UNIVERSITAT AUGSBURG

STG Decomposition:
Optimised Backtracking and
Component Reduction

Mark Schaefer

Report 2005-13 September 2005

|nst|tut ;
mformatlk

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright (©) Mark Schaefer
Institut fiir Informatik
Universitat Augsburg
D-86135 Augsburg, Germany
http://www.Informatik. Uni-Augsburg. DE
— all rights reserved —

STG Decomposition:
Optimised Backtracking and Component
Reduction*

Mark Schaefer

University of Augsburg, Germany
schaefer@informatik.uni-augsburg.de

Abstract. The synthesis of asynchronous circuits is a difficult and time-consuming task.
Outgoing from a Petri net based behavioural description — signal transition graphs — there
exist methods to decompose this description into smaller components in order to improve
synthesis.

This paper deals with the decomposition method of [VW02,VKO05] and introduces several
methods for the improvement of efficiency. These methods are discussed and compared by
the means of benchmark examples.

Keywords: Asynchronous circuit, STG, Petri net, decomposition, speed-independent

1 Introduction

Asynchronous circuits are a promising type of digital circuits. They perform better,
use less energy and emit less radiation than conventional synchronous circuits. A
widely used formalism for their modelling are signal transition graphs or STGS,
which are interpreted Petri nets.

The main drawback of this model is the inefficient and complex synthesis into
real-life circuits; for this, the reachability graph of an STG is needed, which could
lead to state explosion and - even worse - the synthesis needs an effort which is at
least quadratic in size of this reachability graph.

One way to avoid this, is to decompose an STG into several smaller ones which
perform together in the same way as the original one. The advantages are a faster
synthesis and a reduced peak memory usage. Other methods are for example synthe-
sis with net unfoldings[KKY04] and direct mapping[Ebe87,Hol82]. This paper deals
with the decomposition method of [VW02,VKO05]. In particular, four methods to
improve the efficiency and quality of the components are introduced and discussed.

The next section gives a condensed overview of the field of asynchronous circuits,
STGs and decomposition. The third section introduces the new decomposition meth-
ods followed by the results of some benchmark examples and their discussion. The
paper ends with a conclusion and an outlook to future work.

For more information about asynchronous circuits, STGs and decomposition, see
[VW02,VK05,CKK™02].

2 Circuits, STGs and Decomposition

A signal is a model of a physical wire, it has a boolean value of 0 or 1 depending on
the interpretation of the voltage of the wire. In the following we will abstract from
the physical reality and only talk about signals and boolean values.

* This work was supported by the DFG-project ’STG-Dekomposition’ Vo615/7-1.

A signal edge is a change of the value of a signal, either from 0 to 1 called rising
edge and denoted by a '+’ after the signal name, or from 1 to 0 called falling edge
and denoted by a '—’.

An asynchronous circuit or just circuit is an electrical device with input signals
which are controlled by the environment of the circuit and output signals which
are controlled by the circuit itself; internal signals are output signals, which are
not observed by the environment, e.g. signals for internal communication. A circuit
calculates a boolean function depending on its input and (usually) its output signals.
This function is a sufficient description of the circuit. Normally, a circuit is built up
of some elementary circuits — called gates — which calculate basic boolean functions
like and, not or xzor. Every output of a gate is an output of the circuit, either a real
one or an internal one.

An STG (which is a Petri net, see below) may contain transitions labelled with A
called dummy transitions. They are a design simplification and describe no physical
reality. They play an important part in our decomposition algorithm where they are
called divining transitions. To lambdarise a transition means to change its label to
A, to delambdarise it means to change the label back to the initialvalue.

To keep the notation short, input/output/internal signal edges are just called
input/output/internal edges. The set of transitions labelled with a certain signal
is sometimes identified with the signal itself, e.g. lambdarising signal a means to
change the label of all transitions labelled with a+ or a— to .

Synthesis is the calculation of a function describing a circuit from a formal be-
havioural description, e.g. an STG, under observance of some (timing) constraints.
We use the speed-independent model with the following properties:

— Input and outputs edges can occur in an arbitrarily order?.

— Signals (wires) are considered to have no delay, i.e. a signal edge is received
immediately by all listeners.

— The circuit must work properly according to its formal description under arbi-
trarily delays of each gate.

An STG is an interpreted Petri net, which describes the behaviour of an asyn-
chronous circuit and assumptions on the environment (Figure 1). The transitions
are labelled with signals edges and the interpretation is as follows:

— The firing rule is as usual.

— If a transition labelled with an input edge is activated, the circuit described by
the net must be ready to receive this signal edge from the environment.

— If a transition labelled with an output/internal edge is activated, the circuit
described by the net must produce this signal edge.

STGs can model more behaviour than a real-life circuit can show. The most
important problem are dynamic conflicts, i.e. two transitions of an STG are enabled
under some marking, and firing one would disable the other. This is a form of non-
determinism, which in most cases cannot be handled by a digital circuit. There are
three problematic cases.

! For example, the fundamental mode allows only alternating input and output edges with a minimum
temporal distance.

