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1. Introduction

Physical properties of doped manganites remain the

subject of intensive investigations. Initiated by the

observation of colossal magnetoresistance [1] at the me-

tal-to-insulator transition, the research efforts have been

extended to the properties of different phases ranging

from a ferromagnetic (FM)metal to an antiferromagnetic

(AFM) insulator.

Among the topics still under debates is the low-doping
part of the complex phase diagram of manganites [2].

The parent compounds, like LaMnO3 or CaMnO3 reveal

antiferromagnetically ordered magnetic structure at low

temperatures. Sr or Ca-doped LaMnO3 with doping

levels slightly larger than �10% becomes ferromagnetic

insulators. Two possible scenarios can be imagined for

the intermediate doping region between FM and AFM

configurations. The first one is strongly favored theo-
retically [3] and assumes a phase separation into pure

ferro- and antiferromagnetic regions with a doping-
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dependent volume ratio. The second scenario is based on

a canted magnetic structure and corresponds to classical
description of a doped antiferromagnet. The latter model

was applied to the manganites already by de Gennes [4].

A recent discussion of this problem can be found in [5].

Magnetic resonances depend upon the local configu-

ration of the magnetic moments and therefore provide

important microscopic information about the magnetic

structure on the atomic length scale. In this paper we

analyze the consequences of the canted magnetic struc-
ture for the magnetic field-dependence of the antiferro-

magnetic resonances. We include new terms in the free

energy in order to take into account the latest develop-

ments in the physics of manganites. On the basis of the

presented model additional properties of the system can

be calculated like field-dependent magnetization along

different crystallographic directions.
2. Model of a canted structure

The model of a canted structure assumes the existence

of two magnetic sublattices (~M1, ~M2) which are not ex-

actly antiparallel, but oriented under an angle h < 180�.
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As a working example, lightly Sr- or Ca-doped ortho-
rhombic LaMnO3 (space group Pbnm) can be consid-

ered. A canted A-type antiferromagnetic structure has

been found in these compounds by neutron scattering

[6]. A model similar to presented here has been applied

to the manganites by de Gennes [4]. To account for the

experimental data on manganites, an anisotropic con-

tribution [7], as well as the contribution of the Dzyalo-

shinsky–Moria (DM) exchange [7,8] to the free energy
were taken into account. With these additional terms the

free energy of the system at zero temperature can be

written as:

F ð~m;~lÞ ¼ 1

2
A~m2

zfflffl}|fflffl{ð1Þ

� Bj~mj
zffl}|ffl{ð2Þ

þ 1

2
Kxðm2

x þ l2xÞ þ
1

2
Kzðm2

z þ l2z Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ð3Þ

� d1mzly � d2mylz|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ð4Þ

�M0~m~H|fflfflffl{zfflfflffl}
ð5Þ

: ð1Þ

In Eq. (1), ~m and ~l are dimensionless ferro- and anti-

ferromagnetic vectors, which are defined as ~m ¼ ð~M1þ
~M2Þ=2M0,~l ¼ ð~M1 � ~M2Þ=2M0 and satisfy the conditions

~m~l ¼ 0; ~m2 þ~l2 ¼ 1 ð2Þ
since the sublattices ~M1 and ~M2 are assumed to be sat-

urated at T ¼ 0, and M0 ¼ j~M1j ¼ j~M2j is the saturation
magnetization of the sublattices. Eq. (1) can be divided

into five main contributions (indicated in Eq. (1)), which

will be described below.

• Antiferromagnetic exchange (1). It accounts for the

antiferromagnetic coupling of the ferromagnetic

planes due to the super-exchange interaction Jij~Si~Sj.
The exchange constant A is given by the super-ex-

change integral along the c-axis Jk: A ¼ �2NzJkS2,
where N is the number of the magnetic ions and

z ¼ 2 is the number of the nearest Mn neighbors

along c.

• Double exchange (2). The double exchange [9] is a

competing interaction to the (1) and causes a FM

coupling between the Mn ions due to strong depen-
dence of the transfer energy tij of eg electrons(holes)

on a respective orientation hij of neighboring Mn

spins ~Si and ~Sj: tij ¼ tk;?cosðhij=2Þ ¼ tk;? j~Si �~Sj j
=2S, where tk;? are the transfer integrals along and

perpendicular to the c-axis, respectively. In the two-

sublattice approximation the angle-dependent part

of this interaction is reduced to the second term of

Eq. (1) with a constant B ¼ xNztk=2, where x is the
concentration of the holes, i.e., Mn4þ-ions in doped

manganite.

