, Paul ; Haas, Werner ; Kennedy, Patrick ; Howard, Jason ; Vangal,
Sriram ; Borkar, Nitin ; Ruhl, Greg ; Dighe, Saurabh: The 48-core SCC Pro-
cessor: the Programmer’s View. In: Proceedings of the 2010 ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Storage and Analy-
sis. Washington, DC, USA : IEEE Computer Society, 2010 (SC ’10), p. 1–11. – DOI
http://dx.doi.org/10.1109/SC.2010.53. – ISBN 978-1-4244-7559-9 (page 17, 22)

[Mattson et al. 2004] Mattson, Timothy G. ; Sanders, Beverly A. ; Massingill,
Berna L.: Patterns for Parallel Programming. 1st Edition. Boston, MA, USA :
Addison-Wesley Professional, 2004. – ISBN 0321228111 (page 117, 118, 119, 137)

[Meawad et al. 2011] Meawad, Fadi ; Schoeberl, Martin ; Iyer, Karthik ; Vitek,
Jan: Real-Time Wait-Free Queues Using Micro-Transactions. In: Proceedings of
the 9th International Workshop on Java Technologies for Real-Time and Embedded
Systems. New York, NY, USA : ACM, 2011 (JTRES ’11), p. 1–10. – DOI http:
//doi.acm.org/10.1145/2043910.2043912. – ISBN 978-1-4503-0731-4 (page 50)

[Mellor-Crummey and Scott 1991a] Mellor-Crummey, John M. ; Scott,
Michael L.: Algorithms for Scalable Synchronization on Shared-Memory Multipro-
cessors. In: ACM Transactions on Computer Systems 9 (1991), February, No. 1,
p. 21–65. – DOI http://doi.acm.org/10.1145/103727.103729. – ISSN 0734-2071
(page 8, 11, 13, 14, 27, 36, 45)

[Mellor-Crummey and Scott 1991b] Mellor-Crummey, John M. ; Scott,
Michael L.: Synchronization Without Contention. In: Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’91). New York, NY, USA : ACM, 1991 (ASPLOS-IV),
p. 269–278. – DOI http://doi.acm.org/10.1145/106972.106999. – ISBN 0-89791-
380-9 (page 46)

[Metzlaff 2012] Metzlaff, Stefan: Analysable Instruction Memories for Hard Real-
Time Systems, Computer Science Department, University of Augsburg, Germany, phd
thesis, May 2012 (page 55)

[Metzlaff et al. 2011] Metzlaff, Stefan ; Guliashvili, Irakli ; Uhrig, Sascha ;
Ungerer, Theo: A Dynamic Instruction Scratchpad Memory for Embedded Pro-
cessors Managed by Hardware. In: Proceedings of the 24th International Conference
on Architecture of Computing Systems. Berlin / Heidelberg, Germany : Springer-
Verlag, 2011 (ARCS’11), p. 122–134. – DOI http://dl.acm.org/citation.cfm?id=
1966221.1966236. – ISBN 978-3-642-19136-7 (page 20, 89)

[Michael 2004] Michael, Maged M.: Hazard Pointers: Safe Memory Reclamation for
Lock-Free Objects. In: IEEE Transactions on Parallel Distributed Systems 15 (2004),

http://dx.doi.org/10.1007/s100090100045
http://dx.doi.org/10.1109/SC.2010.53
http://doi.acm.org/10.1145/2043910.2043912
http://doi.acm.org/10.1145/2043910.2043912
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/106972.106999
http://dl.acm.org/citation.cfm?id=1966221.1966236
http://dl.acm.org/citation.cfm?id=1966221.1966236

192 Bibliography

June, No. 6, p. 491–504. – DOI http://dx.doi.org/10.1109/TPDS.2004.8. – ISSN
1045-9219 (page 15, 16, 47, 49)

[Milewski 1990] Milewski, Jaroslaw: Functional Data Structures as Updatable Ob-
jects. In: IEEE Transactions on Software Engineering 16 (1990), December, No. 12,
p. 1427–1432. – DOI http://dx.doi.org/10.1109/32.62450. – ISSN 0098-5589
(page 18)

[MIPS32 ISA 2003] MIPS Technologies, Inc.: MIPS32 Instruction Set Architec-
ture Revision 3.05. http://www.mips.com/products/architectures/mips32/. June
2003. – Last Retrieved: April 2013 (page 16, 18, 100)

[Mische et al. 2010] Mische, Jörg ; Guliashvili, Irakli ; Uhrig, Sascha ; Ungerer,
Theo: How to Enhance a Superscalar Processor to Provide Hard Real-Time Capable
In-Order SMT. In: Proceedings of the 23rd International Conference on Architec-
ture of Computing Systems. Berlin / Heidelberg, Germany : Springer-Verlag, 2010
(ARCS’10), p. 2–14. – DOI http://dx.doi.org/10.1007/978-3-642-11950-7_2. –
ISBN 3-642-11949-2, 978-3-642-11949-1 (page 17, 20, 47)

[Mittermayr and Blieberger 2012] Mittermayr, Robert ; Blieberger, Johann:
Timing Analysis of Concurrent Programs. In: Vardanega, Tullio (Pub.): Proceedings
of the 12th International Workshop on Worst-Case Execution-Time (WCET) Analy-
sis Vol. 23. Dagstuhl, Germany : Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2012, p. 59–68. – DOI http://dx.doi.org/10.4230/OASIcs.WCET.2012.59. – ISBN
978-3-939897-41-5 (page 87)

[Mohan et al. 2011] Mohan, Sibin ; Caccamo, Marco ; Sha, Lui ; Pellizzoni,
Rodolfo ; Arundale, Greg ; Kegley, Russell ; Niz, Dionisio de: Using Multicore Ar-
chitectures in Cyber-Physical Systems. In: Workshop on Developing Dependable and
Secure Automotive Cyber-Physical Systems from Components, March 2011 (page 86)

[Molesky et al. 1990] Molesky, Lory D. ; Shen, Chia ; Zlokapa, Goran: Predictable
Synchronization Mechanisms for Multiprocessor Real-Time Systems. In: Real-Time
Systems 2 (1990), September, No. 3, p. 163–180. – DOI http://dx.doi.org/10.
1007/BF00365325. – ISSN 0922-6443 (page 23, 44)

[Monchiero et al. 2005] Monchiero, Matteo ; Palermo, Gianluca ; Silvano,
Cristina ; Villa, Oreste: An Efficient Synchronization Technique for Multipro-
cessor Systems on-Chip. In: Proceedings of the 2005 Workshop on MEmory per-
formance: DEaling with Applications, systems and architecture. Washington, DC,
USA : IEEE Computer Society, 2005 (MEDEA ’05), p. 33–40. – DOI http:
//dx.doi.org/10.1145/1147349.1147357 (page 100)

[Mukherjee 2008] Mukherjee, Suhubu: Architecture Design for Soft Errors. First
Edition. Burlington, MA, USA : Morgan Kaufmann Publishers, 2008. – ISBN 978-0-
12-369529-1 (page 137)

http://dx.doi.org/10.1109/TPDS.2004.8
http://dx.doi.org/10.1109/32.62450
http://www.mips.com/products/architectures/mips32/
http://dx.doi.org/10.1007/978-3-642-11950-7_2
http://dx.doi.org/10.4230/OASIcs.WCET.2012.59
http://dx.doi.org/10.1007/BF00365325
http://dx.doi.org/10.1007/BF00365325
http://dx.doi.org/10.1145/1147349.1147357
http://dx.doi.org/10.1145/1147349.1147357

Bibliography 193

[Mutlu and Moscibroda 2007] Mutlu, Onur ; Moscibroda, Thomas: Stall-Time
Fair Memory Access Scheduling for Chip Multiprocessors. In: Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture. Washington,
DC, USA : IEEE Computer Society, 2007 (MICRO 40), p. 146–160. – DOI http:
//dx.doi.org/10.1109/MICRO.2007.40. – ISBN 0-7695-3047-8 (page 25)

[Nichols et al. 1996] Nichols, Bradford ; Buttlar, Dick ; Proulx Farrell, Jacque-
line: Pthreads Programming. First Edition. Sebastopol, CA, USA : O’Reilly & Asso-
ciates, Inc., September 1996. – ISBN 1-56592-115-1 (page 38)

[Nikhil 1991] Nikhil, Rishiyur S.: ID Language Reference Manual (Version 90.1) /
MIT Lab. for Computer Science, Massachusetts Institute of Technology, Cambridge,
USA. July 1991 (CSG Memo 284-2). – Technical Report (page 18)

