
Fault-Tolerant Coarse-Grained
Data-Flow Execution

Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
der Fakultät für Angewandte Informatik

der Universität Augsburg

eingereicht von
Dipl.-Inf. Sebastian Weis

Fault-Tolerant Coarse-Grained Data-Flow Execution
Sebastian Weis

Erstgutachter: Prof. Dr. Theo Ungerer
Zweitgutachter: Prof. Dr.-Ing. Rudi Knorr

Tag der mündlichen Prüfung: 26. November 2015

Kurzfassung

Das Fortschreiten der Halbleitertechnologie und die damit verbundene Steigerung der
Transistorintegrationsdichte hat die Entwicklung immer leistungsfähigerer Multicore-
Prozessoren maßgeblich vorangetrieben. Bedingt durch die stetige Verkleinerung der
Strukturgrößen in Richtung der physikalischen Grenzen steigen aber auch die Wahrschein-
lichkeiten von transienten, intermittierenden und permanenten Fehlern in den Prozessor-
Chips. Diese Entwicklung macht effiziente Fehlertoleranzmechanismen in Zukunft auch
für universale Multicore-Prozessoren notwendig. Allerdings ist die redundante Program-
mausführung, wie sie in sicherheitskritischen und hochverfügbaren Lockstep-Systemen
seit langer Zeit verwendet wird, für gegenwärtige Universalprozessoren aufwendig, da
Änderungen an der Mikroarchitektur benötigt werden, welche die Skalierbarkeit der Syste-
me einschränken können. Zusätzlich wird die Verwendung moderner Energiesparmaßnah-
men und die Ausführung paralleler Anwendungen durch die Lockstep-Implementierung
erschwert.

Die vorliegende Dissertation beschreibt die Integration von flexiblen Fehlertoleranz-
mechanismen in ein grobkörniges Datenflussausführungsmodell, welche insbesondere
die skalierbare Ausführung von parallelen Anwendungen in einem Multicore-Prozessor
erhalten sollen. Zur Fehlererkennung wird die entkoppelte redundante Ausführung von
Datenfluss-Threads (Double Execution) vorgestellt, welche die Korrektur von Fehlern
durch Thread-Neustarts unterstützt. Dabei werden notwendige Anpassungen am Da-
tenflussausführungsmodell und der Hardware-Architektur sowie Techniken zur Einga-
bereplikation, zur Thread-Synchronisierung und zum Ausgabevergleich beschrieben.
Basierend auf der redundanten Ausführung von Datenfluss-Threads wird eine Methode
zur Diagnose von permanenten und intermittierenden Fehlern vorgeschlagen, die im
Fehlerfall eine Anpassung des Systems ermöglicht. Um die Parallelität der redundan-
ten Datenflussausführung zu erhöhen, wird die optimistische redundante Ausführung
von Datenfluss-Threads (Optimistic Double Execution) vorgestellt, welche nachfolgende
Datenfluss-Threads spekulativ starten kann, noch bevor die Korrektheit der Berechnungs-
ergebnisse verifiziert werden konnte. Um die Fehlerkorrektur auch für die optimistische
redundante Ausführung zu ermöglichen, wird ein datenflussbasierter globaler Wiederher-
stellungsmechanismus vorgestellt.

Die datenflussbasierten Fehlertoleranzmechanismen wurden mit Hilfe des Open-Source-
Multicore-Simulators COTSon untersucht. Dabei zeigte sich, dass die redundante Thread-
Ausführung nur geringe zusätzliche Laufzeitkosten gegenüber einer optimalen Lockstep-
Maschine aufweist und in bestimmten Fällen sogar Laufzeitvorteile bieten kann. Im Falle
von permanenten Fehlern in den Prozessorkernen zeigte sich, dass die Ausführungsge-
schwindigkeit des Systems schrittweise angepasst werden kann. Des Weiteren können
transiente Fehler durch den Neustart von Datenfluss-Threads mit geringen Kosten
korrigiert werden. Für die optimistische redundante Ausführung zeigte sich, dass Anwen-
dungen mit geringer Parallelität ungenutzte Systemressourcen zur Beschleunigung der
redundanten Ausführung nutzen können.

Abstract

The progress of the semiconductor technology and the resulting increase of the tran-
sistor integration density has driven the development of ever more powerful multi-core
processors. The reduction of the feature sizes in the direction of the physical limits
increases the probabilities of transient, intermittent, and permanent faults in the chips
and demands efficient fault-tolerance mechanisms also for future general-purpose multi-
core processors. However, the use of redundant execution mechanisms, as they have
been implemented in safety-critical and high-availability lockstep systems for a long
time, can be expensive in general-purpose processors, since they require changes to the
microarchitecture, which can limit the scalability of the systems. Additionally, lockstep
execution complicates the use of modern power management mechanisms as well as the
execution of parallel applications.

This thesis describes the integration of flexible fault-tolerance mechanisms in a coarse-
grained data-flow execution model, which are able to preserve the scalable execution
of parallel applications in a multi-core system. For fault detection, we present double
execution, the decoupled redundant execution of data-flow threads, which supports fault
recovery by the restart of data-flow threads. In this context, necessary adaptions to
the data-flow execution model and the hardware architecture as well as techniques for
input replication, thread synchronisation, and output comparison are described. Based
on the redundant thread execution, a method to diagnose permanent and intermittent
faults is developed, which enables the adaption of the system in case of these faults.
To further increase the parallelism of double execution, optimistic double execution is
proposed, which is able to speculatively start subsequent data-flow threads before result
verification. In order to recover from errors detected with optimistic double execution, a
data-flow based global checkpointing mechanism is presented.

The data-flow based fault-tolerance mechanisms were studied with the open-source
multi-core simulator COTSon. The evaluation shows that double execution introduces
small run time overhead compared to an ideal lockstep machine and can even achieve a
speedup in certain cases. Furthermore, the execution speed of double execution can be
gradually reduced, when permanent faults in the processing elements occur. In case of
transient faults, the restart of data-flow threads has only a small impact on the execution
speed, while optimistic double execution can exploit underutilised system resources to
speed up the redundant execution of applications with low parallelism.

Danksagung

An dieser Stelle möchte ich mich bei den Personen bedanken, ohne deren Unterstützung
diese Dissertation nicht hätte geschrieben werden können.

Zuallererst bedanke mich bei meinem Doktorvater, Herrn Prof. Dr. Theo Ungerer,
dass er mir die Möglichkeit geben hat, diese Dissertation im Rahmen des Teraflux
Projekts verfassen zu können. In jeder Phase meines Promotionsvorhabens stand er
mir mit konstruktiver Kritik und zahlreichen Verbesserungsvorschlägen zur Seite. Bei
Herrn Prof. Dr.-Ing. Rudi Knorr bedanke ich mich für die Zweitbegutachtung dieser
Dissertation. Herrn Prof. Dr. Bernhard Bauer danke ich, dass er sich als Prüfer zur
Verfügung gestellt hat.

Weiterhin danke ich allen Mitarbeitern des Lehrstuhls, mit denen ich in den letzten
Jahren erfolgreich an den verschiedensten Projekten, Forschungsanträgen und Lehrver-
anstaltung zusammenarbeiten durfte. Mein besonderer Dank gilt den Kollegen Stefan
Metzlaff, Florian Haas, Jörg Mische und Arne Garbade für die unzähligen wissen-
schaftlichen und nicht-wissenschaftlichen Diskussionen, die wesentlich zu dieser Arbeit
beigetragen haben.

Bei meiner Familie, insbesondere meiner Frau Verena, bedanke ich mich für die große
Geduld und die grenzenlose Unterstützung.

Finally, I’d also like to thank Prof. Dr. Roberto Giorgi from the University of Siena
for his great hospitality during my stays in Siena.

Sebastian Weis

Table of Contents

List of Abbreviations 13

1 Introduction 15
1.1 Main Contributions . 16

1.2 Structure . 17

1.3 Publications . 17

2 Background 19
2.1 Faults in Computer Systems . 19

2.1.1 Manifestation of Faults . 19

2.1.2 Duration and Sources of Faults 20

2.1.3 Increasing Fault Rates in Future Systems 21

2.2 Fault-Tolerant Computer Systems . 22

2.2.1 Information Redundancy . 22

2.2.2 Spatial Redundancy . 23

2.2.3 Temporal Redundancy . 23

2.3 Redundant Execution . 23

2.3.1 Tightly-Coupled Redundant Execution 24

2.3.2 Loosely-Coupled Redundant Execution 24

2.4 Recovery . 27

2.4.1 Terminology . 27

2.4.2 BER in Shared-Memory Processors 27

2.4.3 Relation between Fault Detection and Checkpointing 28

2.4.4 Fault Diagnosis and Adaption for Permanent/Intermittent Faults 29

2.5 Combining Fault Tolerance and Data-flow Execution 30

2.5.1 The Data-flow Execution Principle 30

2.5.2 Hybrid Data-flow/Von Neumann Execution 31

2.5.3 Combining Fault Tolerance and Data-flow Execution 31

2.6 Summary . 32

3 Related Work 33
3.1 Redundant Execution Mechanisms . 33

3.1.1 Lockstep Redundancy . 33

3.1.2 Microarchitectural Redundancy 34

3.1.3 Thread-Level Redundancy in SMT Architectures 35

3.1.4 Thread-Level Redundancy in Multi-Core Architectures 37

3.2 Backward Error Recovery in Shared-Memory Multi-Cores 38

3.3 Fault-Tolerant Data-Flow Execution . 39

9

3.4 Tolerating Permanent Faults . 41

3.4.1 Deactivation and Reconfiguration of Cores 41

3.4.2 Deactivation and Reconfiguration of Microarchitectural Components 41

3.5 Summary . 42

4 Baseline Execution Model and Architecture 45
4.1 A Coarse-Grained Data-Flow Execution Model 45

4.2 Baseline Hardware Architecture . 47

4.3 Architectural Support for Data-Flow Execution 48

4.3.1 The T*-Instruction Set Extension 48

4.3.2 Thread Scheduling Unit . 49

4.4 Physical Memory Organisation . 50

4.5 Summary . 51

5 Fault-Tolerant Data-Flow Execution 53
5.1 Overview of the Data-Flow Based Fault-Tolerance Mechanisms 53

5.1.1 Fault-Tolerant Coarse-Grained Data-Flow Execution 53

5.1.2 Faults Covered by the Data-flow Based Fault-Tolerance Mechanisms 55

5.2 Extended Fault-Tolerant Hardware Architecture 56

5.3 Double Execution of Data-Flow Threads 57

5.3.1 Double Execution Overview . 57

5.3.2 Sphere of Replication of Double Execution 59

5.3.3 Input Replication . 60

5.3.4 Synchronisation and Output Comparison 62

5.3.5 Asynchronous Thread Execution 63

5.3.6 Influence of Double Execution on the Execution Time 64

5.4 Restart of Data-Flow Threads . 64

5.4.1 Speculative Thread Creation . 65

5.5 Data-Flow Runtime Enhancements . 65

5.5.1 Extended Continuation for Double Execution 65

5.5.2 ID Table . 66

5.6 Fault Diagnosis and Periodic Tests . 67

5.6.1 Fault Diagnosis . 68

5.6.2 Periodic Testing . 68

5.7 Summary . 70

6 Optimistic Double Execution and Global Checkpointing 71
6.1 Optimistic Double Execution . 71

6.1.1 Increasing Parallelism by Optimistic Thread Commit 71

6.1.2 Run time Behaviour of Optimistic Double Execution 73

6.1.3 Input Replication . 73

6.1.4 Output Comparison . 75

6.2 Data-flow based Global Checkpointing 76

6.2.1 Establishing a Checkpoint . 76

6.2.2 Logging of Memory Accesses . 77

6.2.3 Checkpointing Overhead . 77

6.2.4 Overlapping of Checkpoint Verification and Data-Flow Execution 78

6.2.5 Fault Diagnosis and Adaption for Optimistic Double Execution
and Global Checkpointing . 78

6.3 Summary . 78

7 Evaluation 81
7.1 Simulation Methodology . 81

7.1.1 Simulator Framework . 81
7.1.2 Baseline Machine Configuration 81
7.1.3 Lockstep Machine Configurations 82
7.1.4 Fault Injection . 83
7.1.5 Benchmarks . 84

7.2 Double Execution . 87
7.2.1 Execution Overhead of Double Execution 87
7.2.2 Scalability . 90
7.2.3 Commit Slack . 91
7.2.4 Graceful Degradation under Permanent Faults 93
7.2.5 Execution Overhead under Transient Faults 98

7.3 Optimistic Double Execution . 99
7.3.1 Execution Overhead without Checkpoints 100
7.3.2 Scalability . 102
7.3.3 Execution Overhead with Checkpoints 103
7.3.4 Commit Slack . 106
7.3.5 Log Size of Global Checkpoints 108
7.3.6 Graceful Degradation under Permanent Faults 109
7.3.7 Execution under Transient Faults 113

7.4 Summary . 115

8 Summary and Future Work 117
8.1 Summary . 117
8.2 Future Work . 119

Bibliography 121

List of Figures 131

List of Tables 133

List of Algorithms 135

List of Abbreviations

ALAB Active Load Address Buffer

CARER Cache-Aided Rollback Recovery

CB Comparison Buffer

CLB Checkpoint Log Buffer

CRTR Chiplevel Redundantly Threaded Multiprocessor with Recovery

DCC Dynamic Core Coupling

DE Double Execution

DMR Dual Modular Redundancy

DRMT Data-flow Scheduled Redundant Multi-Threading

DVFS Dynamic Voltage and Frequency Scaling

FDU Fault Detection Unit

HTM Hardware Transactional Memory

LBRA Log-based Redundant Architecture

LVQ Load Value Queue

ODE Optimistic Double Execution

PU Processor Unit

RQ Ready Queue

SDF Scheduled Data-Flow

SMT Simultaneous Multithreading

SRT Simultaneous Redundant Threading

SRTR Simultaneous Redundant Threading with Recovery

TF Thread Frame

TLP Thread-Level Parallelism

TLS Thread-Local Storage

TMR Triple Modular Redundancy

TPL Thread-To-PE-List

13

TQ Thread Queue

TSU Thread Scheduling Unit

1
Introduction

Current microprocessor devices, like Nvidia’s Fermi architecture [Wittenbrink et al., 2011]
or Intel’s Haswell [Hammarlund et al., 2014] microarchitecture incorporate several Billion
transistors1 and it is expected that the ongoing improvements of the semiconductor
fabrication technology will let the number of transistors per chip further increase [ITRS,
2013]. While the ongoing device scaling provides opportunities for computer architects
to build even more parallel and powerful computing devices, the shrinking feature sizes
of future chips also increases the probability of transient, intermittent, and permanent
faults [Constantinescu, 2003; Srinivasan et al., 2004; Borkar, 2005]. This means that
external and internal influences on the chip, like voltage fluctuation, cosmic radiation,
thermal cycling, variability in the manufacturing process, or silicon wearout, will lead to
increasing transient, permanent, and intermittent fault rates in future semiconductor
devices [Mukherjee, 2008; Constantinescu, 2003; Borkar, 2005]. Additionally, the in-
creasing gate leakage of future microprocessors raises the cost for burn-in testing of the
devices [Borkar, 2005]. It can be prospected that hardware faults in present multi-core
and future many-core systems may become unavoidable and fault-tolerance mechanisms
must be also considered for general-purpose multi-core processors.

While fault-tolerance mechanisms have a long tradition in safety-critical [Yeh, 1996]
and high-availability computer systems [Siewiorek et al., 1998], the architecture of general-
purpose microprocessors is much stronger influenced by economical constraints. This
means that future multi-core processors will require fault-tolerance techniques, which
are capable to scale with the number of cores and increasing hardware fault rates at a
reasonable architectural effort [Borkar, 2005]. Although current server processors [Iyer
et al., 2005] implement error correcting and detecting codes to detect and correct
errors in the main memory, the caches, or the cores’ register files [AMD, 2013], the
computational logic in the pipelines remains often unprotected. While the well-established
lockstep implementations of safety-critical and high-availability systems provide high
fault coverage and are also able to detect faults in the computational logic of a processor,
lockstep execution imposes also significant challenges for parallel systems and may
limit the performance and the scalability of parallel applications and architectures. In
particular, lockstep techniques require high spatial redundancy and fully deterministic

1https://en.wikipedia.org/wiki/Transistor_count, Retrieved on August 15, 2015

15

https://en.wikipedia.org/wiki/Transistor_count

1 Introduction

execution [Mukherjee, 2008, pp. 213 f.], which complicates the use of complex out-of-order
processors and modern power management techniques and may limit the implementation
in commodity multi-core processors [Bernick et al., 2005]. Additionally, when faults
become more frequent, computer systems must also provide scalable recovery and fault
adaption mechanisms to prevent frequent catastrophic breakdowns [Sorin, 2009, p. 61].

