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Multivariate Poisson Distributions Associated
with Boolean Models

Christian Bräu and Lothar Heinrich 1

Abstract

We consider a d−dimensional Boolean model Ξ = (Ξ1 +X1) ∪ (Ξ2 +X2) ∪ · · · generated
by a Poisson point process {Xi, i ≥ 1} with intensity measure Λ and a sequence {Ξi, i ≥ 1}
of independent copies of some random compact set Ξ0 . Given compact sets K1, ...,K`,
we show that the discrete random vector (N(K1), . . . , N(K`)), where N(Kj) equals the
number of shifted sets Ξi+Xi hitting Kj , obeys a `−variate Poisson distribution with 2`−1
parameters. We obtain explicit formulae for all these parameters which can be estimated
consistently from an observation of the union set Ξ in some unboundedly expanding window
Wn (as n→∞) provided that the Boolean model is stationary. Some of these results can
be extended to unions of Poisson k−cylinders for 1 ≤ k < d and more general set-valued
functionals of independently marked Poisson processes.

Keywords : random closed sets, independently marked Poisson process, gen-
erating functional, multivariate probability generating function, higher-
order covariances, empirical volume fraction

AMS 2010 MSC : Primary: 60D05, 60E05; Secondary: 60E10, 62F10

1 Introduction and preliminaries

The Boolean model (briefly BM; also known as Poisson grain or Poisson blob model ) is one
of the best studied and most frequently used models to describe two-phase systems of random
sets which decompose the d-dimensional Euclidean space Rd into a vacant region (white) and
a region consisting of irregularly shaped clumps (black), see Fig.1. This clumping structure
is generated by unions of completely randomly distributed independent random compact sets,
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Figure 1: Realization of a 2D-Boolean model
with discs

Figure 2: Realization of a 2D-Poisson strip
process

see e.g. [12], [4], [13],[16],[2] for more details. To be precise, we first recall the definition of a
(not necessarily stationary) BM Ξ = ΞΛ,Q as countable union set

ΞΛ,Q =
⋃
i≥1

( Ξi +Xi ) (1.1)

of independent copies Ξ1,Ξ2, . . . of a generic random compact set Ξ0 (called typical grain) with
distribution Q (on the Borel σ-algebra B(Kd), where Kd denotes the metric space of non-empty
compact sets in Rd equipped with the Hausdorff metric), where the Ξi’s are independently
shifted by the atoms of the Poisson point process ΠΛ =

∑
i≥1 δXi with locally finite intensity

measure Λ on the Borel σ-algebra B(Rd). For notational ease, each atom of the locally finite
random counting measure ΠΛ occurs in the sum

∑
i≥1 resp. in the union

⋃
i≥1 according to

its multiplicity, where ΠΛ has multiple atoms iff Λ has atoms, see [16], p. 59. By definition of
ΠΛ , the random numbers ΠΛ(B1), . . . ,ΠΛ(B`) are mutually independent if the bounded sets
B1, . . . , B` ∈ B(Rd) are pairwise disjoint and ΠΛ(Bj) is Poisson distributed with mean Λ(Bj)
for j = 1, . . . , ` . The stationarity of ΠΛ and thus the stationarity of the BM (1.1) is equivalent
with the shift-invariance of the intensity measure Λ and this in turn means that Λ(·) = λ | · |d
with some constant λ > 0 (called intensity of the BM) and Lebesgue measure | · |d on B(Rd).
In what follows, ΞλQ will denote a stationary BM with intensity λ > 0.

The random union set ΞΛ,Q defined by (1.1) over some probability space [Ω,F ,P] (which
always exists) need not to be closed P-a.s., see e.g. [7] for counterexamples. The (P-a.s.)
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closedness of the BM (1.1) is guaranteed iff, for any r > 0 ,

0 <
∫
Rd

Q({K ∈ Kd : (K + x) ∩Bd
r 6= ∅}) Λ(dx) = EΛ

(
Bd
r ⊕ (−Ξ0)

)
<∞ , (1.2)

where Bd
r := {x ∈ Rd : ‖x‖ ≤ r} and A ⊕ B := {a + b : a ∈ A, b ∈ B} , see [12] and [5] as

special case of closedness conditions for general grain-germ models.