[Nowotsch and Paulitsch 2012] Nowotsch, Jan ; Paulitsch, Michael: Leveraging
Multi-core Computing Architectures in Avionics. In: European Dependable Computing
Conference. Los Alamitos, CA, USA : IEEE Computer Society, 2012 (EDCC ’12),
p. 132–143. – DOI http://doi.ieeecomputersociety.org/10.1109/EDCC.2012.27.
– ISBN 978-0-7695-4671-1 (page 2, 19)

[Olukotun 2006] Olukotun, Kunle: A Conversation with John Hennessy and David
Patterson. In: Queue - Computer Architecture 4 (2006), December, No. 10. – ISSN
1542-7730 (page 117)

[Ozaktas et al. 2013] Ozaktas, Haluk ; Rochange, Christine ; Sainrat, Pascal:
Automatic WCET Analysis of Real-Time Parallel Applications. In: Maiza, Claire
(Pub.): Proceedings of the 13th International Workshop on Worst-Case Execution
Time (WCET) Analysis Vol. 30. Dagstuhl, Germany : Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013, p. 11–20. – DOI http://dx.doi.org/10.4230/
OASIcs.WCET.2013.11. – ISBN 978-3-939897-54-5 (page 54, 131)

[Paap and Silha 1993] Paap, George ; Silha, Ed: PowerPCTM: A Performance
Architecture. In: Compcon Spring ’93, Digest of Papers., DOI http://dx.doi.org/
10.1109/CMPCON.1993.289645, February 1993, p. 104–108 (page 15)

[Paolieri et al. 2013] Paolieri, Marco ; Mische, Jörg ; Metzlaff, Stefan ;
Gerdes, Mike ; Quiñones, Eduardo ; Uhrig, Sascha ; Ungerer, Theo ; Ca-
zorla, Francisco J.: A Hard Real-Time Capable Multi-Core SMT Processor.
In: ACM Trans. Embed. Comput. Syst. 12 (2013), April, No. 3, p. 79:1–79:26. –
DOI http://doi.acm.org/http://dx.doi.org/10.1145/2442116.2442129. – ISSN
1539-9087 (page 16, 19, 20, 26, 33, 62)

[Paolieri et al. 2009a] Paolieri, Marco ; Quiñones, Eduardo ; Cazorla, Fran-
cisco J. ; Bernat, Guillem ; Valero, Mateo: Hardware Support for WCET Analysis
of Hard Real-Time Multicore Systems. In: Proceedings of the 36th Annual Inter-
national Symposium on Computer Architecture. New York, NY, USA : ACM, 2009

http://dx.doi.org/10.1109/MICRO.2007.40
http://dx.doi.org/10.1109/MICRO.2007.40
http://doi.ieeecomputersociety.org/10.1109/EDCC.2012.27
http://dx.doi.org/10.4230/OASIcs.WCET.2013.11
http://dx.doi.org/10.4230/OASIcs.WCET.2013.11
http://dx.doi.org/10.1109/CMPCON.1993.289645
http://dx.doi.org/10.1109/CMPCON.1993.289645
http://doi.acm.org/http://dx.doi.org/10.1145/2442116.2442129

194 Bibliography

(ISCA ’09), p. 57–68. – DOI http://doi.acm.org/10.1145/1555754.1555764. –
ISBN 978-1-60558-526-0 (page 2, 19, 20, 26, 33, 44, 57, 62, 86)

[Paolieri et al. 2009b] Paolieri, Marco ; Quiñones, Eduardo ; Cazorla, Fran-
cisco J. ; Valero, Mateo: An Analyzable Memory Controller for Hard Real-Time
CMPs. In: Embedded Systems Letters, IEEE 1 (2009), dec., No. 4, p. 86–90. – DOI
http://dx.doi.org/10.1109/LES.2010.2041634. – ISSN 1943-0663 (page 2, 25)

[Peterson 1981] Peterson, Gary L.: Myths About the Mutual Exclusion Problem.
In: Inf. Process. Lett. 12 (1981), No. 3, p. 115–116. – DOI http://dx.doi.org/10.
1016/0020-0190(81)90106-X (page 22)

[Petters et al. 2007] Petters, Stefan M. ; Zadarnowski, Patryk ; Heiser, Ger-
not: Measurements or Static Analysis or Both? In: Rochange, Christine
(Pub.): Proceedings of the 7th International Workshop on Worst-Case Execution
Time (WCET) Analysis. Dagstuhl, Germany : Internationales Begegnungs- und
Forschungszentrum f"ur Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. – DOI
http://dx.doi.org/10.4230/OASIcs.WCET.2007.1188 (page 57)

[Pitter 2008] Pitter, Christof: Time-Predictable Memory Arbitration for a Java
Chip-Multiprocessor. In: Proceedings of the 6th International Workshop on Java
Technologies for Real-time and Embedded Systems. New York, NY, USA : ACM, 2008
(JTRES ’08), p. 115–122. – DOI http://doi.acm.org/10.1145/1434790.1434808.
– ISBN 978-1-60558-337-2 (page 2)

[Pitter and Schoeberl 2010] Pitter, Christof ; Schoeberl, Martin: A Real-Time
Java Chip-Multiprocessor. In: ACM Trans. Embed. Comput. Syst. 10 (2010), August,
No. 1, p. 9:1–9:34. – DOI http://doi.acm.org/10.1145/1814539.1814548. – ISSN
1539-9087 (page 2)

[POSIX 2008] POSIX 2008: IEEE Std 1003.1, 2008 Edition. The Open Group Base
Specifications Issue 7. 2008 (page 10, 11, 13, 22, 32, 35, 38, 98)

[PowerPC ISA 2010] Power.org: Power Instruction Set Architecture v2.06 Revision
B. https://www.power.org/resources/reading/. July 2010. – Last Retrieved:
April 2013 (page 16, 18, 31, 100, 133)

[Puschner and Burns 2000] Puschner, Peter ; Burns, Alan: A Review of Worst-Case
Execution-Time Analysis. In: Journal of Real-Time Systems 18 (2000), May, No. 2/3,
p. 115–128 (page 55)

[Puschner and Schoeberl 2008] Puschner, Peter ; Schoeberl, Martin: On Com-
posable System Timing, Task Timing, and WCET Analysis. In: Kirner, Raimund
(Pub.): Proceedings of the 8th International Workshop on Worst-Case Execution Time
(WCET) Analysis. Dagstuhl, Germany : Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, Germany, 2008. – DOI http://dx.doi.org/10.4230/OASIcs.WCET.2008.
1662. – also published in print by Austrian Computer Society (OCG) under ISBN
978-3-85403-237-3. – ISBN 978-3-939897-10-1 (page 2, 55, 57, 86)

http://doi.acm.org/10.1145/1555754.1555764
http://dx.doi.org/10.1109/LES.2010.2041634
http://dx.doi.org/10.1016/0020-0190(81)90106-X
http://dx.doi.org/10.1016/0020-0190(81)90106-X
http://dx.doi.org/10.4230/OASIcs.WCET.2007.1188
http://doi.acm.org/10.1145/1434790.1434808
http://doi.acm.org/10.1145/1814539.1814548
https://www.power.org/resources/reading/
http://dx.doi.org/10.4230/OASIcs.WCET.2008.1662
http://dx.doi.org/10.4230/OASIcs.WCET.2008.1662

Bibliography 195

[Rajkumar 1990] Rajkumar, Ragunathan: Real-Time Synchronization Protocols for
Shared Memory Multiprocessors. In: Proceedings of the 10th International Conference
on Distributed Computing Systems. Los Alamitos, CA, USA : IEEE Computer Society
Press, June 1990, p. 116–123. – DOI http://dx.doi.org/10.1109/ICDCS.1990.
89257 (page 47)

[Rajkumar et al. 1988] Rajkumar, Ragunathan ; Sha, Lui ; Lehoczky, John P.:
Real-Time Synchronization Protocols for Multiprocessors. In: Proceedings of the Real-
Time Systems Symposium. Los Alamitos, CA, USA : IEEE Computer Society Press,
December 1988, p. 259–269. – DOI http://dx.doi.org/10.1109/REAL.1988.51121
(page 47)

[Ramakrishnan and Scherson 1999] Ramakrishnan, Vara ; Scherson, Isaac D.:
Efficient Techniques for Nested and Disjoint Barrier Synchronization. In: Journal of
Parallel and Distributed Computing - Special issue on compilation and architectural
support for parallel applications 58 (1999), August, No. 2, p. 333–356. – DOI http:
//dx.doi.org/10.1006/jpdc.1999.1556. – ISSN 0743-7315 (page 46)

[Rapita Systems Ltd. 2011] Rapita Systems Ltd.: RapiTime White Paper. http:
//www.rapitasystems.com/downloads/white-papers/rapitime-explained. May
2011. – Last Retrieved: April 2013 (page 7, 57, 88)