Today, most microprocessors are based on the control flow driven von Neumann
architecture, which uses a program counter for the sequential execution of instructions.
However, the strict memory access ordering of the program counter driven execution and
shared variables in parallel applications impose challenges for the scalable implementation
of redundant execution and checkpointing mechanisms [LaFrieda et al., 2007; Rashid
et al., 2008; Mukherjee, 2008; Yazdanpanah et al., 2013]. In this thesis, we propose
redundant execution and checkpointing mechanisms for a data-flow based execution model
to support scalable redundant execution and checkpointing for parallel applications.

The data-flow execution principle is a well-known approach to overcome restrictions
introduced by the von Neumann architecture. However, fine-grained data-flow archi-
tectures [Dennis et al., 1975; Gurd et al., 1985; K. Arvind et al., 1990] suffer from
poor sequential execution performance or high synchronisation overhead, because of
the fine-grained parallelism [Robic et al., 2000]. Therefore, coarse-grained data-flow
models were developed, which combine data-flow driven thread scheduling and syn-
chronisation with the efficient sequential execution of current von Neumann processors,
while they still provide enough parallelism of the application to fully utilise a multi-core
processor [Yazdanpanah et al., 2013]. The coarse-grained thread execution allows that
data-flow threads can be started only when all input data is available. The data-flow
threads can then execute without waiting for external input. In particular, with the focus
on future many-core processors and the need for efficient, parallel execution paradigms,
coarse-grained data-flow architectures and compilers have gained new attention in acade-
mia [Giorgi et al., 2014b; Etsion et al., 2010; Giorgi et al., 2007; G. Gupta et al., 2011;
Hum et al., 1995; Li et al., 2012; Stavrou et al., 2005; Zuckerman et al., 2011].

1.1 Main Contributions

This thesis integrates redundant execution and checkpointing mechanisms in a coarse-
grained data-flow execution model to overcome restrictions, which may limit the imple-
mentation of scalable redundant execution and checkpointing in commodity multi-core
processors.

In detail, this thesis makes the following contributions:

1. A coarse-grained data-flow execution model, originally developed in the Teraflux
project [Giorgi et al., 2014b], is extended with support for data-flow based redundant
execution, fault recovery, and fault diagnosis.

2. The proposed fault-tolerance mechanisms are integrated in a subset of the Ter-
aflux data-flow architecture [Giorgi et al., 2014b] and necessary fault-tolerance
enhancements to the architecture and the data-flow runtime system are discussed
in detail.

3. An optimistic redundant execution scheme is developed, which is able to increase the
parallelism of the redundant thread execution by a speculative start of subsequent

16

1.2 Structure

threads to exploit underutilised system resources and therefore speed up redundant
execution.

4. A data-flow based global checkpoint mechanism is proposed, which is able to reduce
the overhead of global checkpoint creation.

5. The proposed data-flow based fault-tolerance mechanisms are evaluated with
the open source multi-core simulator COTSon [Argollo et al., 2009], an x86 64
functional-first full system simulator, which was extended with support for data-
flow execution in the Teraflux project. The data-flow based fault-tolerance
mechanism are compared with an ideal lockstep system and a conventional global
checkpointing scheme. The evaluation results show that a data-flow execution
model supports the construction of scalable redundant execution, checkpointing,
and flexible adaption in the case of permanent and intermittent faults.

1.2 Structure

The rest of this thesis is structured as follows. In Chapter 2, background information
on the terminology and the technical details of faults in microprocessor systems are
given. Furthermore, the challenges of redundant execution and checkpointing in parallel
multi-core architectures are discussed and the data-flow execution principle and its
advantages for the implementation of redundant execution and recovery mechanisms are
described. Chapter 3 gives an overview of prior work on redundant execution, backward
error recovery in shared-memory multi-cores, fault-tolerant data-flow architectures,
and fault diagnosis and adaption mechanisms in case of permanent faults. Chapter 4
provides an overview of the baseline data-flow execution model and the x86 64 multi-core
architecture used in this thesis. Chapter 5 proposes double execution, a redundant
execution mechanism for data-flow threads and discusses how double execution can be
integrated in the baseline data-flow execution model and architecture. The chapter
also proposes a thread restart mechanism for fault recovery and a fault localisation
and adaption technique, when the system suffers from permanent or intermittent faults.
Chapter 6 describes optimistic double execution, a speculative variant of double execution,
which can increase the parallelism of redundant thread execution by committing data-flow
threads before result comparison. Furthermore, a data-flow based global checkpointing
mechanism is presented. Chapter 7 presents evaluation results on the fault-tolerance
mechanisms, which are proposed in the Chapters 5 and 6. In Chapter 8, the results of
this thesis are summarised and future research opportunities are proposed.

1.3 Publications

Partial results of this thesis have been published in the following papers:

S. Weis, A. Garbade, F. Bagci and T. Ungerer. ‘Fault detection and reliability techniques
for future many-cores’. In: HiPEAC ACACES Summer School (Poster Abstract).
2010. isbn: 978-90-382-1631-7.

17

1 Introduction

S. Weis, A. Garbade, J. Wolf, B. Fechner, A. Mendelson, R. Giorgi and T. Ungerer.
‘A Fault Detection and Recovery Architecture for a Teradevice Dataflow System’.
In: First Workshop on Data-Flow Execution Models for Extreme Scale Computing
(DFM). 2011, pages 38–44. doi: 10.1109/DFM.2011.9.

S. Weis, A. Garbade, S. Schlingmann and T. Ungerer. ‘Towards Fault Detection Units
as an Autonomous Fault Detection Approach for Future Many-Cores’. In: ARCS
2011 Workshop Proceedings. 2011, pages 20–23. isbn: 978-3-8007-3333-0.

S. Weis, A. Garbade, B. Fechner, A. Mendelson, R. Giorgi and T. Ungerer. ‘Architectural
Support for Fault Tolerance in a Teradevice Dataflow System’. In: International
Journal of Parallel Programming 44.2 (2016), pages 208–232. doi: 10.1007/s10766-
014-0312-y.

18

http://dx.doi.org/10.1109/DFM.2011.9
http://dx.doi.org/10.1007/s10766-014-0312-y
http://dx.doi.org/10.1007/s10766-014-0312-y

2
Background

This chapter presents the background on concepts and techniques used within this thesis.
Section 2.1 describes the background on hardware faults, including their classification
and their sources in modern microprocessors. Section 2.2 introduces different types of
redundancy in fault-tolerant computer systems. Section 2.3 gives an overview of the
general concepts on redundant execution, while Section 2.4 describes the background
on recovery mechanisms for shared-memory multi-core processors. Section 2.5 gives an
introduction to the data-flow execution principle and its advantages for fault-tolerant
execution.

2.1 Faults in Computer Systems

Avizienis et al. [1986] classify faults in computer systems, based on their origin, into
physical faults and human-made faults [Siewiorek et al., 1998, p. 23]. Physical faults
are caused by chip-external or chip-internal “physical phenomena”. These “physical
phenomena” can be induced by chip-internal flaws like “threshold changes”, “open
circuits”, “short circuits”, or by chip-external influences like “environmental conditions”,
“electromagnetic interference”, or “vibration”. In contrast to physical faults, which are
caused by a malfunction of the hardware, human-made faults are induced by humans,
e.g. faults in the hardware or the software design, or by erroneous interaction of the user
with the system. [Siewiorek et al., 1998, p. 23]

The fault-tolerance mechanisms presented in this thesis are intended to cope with
physical faults. In particular, we assume that human-made faults are prevented by other
mechanisms, e.g. testing or formal verification of the hard- and software. Therefore, the
rest of this section focuses on physical faults induced by physical phenomena at run time
or manufacturing time.

2.1.1 Manifestation of Faults

The effects of physical faults can be further distinguished according to their manifest-
ation on the different levels of a computer system. The following definition are based
on Avizienis et al. [2004].

19

2 Background

A fault on the lowest hardware level describes an incorrect hardware state induced by
a chip-internal or chip-external physical phenomena [Siewiorek et al., 1998, p. 23]. When
a fault becomes visible and affects a hardware state, this manifestation is called an error.
For instance, the system suffers from an error when a fault in a DRAM-cell induces a bit
flip in the main memory [Sorin, 2009, pp. 3 f.]. An error can later cause a failure, which
denotes a “deviation of the computing system from its expected or originally specified
behaviour” [Avizienis et al., 1986]. For instance, when a bit flip in the main memory is
later used by software for further calculations, leading to a memory access violation, this
deviation is called a failure.

Faults, errors, and failures can be masked on each level of this hierarchy, which
means that they will not propagate to the next level [Sorin, 2009, p. 2]. Several
microarchitectural and architectural masking effects are discussed in [Mukherjee et al.,
2003]. For instance, an error is microarchitectural masked, when it affects, e.g. the
branch predictor state of a processor, which does not influence the functional correctness
of the execution [Mukherjee et al., 2003]. A fault or error that has been masked does
not need to be detected nor corrected, since it will never cause a failure in the system.

2.1.2 Duration and Sources of Faults

Depending on the underlying physical phenomena, physical faults are also classified
according to the duration of their appearance. The literature on fault-tolerant computer
systems usually distinguishes between transient, intermittent, and permanent faults [Sorin,
2009; Mukherjee, 2008; Siewiorek et al., 1998]:

Transient Faults Transient faults are caused by sporadic physical phenomena, which
immediately disappear after their occurrence. The manifestation of a transient
fault as an error is often called a soft error. [Sorin, 2009, p. 3]

Transient faults can be caused by environmental radiation, like cosmic rays or alpha
particles and also by fabrication and architecture induced reasons, like “transistor
variability”, “thermal cycling”, or “erratic fluctuations of minimum voltage at
which a circuit is functional” [Mukherjee, 2008, p. 20]. While the radiation induced
transient fault rate is usually randomly distributed and depends on the operating
environment of the chip [Lehtonen et al., 2005], the architecture and fabrication
induced transient fault rate may be influenced by power management and scheduling
decisions at run time [Mukherjee, 2008, p. 20].

Permanent Faults A fault is called permanent, when its manifestation is continuous. In
this case, the affected hardware component is permanently broken and the fault
will be present over the lifetime of the device. This means, that a component
suffering from a permanent fault will continuously produce wrong results. [Sorin,
2009, p. 3]

Mukherjee [2008, p. 14] further distinguishes between extrinsic and intrinsic per-
manent faults. Extrinsic permanent faults are induced by chip-external influences,
e.g. defects in the manufacturing process, like contaminants [Mukherjee, 2008,
p. 14] or residuals [Srinivasan et al., 2004]. Extrinsic faults usually influence
the permanent fault rate at the beginning of the lifetime of a chip, called infant
mortality phase. After this phase of infant mortality, the extrinsic permanent fault
rate decreases. By contrast, intrinsic permanent faults are induced by wearout

20

2.1 Faults in Computer Systems

of chip material over the lifetime of the chip, induced by e.g. “electromigration”,
“metal stress voiding”, “gate oxide wear out”, or “hot carrier injection” [Mukherjee,
2008, pp. 14 ff.]. Since possible wear out effects are increasing with the lifetime of
the chip, the fault rate of intrinsic permanent faults is increasing with the lifetime
of the chip, too [Mukherjee, 2008, p. 14].

Intermittent Faults Intermittent faults are only occasional present [Siewiorek et al.,
1998, p. 22]. During their occurrence they may behave like permanent faults,
however, unlike a permanent fault, intermittent faults may disappear after a
certain time [Constantinescu, 2003]. Constantinescu [2003] uses three criteria to
determine an intermittent fault:

1. It occurs repeatedly at the same place.

2. Errors caused by the intermittent faults occur in bursts.

3. Replacement of the affected transistor or hardware structure repairs the fault.

Intermittent faults often precede permanent faults and are also caused by variability
effects of the chip’s manufacturing process. For instance, a device may suffer from
intermittent delay faults due to increasing resistance, before an open fault occurs,
induced by wear out of chip material. [Constantinescu, 2003]

2.1.3 Increasing Fault Rates in Future Systems

Based on the assumption that the progress of the semiconductor fabrication technology
will continue, Sorin [2009, pp. 5–7] describes three main causes for increasing fault rates
in future processors:

Smaller Transistors The ongoing downscaling of semiconductor devices may lead to
increasing transient faults caused by a reduction of the critical charge of the
transistors [Shivakumar et al., 2002]. This means that environmental influences,
like cosmic rays or alpha particles in the chip packaging, will more likely influence
the critical charge of the transistors [Mukherjee, 2008, pp. 29 f.].

Furthermore, the downscaling complicates the manufacturing process, leading to a
higher probability of manufacturing defects or variability between different chips
[Borkar, 2005]. Borkar [2005] mentions two main run time independent sources of
variability induced by the downscaling of the transistor sizes, i.e. random dopant
fluctuation in the channels of a transistor, leading to variable threshold voltages in
the transistors and the sub-wavelength lithography process, leading to “line edge
roughness”.

More Transistors per Processor The overall fault rate of a chip is proportional to the
number of the transistors per chip [Koren et al., 2007, p. 16], which means that
the fault rate increases with number of the transistors per chip, particularly when
single transistor fault rates are increasing with the ongoing downscaling [Sorin,
2009, p. 6].

Complexer Chips The quest for higher performance has led to complex superscalar
out-of-order pipelines and more recently also general-purpose multi-core processors.
On the other side, the increasing complexity introduced by multi-core processors,
coherence protocols, on-chip memory controllers or even on-chip GPUs will make
future processors harder to verify and to test [Sorin, 2009, pp. 6 f.]. In particular,

21

2 Background

burn-in tests, the conventional method to test for manufacturing defects before
shipping of the device, gets more complicated with a reduction of the threshold
voltage [Borkar, 2005].

2.2 Fault-Tolerant Computer Systems

With the reduced reliability of future silicon devices, faults may become unavoidable
and require efficient architectural fault-tolerance mechanisms even for general-purpose
computer systems.

“Fault tolerance is the ability of a system to continue to perform its tasks after the
occurrence of faults. The ultimate goal of fault tolerance is to prevent system failures
from occurring”. [Pradhan, 1996, pp. 4–5]

A fault-tolerant computer system must be able to detect and recover from faults.
In case of a transient fault, the system may continue its normal operation after fault
detection and recovery, since the source of the fault usually has disappeared after recovery.
However, in case of intermittent and permanent faults, a fault-tolerant system must
also support fault diagnosis, in order to locate the faulty component and distinguish
between transient or permanent/intermittent duration and fault adaption, in order to
adapt the system in case of an intermittent/permanent faulty component. Fault adaption
is important for permanent faults to guarantee forward progress of the system. [Sorin,
2009, p. 81]

Fault-tolerant systems use redundancy in different forms to detect, recover, and adapt
the system in case of faults [Sorin, 2009, p. 19]. In the next subsection, we describe the
main forms of redundancy, as they are used in fault-tolerant computer systems.

Redundancy in computer systems can be classified into information redundancy, spatial
redundancy, and temporal redundancy [Sorin, 2009, pp. 19–25].

2.2.1 Information Redundancy

Information redundancy adds redundant information to the data to detect and correct
errors by redundant coding [Koren et al., 2007, pp. 55 ff.]. Redundant coding techniques
can be distinguished in error detecting (EDC), e.g. parity codes, and error correcting
codes (ECC), e.g. Hamming codes, [Lehtonen et al., 2005; Koren et al., 2007]. While
EDC is only able to detect errors, ECC is also able to correct errors. Redundant
coding techniques are a well-established technique to protect the memory subsystem of a
computer system against faults. For instance, off-chip DRAM or on-chip caches and the
register file of modern server systems are already today protected by EDC/ECC [AMD,
2013].

However, information redundancy is usually not used to protect the arithmetic logic
units of a processor pipeline. In order to protect the arithmetic logic and control units,
usually spatial or temporal redundancy mechanisms are used.

22

2.3 Redundant Execution

2.2.2 Spatial Redundancy

Spatial redundancy physically replicates hardware modules and performs the same
operation in parallel on the replicated modules. Afterwards, the results of the redundant
modules are compared by a comparator. [Sorin, 2009, p. 19]

Figure 2.1 shows the general concept of a Dual Modular Redundant (DMR) system,
a form of spatial redundancy, where two modules are physically replicated. During
operation, all inputs are replicated for both modules. After both modules have processed
their input values, the output values are compared, and the correct result can be
forwarded to the next module.

Input

Module A1

Module A2

Comparator

Figure 2.1: An abstract DMR structure.

Triple modular redundancy (TMR) uses a third module, which enables the system
to vote between three results and to identify the component, which has produced the
wrong result. As a consequence, the system can mask the error by directly forwarding
the correct result. [Sorin, 2009, pp. 19 f.]

Spatial redundancy can be used at different levels of a computer system, e.g. at
gate-level, where single flip-flops are replicated, or at core-level where complete pipelines
are replicated for redundant program execution [Sorin, 2009, p. 20].

