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The Variance of the Discrepancy Distribution

of Rounding Procedures, and Sums of Uniform

Random Variables

Lothar Heinrich, Friedrich Pukelsheim and Vitali Wachtel 1

Abstract

When ℓ probabilities are rounded to integer multiples of a given accuracy n, the sum of

the numerators may deviate from n by a nonzero discrepancy. It is proved that, for large

accuracies n → ∞, the limiting discrepancy distribution has variance ℓ/12. The relation to

the uniform distribution over the interval [−1/2, 1/2], whose variance is 1/12, is explored

in detail.

Keywords : rounding residual, Euler-Maclaurin formula, Euler-Frobenius

polynomial, Fourier-analytic approach

AMS 2010 MSC : Primary: 62E15, 62P25; Secondary: 65B15, 60E10

1 Introduction

Suppose we are given ℓ probabilities, p1, . . . , pℓ. In printed publications the probabilities are

rounded usually to percentages, or to multiples of tenths of a percent. That is, they are

converted into integer multiples of n = 100, or of n = 1000. More generally each probability pj

is rounded into a fraction nj/n, with some integer numerator nj relative to a given “accuracy”

n. The fractions nj/n provide a valid distribution only if the sum of the numerators is equal to

the denominator, n1+· · ·+nℓ = n. It is well-known that individual rounding of the probabilities

pj may fail to satisfy this equation. Rather, a discrepancy Z = n1 + · · · + nℓ − n is observed

which may be nonzero. Happacher [4] calculates the distribution of Z for finite accuracy n when

the probability vector p(ℓ) = (p1, . . . , pℓ) is uniformly distributed over the probability simplex.

He also shows that these unwieldy distributions converge for large accuracies to the elegant
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distribution in display (2.1) below, the “discrepancy distribution”. Because of symmetry its

expectation is zero. Its variance is zero when ℓ = 1 or ℓ = 2. Using Maple, Mathematica or

similar software it is easily verified computationally that the variance is equal to ℓ/12, for all

ℓ ≥ 3 that computers can handle.

In Section 2 the variance formula is proved in a rigorous way. Our proof is based on the Euler-

Maclaurin formula and complements an alternative approach using characteristic functions

(short: CF) that is due to Gawronski and Neuschel [3] and Janson [7]. Section 3 discusses an

invariance principle according to which the discrepancy distribution is the limiting distribution

whenever the distribution of the probability vector p(ℓ) = (p1, . . . , pℓ) is absolutely continuous.

The invariance principles explains the universal applicability of the discrepancy distribution.

Section 4 reviews briefly the approach of Gawronski and Neuschel [3] and Janson [7]. An

alternative Fourier-analytic derivation of the CF function of the discrepancy distribution is

given in Section 5.

2 Discrepancy Variance

When rounding two or more proportions p1, . . . , pℓ to integer percentages n1, . . . , nℓ, the result-

ing percentages do not necessarily sum exactly to 100 percentage points, but possibly leave a

positive or negative discrepancy z = (n1 + · · ·+nℓ)−100. Considering many and varied sets of

ℓ ≥ 2 proportions, we may view the discrepancy to be a random variable Z taking its values in

Z, the set of all integers. Happacher [4] shows that, for all practical purposes, the distribution

of the discrepancy Z is modelled well by P(Z = z) = gℓ(z), where the probabilities are given

by

gℓ(z) =
ℓ
∑

k=0

(−1)k

(ℓ− 1)!

(

ℓ

k

)

(

ℓ

2
+ z − k

)ℓ−1

+
, z ∈ Z. (2.1)

The notation yn
+ is short for (y+)n, where y+ = y in case y > 0 and y+ = 0 otherwise.

It is not hard to see (as reviewed below) that the probabilities are symmetric around zero,

gℓ(z) = gℓ(−z). Hence all odd moments of Z vanish. In particular the expectation of the

discrepancy is zero, that is, the instances when the sum of the rounded percentages is larger

than 100 outweigh the instances when the sum is smaller.

What about the discrepancy variance? It is not hard to see (and reviewed below) that the

probability gℓ(z) is positive only for |z| ≤ L, where here and throughout we put L := ⌊(ℓ−1)/2⌋.