[Reineke et al. 2011] Reineke, Jan ; Liu, Isaac ; Patel, Hiren D. ; Kim, Sungjun ;
Lee, Edward A.: PRET DRAM controller: bank privatization for predictability
and temporal isolation. In: Proceedings of the 7th IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis. New York, NY,
USA : ACM, 2011 (CODES+ISSS ’11), p. 99–108. – DOI http://doi.acm.org/10.
1145/2039370.2039388. – ISBN 978-1-4503-0715-4 (page 2, 25)

[Reineke and Sen 2009] Reineke, Jan ; Sen, Rathijit: Sound and Efficient WCET
Analysis in the Presence of Timing Anomalies. In: Holsti, Niklas (Pub.): Proceedings
of the 9th International Workshop on Worst-Case Execution Time (WCET) Analysis.
Dagstuhl, Germany : Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany,
2009. – DOI http://dx.doi.org/10.4230/OASIcs.WCET.2009.2289. – also pub-
lished in print by Austrian Computer Society (OCG) with ISBN 978-3-85403-252-6. –
ISBN 978-3-939897-14-9 (page 55, 88)

[Rochange 2011] Rochange, Christine: An Overview of Approaches Towards the
Timing Analysability of Parallel Architecture. In: Lucas, Philipp (Pub.) ; Thiele,
Lothar (Pub.) ; Triquet, Benoit (Pub.) ; Ungerer, Theo (Pub.) ; Wilhelm, Rein-
hard (Pub.): Bringing Theory to Practice: Predictability and Performance in Em-
bedded Systems Vol. 18. Dagstuhl, Germany : Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2011, p. 32–41. – DOI http://dx.doi.org/10.4230/OASIcs.PPES.
2011.32. – ISBN 978-3-939897-28-6 (page 1, 2, 55)

[Rochange et al. 2010] Rochange, Christine ; Bonenfant, Armelle ; Sainrat,
Pascal ; Gerdes, Mike ; Wolf, Julian ; Ungerer, Theo ; Petrov, Zlatko ;

http://dx.doi.org/10.1109/ICDCS.1990.89257
http://dx.doi.org/10.1109/ICDCS.1990.89257
http://dx.doi.org/10.1109/REAL.1988.51121
http://dx.doi.org/10.1006/jpdc.1999.1556
http://dx.doi.org/10.1006/jpdc.1999.1556
http://www.rapitasystems.com/downloads/white-papers/rapitime-explained
http://www.rapitasystems.com/downloads/white-papers/rapitime-explained
http://doi.acm.org/10.1145/2039370.2039388
http://doi.acm.org/10.1145/2039370.2039388
http://dx.doi.org/10.4230/OASIcs.WCET.2009.2289
http://dx.doi.org/10.4230/OASIcs.PPES.2011.32
http://dx.doi.org/10.4230/OASIcs.PPES.2011.32

196 Bibliography

Mikulu, Frantisek: WCET Analysis of a Parallel 3D Multigrid Solver Executed on
the MERASA Multi-Core. In: Lisper, Björn (Pub.): Proceedings of the 10th Interna-
tional Workshop on Worst-Case Execution Time (WCET) Analysis Vol. 15. Dagstuhl,
Germany : Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, July 2010, p. 90–100. –
DOI http://dx.doi.org/10.4230/OASIcs.WCET.2010.90. – The printed version of
the WCET’10 proceedings are published by OCG (www.ocg.at) - ISBN 978-3-85403-
268-7. – ISBN 978-3-939897-21-7 (page 2, 57, 77, 88)

[Rosen et al. 2007] Rosen, Jakob ; Andrei, Alexandru ; Eles, Petru ; Peng, Zebo:
Bus Access Optimization for Predictable Implementation of Real-Time Applications
on Multiprocessor Systems-on-Chip. In: 28th IEEE International Real-Time Systems
Symposium. Washington, DC, USA : IEEE Computer Society, December 2007 (RTSS
’07), p. 49–60. – DOI http://dx.doi.org/10.1109/RTSS.2007.24. – ISSN 1052-8725
(page 86)

[Rudolph and Segall 1984] Rudolph, Larry ; Segall, Zary: Dynamic Decentralized
Cache Schemes for MIMD Parallel Processors. In: Proceedings of the 11th Annual
International Symposium on Computer Architecture. New York, NY, USA : ACM,
1984 (ISCA ’84), p. 340–347. – DOI http://doi.acm.org/10.1145/800015.808203.
– ISBN 0-8186-0538-3 (page 14)

[Saha et al. 2006] Saha, Bratin ; Adl-Tabatabai, Ali-Reza ; Hudson, Richard L. ;
Minh, Chi C. ; Hertzberg, Benjamin: McRT-STM: A High Performance Soft-
ware Transactional Memory System for a Multi-Core Runtime. In: Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and Practice of Parallel Pro-
gramming. New York, NY, USA : ACM, 2006 (PPoPP ’06), p. 187–197. – DOI
http://doi.acm.org/10.1145/1122971.1123001. – ISBN 1-59593-189-9 (page 50)

[Sandström et al. 1998] Sandström, Kristian ; Norström, Christer ; Fohler, Ger-
hard: Handling Interrupts with Static Scheduling in an Automotive Vehicle Control
System. In: Proceedings of the Fifth International Conference on Real-Time Com-
puting Systems and Applications. Washington, DC, USA : IEEE Computer Society,
October 1998 (RTCSA ’98), p. 158–165. – DOI http://dl.acm.org/citation.cfm?
id=600376.828679. – ISBN 0-8186-9209-X (page 21)

[Sarni et al. 2009] Sarni, Toufik ; Queudet, Audrey ; Valduriez, Patrick: Real-
Time Support for Software Transactional Memory. In: Proceedings of the 15th IEEE
International Conference on Embedded and Real-Time Computing Systems and Ap-
plications. Washington, DC, USA : IEEE Computer Society, August 2009 (RTCSA
’09), p. 477–485. – DOI http://dx.doi.org/10.1109/RTCSA.2009.57. – ISBN 978-
0-7695-3787-0 (page 50, 51)

[Sartori and Kumar 2010] Sartori, John ; Kumar, Rakesh: Low-Overhead, High-
Speed Multi-core Barrier Synchronization. In: Proceedings of the 5th International
Conference on High Performance Embedded Architectures and Compilers Vol. 5952.

http://dx.doi.org/10.4230/OASIcs.WCET.2010.90
http://dx.doi.org/10.1109/RTSS.2007.24
http://doi.acm.org/10.1145/800015.808203
http://doi.acm.org/10.1145/1122971.1123001
http://dl.acm.org/citation.cfm?id=600376.828679
http://dl.acm.org/citation.cfm?id=600376.828679
http://dx.doi.org/10.1109/RTCSA.2009.57

Bibliography 197

Berlin / Heidelberg, Germany : Springer-Verlag, 2010, p. 18–34. – DOI http://dx.
doi.org/10.1007/978-3-642-11515-8. – ISBN 978-3-642-11514-1 (page 45, 46)

[Schoeberl 2012] Schoeberl, Martin: Is Time Predictability Quantifiable? In:
International Conference on Embedded Computer Systems. Los Alamitos, CA, USA :
IEEE Computer Society Press, 2012 (SAMOS ’12), p. 333–338. – DOI http://dx.
doi.org/10.1109/SAMOS.2012.6404196. – ISBN 978-1-4673-2295-9 (page 86)

[Schoeberl et al. 2010] Schoeberl, Martin ; Brandner, Florian ; Vitek, Jan:
RTTM: Real-Time Transactional Memory. In: Proceedings of the 2010 ACM Sympo-
sium on Applied Computing. New York, NY, USA : ACM, 2010 (SAC ’10), p. 326–333.
– DOI http://doi.acm.org/10.1145/1774088.1774158. – ISBN 978-1-60558-639-7
(page 50)

[Schoeberl and Hilber 2010] Schoeberl, Martin ; Hilber, Peter: Design and
Implementation of Real-Time Transactional Memory. In: Proceedings of Interna-
tional Conference on Field Programmable Logic and Applications. Washington, DC,
USA : IEEE Computer Society, September 2010 (FPL ’10), p. 279–284. – DOI
http://dx.doi.org/10.1109/FPL.2010.64. – ISSN 1946-1488 (page 50)

[Schoeberl and Puschner 2009] Schoeberl, Martin ; Puschner, Peter: Is Chip-
Multiprocessing the End of Real-Time Scheduling? In: Holsti, Niklas (Pub.): Pro-
ceedings of the 9th International Workshop on Worst-Case Execution Time (WCET)
Analysis. Dagstuhl, Germany : Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Germany, 2009. – DOI http://dx.doi.org/10.4230/OASIcs.WCET.2009.2288. –
also published in print by Austrian Computer Society (OCG) with ISBN 978-3-85403-
252-6. – ISBN 978-3-939897-14-9 (page 45)