• Anisotropy energy (3) and DM-interaction (4). The

anisotropic terms result from the single-ion anisot-

ropy determined by the crystal field (CF) acting on

Mn3þ ions DS2fi þ EðS2ni � S2giÞ, where Sni; Sgi; Sfi are

the spin components in the local axes of Mn3þ related

to the Mn–O bonds of the MnO6 octahedra, and
from the antisymmetric Dzyaloshinsky–Moriya ex-
change Ri;j

~d ij½~Si~Sj�. The contributions of these inter-

actions to Kx;z and d1;2 are determined both by the

parameters of the CF and DM Hamiltonians as well

as an orientation of their local axes with respect to

the crystallographic ones, implying a dependence on

the crystal distortions [10,11]. These interactions lead

to Kx;z > 0 and a stabilization of the AyFz configura-

tion in lightly doped LaMnO3. Here AyFz indicates
AFM-order alongy (crystallographic b-axis) and

FM-order along z (crystallographic c-axis). In gen-

eral, a contribution to a weak ferromagnetic moment

is determined both by the DM-exchange (d� ¼ d1
�d2 6¼ 0) and the single-ion anisotropy (dþ ¼ d1þ
d2 6¼ 0).

• External magnetic field (5). The contribution of the

external field to the free energy is determined by the
corresponding g-factors of Mn3þ and Mn4þ ions,

which are, in general, slightly anisotropic. Neglecting

this anisotropy and assuming g¼ 2, the correspond-

ing Zeeman interaction can be expressed via the sat-

uration magnetization, which in a case of doped

manganites is given by: M0 ¼ ð1� xÞM0ðMn3þÞþ
xM0ðMn4þÞ ¼ 4lB � ð1� xÞ þ 3lB � x.
The equilibrium arrangement of the sublattices can be

obtained minimizing the free energy given by Eq. (1):
oF
o~m ¼ oF

o~l
¼ 0. The frequencies of the resonance modes are

calculated in the limit of small perturbations from the

equations of motion

M0

c
_~m ¼ ~m� o~F

o~m

h i
þ ~l� o~F

o~l

h i
M0

c
_~l ¼ ~m� o~F

o~l

h i
þ ~l� o~F

o~m

h i
8<
: ; ð3Þ

where c ¼ 2lB=�h is the gyromagnetic ratio.

In the limit of small perturbations (~m ¼ ~m0þ
D~m and~l ¼~l0 þ D~l) the linearized equations of motion

take the form:

M0

c D
_~m¼ D~m�~F 0

m

h i
þ ~m0 �D~F m

h i
þ D~l�~F 0

l

h i
þ ~l0 �D~F l

h i
M0

c D
_~l¼ D~m�~F 0

l

h i
þ ~m0 �D~F l

h i
þ D~l�~F 0

m

h i
þ ~l0 �D~F m

h i
8<
: ;

ð4Þ

where the following definitions have been applied:

~F 0
m � o~F

o~m0
; ~F 0

l �
o~F

o~l0
;

D~F m � D~m
o~F

o~m0o~m0
þ D~l

o~F

o~m0o~l 0
þ D~H

o~F

o~m0o ~H 0
; and

D~F l � D~m
o~F

o~l0o~m0
þ D~l

o~F

o~l0o~l 0
þ D~H

o~F

o~l0o~H 0
:

The superscript ‘‘0’’ indicates the static equilibrium

value of the variables. Solving Eq. (4) the magnetic

field dependence of the AFMR (antiferromagnetic
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resonance) modes can be obtained. In the following the
solution will be presented for the external magnetic field

along the main crystallographic directions.

2.1. External magnetic field along the c-axis

In the geometry Hkc the solution for the AFMR-

modes takes the most simple form. In this case the

equilibrium coordinates of the magnetic vectors contain
one component only: ~m0 ¼ ð0; 0;m0

z Þ;~l0 ¼ ð0; l0y ; 0Þ. To
simplify the expressions, we omit the index ‘‘0’’ and

denote m and l to be the equilibrium values of the ferro-

and antiferromagnetic vectors (see Fig. 1).