2.2.3 Temporal Redundancy

Unlike spatial redundancy, temporal redundancy does not require physically duplicated
hardware components, instead an operation is executed n-times on the same hardware
module. However, the performance of the component is reduced by the number of the
re-executions. Beside the cost for re-execution, the component must also be able to safe
the temporal results for comparison. Furthermore, temporal redundancy may not detect
all possible permanent or intermittent faults, since permanent or intermittent faults may
affect the re-executions in the same way. [Sorin, 2009, p. 22]

2.3 Redundant Execution

A well-established approach to implement fault detection in computer systems is redund-
ant execution. Redundant execution systems execute a duplicated instruction stream

23

2 Background

in a spatial or temporal redundant manner and compares periodically the outputs of
the instruction streams. By contrast to information redundancy techniques, redundant
execution mechanisms cover multiple hardware structures and are able to detect faults
also in the control and the arithmetic units of a processor pipeline. [Mukherjee, 2008, p.
207]

Although redundant execution mechanisms are a well-known and established fault
detection approach with high fault coverage, prior redundant execution mechanisms
have drawbacks in terms of hardware overhead, activation flexibility, implementation
complexity, and their usage for parallel applications.

In the following, the general redundant execution mechanisms are described. Mukherjee
[2008, pp. 207 ff.] classifies redundant execution mechanisms into tightly-coupled and
loosely-coupled redundant execution. In the rest of this section, we will describe the
principles of tightly-coupled and loosely-coupled redundant execution and discuss their
advantages and drawbacks.

2.3.1 Tightly-Coupled Redundant Execution

Tightly-coupled redundant execution, also called lockstep execution, implements spatial
redundancy on processor or system-level by coupling spatial redundant execution units
in a cycle-by-cycle manner. Tightly-coupled lockstep systems usually implement result
comparison after each cycle [Mukherjee, 2008, p. 212]. Usually lockstep execution
requires a completely duplicated state in all redundant components. Lockstep execution
is widely used in safety-critical embedded systems [Infineon Technologies AG, 2015;
STMicroelectronics, 2014] and also high-availability systems [Siewiorek et al., 1998;
Mukherjee, 2008].

However, the implementation of tightly-coupled lockstep systems is costly in terms
of hardware overhead, since all redundant resources must be fully replicated. Further-
more, the execution of redundant components must be absolutely deterministic. This
determinism includes the whole microarchitectural state at each cycle, incorporating
branch prediction decisions, cache miss behaviour, or interrupt delivery [Mukherjee,
2008; Bernick et al., 2005]. The increasing complexity of future multi-core systems with
support for fine-grained power-management, multi-cores, out-of-order-pipelines, multi-
threaded workloads or performance heterogeneity of the cores due to process variability,
makes the construction of tightly-coupled lockstep systems more complex [Bernick et al.,
2005]. Additionally, tightly-coupled lockstepping demands that all hardware components
are spatial redundant, which means that a permanent fault automatically renders one
additional core or processor useless, since spatial redundancy is impossible with an
uneven number of execution units [LaFrieda et al., 2007].

2.3.2 Loosely-Coupled Redundant Execution

By contrast to tightly-coupled redundant execution, loosely-coupled redundant execution
mechanisms do not rely on strict cycle-by-cycle synchronisation and remove the strict
timing constraints for the output comparison [Mukherjee, 2008, p. 222]. This simplifies
the construction of loosely-coupled redundant execution mechanisms, since the execution
units must not be synchronised at every cycle and further allows efficient temporal

24

2.3 Redundant Execution

resource sharing, since the redundant threads can be executed asynchronously [Mukherjee,
2008, pp. 222–223]. Resource sharing between redundant execution streams is usually
impossible in a tightly-coupled lockstep implementation without sacrificing the execution
speed.

Since loosely-coupled redundant execution does not require a complete duplication of
the hardware, Reinhardt et al. [2000] developed the notion of the Sphere of Replication,
which describes the logical area of a chip, which is covered by temporal or structural
redundancy. Due to the redundancy, errors within the sphere of replication can be
detected by the redundant execution mechanism. Figure 2.2 depicts the sphere of
replication for a DMR structure.

As a consequence, the redundant execution scheme must provide consistent input
replication for input data, which enters the sphere of replication. Furthermore, all
computational results, which leave the sphere of replication must be compared in
order to detect errors, which may have occurred during execution. Any error which
leaves the sphere of replication, cannot be detected at a later stage without additional
mechanisms. [Reinhardt et al., 2000]

Replication

Rep
lic

ati
on

Output Comparison

Sphere of Replication

Output Input

Modul A1

Modul A2

Comparator

Figure 2.2: Sphere of Replication for the abstract DMR system.

Although the loosely-coupled lockstep mechanisms provide advantages in terms of
hardware- and synchronisation overhead, the asynchronous execution in loosely-coupled
systems also introduces new problems for input replication and output comparison and
complicates the use of loosely-coupled redundant execution for parallel applications.
In the following, we will describe the main challenges for input replication and output
comparison in more detail.

Input Replication By contrast to tightly-coupled lockstep execution, loosely-coupled
redundant execution may execute redundant load and store operations asynchronously
at different times. This asynchronous execution complicates the input replication, since
redundant streams may read input data that has been changed in the meantime [Reinhardt
et al., 2000]. Smolens et al. [2006] call these race conditions between redundant execution
streams “input incoherence”. Input incoherence between redundant execution streams
can be caused, when the input data of redundant instruction streams is changed, while
the streams are executed asynchronously. Reasons for this behaviour can be e.g. memory

25

2 Background

mapped I/O, interrupts, or shared variables in parallel applications [Smolens et al., 2006;
Reinhardt et al., 2000].

The input incoherence problem in loosely-coupled lockstep implementations is ad-
dressed by different publications.

• Reinhardt et al. [2000] propose a dedicated hardware structure, the Load Value
Queue (LVQ) to pass already fetched values of the leading stream to the trailing
stream. The LVQ leads to a tight coupling of the redundant execution streams,
since the trailing execution stream must wait for input values, which are produced
by the leading stream and requires a hardware coupling of the redundant execution
units. LaFrieda et al. [2007] identify that this static coupling limits the dynamic
adaption of the system in case of permanent faults.

• Smolens et al. [2006] solve the input replication problem by detecting inconsistent
input with the implemented fault detection and recovery mechanisms. However,
LaFrieda et al. [2007] show that relaxed input replication can lead to severe perform-
ance penalty for parallel applications with large comparison intervals. Furthermore,
relaxed input replication may lead to livelock situations, which can only be solved
by tightly-coupled lockstep execution of the redundant streams [Smolens et al.,
2006].

• Reinhardt et al. [2000], LaFrieda et al. [2007] and Rashid et al. [2008] use the cache
and the coherence protocol to guarantee consistent input values for the redundant
execution streams. Reinhardt et al. [2000] propose the Active Load Address Buffer
(ALAB), which tracks unfinished loads and prevents the replacement of these values
in the cache. LaFrieda et al. [2007] propose a sliding window, which enables the
consistent input replication for redundant streams of parallel applications. While
they solve the input replication problem, their solution requires bus snooping,
changes to the private caches and the coherence protocol. Rashid et al. [2008]
propose another input replication scheme, which proposes hardware support for
input replication by using special cache structures and adapting the cache coherence
protocol. This scheme requires complex changes to the coherence protocol and the
private caches, too.

Output Comparison All state which leaves the sphere of replication must be compared
for errors. When data leaves the sphere of replication, the redundant processing units
must synchronise and compare their state. As a consequence, a larger sphere of replication
may reduce the synchronisation frequency, but also increase the error detection latency.
Reinhardt et al. [2000] distinguish between two spheres of replication, one which compares
results on register write back and store commit, and another one, which only compares
retired store instructions. They concluded that output comparison of stores may increase
the performance of the redundant execution, since the synchronisation frequency is
reduced, leading to more flexible utilisation of the multi-thread processor resources.

Beside the synchronisation overhead, the output must be also transferred to a compar-
ison unit. For a sphere of replication, which excludes the register file, all register write
backs and all store instructions must be compared [Reinhardt et al., 2000]. To increase
the synchronisation interval and reduce the exchanged data, Smolens et al. [2006] propose
to generate a CRC-16 signature, called fingerprint, of the output. This reduces the cost

26

2.4 Recovery

for transferring the computational state to the comparison unit. However, some errors
may be masked by collisions of the CRC-16 signatures.

2.4 Recovery

When a redundant execution mechanism has detected an error, the system must be able
to recover or mask the erroneous execution state.

2.4.1 Terminology

Recovery mechanisms can be distinguished in backward error correction (BER) and
forward error correction (FER) [Sorin, 2009, p. 61]. FER allows masking the fault
without the need to recover to a prior execution state. To be able to forward the
correct result, FER must be able to identify the erroneous execution. In a DMR system,
the identification of the faulty state requires additional knowledge, e.g. by information
redundancy. However, FER mechanisms often use TMR to identify the erroneous
execution state by a majority voting mechanism. [Mukherjee, 2008, p. 255]

Since TMR requires significant hardware overhead, it is usually restricted to time
critical environments where not only the functional correct result is required, but also
the time when the correct result is available, e.g. safety-critical embedded systems [Yeh,
1996].

In contrast to FER, BER recovers the execution to a previous state. However, this
requires the creation of a checkpoint of an intermediate state of the execution (called
recovery point) [Sorin, 2009, p. 62].

In BER systems, the part of the architecture, which can be recovered by the recovery
mechanism is called the sphere of recoverability [Sorin, 2009, p. 63]. The output commit
problem describes the problem that execution results, which have left the sphere of
recoverability can no longer be recovered. The output commit problem directly constrains
the fault detection mechanism, since data that leaves the sphere of recoverability must
always be checked for faults before leaving the sphere of recoverability. [Sorin, 2009, p.
63]

The input commit problem describes the problem that state, which is read from the
outside world, e.g. by an I/O operation, can not be replayed, when the execution is
recovered. The input commit problem can be solved by logging and replaying I/O in
case of recovery. [Sorin et al., 2002]

2.4.2 BER in Shared-Memory Processors

In order to implement BER in a shared-memory multiprocessor, the system must be able
to establish periodic checkpoints of the execution state. When a fault is detected by the
fault detection mechanism, the system is recovered to the state of the last checkpoint.

Depending on the sphere of recoverability, backward error recovery can be implemented
in shared-memory systems at different granularity, i.e. the cores, the caches, and the
main memory [Gold et al., 2006].

27

2 Background

Some proposals [Smolens et al., 2006; Ray et al., 2001; Gomaa et al., 2003; Vijaykumar
et al., 2002] based on speculative out-of-order processors use the architectural state of
the cores for recovery. In these approaches, the complete speculative state of the cores,
including the speculative results in the reorder buffers and the functional units, can be
recovered. Here, the state of a checkpoint consists of the architectural registers and the
memory state. A new checkpoint is inherently created when an instruction commits.
When a fault is detected by a fault detection mechanism, the speculative state in the
pipeline is squashed, similar to a branch mispredict, and the execution is restarted at the
last committed instruction. Consequently, the sphere of recoverability does not include
the architectural registers, which must be protected by an ECC mechanism.

Some other proposals [Wu et al., 1990; LaFrieda et al., 2007; Rashid et al., 2008]
extend the sphere of recoverability to the cache hierarchy. In these cases, the sphere
of recoverability consists of the cores, including all microarchitectural structures and
the data caches. A new checkpoint in such systems is established by creating a copy
of the architectural state of the cores and preventing the write back of modified cache
lines [Hunt et al., 1987]. Whenever a modified cache line is evicted and written back to
the main memory, a new checkpoint must be established, since the main memory is no
longer recoverable from errors, once the evicted cache line has overwritten the value in
the main memory [Ahmed et al., 1990].

When the sphere of recoverability comprises the whole system, including the caches
and main memory, a copy of the state of the architectural registers of the cores and the
memory must be established [Prvulovic et al., 2002; Sorin et al., 2002].

While copying the architectural registers to a shadow register set or the main memory
is simple, copying the whole memory would impose huge copy and storage overhead [Sorin,
2009, p. 72]. Therefore, the main memory state is usually covered by a logging mechanism.
The logging mechanisms records modifications to the main memory with respect to the
last checkpoint. When a fault is detected, all changes are reverted by the log. [Sorin,
2009, p. 72]

Establishing a new checkpoint in a multi-core processor can be done in two ways, i.e.
global or local [Prvulovic et al., 2002]. Global means that all cores in the system agree
to take a checkpoint at a specific point in time.

In shared-memory systems a global checkpoint can be created by stopping the execution
on all cores and flushing the caches. Afterwards, all cores have the same view on the main
memory. Finally, a global checkpoint can be established. However, in case of a fault,
the global system, i.e. all cores, not only the erroneous execution, must be recovered,
leading to high recovery overhead. [Pradhan, 1996, pp. 160 ff.]

Local means that each core can establish a checkpoint independently from the other
cores. While local checkpoint creation may reduce the communication overhead between
the cores when a new checkpoint is established, it can also lead to the so-called domino
effect, which is induced by data dependencies between the threads and can cause cascading
rollbacks in order to reach a consistent system state [Sorin, 2009, p. 66].

2.4.3 Relation between Fault Detection and Checkpointing

There are several relations between checkpointing and the fault detection mechan-
ism [Mukherjee, 2008, pp. 256 f.]. First, when a new checkpoint is established, the system

28

2.4 Recovery

must ensure that the new checkpoint is fault free. If the checkpoint would contain an
error, a rollback would always recover to the erroneous state of the checkpoint, and the
system would never be able to recover to an error free state [Sorin, 2009, p. 67]. Second,
all data that leaves the sphere of recoverability cannot be recovered and must be checked
for errors [Gold et al., 2006].

In a conventional shared-memory multi-core the first point always means that the
architectural state of each core in the system must be checked for faults, when a new
checkpoint is established. Since in a von Neumann architecture, the architectural registers
must always be included in a checkpoint, every instruction write back to the architectural
registers and store instruction must be checked for errors in order to guarantee a fault-
free checkpoint. Vijaykumar et al. [2002] identify that this can result in significant
read pressure to the register file for result comparison and also result transfer to the
comparison unit. Therefore, Vijaykumar et al. [2002] propose a Register Value Queue,
an additional hardware structure, to prevent frequent register accesses. Smolens et al.
[2004] propose fingerprinting to reduce the communication bandwidth to the comparison
unit. However, also with fingerprinting every register write back must be included in the
CRC-16 signature.

Since all data that leaves the sphere of recoverability must be checked for errors, the
output of the redundant execution streams must always be compared and synchron-
ised [Gold et al., 2006]. Consequently, a smaller sphere of recoverability, e.g. including
only the cores’ pipelines, usually requires frequent output comparison. When the sphere
of recoverability is larger, i.e. including the main memory, the redundant streams must
compare results only when I/O takes place [Mukherjee, 2008, p. 256]. However, in this
case the complete main memory must be included in the checkpoint, increasing the
overhead for checkpoint creation and logging [Prvulovic et al., 2002; Sorin et al., 2002].

2.4.4 Fault Diagnosis and Adaption for Permanent/Intermittent Faults

While transient faults usually disappear after error recovery, permanent and intermittent
faults require additional mechanisms to diagnose the duration of the fault and adapt the
system to prevent livelocks of the system [Sorin, 2009, p. 81]. Fault diagnosis means that
the system can localise the faulty component, identify whether a permanent/intermittent
fault occurred and trigger an adaption mechanism to circumvent the faulty compon-
ent [Sorin, 2009, p. 81]. Sorin [2009, pp. 83–85] distinguishes between built-in-self-tests
(BIST) and diagnosis during normal execution. BIST require that a component is stopped
and a BIST is executed. A BIST can be implemented in hardware [Agrawal et al., 1993]
or software [Kranitis et al., 2005] and executes a specific test pattern on the component.
When the output of the component differs from the expected output of the BIST, the
component suffered from a fault. Fault diagnosis during normal execution uses available
redundancy for fault detection and recovery, e.g. ECC or redundant execution, to localise
faults at run time. For instance, a TMR system can use majority voting to identify the
faulty execution unit.

In the case of a permanent or intermittent fault, the system must be adapted to
prevent recurring errors caused by the permanent fault. The functionality of the faulty
component must be replaced. The component can be replaced by a “cold” or “hot” spare
component. Cold spare means that the replacement is deactivated during non-faulty

29

2 Background

operation of the system and only activated when a permanent fault occurs. A hot spare
component is already activated and can take over the execution instantaneous. [Sorin,
2009, p. 89]

With the rising probability of manufacturing and wearout defects, the ability of a fault-
tolerant system to compensate permanent and intermittent faults is important. In this
context Graceful Degradation of the systems become important. Graceful Degradation
describes the ability of a system to repair or deactivate faulty components, while remaining
operational with reduced performance. [Pradhan, 1996, p. 6]

2.5 Combining Fault Tolerance and Data-flow Execution

This section describes the general data-flow execution principle and how von Neumann
and data-flow execution models can be combined to a hybrid data-flow/von Neumann
execution model. Finally, we discuss how the data-flow execution paradigm can support
fault-tolerance mechanisms.