[Schranzhofer et al. 2010] Schranzhofer, Andreas ; Chen, Jian-Jia ; Thiele,
Lothar: Timing Analysis for TDMA Arbitration in Resource Sharing Systems. In:
Proceedings of the 2010 16th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium. Washington, DC, USA : IEEE Computer Society, 2010 (RTAS
’10), p. 215–224. – DOI http://dx.doi.org/10.1109/RTAS.2010.24. – ISBN 978-
0-7695-4001-6 (page 86)

[Schwartz 1980] Schwartz, Jacob T.: Ultracomputers. In: ACM Transactions
on Programming Languages and Systems (TOPLAS) 2 (1980), October, No. 4,
p. 484–521. – DOI http://doi.acm.org/10.1145/357114.357116. – ISSN 0164-
0925 (page 44)

[Scott and Scherer 2001] Scott, Michael L. ; Scherer, William N.: Scalable Queue-
Based Spin Locks with Timeout. In: Proceedings of the 8th ACM SIGPLAN Sym-
posium on Principles and Practices of Parallel Programming. New York, NY, USA :
ACM, 2001 (PPoPP ’01), p. 44–52. – DOI http://doi.acm.org/10.1145/379539.
379566. – ISBN 1-58113-346-4 (page 13, 45)

http://dx.doi.org/10.1007/978-3-642-11515-8
http://dx.doi.org/10.1007/978-3-642-11515-8
http://dx.doi.org/10.1109/SAMOS.2012.6404196
http://dx.doi.org/10.1109/SAMOS.2012.6404196
http://doi.acm.org/10.1145/1774088.1774158
http://dx.doi.org/10.1109/FPL.2010.64
http://dx.doi.org/10.4230/OASIcs.WCET.2009.2288
http://dx.doi.org/10.1109/RTAS.2010.24
http://doi.acm.org/10.1145/357114.357116
http://doi.acm.org/10.1145/379539.379566
http://doi.acm.org/10.1145/379539.379566

198 Bibliography

[Sha et al. 1990] Sha, Lui ; Rajkumar, Ragunathan ; Lehoczky, John P.: Pri-
ority Inheritance Protocols: An Approach to Real-Time Synchronization. In: IEEE
Transactions on Computers 39 (1990), September, No. 9, p. 1175–1185. – DOI
http://dx.doi.org/10.1109/12.57058. – ISSN 0018-9340 (page 47, 50)

[Sha et al. 1991] Sha, Lui ; Rajkumar, Ragunathan ; Son, S.H. ; Chang, C.-H.: A
Real-Time Locking Protocol. In: IEEE Transactions on Computers 40 (1991), jul,
No. 7, p. 793–800. – DOI http://dx.doi.org/10.1109/12.83617. – ISSN 0018-9340
(page 47, 50)

[Shang and Hwang 1995] Shang, Shisheng ; Hwang, Kai: Distributed Hardwired
Barrier Synchronization for Scalable Multiprocessor Clusters. In: IEEE Transactions
on Parallel Distributed Systems 6 (1995), June, No. 6, p. 591–605. – DOI http:
//dx.doi.org/10.1109/71.388040. – ISSN 1045-9219 (page 46)

[Sites 1993] Sites, Richard L.: Alpha AXP architecture. In: Commun. ACM 36
(1993), February, p. 33–44. – DOI http://doi.acm.org/10.1145/151220.151226. –
ISSN 0001-0782 (page 100)

[Skillicorn et al. 1997] Skillicorn, David B. ; Hill, Jonathan M. D. ; McColl,
William F.: Questions and Answers about BSP. In: Journal on Scientific Pro-
gramming 6 (1997), No. 3, p. 249–274. – DOI http://iospress.metapress.com/
content/g31p42687n715641/ (page 87)

[Smith 1981] Smith, Burton J.: Architecture and Application of the HEP Multipro-
cessor Computer System. In: Proceedings of SPIE, Real Time Signal Prcoessing IV
Vol. 298, August 1981, p. 241–248 (page 17, 18)

[SPARCv9 ISA 1994] SPARC International, Inc.: SPARC Instruction Set Ar-
chitecture v9. Englewood Cliffs, NJ, USA : PTR Prentice Hall, 1994. – http:
//www.sparc.org/specificationsDownload.html. – Last Retrieved: April 2013. –
ISBN 0-13-825001-4 (page 16, 18)

[Spuri and Buttazzo 1994] Spuri, Marco ; Buttazzo, Giorgio C.: Efficient Aperiodic
Service under Earliest Deadline Scheduling. In: Proceedings of Real-Time Systems
Symposium. Washington, DC, USA : IEEE Computer Society, December 1994 (RTSS
’94), p. 2–11. – DOI http://dx.doi.org/10.1109/REAL.1994.342735 (page 21)

[Stankovic 1988] Stankovic, John A.: Misconceptions about Real-Time Computing:
A Serious Problem for Next-Generation Systems. In: IEEE Transactions on Computer
21 (1988), October, No. 10, p. 10–19. – DOI http://dx.doi.org/10.1109/2.7053.
– ISSN 0018-9162 (page 5)

[Stankovic and Ramamritham 1990] Stankovic, John A. ; Ramamritham, Krithi:
What is Predictability for Real-Time Systems? In: Real-Time Systems 2 (1990),
No. 4, p. 247–254. – DOI http://dx.doi.org/10.1007/BF01995673. – ISSN 0922-
6443 (page 1, 5)

http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.83617
http://dx.doi.org/10.1109/71.388040
http://dx.doi.org/10.1109/71.388040
http://doi.acm.org/10.1145/151220.151226
http://iospress.metapress.com/content/g31p42687n715641/
http://iospress.metapress.com/content/g31p42687n715641/
http://www.sparc.org/specificationsDownload.html
http://www.sparc.org/specificationsDownload.html
http://dx.doi.org/10.1109/REAL.1994.342735
http://dx.doi.org/10.1109/2.7053
http://dx.doi.org/10.1007/BF01995673

Bibliography 199

[Staschulat et al. 2007] Staschulat, Jan ; Schliecker, Simon ; Ivers, Matthias ;
Ernst, Rolf: Analysis of Memory Latencies in Multi-Processor Systems. In: Wil-
helm, Reinhard (Pub.): Proceedings of the 5th International Workshop on Worst-Case
Execution Time (WCET) Analysis. Dagstuhl, Germany : Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2007, p. 33–36. – DOI http://dx.doi.org/10.
4230/OASIcs.WCET.2005.813 (page 2, 86)

[SuperH-2A ISA 2010] Renesas Electronics Corporation: SH7265 Group Hard-
ware Manual Revision 2.0. http://www.renesas.com/products/mpumcu/superh/
Documentation.jsp. February 2010. – Last Retrieved: April 2013 (page 16, 17, 19)

[SystemC 2007] Open SystemC Initiative (OSCI): SystemC v2.2. http://www.
systemc.org/downloads/standards/. 2007. – Last Retrieved: April 2013 (page 20)

[Tanenbaum 2001] Tanenbaum, Andrew S.: Modern Operating Systems. International
Edition of 2nd Edition. Upper Saddle River, NJ, USA : Prentice Hall International,
2001. – ISBN 0-13-092641-8 (page 10)

[Taubenfeld 2006] Taubenfeld, Gadi: Synchronization Algorithms and Concurrent
Programming. Harlow, New York, NY, USA : Pearson / Prentice Hall, 2006. – ISBN
0131972596 (page 9)

[Taubenfeld 2008] Taubenfeld, Gadi: Concurrent Programming, Mutual Exclusion.
In: Encyclopedia of Algorithms (2008). ISBN 978-0-387-30162-4 (page 7, 8)

[Thiele and Wilhelm 2004] Thiele, Lothar ; Wilhelm, Reinhard: Design for Time-
Predictability. In: Thiele, Lothar (Pub.) ; Wilhelm, Reinhard (Pub.): Per-
spectives Workshop: Design of Systems with Predictable Behaviour, Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2004 (Dagstuhl Seminar Proceedings 03471), p. 157–177. – DOI http:
//drops.dagstuhl.de/opus/volltexte/2004/2. – ISSN 1862-4405 (page 2, 53, 86)

[Torvalds and Diamond 2002] Torvalds, Linus ; Diamond, David: Just for Fun:
The Story of an Accidental Revolutionary. New York, NY, USA : HarperCollins, 2002.
– ISBN 9780066620732 (page 22)