Separation of Eq. (4) into scalar equations for the

spatial coordinates (x; y; z) leads to six scalar equations.

However, for a geometry Hkc these equations can be

separated into two independent groups, which therefore
represent two independent antiferromagnetic modes.

The first group involves the components (Dmx, Dmy , and

Dlz) and the corresponding mode can be termed a fer-

romagnetic-like mode, the F-mode:

M0

c D _mx ¼ DmyF 0
m;z � DlzF 0

l;y � mzDFm;y þ lyDFl;z;
M0

c D _my ¼ �DmxF 0
m;z þ mzDFm;x;

M0

c D _lz ¼ DmxF 0
l;y � lyDFm;x:

8><
>: ð5Þ

The second group of the linearized equations of motion

includes (Dmz;Dlx, and Dly) and describes the behavior

of the AF-mode:

M0

c D _mz ¼ DlxF 0
ly
� lyDFlx ;

M0

c D _lx ¼ �DmzF 0
ly
� mzDFly þ DlyF 0

mz
þ lyDFmz ;

M0

c D _ly ¼ mzDFlx � DlxF 0
mz
:

8><
>: ð6Þ

From the normalization conditions for the vectors~l
and ~m (Eq. (2)) the following relations follow:

Dly ¼ �Dmz
mz
ly
and Dlz ¼ �Dmy

ly
mz
. Therefore, each set of

equations for F- and AF-modes contains two indepen-

dent equations, only. Searching for the harmonic
(Dm;Dl / e�ixt) solution the following equations for the

resonance frequencies are obtained:

F-mode:
Fig. 1. Geometry of the magnetic sublattices for external field parallel

to the c-axis.
ix Kzðm2
z � l2yÞ=mz�M0Hz�2dþly

mzðKx�KzÞþd1ly þM0Hz ix

����
����¼ 0

ð7Þ

AF-mode:

ix �ðd1mz þ KxlyÞ
lyðAþ KzÞ þ d1mzð3þ m2

z=l
2
yÞ ix

����
���� ¼ 0;

ð8Þ

where dþ ¼ d1 þ d2. Here we used the equality

F 0
mz

¼ mz
ly
F 0
ly

which follows from the equilibrium

conditions. We further recall that mz ¼ cos h
2

and

ly ¼ sin h
2
, where the angle between the sublattice mag-

netizations had been obtained from the minimum of the

free energy:

cos
h
2
¼

BþM0Hz þ d1 sin h
2

Aþ Kz þ d1 cot h2
: ð9Þ

Now the solution for the frequencies of both AFMR

modes can be written explicitly:

M2
0

c2
x2

F ¼ M0Hz cos
h
2
þ dþ sin h� Kz cos h

� �
� d1 sin

h
2

�

þM0Hz þ ðKx � KzÞ cos
h
2

��
cos

h
2
; ð10Þ

M2
0

c2
x2

AF ¼ Kx sin
h
2
þ d1 cos

h
2

� �
� ðAþ KzÞ sin

h
2

�

þ 3þ cot2
h0
2

� �
� d1 cos

h
2

�
: ð11Þ
Two modes can be separated into oscillations of the

ferro- and antiferromagnetic vectors and are shown in

Fig. 2. The AFMR-modes can therefore be termed

quasi-ferromagnetic (F-mode) and quasi-antiferromag-

netic (AF-mode) resonances. The interaction of the
modes with the electromagnetic field is realized via the

term (M0~m � ~H ) in the free energy, Eq. (1). The oscilla-

tions in the F-mode involve the following components

of the magnetic vectors: ma;mb, and lc (Fig. 2, left pa-

nel). This mode can therefore be excited by the elec-

tromagnetic wave with the ac-magnetic field (~h) having a

nonzero component in the ab-plane. By analogy, the

AF-mode (Fig. 2, right panel), which involves (mc; la; lb)
is excited for (~h) parallel to the c-axis [12].