With ℓ = 2 the discrepancy attains the value z = 0 with probability one, whence the variance

is zero. For three or more proportions this section establishes the following.

Theorem 2.1. For ℓ ≥ 3 the discrepancy variance is ℓ/12.
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Theorem 2.1 focusses on variances because of its use in Theorem 3.1. However, the proof of

Theorem 2.1 shows that the statement extends to all even moments of order less than ℓ, as

pointed out in the Remark at the end of this section.

Before turning to the proof of Theorem 2.1 we take the time for some preliminary remarks. The

theorem states that a sum which appears to be rather elementary admits a simple evaluation,

∑

z∈Z

z2gℓ(z) =
ℓ

12
. (2.2)

Identity (2.2) looks like an innocuous exercise for an introductory probability course. The

appearance is deceiving, we do not know of an easy proof of (2.2). Our proof builds on the

Euler-Maclaurin formula, see Abramowitz and Stegun [1] (p. 806, formula 23.1.30). Another

proof, due to Gawronski and Neuschel [3] and Janson [7] and to be reviewed in Section 4,

identifies (2.1) as the Euler-Frobenius distribution Eℓ−1,ℓ/2.

The Euler-Maclaurin formula establishes a relation between a sum—the left hand side of (2.2)—

and an integral. The right hand side of (2.2) becomes an integral by noting that it is the

variance of V1 + · · · + Vℓ, where V1, . . . , Vℓ are independent and identically distributed random

variables whose common distribution is uniform over the interval [−1/2, 1/2].

The (well-known) Lebesgue density of V1 + · · · + Vℓ is obtained by way of the convolution

lemma,

gℓ(x) =

∫

gℓ−1(y)g1(x− y) dy =

∫ x+1/2

x−1/2
gℓ−1(y) dy.

Starting from the indicator function g1(x) = 1[−1/2,1/2](x) for ℓ = 1, the density for ℓ ≥ 2 is

found to be

gℓ(x) =
ℓ
∑

k=0

(−1)k

(ℓ− 1)!

(

ℓ

k

)

(

ℓ

2
+ x− k

)ℓ−1

+
, x ∈ R. (2.3)

This is the same function as in (2.1), except that the domain of definition is extended from Z

in (2.1), to R in (2.3).

The interrelation between (2.1) and (2.3) entails three useful implications. Firstly, the proba-

bilities in (2.1) add to unity as they should,

∑

z∈Z

gℓ(z) =
∑

z∈Z

∫ z+1/2

z−1/2
gℓ−1(y) dy =

∫

R

gℓ−1(y) dy = 1.

Secondly, the function gℓ is symmetric. This is obvious for g1. Assuming gℓ−1 is symmetric,

gℓ−1(y) = gℓ−1(−y), so is gℓ, as seen by

gℓ(x) =

∫ x+1/2

x−1/2
gℓ−1(y) dy =

∫ x+1/2

x−1/2
gℓ−1(−y) dy =

∫

−x+1/2

−x−1/2
gℓ−1(y) dy = gℓ(−x).
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Thirdly, the Lebesgue density in (2.3) takes positive values on the open interval (−ℓ/2, ℓ/2).

Indeed, for x ≤ −ℓ/2 we have ℓ/2 + x − k ≤ 0. With all positive parts in (2.3) vanishing

we get gℓ(x) = 0. For x ≥ ℓ/2 symmetry entails gℓ(x) = gℓ(−x) = 0. For x ∈ (−ℓ/2, ℓ/2)

some positive parts are nonzero, whence gℓ(x) > 0. From gℓ(z) =
∫ z+1/2

z−1/2 gℓ−1(y) dy it follows

that the probabilities in (2.1) are positive only for the integers z ∈ {0,±1, . . . ,±L}. Upon

introducing fℓ(x) = x2gℓ(x) we may write identity (2.2) as

L
∑

z=−L

fℓ(z) =

∫ ℓ/2

−ℓ/2
fℓ(x) dx. (2.4)

The Euler-Maclaurin formula relates sum and integral whenever fℓ is a smooth function. How-

ever, gℓ(x) in (2.3) is smooth only piecewise, on the integer intervals [z, z + 1] when ℓ is even,

and on the shifted intervals [z − 1/2, z + 1/2] when ℓ is odd. Therefore the proof of Theorem

2.1 treats even ℓ and odd ℓ separately.

