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Abstract. We consider the random walk of a particle on the two-dimensional integer lattice starting at

the origin and moving from each site (independently of the previous moves) with equal probabilities to

any of the 4 nearest neighbours. When τi denotes the even number of steps between the (i − 1)st and

ith return to the origin, we shall prove that the geometric mean of τ1, . . . , τn divided by nπ converges

in distribution to some positive random variable having a logarithmic stable law. We also obtain a rate

of this convergence and improve an asymptotic estimate of the tail probability of τ1 due to Erdös and

Taylor (1960).

Keywords: Simple random walk, square lattice, first return time, geometric mean, characteristic function,
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1 Introduction and Main Results

We consider the simple symmetric random walk on the d−dimensional integer lattice Z
d starting

in the origin o and moving in each step to one of the 2d nearest neighbours with probability

1/2d. According to a famous result by G. Pólya (see [12] or the monographs [13],[14]) this

random walk is recurrent only for d = 1 and d = 2 but for both cases the recurrence time τi

(= ith return time to o = even number of steps between the (i − 1)st and ith return to o) has

infinite mean. Our aim is to study the asymptotic behaviour of the i.i.d. sequence {τi, i ≥ 1}
for d = 2. Whereas for d = 1 the τi’s belong to the domain of attraction of the stable random

variable (r.v.) with characteristic exponent α = 1/2 and skewness parameter β = 1, see [4] (p.

171), the situation is completely different for d = 2. The crucial difference is reasoned by the

logarithmic decay of the tail probability P(τ1 ≥ x) for d = 2 in contrast to the decaying rate

(π x)−1/2+O(x−3/2) for d = 1, see [2] (p. 22). By applying a Tauberian theorem for power series

in [4] (p. 423), it follows for d = 2 that P(τ1 ≥ x) log x → π as x → ∞ and Erdös and Taylor

[3] could show somewhat more precisely that P(log τ1 ≥ x) = π/x+O(x−2) as x→ ∞, see also

[14], Chapter 20. As an immediate consequence of the latter estimate one can deduce that log τ1
belongs to the domain of attraction of the stable r.v. S with characteristic exponent α = 1,

skewness parameter β = 1 and scale parameter λ = π2/2 having the characteristic function (c.f.)
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E exp{itS} = exp{`(t)}, where `(t) := −π2 |t|/2−i π t log |t| for t ∈ R
1. For a detailed discussion

of stable distributions and their c.f’s. we refer the reader to [2], [4], [13] and [15]. In Sect. 2 we

represent the tail probabilities P(τ1 > 2n) as integral over the reciprocal of an elliptic integral

of first kind K(eit/2), see (9) and (15). A thourough study of the asymptotic behaviour of the

integrand as t→ 0 enables us to improve the tail estimate of log τ1 given in [3] as follows:

Theorem 1. For the first return time τ1 of the simple random walk on Z
2 we have, as x→ ∞,

P( log τ1 > x ) = π/x− c0/x
2 +O(x−3) with c0 = π ( γ + 3 log 2 ) , (1)

where γ := limn→∞

[
∑n

k=1 1/k − log n
]

≈ 0.57721 denotes the Euler-Mascheroni constant, see

[5].

The estimate (1) is the key to obtain a bound of the difference logE exp{it log τ1}− `(t) of order

O
(

t2 log2(1/t)
)

as t→ 0 which turns out small enough to provide the distributional limits

1

n

n
∑

i=1

log τi − π log n− κ
d−→

n→∞
S or equivalently

n
√
τ1 · · · τn
eκ nπ

d−→
n→∞

eS

with a constant κ specified in the below Theorem 2. Stable limit theorems for suitably scaled and

centered sums of random variables with limiting r.v. S are comparatively rare in applications;

for further quite different examples see e.g. [7] and [8].

Moreover, by using Esseen smoothness lemma, we find a uniform bound of the difference of the

corresponding distribution functions in the above limit theorems which seems to be the best

possible in comparison with a similar problem in the metric theory of continued fractions, see in

[7].

Theorem 2. Let p(u) denote the probability density function of the r.v. S having the c.f.

exp{`(t)} for t ∈ R
1. Then

sup
x∈R1

∣

∣

∣
P

( 1

n

n
∑

i=1

log τi − π log n− κ ≤ x
)

−
∫ x

−∞
p(u) du

∣

∣

∣
= O

( log2 n

n

)

as n→ ∞ (2)

or equivalently

sup
x≥0

∣

∣

∣
P

( n
√
τ1 · · · τn
eκ nπ

≤ x
)

−
∫ x

0
p(log u)

du

u

∣

∣

∣
= O

( log2 n

n

)

as n→ ∞ (3)

with the constant κ := π (1 − γ) + log 2 + limn→∞

[
∑n

k=2 P(τ1 = 2k) log k − π log log n
]

≈
−6.6947 .

Remark 1. We may write p(u) = 2
π2 p

∗
(

2
π2 u+ 2

π log 2
π2

)

, where p∗(u) denotes standard stable

density function (for α = β = λ = 1) defined by its c.f. exp{2 `(t)/π2}, more precisely, by
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applying the Fourier inversion formula we have p∗(u) = (2π)−1
∫∞
−∞ exp{−iut + 2 `(t)/π2}dt

for any u ∈ R
1, see [2] and [15] for various series expansions of p∗(u) and the decaying rates

p∗(u) = O(u−2), p∗(−u) = O(exp{−eu}) as u → ∞ . Further, we mention that there are

numerical Fourier inversion procedures for a pointwise calculation of p∗(u) , see [11].

The rest of the paper is organized as follows: In Sect. 2 we put together the analytical tools

needed to prove Theorem 1 and 2. In particular, we shall express the tail probability P(τ1 >

2n) by an integral formula containing the elliptic integral of the first kind K(eit) and obtain

asymptotic estimates of the integrand by using classical expansions of K(eit) for t ∈ (0, π/2]

and t ↓ 0, see [10]. The proofs of Theorem 1 and Theorem 2 are presented in Sect. 3 and 4,

respectively. In Sect. 5 we discuss different expressions and the computation of the analytic

constant κ which seems to be of interest in its own right. Due to some numerical uncertainties

the above approximate value of κ should be considered as preliminary and might be subject to

slight changes.

In what follows, c1, c2, . . . denote positive constants (not depending on n) and θ stands for a

complex number (eventually depending on a variable indicated in parentheses) with |θ| ≤ 1

which may differ from one expression to another.