Under condition (1.2) the random variable

N(K) = # {i ≥ 1 : K ∩ (Ξi +Xi) 6= ∅} , (1.3)

taking values in Z+ = {0, 1, 2, . . .} is (as consequence of our model assumptions) Poisson
distributed with finite mean EΛ

(
K ⊕ (−Ξ0)

)
> 0 for each K ∈ Kd. In this paper we are

interested in the distribution of the Z`+-valued random vector
(
N(K1), . . . , N(K`)

)
for fixed

pairwise different, compact sets K1, . . . ,K` in Rd and any ` ≥ 2. Obviously, the components
N(Ki) are correlated random variables unless Ξ0 is bounded and the Ki’s are specially chosen.
In [1] the special case of two distinct points x, y ∈ Rd has been treated by a rather lengthy
explicit computation of the probabilities P(N({x}) = i,N({y}) = j) for i, j = 0, 1, . . .. In Sect.
2 we extend this result in two ways, namely, we consider more than two points x1, . . . , x` and
can even replace the xi’s by compact sets Ki. To avoid the awfully long computation of the
joint probabilities of {N(Ki) = ni}, i = 1, . . . , ` , we derive instead in Theorem 2.1 the shape
of the probability generating function (short: PGF)

E
[
z
N(K1)
1 · · · zN(K`)

`

]
=

∑
n1,...,n`≥0

zn1
1 · · · z

n`
` P(N(K1) = n1, . . . , N(K`) = n`) (1.4)

for z1, . . . , z` ∈ C1 satisfying max1≤i≤` |zi| ≤ 1.

It turns out that
(
N(K1), . . . , N(K`)

)
possesses an `-variate Poisson distribution. Since there

exist different multivariate extensions of the Poisson distribution, see e.g. [9], we recall the
definition of that `-variate Poisson distribution which seems to be most meaningful not only in
our situation. A random vector (N1, . . . , N`) with values in Z`+ is said to be `-variate Poisson
distributed if its PGF g(z1, . . . , z`) = E

[
zN1

1 · · · z
N`
`

]
possesses the form

g(z1, . . . , z`) := exp
{ ∑
∅6=J⊆L

µJ
∏
j∈J

(zj − 1)
}

= exp
{
γ∅ +

∑
∅6=J⊆L

γJ
∏
j∈J

zj
}

(1.5)

for all z1, . . . , z` ∈ C1 with positive expectations µi = ENi and further 2` − 1 − ` parameters
µJ ≥ 0 for J ⊆ L := {1, . . . , `}, #J = 2, . . . , `, where µJ coincides with the mixed (factorial)
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cumulant of the subvector (Nj)j∈J which have to satisfy the consistency conditions

γ∅ :=
∑
∅6=J⊆L

(−1)#JµJ < 0 and γI :=
∑

I⊆J⊆L
(−1)#(J\I)µJ ≥ 0 for ∅ 6= I ⊆ L . (1.6)

The conditions (1.6) are necessary (and sufficient) for a non-degenerate `-variate Poisson
distribution since (1.5) implies the relations ∂#I

(∂zi)i∈I log g(z1, . . . , z`) ≥ 0 for I ⊆ L and all
z1, . . . , z` ∈ [0, 1] and γ∅ = −

