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Gaussian and Non-Gaussian Stable Limit Laws

in Wicksell’s Corpuscle Problem

LOTHAR HEINRICH heinrich@math.uni-augsburg.de

Institute of Mathematics, University of Augsburg, 86135 Augsburg, Germany

Abstract. Suppose that a homogeneous system of spherical particles (d-spheres) with independent identically

distributed radii is contained in some opaque d-dimensional body, and one is interested to estimate the common

radius distribution. The only information one can get is by making a cross-section of that body with an s-flat

(1 ≤ s ≤ d − 1) and measuring the radii of the s-spheres and their midpoints. The analytical solution of (the

hyper-stereological version of) Wicksell’s corpuscle problem is used to construct an empirical radius distribution of

the d-spheres. In this paper we study the asymptotic behaviour of this empirical radius distribution for s = d− 1

and s = d − 2 under the assumption that the intersection volume becomes unboundedly large and the point

process of the midpoints of the d-spheres is Brillinger-mixing. Among others we generalize and extend some

results obtained in [1] and [2] under the Poisson assumption for the special case d = 3 , s = 2.

AMS 2010 Mathematics Subject Classification: Primary 60 D 05, 62 G 20; Secondary 60 F 05, 60 G

55

Keywords: asymptotic normality, Brillinger-mixing point processes, shot-noise process, α-stable distribution

functions.

This article contains detailed proofs of the Theorems 1 - 4 stated with concised
proofs in a paper that appeared under the title “Limit Distributions of Some Stereo-
logical Estimators in Wicksell’s Corpuscle Problem” in the journal “Image Analysis
& Stereology” 26, No. 2, 63-71 (2007). An earlier draft without the below Theorems
5 and 6 and Theorems 1 - 4 under assumptions slightly different from those in the
present version (and partly not complete) has been published in [6].

1. Introduction

Let Ψd = {[Xi, Ri] : i ≥ 1} be a stationary, independently marked point process in R
d with

generic non-negative mark R0 having the distribution function (briefly df) Fd . The intensity
measure Λd(·) of Ψd is then given by Λd(B × (0, r]) = λdνd(B)Fd(r), where νd denotes the d-
volume and λd = E#{Ψ∗

d ∩ [0, 1]d} is the intensity of the corresponding stationary non-marked
point process Ψ∗

d = {Xi : i ≥ 1}, see Stoyan et al. [10] for details. To formulate appropriate
mixing conditions on Ψ∗

d we need the higher-order cumulant measures γk(·) for any k ≥ 2 defined
on the Borel σ−field B(Rdk) , see e.g. [3] for a precise definition. The stationarity of Ψ∗

d enables

us to define an associated (signed) measure - the reduced kth-order cumulant measure - γ
(red)
k (·)

on B(Rd(k−1)) by disintegration w.r.t. νd , i.e.

γk(
k
×
i=1

Bi) = λd

∫

Bk

γ
(red)
k (

k−1
×
i=1

(Bi − x))νd(dx) .
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Further, let Bd(x, r) denote the closed sphere in R
d with radius r > 0 centered at x and ωd

stands for the d-volume of the unit sphere Bd(o, 1), i.e. ωd = πd/2/Γ(d2 + 1).

Wicksell’s corpuscle problem in its hyper-stereological version can be described as follows: The
system of d-spheres Ξd = {Bd(Xi, Ri) : i ≥ 1} is intersected by the s−flat Hs = {x =
(x1, ..., xd) ∈ R

d : xs+1 = · · · = xd = 0} (which can be identified with R
s).

We assume that the collection of non-empty s-spheres Ξs := Ξd ∩Hs = {Bs(X i, Ri) : i ≥ 1} in
the linear subspace Hs can be observed (all radii and midpoints are visible, without considering

overlappings and edge-effects) in an expanding sampling window W
(s)
n := nW (s), where W (s) is a

fixed convex set in R
s with unit s-volume, i.e. νs(W

(s)) = 1 , and n runs through N = {1, 2, ...} .
Note that Bs(X i, Ri) 6= ∅ iff Ri := (R2

i − ‖X i‖2d−s)
1/2 > 0. Here and in what follows, write x

(resp. x) to indicate the projection of x ∈ R
d onto Hs) (resp. onto the orthogonal complement of

Hs) ; ‖·‖d−s denotes the Euclidean norm in R
d−s . The system of non-empty s-spheres Bs(X i, Ri)

is completely described by the stationary marked point process Ψs = {[X i, Ri] : i ≥ 1} in R
s

with intensity measure Λs(A × (0, r]) = λs νs(A)F s(r) , where F s denotes the df of the typical
radius R0 .

In the next section we restate the well-known explicit expressions of the df F s and the intensity λs

in terms of Fd and λd together with the corresponding inversion formulae. After that we present
our results on the asymptotic behaviour (as n → ∞) of appropriate empirical counterparts of the
radius df Fd which are obtained from a single observation of all s-spheres whose centers lie in

W
(s)
n . In particular, we state asymptotic normality (Theorem 1) and weak consistency (Theorem

4) in the cases s = d−1 and s = d−2, respectively. Using the terminology of the limit theory for
sums of independent identically distributed random variables we are in the situation of a non-
normal domain of attraction of the Gaussian and the degenerate law, respectively, see Ibragimov

and Linnik [7]. By =⇒
n→∞

and
P−→

n→∞
we designate weak convergence and convergence in probability

P, respectively.

The Poisson framework as presupposed in [1] and [2] is replaced in the present paper by imposing
a mixing condition on the point process Ψ∗

d. This special type of weak dependence between
separated parts of the point field {Xi : i ≥ 1} requires the existence of moment measures of any
order. It should be mentioned that similar asymptotic results under milder moment assumptions
can be obtained for an absolutely regular point process Ψ∗

d, see [5], as well as for a Poisson cluster
process Ψ∗

d , see [4].

However, it seems that the Poisson assumption can hardly be dropped in our Theorems 5 and 6
to derive α-stable limits (with α = 2/(d − s)) for the fluctuation of the corresponding empirical
df’s of Fd when d− s ≥ 2 . In the final section we put together the essential steps of the proofs
of our results.