[TriCore 1.3 2002] Infineon Technologies AG: .
http://www.infineon.com/dgdl/TC1_3_ArchOverview_1.
pdf?folderId=db3a304312bae05f0112be5d1a8100ec&fileId=
db3a304312bae05f0112be86204c0111. May 2002. – Last Retrieved: April
2013 (page 64)

[TriCore ISA 2008] Infineon Technologies AG: TriCore
1 Architecture Volume 1: Core Architecture V1.3 & V1.3.1.
http://www.infineon.com/dgdl/tc_v131_instructionset_v138.
pdf?folderId=db3a304412b407950112b409b6cd0351&fileId=
db3a304412b407950112b409b6dd0352. January 2008. – Last Retrieved: April
2013 (page 16, 20, 25, 31, 133)

http://dx.doi.org/10.4230/OASIcs.WCET.2005.813
http://dx.doi.org/10.4230/OASIcs.WCET.2005.813
http://www.renesas.com/products/mpumcu/superh/Documentation.jsp
http://www.renesas.com/products/mpumcu/superh/Documentation.jsp
http://www.systemc.org/downloads/standards/
http://www.systemc.org/downloads/standards/
http://drops.dagstuhl.de/opus/volltexte/2004/2
http://drops.dagstuhl.de/opus/volltexte/2004/2
http://www.infineon.com/dgdl/TC1_3_ArchOverview_1.pdf?folderId=db3a304312bae05f0112be5d1a8100ec&fileId=db3a304312bae05f0112be86204c0111
http://www.infineon.com/dgdl/TC1_3_ArchOverview_1.pdf?folderId=db3a304312bae05f0112be5d1a8100ec&fileId=db3a304312bae05f0112be86204c0111
http://www.infineon.com/dgdl/TC1_3_ArchOverview_1.pdf?folderId=db3a304312bae05f0112be5d1a8100ec&fileId=db3a304312bae05f0112be86204c0111
http://www.infineon.com/dgdl/tc_v131_instructionset_v138.pdf?folderId=db3a304412b407950112b409b6cd0351&fileId=db3a304412b407950112b409b6dd0352
http://www.infineon.com/dgdl/tc_v131_instructionset_v138.pdf?folderId=db3a304412b407950112b409b6cd0351&fileId=db3a304412b407950112b409b6dd0352
http://www.infineon.com/dgdl/tc_v131_instructionset_v138.pdf?folderId=db3a304412b407950112b409b6cd0351&fileId=db3a304412b407950112b409b6dd0352

200 Bibliography

[Uhrig et al. 2005] Uhrig, Sascha ; Maier, Stefan ; Ungerer, Theo: Toward a Pro-
cessor Core for Real-Time Capable Autonomic Systems. In: Proceedings of the Fifth
IEEE International Symposium on Signal Processing and Information Technology. Los
Alamitos, CA, USA : IEEE Computer Society, 2005, p. 19–22. – ISBN 0-7803-9313-9
(page 17)

[Ungerer 1993] Ungerer, Theo: Datenflußrechner. First Edition. Stuttgart, Ger-
many : B.G. Teubner, 1993. – ISBN 3-519-02128-5 (page 17, 18, 100)

[Ungerer 1997] Ungerer, Theo: Parallelrechner und parallele Programmierung. First
Edition. Heidelberg, Germany : Spektrum Akademischer Verlag GmbH, 1997. – ISBN
3-8274-0231-X (page 7, 8, 11, 13, 17, 22, 47, 117)

[Ungerer et al. 2010] Ungerer, Theo ; Cazorla, Francisco J. ; Sainrat, Pas-
cal ; Bernat, Guillem ; Petrov, Zlatko ; Rochange, Christine ; Quiñones, Ed-
uardo ; Gerdes, Mike ; Paolieri, Marco ; Wolf, Julian ; Cassé, Hugues ; Uhrig,
Sascha ; Guliashvili, Irakli ; Houston, Michael ; Kluge, Florian ; Metzlaff,
Stefan ; Mische, Jörg: MERASA: Multicore Execution of Hard Real-Time Appli-
cations Supporting Analyzability. In: IEEE Micro 30 (2010), p. 66–75. – DOI
http://dx.doi.org/10.1109/MM.2010.78. – ISSN 0272-1732 (page 2, 16, 19, 20,
23, 26, 45, 57, 58, 62, 86, 89, 106)

[V850E2/MN4 2013] Renesas Electronics Corporation: V850E2/MN4 User’s
Manual Hardware Revision 3.0. http://www.renesas.com/products/mpumcu/v850/
V850e2mx/v850e2mx4/Documentation.jsp. February 2013. – Last Retrieved: April
2013 (page 17, 19)

[Valois 1995] Valois, John D.: Lock-Free Linked Lists Using Compare-and-Swap. In:
Proceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing (PODC ’95). New York, NY, USA : ACM, 1995 (PODC ’95), p. 214–
222. – DOI http://doi.acm.org/10.1145/224964.224988. – ISBN 0-89791-710-3
(page 31, 47, 48, 49)

[Valvano 2011] Valvano, Jonathan: Embedded Microcomputer Systems: Real Time
Interfacing. International Edition of 3rd Revised Edition. Andover, MA, USA : Nelson
Engineering Cengage Learning (EMEA), 2011. – ISBN 1-111-42626-0 (page 31)

[Vlissides et al. 1996] Vlissides, John ; Coplien, James ; Kerth, Norman L.: Pat-
tern Languages of Program Design. Vol. 2. Boston, MA, USA : Addison-Wesley, 1996.
– ISBN 0201895277 (page 116)

[Wandeler and Thiele 2006] Wandeler, Ernesto ; Thiele, Lothar: Optimal TDMA
Time Slot and Cycle Length Allocation for Hard Real-Time Systems. In: Proceedings
of the 2006 Asia and South Pacific Design Automation Conference. Piscataway, NJ,
USA : IEEE Press, 2006 (ASP-DAC ’06), p. 479–484. – DOI http://dx.doi.org/
10.1145/1118299.1118417. – ISBN 0-7803-9451-8 (page 63)

http://dx.doi.org/10.1109/MM.2010.78
http://www.renesas.com/products/mpumcu/v850/V850e2mx/v850e2mx4/Documentation.jsp
http://www.renesas.com/products/mpumcu/v850/V850e2mx/v850e2mx4/Documentation.jsp
http://doi.acm.org/10.1145/224964.224988
http://dx.doi.org/10.1145/1118299.1118417
http://dx.doi.org/10.1145/1118299.1118417

Bibliography 201

[Whitham and Audsley 2009] Whitham, Jack ; Audsley, Neil: Implementing Time-
Predictable Load and Store Operations. In: Proceedings of the Seventh ACM Inter-
national Conference on Embedded Software. New York, NY, USA : ACM, 2009 (EM-
SOFT ’09), p. 265–274. – DOI http://doi.acm.org/10.1145/1629335.1629371. –
ISBN 978-1-60558-627-4 (page 25, 89)

[Wilhelm et al. 2008] Wilhelm, Reinhard ; Engblom, Jakob ; Aandreas, Ermedahl ;
Holsti, Niklas ; Thesing, Stephan ; Whalley, David ; Bernat, Guillem ; Fer-
dinand, Christian ; Heckmann, Reinhold ; Mitra, Tulika ; Mueller, Frank ;
Puaut, Isabelle ; Puschner, Peter ; Staschulat, Jan ; Stenström, Per: The
Worst-case Execution Time Problem—Overview of Methods and Survey of Tools. In:
ACM Transactions on Embedded Computing Systems 7 (2008), May, No. 3, p. 36:1–
36:53. – DOI http://doi.acm.org/10.1145/1347375.1347389. – ISSN 1539-9087
(page 1, 5, 6, 7, 55, 86)

[Wilhelm et al. 2009a] Wilhelm, Reinhard ; Ferdinand, Christian ; Cullmann,
Christoph ; Grund, Daniel ; Reineke, Jan ; Triquet, Benoît: Designing Pre-
dictable Multicore Architectures for Avionics and Automotive Systems. In: Workshop
on Reconciling Performance with Predictability (RePP), October 2009 (page 2, 86)

[Wilhelm et al. 2009b] Wilhelm, Reinhard ; Grund, Daniel ; Reineke, Jan ;
Schlickling, Marc ; Pister, Markus ; Ferdinand, Christian: Memory Hierarchies,
Pipelines, and Buses for Future Architectures in Time-Critical Embedded Systems.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
28 (2009), July, No. 7, p. 966–978. – DOI http://dx.doi.org/10.1109/TCAD.2009.
2013287. – ISSN 0278-0070 (page 2, 19, 86)