2.5.1 The Data-flow Execution Principle

Compared to the control flow driven von Neuman architectures, data-flow architectures
implement a data-flow driven execution model. In a data-flow execution model, a program
is organised in a data-flow graph. The nodes in the graph represent instructions, while
the arcs between the nodes describe data dependencies between instructions. During
execution, the data flows along the arcs from node to node, while each node’s instruction
can only be executed, when the data has arrived at its input arcs. When all inputs
have arrived at the input arcs, the node is allowed to fire, i.e. the instruction can be
executed. [Yazdanpanah et al., 2013; Robic et al., 2000]

Since nodes can only be executed, when their data has arrived at the input arcs, the
data-flow execution principle solves some problems of the von Neumann architecture. In
particular, a data-flow program does not require a program pointer, since instructions are
issued only on data availability. This solves all control flow hazards between instructions
and enables data-flow architectures to exploit the available instruction level parallelism
of the applications. [Yazdanpanah et al., 2013; Robic et al., 2000]

However, first fine-grained static data-flow architectures, like [Dennis et al., 1975],
suffered from poor sequential execution performance [Robic et al., 2000] and could not
exploit enough parallelism for subroutines and loop executions [Yazdanpanah et al.,
2013]. While later fine-grained dynamic data-flow architectures, like [Gurd et al., 1985;
K. Arvind et al., 1990], improved the parallelism of the data-flow execution, they re-
quire performance critical token matching hardware [Robic et al., 2000]. The token
matching in dynamic data-flow architectures requires associative memory implementa-
tions to handle the massive parallelism and increases the hardware costs and the power
consumption [Yazdanpanah et al., 2013].

30

2.5 Combining Fault Tolerance and Data-flow Execution

2.5.2 Hybrid Data-flow/Von Neumann Execution

Today, most commodity computer systems are derivatives of the control flow driven
von Neumann architecture, i.e. they make use of a program counter to control the
sequential execution of a program [Yazdanpanah et al., 2013]. While modern von
Neumann processors can efficiently execute sequential applications, parallel execution
requires shared-memory synchronisation between threads to exchange data, which can
lead to high synchronisation overhead and memory latencies [Arvind et al., 1988].

The problems of fine-grained data-flow architectures and the efficient sequential
execution of von Neumann processors led to the idea of hybrid data-flow/von Neumann
execution models [Yazdanpanah et al., 2013; Robic et al., 2000]. These architectures
try to combine the advantages of a data-flow execution model, namely the efficient
synchronisation and latency hiding of memory accesses, with the efficient sequential
execution of von Neumann architectures.

Hybrid data-flow/von Neumann execution models do not execute single instructions
in a data-flow manner, but whole sequences of instructions. This enables to combine
the efficient sequential execution of modern processors with efficient data-flow driven
synchronisation mechanisms. While the data-flow based synchronisation can reduce the
synchronisation overhead and support data-driven scheduling, the sequential execution
can exploit the cache hierarchy and out-of-order pipelines of current microprocessors to
speed up the sequential execution [Yazdanpanah et al., 2013].

Although combining data-flow and von Neumann architectures promises advantages for
efficient resource utilisation in multi-core architectures, it also introduces new complexity
on the software side. In particular, hybrid data-flow/von Neumann architectures require
that the program is structured in a data-flow graph, which requires the programmer
or the compiler to model data dependencies and may restrict the use of certain data
structures. [Yazdanpanah et al., 2013]

2.5.3 Combining Fault Tolerance and Data-flow Execution

The data-flow execution principle provides several advantages for the implementation
of fault-tolerance mechanisms (based on Gaudiot et al. [1985]): (1) The decoupled
and functional execution of the nodes in a data-flow graph provides inherent support
for redundant execution, since the inputs and outputs of the nodes are known by the
data-flow runtime system and can be used for input replication. Furthermore, the
explicit data dependencies between nodes provide inherent comparison points for a
redundant execution mechanism, because only the result of a data-flow node is consumed
by subsequent nodes in the data-flow graph. (2) Data-flow architectures are parallel by
design. The parallelism can be used for flexible and redundant execution of data-flow
nodes. (3) The side-effect free semantic of a data-flow execution model also provides
support for recovery mechanisms, since the nodes of a data-flow graph only depend on
their input arcs. Therefore, a node can always be re-executed as long as the input arcs
of a node are available [Najjar et al., 1990].

Using a hybrid data-flow/von Neumann execution model, the data-flow execution
paradigm can be combined with the sequential von Neumann execution, while providing
a redundant execution scheme, which simplifies input replication, synchronisation, output

31

2 Background

comparison, checkpointing and adaption of the system to permanent faults. An overview
of prior hardware and software based fault-tolerance mechanisms, which use data-flow
principles for fault detection and recovery are presented in Chapter 3.

2.6 Summary

This chapter presented background information on topics discussed in this thesis. In the
first section, the terminology on hardware faults, different fault types, their sources in
semiconductor devices, and the trend of fault rates in future systems were discussed.

Afterwards, the challenges for redundant execution in conventional shared-memory
multi-cores were discussed. On the one hand, the required determinism of cycle-by-cycle
lockstepping is hard to implement in parallel architectures and introduces significant
hardware overhead, since time redundancy and resource sharing between redundant
execution units is complicated. On the other hand, loosely-coupled redundant execution
mechanisms, which allow flexible time sharing of components and a decoupled execution
of redundant instruction streams, pose significant challenges for input replication, re-
dundant thread management, synchronisation, and output comparison. In particular,
loosely-coupled execution of parallel shared-memory applications introduces additional
complexity, since accesses to shared variables from different redundant threads may lead
to input incoherence.

Based on the fact that in future systems fault rates will increase, shared-memory
checkpointing mechanisms were described. The checkpointing of shared-memory multi-
core systems can have an impact on the scalability of a system, since global checkpoint
creation must incorporate the architectural registers of all cores and the memory state,
including the caches and the coherence protocol.

Finally, the advantages and drawbacks of the data-flow execution principle and the
benefits of the hybrid data-flow/von Neumann architectures were described. The side-
effect free execution, the inherent parallelism, and the implicit synchronisation of a
data-flow execution model were discussed in the context of redundant execution and
checkpointing, where the combination of von Neumann and data-flow execution models
promise advantages for the scalable implementation of fault-tolerance mechanisms in
multi-core architectures.

32

3
Related Work

This chapter presents prior work on topics related to this thesis. The chapter is
structured as follows: Section 3.1 presents related work on redundant execution techniques,
Section 3.2 gives an overview of backward error recovery mechanisms for shared-memory
multi-cores, while Section 3.3 discusses prior research on fault-tolerant data-flow systems.
Section 3.4 presents related work on fault-tolerant architectures, which can cope with
permanent faults. The chapter is summarised in Section 3.5.

3.1 Redundant Execution Mechanisms

This section presents a broad overview of different redundant execution mechanisms;
from tightly-coupled lockstep execution and microarchitectural redundant execution in
superscalar to loosely-coupled, thread-level redundant execution in SMT and multi-core
systems.

3.1.1 Lockstep Redundancy

Tightly-coupled lockstep systems have been used in commercial safety-critical and high-
availability systems for several years [Siewiorek et al., 1998]. Due to the broad range of
different lockstep architectures, we present here an excerpt of prior developments, which
implement lockstepping on different levels.

The Stratus ftServer [Mukherjee, 2008, pp. 216 ff.] is build upon standard Intel x86
processors and able to execute off-the-shelf operating systems like Linux or Windows.
The sphere of replication comprises the main memory, the chipset, and the processors in
DMR or TMR configurations. Output comparison and input replication are implemented
by an additional “fault detection and isolation” component, located before I/O is released
to the PCI bus.

The NonStop Himalaya [Mukherjee, 2008, pp. 218 f.] architecture from Hewlett Packard
uses off-the-shelf lockstepped MIPS processors, which are coupled by a custom “ASIC”
component, taking care of input replication and output comparison. The sphere of
replication of the Himalaya architecture includes the MIPS processors and the private

33

3 Related Work

L2 caches. Output comparison and input replication is done before data is written back
to the main memory.

Another example of a commercial lockstep system is the IBM S/390 microarchitec-
ture [Slegel et al., 1999]. The S/390 microarchitecture supports lockstep execution of
the instruction fetch (I-Unit) and the execute stage (E-Unit) of the pipeline. The results
of the I-Unit and the E-Unit are compared by a “recovery and fault detection unit”
(R-Unit), which holds a valid checkpoint of the processor’s microarchitectural state. In
case that the R-Unit detects a mismatch of the lockstepped I- or E-Units, the R-Unit
can recover the microarchitectural state of the processor and restart the execution from
a prior fault-free state.

Lockstep redundancy is also implemented in current embedded processors for safety-
critical automotive systems, like the Infineon Aurix [Infineon Technologies AG, 2015] or
the STMicroelectronic’s SPC56 processor family [STMicroelectronics, 2014], however
these processors usually do not support error recovery.

Although tightly-coupled lockstepping has been implemented in several commercial
high-availability and mission-critical systems, it still requires tight synchronisation inter-
vals between redundant execution units. This fine-grained synchronisation requires highly
deterministic execution and complicates the use of tightly-coupled lockstepping for paral-
lel applications and further impedes the use of complex out-of-order processors, as well as
power saving mechanisms, like dynamic voltage and frequency scaling (DVFS) [Bernick
et al., 2005].

3.1.2 Microarchitectural Redundancy

On microarchitectural level several mechanisms are proposed to exploit the inherent
parallelism and rollback capabilities of complex out-of-order processors for redundant
execution.

Austin [1999] proposes DIVA, which uses a simple in-order checker core to verify the
execution of a complex out-of-order processor before instruction commit. This allows
the dynamic verification of complex and possible error-prone out-of-order superscalar
processors by a simple in-order processor with a small execution time overhead. The
DIVA approach is able to detect and recover from transient and permanent faults by
correcting possible errors with the fault-free checker core.

Mendelson et al. [2000] propose time redundant execution of instructions within an
out-of-order processor to detect and recover from transient faults. They extend the
reorder buffer to control the redundant execution of single instructions. However, the
instructions are not physically replicated, but tagged by a flag to indicate the number of
executions. This simple technique allows exploiting underutilised ALUs in the pipeline.
The sphere of replication is restricted to only a subset of the pipeline, including the
reservation stations and the ALUs. Input incoherence can not occur, since the instruction
duplication excludes load instructions.

Ray et al. [2001] propose another mechanism that dynamically replicates instructions
in the reorder buffer of an out-of-order pipeline. Here, the sphere of replication includes
the reorder buffer and the ALUs. Recovery is provided by the rollback capability of the
out-of-order pipeline, which means that in case of an error, the speculative, uncommitted
pipeline state is discarded and the execution is restarted at the last committed instruction.

34

3.1 Redundant Execution Mechanisms

Timor et al. [2010] extend the technique proposed by Mendelson et al. [2000] by a
spatial redundant decode stage, which also checks the decode stage before instruction
commit.

The microarchitectural techniques presented here have in common that they try
to exploit underutilised resources of complex out-of-order processors. Furthermore,
all discussed techniques do not redundantly access the main memory by load and
store operations, which could lead to input incoherence in the case of I/O operations
or interrupts. The efficient redundant execution of instructions in an out-of-order
superscalar processor mainly depends on the available parallelism in the pipeline and
requires wide out-of-order pipelines [Smolens et al., 2005]. Finally, the techniques are
inherently single-threaded, which means that they can not exploit available thread level
parallelism (TLP) of multi-core processors.

3.1.3 Thread-Level Redundancy in SMT Architectures

With the advent of simultaneous multithreading processors (SMT) [Tullsen et al., 1995],
researchers investigated their use for redundant execution. Rotenberg [1999] proposes a
loosely-coupled redundant execution on an SMT processor, called AR-SMT. Rotenberg’s
approach dynamically duplicates a thread and executes the two redundant streams,
denoted as active stream (A-stream) and redundant stream (R-stream). The A- and
R-streams are independently executed on the SMT processor. The A-stream stores
its computational results in a delay buffer, which is used by the R-stream for state
comparison. Rotenberg proposes to exploit the asynchronous execution of the A- and
R-thread for performance optimisation by using the execution results of the A-thread
in the delay buffer for branch and data-flow predictions. Since the R-stream can only
commit an instruction when the computational results of both threads do not differ, the
R-thread can be used for recovery by discarding the speculative, uncommitted processor
state and restarting the execution from the last committed instruction of the R-stream.
Possible input incoherence between the A- and the R-stream is prevented by including
the main memory in the sphere of replication, which means that the operating system
must allocate additional physical memory for the R-stream. Therefore, both streams
operate on different physical data, which practically halves the size of the caches for
each stream [Reinhardt et al., 2000]. Sundaramoorthy et al. [2000] propose, based on
Rotenberg’s approach, slipstream execution. In the slipstream processor, a program is
executed twice, similar to AR-SMT, however, the A-stream running ahead executes only
a subset of the instructions of the R-stream. This technique allows performance to be
traded against fault-detection coverage.

Reinhardt et al. [2000] propose Simultaneous Redundant Threading (SRT). In contrast
to Rotenberg, they exclude the main memory from the sphere of replication. Their
approach dynamically duplicates the instruction streams as leading and trailing threads,
when the instructions are fetched, making the mechanism transparent to the software.
Since SRT excludes the memory from the sphere of replication, the authors propose
two techniques, which prevent input incoherence between the redundant threads. The
Load Value Queue (LVQ) allows only the leading thread to access the main memory.
The leading thread then puts all loaded values and their addresses in the LVQ. Instead
of reading the values from the memory, the trailing thread obtains its input values

35

3 Related Work

directly from the LVQ. The active load address buffer (ALAB) locks the values read
by the leading thread in the shared cache until the trailing thread has loaded the same
address. Reinhardt et al. also propose two optimisation mechanisms to enhance the
performance of the redundant execution. The slack fetch technique executes the trailing
thread time-shifted to the leading thread. Since both redundant threads share the same
physical addresses, the leading thread can serve as a prefetcher for the trailing thread.
The branch outcome queue is a hardware queue, delivering the committed branches of
the leading thread to the trailing thread. The trailing thread uses the branch outcome
queue as branch target buffer to prevent possible branch mispredictions.

Mukherjee et al. [2002] study the implementation of SRT in a “commercial-grade” SMT
processor. They extend SRT to support dual-core execution, which can detect transient
and permanent faults. However, they also discover that redundant multithreading in
a multi-core architecture can significantly suffer from performance degradation due to
increasing comparison latencies between the distant cores.

Since the original SRT approach [Reinhardt et al., 2000] only supports fault detec-
tion, Vijaykumar et al. [2002] extend SRT by a recovery mechanism, called Simultaneous
Redundant Threading with Recovery (SRTR), exploiting the rollback mechanism for
misspeculated branches of the SMT pipeline for recovery. However, SRTR requires
significant changes to the original SRT approach. First, SRTR requires fault comparison
before instruction commit. Second, the leading thread can not commit an instruction
before comparison with the trailing thread has taken place, since only uncommitted,
speculative instructions can be discarded by a rollback. To prevent stalling of the leading
thread, while waiting for the trailing thread’s results, Vijaykumar et al. modify the SRT
approach to not only compare committed instructions but also speculative instructions.
However, this simple extension requires to modify all SRT-specific data structures to
support speculative state and recovery functionality.

Gomaa et al. [2003] propose Chiplevel Redundantly Threaded Multiprocessor with
Recovery (CRTR), another SRT variant, which supports chip-level redundant execution
and recovery. In contrast to SRTR, CRTR supports a long slack between the redundant
threads to hide the effect of long latency comparison between the distant cores. To
further reduce the overhead, CRTR allows the leading thread to commit instructions
and uses the trailing thread as recovery point when a fault was detected. To reduce
the communication bandwidth between the processors, the system tracks dependencies
between instructions in order to communicate and compare only the latest value of a
register or store operation.

Sánchez et al. [2009] identify atomic instructions as a serialisation point for CRTR,
which can introduce significant performance overhead, since the leading and trailing
core must be synchronised on each atomic instructions, which reveals the slack between
the redundant threads. Therefore, they propose REPAS, which commits the leading
thread to the L1 cache in order to make speculative forward progress. However, the
speculatively written data is tagged in the L1 cache by an unverified bit to prevent a
write back of unverified results to the main memory.

36

3.1 Redundant Execution Mechanisms

3.1.4 Thread-Level Redundancy in Multi-Core Architectures

Redundant execution mechanisms are also studied in the context of chip multiprocessors
(CMPs) and parallel applications. However, as described in Section 2, control-flow
based redundant execution of parallel applications poses significant challenges for input
replication, redundant thread synchronisation, and output comparison. In this section, we
present previous work on loosely-coupled redundant execution on multi-core processors.

1Reunion [Smolens et al., 2006] is a loosely-coupled redundant execution scheme
for shared-memory multi-core architectures. The approach groups cores in a multi-
core into redundant execution pairs, while the vocal core issues stores and updates the
coherence system, and the mute core can only read from the memory without updating or
manipulating the memory state. The sphere of replication is restricted to the out-of-order
pipeline, which means that updates to the registers and the store buffer must be checked
for errors, such that the rollback capability of the out-of-order pipeline can be re-used for
error recovery. Reunion uses relaxed input replication, which allows redundant execution
pairs to consume possible diverging data by concurrent memory accesses. Possible
input incoherence, caused by relaxed input replication, is detected by comparing the
computational results of the vocal and mute cores. However, unlike transient faults,
concurrent memory accesses can not always be resolved by re-execution. In this case,
Reunion uses lockstep execution between the vocal and the mute cores to guarantee
forward progress. Reunion uses fingerprints [Smolens et al., 2004] to reduce the execution
state for result comparison and therefore safes communication bandwidth between the
cores.