Fig. 1. Example of an STG: pastor. Inputs: Ai, Ri - Output: Ro

1. One transition is labelled with an input edge, the other with an output edge.
This conflict is very hard to implement, since both signal edges are independently
generated and may occur at the same time.

2. Both transitions are labelled with an output edge. A circuit which can handle
such conflicts is called arbiter and cannot be implemented as a purely digital
circuit. STGs with such conflicts can be handled by our decomposition method
and new conflicts are not introduced. For a detailed discussion see [VW02,VKO05].

3. An auto-conflict, i.e. both transitions are labelled with the same signal edge.
This is a non-deterministic choice, which can hardly be handled by circuits.
During our decomposition algorithm we consider such a newly generated conflict
as an indication that too many signals were lambdarised in an STG. In this
case backtracking is performed and a signal is delambdarised, see below for more
details.

Observe that conflicts between dummy-transitions are ignored.

However, to detect dynamic conflicts one has to generate the reachability graph,
which we want to avoid. Instead, we look for structural conflicts, i.e. two transitions
with a common place in their presets. This is a necessary precondition for dynamic
conflicts, which can be checked structurally. Consequently, in the decomposition
method of [VWO02] it is only looked for structural conflicts, each of them treated as
a dynamic one.

The improved decomposition algorithm of [VK05] makes it possible to ignore
structural auto-conflicts, i.e. to consider them not as indications for a dynamic auto-
conflicts. This results in three different strategies for the handling of structural
conflicts:

1. Conservative strategy: As in [VWO02] every structural conflict is considered as a
dynamic one.

2. Risky strategy: Structural conflicts are ignored.

3. Interactive strategy: Ask a human if a structural conflict is dynamic or not.

Despite of its name the risky approach seems quite sensible: structural conflicts
are very often only this and not dynamic ones, which leads to unnecessary backtrack-
ing when using the conservative method; furthermore, the decomposition algorithm
preserves dynamic auto-conflicts, thus accidently generated ones will be detected by
the synthesis tool and no erroneous circuit will be generated.

For a detailed description of the decomposition process see [VW02,VKO05]. For
this paper it is only important to know that we start with a collection of STGs

4

called initial components, each of them a copy of the original STG N with some
lambdarised signals and some former output signals being considered as input sig-
nals. The following operations are applied to each component; this process is called
reduction:

— Secure contraction of dummy transitions
— Deletion of redundant places and redundant transitions
— Backtracking

The contraction of a transition ¢ generates a set of new places: {(p, q)|p € *t,q €
t*} (each one of them inherits the tokens and arcs of its 'inner’ places) and removes ¢,
t and ¢ from the net. Contractions are only performed if they are 'secure’ (implying
language preservation) and no new structural auto-conflict is generated. It is easy
to see that the contraction of a transition ¢ increases the number of places by |*¢ -
[t = (I°¢] + [2°]).

Backtracking means to delambdarise a signal of the initial component, to con-
sider it as an input signal and to start reduction anew. This is applied if there are
still dummy transitions left but none of the other operations can be performed. In
particular, if a contraction of a dummy-transition would generate a new structural
auto-conflict, this is considered as an indication that too many signals of a compo-
nent were lambdarised to produce their output signals appropriately; this can be
changed by adding another input signal and — informally speaking — providing more
information to the circuit.

The decomposition algorithm itself is non-deterministic. However, for some ex-
amples the order of operations is crucial for the final result in terms of circuit size or
the number of added signals. The question is how to find a good order of operations
to get the best possible result. Furthermore, backtracking means to undo all oper-
ations performed so far, which is very inefficient and the question is whether this
is really needed. Viewing the reduction of all components together, a lot of work is
done several times and the question is whether it is possible to reuse intermediate
results for the reduction of other components. Answers to these questions are given
in the next section.

3 Optimised Decomposition Algorithms

3.1 Version 2 - Ordering Transition Contractions

Although reduction is meant to be performed automatically it can be done with
pen and paper. To keep this simple one would contract those transitions first, which
generate the smallest number of new places. In the optimal case a dummy transition
has only one place in its pre- and postset, thus its contraction would generate one
new place while removing both old ones. But the contraction of a transition, with for
instance 4 places and its pre- and 6 places in its postset would increase the number
of places by 14. These 14 places are maybe adjacent to other dummy transitions and
so on. Hence, contracting transitions in an unsuitable order can lead to an enormous
increase in the number of places.

Contracting ’easy’ transitions first turned out to be a good heuristic also for the
automatic reduction. In version 2 the dummy transitions are sorted by the number

of newly generated places if they would be contracted in the initial component.
Then reduction works as in version 1, following this precalculated list of transition
contractions. In order to avoid sorting after every redundant place deletion operation,
this list is not updated during reduction.

3.2 Version 3 - Lazy Backtracking

In the original implementation, backtracking was performed by restarting the re-
duction of a component from the initial component. Of course, this method is quite
natural and plays an important part in the proof of correctness in [VW02,VKO05].
On the other hand, it can obviously be rather inefficient, e.g. in extreme cases back-
tracking might occur for the last dummy transition.