2. RELATIONSHIPS BETWEEN THE RADIUS DF’S

By means of the Campbell theorem and the relation Ri
2
= R2

i − ‖X i‖2d−s > 0 the intensity

measures Λs and Λd are connected by the identity

Λs(A× (a, b)) =

∫

Rd×[0,∞)

1

((
x,
√

max{0, ρ2 − ‖x‖2d−s}
)
∈ (A× (a, b))

)
Λd(d(x, ρ))

2



for any A ∈ B(Rs) and 0 ≤ a < b ≤ ∞ which leads (after putting A = [0, 1)s and a = r , b = ∞)
to the following Abel-type integral equation:

λs (1− F s(r)) = λd ωd−s

∞∫

r

(%2 − r2)(d−s)/2dFd(%)

= λd (d− s)ωd−s

∞∫

0

(1− Fd(
√

r2 + %2)) %d−s−1d% .

Letting r → 0, the previous formula yields

λs = λd ωd−s ER
d−s
0

provided that ERd−s
0 < ∞ , whence it follows that

1− F s(r) =
1

ERd−s
0

∞∫

r

(%2 − r2)(d−s)/2dFd(%)

and the probability density function fs of R0 (which always exists !) takes the form

fs(r) =
r (d− s)

ERd−s
0

∞∫

r

(%2 − r2)(d−s−2)/2dFd(%) .

Here and throughout, the integral
∫∞
r stretches over the interval (r,∞) . To express the radius

df Fd in terms of the radius df F s for any s ∈ {1, . . . , d−1} one has to solve the above Abel-type
integral equation by unfolding. For doing this we distinguish between the cases d− s is even and
d− s is odd, respectively. Put q = b(d− s− 1)/2c, where bxc denotes the largest integer smaller
than or equal to x and n!! = n(n− 2) · ... · 4 · 2 or 3 · 1. Then the df Fd can be expressed in terms
of the probability density function fs by the following formulae:

1− Fd(r) = (−1)q
ERd−s

0

(d− s)!!





1
rgs(r) , d− s even

2
π

∞∫
r
gs(%)(%

2 − r2)−1/2d% , d− s odd

with

gs(r) =

{
fs(r) if d− s = 1 , 2(
1
r

(
1
r · · ·

(
fs(r)
r

)′
· · ·
)′ )′

if d− s ≥ 3 ,

where in the last line q derivatives occur.

However, the statistical solution of the above integral equation leads to an inverse estimation
problem which is rather unstable from both the computational and statistical view point, see
e.g. [1] , [2] , [8] , [10] , [11] for further details.
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In the most important case s = d − 1 it is rapidly verified by a straightforward application of
Campbell’s theorem, see e.g. Stoyan et al. [10], that

Ûn(r) =
1

πnd−1

∑

i≥1

1(X i ∈ W (d−1)
n )

1(Ri > r)√
Ri

2 − r2

is an unbiased estimation of λd (1− Fd(r)). On the other hand, this calculation reveals that the
variance of Ûn(r) does not exist (which has been first noticed in [1]).

We refer to the fact that, for any fixed n ∈ N , the empirical process Ûn(r) regarded as a random
function in r ≥ 0 is by no means monotonically decreasing. It possesses downward jumps
at the random points r = Ri, however, between two such jumps Ûn(r) is strictly increasing.
Such strange behaviour of this stereological estimator of λd (1 − Fd(r)) gave rise to consider
several modified and smoothed versions of Ûn(r) , see e.g. [2] for an isotonic estimation and its
asymptotic analysis.

3. ASYMPTOTIC RESULTS

3.1 The Case s = d− 1

We first put together some mixing-type conditions for the point process Ψ∗
d = {Xi : i ≥ 1} of

the midpoints of the d-spheres.

Condition 1 Assume that Ψ∗
d is Brillinger-mixing, i.e. ,

∫

(Rd)k−1

|γ(red)k (d(x1, ..., xk−1)| < ∞ for k ≥ 2 .

Condition 2 Assume that the reduced second-order cumulant measure γ
(red)
2 (·) satisfies

∫

Rd−1×A

∣∣γ(red)2 (dx)
∣∣ ≤ const ν1(A)

for any bounded Borel set A ⊂ R
1 .

Condition 3 Assume that the reduced second-order cumulant measure γ
(red)
2 (·) has finite total

variation, i.e. ,

∫

Rd

∣∣γ(red)2 (dx)
∣∣ < ∞ .

Sufficient conditions for some classes of point processes to be Brillinger-mixing are discussed in
[4]. For example, Poisson cluster processes are Brillinger-mixing iff the number of points in the
typical cluster has moments of any order. Also, several types of dependently thinned Poisson
processes such as Matérn’s hard-core point processes possess this mixing property. If Ψ∗

d is
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additionally isotropic with pair correlation function g(r) , see Stoyan et al. [10], then Condition
2 is satisfied if

sup
a≥0

∞∫

0

| g(
√

r2 + a)− 1 | rd−2 dr < ∞ .

This as well as Condition 3 are rather mild restrictions on the point process Ψ∗
d .

Theorem 1 Let the Conditions 1 and 2 be satisfied. If

σ2(r) := λd

∞∫

r

(%2 − r2)−1/2dFd(%) < ∞ (1)

for some fixed r ≥ 0 and ER0 < ∞, then

√
π2 nd−1

log nd−1

(
Ûn(r)− λd(1− Fd(r))

)
=⇒
n→∞

N(0, σ2(r)) ,

where N(0, σ2) denotes a zero mean Gaussian random variable with variance σ2 . Furthermore,

the relation λd ER0 fd−1(r) = r σ2(r) shows that, for r > 0 , condition (1) is equivalent to

fd−1(r) < ∞ .

Remark 1 Provided that Fd(0) = 0, Theorem 1 (for r = 0) yields a central limit theorem for
the unbiased estimator Ûn(0) of the intensity λd.