Dynamic Core Coupling (DCC) [LaFrieda et al., 2007] is a loosely-coupled redundant
execution scheme, which supports dynamic core coupling in a multi-core for redundant
execution. In DCC, the sphere of replication is restricted to the cores’ pipelines, where
computational results must be compared at each store. Computational results are
buffered in the private caches of the cores, which allows comparison intervals of more
than 10,000 cycles. Additionally, DCC provides explicit support for parallel applications
and prevents possible input incoherence by a so-called master-slave memory access
window, which tracks possible input incoherence between redundant threads. The master-
slave memory access window is implemented by an age table attached to the L1 cache per
core. The age table stores the number of executed load/store operations for each memory
address. When a store operation in a parallel core has issued an upgrade coherence
request, the age tables of all master-slave pairs must be compared in order to identify
the possibility of input incoherence between the master and the slave core. Enforcing the
order and identifying possible read-write violations between the master and slave cores
is implemented by a shared bus, since on each store operation, all cores must snoop on
the bus to trigger an age table search.

Rashid et al. [2008] propose another redundant execution approach for parallel ap-
plications on a shared-memory multi-core. The redundant threads are executed in a so
called computing and a verification wavefront, which separately manage the coherence
among their caches. Redundant threads are compared at the granularity of several
thousand instructions, which are called epochs. The creation of epochs is driven by the
computing wavefront. The computing and the verification wavefront can be executed

1This paragraph has also been published in [Weis et al., 2016]

37

3 Related Work

asynchronously, requiring a state management for different epochs, implemented by a
post-commit buffer per core, which keeps committed results parallel to the L1 cache.
When the results of the epochs are verified, the computing wavefront commits the
buffered stores in the post-commit buffer to the shared L2 cache. However, in parallel
applications the decoupled execution of redundant threads may lead to possible input in-
coherence between redundant threads. To prevent input incoherence between redundant
threads, the communication between the threads is tracked by the cores and so called
subepochs are created, which enforce the same load/store ordering in the computing and
the verification wavefront. However, enforcing the same execution order in the computing
and the verification wavefront requires global synchronisation points for each subepoch.
To prevent the overhead of strictly enforcing this order in the verification wavefront, a
speculative ordering is proposed. When input incoherence is detected by a mismatch of
the execution results between the computing and the verification wavefront, the system
is recovered and the load/store ordering is strictly enforced. Finally, a combination of
strictly and speculative ordering is proposed, which tracks the timing of the races and
allows enforcing strict ordering only for races, which are “close in time”, and speculative
ordering for races, which are “far apart in time”.

Recently, several proposals discussed hardware transactional memory (HTM) for
checkpointing and redundant execution. Sánchez et al. [2010] propose a Log-based Re-
dundant Architecture (LBRA), which leverages a log-based HTM to implement redundant
execution and recovery. In LBRA, redundant threads are executed within hardware
transactions, called p-XACTs. LBRA uses an eager version management and eager con-
flict detection hardware transactional memory. The redundant execution is transparent
to the software. The redundant threads are executed both in a transactional context,
which means that store operations of the master thread can commit to the main memory,
while the HTM system keeps the old values in a hardware-managed log. The log is used
to guarantee input coherence for the master and the slave threads, while the execution
of the redundant threads is completely decoupled. A slave thread can obtain values,
which have been seen by the master thread before by searching the master thread’s
log. LBRA implements local recovery of transactions. However, LBRA allows sharing
of unverified data between threads, which means that errors may propagate to several
consumer threads before detection. As a consequence, several consumer transactions
must be recovered. Therefore, LBRA tracks the producer-consumer dependencies and
recovers all dependent transactions.

Yalcin et al. [2013] propose another HTM approach for redundant execution and
recovery. Unlike Sánchez et al. [2010], they use a lazy versioning and lazy conflict
detection (lazy-lazy) HTM system. They propose to exploit the rollback capability of
the HTM system to recover from possible input incoherence in parallel applications.

3.2 Backward Error Recovery in Shared-Memory Multi-Cores

This sections presents related work on checkpointing and recovery mechanisms. While
recovery techniques are already covered in some redundant execution mechanisms in the
prior section, this section focuses on generic backward error recovery mechanisms for
shared-memory multi-core processors.

38

3.3 Fault-Tolerant Data-Flow Execution

Based on Cache-Aided Rollback Recovery (CARER) [Hunt et al., 1987], which use the
cache to buffer computational results of a single-core processor, cache based multi-core
backward error recovery mechanisms were developed. Ahmed et al. [1990] and Wu
et al. [1990] both propose cache-aided rollback recovery mechanism for checkpointing in
multi-cores. While the private caches provide a low-cost, efficient recovery mechanism,
Janssens et al. [1994] identify that the checkpoint frequency has high variability and
depends on the executed application.

Prvulovic et al. [2002] propose ReVive, a global checkpoint mechanism for a distrib-
uted shared-memory multi-core processor. A checkpoint in ReVive is established by
synchronising all cores, flushing all dirty cache lines, and establishing a log, covering the
distributed shared memory. After checkpoint creation, all changes to the distributed
shared memory are stored in the log. To support recovery of complete node failures,
which means that a complete node with a part of the distributed shared memory became
unavailable, ReVive uses distributed parity, which groups pages on different nodes into
recoverable “parity groups”. The parity groups can be recovered even when a complete
node becomes unavailable. ReVive can be implemented in an enhanced directory co-
herence controller, managing the logging and parity maintenance. However, checkpoint
creation can be costly, since all cores in the system must synchronise and the caches
flushed before the execution can continue.

Agarwal et al. [2011] present an extension to ReVive by tracking the communication
among nodes in the coherence directory, which prevents costly global checkpoint creation
and rollbacks, since only a subset of the nodes must establish new checkpoints or recover
from errors.

Sorin et al. [2002] propose SafetyNet, another global checkpoint mechanism, which
also supports faults in the coherence protocol of a distributed shared-memory processor.
SafetyNet focuses on transient faults in the processing elements and message loss in the
interconnection network, but cannot cope with complete node failures. SafetyNet tries to
reduce the checkpointing overhead by overlapping the checkpoint creation with normal
execution. Therefore, SafetyNet adds register checkpoint buffers and Checkpoint Log
Buffers (CLBs) to each node. In order to prevent global system stalls during creation of
a checkpoint, SafetyNet uses logical checkpoints and considers the caches, the register
checkpoint buffers, and the CLBs as safe storage. A checkpoint in SafetyNet includes the
state of the register files, the memory values, and the coherence permissions in the caches.
Similar to ReVive, SafetyNet uses logging to track the changes to the memory system
since the last checkpoint. However, SafetyNet also tracks changes to the coherence state.
To save logging storage, only the first modification to an address is logged. Checkpoint
creation is coordinated between the nodes such that the nodes create globally consistent
checkpoint by checkpointing their local state, including the state of the cores, the caches,
and the memory controller.

3.3 Fault-Tolerant Data-Flow Execution

The benefits of data-flow execution for fault tolerance are also studied in the context of
different data-flow architectures.

39

3 Related Work

Nguyen-tuong et al. [1996] propose a fault-tolerance scheme for a wide-area distributed
system, considering a large-grained data-flow software runtime based on Mentat, a
C++ runtime for “high-performance, object-oriented parallel processing systems”. The
application programmer can select fault-tolerant tasks, which are transformed to a
data-flow graph. The fault-tolerant tasks are then executed on different hosts. While
Mentat also supports persistent data-flow tasks, the replication focuses on pure data-flow
tasks, which are re-entrant and can be executed multiple times on different hosts. The
approach can cope with complete host failures in a distributed system. Therefore, they
propose “dormant” tasks, which are only executed when the “active” task’s host became
unavailable.

Jafar et al. [2005] exploits the medium-grained data-flow execution model of KAAPI
[Gautier et al., 2007] for a checkpoint/recovery method. KAAPI uses a C++ library on
commodity chip multiprocessor clusters that exposes a data-flow execution model. [Jafar
et al., 2005] used the functional semantic of the data-flow thread execution of KAAPI for
recovery of data-flow threads. They propose two variants. The first creates a checkpoint
for each data-flow thread, storing the input data and the task ID to restart a task on a
different host. The second variant periodically creates checkpoints at pre-defined points
in time or on a work-stealing request of another processor.

Najjar et al. [1990] propose to exploit a data-driven execution model for dynamic
distributed checkpointing in large-scale distributed systems. They identify that a data-
driven activation of side-effect free tasks can be used for task restarts. This means that
the input data of a task is stored on another processor, which allows restarting any
unfinished task on a different processor or node.

Cummings [2009] integrates data-flow based rollback into COSMOS, a large-grained
data-flow system for distributed systems, implemented in software. Cummings focuses
on the data-flow execution model of COSMOS for efficient recovery and assumes a
fail-stop behaviour for the processing elements. In the context of COSMOS, the author
investigates two different recovery mechanisms, a process restart mechanism, which
requires the preservation of data-flow input tokens and a distributed checkpointing
mechanism, which allows establishing a global checkpoint.

Recently, data-flow execution model gained new attention to provide fault detection
and recovery. Alves et al. [2014] use an abstract data-flow model for redundant execution
and re-execution of data-flow threads. They implement fault detection by redundant
execution of data-flow threads. The results of the redundant threads are compared by
additional commit threads, which are inserted in the data-flow graph. They propose
two variants for re-execution of data-flow threads. In the first variant, commit threads
have edges to the redundant producer tasks as well as to the subsequent consumer
threads, ensuring that subsequent threads can only be started, when the commit stage
forwards the correct results. The second variant allows starting subsequent threads
without waiting for the commit thread. In this case, the dependencies between the
unverified threads must be tracked to be able to re-execute all unverified threads, which
have consumed input data from an erroneous thread.

Fu et al. [2014] propose Data-flow scheduled Redundant Multi-threading (DRMT) for a
data-flow scheduled multi-core processor. DRMT redundantly executes the same version
of a program on separate cores, as master and a redundant thread. DRMT uses relaxed
input replication and relies on the error recovery mechanism to resolve input incoherence

40

3.4 Tolerating Permanent Faults

between redundant threads. DRMT executes master and redundant threads on the same
SMT core. Threads can be suspended when data can not be read from the register file
but from memory. Output comparison is implemented by a Comparison Buffer (CB),
which is used to store computational results. The CB buffer is structured in different
sets and addressable by the redundant threads. In case that the CB set of a redundant
thread pair has no entries left, the thread can be suspended, which gives the trailing
thread the opportunity to catch up.

3.4 Tolerating Permanent Faults

Since this thesis also covers mechanisms, which can identify and tolerate permanent
faults, we also provide related work on systems, which can adapt to permanent faults.
Based on Sorin [2009, pp. 90 ff.], we distinguish between adaption mechanisms on core
and microarchitectural level.

3.4.1 Deactivation and Reconfiguration of Cores

The permanent disabling of cores can be seen as a state-of-the-art technique to cope with
permanent faults in multi-core architectures. The IBM S/390 microarchitecture [Slegel
et al., 1999] provides support for cold spare cores. These spare cores can be transparently
activated for the running application and the operating system. However, if no spare cores
are available, the processor can raise a machine check exception to notify the operating
system that the core is permanent faulty and must be excluded by the operating system
scheduler. The IBM Blue Gene/Q compute chip [Haring et al., 2012] has 18 processor
units (PU), however, to increase the manufacturing yield, only 17 PU are activated,
while 1 PU is used as a spare and can be dynamically activated at boot time, when a
permanent fault in a PU is detected.

Aggarwal et al. [2007] propose a configurable architecture based on commodity hard-
ware components. The architecture is configured in “fault zones”, which can be separately
deconfigured, when a permanent fault occurs. This allows restricting the effect of a
permanent fault to the affected fault zone. LaFrieda et al. [2007] investigate core dis-
abling in the context of a loosely-coupled redundant execution scheme. Since DCC allows
dynamic coupling of redundant cores, the underlying hardware can be better utilised,
since DCC allows to dynamically form new master-slave processor pairs, when a core
becomes permanent faulty.

3.4.2 Deactivation and Reconfiguration of Microarchitectural Components

Since deactivating complete cores due to a small permanent faulty component is costly
in terms of hardware overhead, some authors also propose fine-grained techniques, which
can reconfigure microarchitectural components.

Bower et al. [2005] use the DIVA checker to identify permanent faults in an out-of-order
pipeline. They focus on pipeline structures, which are inherently redundant and can be
therefore deactivated in the case of a permanent fault. Per reconfigurable entity, they
use a saturation counter. The saturation counter is incremented for components, which
were used by a faulty instruction. When the counter has reached a specified limit, the

41

3 Related Work

hardware unit is considered as permanent faulty and deactivated. S. Gupta et al. [2008]
propose StageNet, which allows broken pipeline stages to be circumvented in a multi-core
by connecting the pipeline stages of different cores by a crossbar. This enables the system
to dynamically form a functional pipeline by combining different functional stages of
different pipelines. While fine-grained reconfiguration of microarchitectural components
may reduce the performance degradation in case of permanent faults, they also require
deep changes to the processor pipelines and may increase the hardware overhead and
design complexity.

3.5 Summary

This chapter presented an overview of prior research on topics discussed in this thesis.

Section 3.1 discussed related work on redundant execution mechanisms. The presented
tightly-coupled lockstep architectures duplicate hardware on different levels, from com-
plete computing nodes of the Stratus ftServer to a replication of the instruction fetch and
execute stages in the IBM S/390. However, tightly-coupled lockstepping requires high
hardware overhead and strict deterministic execution, which can complicate the use of
tightly-coupled lockstep execution in future multi-cores as already pointed out by Bernick
et al. [2005]. To remedy the high hardware overhead and strict deterministic redund-
ant execution of tightly-coupled lockstep systems, different loosely-coupled redundant
execution mechanisms have been proposed. Loosely-coupled redundant execution can
reduce the hardware and execution time overhead, since resources can be shared by the
redundant execution streams, while the decoupled streams can serve as prefetchers for
each other. Loosely-coupled redundant execution can be implemented in different ways,
from loosely-coupled redundant execution of instructions in an out-of-order processor
to redundant multithreading in SMT processors or decoupled redundant execution in
multi-cores. However, decoupled redundant execution mechanisms, which allow that
the redundant execution streams can access the memory independently, require either a
complete duplication of the memory for the redundant streams or mechanisms to cope
with possible input incoherence. Particularly, input coherence for parallel shared-memory
applications can be challenging and requires modifications to the hardware, the caches
and can significantly increase the hardware overhead.

Section 3.2 presented backward error recovery mechanisms for shared-memory archi-
tectures. Global checkpointing in shared-memory systems must incorporate the cores’
contexts and the state of the caches to establish a consistent checkpoint. This either
requires stopping the execution and flushing the caches or demands additional hardware
structures to store and manage the cache and core contexts.

Section 3.3 described different fault-tolerant data-flow architectures, which show that
the data-flow execution principle can provide advantages for the implementation of
redundant execution and backward error recovery mechanisms.

Section 3.4 presented proposals, which can deactivate permanent faulty components.
The deactivation of cores may also deactivate non-faulty components of the processor.
Additionally, deactivating cores in redundant execution systems may further degrade
the performance of the system, since the redundant execution unit must be disabled as
well. While the fine-grained disabling of microarchitectural components can reduce the

42

3.5 Summary

hardware costs in case of permanent faults, they require complex changes to a processor’s
pipeline.

In the next chapter, we will present a data-flow execution model and architecture,
which will be enhanced by data-flow based redundant execution, checkpointing, and can
cope with permanent and intermittent faults.

43

4
Baseline Execution Model and
Architecture

This chapter describes the baseline data-flow execution model and hardware architecture
of this thesis. The baseline execution model and the hardware architecture are subsets
of the execution model and architecture developed in the Teraflux project1 [Giorgi
et al., 2014b]. The baseline architecture described in this chapter will be extended with
redundant execution and checkpointing mechanisms in the Chapters 5 and 6.

The chapter is structured as follows. A description of the baseline data-flow execution
model is presented in Section 4.1. The parallel hardware architecture is described in
Section 4.2. Section 4.3 provides details on the architectural support for data-flow
execution, while Section 4.4 presents the memory organisation of the system.