[Wilhelm et al. 2009c] Wilhelm, Reinhard ; Grund, Daniel ; Reineke, Jan ;
Schlickling, Marc ; Pister, Markus ; Ferdinand, Christian: Memory Hierarchies,
Pipelines, and Buses for Future Architectures in Time-Critical Embedded Systems.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
28 (2009), July, No. 7, p. 966–978. – DOI http://dx.doi.org/10.1109/TCAD.2009.
2013287. – ISSN 0278-0070 (page 2, 55, 56, 57)

[Wind River Hypervisor] Wind River: Wind River Hypervisor. http://windriver.
com/products/hypervisor/. – Last Retrieved: April 2013 (page 2)

[Wolf et al. 2010a] Wolf, Julian ; Gerdes, Mike ; Kluge, Florian ; Uhrig, Sascha ;
Mische, Jörg ; Metzlaff, Stefan ; Rochange, Christine ; Cassé, Hugues ; Sain-
rat, Pascal ; Ungerer, Theo: RTOS Support for Parallel Execution of Hard
Real-Time Applications on the MERASA Multi-core Processor. In: Proceedings of
the 2010 13th IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing. Los Alamitos, CA, USA : IEEE Computer Society,
2010 (ISORC ’10), p. 193–201. – DOI http://dx.doi.org/10.1109/ISORC.2010.31.
– ISSN 1555-0885 (page 1, 24, 32, 57, 77, 88)

http://doi.acm.org/10.1145/1629335.1629371
http://doi.acm.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/TCAD.2009.2013287
http://dx.doi.org/10.1109/TCAD.2009.2013287
http://dx.doi.org/10.1109/TCAD.2009.2013287
http://dx.doi.org/10.1109/TCAD.2009.2013287
http://windriver.com/products/hypervisor/
http://windriver.com/products/hypervisor/
http://dx.doi.org/10.1109/ISORC.2010.31

202 Bibliography

[Wolf et al. 2011] Wolf, Julian ; Gerdes, Mike ; Kluge, Florian ; Uhrig, Sascha ;
Mische, Jörg ; Metzlaff, Stefan ; Rochange, Christine ; Cassé, Hugues ; Sain-
rat, Pascal ; Ungerer, Theo: RTOS Support for Execution of Parallelized Hard
Real-Time Tasks on the MERASA Multi-Core Processor. In: International Journal
of Computer Systems, Science & Engineering (CSSE) 26 (2011), November, No. 6. –
ISSN 0267 6192 (page 24, 32, 57, 88)

[Wolf et al. 2010b] Wolf, Julian ; Kluge, Florian ; Guliashvili, Irakli: Final
System-Level Software for the MERASA Processor / Institute of Computer Science,
University of Augsburg. October 2010 (2010-08). – Technical Report (page 21, 32)

[Xu et al. 1992] Xu, Hong ; McKinley, Philip K. ; Ni, Lionel M.: Efficient Imple-
mentation of Barrier Synchronization in Wormhole-Routed Hypercube Multicomput-
ers. In: Proceedings of the 12th International Conference on Distributed Computing
Systems. Washington, DC, USA : IEEE Computer Society, June 1992 (DCS ’92),
p. 118–125. – DOI http://dx.doi.org/10.1109/ICDCS.1992.235048 (page 46)

[Yan and Zhang 2008] Yan, Jun ; Zhang, Wei: WCET Analysis for Multi-Core
Processors with Shared L2 Instruction Caches. In: Proceedings of Real-Time and
Embedded Technology and Applications Symposium. Washington, DC, USA : IEEE
Computer Society, April 2008 (RTAS ’08), p. 80 –89. – DOI http://dx.doi.org/
10.1109/RTAS.2008.6. – ISSN 1080-1812 (page 2, 19, 86)

[Yoon et al. 2011] Yoon, Man-Ki ; Kim, Jung-Eun ; Sha, Lui: Optimizing Tunable
WCET with Shared Resource Allocation and Arbitration in Hard Real-Time Mul-
ticore Systems. In: Proceedings of the 32nd IEEE Real-Time Systems Symposium.
Washington, DC, USA : IEEE Computer Society, December 2011 (RTSS ’11), p. 227–
238. – DOI http://dx.doi.org/10.1109/RTSS.2011.28. – ISSN 1052-8725 (page 2,
86)

[Zhu et al. 2007] Zhu, Weirong ; Sreedhar, Vugranam C. ; Hu, Ziang ; Gao,
Guang R.: Synchronization State Buffer: Supporting Efficient Fine-Grain Synchro-
nization on Many-Core Architectures. In: Proceedings of the 34th annual International
Symposium on Computer Architecture. New York, NY, USA : ACM, 2007 (ISCA ’07),
p. 35–45. – DOI http://doi.acm.org/10.1145/1250662.1250668. – ISBN 978-1-
59593-706-3 (page 101)

http://dx.doi.org/10.1109/ICDCS.1992.235048
http://dx.doi.org/10.1109/RTAS.2008.6
http://dx.doi.org/10.1109/RTAS.2008.6
http://dx.doi.org/10.1109/RTSS.2011.28
http://doi.acm.org/10.1145/1250662.1250668

List of Figures

2.1. Distribution of Execution Times and their Classification 6
2.2. Codes Sections for Mutual Exclusion . 9
2.3. Global Event Synchronisation . 11

3.1. Overview of the MERASA Processor . 21
3.2. Memory Access Pattern for RMW Operations 24
3.3. Schematic Overview: Augmented Memory Controller 26
3.4. FIFO Queue with F&I . 30

4.1. Typical Flow of Static WCET Analysis 56
4.2. Worst-case Memory Latencies . 59
4.3. WCMLs of Load Operations for the Augmented Memory Controller . . . 61
4.4. Example of OTAWA CFG Output and Schematic CFG 65
4.5. Schematic CFG: Spin Lock with TAS . 67
4.6. Schematic CFG: Spin Lock with F&I/F&D 69
4.7. Schematic CFG: Ticket Lock with F&I/F&D 70
4.8. Schematic CFG: Mutex Lock with TAS 72
4.9. Schematic CFG: (Binary) Semaphore with F&I/F&D 73
4.10. Schematic CFG: Subbarrier with Conditionals 75
4.11. Schematic CFG: F&I Barriers . 76
4.12. Naïve Parallelisation of matmul . 81
4.13. WCET Guarantee Improvements: matmul 82
4.14. Parallelisation of IFFT . 83
4.15. WCET Guarantee Improvements: IFFT 85

5.1. Memory Access Pattern for RMW Operations 91
5.2. Schematic Overview: Split-Phase Synchronisation Technique 93
5.3. Worst-case Memory Latencies: Split-Phase Synchronisation Technique . . 103
5.4. WCMLs of Load Operations without Split-Phase Synchronisation 108
5.5. WCMLs of Load Operations with Split-Phase Synchronisation 108
5.6. WCMLs of RMW Operations without Split-Phase Synchronisation 109
5.7. WCMLs of RMW Operations with Split-Phase Synchronisation 109
5.8. WCET Guarantees with Split-Phase Synchronisation: IFFT 111
5.9. WCET Guarantees with Split-Phase Synchronisation: matmul 112

C.1. OTAWA Ouput: CFG of Ticket Locks . 169
C.2. OTAWA Ouput: CFG of (fair) Mutex Unlock 170
C.3. OTAWA Ouput: CFG of Binary Semaphores with F&I/F&D 171
C.3. OTAWA Ouput: CFG of Subbariers . 173
C.4. OTAWA Ouput: CFG of F&I Barriers . 174

List of Tables

2.1. Typical Durations of Real-time Tasks . 5
2.2. Comparison of Busy-Waiting and Blocking Synchronisations 12
2.3. Different RISC ISAs and the Supported RMW Operations 16

3.1. Implemented RMW Operations . 27
3.2. Software Synchronisation Techniques in the MERASA RTOS 32
3.3. Ticket Lock FIFO-Order . 37

4.1. Parametric Worst-case Memory Latencies 62
4.2. WCET Estimates of Software Synchronisations 78
4.3. WCET Estimates Comparison: matmul 82
4.4. WCET Estimates Comparison: IFFT . 84

5.1. Parametric WCMLs with and without the Split-Phase Technique 104
5.2. WCET Impact of Split-Phase Synchronisation Technique 106
5.3. WCET Estimates Comparison for Split-Phase Synchronisation Technique 110
5.4. Ratio of Synchronisation Operations . 113