∑
∅6=I⊆L γI . Various structural properties of this multivari-

ate Poisson distribution are known : (i) its existence as limit of multivariate binomial dis-
tributions, see [10], (ii) its characterization by recurrence relations of the density functions
P(N1 = n1, . . . , N` = n`), see [11] and (iii) it is the only infinitely divisible distribution which
is marginally Poisson, see [3] and [9]. It is noteworthy to mention that µij = Cov(Ni, Nj) = 0
for i 6= j implies independence of the components Ni and Nj . On the other hand, µij = 0
for all pairs i, j ∈ L , i 6= j , #L ≥ 3, does not necessarily imply neither µL = 0 nor mutual
independence of the components N1, . . . , N`. The rest of this paper is organized as follows:
In the next Sect. 2 we formulate and prove the announced main result for BM’s. In Sect.
3 we shall discuss the parameters in case of a stationary BM and derive strongly consistent
estimators for all parameters occurring in the PGF (2.7) based on an single observation of
the union set (1.1) in an unboundedly increasing sampling window Wn. In the final Sect. 4
we extend Theorem 2.1 to other random set models driven by independently marked Poisson
processes.

2 Main result

Theorem 2.1. Let ΞΛ,Q be a BM as defined by (1.1) satisfying (1.2). Then the PGF of the
random vector

(
N(K1), . . . , N(K`)

)
with components defined by (1.3) for fixed K1, . . . ,K` ∈ Kd

such that min1≤i≤` EΛ(Ki ⊕ (−Ξ0)) > 0 takes the form

E
[
z
N(K1)
1 · · · zN(K`)

`

]
= exp

{ ∑
∅6=J⊆L

EΛ
( ⋂
j∈J

(Kj ⊕ (−Ξ0) )
) ∏
j∈J

(zj − 1)
}
, (2.7)

where the sum
∑
∅6=J⊆L runs over all 2` − 1 non-empty (unordered) subsets J of L. In other

words,
(
N(K1), . . . , N(K`)

)
possesses an `-variate Poisson distribution with parameters

µJ = µΛ,Q(KJ) := EΛ
( ⋂
j∈J

(Kj ⊕ (−Ξ0))
)

for ∅ 6= J ⊆ L (2.8)

and the consistency relations (1.6) are fulfilled with γJ = γΛ,Q(KJ) defined by

γΛ,Q(KJ) := EΛ
( ⋂
j∈J

(Kj ⊕ (−Ξ0) )
)
−EΛ

( ⋂
j∈J

(Kj ⊕ (−Ξ0) ) ∩
⋃

j∈L\J
(Kj ⊕ (−Ξ0))

)
(2.9)
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for ∅ ⊆ J ⊆ L

Proof. For each copy Ξi of the typical grain Ξ0 and any compact set K 6= ∅, it is evident that

K ∩ (Ξi +Xi) 6= ∅ iff Xi ∈ K ⊕ (−Ξi) .

Therefore, using the indicator function 1B(x) (= 1 for x ∈ B and = 0 otherwise) we may write
N(K) as sum

N(K) = #
{
i ≥ 1 : K ∩ (Ξi +Xi) 6= ∅

}
=
∑
i≥1

1K⊕(−Ξi)(Xi) .

Hence, for z1, . . . , z` ∈ C1 we may express the PGF of
(
N(K1), . . . , N(K`)

)
as follows:

E
[
z
N(K1)
1 · · · zN(K`)

`

]
= E

[∏
i≥1

(
z

1K1⊕(−Ξi)(Xi)
1 · · · z

1K`⊕(−Ξi)(Xi)
`

)]
.

Next, we make use of the probability generating functional GΛ,Q[v] = E
[∏

i≥1 v(Xi,Ξi)
]
of an

independently marked Poisson process ΠΛ,Q =
∑
i≥1 δ[Xi,Ξi] on Rd×Kd with intensity measure

Λ and mark distribution Q. GΛ,Q[v] possesses a comparatively simple shape, see e.g. [16] (p.
65) or [2], namely,

GΛ,Q[v] = exp
{∫

Rd

∫
Kd

(
v(x,K)− 1

)
Q(dK) Λ(dx)

}
(2.10)

for any Borel-measurable function v |Rd ×Kd −→ C1 satisfying∫
Rd

∫
Kd | v(x,K)− 1 |Q(dK) Λ(dx) <∞ .