2 Preliminary Results

To avoid ambiguities we define once more the simple random walk on Z
2 as sequence of partial

sums {Sn := X1 + · · · + Xn : n ≥ 1 } of i.i.d. random vectors Xk taking each of the values

(1, 0), (0,−1), (−1, 0), (0, 1) with probability 1/4 for k ≥ 1 und set S0 := o. The first return time

τ1to o taking only even positive integers is determined by the probabilities Q2n := P(τ1 = 2n) =

P(E2n) , where the events En := {S1 6= o, . . . , Sn−1 6= o, Sn = o} satisfy the decomposition

{S2n = o} =
⋃n

k=1

(

E2k ∩ {S2n − S2k = o}
)

for n = 1, 2, . . .. By our independence assumptions

on the Xk’s we obtain the recurrence relations

P2n = Q2n +

n−1
∑

k=1

Q2k P2n−2k for n = 1, 2, . . . (4)

connecting the probabilities Q2n and P2n = P(S2n = o) for n ≥ 1 and P0 = 1, Q0 = 0 , where

P2n is equal to the number all possible paths from o to o in 2n steps divided by 42n, that is, for

n = 1, 2, . . .,

P2n =
1

42n

n
∑

k=0

(2n)!

(k!)2 ((n − k)!)2
=

1

42n

(

2n

n

) n
∑

k=0

(

n

k

)(

n

n− k

)

=
1

42n

(

2n

n

)2

. (5)

An immediate consequence of (4) and (5) is the following closed-term expression for Q2n :

Q2n =
1

42n

n
∑

k=1

(−1)k−1
∑

n1+...+nk=n

n1,...,nk≥1

(

2n1
n1

)2

· · ·
(

2nk
nk

)2

. (6)
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Multiplying both sides of (4) by z2n and summing up over n ≥ 1 provide the equality g(z)− 1 =

g(z) Ezτ1 linking the probability generating functions (p.g.f.’s) g(z) = 1 +
∑

n≥1 P2n z
2n and

Ezτ1 =
∑

n≥1Q2n z
2n defined for z ∈ C

1 \ {1} satisfying |z| ≤ 1 . Furthermore, in view of (5)

the p.g.f. g(z) can be expressed by the elliptic integral of first kind K(z) defined by

K(z) :=

π/2
∫

0

dϕ
√

1− z2 sin2(ϕ)
=
π

2

∞
∑

n=0

(

2n

n

)2 z2n

42n
for |z| ≤ 1, z 6= 1 (7)

and this implies an explicit analytical expression for the p.g.f. of τ1

Ezτ1 = 1− 1

g(z)
= 1− π

2K(z)
= 1− 1

∑∞
n=0

(2n
n

)2 ( z
4

)2n
for |z| ≤ 1, z 6= 1 . (8)

Lemma 1. The tail probabilities of the first return time τ1 can be expressed by

P(τ1 > 2n) =
1

2

π
∫

0

Re

[

e−itn

(1− eit)K(eit/2)

]

dt for n = 0, 1, 2, . . . . (9)

Proof of Lemma 1: The p.g.f. Ezτ1 =
∑

k≥1Q2k z
2k can be rewritten in the following way

1−Ezτ1 =
∑

k≥1

Q2k (1− z2k) = (1− z2)
∑

k≥1

Q2k

k−1
∑

n=0

z2n = (1− z2)

∞
∑

n=0

z2n
∑

k≥n+1

Q2k

for any z ∈ C
1 with |z| ≤ 1. For z = eit the p.g.f. Ezτ1 is transferred to the c.f. h(t) = Eeit τ1 of

the lattice r.v. τ1 having span 2 so that h(t+π) = h(t) for t ∈ R
1. Together with

∑

k≥n+1Q2k =

P(τ1 > 2n) we obtain the identity

e−2nti

1− e2ti
(

1− h(t)
)

=
∞
∑

m=0

e2(m−n)ti
P(τ1 > 2m) for t /∈ π Z1 , (10)

where the Fourier series on the r.h.s. converges uniformly in any interval [a, b] with 0 < a < b < π.

The latter is seen from the identity

(e2ti − 1)
∑

m≥N

e2mti
P(τ1 > 2m) = it

∞
∫

2N

etxi P(τ1 > x)dx = t

∞
∫

2N

(

i cos(tx)− sin(tx)
)

P(τ1 > x)dx ,

which, after applying the below Lemma 3 to the real and imaginary part on the r.h.s. combined

with |e2ti − 1| = 2 | sin(t)|, implies that

sup
a≤t≤b

∣

∣

∣

∑

m≥N

e2mti
P(τ1 > 2m)

∣

∣

∣
≤ 2P(τ1 > 2N)

min{sin(a), sin(b)} −→
N→∞

0 .

This uniform convergence allows the term-wise integration over t ∈ [a, b] on the r.h.s. of (10).

According to (8) we replace 1 − h(t) by π/2K(eit) on the l.h.s. of (10) and integrate the real
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parts on both sides over t ∈ [δ/2, π/2] for fixed δ ∈ (0, π) . In this way we are led to

π/2
∫

δ/2

Re

[

e−2nit

1− e2it
π

2K(eit)

]

dt =
π − δ

2
P(τ1 > 2n) +

π/2
∫

δ/2

∑

0≤m6=n

cos(2(m− n)t)P(τ1 > 2m) dt

=
π − δ

2
P(τ1 > 2n)−

∑

0≤m6=n

sin((m− n)δ)

2 (m− n)
P(τ1 > 2m) .