List of Algorithms

3.1. Spin Locks with Test-and-Set . 33
3.2. Spin Locks with Fetch-and-Increment/Fetch-and-Decrement 34
3.3. Mutex Locks with Test-and-Set . 35
3.4. Ticket Locks with F&I . 36
3.5. Semaphores with F&I/F&D . 39
3.6. Simple Busy-Waiting Barrier . 40
3.7. Blocking Barrier with Conditional Variable 42
3.8. Barriers with F&I . 43

List of Listings

3.1. Test-and-Set Implementation in the MERASA RTOS 28
3.2. Fetch-and-Increment Implementation in the MERASA RTOS 28
3.3. Fetch-and-Decrement Implementation in the MERASA RTOS 29
3.4. Parallel Program Example for the Simple Barrier Implementation 41

5.1. Example Parallel Code Parts for Critical Sections Secured with Locks. . . 98
5.2. Example Parallel Code Parts for Barriers. 98

A.1. Source Code: Spin Lock with TAS . 140
A.2. Source Code: Spin Lock with F&I/F&D 141
A.3. Source Code: Ticket Lock . 142
A.4. Source Code: (Fair) Mutex Lock with TAS 143
A.5. Source Code: Semaphore with F&I/F&D 146
A.6. Source Code: Subbarrier . 148
A.7. Source Code: F&I Barrier . 150

B.1. Binary Code: Spin Lock with TAS . 152
B.2. Binary Code: Spin lock with F&I/F&D 152
B.3. Binary Code: Ticket lock . 153
B.4. Binary Code: (Fair) Mutex Lock with TAS 154
B.5. Binary Code: Semaphore with F&I/F&D 160
B.6. Binary Code: Subbarrier . 162
B.7. Binary Code: Barriers with F&I . 167

Acronyms

ACET average-case execution time, page 62, 71, 80
APD Activity Pattern Diagram, page 131
API application programming interface, page 22, 116

BCET best-case execution time, page 5, 53, 84
BIOS Basic Input Output System, page 22
BSP bulk synchronous parallel, page 87

CAN controller area network, page 125
CAS compare-and-swap, page 13, 15, 16, 18, 31, 45–50
CASN multi-word compare-and-swap, page 15, 50
CFG control flow graph, page 4, 55, 64, 66–73, 75, 76, 87, 169
CMP chip multiprocessors, page 46, 50, 55
COTS commercial off-the-shelf, page 1, 2, 16, 19, 21, 49, 64, 88
CPG concurrent program graph, page 87

D-ISP dynamic instruction scratchpad, page 20, 55, 64
DMP deterministic shared-memory multiprocessing, page 101
DRAM Dynamic Random-Access Memory, page 25
DSP data scratchpad, page 20, 55

ERG Exclusives Reservation Granule, page 30

F&A fetch-and-add, page 13, 14, 16, 25, 31, 44, 46, 47
F&D fetch-and-decrement, page 14, 25, 27, 28, 34, 38, 43, 58, 59, 68, 69, 73, 74, 76, 77,

79, 133, 169
F&I fetch-and-increment, page 13, 14, 25, 27–34, 36–38, 42–46, 58, 59, 68–70, 73–78,

80, 84, 110–112, 128, 129, 133–136, 169
F&I/F&D fetch-and-increment/fetch-and-decrement, page 14, 16, 26–28, 32, 34, 38, 40,

58, 59, 61, 63, 68–71, 73, 74, 77–80, 88, 104, 110, 134, 169
FCFS first-come, first-served, page 10, 26, 59
FFT Fast-Fourier-Transformation, page 80
FIFO first in, first out, page 10, 23, 26, 28–31, 34–36, 38, 43, 44, 48, 73–76, 79, 80, 90,

92, 97, 101, 133, 134
FPGA Field-Programmable Gate Array, page 20, 25, 58, 110

HRT hard real-time, page 1–5, 7, 10, 11, 13, 19–21, 23, 24, 27, 29, 31–38, 41–50, 53, 54,
58, 59, 63, 64, 71, 72, 74, 75, 78, 80, 87, 88, 90, 94, 101, 102, 114, 115, 118, 120,
131–138

HTM hardware transactional memory, page 49, 50

I/O Input/Output, page 24, 53, 55, 125
ILP Integer Linear Programming, page 6, 131

212 Acronyms

ISA instruction set architecture, page 13, 15–17, 24, 25, 27–29, 31, 47, 55, 66, 100,
120–123, 127–129, 133

ISR interrupt service routine, page 54

LL/SC load-linked/store-conditional, page 15, 16, 18, 27, 30, 31, 48, 49, 100

MERASA Multi-core Execution of Hard Real-time Applications Supporting Analysabil-
ity, page 16, 20, 21, 23, 25–29, 31–34, 45, 47, 54, 55, 57–61, 63, 64, 66–68, 77–79,
82–84, 86, 89–91, 94, 96, 97, 101, 102, 104–106, 110–112, 123, 125, 127–129, 133–
135, 139–143, 146, 148, 150

MOET maximum observed execution time, page 5, 7
MPSoC multi-processor system-on-chip, page 131

NHRT non-hard real-time, page 5, 20, 44, 47, 59, 63, 71, 78, 102, 134
NoC Network-on-Chip, page 55, 100
NRT non-real-time, page 5

OPL Our Pattern Language, page 118
OS Operating System, page 11, 21, 22, 48, 51, 116
OTAWA Open Toolbox for Adaptive WCET Analysis, page 7, 20, 53, 55, 64, 66, 68, 70,

77, 80, 82, 84, 106, 110, 113, 127, 129, 133, 136, 169

PAR Preemtable Atomic Regions, page 50
parMERASA Multi-Core Execution of parallelised Hard Real-Time Applications Sup-

porting Analysability, page 31, 54, 57, 118, 121, 124, 127, 129, 131, 132, 137, 138
PRET precision timed, page 87
PWM pulse-width modulation, page 125

RCDC relaxed consistency deterministic computer, page 101
RISC Reduced Instruction Set Computing, page 15, 16
RMW read-modify-write, page 3, 4, 7, 13–19, 22–27, 29, 31, 33, 34, 40, 45, 53, 54, 58–60,

63, 68, 77–79, 89–97, 100–107, 109, 112, 114, 128, 133–136
RPC remote procedure call, page 50
RSF Request-Store-Forward, page 101
RTOS Real-Time Operating System, page 1, 11, 12, 21–23, 27–29, 32, 34, 71, 77, 120–

123, 128, 129, 139–143, 146, 148, 150
RTTM real-time transactional memory, page 50

SB Synchronisation-operation Buffer, page 100
SCC Single-chip Cloud Computer, page 17
SDRAM Synchronous Dynamic Random-Access Memory, page 25, 26, 92, 93, 95, 110
SMP symmetric multiprocessing, page 88
SMT simultaneous multithreading, page 20, 47, 55, 59, 63, 134
SRT soft real-time, page 5, 48–50
SSB Synchronisation State Buffer, page 101
STM software transactional memory, page 49–51

TAS test-and-set, page 11, 13, 14, 16, 17, 25–27, 32–38, 40, 45, 47, 48, 58, 59, 61, 63,
67–69, 71, 78, 79, 88, 92, 95, 104, 110, 130, 133, 134, 169

TCB thread control block, page 21
TDMA time-division multiple access, page 58, 62, 63, 86

UML Unified Modeling Language, page 131, 138

WCET worst-case execution time, page 1, 3–7, 10, 12, 15, 17, 19–21, 24, 29, 33, 38, 40,
42, 44, 45, 53–55, 57–64, 66–80, 82–84, 86–92, 100, 101, 104–106, 110–115, 118,
120–125, 127–129, 131, 133–137, 169

WCML worst-case memory latency, page 3, 19, 24, 33, 47, 53–55, 58–61, 63, 64, 68, 69,
77, 78, 80, 82, 86, 89–91, 95, 101–109, 134–136

WCRT worst-case response time, page 50, 87
WCWT worst-case waiting time, page 55, 57, 67, 68, 71, 73, 74, 78, 88, 110

Mike Gerdes
University of Augsburg
Department of Computer Science
Systems and Networking
Universitätsstr. 6a, 86135 Augsburg

Personal
Born on February 7, 1978.

German Citizen.

Education

Graduation in computer sciences (degree: Diplom-Informatiker),
University of Augsburg, 2008.

Ph.D. candidate (Computer Science), University of Augsburg, 2013.

Employment
Officer at German Air Force 1997–2003.

Researcher at University of Augsburg, Dep. of Computer Science, 2008–

Publications
Mike Gerdes, Florian Kluge, Christine Rochange, and Theo Ungerer : The Split-
Phase Synchronisation Technique: Reducing the Pessimism in the WCET Analysis
of Parallel HRT Programs. In: Proc. of Embedded and Real-Time Computing
Systems and Applications (RTCSA’12), p. 88–97, 2012.