In the particular case v(x,K) =
∏`
j=1 z

1Kj⊕(−K)(x)
j the latter condition is an immediate conse-

quence of (1.2). By applying the obvious identities z1B(x) = 1 + 1B(x)(z − 1) and

∏
j∈L

(1 + aj) = 1 +
∑
∅6=J⊆L

∏
j∈J

ai (2.11)

for any a1, . . . , a` ∈ C , where the sum
∑
∅6=I⊆L runs over all non-empty index sets I ⊆

{1, . . . , `}, we can express v(x,K)− 1 as follows:

v(x,K)− 1 =
∏
j∈L

(
1 + 1Kj⊕(−K)(x)(zj − 1)

)
− 1 =

∑
∅6=I⊆L

∏
i∈I

(
(zi − 1)1Ki⊕(−K)(x)

)
.

By using the relation 1A(x) 1B(x) = 1A∩B(x) and combined with a multiple application of
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Fubini’s theorem we arrive at

E
[
z
N(K1)
1 · · · zN(K`)

`

]
= exp

{ ∑
∅6=J⊆L

∏
j∈J

(zj − 1)
∫
Rd

∫
Kd

∏
j∈J

1Ki⊕(−K)(x)Q(dK) Λ(dx)
}

= exp
{ ∑
∅6=J⊆L

∏
j∈J

(zj − 1)
∫
Rd

∫
Kd

1⋂
j∈J

(Kj⊕(−K))(x)Q(dK) Λ(dx)
}

= exp
{ ∑
∅6=J⊆L

∏
j∈J

(zj − 1) EΛ
(⋂
j∈J

(Kj ⊕ (−Ξ0) )
) }

.

The last line provides the asserted shape of the PGF (2.7).

To accomplish the proof of Theorem 2.1 we check the conditions (1.6) for µJ given in (2.8).
For notational ease we put K0

i := Ki ⊕ (−Ξ0) for i = 1, . . . , ` and ν(·) = EΛ(·). Applying the
inclusion-exclusion formula

ν(A ∩ ∪j∈L\IAj) =
∑

∅6=J⊆L\I
(−1)#J−1ν(A ∩ ∩j∈JAj)

(being valid for any additive set-function ν) yields

γΛ,Q(KI) =
∑

I⊆J⊆L
(−1)#(J\I)ν(

⋂
j∈J

K0
j )

= ν
(⋂
i∈I

K0
i

)
+

∑
∅6=J⊆L\I

(−1)#Jν
(⋂
i∈I

K0
i ∩

⋂
j∈J

K0
j

)
= ν

(⋂
i∈I

K0
i

)
− ν

(⋂
i∈I

K0
i ∩

⋃
j∈L\I

K0
j

)
≥ 0 for ∅ 6= I ⊆ L

and, since EΛ(Ki ⊕ (−Ξ0)) > 0 for i = 1, . . . , `,

γΛ,Q(K∅) =
∑
∅6=J⊆L

(−1)#Jν(
⋂
j∈J

K0
j ) = −ν

(⋃
j∈L

K0
j

)
< 0 .

This completes the proof of Theorem 2.1.

In the particular case of a stationary BM ΞλQ with known intensity λ (see e.g. [13] for various
methods to estimate the intensity λ) the parameters (2.8) contain quite a lot of information
on the distribution Q of the typical grain Ξ0 depending on a clever choice of K1, . . . ,K` (e.g.
balls, line segments, single points etc.). For example, if Ki = {xi} for i = 1, . . . , `, the
2` − 1 parameters µλQ(xJ) := λE|

⋂
j∈J(Ξ0 − xj) |d for non-empty subsets J of L determine

the joint distribution of the random vector
(
N({x1}), . . . , N({x`})

)
. The shift-invariance of

the Lebesgue measure | · |d causes that µ(xJ) remains unchanged when the points (xj)j∈J is
replaced by the shifted points (xj + x)j∈J for any x ∈ Rd. In particular, we have µλQ(xi) :=
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EN({xi}) = λE|Ξ0|d and

µλQ(xij) := Cov
(
N({xi}), N({xj})

)
= λE|(Ξ0 − xi) ∩ (Ξ0 − xj)|d = λECΞ0(xi − xj)

for i, j = 1, . . . , ` , where CB(x) := |B ∩ (B + x)|d denotes the set covariance function of
the bounded Borel set B ⊂ Rd, see e.g. [12] or [2] (p. 17) for properties and historical
background.