2.2. External magnetic field along the a-axis

For external magnetic fields along the a-axis, the

canted spin-configuration is additionally tilted in the

x-direction as shown in Fig. 3. The equilibrium coor-

dinates of the magnetic vectors read now:



Fig. 2. Antiferromagnetic modes of a canted antiferromagnet. The

magnetic moments of the two sublattices ~M1 and ~M2 correspond to

adjacent ab-layers in lightly doped LaMnO3 and are brought to the

same point for simplicity. m ¼ ð~M1 þ ~M2Þ=2M0, ferromagnetic mo-

ment; l ¼ ð~M1 � ~M2Þ=2M0, antiferromagnetic moment. The oscilla-

tions corresponding to two possible modes are also shown (ellipses and

double arrows). The quasi-ferromagnetic mode (F) is excited by ~hka
and ~hkb, the quasi-antiferromagnetic mode (AF) by ~hkc.

Fig. 3. Orientation of the magnetic sublattices in the external field

parallel to the a-axis.
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~m ¼ ðmx; 0;mzÞ �
�
cos

h
2
cosu; 0; cos

h
2
sinu

�
;

~l ¼ ð0; ly ; 0Þ � 0; sin
h
2
; 0

� �
:

The equilibrium values of the angle h and u are ob-
tained in analogy to the previous subsection solving the

equations:

ðKz � KxÞ cos
h
2
cosu sinuþM0H sinu� d1 sin

h
2
cosu

¼ 0; and ð12Þ

� 1

2
½Aþ Kx cosu

2 þ Kz sinu
2� sin hþ ½BþM0H cosu�

� sin
h
2
� d1 sinu cos h ¼ 0: ð13Þ
Two antiferromagnetic modes cannot be separated in
this case and are therefore coupled. A procedure, similar

to that of the previous section, leads finally to the fol-

lowing equation for the resonance frequencies:

ix 0 D13 D14

0 ix D23 D24

D31 D32 ix 0

D41 D42 0 ix

��������

�������� ¼ 0: ð14Þ

Here the elements of the matrix in Eq. (14) are given by

D13 ¼ �Kz

l2y � m2
z

mz
� 2dþly ;

D14 ¼ �Kz
mxly
mz

� dþmx;

D23 ¼ M0Hx � Kxmx � d2
mxly
mz

;

D24 ¼ �lyKx �
d1m2

z þ d2m2
x

mz
;

D31 ¼ ðKx � KzÞmz þ d1
l2y � m2

x

ly
;

D32 ¼ ðKx � KzÞmx �M0Hx � d1
mxmz

ly
;

D41 ¼ �mx

ly
A

��
þ Kz �

B
m3

�
mz � 2d1ly

�
;

D42 ¼ ly A
�

þ Kz � B
m2

x

m3

�
þ d1mz 3þ m2

z

l2y

!
:

Eq. (14) leads to two possible resonance frequencies:

� M0

c
x1;2

� �2

¼ E �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ Q

p
; with ð15Þ

E ¼ 1

2
ðD13D31 þ D23D32 þ D42D24 þ D14D41Þ; and

Q ¼ D42D31D23D14 þ D41D13D24D32

� D42D24D13D31 � D41D14D32D23:
2.3. External magnetic field along the b-axis

The external magnetic field parallel to the b-axis leads
to the rotation of the magnetic moments in the bc-plane

by an angle / (Fig. 4). In high magnetic fields a spin–

flop transition takes place within this geometry, i.e., the

magnetic moments rotate by / ¼ p=2 from the field-free

position. In this case the ferromagnetic vector ~m is ori-

ented along the b-axis after the transition.

The equilibrium position of the magnetic vectors
~m0¼ð0;my ;mzÞ�ð0;cosh

2
sin/;cosh

2
cos/Þ;~l0¼ð0;ly ;lzÞ�

ð0;sinh
2
cos/;�sinh

2
sin/Þ in low fields, i.e., below a



Fig. 4. Orientation of the magnetic sublattices in the external field

parallel to the b-axis.
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threshold field of the spin–reorientation (spin–flop)

transition, is determined by the set of equations

ðM0HÞ2 Kz cos
h
2

�
þ dþ sin

h
2

�

¼ Kz cosh½ � dþ sinh�2 � ðA
"

þKzÞ cos
h
2
þ d1 cosh

sin h
2

� B

#
;

ð16Þ

sin/ ¼
M0H cos h

2

Kz cos hþ dþ sin h
: ð17Þ

Above the threshold field, i.e., in the state / ¼ p=2
(mkb), the angle h is calculated from