Note that, without assuming Brillinger mixing - merely under Condition 3 - Ûn(r) turns out to
be weakly consistent for λd (1− Fd(r)). Hence, we get that

Ûn(r)

Ûn(0)

P−→
n→∞

1− Fd(r) for any r ≥ 0 .

It should be noted that, in case Ψ∗
d is a stationary ergodic point process, the latter relation holds

P−a.s..

Remark 2 For r > 0 the assumption (1) is satisfied if the df Fd is α-Hölder continuous for some
α > 1/2 in [r, r + δ] , i.e. ,

Fd(%)− Fd(r) ≤ Hα,δ (%− r)α

for r ≤ % ≤ r + δ and some δ > 0 .

The multivariate extension of Theorem 1 (by employing the well-known method of Cramér -
Wold) shows that the finite-dimensional distributions of the sequence of standardized empirical
processes in Theorem 1 tend to those of a Gaussian ‘white noise’ process as n → ∞.

Theorem 2 Let the Conditions 1 and 2 and (1) for r ∈ {r1, . . . , rk} , 0 ≤ r1 < · · · < rk < ∞ ,

be satisfied. Then

√
π2 nd−1

log nd−1

( Ûn(rj)− λd(1− Fd(rj))√
σ2(rj)

)k
j=1

=⇒
n→∞

Nk

(
o, Ik

)
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where Nk

(
o, Ik

)
denotes a k-dimensional Gaussian random vector having zero mean components

and a covariance matrix being equal to the unit matrix Ik.

As a simple application of Theorem 2 for k = 2, r1 = 0, r2 = r (using the asymptotic indepen-
dence of the components) and Slutski’s theorem we obtain

Corollary 1 Let the Conditions 1 and 2, Fd(0) = 0 and (1) for r = 0 and some r > 0 be

satisfied. Then

√
π2 nd−1

log nd−1

( Ûn(r)

Ûn(0)
− (1− Fd(r))

)
=⇒
n→∞

N(0, s2(r)) ,

where s2(r) :=
(
σ2(r) + σ2(0) (1 − Fd(r))

2
)
/λ2

d.

There exists indeed a weakly consistent estimator of the asymptotic variance σ2(r) (although its
expectation does not exist) which is given by the following ‘overnormed’ random sum

σ̂2
n(r) :=

1

nd−1 log nd−1

∑

i≥1

1(X i ∈ W (d−1)
n )

1(Ri > r)

Ri
2 − r2

.

Theorem 3 Under Condition 3 and ER0 < ∞ it holds

σ̂2
n(r)

P−→
n→∞

σ2(r) for each r ≥ 0 satisfying (1) .

Combining Theorem 1 with Theorem 3 together with Slutski’s theorem provides

Corollary 2 Let the Conditions 1 and 2, ER0 < ∞ and (1) for some fixed r ≥ 0 be satisfied.

Then

√
π2 nd−1

σ̂2
n(r) log n

d−1

(
Ûn(r)− λd(1− Fd(r))

)
=⇒
n→∞

N(0, 1) .

Remark 3 By means of Corollary 2 ( applied to r = 0 provided Fd(0) = 0) we are able
to construct an asymptotically exact confidence interval for the unknown intensity λd of the
midpoints of d-spheres.

In order to find an asymptotic confidence interval for 1−Fd(r) we combine Corollary 1, Theorem
2 and Slutski’s theorem and obtain

Corollary 3 Assume that the Conditions 1 and 2, ER0 < ∞ , Fd(0) = 0 and (1) for r = 0 and

some fixed r > 0 are satisfied. Then

√
π2 nd−1

ŝ2n(r) log n
d−1

( Ûn(r)

Ûn(0)
− (1− Fd(r))

)
=⇒
n→∞

N(0, 1) ,
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where ŝ2n(r) :=
(
σ̂2
n(r) Û

2
n(0) + σ̂2

n(0) Û
2
n(r)

)
/Û4

n(0) .

An immediate consequence of Theorem 2 and Slutski’s theorem is

Corollary 4 Let the assumptions of Theorem 2 and ER0 < ∞ be satisfied. Then

π2 nd−1

log nd−1

k∑

j=1

(
Ûn(rj)− λd(1− Fd(rj))

)2

σ̂2
n(rj)

=⇒
n→∞

χ2
k ,

where the random variable χ2
k is χ2-distributed with k degrees of freedom.

The latter result can be used to test the goodness-of-fit of certain hypothesized radius df Fd (if
λd is known).

3.2 The Case s = d− 2

Define the empirical process

V̂n(r) =
1

π nd−2 log nd−2

∑

i≥1

1(X i ∈ W (d−2)
n )

1(Ri > r)

Ri
2 − r2

which has an infinite mean for any r ≥ 0 . Nevertheless, V̂n(r) is weakly consistent for λd (1 −
Fd(r)) under slight additional assumptions.

Theorem 4 Under Condition 3 and ER2
0 < ∞ it holds

V̂n(r)
P−→

n→∞
λd(1− Fd(r)) for any r ≥ 0 ,

and therefore, together with Fd(0) = 0 ,

V̂n(r)

V̂n(0)

P−→
n→∞

1− Fd(r) for any r ≥ 0 .

Theorem 5 Let Ψ∗
d = {Xi : i ≥ 1} be a stationary Poisson process with intensity λd . If, in

addition,

∞∫

r

| log(%2 − r2) |dFd(%) < ∞ (2)

for some fixed r ≥ 0 with Fd(r) < 1 , then

log nd−2
( V̂n(r)

λd (1− Fd(r))
− 1

)
− log

(
π λd (1− Fd(r))

)

−
∫∞
r log(%2 − r2) dFd(%)

1− Fd(r)
− 1 + γ =⇒

n→∞
S1 .

7



where γ := limn→∞(1+1/2+ · · ·+1/n− log n) ' 0.5772 denotes the Euler-Mascheroni constant

and the random variable S1 possesses a stable df with characteristic exponent α = 1 and skewness

parameter β = 1 having the characteristic function

E exp{i t S1} = exp
{
− π

2
|t| − i t log |t|

}
for t ∈ R

1 .