It remains to show that the series on the r.h.s. disappears when δ ↓ 0 . To see this, we recall

that the sequence of partial sums sk(δ) =
∑k

m=1
sin(mδ)

m is bounded for 0 ≤ δ ≤ π and sk(δ) → 0

as δ ↓ 0 for any integer k ≥ 1. Therefore, by some obvious rearrangements we find that, for any

integer n ≥ 0 ,

∑

m>n

sin((m− n)δ)

m− n
P(τ1 > 2m) = lim

N→∞

N
∑

m=1

sin(mδ)

m

(

∑

k>N

+
N
∑

k=m

)

P(τ1 = 2 (k + n+ 1))

=
∞
∑

k=1

sk(δ)P(τ1 = 2 (k + n+ 1)) −→ 0 as δ ↓ 0 ,

where the last step is justified by Lebesgue’s dominated convergence theorem. Hence, we achieve

the representation

P(τ1 > 2n) = lim
δ↓0

π/2
∫

δ/2

Re

[

e−2nit

(1− e2it)K(eit)

]

dt =
1

2
lim
δ↓0

π
∫

δ

Re

[

e−int

(1− eit)K(eit/2)

]

dt

by an improper Riemann-integral as asserted in (9). 2

Next, we recall some analytical properties of the elliptic integral K(z) the proofs of which can

be found in [10] and [1]. According to [1] (p. 15) the function 2K(z)/π coincides with the

hypergeometric function F (1/2, 1/2, 1; z2) , where

F (a, b, c; z2) = 1 +

∞
∑

n=1

z2n
n
∏

i=1

(a+ i− 1)(b+ i− 1)

c+ i− 1
for a, b, c ∈ C

1

converges (diverges) for |z| < (>)1 and it also converges for |z| = 1 whenever a, b, c /∈ {0,−1,−2, . . .}
and Re(a+ b− c) < 0 or for |z| = 1, z 6= 1 , whenever 1 > Re(a+ b− c) ≥ 0 , see [10] (p. 12). As

a direct consequence of this it follows that K(z) is twice differentiable for z ∈ C
1, |z| ≤ 1, z 6= 1 ,

see [1] (p. 282) for explicit expressions of the first and second derivative of K(z). In particular,

for |z| = 1, z 6= 1, the following (absolutely convergent) series expansion holds, see e.g. [6] (p.

909):

K(z) = log
4√

1− z2
+

∞
∑

n=1

(

2n

n

)2 (1− z2)n

42n

[

log
1√

1− z2
+ 2

(

log 2−
2n
∑

k=1

(−1)k−1

k

)]

(11)
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This means that the mapping (0, π] 3 t 7→ K(eit/2) is continuously differentiable and allows the

expansion

K(eit/2) = log 4 +
(

1 +
1− eit

4
+

9(1− eit)2

64
+

25(1 − eit)3

256

)

log
1√

1− eit
(12)

+
2 log 2− 1

4
(1− eit) +

36 log 2− 21

128
(1− eit)2 + c1 θ(t) t

3 ,

where the asymptotic order as t ↓ 0 is determined by the last term. In order to express the

above expansions in terms of t and log(1/t) for t > 0 we use the Taylor expansion log(1− z) =

−
(

z + z2/2 + z3/3 + · · ·
)

for z ∈ C
1, |z| < 1 , Euler’s formula eit = cos(t) + i sin(t) and the

identity, see [6] (p. 45/46),

log
1√

1− eit
= −1

2
log(1− eit) =

1

2

∞
∑

k=1

eitk

k
=

1

2

∞
∑

k=1

cos(tk)

k
+
i

2

∞
∑

k=1

sin(tk)

k

=
1

2
log

1

2 sin(|t|/2) +
i

2
sgn(t)

π − |t|
2

for |t| ∈ (0, 2π) . (13)

Finally, by means of the inequalities 0 ≤ sin(t)−t+t3/6 ≤ t5/120 and 0 ≤ cos(t)−1+t2/2 ≤ t4/24

for t ≥ 0 we have

log
1

2 sin(t/2)
= log

t

2 sin(t/2)
+ log

1

t
= log

1

t
+
t2

24
+O(t4) and 1− eit =

t2

2
− i t+O(t4) ,

as t ↓ 0 . Inserting these relations on the r.h.s of (12) and using the abbreviation L(t) = log(1/t)

for t > 0 we obtain after elementary calculations the following asymptotic expansions for R(t) =

Re
(

K(eit/2)
)

and I(t) = Im
(

K(eit/2)
)

as t ↓ 0 :

R(t) =
1

2
L(t) + log 4 +

π

16
t− t2

128
L(t)− 6 log 4 + 1

384
t2 +O

(

t3
)

I(t) =
π

4
− t

8
L(t)− log 4

4
t− π

256
t2 − t3

1536
L(t) +O

(

t3
)

R2(t) + I2(t) =
1

4
L2(t) + log 4L(t) +

π2

16
+ log2 4− t2

128
L2(t) +O

(

t2 L(t)
)

.

We end this section by rewriting the integral on the r.h.s. of (10). It is easily seen that

Re

(

e−int

1− eit

)

=
sin(bnt)

2 sin(t/2)
and Im

(

e−int

1− eit

)

=
cos(bnt)

2 sin(t/2)
with bn = n+

1

2
.

Together with R(t) and I(t) and the formula Re(wz−1) = Re(w)Re(z−1) − Im(w) Im(z−1) =
(

Re(w)Re(z) + Im(w) Im(z)
)

|z|−2 for w, z ∈ C
1 , |z| > 0 , we may express the integral on the

r.h.s. of (10) as follows:

6



π
∫

0

Re

[

e−int

(1− eit)K(eit/2)

]

dt =

π
∫

0

sin(bnt)S(t) dt+

π
∫

0

cos(bnt)C(t) dt , (14)

where

S(t) =
R(t)

2 sin(t/2)
(

R2(t) + I2(t)
) and C(t) =

I(t)

2 sin(t/2)
(

R2(t) + I2(t)
) for 0 < t ≤ π .

The following surprising fact facilitates and shortens the approximate computation of P(τ1 > 2n)

for large n.

Lemma 2. For any n = 0, 1, 2, . . .

P(τ1 > 2n) =

π
∫

0

sin(bnt)S(t) dt =

π
∫

0

cos(bnt)C(t) dt with bn = n+
1

2
. (15)

Proof of Lemma 2: By the identity 2 sin(t/2)S(t) = Re
(

1/K(eit/2)
)

and relation (8) for z = eit/2

we have

π
∫

0

sin(bnt)S(t) dt =

π
∫

0

sin(bnt)

2 sin(t/2)
Re

(

1

K(eit/2)

)

dt =
2

π

π
∫

0

sin(bnt)

2 sin(t/2)
Re
(

1−Eeitτ1/2
)

dt .

By induction on n ∈ {0, 1, . . .} and some elementary trigonometric relationships it is easily

verified that

sin(bn t)

2 sin(t/2)
=

1

2
+

n
∑

k=1

cos(k t) and

π
∫

0

cos(k t) cos(` t) dt =

{

π/2 for k = ` = 0, 1, . . .

0 for integers k 6= `
.