4.1 A Coarse-Grained Data-Flow Execution Model

This section describes the basic operation principle of the baseline data-flow execution
model, which is based on the DTA-C execution model [Giorgi et al., 2007]. The DTA-C
execution model is an extension of the Scheduled Data-Flow (SDF) [Kavi et al., 2001]
paradigm for clustered architectures [Giorgi et al., 2007]. The original SDF execution
paradigm describes a coarse-grained threaded data-flow model, designed to exploit the
thread level parallelism (TLP) of applications by decoupling memory accesses from
the execution and supporting efficient data-flow thread synchronisation mechanisms.
However, the original SDF as well as DTA-C both require special processing units to
enable a decoupling of the load/store phase and execution phases. In the Teraflux
project the DTA-C execution principle has been ported to a commodity x86 64 [AMD,
2013] shared-memory architecture with data-flow hardware enhancements. In contrast
to the original Teraflux execution model and architecture, this thesis uses subsets
of the DTA-C execution model and architecture investigated within the context of the
Teraflux project.

1www.teraflux.eu, Retrieved on September 30, 2016

45

www.teraflux.eu

4 Baseline Execution Model and Architecture

According to the classification of [Yazdanpanah et al., 2013], the execution model
of this thesis is a hybrid data-flow/von Neumann execution model, which executes
coarse-grained blocks of x86 64 instructions in a data-flow driven way, i.e. the code
blocks can be executed when all input data is available. In the rest of this thesis, we will
call these blocks data-flow threads, or just threads. Within the coarse-grained data-flow
threads, the execution is control flow driven, i.e. an instruction pointer is used to control
the sequential execution of the intra-thread instructions.

A data-flow thread can be comprised of several thousand x86 64 instructions, incorpor-
ating control flow, jumps, and function calls. Recursion within a thread is also possible.
Each data-flow thread has a dedicated input set. Since the execution is data-flow driven,
the threads are only ready for execution when their input set is complete. The synchron-
isation count represents the number of currently missing inputs of a thread to get started.
When the synchronisation count reaches zero, the thread is ready for execution. When a
thread has finished its execution, its computational results are published to subsequent
threads.

The input sets of waiting threads can be accessed by all threads by special read and
write instructions, described in Section 4.3. Since data-flow threads depend only on their
own input sets, they can be executed in a decoupled and nonblocking way.

During execution, a data-flow thread uses the following memory sections:

• A code section, which keeps the code of the thread. The code section is always
read-only.

• A thread-local storage (TLS) section, which is dynamically allocated right before
the thread is started. Within a thread, read and write accesses to its thread-local
stack and heap are allowed. Within the thread-local storage, the data-flow thread
keeps temporary run time information, e.g. the stack and the dynamically allocated
memory. After the thread has finished execution, the thread-local storage is freed.

• The thread frame (TF) keeps the data-flow input set of a thread. Each data-flow
thread has a designated TF. The TFs are used for shared-memory communication
between data-flow threads. A thread frame is only writable, as long the thread is
not ready for execution. That means when all input data has been written to the
TF, the TF becomes immutable. The TFs are used for communication between
data-flow threads, i.e. threads directly write their results to the TFs’ of subsequent
threads.

• The owner-writable memory (OWM) section [Giorgi et al., 2014a] is part of the
globally addressable OWM region and can be accessed by all threads. To prevent
race conditions or the usage of locks, only one thread at a time has exclusive read
and write access to a specific section of the OWM. To ensure that only one thread
can read and write, the data dependencies between threads must ensure that only
one thread at a time can access the section.

When the execution of a thread is finished, the computational results of the thread
are written to the consumer threads’ TFs. Afterwards all private memory sections of
a thread, including the TLS and TF, can be freed. This is supported by the data-flow
execution principle, since the execution of subsequent threads does only rely on the data
stored in their own TF or the OWM. The main difference to a commodity multi-core
is that the heap of a thread only stores thread-local data and can not be used for

46

4.2 Baseline Hardware Architecture

inter-thread communication. Since the TF and the OWM sections store all input data
required for the execution of a thread, a started thread is never suspended and hence
must never wait for data produced by other threads or to acquire a lock [Giorgi et al.,
2007].

This coarse-grained data-flow execution model combines data-flow and control flow
driven execution: (1) The efficient control-flow driven execution of the x86 64 pipeline is
leveraged, including out-of-order execution and local caches. (2) The decoupled data-flow
thread execution supports parallel execution, since the synchronisation between threads
is decoupled and nonblocking.

4.2 Baseline Hardware Architecture



  






 



 


Figure 4.1: High-level system organisation of the baseline system (subset of a Teraflux
node).

This section gives an overview of the baseline hardware architecture. Like the exe-
cution model, the baseline architecture is also a subset of the Teraflux architectural
template [Giorgi et al., 2014b]. Figure 4.1 depicts the high-level organisation of the
architecture.

The baseline architecture of this thesis is a conventional shared-memory system, which
encloses a number of processing elements (PEs), a Thread Scheduling Unit (TSU) to
provide data-flow hardware support, and a memory controller to access the main memory.
The communication between the components is implemented by an interconnect, which
connects the PEs, the TSU, and the memory controller. The interconnect manages
all communication within the system, incorporating the PEs, the TSU, and memory
accesses to the main memory.

The PEs consist of a standard x86 64 core with private instruction and data caches.
Each core comprises a conventional out-of-order x86 64 core, however, the architecture is
not restricted to x86 64 cores, which means that simpler in-order cores with a different
instruction set architecture would be also possible.

The architecture supports shared-memory communication, which allows that each PE
in the system can access any memory location. Hardware support for data-flow thread
creation, thread synchronisation, and thread management is provided by the TSU.

47

4 Baseline Execution Model and Architecture

4.3 Architectural Support for Data-Flow Execution

The data-flow execution is supported in hardware by the TSU. This section gives an
overview of the TSU hardware/software interface and the TSU internals, which are
required to control the data-flow thread execution.

4.3.1 The T*-Instruction Set Extension

The hardware/software interface for data-flow execution is implemented by a subset of
the T*-instruction set extension, described in [Giorgi, 2012].

These instructions are:

• tschedule instructs the TSU to allocate a new thread. After the thread has been
allocated, a new frame pointer is returned to the calling PE.

• tdestroy indicates the end of a data-flow thread. After reception by the TSU, all
private resources, which are currently acquired by this thread are released.

• tread allows a thread to read data from its own TF. Memory accesses to other
TFs are prohibited by the TSU.

• twrite enables a thread to write to the thread frames of subsequent threads. As a
side effect, the synchronisation count of the destination thread’s continuation (see
Subsection 4.3.2) is decreased.

tread

tread

twrite

twrite
tdestroy

Thread 1

Thread 2 Thread 3

Thread Frame 1

Thread Frame 3 Thread Frame 2

0xA

tread

...

twrite
tdestroy

...

tread

...

twrite
tdestroy

0xB

0x1

0x2

Figure 4.2: Example usage of the T*-instruction set.

48

4.3 Architectural Support for Data-Flow Execution

For more efficient compilation, Li et al. [2012] have extended the T*-instruction set
of Giorgi [2012] to enable the development of data-flow applications by pragmas in
the C/C++ programming languages. Since we use the OpenStream compiler for some
benchmarks in Chapter 7, we additionally use the following instructions:

• tdecrease decreases the synchronisation count of a continuation without manipu-
lating data within a thread frame.

• twritep writes directly to the thread frame of a subsequent thread without
decreasing the synchronisation count of the thread’s continuation.

Example. Figure 4.2 shows the usage of the T* instructions in multiple data-flow
threads. Thread 1 is ready for execution when all input data has been written to its
TF. In this example, the input set of the thread consists of the integer values 0x1 and
0x2. The synchronisation count of Thread 1 becomes zero with the last twrite to its
TF. Accordingly, Thread 1 becomes ready for execution. Thread 1 will be scheduled
immediately, when a PE becomes available. During execution, Thread 1 fetches the
input data from its TF, executing a tread instructions. When the thread has finished its
computation, its results are written to thread frames of subsequent threads, which are
waiting for their input data. In this example, Thread 1 writes (0xA and 0xB) to the TFs
of Thread 2 and 3. Afterwards, Thread 1 executes a tdestroy instruction, indicating
the end of the thread. The TSU can now release all resources of Thread 1, including the
TF and the TLS. Since Thread 2 and 3 both require only input from Thread 1, they will
be ready for execution after Thread 1 has been finished. When Thread 1 or Thread 2
are ready for execution, they can be scheduled to the next available PE. ♦

4.3.2 Thread Scheduling Unit

The Thread Scheduling Unit (TSU) provides hardware support for data-flow thread
management, thread creation, thread scheduling, and TF accesses.

To manage the threads, the TSU uses a dedicated control structure per data-flow
thread called continuation. The continuations of the threads are exclusively managed
by the TSU. A continuation stores control information about a thread, including the
pointer to the TF, the pointer to the code section, the pointer to the TLS and the
synchronisation count.

In detail, a continuation stores the following thread information:

• fp (Frame Pointer): the pointer to the TF is used by the TSU to grant access to
the thread’s TF.

• ip (Instruction Pointer): the pointer to the code section is used as initial instruction
pointer, when the thread is dispatched to a PE.

• tlsp (Thread-Local Storage Pointer): the pointer to the thread-local data is used
to initialise the stack pointer.

• sc (Synchronisation Count): controls the required input of a thread. The syn-
chronisation count is decremented, when a twrite accesses the TF of a subsequent
thread or a tdecrease directly decreases the synchronisation count. When all
input data of a thread is available, the synchronisation count must be zero.

Figure 4.3 depicts the pointers stored in the continuation and the associated memory
sections of a thread.

49

4 Baseline Execution Model and Architecture

Code

Thread
Frame

Thread Local
Storage

(Heap and Stack)

Memory of a Thread

Continuation

fp ip sc tlspid

Figure 4.3: Continuation and memory organisation of a data-flow thread (based on
[Arandi et al., 2011, p. 18]).

Internally, the TSU uses three tables to manage the different states of a data-flow
threads (based on [Arandi et al., 2011, pp. 22 ff.]):

• The Thread Queue(TQ) stores the continuations of all threads in the system. In
this queue, all allocated threads in the system are waiting for execution. When a
PE executes a tschedule instruction, the TSU creates a new continuation in the
TQ and allocates a new TF in the main memory.

• When the synchronisation count has reached zero and a thread becomes ready
for execution (after a twrite or tdecrease), the TSU creates an entry for this
thread in the Ready Queue (RQ). The RQ keeps all threads which are ready for
execution. Although different scheduling and resource allocation algorithms are
possible, the baseline architecture uses a simple FIFO scheduling policy. When a
core becomes available for thread execution, the first element in the RQ is selected
and scheduled to the available PE.

• When a thread is scheduled to a PE, the corresponding entry in the RQ is deleted
and an entry in the Thread-to-PE-List (TPL) is allocated, in order to track the
current thread-to-PE mapping of the currently running threads.

When a thread executes a tdestroy instruction, its continuation is removed from
the TQ and the TPL.

4.4 Physical Memory Organisation

This section describes the different memory regions of the execution model and how
these regions are organised in the baseline architecture.

The system’s memory is divided in four memory regions, which store the different
memory sections of the threads. These regions are the frame memory region, the code
memory region, the thread-local storage region and the owner writable memory region.
These different regions provide different access semantics, which are described in the
following:

50

4.5 Summary

Frame Memory The frame memory region stores all TFs of the threads. Access to
the thread frames is only possible by explicit tread and twrite instructions.
Furthermore, a thread never writes to its own TF and every thread can write to
every thread frame in the system, as long as the synchronisation count has not
reached zero. Finally, a thread can only read from its own TF. The accesses to the
TFs are controlled by the TSU.

Code Memory The code sections of the threads are stored in the code region. The code
region is read-only and can not be modified.

Thread-Local Storage Each thread can access its private thread-local storage section.
The thread-local storage sections of all threads are stored in the thread-local storage
region. The thread-local storage section of a thread comprises the stack for the
execution of the data-flow thread and the heap, where memory can be dynamically
allocated during the execution of a thread. The thread-local storage is allocated
on thread start and its lifetime is limited by the lifetime of the thread, i.e. the TLS
section of a thread is relinquished, when the thread has finished execution.

Owner Writable Memory In the original DTA-C data-flow execution model results can
be only published by twrite operations to TFs of other threads. However, a
main problem of all data-flow architectures is programmability. Programmers
are usually used to C-like languages, using memory aliasing, pointers, and in-
place updates [Yazdanpanah et al., 2013]. The functional semantic of a data-flow
execution model, however, requires resolving dependencies at design time and
prohibits in-place updates. To simplify programming and ease the porting of legacy
applications, the architecture supports the owner writable memory (OWM) region,
which was developed in the Teraflux project [Giorgi et al., 2014b]. A data-flow
thread can access the OWM by a pointer. Within a thread, in-place updates to
the OWM are allowed. To prevent race conditions between different data-flow
threads, only one thread at a time can access a specific part of the OWM. To
prevent different threads accessing the same part at the same time, the programmer
must insert data dependencies between those threads. Therefore, the TSU ensures
that threads, accessing the same addresses in the OWM region, are executed
subsequently. This technique may reduce potential parallelism by unnecessary
dependencies between threads, but simplifies data communication between threads
by just copying a pointer to the TF of subsequent consumer threads.

4.5 Summary

This section described an x86 64 based data-flow execution model and its integration in a
multi-core architecture with data-flow hardware extensions. The data-flow execution can
be controlled by the TSU, a dedicated data-flow thread scheduling unit, which starts data-
flow threads on availability of their input data. Thread creation, thread destruction, and
inter-thread communication is supported the T*-instruction set extensions. Furthermore,
the data-flow architecture supports shared-memory communication by the OWM region.

In detail, the presented execution model and architecture provides the following
benefits:

51

4 Baseline Execution Model and Architecture

• Efficient data-flow thread execution, exploiting complex x86 64 out-of-order
pipelines and caches.

• Decoupled data-flow driven scheduling of data-flow threads: threads are only
started, when their input values are available. As a consequence, locks for syn-
chronisation between data-flow threads are not necessary and synchronisation
between data-flow threads is nonblocking.

In the next chapter, the described baseline execution model and architecture will be
extended by data-flow based fault-tolerance mechanisms.

52

5
Fault-Tolerant Data-Flow Execution

This chapter proposes redundant execution, thread restart, and fault diagnosis mechan-
isms for the baseline data-flow execution model, presented in Chapter 4.

The chapter is structured as follows. Section 5.1 gives an overview of the proposed data-
flow based mechanisms for fault detection, recovery, diagnosis, and adaption. Section
5.2 describes the extended baseline architecture, including hardware enhancements for
fault-tolerant data-flow execution. Section 5.3 proposes double execution of data-flow
threads, a data-flow based loosely-coupled redundant execution scheme, while Section 5.4
presents a restart mechanism for data-flow threads. Section 5.5 describes the necessary
enhancements to the data-flow runtime system, which are required for double execution
and thread restart recovery. Section 5.6 proposes a fault diagnosis scheme to identify
permanent and intermittent faulty processing elements. The proposed fault-tolerance
techniques are summarised in Section 5.7.1

5.1 Overview of the Data-Flow Based Fault-Tolerance
Mechanisms

5.1.1 Fault-Tolerant Coarse-Grained Data-Flow Execution

The central idea of this thesis is to exploit the baseline data-flow execution model,
described in Chapter 4, for efficient and scalable redundant execution and recovery.
Based on the proposed fault detection and recovery mechanisms, we further present a
fault diagnosis and adaption scheme to handle intermittent and permanent faulty PEs.

In the following, an overview of the data-flow based fault-tolerance mechanisms is
presented.

Fault Detection by Redundant Execution Faults are detected by double execution, a
data-flow based redundant execution mechanism. Double execution is a pure hardware

1Parts of the Sections 5.1–5.5, including the description of the double execution and the thread restart
mechanism, the fault-tolerant hardware architecture, and the extended continuations, have been
published in [Weis et al., 2011a] and [Weis et al., 2016].

53

5 Fault-Tolerant Data-Flow Execution

mechanism and completely transparent to the programmer. Since double execution uses
data-flow threads for redundant execution, the architectural support for the data-flow
thread execution available in the baseline architecture can be re-used.



  







  







 







 




Figure 5.1: Dynamic dependency graph of a regular data-flow execution (left) and double

execution (right).

Example. Figure 5.1 shows the dependency graph of a data-flow application (left)
and the dynamically created dependency graph of the same application during double
execution (right). A thread is dynamically duplicated, when it becomes ready for
execution, i.e. all input data is available. Since the execution of a data-flow thread has no
side effects, duplicated threads can be independently executed from each other. To safe
communication bandwidth and reduce the comparison overhead, a CRC-32 [Koren et al.,
2007, p. 76] signature of the output of the threads is created. When both threads have
finished their execution, the CRC-32 signatures of the redundant threads are compared
and subsequent threads can be started. ♦

Double execution promises the following advantages over prior loosely-coupled redund-
ant execution mechanisms:

(1) Input incoherence induced by race conditions of shared variables is impossible,
since the hardware architecture, i.e. the TSU, is aware of data dependencies between
threads, which prevents possible input incoherence. Threads are only started when
their input data is available. This means that the input data of redundant threads is
immutable, when the synchronisation count of a thread has reached zero. (2) Result
comparison is only necessary, when data is exchanged between data-flow threads. (3)
The hardware support for data-flow thread execution can be re-used for the management
and the synchronisation of the redundant threads.