Remark 4 Nolan [9] provides tables and numerical procedures for calculating the density of S1

(and other stable densities). This gives at least in principle the possibility for testing the null

hypothesis H0 : Fd = F
(0)
d , λd = λ

(0)
d .

3.3 The Case d− s > 2

Of course, the previous cases are of particular interest in stereological practice for d = 3, s = 2 ,
d = 2, s = 1 and d = 3, s = 1 . To be complete we also investigate the asymptotic behaviour of
a simple generalization of Ûn(r) resp. V̂n(r) to the case d− s > 2 . The below result seems to be
of interest for its own right (from the view point of pure asymptotics) and it gives insight how
the instability increases when d− s becomes greater than two.

Let p := d− s and define

Ŷ (p)
n (r) =

1

ns p/2

∑

i≥1

1(X i ∈ W (s)
n )

1(Ri > r)

(Ri
2 − r2)p/2

Theorem 6 Let Ψ∗
d = {Xi : i ≥ 1} be a stationary Poisson process with intensity λd and

ERp−2
0 < ∞. Then, for any fixed r ≥ 0 with Fd(r) < 1 , it holds

Ŷ
(p)
n (r)

(
cp λd

∞∫
r
(%2 − r2)(p−2)/2 dFd(%)

)p/2 =⇒
n→∞

S2/p ,

where cp = ωp
p
2 Γ(1 − 2

p) cos(πp ) and the random variable S2/p possesses a stable df with

characteristic exponent α = 2/p ∈ (0, 1) and skewness parameter β = 1 having the characteristic

function

E exp{i t S2/p} = exp
{
− |t|2/p

(
1− i sgn(t) tan

(π
p

))}
for t ∈ R

1 .

4. PROOFS OF THE THEOREMS

First observe that the empirical processes Ûn(r) , V̂n(r) , σ̂2
n(r) , and Ŷ

(p)
n (r) can be regarded as so-

called shot-noise processes
∑

i≥1 f(Xi,X i, Ri) with different ‘response functions’ f |Rs×R
d−s×

(0,∞) 7→ [0,∞), see [3] and references therein. However, only Ûn(r) has a finite first moment.

8



In fact, applying Campbell’s theorem gives EÛn(r) = λd (1−Fd(r)) and further E(Ûn(r))
m < ∞

for 1 < m < 2, but E(Ûn(r))
2 = ∞. In order to prove Theorem 1 we have to replace the terms

(Ri
2 − r2)−1/2 (which are responsible for the large fluctuations of the sum) by truncated terms.

More precisely, for any ε > 0, we introduce the ‘truncated’ shot-noise process

Ûn,ε(r) =
1

πnd−1

∑

i≥1

1(X i ∈ W
(d−1)
n )√

Ri
2 − r2

1

(
Ri

2 − r2 >
max{ε,R2

i − r2}
ε2nd−1 log nd−1

)

and the nonnegative random integer

Nn,ε(r) =
∑

i≥1

1
(
X i ∈ W (d−1)

n

)
1

(
0 < Ri

2 − r2 ≤ max{ε,R2
i − r2}

ε2nd−1 log nd−1

)
.

First step: For any Borel set B ⊆ R
1 we have the identity {Ûn,ε(r) ∈ B} ∩ {Nn,ε(r) = 0} =

{Ûn(r) ∈ B} ∩ {Nn,ε(r) = 0} and this in turn implies the estimate

∣∣∣P(Ûn,ε(r) ∈ B)− P(Ûn(r) ∈ B)
∣∣∣ ≤ P(Nn,ε(r) ≥ 1) ≤ ENn,ε(r) (3)

For brevity put αn = ( ε nd−1 log nd−1 )−1 . By applying Campbell’s theorem and using that the
assumptions (1) and ER0 < ∞ are satisfied we may write

ENn,ε(r) = E

∑

i≥1

1(X i ∈ W (d−1)
n ) 1

(
0 < Ri

2 − r2 ≤ max{ε,R2
i − r2}

ε2nd−1 log nd−1

)

= λd n
d−1

∞∫

r

√
%2−r2∫

−
√

%2−r2

1

(
%2 − x2 − r2 ≤ max{ε, %2 − r2}

ε2nd−1 log nd−1

)
dxdFd(%)

= 2λd n
d−1

∞∫

√
r2+ε

(√
%2 − r2 −

√
(%2 − r2)(1 − αn/ε)

)
dFd(%)

+ 2λd n
d−1

√
r2+ε∫

r

(√
%2 − r2 −

√
max{0, %2 − r2 − αn}

)
dFd(%)

≤ 2λd n
d−1αn



1

ε

∞∫

√
r2+ε

√
%2 − r2 dFd(%) +

√
r2+ε∫

r

dFd(%)√
%2 − r2




Since, by our assumptions, both integrals in the last line exist, it follows that

ENn,ε(r) −→
n→∞

0 for any ε > 0 . (4)

Second step: Once more using assumption (1) we are able to verify that
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√
π2 nd−1

log nd−1

(
EÛn,ε(r)− λd (1− Fd(r))

)
−→
n→∞

0 . (5)

For this we again employ Campbell’s theorem combined with
∫ 1
0 (1 − w2)−1/2dw = π/2 which

leads to

EÛn,ε(r) =
2λd

π




∞∫

√
r2+ε

√
(%2−r2)(1−αn/ε)∫

0

dxdFd(%)√
%2 − r2 − x2

+

√
r2+ε∫

√
r2+αn

√
%2−r2−αn∫

0

dxdFd(%)√
%2 − r2 − x2




= λd (1− Fd(r))− λd (Fd(
√

r2 + αn)− Fd(r))−
2λd

π

√
r2+ε∫

√
r2+αn

1∫

√

1− αn
%2−r2

dxdFd(%)√
1− x2

.

By obvious rearrangements we get that

Fd(
√

r2 + αn)− Fd(r) ≤ √
αn

√
r2+αn∫

r

dFd(%)√
%2 − r2

and

1∫

√

1− αn
%2−r2

dx√
1− x2

≤

1−
√

1− αn
%2−r2∫

0

dx√
x

= 2

√
1−

√
1− αn

%2 − r2
≤ 2

√
αn

%2 − r2
.