According to these relations we may proceed with

π
∫

0

sin(bnt)S(t) dt =
2

π

π
∫

0

(1

2
+

n
∑

k=1

cos(k t)
)(

1−
∞
∑

k=1

cos(k t)P(τ1 = 2k)
)

dt

=
2

π

( π

2
−

n
∑

k=1

π
∫

0

cos2(k t) dtP(τ1 = 2k)
)

= P(τ1 > 2n) .

Finally, combining the just proved relation with (14) and (10) confirms the second equality of

(15) completing the proof of Lemma 2. 2
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3 Proof of Theorem 1

First we recall the second mean value theorem for integrals which provides the key to obtain the

behaviour of the integrals on the r.h.s. of (15) for n→ ∞ .

Lemma 3. ([9], p. 447) If f(x) is a bounded monotonic function on [a, b] and g(x) is continuous

on the same interval, then there exists some value ξ ∈ [a, b] such that

b
∫

a

f(x) g(x) dx = f(a)

ξ
∫

a

g(x) dx+ f(b)

b
∫

ξ

g(x) dx . (16)

A straightforward application of Lemma 3 to an arbitrary nonincreasing function f on [a,∞)

vanishing at ∞ and g(x) = sinx or g(x) = cos x with a > 0, b→ ∞ yields for some ξ ≥ a that

∣

∣

∣

∣

∣

∞
∫

a

f(x)

{

sinx

cos x

}

dx

∣

∣

∣

∣

∣

= lim
b→∞

∣

∣

∣

∣

∣

b
∫

a

f(x)

{

sinx

cosx

}

dx

∣

∣

∣

∣

∣

≤ f(a)

∣

∣

∣

∣

∣

ξ
∫

a

{

sinx

cos x

}

dx

∣

∣

∣

∣

∣

≤ 2 f(a) . (17)

Besides the above-defined bn = n + 1/2 we need two further sequences λn := log(bn) > 0 and

an := λ2n/bn for n ≥ 3 to shorten notation in what follows. In order to study the asymptotic

behaviour of both integrals on the r.h.s. of (14) we summarize the analytic properties of the

functions S(t) and C(t) for t ∈ (0, π] in

Lemma 4. For any ε ∈ (0, π) there exist nondecreasing, continuously differentiable functions

s
(1)
ε (t), s

(2)
ε (t) and c

(1)
ε (t), c

(2)
ε (t) on the interval [ε, π] such that S(t) = s

(1)
ε (t)−s(2)ε (t) and C(t) =

c
(1)
ε (t) − c

(2)
ε (t) for ε ≤ t ≤ π. Further, there exist a sufficiently small ε0 ∈ (0, 1) and striclty

decreasing functions S0(t) and C0(t) on (0, ε0] such that, as t ↓ 0 ,

S(t) =
2

t L(t)
− 4 log 4

t L2(t)
+ S0(t) with S0(t) =

16 log2 4− π2

2 t L3(t)
+O

( 1

t L4(t)

)

(18)

C(t) =
π

tL2(t)
− 4π log 4

t L3(t)
+ C0(t) with C0(t) =

48π log2 4− π3

4 t L4(t)
+O

( 1

t L5(t)

)

. (19)

Proof of Lemma 4: The smoothness properties of K(eit/2) on (0, π] stated in Sect. 2 reveal that

R(t) and I(t) are C1-functions. on [ε, π] for any ε > 0. Since the c.f. h(t) of the lattice r.v. τ1
with span 2 fulfills |h(t)| < 1 for t /∈ πZ1, it follows from (8) that R2(t) + I2(t) = |K(eit/2)|2 =

π2/4 |1 − h(t/2)|2 ≥ c(ε) > 0 uniformly for t ∈ [ε, π]. Therefore, also S(t) is a C1-function

and thus of bounded variation on [ε, π]. This means that S(t) can be written as difference of

nondecreasing C1-functions s(1)ε (t), s
(2)
ε (t) defined on [ε, π]. To prove the second part of Lemma

4 we consider only the first relation (18). For this, we use the above-given asymptotic expansions

8



of R(t) and R2(t) + I2(t) together with 2 sin(t/2) = t− t3/24 +O(t5) as t ↓ 0. In this way the

denominator of S(t) takes the form

2 sin(t/2)
(

R2(t) + I2(t)
)

=
t L2(t)

4

(

1 +N(t)
)

,

where

N(t) =
4 log 4

L(t)
+
π2 + 16 log2 4

4L2(t)
− 7 t2

96
+O

( t2

L(t)

)

−→ 0 as t ↓ 0 .

Together with (1 +N(t))−1 = 1−N(t) + 16 log2 4/L2(t) +O
(

1/L3(t)
)

and

R(t) =
L(t)

2

[

1 +
2 log 4

L(t)
+
π

8

t

L(t)
− t2

64
− 6 log 4 + 1

192

t2

L(t)
+O

(

t3
)

]

as t ↓ 0

we find that

S(t) =
2

t L(t)

(

1 +
2 log 4

L(t)
+
π

8

t

L(t)
− t2

64
− 6 log 4 + 1

192

t2

L(t)
+O

(

t3
)

)

(

1−N(t)
)

+
2

t L(t)

( 16 log2 4

L2(t)
+O

( 1

L3(t)

)

)

=
2

t L(t)

(

1 +
2 log 4

L(t)
+O

( t

L(t)

)

)

+
2

t L(t)

( 16 log2 4

L2(t)
+O

( 1

L3(t)

)

)

− 2

t L(t)

( 4 log 4

L(t)
+
π2 + 16 log2 4

4L2(t)
+O

(

t2
)

)

− 2

t L(t)

( 8 log2 4

L2(t)
+O

( 1

L3(t)

)

)

=
2

t L(t)

(

1− 2 log 4

L(t)
+

16 log2 4− π2

4L2(t)
,+O

( 1

L3(t)

)

)

,

where the last line coincides with (18). The proof of (19) follows in the same manner and is thus

omitted.