Proof. of Theorem 2.1 Parts I and II deal with ℓ even. Part I restricts attention to integer

intervals [z, z+1] to apply the Euler-Maclaurin formula. Part II aggregates the interval results

in order to establish the desired identity (2.4). Part III handles odd ℓ.

I. We fix an integer z ∈ Z. For x ≤ z + 1 the term (ℓ/2 + x − k)ℓ−1
+ in (2.3) is positive only

for 0 < ℓ/2 + x− k ≤ ℓ/2 + z + 1 − k, that is, k < ℓ/2 + z + 1 and k ≤ ℓ/2 + z. If additionally

x ≥ z then ℓ/2 + x− k ≥ ℓ/2 + z − k ≥ 0. The passage to positive parts becomes superfluous,

(ℓ/2 + x − k)ℓ−1
+ = (ℓ/2 + x − k)ℓ−1. This shows that on the interval [z, z + 1] the function

gℓ(x) is a polynomial of degree ℓ− 1, namely,

gℓ(x) =

ℓ/2+z
∑

k=0

(−1)k

(ℓ− 1)!

(

ℓ

k

)

(

ℓ

2
+ x− k

)ℓ−1

for z ≤ x ≤ z + 1 . (2.5)

Hence on [z, z + 1] the function fℓ(x) = x2gℓ(x) is a polynomial of degree ℓ+ 1.

Let g
(q)
ℓ (z+) and f (q)(z+) denote the derivatives of order q at the left endpoint of [z, z + 1],

and g
(q)
ℓ (z+1−) and f (q)(z+1−) those at the right endpoint of [z, z+1]. The Euler-Maclaurin

formula invokes the Bernoulli numbers B2k and the odd derivatives f (2k−1) which we include

up to order ℓ − 1. The formula finishes with a balancing term depending on the (ℓ + 2)nd

derivative of fℓ which is zero. Therefore the balancing term disappears, in our application.

Thus the Euler-Maclaurin formula yields an identity,

1

2
fℓ(z) +

1

2
fℓ(z + 1) =

∫ z+1

z
fℓ(x) dx

+

ℓ/2
∑

k=1

B2k

(2k)!

(

f (2k−1)(z + 1−) − f (2k−1)(z+)
)

. (2.6)
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The derivatives of fℓ are obtained from the Leibniz rule,

f (q)(x) =
q
∑

j=0

(

q

j

)

dj

dxj
x2 d

q−j

dxq−j
gℓ(x)

= x2 g
(q)
ℓ (x) + 2q x g

(q−1)
ℓ (x) + q (q − 1) g

(q−2)
ℓ (x). (2.7)

The derivatives of gℓ in (2.5) are

g
(q)
ℓ (x) =



























































ℓ/2+z
∑

k=0

(−1)k

(ℓ− 1 − q)!

(

ℓ

k

)

(

ℓ

2
+ x− k

)ℓ−1−q

if q < ℓ− 1 ,

ℓ/2+z
∑

k=0

(−1)k

(

ℓ

k

)

if q = ℓ− 1 ,

0 if q > ℓ− 1 .

(2.8)

For orders q < ℓ− 1 the qth derivative g
(q)
ℓ (z+) at the left endpoint of [z, z + 1] coincides with

the qth derivative g
(q)
ℓ (z−) at the right endpoint of the preceding interval [z − 1, z],

g
(q)
ℓ (z+) =

ℓ/2+z
∑

k=0

(−1)k

(ℓ− 1 − q)!

(

ℓ

k

)

(

ℓ

2
+ z − k

)ℓ−1−q

=

ℓ/2+z−1
∑

k=0

(−1)k

(ℓ− 1 − q)!

(

ℓ

k

)

(

ℓ

2
+ z − k

)ℓ−1−q

= g
(q)
ℓ (z−).