Recovery by Thread Restarts A recovery mechanism must support low overhead
checkpointing in order to create frequent checkpoints and also provide low overhead in
case of faults.

54

5.1 Overview of the Data-Flow Based Fault-Tolerance Mechanisms

The data-flow execution supports the restart of threads by its side-effect free execution
semantic. Side-effect free means that a data-flow thread does not affect the state of the
system until the computational results of the redundant threads have been compared
and committed. Since a data-flow thread only depends on its immutable TF and OWM
sections, an error can be recovered in a PE by discarding the current execution state of
the PE and restarting the data-flow thread.

Diagnosis and Adaption to Permanent and Intermittent Faults To tolerate perman-
ent and intermittent faults in the PEs, a faulty PE must be identified and the system
must be able to circumvent the PE. The fault localisation mechanism of this thesis
is based on double execution and thread restart recovery to identify permanent and
intermittent faults in the PEs by majority voting. When a prolonged fault is detected
by recurring thread re-executions on a PE, the data-flow runtime system deactivates
the faulty PE. Since the PE may only suffer from an intermittent and not a permanent
fault, the data-flow runtime periodically starts threads on the faulty PE in order to be
able to re-activate the PE, when the fault has disappeared.

5.1.2 Faults Covered by the Data-flow Based Fault-Tolerance Mechanisms

The fault-tolerance mechanisms proposed in this chapter can detect and tolerate the
following faults in the PEs of the baseline architecture:

Transient Faults in the PEs Increasing transient fault rates of future semiconductor
devices, induced by environmental radiation or other external noise, require mech-
anisms to detect and recover from transient faults to prevent frequent catastrophic
breakdowns of the system. Double execution can detect transient faults in the
PEs by comparing the produced results of the data-flow threads, while the thread
restart mechanisms can recover from these faults by restarting them.

Intermittent and Permanent Faults in the PEs The rising variability of the semicon-
ductor manufacturing process and increasing wearout effects demand that fault-
tolerance mechanisms also incorporate manufacturing and wearout induced in-
termittent and permanent faults over the whole lifetime of the processor. This
requires dynamic mechanisms to identify and adapt the system at runtime. The
diagnosis and adaption mechanism proposed in this chapter can localise and detect
intermittent and permanent faulty PEs, which can be deactivated by the TSU.
After a certain time period, the system re-activates the PE in order to test, whether
the PE is still faulty.

Limitations Double execution detects faults when the execution of the data-flow threads
is compared. However, faults in the control flow of a data-flow thread can only be
detected when a tdestroy instruction is executed in both redundant threads and
their results compared. This means that faults, which cause an endless loop, may
never reach a tdestroy instruction and therefore result comparison never takes
place. Furthermore, the fault diagnosis scheme relies on the assumption that faults
in different components never cause exactly the same effect. However, multiple
faults at the same time in different components are very seldom [Mukherjee, 2008].

55

5 Fault-Tolerant Data-Flow Execution

5.2 Extended Fault-Tolerant Hardware Architecture

Several additional architectural extensions are required to support data-flow based fault
detection, recovery, diagnosis, and adaption. Figure 5.2 gives an overview of the fault-
tolerant hardware extensions. In the rest of this section, we will describe these additional
hardware extensions in more detail.



  






 



 


FDU





ff


ff

Figure 5.2: Extended fault-tolerant hardware organisation.

Fault Detection Unit The central hardware component of our fault-tolerance approach
is the so-called Fault Detection Unit (FDU). The FDU manages the result signatures
of double execution and forwards signatures of redundant threads in order to speed up
result comparison (see Subsection 5.3.4). Furthermore, the FDU is responsible for fault
diagnosis of permanent and intermittent faulty PEs. Therefore, the FDU stores the
signatures of the redundant thread executions, when a thread is restarted. This allows
the FDU to localise the faulty PE by majority voting and also to distinguish between
permanent, transient, and intermittent faulty PEs. Whenever the FDU identifies a PE
as permanent or intermittent faulty, it notifies the TSU about the fault, which will
deactivate the PE.

Core Probe The core probe is a small hardware unit implemented on each PE to
control the data-flow thread commit and signature comparison. In particular, the core
probe creates the CRC-32 signature of the output of a data-flow thread. This signature
is later used for comparison by another core probe. Furthermore, the core probe manages
and controls the memory accesses of the data-flow threads. When a data-flow thread
commits a tdestroy instruction, the core probe sends its current CRC-32 signature to
the FDU. Finally, the core probe is able to compare received signatures from redundant
threads.

Write Buffers Although the data-flow execution model supports side-effect free exe-
cution, the underlying architecture must additionally guarantee isolation between the
committed and uncommitted execution states of the data-flow threads. This isolation
is implemented by two additional write buffers, which are used to buffer uncommitted
execution state of a thread until the redundant threads are compared.

Both buffers are similar to the write buffers proposed in [Hammond et al., 2004] for
hardware transactional memory with pessimistic version management and are managed
by the core probe.

56

5.3 Double Execution of Data-Flow Threads

• Write Buffer: twrite/twritep/tdecrease instructions executed by a PE may
contain errors. In order to guarantee fault isolation and hence avoid the possibility
that errors can modify the global state of the system, i.e. manipulating the
synchronisation count of a wrong thread or overwriting data at the wrong address,
buffering of those instructions is necessary. The write buffer stores all twrite/
twritep/tdecrease instructions until the core probe has compared its signature
with the signature of the redundant thread. When no error was detected, the PE
then forwards all buffered instructions to the TSU, which processes them in the
usual way, i.e. decreases the target thread’s synchronisation counts and stores data
in the TFs of subsequent threads.

• OWM Buffer: Stores to the OWM sections must be also isolated. Therefore, to
identify OWM accesses of a thread, the core probe stores the start pointer and
the length of the complete OWM region. Whenever a store accesses this region,
the store is buffered in the OWM buffer until the thread finishes execution and is
allowed to commit. By contrast to the write buffer, the OWM buffer must be fully
associative, since values stored in the write buffer may be re-used by the same
thread.

5.3 Double Execution of Data-Flow Threads

Double execution (DE) is a loosely-coupled redundant execution scheme, which supports
decoupled redundant execution of data-flow threads. Compared to prior loosely-coupled
redundant execution mechanisms, like [Rotenberg, 1999; LaFrieda et al., 2007; Rashid
et al., 2008; Reinhardt et al., 2000], double execution makes use of the data-flow
execution principle for fault detection. In particular, data-flow execution is leveraged for
input replication, redundant thread synchronisation, and output comparison. Beside the
advantages inherent to loosely-coupled redundant execution mechanisms (see Section 2.3),
double execution supports decoupled, asynchronous execution of redundant data-flow
threads, which does not require hardware based permanent coupling between redundant
PEs, reduces the performance degradation when PEs are permanently faulty and provides
support for asynchronous execution of redundant threads.

5.3.1 Double Execution Overview

In the following, we will describe how the data-flow execution model facilitates input
replication, thread synchronisation, and output comparison.

2A thread is duplicated when its synchronisation count becomes zero, i.e. a thread has
received all its inputs and is ready for execution. Similar to [Reinhardt et al., 2000], we
call the duplicated thread trailing thread and its copy leading thread. The terms trailing
and leading are used to distinguish between the start time of the threads, which means
that the leading thread is always started before the trailing thread. However, due to
the decoupled execution of both threads, it may happen that the trailing thread finishes
before the leading thread. To duplicate a thread, the TSU, which keeps all continuations
in the system, creates a copy of the original continuation. To indicate the thread’s

2The rest of this section is a revised part of [Weis et al., 2016].

57

5 Fault-Tolerant Data-Flow Execution

duplication, the TSU sends a notification message with the thread IDs of the leading and
the trailing thread to the FDU. While the redundant threads have different continuations
and IDs, they share the same TF and OWM. Furthermore, the TSU scheduler ensures
that leading and trailing threads never share the same PE to support the localisation of
permanent and intermittent faults.

After the continuation has been copied, both threads can be independently scheduled
and executed on different PEs without synchronisation. During execution, the core probe
creates a CRC-32 signature of the threads’ output.

When the leading thread finishes execution, the core probe sends the CRC-32 signature
to the FDU, which immediately forwards the signature to trailing thread’s core probe,
The core probe of the trailing thread’s PE compares its signature with the forwarded
signature from the FDU and signals the TSU and the FDU the commitment or a detected
error. In the fault-free case, the trailing thread is committed, similar to the execution
in the baseline system. When a fault has been detected by the core probe, the FDU
triggers a thread restart, described in Section 5.4.

Figure 5.3 shows the execution stages of double execution:

Figure 5.3: Execution stages of double execution.

1 Thread start The leading thread is immediately started when a PE becomes
available. The trailing thread is started when the next PE becomes available. The time
between the start of the leading thread and the trailing thread is called start slack. Since
threads are started on their availability, the start slack is influenced by the utilisation of
the system.

58

5.3 Double Execution of Data-Flow Threads

2 Thread execution During execution, the PE of the trailing thread buffers its
results in the write buffers (write buffer and OWM buffer). Simultaneously, the core
probe creates a CRC-32 signature the thread output.

The core probe of the leading thread’s PE also creates a CRC-32 signature of its output,
however, after signature creation, the output of the leading thread can be discarded,
with exception of the OWM writes, which can be only discarded after the leading thread
has reached the tdestroy instruction.

3 Thread end: When the leading thread has finished execution, indicated by a
tdestroy instruction, the core probe sends the CRC-32 signature to the FDU, which
immediately forwards the signature to the trailing thread’s core probe. Since the output
of the leading thread was not buffered, the PE of the leading thread is immediately
ready for execution of the next waiting data-flow thread in the TSU’s RQ. By contrast,
the trailing thread’s PE has buffered the trailing thread’s output and must wait until
signature comparison allows the commitment.

4 Output comparison: The core probe of the trailing thread’s PE compares the
signatures of the redundant threads. Additionally, the FDU, which has been notified by
the TSU on duplication of the redundant continuation, waits for the signatures of the
leading and the trailing thread, compares them again and stores the result per PE. In
case of a mismatch of the signatures, the FDU keeps the signatures for later majority
voting in order to localise the faulty PE.

5 Thread commit or recovery: In case of a non-faulty execution of both threads,
the core probe of the trailing thread commits the write buffer and the OWM buffer.
After commit of the trailing thread, the TSU deletes the continuations of both threads.
When a fault was detected, the core probe of the trailing thread’s PE flushes the buffers
and informs the TSU to trigger a thread restart.

5.3.2 Sphere of Replication of Double Execution

As described in Section 2.3, the sphere of replication defines the hardware region
of a redundant execution scheme, where components are either spatial or temporal
redundant. Within the sphere of replication faults can be detected by a redundant
execution mechanism. However, input data that enters the sphere must be replicated
in a consistent manner for both execution streams. Furthermore, data that leaves the
sphere of replication must be checked for faults, otherwise faults can not be detected at
a later stage.

Figure 5.4 shows the sphere of replication of double execution for the enhanced fault-
tolerant architecture. The sphere is restricted to the PEs of the system, excluding the
local caches, the core probes, and the write buffers. As a consequence, these hardware
components must be protected by other fault-tolerance mechanisms.

Beside the PEs, the baseline architecture also includes several single-point-of-failure
hardware components, e.g. the interconnect, the memory controller, the FDU, and the
TSU. For the interconnect, we assume an end-to-end ECC implementation, which is able
to detect and correct transient faults. Permanent faults within the interconnect are out
of scope of this thesis, nevertheless fault-tolerant network-on-chip techniques, as they
are discussed in [Garbade, 2014], can be additionally implemented.

59

5 Fault-Tolerant Data-Flow Execution

Figure 5.4: Sphere of replication for double execution.

Furthermore, all off- and on-chip memory structures, which are not part of the sphere
of replication must be protected by information redundancy mechanisms as well, e.g.
ECC. In the case of a permanent broken DRAM chip, chipkill memory [Dell, 1997] could
be implemented to dynamically cope with broken memory chips. Fault-tolerant memory
is of particular importance, since the data-flow based fault-tolerance mechanisms require
the main memory to store the current state of the system.

For all other non-redundant components, e.g. the memory controller, the FDU, or
the TSU, we do not assume additionally fault-tolerance mechanisms, however, spatial
redundancy can be implemented for all of them. Nevertheless, spatial redundancy of
these components does not directly influence the data-flow thread execution and is
therefore left for future work.

5.3.3 Input Replication

As double execution uses data-flow threads for redundant execution, the input data of
the redundant threads must be consistently replicated. The following input values may
enter the sphere of replication during execution:

• TLS Reads: The redundant threads can read from the TLS, which stores a
thread’s private stack and heap. Since the TLS is private per data-flow thread
and exclusively created for each thread, it must not explicitly replicated for double
execution.

• OWM Reads: Writes to the OWM region must be buffered until the redundant
threads are verified. Hence, writes to the OWM region can only become globally
visible when the thread commits. This means that reads from the redundant
threads can share the same OWM section, since the OWM section will not change
until the execution of the trailing thread is verified and committed.

• Thread Frame Reads: The TF is immutable after the synchronisation count has
reached zero, which allows redundant threads to read from the same TF, because
data inconsistencies between redundant threads, induced by race conditions of
concurrent twrites, are impossible.

3Beside the read accesses discussed before, the leading and trailing threads may execute
tschedule instructions to dynamically allocate subsequent threads. If the TSU receives

3This paragraph has also been published in [Weis et al., 2016].

60

5.3 Double Execution of Data-Flow Threads

PE 2

Figure 5.5: Consistent input replication for redundant tschedule instructions.

a tschedule request from a PE, a new continuation is created and a new TF, which
is required to store the thread’s input data, is allocated. The TSU finally returns the
ID of the newly created thread. However, the returned ID is run time dependent and
may be later passed to subsequent TFs by twrite instructions. To ensure equal output
for the leading and trailing threads, the received IDs must be equal for the trailing and
the leading threads. However, the redundant thread execution is not synchronised on
instruction level and it may happen that a leading thread runs behind its trailing thread
or vice versa. In order to prevent stalls induced by tschedule synchronisation between
leading and the trailing threads, we allow both PEs to issue tschedule instructions.
To guarantee consistent IDs in the leading and the trailing thread, the TSU follows
the algorithm depicted in Algorithm 5.1. Therefore, the TSU maintains a counter per
continuation (tsched count), which keeps the number of issued tschedule instructions
per thread. When a thread has issued a tschedule request, the TSU compares the
tsched count in its continuation with the tsched count of the redundant thread. If the
tsched count is greater than the tsched count of the redundant thread, the TSU knows
that the calling thread is running ahead of its redundant copy. In this case, the TSU
processes the tschedule request as usual and stores the created thread ID in the ID
Table (see Section 5.5.2). If the tschedule count is lower than the tsched count of
the redundant thread, the TSU has already processed this tschedule request from the
redundant thread, which is running ahead. In this case, the TSU proceeds with an ID
Table look up to retrieve the previously stored thread ID, created by the redundant
thread’s tschedule, which is running ahead.

Example. Figure 5.5 depicts an example execution of a redundant tschedule execution.

1 It can be seen that PE 1 executes the leading thread, which issues a tschedule

instruction. The TSU now compares the tsched count of the leading thread with the
tsched count of the trailing thread. Since no thread has executed a tschedule at this

61

5 Fault-Tolerant Data-Flow Execution

point, the TSU processes the tschedule and increments the tsched count of the leading
thread and stores the new thread ID (id = 3) in the ID Table. 2 Afterwards, PE 2,
which executes the trailing thread, executes a tschedule instruction. The tsched count
of the leading thread is now greater (tsched countleading > tsched counttrailing) than
the trailing thread, in this case the TSU retrieves the previously stored thread ID from
the ID Table (id = 3). ♦

Algorithm 5.1 Replication of a thread ID for a redundant tschedule instruction.

Input: sc // synchronisation count
Output: id = tschedule(sc)
if tsched countcaller ≤ tsched countredundant then // thread is behind

id← retrieve from ID Table
else // thread is ahead
id← process tschedule(sc)

end if
return id

5.3.4 Synchronisation and Output Comparison

Leading and trailing threads are synchronised for comparison on thread commit. Likewise,
the synchronisation frequency depends on the length of the data-flow threads. As a
consequence, the granularity of double execution thread synchronisation can not be
adapted at run time and depends on the data-flow application. Unfortunately, faults
can only be detected when the leading and trailing thread synchronise, which means
that the worst case fault detection latency depends on the start slack of the redundant
threads, their execution speed, and the length of the threads.

Data, which leaves the sphere of replication and changes the global state of the system
must be verified for errors. For data-flow threads, the following output leaves the sphere
of replication and can manipulate the global system state:

• Writes to the thread frame: Data-flow threads use twrite/twritep instruc-
tions to write to TFs of subsequent threads. Furthermore, tdecrease instructions
manipulate the synchronisation count of waiting threads in the TSU.

• Writes to the OWM: Writes to the OWM become only visible after a thread is
committed.

• Scheduling of new threads: Data-flow threads can spawn new threads by
tschedule instructions.