It remains to show that the function S0(t) = S(t)−2/t L(t)+4 log 4/t L2(t) is strictly decreasing

on (0, ε0) for a sufficiently small ε0 > 0 . This is seen by showing that the first derivative S′
0(t)

is negative for (0, ε0) . We only sketch this by using the following representations of R(t) and

I(t)

R(t) = L(t)

∞
∑

k=0

αkt
2k +

∞
∑

k=0

βkt
k and I(t) = L(t)

∞
∑

k=0

µkt
2k+1 +

∞
∑

k=0

νkt
k ,

which can be derived directly from (11) and (13), where the four power series and their derivatives

converge absolutely for |t| ≤ π. From Sect. 2 we already know the following coefficients

α0 =
1

2
, α1 = − 1

128
, β0 = log 4 , β1 =

π

16
, β2 = −6 log 4 + 1

384
,

µ0 = −1

8
, µ1 = − 1

1536
, ν0 =

π

4
, ν1 = − log 4

4
, ν2 = − π

256
.

9



Without going into details, we may express S0(t) with r0 = 8 log2 4− π2/2 > 0 as

S0(t) =
r0

t L3(t)

(

1 + r(t)
)

,

where r(t) has a continuous derivative r′(t) on (0, ε0) such that |r(t)| ≤ c1/L(t) and |r′(t)| ≤
c2/t L

2(t) for 0 < t < ε0. A little calculus shows that

S′
0(t) =

(

− r0
t2 L3(t)

+
3 r0

t2 L4(t)

)

(

1 + r(t)
)

+
r0 r

′(t)

t L3(t)
< 0

for any t ∈ (0, ε0) , if ε0 > 0 is chosen sufficiently small. Similar arguments may be applied to

show C ′
0(t) < 0 for any t sufficiently close to 0 . Thus, the proof of Lemma 4 is complete. 2

Now we turn to prove the asymptotic estimate

P(τ1 > 2n) =
π

log n
− π ( γ + 4 log 2 )

log2 n
+O

( 1

log3 n

)

as n→ ∞ , (20)

where evidently log n can be replaced by λn. At the end of this section we will show that (20)

is equivalent to (1). In order to verify (20) we have the choice to use the first or the second

integral of (15). We choose to examine the first one. By applying Lemma 3 to the nondecreasing

functions f(t) = s
(1)
ε (t) resp. f(t) = s

(2)
ε (t) (occurring in Lemma 4) and g(t) = sin(bn t) for

ε ≤ t ≤ π we may write

π
∫

ε

sin(bn t) s
(i)
ε (t) dt = s(i)ε (ε)

ξi
∫

ε

sin(bn t) dt+ s(i)ε (π)

π
∫

ξi

sin(bn t) dt = O(b−1
n )

with certain intermediate values ξi ∈ [ε, π] for i = 1, 2 so that

π
∫

ε

sin(bn t)S(t) dt =

π
∫

ε

sin(bn t)
(

s(1)ε (t)− s(2)ε (t)
)

dt = O(b−1
n ) as n→ ∞ , (21)

where ε > 0 can be chosen arbitrarily small. We may put ε = ε0 with ε0 from Lemma 4. Next

we treat the remaining part of the first integral on the r.h.s. of (14). Obviously, we may split

this integral as follows:

ε0
∫

0

sin(bn t)S(t) dt = 2

( an
∫

0

+

ε0
∫

an

)

sin(bn t)

t L(t)
dt− 4 log 4

( λn/bn
∫

0

+

ε0
∫

λn/bn

)

sin(bn t)

t L2(t)
dt+ In(S0) ,

10



where, in view of the monotonicity of S0(t) and |S0(t) | ≤ c3/t L
3(t) for 0 < t ≤ ε0 , Lemma 3

gives

In(S0) =

( 1/bn
∫

0

+

ε0
∫

1/bn

)

sin(bn t)S0(t) dt =
1

bn

1
∫

0

sin(x)S0

( x

bn

)

dx+ S0(b
−1
n )

ξ
∫

1/bn

sin(bn x) dx

+ S0(ε0)

ε0
∫

ξ

sin(bn x) dx = c2 θ
(

1
∫

0

sin(x)

x (λn − log x)3
dx+

2

λ3n

)

+O(b−1
n ) = O(λ−3

n )

as n→ ∞ . Again by Lemma 3 and an = λ2n/bn there exist intermediate values ξ3, ξ4 such that

ε0
∫

an

sin(bn t)

t L(t)
dt =

bn
λ2n (λn − 2 log λn)

ξ3
∫

an

sin(bn x) dx+
1

ε0 L(ε0)

ε0
∫

ξ3

sin(bn x) dx = O(λ−3
n )

ε0
∫

λn/bn

sin(bn t)

t L2(t)
dt =

bn
λn (λn − log λn)2

ξ4
∫

λn/bn

sin(bn x) dx+
1

ε0 L2(ε0)

ε0
∫

ξ4

sin(bn x) dx = O(λ−3
n )

as n→ ∞ . For p ∈ {1, 2, 3} we have to express the integral

λ3−p
n /bn
∫

0

sin(bn t)

t Lp(t)
dt

x=t bn=

λ3−p
n
∫

0

sin(x) dx

x logp(bn/x)
=

( λ3−p
n
∫

λp−3
n

+

λp−3
n
∫

0

)

sin(x) dx

x (λn − log x)p
.

as linear combination of λ−1
n and λ−2

n with a remainder term of magnitude O(λ−3
n ) . Since

sin(x) ≤ x for x ≥ 0 , the second integral is easily seen to be less than λ−3
n . Hence, it remains to

treat the first integral just for p ∈ {1, 2}. By the algebraic relation (1∓ε)−p = 1±p ε+Θp(∓ε) ε2,
where Θp(−ε) ≥ 0 and |Θp(±ε)| is bounded by 2p+2 − 2(p+2) for 0 ≤ ε ≤ 1/2, the first integral

can be decomposed as follows:

λ3−p
n
∫

λp−3
n

sin(x) dx

x (λn − log x)p
=

1

λpn

λ3−p
n
∫

λp−3
n

sin(x) dx

x
(

1− log x
λn

)p =
1

λpn

λ3−p
n
∫

λp−3
n

sin(x)

x
dx− p

λp+1
n

λ3−p
n
∫

λp−3
n

sin(x)

x
L(x) dx

+
1

λp+2
n

( xp
∫

λp−3
n

+

λ3−p
n
∫

xp

)

sin(x)

x
Θp

(

− log x

λn

)

log2 xdx , (22)

where xp > 1 is chosen (independently of n) in such a way that the function

x 7→ Θp

(

− log x
λn

) log2 x
x = λ2

n

x

((

1 − log x
λn

)−p −
(

1 + p log x
λn

))

has a negative first derivative and is

therefore decreasing on the whole interval [xp, λ
3−p
n ]. This enables us to apply Lemma 3 in an

obvious way giving

∣

∣

∣

∣

∣

λ3−p
n
∫

xp

sin(x)Θp

(

− log x

λn

) log2 x

x
dx

∣

∣

∣

∣

∣

≤ 4 ( 2p+1 − p− 2 )
( log2 xp

xp
+

log2(λ3−p
n )