Note that the `-point probabilities P(x1 ∈ ΞλQ, . . . , x` ∈ ΞλQ) can be completely expressed in
terms of the parameters µλQ(xJ) for ∅ 6= J ⊆ L.
Indeed, by a twofold application of the inclusion-exclusion formula and

P(
⋂
j∈J
{xj /∈ Ξ}) = P(

⋂
j∈J
{N({xj}) = 0}) = exp{−λE

∣∣ ⋃
j∈J

(Ξ0 − xj)
∣∣
d
}

we find that

P(x1 ∈ ΞλQ, . . . , x` ∈ ΞλQ) = P(
⋂
i∈L
{N({xi}) ≥ 1}) = 1−P(

⋃
i∈L
{N({xi}) = 0})

= 1 +
∑
∅6=J⊆L

(−1)#J exp{−λE
∣∣ ⋃
j∈J

(Ξ0 − xj)
∣∣
d
}

with λE
∣∣ ⋃

j∈J(Ξ0 − xj)
∣∣
d

=
∑
∅6=I⊆J(−1)#I−1µλQ(xI) .

Especially, the covariance of a stationary BM ΞλQ takes the form

P(o ∈ ΞλQ, x ∈ ΞλQ) = 1− 2 exp{−λE|Ξ0|d}+ exp{−2λE|Ξ0|d + λECΞ0(x)} .

3 Parameter estimation for stationary Boolean models

The estimation of the 2` − 1 parameters associated with the `−variate Poisson distribution
of
(
N(K1), . . . , N(K`)

)
is possible in case of a stationary BM ΞλQ when an observation in

some sufficiently large (expanding) sampling window Wn is available. For Λ(·) = λ | · |d the
parameters (2.8) take the form

µλQ(KJ) = λE
∣∣ ⋂
j∈J

(
Ξ0 ⊕ (−Kj)

)∣∣
d

for ∅ 6= J ⊆ L . (3.12)

An estimator for µλQ(KJ) is constructed from the empirical volume fractions

̂(p(KI))n :=
∣∣(ΞλQ ⊕⋃i∈I(−Ki)) ∩Wn

∣∣
d

|Wn|d
for ∅ 6= I ⊆ J . (3.13)
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Note that the numerator in (3.13) can be calculated only if ΞλQ is known in the larger window
Wn ⊕

⋃
i∈I Ki. Otherwise, the mere observation of ΞλQ ∩Wn means that in (3.13) Wn must be

replaced by the smaller minus-window Wn 	
⋃
i∈I Ki , where A 	 B := {x : x + A ⊆ B}, see

[13] (p. 58). In this case p̂(KI)n is still unbiased and strongly consistent.

Theorem 3.1. Let ΞλQ be a stationary BM in Rd with intensity λ > 0 and typical grain Ξ0

having distribution Q such that E|Ξ0⊕Bd
r |d <∞ for r > 0. Further, let (Wn)n≥1 be an isotone

sequence of convex and compact sets in Rd such that %(Wn) := sup{r > 0 : Bd
r + x ⊆ Wn for

some x ∈ Wn} −−−→
n→∞

∞. Then, for any compact sets K1, . . . ,K` as in Theorem 2.1 and any
non-empty index set J ⊆ L, the sequence of estimators

̂(µλQ(KJ))
n

:=
∑
∅6=I⊆J

(−1)#I log
(
1− p̂(KI)n

)
, (3.14)

is strongly consistent for µλQ(KJ) , i.e. ̂(µλQ(KJ))
n

P−a.s.−−−−→
n→∞

µλQ(KJ) for ∅ 6= J ⊆ L .