Therefore gℓ and fℓ are q times differentiable also at the knots z ∈ Z, with derivatives g
(q)
ℓ (z) =

g
(q)
ℓ (z+) = g

(q)
ℓ (z−) and f (q)(z) = f (q)(z+) = f (q)(z−), as long as q < ℓ− 1.

II. Now we sum (2.6) over z ∈ Z. Since (2.1) has support points −L, . . . , L and (2.3) has

support (−ℓ/2, ℓ/2) aggregation of the Euler-Maclaurin formulas yields

L
∑

z=−L

fℓ(z) =

∫ ℓ/2

−ℓ/2
fℓ(x) dx

+

ℓ/2
∑

k=1

B2k

(2k)!

L
∑

z=−L

(

f (2k−1)(z + 1−) − f (2k−1)(z+)
)

. (2.9)

Thus it suffices to show that

L
∑

z=−L

(

f (2k−1)(z + 1−) − f (2k−1)(z+)
)

= 0, k = 1, . . . , ℓ/2. (2.10)
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For k < ℓ/2 the order is q = 2k − 1 < ℓ− 1 for which fℓ is q times differentiable. Thus (2.10)

is a telescope sum and simplifies to a plain difference,

ℓ
∑

z=−ℓ

(

f (q)(z + 1) − f (q)(z)
)

= f (q)(ℓ+ 1) − f (q)(−ℓ) = 0.

For k = ℓ/2 with ensuing order q = ℓ− 1 we must evaluate the sum

S =
L
∑

z=−L

(

f (ℓ−1)(z + 1−) − f (ℓ−1)(z+)
)

.

The Leibniz rule (2.7) includes lower order derivatives g
(ℓ−2)
ℓ and g

(ℓ−3)
ℓ . They, too, lead to

telescope sums that vanish and hence contribute nothing to S. As for the (ℓ− 1)st derivative,

(2.8) gives g
(ℓ−1)
ℓ (z+) = g

(ℓ−1)
ℓ (z + 1−) =

∑ℓ/2+z
k=0 (−1)k

(ℓ
k

)

. We obtain

S =
L
∑

z=−L

(

(z + 1)2 − z2
)

ℓ/2+z
∑

k=0

(−1)k

(

ℓ

k

)

=
ℓ
∑

k=0

(−1)k

(

ℓ

k

) ℓ/2
∑

z=k−ℓ/2

(

(z + 1)2 − z2
)

with

ℓ/2
∑

z=k−ℓ/2

(

(z + 1)2 − z2
)

=

(

ℓ

2
+ 1

)2

−

(

k −
ℓ

2

)2

= (ℓ+ 1) + (ℓ− 1)k − k(k − 1).

The binomial theorem and multiple uses of the identity
(ℓ

k

)

k = ℓ
(ℓ−1

k−1

)

result in

S = (ℓ+ 1)(1 − 1)ℓ − ℓ(ℓ− 1)(1 − 1)ℓ−1 − ℓ(ℓ− 1)(1 − 1)ℓ−2. (2.11)

This gives S = 0 whenever ℓ ≥ 3, and establishes (2.10). Now (2.9) reduces to (2.4). The proof

of Theorem 2.1 for even ℓ is complete.

III. In case ℓ is odd we again start out with a fixed integer z ∈ Z. Since ℓ is odd the polynomial

structure of the function gℓ holds true on the shifted interval,

gℓ(x) =

(ℓ−1)/2+z
∑

k=0

(−1)k

(ℓ− 1)!

(

ℓ

k

)

(

ℓ

2
+ x− k

)ℓ−1

for z −
1

2
≤ x ≤ z +

1

2
.

The derivatives of gℓ are the same as in (2.8), except that the upper summation limit now

reads (ℓ− 1)/2. The function fℓ(x) = x2 gℓ(x) continues to be a polynomial of degree ℓ+ 1.

As in (2.6) the Euler-Maclaurin formula yields the identity

1

2
f
(

z −
1

2

)

+
1

2
f
(

z +
1

2

)

=

∫ z+1/2

z−1/2
fℓ(x) dx+

(ℓ+1)/2
∑

k=1

B2k

(2k)!
∆(k),
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where we have set ∆(k) := f (2k−1)(z + 1/2−) − f (2k−1)(z − 1/2+) for short. The formula

permits a refinement by dividing the underlying interval into two equal parts in order to pick

up the value of fℓ at the interval midpoint z,

1

2
f
(

z −
1

2

)

+ fℓ(z) +
1

2
f
(

z +
1

2

)

= 2

∫ z+1/2

z−1/2
fℓ(x) dx+

(ℓ+1)/2
∑

k=1

1

22k−1

B2k

(2k)!
∆(k).