λ3−p
n

)

,

11



whereas the corresponding integral over [λp−3
n , xp] is bounded by 2+ log3 xp/3. This means that

the last integral in (22) is bounded. Combining the well-known improper integrals

∫ ∞

0

sin(x)

x
dx =

π

2
and

∫ ∞

0

sin(x)

x
L(x) dx =

π γ

2
, see [6] (p. 626) ,

with the subsequent two estimates (both follow from (17) for large enough n) for q = 0 and

q = 1

λp−3
n
∫

0

sin(x)

x
Lq(x) dx =

∞
∫

log(λ3−p
n )

sin(e−y) yq dy ≤
∞
∫

log(λ3−p
n )

e−y yq dy ≤ c3
logq(λn)

λ3−p
n

and
∣

∣

∣

∣

∣

∞
∫

λ3−p
n

sin(x)
logq x

x
dx

∣

∣

∣

∣

∣

≤ 2 (3 − p)q
logq(λn)

λ3−p
n

we deduce from (22) that

λ3−p
n /bn
∫

0

sin(bn t)

t Lp(t)
dt =

π

2λpn
− p γ π

2λp+1
n

+O(λ−3
n ) for p ∈ {1, 2, 3} .

Finally, after summarizing the above asymptotic relations we arrive at

π
∫

0

sin(bn t)S(t) dt = 2

an
∫

0

sin(bn t)

t L(t)
dt− 4 log 4

λn/bn
∫

0

sin(bn t)

t L2(t)
dt+O(λ−3

n )

=
π

λn
− π (γ + 4 log 2)

λ2n
+O(λ−3

n ) as n→ ∞ . (23)

Finally, by inserting the sum of this and relation (23) on the r.h.s. of (14) and having in mind

(9) we arrive at the desired estimate (20).

To accomplish the proof of Theorem 1 we show that (20) implies (1) and vice versa. Since

P( log τ1 > x ) = P( τ1 > ex ) = P( τ1 > 2 bex/2c ) for x > log 2 we can use (20) for n = bex/2c
so that

P( log τ1 > x ) =
π

logbex/2c − π ( γ + 4 log 2 )
(

logbex/2c
)2 +O

( 1

x3

)

(24)

as x → ∞ . By definition of the floor function b·c we have log
(

ex/2 − 1
)

≥ log
(

bex/2c
)

>

log
(

ex/2
)

for x > log 2. Thus, by standard arguments, log
(

bex/2c
)

= x − log 2 − 4 θ e−x for

x ≥ log 4 showing that
(

log(bex/2c)
)−1

= x−1 + log 2x−2 + log2 2x−3 + O(x−4) as x → ∞ .

Obviously, (1) follows by inserting the latter relation on the r.h.s. of (24). Using the same

arguments we get (20) by setting x = log(2n) = log n+ log 2 in (1). This completes the proof of

Theorem 2. 2
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Remark 2. The approximation of P(τ1 > 2n) by linear combinations of powers (log n)−k,

k = 1, 2, ..., in (20) can be improved by a higher-order expansion of the integrals in (22). A

rather lengthy computation using the improper integral

∞
∫

0

sin(x)

x
L2(x) dx =

π

24

(

12 γ2 + π2
)

, see [6] (p. 627)

enables us to replace the remainder term O
(

(log n)−3
)

by π
(

(γ + 4 log 2)2 − π2/6
)

(log n)−3 +

O
(

(log n)−4
)

.

4 Proof of Theorem 2

The proof of Theorem 2 is based on the following famous result due to C.-G. Esseen which

allows to estimate the Kolmogorov distance between distribution functions by the nearness of

their characteristic functions, see [4] (pp. 510 - 512) for details and proof.

Lemma 5. (Esseen’s smoothness lemma) Let F be a non-decreasing function on R
1 and let G be

a function of bounded variation with bounded derivative G′ on R
1 such that F (±∞) = G(±∞).

Then for arbitrary T > 0

sup
x∈R1

|F (x)−G(x) | ≤ 1

π

T
∫

−T

∣

∣

∣

f(t)− g(t)

t

∣

∣

∣
dt+

24

π T
sup
x∈R1

|G′(x)| , (25)

where f and g denote the corresponding Fourier-Stieltjes transforms of F and G, respectively.

We will apply Lemma 5 in case of the distribution functions

F (x) = P

( 1

n

n
∑

i=1

log τi − π log n− κ ≤ x
)

and G(x) = P(S ≤ x) =

∫ x

−∞
p(u) du

Since G′(x) = p(x) is bounded, we put T := δ n/ log2 n for any integer n ≥ 2 with an ap-

propriately chosen number δ > 0 (not depending on n), and then it remains to show that
∫ T
−T | f(t) − g(t) | |t|−1dt ≤ c4 T

−1 for some constant c4 > 0 , where, using the notation intro-

duced in Sect. 1,

f(t) = e−it ( π logn+κ )
(

E exp
{ it

n
log τ1

})n
and g(t) = Eeit S = e−π2 |t|/2−i π t log |t| .

In order to apply the estimate | log(z) − (z − 1)| ≤ |z − 1|2 , which holds for z ∈ C
1 satisfying

|z − 1| ≤ 1/2 , we next examine the term E exp
{

it
n log τ1

}

− 1 for |t| ≤ T .
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By applying the partial integration formula and Lemma 1 we may carry out the following de-

composition:

Eeit log τ1 − 1 = −
∞
∫

log 2−0

(

eitx − 1
)

dP(log τ1 > x) = eit log 2 − 1 + it

∞
∫

log 2

eitx P(log τ1 > x)dx

= eit log 2 − 1 + it

∞
∫

log 2

(

eitx − 1
) (

P(log τ1 > x)− π/x− c0/x
2
)

dx

+ itπ

∞
∫

log 2

( cos(tx)

x
+ i

sin(tx)

x

)

dx+ itc0

∞
∫

log 2

eitx − 1

x2
dx+ it µ

with the finite number µ :=
∫∞
log 2

(

P(log τ1 > x) − π/x
)

dx , which can be considered as some

kind of first-order pseudomoment, see [2] (p. 25) for details. By means of the inequalities

|eix − 1| ≤ |x| and |eix − 1− ix| ≤ x2/2 for x ∈ R
1 combined with (1) we may proceed with

Eeit log τ1 − 1 = it
(

log 2 + µ
)

+ it π

∞
∫

|t| log 2

( cos(x)

x
+ i sgn(t)

sin(x)

x

)

dx− t2 c0

1/|t|
∫

log 2

dx

x

− t c0

1/|t|
∫

log 2

sin(tx)− tx

x2
dx− t c0

∞
∫

1/|t|

sin(tx)

x2
dx+ c5 t

2 θ .