Hence,

|EÛn,ε(r)− λd (1− Fd(r)) | ≤ λd

(
1 +

4

π

)√
αn

√
r2+ε∫

r

dFd(%)√
%2 − r2

,

which, together with assumption (1), implies (5). Combining (4) and (5) shows that the sequences√
nd−1/ log nd−1

(
Ûn,ε(r)−EÛn,ε(r)

)
and

√
nd−1/ log nd−1

(
Un(r)−λd (1−Fd(r))

)
posseses the

same limit distribution with mean zero. We shall verify that this limit distribution is Gaussian
with variance σ2(r)/π2 .

Third step: By virtue of Condition 2 we may verify that

lim
n→∞

∣∣∣∣
π2 nd−1

log nd−1
Var
(
Ûn,ε(r)

)
− σ2(r)

∣∣∣∣ ≤ λd

√
r2+ε∫

r

dFd(%)√
%2 − r2

for any ε > 0 . (6)

10



To derive this estimate we rewrite the variance of Ûn,ε(r) by applying Campbell’s formula and

remembering the definition of the second-order reduced factorial cumulant measure γ
(red)
2 (·)

Var
(
Ûn,ε(r)

)
=

2λd

π2 nd−1




∞∫

√
r2+ε

√
(%2−r2)(1−αn/ε)∫

0

dxdFd(%)

%2 − r2 − x2
+

√
r2+ε∫

√
r2+αn

√
%2−r2−αn∫

0

dxdFd(%)

%2 − r2 − x2




+
λd

π2 n2(d−1)

∞∫

0

∞∫

0

∫

Rd

∫

Rd

1(x ∈ W
(d−1)
n )√

%2 − r2 − x2
1

(
%2 − r2 − x2 >

max{ε, %2 − r2}
ε2nd−1 log nd−1

)

× 1(y + x ∈ W
(d−1)
n )√

τ2 − r2 − (y + x)2
1

(
τ2 − r2 − (y + x)2 >

max{ε, τ2 − r2}
ε2nd−1 log nd−1

)

× γ
(red)
2 (d(y, y)) d(x, x) dFd(%) dFd(τ) = T

(n)
1 + T

(n)
2 + T

(n)
3 .

The first term is easy to treat and yields the following limit :

π2 nd−1

log nd−1
T
(n)
1 =

2λd

log nd−1

∞∫

√
r2+ε

dFd(%)√
%2 − r2

√
1−αn/ε∫

0

dx

1− x2

=
λd

log nd−1

∞∫

√
r2+ε

dFd(%)√
%2 − r2

(
− log(1−

√
1− αn/ε) + log(1 +

√
1− αn/ε)

)

=
λd

log nd−1

∞∫

√
r2+ε

dFd(%)√
%2 − r2

(
log
(
ε2 nd−1 log nd−1

)
+ 2 log(1 +

√
1− αn/ε)

)

−→
n→∞

λd

∞∫

√
r2+ε

dFd(%)√
%2 − r2

.

Analogously,

π2 nd−1

log nd−1
T
(n)
2 =

2λd

log nd−1

√
r2+ε∫

√
r2+αn

√

1− αn
%2−r2∫

0

dx

1− x2
dFd(%)√
%2 − r2

=
λd

log nd−1

√
r2+ε∫

√
r2+αn

(
log
(%2 − r2

αn

)
+ 2 log

(
1 +

√
1− αn

%2 − r2

)
dFd(%)√
%2 − r2

11



leading to

lim
n→∞

π2 nd−1

log nd−1
T
(n)
2 ≤ λd

√
r2+ε∫

r

dFd(%)√
%2 − r2

for any ε > 0 .

Condition 2 and
∫ 1
0 (1 − w2)−1/2dw = π/2 guarantee that the third summand can be bounded

by

π2 nd−1

log nd−1
T
(n)
3 ≤ λd const

log nd−1


 2

∞∫

0

∞∫

0

1√
%2 − r2 − x2

1

(
(%2 − r2)(1− αn/ε) > x2

)
dxdFd(%)




2

≤ λd π
2 const

log nd−1
,

which together with the above relations immediately confirm (6).

In the final step we make use of Condition 1 and derive bounds of the cumulants of order
m ≥ 3 (abbreviated by the symbol Cumm) of (π2 nd−1/ log nd−1)1/2 Ûn,ε(r) , which are uniformly
bounded in n and tend to zero as ε does so.

More precisely, using the representation formula for cumulants of general shot-noise processes
obtained in Heinrich and Schmidt [3] we get

Cumm{Ûn,ε(r)} =

=
m∑

p=1

1

p !

∑

m1+···+mp=m
mj≥1 , j=1,...,p

m!

m1! · · ·mp!

∫

(Rd)p

p∏

j=1

∫ ∞

0

(
fn,ε(xj , %)

)mj

dF (%) γp
(
d(x1, ..., xp)

)

= λd

∫

Rd

∫ ∞

0

(
fn,ε(x, % )

)m
dF (%) dx+ λd

m∑

p=2

1

p !

∑

m1+···+mp=m

J=min{j:mj≥2}

m!

m1! · · ·mp!

×
∫

Rd

∫

(Rd)p−1

p∏

j=1

j 6=J

∫ ∞

0

(
fn,ε(xj + xJ , %)

)mj

dF (%)γ(red)p

(
d(xj ; j 6= J)

)

×
∫ ∞

0

(
fn,ε(xJ , %)

)mJ

dF (%) dxJ ,

where the ‘response function’ fn,ε |Rd−1 ×R
1 × [0,∞) 7→ R

1 of the truncated shot-noise process

Ûn,ε(r) is given by

fn,ε(x, %) =
1

π nd−1

1(x ∈ W
(d−1)
n )√

%2 − r2 − x2
1

(
%2 − r2 − x2 >

max{ε, %2 − r2}
ε2 nd−1 log nd−1

)
for x = (x, x) .