Subtraction of the first equation from the second yields the version to be pursued further,

fℓ(z) =

∫ z+1/2

z−1/2
fℓ(x) dx−

(ℓ+1)/2
∑

k=1

(

1 −
1

22k−1

)

B2k

(2k)!
∆(k).

Summation over z ∈ Z leads to

L
∑

z=−L

fℓ(z) =

∫ ℓ

−ℓ
fℓ(x) dx−

(ℓ+1)/2
∑

k=1

(

1 −
1

22k−1

)

B2k

(2k)!

L
∑

z=−L

∆(k). (2.12)

We aim to verify that the last sum is zero, that is,

L
∑

z=−L

(

f (2k−1)
(

z +
1

2
−
)

− f (2k−1)
(

z −
1

2
+
)

)

= 0, k = 1, . . . ,
ℓ+ 1

2
. (2.13)

For k < (ℓ + 1)/2 the order of the derivative is q = 2k − 1 < ℓ. Since q and ℓ are odd this

forces q < ℓ− 1, whence the sum in (2.13) is a telescope sum that vanishes.

For k = (ℓ+ 1)/2 the order is q = 2k − 1 = ℓ. The sum in (2.13) becomes

S =
L
∑

z=−L

(

f (ℓ)
(

z +
1

2
−
)

− f (ℓ)
(

z −
1

2
+
)

)

.

Applying the Leibniz rule (2.7) to f (ℓ) we find that the first term depends on g
(ℓ)
ℓ which is zero

throughout. The third term, involving g
(ℓ−2)
ℓ , leads to another telescope sum that vanishes.

Thus S is determined by the second term,

S = 2ℓ
L
∑

z=−L

(ℓ−1)/2+z
∑

k=0

(−1)k

(

ℓ

k

)

= 2ℓ
ℓ
∑

k=0

(−1)k

(

ℓ

k

) (ℓ+1)/2
∑

z=k−(ℓ−1)/2

1.

Since the last sum counts (ℓ+ 1) − k ones, the result is

S = 2(ℓ+ 1)ℓ(1 − 1)ℓ + 2ℓ2(1 − 1)ℓ−1.

Now S = 0 verifies (2.13), whence (2.12) turns into (2.4). Thus, Theorem 2.1 is completely

proved.
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Remark The proof generalizes to functions of the type fℓ(x) = xp gℓ(x), with p < ℓ even.

Hence the discrepancy Z and the sum V1 + · · · + Vℓ share not only the same variance ℓ/12, but

also all even moments up to order p < ℓ.

The aggregated Euler-Maclaurin identity (2.9) remains valid also when ℓ = 2. The discrepancy

variance on the left is 0, as mentioned in the paragraph prior to Theorem 2.1. On the other

hand (2.11) results in S = −2. Inserting B2 = 1/6 turns the right hand side of (2.9) into

2/12 + (1/6)(−2)/2 = 0, too. In the same way identity (2.12) maintains its validity when

ℓ = 1.

Theorem 2.1 has repercussions on the correlation structure of the rounding residuals which

transpire to jointly constitute the discrepancy. Rounding residuals, though dependent, are

uncorrelated, as discussed in the next section.

3 Discrepancy Representation as a Sum of Uniform Random

Variables

Happacher [4] derives the discrepancy distribution (2.1) under the assumption that the vector

of proportions p(ℓ) = (p1, . . . , pℓ) follows a uniform distribution on the probability simplex Ωℓ =

{(p1, . . . , pℓ) ∈ (0, 1)ℓ |p1 + · · ·+pℓ = 1}. This assumption is too specific to justify the universal

applicability of the discrepancy distribution (2.1). Rather, the justification originates from

an invariance principle that allows to replace the uniform distribution on Ωℓ by an arbitrary

absolutely continuous distribution on Ωℓ.