Naturally, if the reduction should not start anew at the beginning one has to
introduce savepoints for intermediate STGs. Since backtracking affects signals rather
than single transitions lazy backtracking contracts all transitions of signal ag, then
all transitions of signal a; and so on. After a signal was successfully contracted the
resulting intermediate STG is used as a savepoint.

If backtracking has to be performed, it is unnecessary to start from the very
beginning. Instead, it is possible to use the last suitable savepoint. This leads to the
algorithm depicted in Figure 2.

A a a a Af41 aj—1 aj
N=Nyo %N % ... Ny % Npyy — .--Nj1 == N;, -
~—~
no conflict conflict for a;

Fig. 2. Backtracking of Version 3

Starting from N, all initially useless signals are lambdarised yielding STG Nj.
Instead of contracting them in an arbitrary order as in version 1, the dummy tran-
sitions are contracted grouped by their former signals as described above.

If this is possible, i.e. all contractions were secure and no new structural auto-
conflict was generated, save the resulting STG as N;. Next, try to contract signal
a; in Ny and so on. This results in a sequence (1V;) of STGs and a sequence (a;) of
contracted signals.

Probably, in some STG N; the contraction of signal a; is not possible. In version
1 one would delambdarise a; in Ny and start anew from there. Instead, delambdarise
a;j in Nj resulting in N} and look for a structural auto-conflict of a;.?

If there is no such conflict, proceed from N} with a new signal a’; to be contracted.

If there is a conflict for a;, one has to find the signal whose contraction caused it.
To do this, consider STG N;_; with a; delambdarised resulting in N}_,;. Doing this
means to undo the last signal contraction of a;_;. If the conflict for a; disappeared,
it is clear that this contraction caused the conflict.

If the conflicts still exits in Nj_;, go back another step to N; 5 (undoing the
two last contractions), delambdarise a; again and check again for a conflict for a;.
Observe that the signals a;_;,a;_o, ... are not delambdarised while going back.

If eventually an STG Ni, N; resp. is reached which does not have a structural
auto-conflict for a;, it is clear that the contraction of signal a; caused the conflict of

2 Such a conflict might exist, because conflicts between dummy transitions are ignored during reduction.

a;, which becomes visible in N;. Therefore, a; has to be delambdarised in N;, too,
resulting in Nj.. But now it is possible that there is a structural auto-conflict for
ar in N;!. If there is none, proceed with the reduction from N}/ with a new dummy
signal aj. Otherwise, go back to Nj_y, delambdarise a; and a; and look for a conflict
of ay and so on. This is performed with a growing set of signals to be delambdarised
until an STG N, is reached without a structural auto-conflict of the delambdarised
signals, from which the reduction goes on.

If N;is Ny, N contains a structural auto-conflict initially for some signal. This
is possible for the improved decomposition version from [VKO05], which allows such
conflicts provided that they are not dynamic ones. In this case the respective signal
can be delambdarise in N, safely.

Important for this method is that only the signals which could not be contracted
and signals causing a structural conflict auto-conflict are delambdarised and there-
fore added to the final component while performing backtracking. The other signals
whose contraction is only undone during backtracking are contracted again if the
reduction is continued?.

3.3 Version 4 - Tree Decomposition

The methods described so far are improvements for the decomposition of a single
component. This section deals with a method for improving the overall efficiency of
the reduction of all components.

If we take a look at examples of decomposition, it turns out that in most cases
two components have many lambdarised signals in common. Therefore the existence
of an intermediate STG C’ should be possible, from which two or more components
could be derived: instead of reducing both components independently, it is sufficient
to generate C’ only once and to proceed separately with each component afterwards,
thus saving a lot of work.

We introduce tree decomposition by the means of an example: let N be an STG
with the signal set {1,2,3,4,5}. Furthermore, let there be 3 components C, Cy, C3
and the signals which were lambdarised intially in each component {1, 2,3}, {2, 3,4},
{3,4,5}. A possible intermediate STG C’ for C; and C5 would be the STG in which
signals 2 and 3 have been contracted, see Figure 3.

In (a) the initial situation is depicted. There are three independent leafs labelled
with the signals which should be contracted to get a component. In (b) C’ is in-
troduced as a common intermediate result of C; and Cj. In the (c) one can see
nearly the same situation as in (b), but signals which were already contracted are
embraced. This is a more operational view: each node is labelled with the signals
which should be contracted when it is entered with some STG, see below. In (d)
we merged C" and C3 with the possible common intermediate result lablled with 3,
yielding the final decomposition tree. In (i) there is a possible different tree for the
same components.