12



Since 0 ≤ fn,ε(x, %) ≤
√

ε log nd−1/π2 nd−1 uniformly in x ∈ R
d and % ∈ (0,∞) , we arrive at

the estimate

|Cumm{Ûn,ε(r)} | ≤ λdCm

(ε log nd−1

π2 nd−1

)(m−2)/2
∫

Rd

∞∫

0

f2
n,ε(x, %) dF (%) dx for m ≥ 3 ,

where the constant Cm depends on the total variations of the signed measures γ
(red)
p (·) for

p = 2, ...,m in the following way

Cm = 1 +
m∑

p=2

1

p !

∑

m1+···+mp=m
mj≥1,j=1,...,p

m!

m1! · · ·mp!

∫

(Rd)p−1

| γ(red)p (d(x1, ..., xp−1) | .

Making use of the abbreviation αn intoduced at the beginning of the proof we find that

∫

Rd

∞∫

0

f2
n,ε(x, %) dF (%) dx ≤ 2

π2 nd−1

∞∫

0

∞∫

0

1
(
%2 − r2 − y2 > αn (%

2 − r2)/ε
)

%2 − r2 − y2
dF (%) dy

=
2

π2 nd−1

∞∫

r

dF (%)√
%2 − r2

√
1−αn/ε∫

0

dy

1− y2

=
1

π2 nd−1

(
log(ε/αn) + 2 log(1 +

√
1− αn/ε)

) ∞∫

r

dF (%)√
%2 − r2

≤ log nd−1

π2 nd−1

(
1 +

log
(
4 ε2 log nd−1

)

log nd−1

) ∞∫

r

dF (%)√
%2 − r2

.

Thus, summarizing the above steps yields the estimate

lim
n→∞

( π2 nd−1

log nd−1

)m/2 ∣∣∣Cumm{Ûn,ε(r)}
∣∣∣ ≤ ε(m−2)/2 Cm σ2(r) for any ε > 0 and m ≥ 3 .

This last step confirms the asymptotic normality of the truncated shot-noise process Ûn,ε(r) by
applying the classical ‘method of moments’.

The proof of Theorem 3 is quite similar to that of Theorem 4. For this reason we present a
detailed proof only in case of Theorem 4 and outline the essential proving steps

Let δ > 0 be arbitrarily small, but fixed and ε > 0 be chosen small enough (in fact, ε = εn can
be thought of as a positive sufficiently slowly decreasing null sequence). Define in analogy to
Ûn,ε(r) the truncated shot-noise process

13



V̂n,ε(r) =
1

πnd−2 log nd−2

∑

i≥1

1(X i ∈ W
(d−2)
n )

Ri
2 − r2

1

(
Ri

2 − r2 >
max{ε,R2

i − r2}
ε2nd−2 log nd−2

)

and let Mn,ε(r) denote the above random integer Nn,ε(r) with d− 2 instead of d− 1 .

Using the analog to the ‘truncation inequality’ (3) and Chebychev’s inequality we get

P(
∣∣V̂n(r)− λd(1− Fd(r))

∣∣ ≥ δ) ≤ P(Mn,ε(r) ≥ 1) + P(
∣∣V̂n,ε(r)− λd(1− Fd(r))

∣∣ ≥ δ )

≤ EMn,ε(r) +
Var
(
V̂n,ε(r)

)

δ2
+

(
EV̂n,ε(r)− λd(1− Fd(r))

)2

δ2
.

The following relations can be proved for any ε > 0 :

EMn,ε(r)) −→
n→∞

0 ( since ER2
0 < ∞ ) , (7)

lim
n→∞

∣∣EV̂n,ε(r)− λd (1− Fd(r))
∣∣ ≤ λd

(
Fd(
√

r2 + ε)− Fd(r)
)

(8)

and

lim
n→∞

Var
(
V̂n,ε(r)

)
≤ ε

λd

π

∫

Rd

| γ(red)2 (dx) | . (9)

Next we present detailed proofs of these three relations. Using the abbreviation βn = (ε nd−2 log nd−2)−1

we may write the expectation EMn,ε(r) as follows :

EMn,ε(r) = E

∑

i≥1

1(X i ∈ W (d−2)
n ) 1

(
0 < Ri

2 − r2 ≤ max{ε,R2
i − r2}

ε2nd−2 log nd−2

)

= λd n
d−2

∞∫

0

∫

R2

1

(
%2 − ‖x‖22 − r2 ≤ max{ε, %2 − r2}

ε2nd−2 log nd−2

)
dxdFd(%)

= 2π λd n
d−2

∞∫

0

∞∫

0

1

(
%2 − r2 − x2 ≤ max{ε, %2 − r2}

ε2nd−2 log nd−2

)
xdxdFd(%)

= π λd n
d−2

( βn
ε

∞∫

√
r2+ε

(
%2 − r2

)
dFd(%) +

√
r2+ε∫

r

min{%2 − r2, βn}dFd(%)
)
.
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Thus, by nd−2 βn −→
n→∞

0 , (7) is shown.

Furthermore, by introducing planar polar coordinates we are led to

EV̂n,ε(r) =
λd

π log nd−2

∞∫

0

∫

R2

1
(
%2 − r2 − ‖x‖22 > max{ε,%2−r2}

ε2nd−2 lognd−2

)

%2 − r2 − ‖x‖22
dxdFd(%)

=
λd

log nd−2




∞∫

√
r2+ε

(%2−r2)(1−βn/ε)∫

0

dxdFd(%)

%2 − r2 − x
+

√
r2+ε∫

√
r2+βn

%2−r2−βn∫

0

dxdFd(%)

%2 − r2 − x




=
λd

(
1− Fd(

√
r2 + ε)

)

log nd−2
log
( ε

βn

)
+

λd

log nd−2

√
r2+ε∫

√
r2+βn

log
(%2 − r2

βn

)
dFd(%) ,

whence, in view of log(ε/βn)/ log n
d−2 −→

n→∞
1 for all ε > 0 , relation (8) follows. In like manner,

we may express the variance of the truncated shot-noise process V̂n,ε(r) :

Var
(
V̂n,ε(r)

)
=

λd π nd−2

(π nd−2 log nd−2)2

×




∞∫

√
r2+ε

(%2−r2)(1−βn/ε)∫

0

dxdFd(%)