Proof. Obviously, the Minkowski sum of the BM (1.1) with a fixed set K ∈ Kd, expressed by

ΞΛ,Q ⊕ (−K) =
⋃
x∈K

(ΞΛ,Q − x) =
⋃
i≥1

(
Ξi ⊕ (−K) +Xi

)
, (3.15)

yields again a BM defined by the same Poisson process ΠΛ and the new typical grain Ξ0⊕(−K).
The stationarity of the BM ΞλQ (= ΞΛ,Q with Λ(·) = λ | · |d) implies that its volume fraction
equals

E
∣∣(ΞλQ ⊕ (−K)) ∩ [0, 1]d

∣∣
d

= P(o ∈ ΞλQ ⊕ (−K)) = 1− exp{−λE
∣∣Ξ0 ⊕ (−K)

∣∣
d
} ,

see [12], [4], [13] or [2].

The spatial ergodic theorem of Nguyen & Zessin, see [14] ( and e.g. [13], [7] for its application
to BMs ), provides the a.s. limit∣∣(ΞλQ ⊕ (−K)) ∩Wn

∣∣
d

|Wn|d
P−a.s.−−−−→
n→∞

E
∣∣(ΞλQ ⊕ (−K)) ∩ [0, 1]d

∣∣
d

= 1− exp
{
− λE

∣∣Ξ0 ⊕ (−K)
∣∣
d

}
.

Note that Wn can be replaced by Wn 	K = {x : x + K ⊆ Wn} without changing the limit.
Applying the latter relation to K =

⋃
i∈I Ki for any index set I ⊆ J(⊆ L) gives

1− ̂(p(KI))n
P−a.s.−−−−→
n→∞

1− p(KI) := exp
{
−λE

∣∣ ⋃
i∈I

(
Ξ0 ⊕ (−Ki)

)∣∣
d

}
,
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which together with the inclusion-exclusion formula

∑
∅6=I⊆J

(−1)#I−1E
∣∣ ⋃
i∈I

(
Ξ0 ⊕ (−Ki)

) ∣∣
d

= E
∣∣ ⋂
j∈J

(
Ξ0 ⊕ (−Kj)

) ∣∣
d

completes the proof of Theorem 3.1.

Note that the estimators (3.14) are neither asymptotically unbiased nor mean-square consis-
tent. This is due to the fact that the BM ΞλQ⊕(−K) may completely cover the windowWn with
positive probability pn(−−−→

n→∞
0) if E|Ξ0⊕K|d > 0. On the other hand, the (2`−1)-dimensional

vector ̂(µλQ(KJ))
n
indexed by non-empty J ⊆ L is asymptotically normally distributed (as

n→∞). More precisely, we are able to prove the multivariate central limit theorem√
|Wn|d

( ̂(µλQ(KJ))
n
− µλQ(KJ)

)
J⊆L

D−−−→
n→∞

N2`−1(o,Σλ
Q(KL)) , (3.16)

that is, the left-hand side converges in distribution to a mean zero Gaussian vector in R2`−1

with covariance matrix Σλ
Q(KL) provided the condition E|Ξ0 ⊕Bd

r |2d <∞ for r > 0 (implying
(1.2)) is satisfied. We omit the proof (3.16) and the calculation of the rather complicated
form of Σλ

Q(KL). We only mention that the proof of (3.16) relies on the fact (by applying the
mean value theorem and Slutsky’s lemma) that the distributional limits of

√
|Wn|d

(
log

(
1 −

̂(p(KI))n
)
− log

(
1− p(KI)

))
for ∅ 6= I ⊆ L coincides with the Gaussian limit

√
|Wn|d

( ̂(p(KI))n − p(KI)
)
/(p(KI)− 1) D−−−→

n→∞
N (0, σλQ(KI)) , (3.17)

where the variance σλQ(KI) = limn→∞ |Wn|d Var( ̂(p(KI))n)/(1− p(KI))2 is equal to

∫
Rd

(
exp{λE|(Ξ0 ⊕ (−

⋃
i∈I

Ki)) ∩ (Ξ0 ⊕ (−
⋃
i∈I

Ki)− x)|d} − 1
)

dx ,

see [6] and [1], [15] for similar computations in connection with the proof of asymptotic nor-
mality of empirical Boolean model characteristics. Finally, to prove (3.16) we employ the
Cramér-Wold technique which means to determine the distributional limits of linear combina-
tions of the left-hand side of (3.17).