M0H ¼ ðA� KzÞ cos
h
2
� d2 cos h

sin h
2

� B: ð18Þ

The threshold field, above which this state is stable, is

determined from Eq. (16) with the critical value of the
angle h given by:

A
�

þ Kz � d2 cot
h
2

�
cos2

h
2
� B
�

� d2 sin
h
2

�
cos

h
2
� Kz

� dþ sin h ¼ 0 ð19Þ

As in the case ~Hka the antiferromagnetic modes cannot

be separated. The resonance frequencies are determined

by

ix D12 D13 0

D21 ix 0 D24

D31 0 ix D34

0 D42 D43 ix

��������

�������� ¼ 0; ð20Þ

Here the elements of the matrix in Eq. (20) are given by

D12¼M0HyþKzðmyþa1lyþa3lzÞþdþðlzþa1mzþa3myÞ;
D13¼Kzðmz�a1lzþa2lyÞ�dþðly�a1my�a2mzÞ;
D21¼�d2lz�Kxmy�M0Hy ;

D24¼�d1mz�Kxly ;

D31¼ðKx�KzÞmzþd1ly ;

D34¼ðKx�KzÞlzþd2my ;

D42¼ðAþKzÞly�B
my

m3
ðmzlzþmylyÞþa1Kzðmyþlzða2�a3ÞÞ

þd1½mzð2þa21þa23Þ�a3ly ��a1d2½lzþða3�a2Þmy �;
D43¼�AlzþB
mz

m3
ðmzlzþmylyÞþKzðlzð1þa21þa22Þþa2myÞ

�d2½ð2þa21þa22Þmy�a2lz�þa1d1½lyþða2�a3Þmz�;

with the parameters a1;2;3 defined as

a1 ¼
mzmy � lzly
mylz � mzly

; a2 ¼
m2

y � l2y
mylz � mzly

;

a3 ¼
l2z � m2

z

mylz � mzly
;

These equations remain valid above the spin–flop tran-

sition as well, with the angle h obtained from Eq. (18)

and with / ¼ p=2. Eq. (20) finally leads to the solution

for resonance frequencies

� M0

c
x1;2

� �2

¼ E �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ Q

p
; with ð21Þ

E ¼ 1

2
ðD24D42 þ D34D43 þ D12D21 þ D31D13Þ; and

Q ¼ D12D31D43D24 þ D13D21D34D42 � D12D21D34D43

� D13D31D24D42:

Above the spin–flop transition field the modes become

uncoupled and their frequencies read �ðM0

c xFÞ2 ¼
D31D13 and �ðM0

c xAFÞ2 ¼ D24D42, similar to the case

Hkc.

2.4. Discussion

To understand the physics of the problem, it is

instructive to consider a limiting case of small cant-

ing angles. Assuming ðB; d1;2;Kx;Kz;M0HÞ � A, the

approximate solution for the magnetization can be

written as:

Mx � M0mx ¼ v?HxðBþ d1Þ=d1; ~H ¼ ðHx; 0; 0Þ; ð22Þ

My � M0my ¼ vrotHy ; ~H ¼ ð0;Hy ; 0Þ; ð23Þ

Mz � M0mz ¼ M0
z þ v?Hz; ~H ¼ ð0; 0;HzÞ: ð24Þ

where M0
z � Ms ¼ M0ðBþ d1Þ=ðAþ KzÞ is the spontane-

ous magnetic moment along the c-axis, v? ¼
M2

0=ðAþ KzÞ and vrot ¼ M2
s =ðKz þ 2dþMs=M0Þ 	 M2

s =Kz

are the transverse and rotational susceptibilities,

respectively.