(%2 − r2 − x)2
+

√
r2+ε∫

√
r2+βn

%2−r2−βn∫

0

dxdFd(%)

(%2 − r2 − x)2




+
λd

(π nd−2 log nd−2)2

∞∫

0

∞∫

0

∫

Rd

∫

Rd

1(x ∈ W
(d−2)
n )

%2 − r2 − ‖x‖22
1

(
%2 − r2 − ‖x‖22 >

max{ε, %2 − r2}
ε2nd−2 log nd−2

)

× 1(y + x ∈ W
(d−2)
n )

τ2 − r2 − ‖y + x‖22
1

(
τ2 − r2 − ‖y + x‖22 >

max{ε, τ2 − r2}
ε2nd−2 log nd−2

)

× γ
(red)
2 (d(y, y)) d(x, x) dFd(%) dFd(τ) = T

(n)
4 + T

(n)
5 + T

(n)
6 .
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Some obvious rearrangements show that

T
(n)
4 + T

(n)
5 =

λd

π nd−2 (log nd−2)2




∞∫

√
r2+ε

dFd(%)

%2 − r2

1∫

βn/ε

dx

x2
+

√
r2+ε∫

√
r2+βn

1∫

βn
%2−r2

dx

x2
dFd(%)

%2 − r2




=
λd

π nd−2 (log nd−2)2




∞∫

√
r2+ε

dFd(%)

%2 − r2

( ε

βn
− 1
)
+

√
r2+ε∫

√
r2+βn

(%2 − r2

βn
− 1
) dFd(%)

%2 − r2




≤ λd

π nd−2 (log nd−2)2 βn
−→
n→∞

0

and

|T (n)
6 | ≤ λd ε

π log nd−2

∫

Rd

|γ(red)2 (dy) |
∞∫

0

∞∫

0

1

(
%2 − r2 − x > max{ε,%2−r2}

ε2nd−2 lognd−2

)

%2 − r2 − x
dxdFd(%)

=
λd ε

π log nd−2

∫

Rd

|γ(red)2 (dy) |

×



(
1− Fd(

√
r2 + ε)

)
log
( ε

βn

)
+

√
r2+ε∫

√
r2+βn

log
(%2 − r2

βn

)
dFd(%)




≤ λd ε

π log nd−2
log
( ε

βn

)
.

These estimates imply immediately (9).

Combining the relations (7), (8), (9), Condition 3, and the right-continuity of the df Fd completes
the proof of Theorem 4.

As announced above we outline some calculations needed to prove Theorem 3. First we introduce
a truncated version of the estimator σ̂2

n(r) and calculate its mean by using Campbell’s formula.
Let

σ̂2
n,ε(r) :=

1

nd−1 log nd−1

∑

i≥1

1(X i ∈ W
(d−1)
n )

Ri
2 − r2

1

(
Ri

2 − r2 >
max{ε,R2

i − r2}
ε2nd−1 log nd−1

)

so that the expectation Eσ̂2
n,ε(r) exists for any ε > 0. More precisely,
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Eσ̂2
n,ε(r) =

2λd

log nd−1

∞∫

0

∞∫

0

1

(
%2 − r2 − x2 > max{ε,%2−r2}

ε2nd−1 lognd−1

)

%2 − r2 − x2
dxdFd(%)

=
2λd

log nd−1




∞∫

√
r2+ε

√
(%2−r2)(1−αn/ε)∫

0

dxdFd(%)

%2 − r2 − x2
+

√
r2+ε∫

√
r2+αn

√
%2−r2−αn∫

0

dxdFd(%)

%2 − r2 − x2




=
λd

log nd−1

∞∫

√
r2+ε

dFd(%)√
%2 − r2

(
log
( ε

αn

)
+ 2 log

(
1 +

√
1− αn

ε

))

+
λd

log nd−1

√
r2+ε∫

√
r2+αn

(
log
(%2 − r2

αn

)
+ 2 log

(
1 +

√
1− αn

%2 − r2

)) dFd(%)√
%2 − r2

,

whence, together with log(ε/αn)/ log n
d−1 −→

n→∞
1 and limn→∞

∫ √
r2+αn

r (%2 − r2)−1/2 dFd(%) = 0 ,

it follows that

lim
n→∞

Eσ̂2
n,ε(r) ≤ σ2(r) and lim

n→∞

∣∣∣Eσ̂2
n,ε(r)− σ2(r)

∣∣∣ ≤ λd

√
r2+ε∫

r

dFd(%)√
%2 − r2

(10)

for all ε > 0 . It remains to show that

lim
n→∞

Var
(
σ̂2
n,ε(r)

)
≤ ε σ2(r)

∫

Rd

| γ(red)2 (dx) | . (11)

In analogy to the computation of Var
(
Ûn,ε(r)

)
and Var

(
V̂n,ε(r)

)
we have

Var
(
σ̂2
n,ε(r)

)
=

2λd n
d−1

(nd−1 log nd−1)2

×




∞∫

√
r2+ε

√
(%2−r2)(1−αn/ε)∫

0

dxdFd(%)

(%2 − r2 − x2)2
+

√
r2+ε∫

√
r2+αn

√
%2−r2−αn∫

0

dxdFd(%)

(%2 − r2 − x2)2



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+
λd

(nd−1 log nd−1)2

∞∫

0

∞∫

0

∫

Rd

∫

Rd

1(x ∈ W
(d−1)
n )

%2 − r2 − x2
1

(
%2 − r2 − x2 >

max{ε, %2 − r2}
ε2nd−1 log nd−1

)

× 1(y + x ∈ W
(d−1)
n )

τ2 − r2 − (y + x)2
1

(
τ2 − r2 − (y + x)2 >

max{ε, τ2 − r2}
ε2nd−1 log nd−1

)

× γ
(red)
2 (d(y, y)) d(x, x) dFd(%) dFd(τ) ≤

2λd

nd−1 (log nd−1)2

×
( ∞∫

√
r2+ε

dFd(%)

(%2 − r2)3/2

√
1−αn/ε∫

0

dx

(1− x2)2
+

√
r2+ε∫

√
r2+αn

√

1− βn
%2−r2∫

0

dx

(1− x2)2
dFd(%)

(%2 − r2)3/2

)

+
2λd ε

log nd−1

∫

Rd

|γ(red)2 (dy) |
∞∫

0

∞∫

0

1

(
%2 − r2 − x2 > max{ε,%2−r2}

ε2nd−1 lognd−1

)

%2 − r2 − x2
dxdFd(%)

≤ 4σ2(r)

nd−1 (log nd−1)2 αn
+ ε

∫

Rd

|γ(red)2 (dy) | Eσ̂n,ε(r) .