The general task is to round proportions pj to integer multiples nj of a preordained accuracy

n. The accuracy is n = 100 for percentages, n = 1000 for tenths of a percent, etc. An obvious

approach is to multiply a proportion by n, and to round the scaled quantity npj to an integer

nj. We designate the standard rounding function by angle brackets 〈x〉, as do Abramowitz

and Stegun [1] (p. 223). That is, if the fractional part of x > 0 is smaller than one half then

x is rounded downwards, 〈x〉 = ⌊x⌋. If the fractional part is larger than or equal to one half

then x is rounded upwards, 〈x〉 = ⌈x⌉.

The rounding procedure gives rise to the rounding residuals Uj(n) = 〈npj〉−npj. As 〈npj〉 = nj

the discrepancy Z coincides with the sum of the rounding residuals,

Z = (n1 + · · · + nℓ) − n = U1(n) + · · · + Uℓ(n).

The representation has dramatic consequences. The distribution of Z depends an the distribu-

tional assumption for the proportions (p1, . . . , pℓ) on Ωℓ only through the induced distribution

of the rounding residuals U1(n), . . . , Uℓ(n). While every specific distributional assumption for
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the proportions (p1, . . . , pℓ) sparks objections as to its universal validity, this is not so for

rounding residuals.

Rounding residuals Uj(n) are “known” to be uniformly distributed over the interval [−1/2, 1/2].

This knowledge is scientific commonplace to an extent that every reference which makes use

of it can be surpassed by a prior reference that has done so earlier. Examples abound, as Seal

[10] demonstrates in his witty note “Spot the prior reference”; see Happacher [4] for a reprint

of the note. While there exist numerous publications modeling a rounding residual by the

uniform distribution, we know of just a handful of sources proposing a rigorous argument how

the uniform distribution comes into being.

The work of Happacher [4] implies that for finite accuracy n the discrepancy fails the distribu-

tion (2.1), and that the rounding residuals cannot have a uniform distribution. Even assuming

that each rounding residual is uniformly distributed over the interval [−1/2, 1/2] they can-

not be jointly independent, because their sum has the discrete distribution (2.1) and not the

convolution distribution (2.3).

It seems natural to resort to an asymptotic approach. Janson [6] assumes that the accuracies

n are uniformly distributed over a finite range {1, . . . , N}. Then he lets the range tend to

infinity, N → ∞. In the present paper we assume an absolutely continuous distribution for

the vector of proportions. Then we let the accuracy tend to infinity, n → ∞. In this setting

Heinrich et al. [?] prove that the limiting distribution of the rounding residual becomes uniform

if the underlying distribution admits a Riemann integrable density. Janson [6] shows that the

conclusion remains valid if the underlying distribution is absolutely continuous. Only recently

did we spot the prior reference Tukey [12] who establishes the same result. The state of the

art is summarized by the following invariance principle.

Theorem 3.1. Assume that the proportions p(ℓ) = (p1, . . . , pℓ) follow an absolutely con-

tinuous distribution on the probability simplex Ωℓ. Then the vector of rounding residuals

U(ℓ)(n) = (U1(n), . . . , Uℓ(n)) for accuracy n and the vector of proportions p(ℓ) jointly con-

verge in distribution,
(

U(ℓ)(n),p(ℓ)) in distribution
−−−−−−−−−→

n→∞
(U(ℓ),p(ℓ)) ,

where the components of the limit random vector U(ℓ) = (U1, . . . , Uℓ) are uniformly distributed

over the interval [−1/2, 1/2], exchangeable, uncorrelated, and independent of p(ℓ). Omitting

an arbitrary component Uj , the remaining ℓ− 1 variables Uk, k 6= j, are independent.

Proof. Theorem 3.1 coincides with Theorem 6.10 in Pukelsheim [8] where the assertions are

proved, except for uncorrelatedness. As for the latter, we calculate the variance of the sum as

the sum of the variances plus the sum of the covariances. Due to exchangeability all covariances

are the same, whence Var
(

U1 + · · · + Uℓ

)

= ℓ/12 + ℓ(ℓ− 1) Cov(U1, U2). But the sum of the

9



rounding residuals is equal to the discrepancy which has variance ℓ/12, by Theorem 2.1. Now

Cov(U1, U2) = 0 establishes uncorrelatedness.