Tree decomposition according to a decomposition tree works as follows (for a
node u let s(u) the signals with which it is labelled): enter the root node with the
initial STG N without lambdarised signals. Whenever entering a node u with an

3 Of course it is possible that they are delambdarised during another backtracking

7

1,2,3 2,3,4 3,4,

(a)
1(2,3) (2,304 (3)4,

2(3)
3

(d)
123 (2)3,4 3,4,F

23
\
X

(8)

1,2,

w

2,3,4 3,4,¢

{

(b)
1(2,3) (2,3)4 (3)4,

N/

2 (3)

N

(e)
1(2p% (2)3,4 3,4,

2
\
X

(h)

12,3

~

(2,3)4 3,4,

{

(c)
1(2,3) (2,3)4 3,4,F

N/

2,3

2

()
1,2(3) 2(3,4) (3,4)!
(34
3

(i)

Fig. 3. Building of a simple decomposition tree. Leafs from left: components C1, C2, Cs. (a) initial situation
(b) two components merged (c) already contracted signals embraced (d) final tree with all components (e)-
(g) contraction of signal 3 not possible in root node and is therefore postponed to the childs (i) alternative
tree

STG N’, lambdarise the signals s(u) in N’; perform reduction as usual and enter
each child node with its own copy of the resulting STG. If u is a leaf, the resulting
STG is a final component.

Since this tree is precalculated from the initial components, it is very likely that
not all signal contractions are possible in every node. If during the reduction of some
node, a signal a € s(u) could not be contracted in N, it is postponed, i.e. the signal
a is added to every child node of u (if there are any). This is reasonable, because the
contraction of a may have caused an structural auto-conflict for a signal a’, which is
lambdarised deeper in the tree. After o’ is eventually contracted the contraction of
a could be possible. Moving signals in this way between nodes of the decomposition
tree is also called backtracking.

For instance, assume that the contraction of signal 3 in the root node is not
possible, because its contraction causes a conflict for signal 4, see Figure 3 (e). Signal
3 is therefore added to the inner node and the rightmost leaf in (f). In the rightmost
leaf the contraction of signal 3 becomes eventually possible after the contraction
of signal 4, but not in the inner node (g). Signal 3 is therefore added to the left
and middle leaf, in the first one the contraction is again not possible, but in the
latter one it finally is (h). Therefore the components Cy and C3 were generated as
prearranged, only component (' has the additional signal 3.

Postponing signals in this way has two important properties: On the one hand it
changes the precalculated decomposition tree in a way that it is possibly not optimal
in the sense that overall as less as possible signal contractions were performed. Of
course, there is no way to know such things in advance (this is the reason why

8

backtracking is needed for the other versions) and more important on the other
hand postponing is absolutely needed to keep the final components small.

Observe that — in contrast to lazy backtracking — once the decomposition of a
node is finished, it is not necessary to come back to this node and to delambdarise
additional signals. Since signals are lambdarised just in time when entering a node,
there are no dummy transitions left after the reduction in a node is finished and
every potential auto-conflict has become visible.

A decomposition tree is a special case of a preset tree [KKO01]. Finding an optimal
preset tree is NP-complete, but in [KKO01] a heuristic bottom-up algorithm is de-
scribed which performs reasonably well and which works roughly as in the example
above. We use this algorithm for the automatic calculation of decomposition trees.

4 Results

In this section the results of some benchmark examples circulating in the STG com-
munity can be found. They were made with the tool DESIJ, which can work in a
commandline mode and also provides a graphical user interface for interactive de-
composition and STG editing. The main purpose for its development was to provide
an easy-to-use decomposition tool and an easy-to-extend STG /decomposition frame-
work, the latter guaranteed by a strictly object-oriented design. DESIJ and a collec-
tion of benchmark examples can be downloaded from http://www.informatik.uni-
augsburg.de/lehrstuehle/swt/ti/ mitarbeiter /mark/projekte/desij.

Each version of the decomposition algorithm was tested with the conservative
and the risky auto-conflict detection, the results are listed in Table 1. The runtime
is given in seconds, in columns labelled with >’ the overall number of signals of
all final components is printed, in the 'D’ columns (only for ’risky’) the overall
number of signals for which an undetected dynamic auto-conflict exists in the final
components can be found.

Of course, version 2 is a special version of version 1, in the latter case the order
of transitions contractions results from the order of transitions in the input file.
Therefore, the results of version 1 must be handled with care; it is possible (but
unlikely) that this random’ order results in the same or even better results than
version 2 (see case 48), or on the other hand there might be an even worse order
of contractions. Nevertheless, since version 2 turned out to be rather successful it is
used as reduction algorithm by version 3 and 4.

For most STGs the risky conflict detection is not very successful, i.e. there is
at least one dynamic auto-conflicts in a final component. Since the runtimes of this
approach and the conservative method do not vary much, the risky method seems
to be inappropriate. The best time and the smallest number of signals are printed
in bold face for the conservative method.

In 42 of 67 cases version 4 performs best, i.e. finishes with the smallest compo-
nents while using the smallest runtime. If version 4 does not finish with the smallest
components, in 9 cases version 2 does, in 8 cases version 3 does and in 1 case version
1 does, but the result of version 2 is never much worse than the best result.

Considering runtime and quality separate, in 50 of 67 cases version 4 returns
components which were minimal in the number of signals, and in 60 of 67 cases

version 4 has the smallest runtime, although in only two cases the difference is
significant.