4 Extensions to Other Poisson-Driven Random Sets

To generalize Theorem 2.1 we make again use of the probability generating functional

GΛs,Q[w] := E
[∏
i≥1

w(Yi,Mi)
]

= exp
{∫

Rs

∫
M

(
w(x,m)− 1

)
Q(dm) Λs(dx)

}
(4.18)
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of the independently marked Poisson process ΠΛs,Q =
∑
i≥1 δ[Yi,Mi] on Rs ×M for some s ≥ 1

with intensity measure Λs on [Rs,B(Rs)] and mark distribution Q on the Borel sets B(M) of
a Polish mark space M. Further, let F |Rs ×M → Fd be a (B(Rs) ⊗ B(M), σf )-measurable
mapping, where Fd denotes the family of closed subsets in Rd equipped with Matheron’s
σ−algebra, σf being a Borel-σ-algebra with respect to the hit-and-miss (or Fell) topology, see
[12], [16]. Under the assumption that the number NF (K) := #{i ≥ 1 : K ∩ F (Yi,Mi) 6=
∅} of members of the countable family {F (Yi,Mi)}i≥1 (forming a particle process) hitting
K has finite expectation for any K ∈ Kd (which implies the closedness of the union set
ΞΛs,Q(F ) := F (Y1,M1) ∪ F (Y2,M2) ∪ · · · ), we can show that the random Z`+-valued vector
(NF (K1), . . . , NF (K`)) possesses an `-variate Poisson distribution. To express the correspond-
ing 2` − 1 parameters we need the Borel sets A(K,m) := {y ∈ Rs : K ∩ F (y,m) 6= ∅} for
K ∈ Kd and m ∈M.

Theorem 4.1. Let the family {F (Yi,Mi)}i≥1 of random closed sets in Rd and the numbers
NF (K) for K ∈ Kd defined as before. Then the PGF of the random vector

(
NF (K1), . . . , NF (K`)

)
with fixed K1, . . . ,K` ∈ Kd such that 0 < EΛs(A(Kj ,M0)) <∞ for i = 1, . . . , ` takes the form
(1.5) with parameters

µJ = EΛs
( ⋂
j∈J

A(Kj ,M0)
)

for ∅ 6= J ⊆ L . (4.19)

The proof of Theorem 4.1 is omitted since it consists in repeating the arguments used to prove
(2.7) up to some obvious changes. On the other hand, Theorem 2.1 is a special case of Theorem
4.1 with Λd = Λ and F (x,m) = m + x for x ∈ Rd,m ∈ Kd so that A(K,m) = K ⊕ (−m).
By choosing the mapping F (x,m) and the mark space M appropriately we can count, for
example, the number of strips of 2D-Poisson strip process, see Fig. 2, hitting a fixed planar
compact set K. We close this section by describing this procedure for general (stationary)
Poisson k-cylinder (and k-flat) processes in Rd , 1 ≤ k ≤ d− 1.