Theorem 3.1 provides a solid justification for the commonplace assumption that rounding

residuals follow a uniform distribution. Theorem 3.1 also justifies the universal applicability of

the discrepancy distribution (2.1). Indeed, from Z = U1 + · · · +Uℓ we see that the discrepancy

Z attains a value z ∈ Z if and only if U1 + · · · + Uℓ−1 = z − Uℓ. Evidently we have z − Uℓ ∈

[z − 1/2, z + 1/2]. This yields

{

Z = z
}

=

{

U1 + · · · + Uℓ−1 ∈
[

z −
1

2
, z +

1

2

]

}

. (3.1)

When for n → ∞ the limit distributions take over, the probability of the event on the right

hand side in (3.1) becomes
∫ z+1/2

z−1/2 gℓ−1(y) dy = gℓ(z) as stipulated by (2.1). This shows that

for large accuracies the distribution of the discrepancy Z is given by (2.1).

Standard rounding permits yet another representation. Since the right hand side in (3.1) may

be expressed as
{

〈U1 + · · · + Uℓ−1〉 = z
}

, the discrepancy satisfies

Z = 〈U1 + · · · + Uℓ−1〉 .

That is, the discrepancy Z behaves as if standard rounding is applied to the sum of ℓ−1 copies

of uniform random variables.

4 Euler-Frobenius Distributions

The shifted discrepancy Z + L is a discrete random variable that is nonnegative. Hence its

probability generating function is a polynomial. Gawronski and Neuschel [3] identify this poly-

nomial to be an Euler-Frobenius polynomial and study the induced distributions. Janson [7]

calls them Euler-Frobenius distributions, and provides many additional results The distribution

of the discrepancy Z is the Euler-Frobenius distribution Eℓ−1,ℓ/2.

Gawronski and Neuschel [3] (p. 7) and Janson [7] (p. 10) also calculate the CF of Euler-

Frobenius distributions. The discrepancy distribution turns out to have CF

ϕℓ(s) = i−ℓe−iℓs/2
(

eis − 1
)ℓ

∞
∑

k=−∞

e−πikℓ

(s+ 2πk)ℓ
. (4.1)

Thus, the variance is found by calculating the negative second derivative of the CF (4.1) at

s = 0 being equal to ℓ/12. This approach provides another proof of Theorem 2.1. Section 5
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concludes with an alternative derivation of the CF (4.1) in addition to those in Gawronski and

Neuschel [3] and Janson [7].

5 An alternative Fourier-analytic approach

To complete this paper we present a further way to obtain the CF (4.1) which seems to be

more direct and different from the methods used in Gawronski and Neuschel [3] and Janson

[7]. Among others our approach is related with so-called sinc-integrals which recently attracted

much interest due to their unexpected properties, see e.g. Schmid [9], Almkvist and Gustavsson

[2]. The sinc-function is defined as follows: sinc(t) := sin(t)/t for t ∈ R \ {0} and sinc(0) := 1.

It is easily verified that the CF uℓ(t) := E exp{it(V1 + · · · + Vℓ)} of independent and uniformly

on [−1/2, 1/2] distributed random variables V1, . . . , Vℓ, see Section 2, can be expressed by

uℓ(t) =
(

sinc(t/2)
)ℓ

. Since uℓ(t) is absolutely integrable for ℓ ≥ 2 , the Fourier inversion

theorem, see e.g. Taylor [11] (p. 271) combined with sinc(−t) = sinc(t) allows to express the

symmetric density of V1 + · · · + Vℓ given in (2.3) as Fourier integral

gℓ(x) =
1

2π

∫

∞

−∞

e−itx uℓ(t) dt =
1

π

∫

∞

−∞

e2itx (sinc(t)
)ℓ

dt

=
1

π

∫

∞

−∞

cos(2 t x)
(

sinc(t)
)ℓ

dt > 0 for |x| <
ℓ

2
. (5.1)