Only for STG 48 the basic decomposition algorithm is better than version 2.
In cases 59-67 (which are very small STGs) it is some 1/1000 sec faster, probably
because of the overhead of sorting the transitions first, but normally version 2 is
several times faster. (Up to 4400% for case 22.)

Comparing version 2 with version 3, in 18 cases version 2 gives the best results
and in 25 cases version 3 does. The runtime seems to depend on the structure of the
STG for one group version 2 is faster and for another group version 3 is.

Summing it up, the clear winner is version 4 (tree decomposition) followed by
and version 3 (lazy backtracking) and version 2 (ordering transition contractions).
Furthermore, in three examples only version 4 was able to finish decomposition, the
other algorithms terminated abnormally due to lack of memory*. The risky conflict
detection turned out be useless in most cases while not saving much time.

Version 1 Version 2 Version 3 Version 4
Conservative Risky Conservative Risky Conservative Risky Conservative Risky

Nr. time| time] Y[D time] > [time] > [D time[> [time] D [D] time[>7[time[Y} |D

1 1.071| 44 0.948| 42| 2|| 0.572| 34| 0.501| 32| 2|| 0.755| 42| 0.723| 40| 2 0.28| 34| 0.275| 32| 2

2 1.966| 54 1.601| 52| 2|| 0.549| 32| 0.488| 30| 2| 0.903| 54| 0.865| 52| 2|| 0.292| 32| 0.287| 30| 2

3 3.579| 52 3.148| 50| 2|| 3.067| 52| 2.644| 50| 2|| 4.996| 80| 4.703| 78| 2|| 0.696| 52| 0.665| 50| 2

4 13.39| 96| 12.649| 94| 2|| 2.838| 50| 2.335| 48| 2|| 5.545| 96| 5.377| 94| 2|| 0.849| 64| 0.973| 62| 2

5 15.364| 70| 13.958| 68| 2|| 13.902| 70| 12.778| 68| 2|| 18.484| 128| 18.42(126| 2|| 2.424| 90| 2.408| 88| 2

6 71.515| 138| 66.113|136| 2|| 13.249| 68| 11.933| 66| 2|| 21.815| 138| 22.642|136| 2|| 2.833| 94| 2.754| 92| 2

7|| 168.292| 133| 163.978[131| 2|| 47.709| 88| 43.209| 86| 2|| 81.215| 156| 79.781|154| 2|| 5.754| 94| 5.511| 92| 2

8|| 302.317| 180| 304.549|178| 2| 44.678| 86| 40.763| 84| 2||114.545| 180(111.145({178| 2 9.32| 104| 9.229|102| 2