Thus, (11) is an immediate consequence of (10). To accomplish the proof of Theorem 4 we
remember that, in analogy to the proof of Theorem 3 and in view of (3), we have

P(
∣∣σ̂2

n(r)− σ2(r))
∣∣ ≥ δ) ≤ P(Nn,ε(r) ≥ 1) +

Var
(
σ̂2
n,ε(r)

)

δ2
+

(
Eσ̂2

n,ε(r)− σ2(r)
)2

δ2

for arbitrarily small, but fixed δ > 0 . Due to (4), (10), and (11) the right-hand side of the latter
inequality tends to zero as ε = εn ↓ 0 .

The proofs of the Theorems 5 and 6 rely on the exponential shape of the generating functional
of the stationary, independently marked Poisson process Ψd , which is as follows:

E

∏

i≥1

v(Xi, Ri) = exp
{
λd

∫

Rd

∞∫

0

(
v(x, ρ) − 1

)
dFd(ρ) dx

}

for any Borel-measurable, complex-valued function v(·) on Rd × [0,∞) satisfying∫
Rd

∫∞
0 | v(x, ρ) − 1 |dFd(ρ) dx < ∞ , see e.g. Stoyan et al. [10].

Choosing

v(x, ρ) = exp
{ i t1(x ∈ W

(d−2)
n )1(ρ2 − ‖x‖22 > r2)

π nd−2 (ρ2 − ‖x‖22 − r2)

}

yields the following expression for the logarithm of the characteristic function E exp{it log nd−2 V̂n(r)} :
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λd n
d−2

∫

R2

∞∫

√
ρ2+‖x‖2

2

(
exp
{ i t

ρ2 − ‖x‖22 − r2

}
− 1
)
dFd(ρ) dx

λd π nd−2

∞∫

r

ρ2−r2∫

0

(
exp
{ i t

π nd−2 y

}
− 1
)
dy dFd(ρ)

= λd

∞∫

r

∞∫

(
π nd−2 (ρ2−r2)

)−1

exp{i t z} − 1

z2
dz dFd(ρ) . (12)

The inner integral in (12) can be approximated by elementary functions with explicit remainder
term in the following way :

∞∫

A

exp{i t z} − 1

z2
dz = −π

2
| t| − i t log | t|+ i t

(
1− γ − logA

)
+

At2

2
(1 +A | t|) θ ,

where A =
(
an (ρ

2 − r2)
)−1

, an = π nd−2 , and θ denotes some complex number satisfying
|θ| ≤ 1 . Next, splitting the outer integral in (12) into two integrals over (rn(ε),∞) and (r, rn(ε)]
with rn(ε) =

√
r2 + (ε an)−1 , we arrive at

log E exp{i t log nd−2 V̂n(r)} = λd (1− Fd(rn(ε)))
(
−π

2
|t| − i t log |t|+ i t

(
1− γ + log an

))

+i t λd

∞∫

rn(ε)

log(ρ2 − r2) dFd(ρ) +
ε λd

2
t2 (1 + ε|t|) θ + 2λd θ̃ an

rn(ε)∫

r

(ρ2 − r2) dFd(ρ)

with some complex number θ̃ satisfying |θ̃| ≤ 1 . Since, in view of (2), the last term in the
previous line vanishes as n → ∞ for any ε > 0 and also

log nd−2
(
Fd(rn(ε)) − Fd(r)

)

≤ log nd−2

log
(
ε an

)
rn(ε)∫

r

| log(ρ2 − r2)|dFd(ρ) −→
n→∞

0 ,

it follows from the foregoing equation (after replacing t by t/λd (1 − Fd(r)) and some further
rearrangements) that

log E exp
{
i t log nd−2

( V̂n(r)

λd (1− Fd(r))
− 1
)}
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−→
n→∞

log E exp{i t S1}+ i t

∫∞
r log(ρ2 − r2) dFd(ρ)

1− Fd(r)
+ i t log

(
πλd

(
1− Fd(r)

) )
+ i t

(
1− γ

)

which is nothing else but the assertion of Theorem 5.

To prove Theorem 6 we make use of the subsequent representation of L
(p)
n (t) := log E exp{i t Ŷ (p)

n (r)}
which can be derived in analogy to (12) by using the generating functional of the Poisson process
Ψ∗

d = {Xi : i ≥ 1} :

L(p)
n (t) = λd ωp

∞∫

r

∞∫

(
ns (ρ2−r2)

)−p/2

exp{i t z} − 1

z1+2/p

(
ρ2 − r2 − z−2/p n−s

)−1+p/2
dz dFd(ρ) .

The following formula goes back to L. Euler and can be found in any ‘Table of Integrals’ for
0 < α < 1 :

∞∫

0

exp{i t z} − 1

z1+α
dz =

Γ(1− α)

α
cos
(απ

2

)
| t|α

(
−1 + i sgn(t) tan

(π α

2

))
, (13)

where Γ(1− α) =
∫∞
0 e−x x−α dx .

Therefore, applying (13) for α = 2
p we obtain after a simple calculation that

L(p)
n (t) −→

n→∞
cp λd Ip(r) log E exp{i t S2/p} = log E exp{i t (cp λd Ip(r))

p/2 S2/p} ,

where Ip(r) =
∫∞
r (%2 − r2)(p−2)/2 dFd(%) and cp is as defined in Theorem 6. Thus, replacing t

by t/(cp λd Ip(r))
p/2 completes the proof of Theorem 6.
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