Now, we quote from [6] (p. 936) and [8] (p. 53) the relation

∫ ∞

y

cos(x)

x
dx =

∫ y

0

1− cos(x)

x
dx− γ − log y for y > 0 ,

which, for y = |t| log 2 , yields that
∫∞
|t| log 2

cos(x)
x dx = −γ−log log 2−log |t|+θ log 4

4 t2. Obviously,

both integrals in the last line are bounded by c6 t2 so that together with
∫∞
|t| log 2

sin(x)
x dx = π

2+|t| θ
we arrive at

Eeit log τ1 − 1 = it
(

log 2− π γ − π log log 2 + µ
)

− π2

2
|t| − it π log |t|+ c0 t

2 log |t|+ c7 t
2 θ

= log g(t) + it κ+ c0 t
2 log |t|+ c7 t

2 θ . (26)

Here we have additionally used the relation µ = κ− log 2+π(γ+log log 2) which follows directly

from (28) to be shown in the next Sect. 5. Since the mapping x 7→ x log(1/x) is stricly increasing

for x ∈ (0, 1/e], it readily seen from (26) that, for |t| ≤ ε n,

∣

∣Ee
it
n

log τ1 − 1
∣

∣ ≤
(

π2/2 + κ+ π log(1/ε)
)

ε+
(

c13 + c0 log(1/ε)
)

ε2 ≤ 1/2 ,
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where ε ∈ (0, 1/e) is chosen small enough to achieve the right-hand uniform bound. Hence, we

obtain that

log f(t) = −it (π log n+ κ ) + n
(

Ee
it
n

log τ1 − 1
)

+ n θ
∣

∣Ee
it
n

log τ1 − 1
∣

∣

2

= −π
2

2
|t| − itπ log |t| − c0

t2

n
log

n

|t| + c8 θ
t2

n
log2

n

|t| for |t| ≤ ε n .

The latter estimate implies that

| log f(t)− log g(t) | ≤ c9
t2

n

(

log2 n+ log2 |t|
)

≤ π2 |t|
4

for |t| ≤ T = δ n/ log2 n

for any n ≥ 2 and δ > 0 chosen sufficiently small. Finally, |g(t)| = exp{−π2 |t|/2} and an

application of the inequality |ez − 1| ≤ |z| e|z| for z = log f(t)− log g(t) yield

|f(t)− g(t)|
|t| = e−π2|t|/2 | exp{log f(t)− log g(t)} − 1|

|t| ≤ c9
|t|
n

(

log2 n+ log2 |t|
)

e−π2|t|/4

for |t| ≤ T . This estimate shows us that the integral over t ∈ [−T, T ] is bounded by c4 T−1 as

announced at the beginning of the proof. Thus, by means of Lemma 3 the proof of (2) is fin-

ished. In view of the monotonicity of the mapping x 7→ ex we may rewrite the above distribution

functions F and G as follows:

F (x) = P

( n
√
τ1 · · · τn
eκ nπ

≤ ex
)

and G(x) = P(eS ≤ ex) =

ex
∫

−∞

p(log u)
du

u
.

Substituting ex for x ∈ R
1 by y > 0 reveals that the l.h.s. of (3) is just equal to sup{ |F (x) −

G(x) | : x ∈ R
1 }. This completes the proof of Theorem 2. 2

5 Concluding Remarks

We first express the pseudomoment-like term µ in terms of the probabilities Q2k = P(τ1 = 2k)

and T2k = P(τ1 > 2k) , respectively. For this end we rewrite the integral
∫∞
log 2 as infinite sum as
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the follows

µ =

∞
∑

k=1

log(2k+2)
∫

log(2k)

(

P(log τ1 > x)− π/x
)

dx =

∞
∑

k=1

log(2k+2)
∫

log(2k)

(

P(log τ1 > log(2k)) − π/x
)

dx

= lim
n→∞

n−1
∑

k=1

(

T2k
(

log(k + 1)− log(k)
)

− π
(

log log(2k + 2)− log log(2k)
)

)

= lim
n→∞

(

n−1
∑

k=1

T2k log
(

1 +
1

k

)

− π log log n
)

+ π log log 2 (27)

= lim
n→∞

(

n−1
∑

k=2

Q2k log k +P( τ1 ≥ 2n ) log n− π log log n
)

+ π log log 2 .

From (1) we deduce that

µ = lim
n→∞

(

n
∑

k=2

Q2k log k − π log log n
)

+ π (1 + log log 2) (28)

Combining (28) and the definition of κ with the well-known limit γ∗ := limn→∞

[
∑n

k=2(k log k)−1−
log log n

]

≈ 0.7946786 , see [5] (p.32), leads to the series representation κ =
∑∞

k=2

[

P(τ1 =

2k) log k − π (k log k)−1
]

+ log 2 + π (1 − γ + γ∗) . It should be noted that the convergence of

the last series is very slowly. In view of (1) , T2 = 3/4 and the definition of γ∗ we may rewrite

the r.h.s. of (28) as follows:

µ = lim
n→∞

(

n
∑

k=2

{

T2k log
(

1 +
1

k

)

− π

k log k

})

+
3

4
log 2 + π (γ∗ + log log 2)

=

∞
∑

k=1

T2k

[

log
(

1 +
1

k

)

− 1

k

]

+

∞
∑

k=2

1

k

(

T2k −
π

log k

)

+
3

4
+ π (γ∗ + log log 2) .

Note that (1) ensures the convergence of the both series and by µ = κ− log 2 + π(γ + log log 2)

we get the alternative representation κ =
∑∞

k=1 T2k
[

log
(

1 + 1
k

)

− 1
k

]

+
∑∞

k=2
1
k

(

T2k − π
log k

)

+

0.75 + log 2 + π (γ∗ − γ) .