9 0.285| 19 0.276| 19| 0| 0.266] 19| 0.262| 19| 0|| 0.324| 19 0.32| 19| 0|| 0.204| 19 0.2 191 0
10 0.264| 19 0.263| 19| 0| 0.246] 19| 0.241| 19| 0|| 0.292| 19| 0.285| 19| 0 0.2| 19| 0.193| 19| 0
11 1.997| 37 1.932| 37| 0of| 1.923| 37| 1.788| 37| Of 2.532| 37 2.46| 37| 0|| 0.553| 37| 0.531| 37| O
12 1.694| 37 1.629| 37| 0 1.43| 37| 1.378| 37| 0| 2.135] 37| 2.149| 37| 0|| 0.481| 37| 0.475| 37| O
13|| 13.709| 55| 13.791| 55| Of 9.171| 55| 9.246| 55| 0|| 14.86| 55| 14.828| 55| 0|| 1.968| 55| 1.87| 55| 0
14 11.412| 55| 10.904| 55| 0 6.316| 55| 6.198| 55| 0| 12.591| 55| 12.613| 55| 0| 1.427| 55| 1.441| 55| 0
15 4.743| 79 3.96| 73| 3|| 1.821| 53| 1.369| 47| 3 2.11| 70| 2.194| 64| 3| 0.474| 53| 0.459] 47| 3
16|| 21.843|101| 20.627| 95| 3| 1.657| 50| 1.185| 44| 3|| 2.919| 101 2.783| 95| 3 0.48| 50| 0.458| 44| 3
17| 27.947| 109 25.369(103| 3| 11.029| 80| 9.142| 74| 3|| 20.713| 160| 19.689(154| 3|| 1.672| 80| 1.416| 74| 3
18| 260.215| 182 257.227|176| 3|l 10.218| 77| 8.656| 71| 3| 18.222| 182| 18.399(176| 3| 1.489| 77| 1.399| 71| 3
19|| 55.508{107| 46.604|101| 3|| 48.645| 107| 39.758|101| 3|| 65.914| 172| 66.776(166| 3|| 4.275| 107| 4.224|{101| 3
20|| 781.511| 263| 779.179|257| 3| 44.359| 104| 36.89| 98| 3|| 89.668| 263| 90.173|257| 3| 4.169| 104| 4.119| 98| 3
21| 205.74(134| 180.301|128| 3||175.305| 134| 153.0{128| 3|| 363.08| 305| 362.77|299| 3||27.648| 172|26.989(166| 3
22|(7066.425| 344(7016.173|338| 3(|155.739| 131|134.763|125| 3|| 309.4| 344(309.839|338| 3(|27.389| 167(27.837|161| 3
23 0.785| 28 0.763| 28| 0| 0.586| 28| 0.563| 28| 0|| 1.129| 28| 1.096] 28| 0[] 0.301| 28 0.3] 28] 0
24 0.489| 28 0.478| 28| 0 0.442| 28 0.43| 28| 0 0.71] 28| 0.695| 28| 0| 0.269| 28| 0.269| 28| 0
25 9.437| 55 9.551| 55| 0| 7.026] 55| 6.905| 55| O|| 18.996| 55| 18.755| 55| 0|| 1.157| 55| 1.157| 55| 0
26 5.856| 55 5.778| 55| 0| 4.192| 55| 4.126| 55| 0|| 9.414| 55| 9.145| 55| 0| 0.882| 55| 0.884| 55| 0
27|| 82.646| 82 82.86| 82| 0f| 50.081| 82| 50.114| 82| 0|| 152.07| 82|147.176| 82| 0| 6.779| 82| 6.591| 82| 0
28|| 32.764| 82| 32.979| 82| 0| 25.421| 82| 25.427| 82| 0Of 70.359| 82| 69.205| 82| 0(/10.232| 82(10.063| 82| 0
29|| 56.114| 164| 35.746|132{44| 48.71| 158| 26.019{119(34|| 13.985| 149| 12.619(113|20((12.159| 141| 8.258|122(22
30| 57.036| 164| 37.767|135|41|| 48.286| 157| 26.98|121|34| 14.623| 154| 12.934|126(27(|11.842| 155| 7.514[135(26
31| 58.771| 165 43.174(136|41|| 50.288| 159| 27.745|121|34(/14.707| 155| 13.094|126(27| 24.401| 155|16.302(135|30
32|| 30.815|153| 24.173(135(19]|| 28.016| 145| 19.213|122|19|| 9.286| 138| 9.256|125|16|| 3.259| 133| 2.869|127|16
33| 18.819|121| 14.506{108(11|| 16.536| 104| 11.347| 98| 9|| 5.865| 108| 5.322|101|15|| 2.845| 100| 2.191| 92| 9
34 29.211| 143| 21.848|123|15|| 24.751| 132| 19.256|117(12 8.271| 143| 7.458(128(11|| 5.196| 129 3.929(117|12
35 39.032| 166| 30.946|147|16|| 37.268| 160| 26.034|135|20|| 11.456| 142| 10.914|133|19 5.24| 145| 4.084|124|22
36| 56.383| 164| 37.337(135|41|| 48.535| 157| 27.208|121|34| 14.632| 154| 12.897|126(27(|11.872| 155| 7.365[135(26
37 55.51| 164| 35.433(132|44|| 48.677| 158| 26.047(119|34|| 14.091| 149| 12.625({113|20{(12.103| 141| 8.109|122|22
38| 31.198153| 23.851(135(19 27.8| 145 19.296|122|19(9.373| 138| 9.667|125|16|| 3.153| 133| 2.839(|127|16
39 18.185| 121 14.277(108|11|| 16.845| 104| 11.466| 98| 9 5.933| 108| 5.355|101(15(| 3.219| 100| 2.17| 92| 9
40 0.102| 5 0.099| 5| 0| 0.105 5| 0.101] 5| 0| 0.108 5| 0.106] 5| Off 0.111 5| 0.107| 5/ 0
41]| 33.461] 113] 29.387[104] 9] 27.772] 106] 23.371] 96| 5[] 16.89] 101] 7.859| 97| 9|| 6.689] 101] 6.013] 96| 5

4 The algorithm itself does not need much memory, but saving the intermediate STGs does and for
inappropriate algorithms these STGs can get very large as described in Section 3.1