Within the same approximations the frequencies of

the AFMR modes for Hkc read:

M0

c
xF

� �2

¼ M0

c
x0

F

� �2

þ ðd1 þ 2dþÞM0Hz þ ðM0HzÞ2;

ð25Þ

M0

c
xAF

� �2

¼ M0

c
x0

AF

� �2

þ d1M0Hz; ð26Þ

where x0
F;AF are the frequencies at H ¼ 0



� �

Fig. 6. Magnetic field dependence of the AFMR frequencies in

La0:95Sr0:05MnO3 at low temperatures. Points, experiment [14]; lines,

model calculations.
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M0

c
x0

F

2

¼ AKz
d1

Bþ d1
ð27Þ

M0

c
x0

AF

� �2

¼ AKx þ d1ðd1 þ BÞ 	 AKx: ð28Þ

The analysis of Eq. (24) shows that the z-axis exhibits
weak ferromagnetism because the magnetization is non-

zero in the absence of an external magnetic field. The

magnetization along the y-axis (Eq. (23)) is determined by

the small rotational susceptibility and disappears in the

pure antiferromagnetic case ðB ¼ d1 ¼ 0Þ. The low-field

susceptibility along the x-direction (Eq. (22)) is enhanced
compared to the susceptibility along the z-axis by the

factor ðBþ d1Þ=d1. Qualitatively similar behavior of the

magnetization is observed in Fig. 5 [14]. The solid lines in

Fig. 5 were calculated using the field dependence of the

magnetization angles Eqs. (9), (12), (13), (16), and (17)

and describe the experimental data reasonably well. A

small static moment along the y-axis is possibly due to a

weak twinning of the sample. The absolute values of the
parameters of themodel were obtained by simultaneously

fitting the magnetization curves and the values of the

AFMR frequencies without external magnetic field

(mF ¼ 5:8 cm�1, mAF ¼ 13:8 cm�1). Despite the relatively

large number of parameters in Eq. (1) ðA;B; d1;2;Kx;KzÞ,
the requirement of a simultaneous fit of magnetization

and resonance frequencies leads to an unambiguous de-

termination of the parameters: A ¼ 4:67� 107 erg/g, B ¼
7:4� 106 erg/g, Kz ¼ 3:33� 106 erg/g, Kx ¼ 3:42 �
106 erg/g, d1 ¼ 2:1� 106 erg/g, andM0 ¼ 92:14 emu/g. In

these calculations we adopted that d2 	 �d1. These

parameters correspond to the average canting angle

180�� h ¼ 22�.
The presented two-sublattice model for manganites

has been successfully applied to the doping dependence
Fig. 5. Magnetization of La0:95Sr0:05MnO3 single crystal along different

crystallographic axes at T ¼ 4:2K [14]. Symbols represent the experi-

mental data, lines are calculated according to the presented model.
of the AFMR-modes in La1�xSrxMnO3 [13], and to the

magnetic-field dependence of the resonances in untwin-

ned La0:95Sr0:05MnO3 [14]. The magnetic field depen-

dencies of the resonance frequencies of both AFMR

lines are shown in Fig. 6. The solid lines in Fig. 6 were

calculated on the basis of the model discussed above.

However, the parameters of the model were already

fixed by fitting the magnetization curves and absolute
values of the AFMR frequencies in the absence of

magnetic field. Having this in mind, the theoretical

curves describe the experimental data reasonably well.

The most important feature of Fig. 6 is the softening of

the FM-mode for Bkb. This softening represents a

common property of magnetic resonance in antiferro-

magnets and is followed by the field-induced rear-

rangement of the magnetic structure (spin–flop) at a
critical value of magnetic field. The softening of the FM-

mode at low fields is in good agreement with the model

calculations. The behavior for higher fields (B�7T)

deviates significantly from the model predictions. These

deviations are most probably due to the extreme sensi-

tivity of the data with respect to the exact orientation of

the static magnetic field and the neglect of the higher-

order terms in Eq. (1). The angular dependence of a
critical behavior in a canted antiferromagnet has been

calculated in details by Hagedorn and Gyorgy [15].

These calculations show that already a misalignment of

the magnetic field as low as one degree strongly suppress

the softening of the FM-line in the vicinity of the critical

field. Most probably, similar effects explain the devia-

tions observed in Fig. 6. In addition, we note that the

AFMR modes obey the excitation conditions as de-
scribed discussing Fig. 2.
3. Conclusions

Two-sublattice model, which includes the double-ex-

change mechanism, have been applied to a canted
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magnetic structure. The static magnetization and the
AFMR resonance frequencies have been calculated for

external magnetic field along the principal crystallo-

graphic axes. As a working example, the magnetization,

positions and excitation conditions of the AFMR modes

in La0:95Sr0:05MnO3 single crystal have been calculated

and compared to the experimental data.
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