The computation of the constant κ consists in evaluating the partial sums sn =
∑n

k=2Q2k log k ,

where the Q2k
′s can be determined from the recursive relation (4) or from the closed formula

(6). The approximate value κ ≈ −6.6947 given in Theorem 2 is obtained via computing s200.000,

however, without numerical error analysis. Alternatively, one can determine the tail probabilities

T2n successively by the recursive equation T2n = 1 −∑n
k=1 P2k T2n−2k (which can be found in

analogy to (4)) with T0 = 1 for n = 1, 2, . . .. This yields T2 = 3/4, T4 = 43/64, etc. and allows

to evaluate the above series representations of κ derived from (28).
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6 Appendix: Asymptotic behaviour of the second integral of (15)

In this supplementary section we derive (20) once more by investigating the second integral
∫ π
0 cos(bn t)C(t) dt on the r.h.s. of (14). By the same arguments which have been used to show

(21) we obtain that

π
∫

ε

cos(bn t)C(t) dt =

π
∫

ε

cos(bn t)
(

c(1)ε (t)− c(2)ε (t)
)

dt = O(b−1
n ) as n→ ∞ (29)

for any fixed ε > 0 . We may put ε = ε0 with ε0 from Lemma 4. Next we treat the remaining

part of the second integral occurring in (14) and (15), respectively. For this purpose we split
∫ ε0
0 cos(bn t)C(t) dt according to the representation (19) of C(t) as follows:

ε0
∫

0

cos(bn t)C(t) dt = π

( λnb
−1
n

∫

0

+

ε0
∫

λnb
−1
n

)

cos(bn t)

t L2(t)
dt− 4π log 4

( b−1
n
∫

0

+

ε0
∫

b−1
n

)

cos(bn t)

t L3(t)
dt

+

( (λnbn)−1
∫

0

+

ε0
∫

(λnbn)−1

)

cos(bn t)C0(t) dt .

From Lemma 4 we see that |C0(t) | ≤ c10/t L
4(t) for 0 < t ≤ ε0 and this in turn implies that

∣

∣

∣

∣

∣

(λnbn)−1
∫

0

cos(bn t)C0(t) dt

∣

∣

∣

∣

∣

≤ c10

λ−1
n
∫

0

dt

t (λn + L(t))4
x=L(t)
= c10

∞
∫

log λn

dx

(λn + x)4
=

c10
3 (λn + log λn)3

.

Since, in addition, C0(t) is monotonic for 0 < t ≤ ε0 it follows by applying the above Lemma 2

that

ε0
∫

(λnbn)−1

cos(bn t)C0(t)dt =
C0((λnbn)

−1)

bn

ξbn
∫

λ−1
n

cos(x)dx+
C0(ε0)

bn

ε0bn
∫

ξbn

cos(x)dx =
2 c10 θ

λ3n
+O(b−1

n ) .

Once more applying (16) with f(t) = 1/(t Lp(t)) , g(t) = cos(bn t) and a = λ3−p
n /bn , b = ε0 for

p ∈ {2, 3} yields with some ξ ∈ [λ3−p
n /bn, ε0] that

ε0
∫

λ3−p
n /bn

cos(bn t)

t Lp(t)
dt =

bn

λ3−p
n (λn − log(λ3−p

n ))
p

ξ
∫

λ3−p
n /bn

cos(bn t) dt+O
( 1

bn

)

= O(λ−3
n )

17



as n→ ∞ . Hence, by combining (29)with the other just proved estimates we have

π
∫

0

cos(bn t)C(t) dt = π

λn/bn
∫

0

cos(bn t)

t L2(t)
dt− 4π log 4

1/bn
∫

0

cos(bn t)

t L3(t)
dt+O(λ−3

n ) (30)

as n → ∞ . It remains to evaluate the two integrals in the last line up the asymptotic order

O(λ−3
n ) . It is readily seen that

1/bn
∫

0

cos(bn t)

t L3(t)
dt

s=bn t
= −

1
∫

0

cos(s)

(λn + L(s))3
dL(s)

s=e−x

=

∞
∫

0

cos(e−x) dx

(λn + x )3

=

∞
∫

λn

dx

x3
−

∞
∫

0

(1− cos(e−x)) dx

(λn + x )3
=

1

2λ2n
+O(λ−3

n ) . (31)

After splitting the first integral
∫ λn/bn
0 =

∫ 1/bn
0 +

∫ λn/bn
1/bn

we use the previous substitutions leading

to

λn/bn
∫

0

cos(bn t)

t L2(t)
dt =

1

λn
−

∞
∫

0

(1− cos(e−x)) dx

(λn + x )2
+

λn
∫

1

cos(t)

t log2(bn/t)
dt

By the inequality 1− cos(e−x) ≤ e−2x/2 it follows that

∞
∫

0

(1− cos(e−x)) dx

(λn + x )2
=

1

λ2n

log λn
∫

0

(1− cos(e−x)) dx

( 1 + x/λn )2
+O(λ−3

n )

=
1

λ2n

log λn
∫

0

(1− cos(e−x)) dx+O(λ−3
n ) =

1

λ2n

1
∫

0

1− cos(x)

x
dx+O(λ−3

n ) .

Using the expansion (1 − log(t)/λn)
−2 = 1 + 2 log(t)/λn +O(log2 λn/λ

2
n) for 1 ≤ t ≤ log λn we

find in analogy to (22) that

λn
∫

1

cos(t)

t log2(bn/t)
dt =

1

λ2n

λn
∫

1

cos(t) dt

t ( 1− log(t)/λn )2
=

1

λ2n

λn
∫

1

cos(t)

t
dt+O(λ−3

n ) ,

where λn in the integral on the r.h.s. can be replaced by ∞. Thus, by combining the above

estimates with the identity
∫ ∞

y

cos(x)

x
dx =

∫ y

0

1− cos(x)

x
dx− γ − log y , see [6] (p. 936) and [8] (p. 53)

18



at y = 1 we are directly led to

λn/bn
∫

0

cos(bn t)

t L2(t)
dt =

1

λn
− γ

λ2n
+O(λ−3

n ) ,

whence together with (31) we obtain from (30) that

π
∫

0

cos(bn t)C(t) dt =
π

λn
− π (γ + 4 log 2)

λ2n
+O(λ−3

n ) as n→ ∞ ,

which confirms (20) once more.
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