10

Version 1 Version 2 Version 3 Version 4

Conservative Risky Conservative Risky Conservative Risky Conservative Risky
Nr. time| Y time] Y| D time] [time] >°[D time[Y[time] > [D time] Y| time] >°[D
42| 49.231| 93| 39.884| 89|67|| 41.266| 93| 36.217| 89|66|/13.841| 93| 8.004| 89(66| 27.301| 93|21.751| 89|66
43| 20.351| 104| 18.363| 98| 6|| 16.527| 92| 15.175| 90| 2|| 11.92| 100| 5.297| 91| 8| 5.127| 92| 4.913| 90| 2
44 63.778| 143| 67.477|129| 7| 42.442| 134| 41.086|131| 2| 26.692| 141| 14.849|133| 0(|15.546| 138|14.514(132| 1
45 26.046| 108|21.393(103|60
46 53.593(136 53.325|123| 8|| 37.982| 129 35.929|125| 4| 21.116| 129| 11.458|125| 5(|13.881| 130|12.715(123| 3
47 19.603| 110(15.434|102{60
48| 99.457|171| 70.541(148|18|| 77.255| 176| 61.817|159| 5| 43.174| 178| 19.685|148(19(|18.461| 172| 17.48(160| 2
49(| 134.895| 210| 103.237|164|15([{101.007| 203| 78.867|171| 6| 58.86| 193| 25.456|171(17{|22.597| 195|20.737(182| 6
50| 149.996| 210| 122.754|164(15(/102.479| 203| 79.521|171| 6| 56.514| 186| 22.461|165|17(/22.995| 195(21.129|182| 6
51|| 147.185] 210| 123.186|164(15(|101.057| 203| 78.974|171| 6| 56.18| 187| 22.422{166|17(/22.618| 195(20.613|182| 6
52 169.8| 229| 144.339|178(25(|136.941| 214|111.125|182| 6| 66.721| 209| 26.492|177(20(|29.962| 204(26.574(192| 5
53|| 178.68|229| 144.877|178(25(|132.072| 214|104.849|182| 6| 66.748| 209| 26.602|177|20(/33.974| 206|32.649|196| 3
54 50.773| 136 51.223|124| 8| 36.776| 129| 34.856|125| 4| 21.022| 129| 11.127|125| 5(|10.835| 128(10.158(124| 4
55 19.462| 112(14.604| 99|59
56| 134.065| 210 103.097|164(15(|101.257| 203| 79.139|171| 6| 58.783| 193| 25.757|171|17(|22.507| 195(20.805|182| 6
57| 33.674| 113| 29.791|104| 9| 27.528| 106| 23.16| 96| 5| 16.856| 101| 7.816| 97| 9 6.8| 101| 6.03| 96| 5
58| 48.199| 93| 39.234| 89(67| 41.095| 93| 36.062| 89(66(13.763| 93| 7.904| 89|66 27.549| 93(21.748| 89|66
59|| 0.134| 13 0.122f 12| 1|| 0.137] 13| 0.119| 12| 1|| 0.136| 13| 0.133] 12| 1 0.14| 13| 0.126| 12| 1
60 0.435| 26 0.476| 26| 0|| 0.421] 26| 0.411| 26| 0|| 0.589| 26| 0.571| 26| 0 0.28| 26| 0.279| 26| 0
61 0.19| 17 0.186| 17| 0| 0.347| 17| 0.185| 17| 0|| 0.226| 17| 0.221| 17| 0 0.18| 17| 0.175| 17| 0
62 0.131| 8 0.126| 8| 0| 0.133 8| 0.127| 8| 0| 0.131 8| 0.129] 8| 0| 0.167 8| 0.135| 8| 0
63 0.225| 18 0.222]| 18| 0 0.218| 18| 0.214| 18| 0 0.275| 18| 0.268| 18| 0|| 0.195| 18| 0.191| 18| 0
64 0.23| 22 0.226| 22| 0 0.231| 22| 0.223| 22| 0 0.318| 22| 0.296| 22| 0f 0.214| 22| 0.207| 22| 0
65 0.131| 13 0.13| 13| 0| 0.132| 13| 0.132| 13| 0|| 0.142| 13| 0.139| 13| 0| 0.136/ 13| 0.133| 13| 0
66 0.492| 20 0.366 20| 4| 0.384| 20| 0.375| 20| 4|| 0.315| 20| 0.308| 20| 4 0.3| 20| 0.301| 20| 4
67 0.296| 19 0.231f 17| 1|| 0.299| 19| 0.233| 17| 1|| 0.268| 18| 0.263| 17| 1|| 0.226| 19| 0.208| 17| 1

Table 1: Results for some benchmark examples.