Mike Gerdes, Florian Kluge, Theo Ungerer, Christine Rochange, and Pascal Sainrat:
Time Analysable Synchronisation Techniques for Parallelised HRT Applications. In:
Proc. of Design, Automation and Test in Europe (DATE’12), p. 671–676, 2012.

Mike Gerdes, Julian Wolf, Irakli Guliashvili, Theo Ungerer, Michael Houston,
Guillem Bernat, Stefan Schnitzler, and Hans Regler : Large Drilling Machine Control
Code – Parallelisation and WCET Speedup. In: Proc. of 6th IEEE International
Symposium on Industrial Embedded Systems (SIES’11), p. 91–94, 2011.

Mike Gerdes, Julian Wolf, Ji Zhang, Sascha Uhrig, and Theo Ungerer : Multi-Core
Architectures for Hard Real-Time Applications. In: 4th Int’l Summer School on
ACACES, Poster Abstracts, 2008.

http://www.uni-augsburg.de/en

Further Publications
Florian Kluge, Mike Gerdes, and Theo Ungerer : An Operating System for Safety-
Critical Applications on Manycore Processors. submitted for publication, 2013.
Ralf Jahr, Mike Gerdes, and Theo Ungerer : An Approach for Parallelization with
Parallel Design Patterns. submitted for publication, 2013.
Ralf Jahr, Mike Gerdes, and Theo Ungerer : A Pattern-supported Parallelization
Approach. In: Proc. of the 2013 Int’l Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM), February 2013.
Marco Paolieri, Jörg Mische, Stefan Metzlaff, Mike Gerdes, Eduardo Quiñones,
Sascha Uhrig, Theo Ungerer, and Francisco J. Cazorla: A Hard Real-Time Ca-
pable Multi-Core SMT Processor. In: ACM Transactions on Embedded Computing
Systems (TECS), Vol. 12 No. 3, March, 2013.
Florian Kluge, Mike Gerdes and Theo Ungerer : AUTOSAR OS on a Message-Passing
Multicore Processor. In: Proc. of 7th IEEE International Symposium on Industrial
Embedded Systems (SIES’12), 2012.
Julian Wolf, Mike Gerdes, Florian Kluge, Sascha Uhrig, Jörg Mische, Stefan Met-
zlaff, Christine Rochange, Hugues Cassé, Pascal Sainrat, and Theo Ungerer : RTOS
Support for Execution of Parallelized Hard Real-Time Tasks on the MERASA
Multi-Core Processor. In: Int’l Journal of Computer Systems, Science&Engineering
(CSSE), ISSN 0267 6192, Vol. 26, No. 6, 2011.
Theo Ungerer, Francisco J. Cazorla, Pascal Sainrat, Guillem Bernat, Zlatko Petrov,
Hugues Cassé, Christine Rochange, Eduardo Quiñones, Sascha Uhrig, Mike Gerdes,
Irakli Guliashvili, Michael Houston, Florian Kluge, Stefan Metzlaff, Jörg Mische,
Marco Paolieri, Julian Wolf : MERASA: Multi-Core Execution of Hard Real-Time
Applications Supporting Analysability. In: IEEE Micro 2010, Special Issue on Eu-
ropean Multicore Processing Projects, Vol. 30 No. 5, Sept./Oct. 2010.
Christine Rochange, Armelle Bonenfant, Pascal Sainrat, Mike Gerdes, Julian Wolf,
Theo Ungerer, Zlatko Petrov, and Frantisek Mikulu: WCET Analysis of a Parallel
3D Multigrid Solver Executed on the MERASA Multi-core. In: 10th Int’l Workshop
on Worst-Case Execution-Time Analysis (WCET’10) in conjunction with the 22nd
Euromicro Int’l Conference on Real-Time Systems, 2010.
Julian Wolf, Mike Gerdes, Florian Kluge, Sascha Uhrig, Jörg Mische, Stefan Met-
zlaff, Christine Rochange, Hugues Cassé, Pascal Sainrat, and Theo Ungerer : RTOS
Support for Parallel Execution of Hard Real-Time Applications on the MERASA
Multi-Core Processor. In: Proc. of IEEE Int’l Symp. on Object/component/service-
oriented Real-time distributed Computing (ISORC), 2010.
Wolfgang Trumler and Mike Gerdes: Towards an automated detection of self-
organizing behavior. In: INFORMATIK 2008, Beherrschbare Systeme - dank In-
formatik, Band 2, 38. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 2008.

Last updated: July 22, 2013
(see also: http://scholar.google.de/citations?user=jrOkK2MAAAAJ)

http://scholar.google.de/citations?user=jrOkK2MAAAAJ

	Abstract
	Table of Contents
	Introduction
	Outline

	Basics
	Real-Time
	WCET Analysis
	Static WCET Tools
	Measurements and Measurement-based WCET Tools

	Synchronisation Techniques
	Mutual Exclusion
	Event Synchronisation
	Software Synchronisation Techniques
	Read-Modify-Write Operations

	Hard Real-Time Capable Synchronisation
	Synchronisation in Embedded Multi-Core Processors
	Hard Real-Time Capable Multi-Core Processors
	Restrictions

	Hardware Support for Synchronisation Techniques
	Consistency in the MERASA Multi-Core Processor
	Atomicity of RMW Operations

	Augmented Memory Controller
	Implementation of the Augmented Memory Controller
	Read-Modify-Write Operations
	Test-and-set
	Fetch-and-Increment/Fetch-and-Decrement

	FIFO Queue with F&I
	Related Work

	Software Synchronisation Techniques
	TAS Spin Locks
	F&I/F&D Spin Locks
	Mutex Locks
	Ticket Locks
	Semaphores
	Software Barriers
	Related Work
	Locks
	Barriers
	Non-Blocking Synchronisation Techniques
	Transactional Memory

	WCET Analysis of Synchronisations
	Introduction on WCET Analyses of Parallel Programs
	Timing Analysability and Timing Predictability
	Pessimism and Overestimation
	Static WCET Analysis of Parallel Programs
	Evaluation Settings for Static WCET Analyses

	Worst-Case Memory Latencies
	Effect of WCMLs on the WCET of Parallel Programs

	WCET Analysis of Software Synchronisation Techniques
	Busy-Waiting Synchronisations
	A) Spin Locks with Test-and-Set
	B) Spin Locks with Fetch-and-Decrement
	C) Ticket Locks with Fetch-and-Increment
	WCET and Backoff Algorithms for Busy-Waiting Synchronisations

	Blocking Synchronisations
	A) Fair Mutex Locks with Test-and-Set
	B) Semaphores with Fetch-and-Increment/Decrement

	Software Barriers
	A) Subbarriers with Conditionals
	B) Barriers with F&I

	Results and Discussion

	WCET Analyses of Parallelised HRT Programs
	matmul: Parallelised Matrix Multiplication
	IFFT: Parallelised Integer Fast-Fourier-Transformation

	Related Work

	Split-phase Synchronisation Technique
	Introduction to the Split-phase Synchronisation Technique
	Discussion on Solutions for Atomicity of RMW Operations

	Implementation in the Augmented Memory Controller
	Incoming Requests
	Dispatching
	Reordering
	Consistency and Atomicity of RMW Operations
	Atomicity
	Consistency

	Related Work

	Split-Phase Synchronisation Technique Evaluations
	WCMLs with the Split-Phase Synchronisation Technique
	Impact on Pessimism in the WCET
	WCET Guarantees of Parallelised HRT Programs

	Application of Synchronisation Techniques
	Design Patterns
	Programming with Design Patterns
	Parallel Design Patterns

	Parallel Design Patterns for Hard Real-Time Programs
	Meta-Patterns
	Meta-Pattern for Real-Time Parallel Design Patterns
	Meta-Pattern for Real-Time Synchronisation Idioms
	Real-Time Parallel Design Patterns (Layer 1)
	Real-Time Synchronisation Idioms (Layer 2)

	Related Work

	Conclusion and Future Work
	Summary and Conclusion
	Future Work

	Appendix: Source Code
	Software Synchronisations in the MERASA RTOS
	TAS Spin Lock
	F&D Spin Lock
	Ticket Lock
	Mutex Lock
	Semaphore
	Subbarriers
	F&I Barriers

	Appendix: Binary Code
	Binary Code of Software Synchronisations
	TAS Spin Lock
	F&D Spin Lock
	Ticket Lock
	Mutex Lock
	Semaphore
	Subbarriers
	F&I Barriers

	Appendix: CFGs of SW Synchronisations
	CFGs of Software Synchronisations
	Ticket Lock
	Mutex Lock
	Binary Semaphore
	Subbarrier
	F&I Barrier

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms
	Curriculum Vitae