The right hand integral disappears for |x| ≥ ℓ/2 and for x ∈ {0,±1, . . . ,±L} we get the

symmetric lattice distribution (2.1) of the discrepancy introduced in Section 1. Its CF ψℓ(s)

is defined by

ψℓ(s) :=
L
∑

z=−L

eiszgℓ(z) =
1

π

∫

∞

−∞

L
∑

z=−L

ei(s+2 t)z (sinc(t)
)ℓ

dt . (5.2)

We may rewrite this CF as follows:

Theorem 5.1. For all s ∈ R we have the identity

ψℓ(s) =
1

π

∫

∞

−∞

sin((2L+ 1)( s
2 + t))

sin( s
2 + t)

(

sinc(t)
)ℓ

dt =
∑

k∈Z

(

sinc(
s

2
+ kπ)

)ℓ
= ϕℓ(s) .

Proof. The first equality of Theorem 5.1 is immediately seen by inserting the Dirichlet kernel
∑L

z=−L e
2i x z = sin((2L + 1)x)/ sin(x), see e.g. Taylor [11] (p. 162) in the right hand integral

of (5.2) for x = s/2 + t. The third equality can be checked simply by rewriting all members of

the doubly infinite series (4.1) by inserting Eulers formula eix = cos(x) + i sin(x). It remains

to verify the middle equality between the improper integral on the left and the double-sided

infinite series on the right for any real s. It is rapidly seen that both ψℓ(s) as well as ϕ(s) (as
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uniformly convergent series for ℓ ≥ 2) are even and 2π-periodic functions being infinitely often

differentiable and taking the value 1 at s = 0. Here, ψℓ(0) = 1 is obvious for a CF but it also

follows in the special case a = 2L+ 1, k = ℓ from the “sinc integral”

∫

∞

−∞

sin(at)

sin(t)
(sinc(t))k dt = π for any real a > 0 and k = 1, . . . , ⌊a⌋ + 1,

see Schmid [9] (p. 15-17). Now, we prove that ψℓ(s) and ϕℓ(s) have the same Fourier expan-

sions. For doing this we show that the corresponding coefficients at cos(js) are identical for

all j ∈ Z. The expansion (5.2) reveals that the jth Fourier coefficient of ψℓ(s) coincides with

gℓ(j) as expressed in (5.1) for j ∈ Z, where gℓ(j) = 0 for |j| > L. Assuming an expansion

ϕℓ(s) =
∑

j∈Z cℓ(j) cos(js) we can calculate the coefficients cℓ(j) as follows:

cℓ(j) =
1

2π

∫ π

−π
cos(js)ϕℓ(s)ds =

1

π

∫ π/2

−π/2
cos(2js)

∑

k∈Z

(

sinc(s + kπ)
)ℓ

ds

=
1

π

∑

k∈Z

∫ π/2+kπ

−π/2+kπ
cos
(

2j(s − kπ)
)(

sinc(s)
)ℓ

ds =
1

π

∫

∞

−∞

cos(2js)
(

sinc(s)
)ℓ

ds .

Together with (5.1) we have cℓ(j) = gℓ(j) for all j ∈ Z which was to be proved.

Theorem 5.1 and the identity sinc( s
2 + kπ) = sinc( s

2 ) (−1)k s/(s + 2kπ) for k ∈ Z imply that

logψℓ(s) = ℓ log E exp{isV1} + rℓ(s) with rℓ(s) = log

(

∑

k∈Z

( (−1)ks

s+ 2kπ

)ℓ
)

. (5.3)

The rules of differentiation yield that the derivatives of rℓ(s) up to order ℓ − 1 disappear at

s = 0. Using this fact the relation (5.3) reveals that the mth cumulant of the discrepancy

distribution (2.1) coincides with the ℓ-fold of the mth cumulant of V1 for m = 1, . . . , ℓ − 1,

see also Theorem 5.3 in Janson [7]. In the particular case m = 2 this confirms once more

the assertion of Theorem 2.1. Moreover, (5.3) allows to determine the fourth moment of the

discrepancy distribution (2.1) which takes the values ℓ (5 ℓ− 2)/240 for ℓ ≥ 5, whereas 1/4 for

ℓ = 3 and 1/3 for ℓ = 4 follow directly from (2.1).
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