Used STGs: number: name places/transitions/arcs 1: 2pp.arb.nch.03.csc, 40/24/84 2: 2pp.arb.-
nch.03, 38/24/80 3: 2pp.arb.nch.06.csc, 64/36/132 4: 2pp.arb.nch.06, 62/36/128 5: 2pp.arb.nch.09.csc, 88/-
48/180 6: 2pp.arb.nch.09, 86/48/176 7: 2pp.arb.nch.12.csc, 112/60/228 8: 2pp.arb.nch.12, 110/60/224 9:
2pp-wk.03.csc, 24/14/48 10: 2pp_wk.03, 23/14/46 11: 2pp_wk.06.csc, 48/26/96 12: 2pp_wk.06, 47/26/-
94 13: 2pp-wk.09.csc, 72/38/144 14: 2pp_wk.09, 71/38/142 15: 3pp.arb.nch.03.csc, 59/36/126 16: 3pp.-
arb.nch.03, 56/36/120 17: 3pp.arb.nch.06.csc, 95/54/198 18: 3pp.arb.nch.06, 92/54/192 19: 3pp.arb.nch.-
09.csc, 131/72/270 20: 3pp.arb.nch.09, 128/72/264 21: 3pp.arb.nch.12.csc, 167/90/342 22: 3pp.arb.nch.-
12, 164/90/336 23: 3pp-wk.03.csc, 36/20/72 24: 3pp_wk.03, 34/20/68 25: 3pp_wk.06.csc, 72/38/144 26:
3pp-wk.06, 70/38/140 27: 3pp-wk.09.csc, 108/56/216 28: 3pp-wk.09, 106/56/212 29: dup-4-phase-data-
pull.1, 133/123/286 30: dup-4-phase-data-pull.2, 135/123/290 31: dup-4-phase-data-pull.3, 136/123/292 32:
dup-4-phase-data-pull.master.3, 114/105/242 33: dup-4-phase-data-pull.master.4.alt, 109/96/234 34: dup-
4-phase-data-pull.master.4, 113/100/242 35: dup-4-phase-data-pull.slave.3, 121/112/258 36: dup-4ph-csc,
135/123/290 37: dup-4ph, 133/123/286 38: dup-4ph-mtr-csc, 114/105/242 39: dup-4ph-mtr, 109/96/234
40: duplicator, 14/12/28 41: dup-master.mod.1, 129/100/296 42: dup-master.mod.l.untog, 116/165/669
43: dup-master.mod.2, 113/88/264 44: dup-master.mod.3.1, 140/100/321 45: dup-master.mod.3.1.untog,
126/134/460 46: dup-master.mod.3.3, 135/98/310 47: dup-master.mod.3.3.untog, 117/128/458 48: dup-
master.mod.3.4, 145/107/330 49: dup-master.mod.3.5, 153/115/346 50: dup-master.mod.3.6.1, 153/115/-
346 51: dup-master.mod.3.6, 153/115/346 52: dup-master.mod.3.7, 159/119/359 53: dup-master.mod.3.8,
159/119/359 54: dup-master.mod.3, 134/98/308 55: dup-master.mod.3.untog, 121/128/456 56: dup-mtr-
mod-csc, 153/115/346 57: dup-mtr-mod, 129/100/296 58: dup-mtr-mod-untog, 116/165/669 59: imec-alloc-
outbound, 17/18/36 60: imec-master-read, 37/26/74 61: imec-nak-pa, 22/18/44 62: imec-nowick, 19/14/38
63: imec-ram-read-sbuf, 26/20/52 64: imec-sbuf-ram-write, 29/20/58 65: imec-sbuf-read-ctl, 14/12/28 66:
tsend-bm, 45/39/94 67: tsend-csm, 34/29/70

11

5 Conclusion and Future Work

The prototype implementation of the decomposition algorithm of [VW02] was very
successful compared to the former all-in-one synthesis approach. Nevertheless, the
improved DESIJ implementation demonstrated that there are enough possibilities
to improve performance. Especially tree decomposition turned out to be an excellent
method for saving time and memory.

As mentioned in Section 3.3, the precalculated decomposition tree is not neces-
sarily optimal for the final components, since signals might be moved from nodes to
their children. Future work in this direction will be to adopt the top-down algorithm
for building preset trees from [KKO01]. This algorithm starts at the root node — as
the tree decomposition does — and adds leafs iteratively to the tree. The idea is to
interleave this building process with decomposition itself — including the results of
a possible backtracking — in order to get a more optimal decomposition tree.

Another starting point for optimisation is to improve the detection of redundant
places. Profiling runs showed that DESIJ spends about 60% of its runtime with this
task, and improving this more technical part of DESIJ would surely improve the
overall performance.

More important, for the time being DESIJ looks only for so called shortcut places
[SVJO05] which are a subclass of redundant places. Improving this more algorithmical
part of DESIJ would reduce backtracking (since undetected redundant places can
prevent secure transition contractions) and therefore improving runtime and quality
of the components.

References

[CKK"02] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic Synthesis
of Asynchronous Controllers and Interfaces. Springer, 2002.

[Ebe87] J. C. Ebergen. Translating Programs into Delay-Insensitive Circuits. PhD thesis, Dept. of Math
and C.S., Eindhoven University of Technology, 1987.

[Hol82] L. A. Hollaar. Direct implementation of asynchronous control units. IFEE Transactions on
Computers, C-31(12):1133-1141, 1982.

[KKO01] V. Khomenko, , and M. Koutny. Towards an efficient algorithm for unfolding petri nets. In
K.G. Larsen and M. Nielsen, editors, CONCUR 2001, Lect. Notes Comp. Sci. 2154, 2001.

[KKY04] V. Khomenko, M. Koutny, and A. Yakovlev. Logic synthesis for asynchronous circuits based
on petri net unfoldings and incremental sat. In Canada Kishinevsky M. and Ph. Darondeau,
editors, ACSD 200/, pages 16—25, 2004.

[SVJ05] M. Schaefer, W. Vogler, and P. Jancar. Determinate STG decomposition of marked graphs.
In G. Ciardo and P. Darondeau, editors, ATPN 05, Lect. Notes Comp. Sci. 3536, 365—384.
Springer, 2005.

[VKO5] W. Vogler and B. Kangsah. Improved decomposition of signal transition graphs. In ACSD
2005, pages 244-253, 2005.

[VW02] W. Vogler and R. Wollowski. Decomposition in asynchronous circuit design. In J. Cortadella
et al., editors, Concurrency and Hardware Design, Lect. Notes Comp. Sci. 2549, 152 — 190.
Springer, 2002.

12