For doing this, some further notation is needed. In stochastic geometry, a k-cylinder in Rd

is defined as Minkowski sum L ⊕ B of a direction space L ∈ G(d, k) (= the Grassmannian of
k-dimensional subspaces of Rd) and a compact base B in the orthogonal complement L⊥, see
e.g. [16] or [17]. In the following we go along the line suggested in [8] (which slightly differs
from that in [12] and [17]) and identify L with a unique element OL of the equivalence class OL

of special orthogonal matrices O ∈ SOd (i.e. O ∈ Rd×d, OT = O−1 and det(O) = 1) satisfying
OEk = L (and OE⊥k = L⊥), where Ek = span{ed−k+1, . . . , ed} , E⊥k = span{e1, . . . , ed−k}
for k = 1, . . . , d − 1 with the usual orthonormal basis {e1, . . . , ed} of Rd. In other words, two
matrices O1, O2 ∈ SOd belong to the compact set OL ⊂ SOd iff OT1 O2 belongs to the set of
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orthogonal block matrices S(Od−k ×Ok) defined by

{(
A 0
0 B

)
: A ∈ R(d−k)×(d−k), B ∈ Rk×k, AT = A−1, BT = B−1,det(A) = det(B)

}
.

The element OL can be chosen in a canonical way, e.g. as lexicographically smallest element of
the set of matrices OL. In this way we get a one-to-one correspondence between SOd

k = {OL :=
lexmin OL : L ∈ G(d, k)} and G(d, k) up to orientation of the subspaces. Note that for k = 1
(and analogously for k = d − 1) the orthogonal matrix OL is chosen such that det(OL) = 1
and OLed = u, where u ∈ ∂Bd

1 can be expressed in terms of spherical coordinates and u and
−u are identified. Thus, for d = 2, k = 1 we represent L = {% (cosϑ, sinϑ)T : % ∈ R1} by the

matrix OL =
(

sinϑ cosϑ
− cosϑ sinϑ

)
for 0 ≤ ϑ < π.

In this way, to each random subspace L ∈ G(d, k) corresponds a (unique) random matrix
Θ(L) ∈ SOd

k and vice versa. Now, we are ready to define a Poisson k-cylinder process in Rd

over some probability space [Ω,F ,P] as countable family of random k-cylinders

{Θi( ({(x+ Yi,ok)T : x ∈ Ξi})⊕ Ek ) , i ≥ 1 } = {Θi( (Ξi + Yi)×Rk ) , i ≥ 1 } (4.20)

driven by an independently marked Poisson process ΠΛd−k,Qd,k =
∑
i≥1 δ[Yi,(Θi,Ξi)] on the prod-

uct space of Rd−k and mark space SOd
k ×Kd−k with intensity measure Λd−k and typical mark

(Θ0,Ξ0) (specifying direction and base of the typical k-cylinder Θ0( Ξ0 ×Rk )) with distribu-
tion Qd,k. Note that, in analogy to (1.2), the condition EΛd−k

(
Bd−k
r ⊕ (−Ξ0)

)
< ∞ for any

r > 0 implies the closedness of the Poisson k-cylinder model (= union set of the k-cylinders
(4.20), see also [8]. Furthermore, a Poisson k-cylinder process resp. model is stationary iff
Λd−k(·) = λ | · |d−k.

It is easy to see that Poisson k-cylinder processes fit within the framework of Theorem 4.1.
Namely, for s = d − k, Q = Qd,k and F (y, (θ, ξ)) := θ

(
(ξ + y) × Rk

)
for y ∈ Rd−k and

(θ, ξ) ∈M := SOd
k ×Kd−k, we find that

A(K, (θ, ξ)) = {y ∈ Rd−k : K ∩ F (y, (θ, ξ)) 6= ∅}

= πd−k(θT K)⊕ (−ξ) for K ∈ Kd ,

where πd−k(x) denotes the projection of the vector x ∈ Rd on its first d− k components.

Hence, the corresponding parameters (4.19) for Poisson k-cylinder processes are as follows:

µJ = EΛd−k
( ⋂
j∈J

(πd−k(ΘT
0 Kj)⊕ (−Ξ0) )

)
for ∅ 6= J ⊆ L . (4.21)
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In the particular case of stationary Poisson k-flat processes in Rd, where Ξ0 = {od−k} and
Λd−k(·) = λ | · |d−k, the parameters (4.21) take the form

µJ = λE
∣∣ ⋂
j∈J

πd−k(ΘT
0 Kj)

∣∣
d−k for ∅ 6= J ⊆ L .
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