All other memory accesses of the threads are only allowed to manipulate thread-local
data, which does not directly influence the global state of the system. However, an
error that has been temporary stored in the thread-local storage may be later passed to
subsequent thread frames or the OWM region.

Therefore, output comparison for double execution needs to incorporate all twrite/
twritep/tdecrease buffered in the write buffer, writes to the OWM region buffered in
the OWM buffer, and all executed tschedule instructions.

62

5.3 Double Execution of Data-Flow Threads

Result Compression In order to save interconnection bandwidth and result comparison
latency, the output of a thread is reduced to a CRC-32 signature, similar to the fingerprint
technique proposed by Smolens et al. [2006]. As a consequence, the CRC-32 signature
is updated on every twrite/twritep/tdecrease, every write to the OWM buffer, and
every tschedule. For twrite and twritep instructions, the target thread’s ID, the
address and the value must be incorporated in the signature. For stores to the OWM
section the address and the value must be incorporated. For the tschedule, the address
of the thread’s code region and the synchronisation count must be incorporated in the
signature. For the tdecrease, the target thread’s ID and the value are incorporated.

Compared to [Smolens et al., 2006], double execution does not require creating a
signature of the complete context of each PE and all store instructions, which reduces
the pressure on the CRC hardware in the core probe.

Reducing the PE Blocking Time Double execution implements fault isolation on PE
level, which simplifies the recovery mechanisms, as proposed in Section 5.3. However,
the output of the trailing thread must be buffered in the PE until the signatures of both
threads have been compared. As a consequence, the PE that has executed the trailing
thread is blocked until commit or recovery. Furthermore, when the leading thread finishes
after the trailing thread, the waiting time increases. Although this method supports fast
recovery by only discarding the execution state of the trailing and leading thread’s PE,
it may introduce additional overhead by blocking of the PE until signature comparison,
because the blocking time of the processing element depends on the comparison latency.
This means that the comparison latency is on the critical path of the execution, since it
directly increases the PE blocking time of the trailing thread.

However, the commit slack, i.e. the time difference between the commit of the trailing
and the leading thread, can be used to mask the comparison latency by transferring the
signature of the leading thread to the trailing thread’s PE core probe, while the trailing
thread is still executed. The evaluation results in Chapter 7 show that this technique
can significantly reduce the average PE blocking time of the trailing thread.

5.3.5 Asynchronous Thread Execution

After the synchronisation count of a thread has reached zero and a thread is duplicated,
both threads can be independently scheduled. This means that both threads can be
executed completely asynchronous on different PEs. The start slack depends on the
PE availability at run time. Nevertheless, the TSU tries to execute leading and trailing
threads in parallel to limit the start and commit slack. The decoupled redundant thread
execution allows for flexible utilisation of the available PEs. In the case of permanent
faults, the system can efficiently exploit the remaining PEs even when an uneven number
of PEs is left operational.

Example. Figure 5.6 shows the flexibility of the asynchronous thread execution on a
system with 4 PEs. In Figure 5.6(a) it can be seen that the threads T1, T1’, T2, and
T2’ are executed in parallel. However, when in Figure 5.6(b) PE4 becomes permanent
faulty, the TSU can only execute T2’ on PE3 and must wait for the next available PE to
schedule T2. Since the next available PE is PE2, the TSU schedules T2 to PE2. In this
case, T2 is executed completely time-shifted with respect to the leading thread T2’. ♦

63

5 Fault-Tolerant Data-Flow Execution

PE1

PE2

PE3

PE4

Time

T0'

T1

T1'

T2'

T2

T3'

T3T0

(a) Double execution on four PEs.

PE1

PE2

PE3

PE4

Time

T0'

T1

T1'

T2'

T2

T3'

T3T0

Permanent Faulty

(b) Double execution on four PEs with one per-
manent faulty PE.

Figure 5.6: Asynchronous execution of redundant threads.

5.3.6 Influence of Double Execution on the Execution Time

Beside the doubled PE utilisation inherent to all redundant execution schemes, the
overhead of double execution compared to conventional data-flow execution is influenced
by two factors: The deferred commit and the PE blocking of the trailing thread.

Deferred Commit For the global progress of the system, double execution looks like
non-redundant data-flow execution, since only the trailing thread is allowed to commit.
However, compared to non-redundant data-flow execution, the time between start (of the
leading thread) and commit (of the trailing thread) is longer than for a non-redundant
execution of the same thread. The deferred commit of the trailing thread can reduce the
parallelism in the system, since subsequent threads can only be started when both the
leading and the trailing threads have finished their execution.

PE Blocking of the Trailing Thread While the PE of the leading thread is immediately
relinquished for subsequent threads after tdestroy has been retired, the trailing thread
has to buffer the results of the data-flow execution in its write buffers. During result
comparison, the PE can not execute subsequent data-flow threads, since the PE’s write
buffers would be otherwise overwritten. Therefore, the PE of the trailing thread is
blocked for further data-flow threads until the FDU has finished result comparison. The
blocking time of the PE is minimised, when the leading thread always finishes execution
before the trailing thread. In this case, the PE is blocked for other leading threads until
the core probe has received and compared the signature from the leading thread. The
commit slack between the redundant threads can reduce the PE blocking time induced
by the result comparison latency, as described in Section 5.3.4.

5.4 Restart of Data-Flow Threads

This section describes the data-flow based thread restart mechanism to recover from
errors. The buffers of the PEs prevent that an unverified trailing thread can modify
the global state of the system, i.e. TFs of subsequent threads, the synchronisation
counts of waiting data-flow threads in the TSU, or the OWM region. As a consequence,
error propagation for double execution is restricted to the PEs. Since no global state is
manipulated until double execution has verified the thread execution, the main memory

64

5.5 Data-Flow Runtime Enhancements

must not be recovered. This means that the data-flow thread execution creates inherent
execution checkpoints on each thread commit. The valid and fault-free checkpoint state
consists of the global state of the system, i.e. the thread frames and the OWM region
in the main memory and all continuations within the TSU, which are not marked as
speculative (see Subsection 5.4.1). When a redundant thread pair commits, a new
checkpoint is implicitly created. Hence, the unsafe, recoverable state consists of the
execution state of a thread, including the PE context, the buffers, and the TLS.

When the core probe detects a signature mismatch, the TSU discards the uncommitted
state of the faulty threads, i.e. the buffers of the waiting thread’s PE’s and all speculatively
created continuations. Afterwards, the TSU restarts the redundant threads.

The overhead in case of a fault is dominated by the wasted execution time for the
restarted threads. Since double execution can detect errors only when both threads
commit, the wasted execution time depends on the start slack, the length of the data-flow
threads of the executed application, and the execution speed of the redundant threads.

5.4.1 Speculative Thread Creation

Data-flow threads can schedule new threads by executing the tschedule instruction.
In this case, a new continuation is created within the TSU and a new TF is allocated.
However, in case of a thread restart, the same tschedule instruction will be executed
again. To prevent multiple thread creations in such a case, all scheduled threads are
marked as speculative in the TSU until the parent thread has been checked for errors.
When a redundant thread pair is restarted, all speculatively created threads must be
discarded. In order to do so, the ID of the parent trailing thread is stored in each
continuation. In case of a thread restart, the TSU deletes all speculative continuations
created by the erroneous thread and releases the allocated TFs of the threads.

Please note that the TSU will never schedule a thread to a PE when its continuation
is marked as speculative. After result comparison and commitment of the trailing thread,
the TSU changes all successor threads from speculative to non-speculative.

5.5 Data-Flow Runtime Enhancements

Double execution requires changes to the baseline execution model and architecture. In
particular, the data-flow runtime must be able to create and manage redundant threads,
create CRC-32 signatures, and support deterministic tschedule input replication for
the redundant threads.

This section describes the necessary enhancements to the TSU to support double
execution and thread restart recovery.

5.5.1 Extended Continuation for Double Execution

Figure 5.7 shows the extended continuations of the trailing and leading thread with
the additionally allocated thread local storage for the redundant thread. We added the
following fields to the original continuation:

• trail (Trailing Thread): indicates, whether the thread is a trailing thread.

65

5 Fault-Tolerant Data-Flow Execution

Code

Thread
Frame

Thread Local Storage
(Leading)

Memory of the

Leading and Trailing

Thread

Leading Thread's Continuation

Thread Local Storage
(Trailer)

id tsched_countfp ip sc tlsp trail red_cont spec parent_id pe_id free_ptr next_ptr

Trailing Thread's Continuation

id tsched_countfp ip sc tlsp trail red_cont spec parent_id pe_id free_ptr next_ptr re-start

re-start

Figure 5.7: Redundant continuations and memory organisation of double execution.

• red cont (Redundant Continuation Pointer): stores the thread ID of the redundant
continuation.

• spec (Speculative Thread): indicates, whether the thread is speculative.

• parent id (Parent ID): stores the thread ID of the parent thread. The parent ID is
required to discard the speculative continuations, if the parent thread needs to be
restarted.

• tsched count (tschedule Count): stores the number of issued tschedule instruc-
tions of the thread.

• pe id (PE ID): stores the ID of the PE, which has executed the thread.

• free ptr (ID Table Free Pointer): points to the next free entry in the ID Table.

• next ptr (ID Table Next ID Pointer): points to the next thread ID in the ID Table
to be returned on a redundant tschedule.

• re-start (Restarted Flag): indicates whether the thread has been restarted.

Please note that the synchronisation count of the redundant thread is always zero,
since the redundant continuation is only created, when the synchronisation count of the
original thread became zero.

5.5.2 ID Table

As described in Section 5.3.3, double execution requires deterministic thread IDs returned
on redundant tschedules to guarantee consistent input replication. The TSU must
therefore temporarily store the created thread IDs and their sequential order. This is
supported by the ID table, which allows storing and retrieving thread IDs in case of
redundant tschedule instructions. The TSU keeps all IDs created on tschedule in an
additional memory structure, the ID table. The ID table stores the thread ID of the

66

5.6 Fault Diagnosis and Periodic Tests

trailing thread together with the newly created thread ID, when a tschedule has been
executed for the first time.

To support fast access, a thread’s continuation maintains two additional pointers, one
which stores the index of the next thread ID (next ptr) to be returned and another one,
which points to the next free entry in the ID Table (free ptr) (see Figure 5.8(a)). After
the TSU has returned a thread ID stored in the ID table, it tries to find the next ID to
be returned by traversing the list until the next ID of the leading thread is found (see
Figure 5.8(b)).

ID Table

free_ptr

next_ptr

Leading Thread ID Successor ID

1

1

1

3

4

5

(a) ID Table with next ptr and free ptr.

ID Table

free_ptr

next_ptr

Leading Thread ID Successor ID

1

1

4

5

1 3

(b) ID Table after trailing tschedule.

ID Table

free_ptr

next_ptr

Leading Thread ID Successor ID

1

1

4

5

1 6

1 3

(c) ID Table after leading tschedule.

Figure 5.8: ID table for redundant tschedule.

When a new entry is entered, the TSU uses the free ptr in the continuation to store
the leading thread’s ID together with the new ID. Afterwards, the free pointer is moved
to the next empty entry in the list (see Figure 5.8(c)). To support the fault localisation
mechanism proposed in Section 5.6, the entries in the ID Table are only removed in case
of a fault-free execution.

5.6 Fault Diagnosis and Periodic Tests

Fault diagnosis and adaption are necessary to cope with permanent and intermittent
faults. For instance, a permanent fault in a PE may lead to continuing recovery actions,
bringing the complete system to a halt [Sorin, 2009]. To prevent such situations, the
FDU identifies permanent or intermittent faulty PEs and instructs the TSU to deactivate
the faulty PE.

The technique is based on the fault detection and recovery mechanisms proposed
in the Sections 5.3 and 6.1. Here, the FDU works as a fault diagnosis unit, which
tracks detected errors per PE and determines whether a PE is transient, intermittent, or
permanent faulty.

67

5 Fault-Tolerant Data-Flow Execution

The FDU can also be used to track thermal condition or detected errors by other fault
detection mechanisms, like the machine check architecture (MCA), however, advanced
proactive mechanisms based on these information are out of scope for this thesis. For
further ideas on proactive fault management by the FDU please refer to Weis et al.
[2011b].

5.6.1 Fault Diagnosis

The FDU stores all received signatures of the threads to localise the faulty component.
This is possible since the signatures of the restarted threads are always equal in the
absence of errors. When the FDU receives the signatures of the thread re-executions,
the PE, which suffered from the fault can be identified by a majority voting. Under
the assumption that faults in different PEs never produce the same signature, the FDU
can identify the erroneous thread execution and assume that the PE, which produced
an error, has suffered from a fault. However, the scheduler must ensure that in the
case of a re-execution at least one thread uses a different PE. Furthermore, re-executed
threads always use the ID Table to retrieve the same thread IDs as the execution before.
After having identified the correct signature, we can consider all diverging signatures as
erroneous.

During execution, the FDU continuously tracks all identified faulty PEs and stores
them in the knowledge base. The knowledge base uses a list per PE to keep the localised
faults as binary values. A bit value indicates, whether a fault has been localised for this
PE. The FDU also distinguishes between transient and permanent faulty PEs. In order
to do so, it looks in its knowledge base, whether the last execution localised a fault on
this PE, too. In this case, the PE is considered as permanent faulty. When a PE is
identified to be permanent faulty, the FDU informs the TSU to deactivate the PE.

Example. Figure 5.9 shows how the permanent faulty PE 3 can be localised. First, the
redundant threads are executed on PE 2 and PE 3. On result comparison, an error is
detected. However, the FDU does not know, which PE produced the error, stores the
signatures produced by the threads and restarts them. The redundant thread pair is
re-started on PE 1 and PE 3. Since PE 3 is still permanent faulty, the FDU detects an
error again. The FDU now uses majority voting to detect that PE 1 and PE 2 have
produced the same signature. After result comparison, the FDU updates its knowledge
base about PE 1 and PE 3. Since PE 3 suffered from two errors in a row, the FDU
considers PE 3 as permanent faulty. ♦

5.6.2 Periodic Testing

The system uses periodic tests to check, whether a PE is still faulty. Generally, the
FDU does never consider a PE as permanent faulty, but only assumes intermittent
faults. After a given number of n committed threads, the FDU re-tests a deactivated
PE. Therefore, it resets the state of the PE from faulty to operational. When the next
executed thread is faulty again, the test is repeated after n committed threads.

The test interval depends on the recovery overhead of the selected recovery mechanism.
This means that periodic tests are cheaper for double execution with thread restart
recovery than optimistic double execution with global checkpointing (see Chapter 6).

68

5.6 Fault Diagnosis and Periodic Tests

FDU Knowledge Base

Time

Leading

Trailing

PE 2 PE 3 FDU

Comparison

send sig. 0xA

Error Detected

PE 1

send sig. 0xB

PE 1

PE 2

PE 3

(a) Double execution on PE 2 and PE 3, while PE 3 is permanent faulty. The
FDU detected a error and keeps the signatures produced by double execution.
The TSU re-starts the threads, while at least one thread is executed on a
different PE than before.

FDU Knowledge Base

Time

Trailing

PE 2 PE 3 FDU

Comparison

send sig. 0xA

send sig. 0xB

Error Detected

PE 1

Leading

Intermittent/Permanent
Fault Detected

PE 1

PE 2

PE 31 1

(b) Double execution on PE 1 and PE 3, while PE 3 is permanent faulty. After
the erroneous execution was detected, the FDU compares the signatures of all
thread executions. In this case, we can see that PE 1 and PE 2 have produced
the same signature, which means that PE 3 has produced the erroneous signature.
Since PE 3 has produced an erroneous signature two times in a row, we store
that information in the knowledge base.

Figure 5.9: Fault diagnosis using double execution.

69

5 Fault-Tolerant Data-Flow Execution

5.7 Summary

This chapter proposed data-flow based fault-tolerance mechanisms to cope with transient,
intermittent, and permanent faults in the processing elements of a multi-core architecture.
Fault detection is implemented by double execution, a loosely-coupled redundant execu-
tion scheme for data-flow threads. Double execution exploits the data-flow execution
principle of the baseline architecture for input replication, redundant thread management,
and output comparison. Based on double execution, a data-flow thread restart recovery
mechanism was proposed. The required enhancements for double execution and thread
restart recovery to the data-flow execution model and the hardware architecture were
discussed in detail. Additionally, a fault diagnosis mechanism was proposed, which uses
double execution and the thread restart recovery for fault localisation.

The data-flow based fault-tolerance mechanisms proposed in this chapter provide the
following benefits:

1. Double execution uses data-flow threads for redundant execution. This allows
leveraging the data-flow runtime to execute redundant data-flow threads. In
particular, the data-flow scheduler can dynamically schedule redundant threads on
PE availability.

2. Result comparison is only necessary for data which is consumed by subsequent
threads. This reduces the amount of data, which must be compared.

3. Redundant data-flow threads can be executed completely decoupled from each
other, supporting a flexible utilisation of the baseline multi-core architecture.

4. Result propagation is only required when a thread has finished execution, which
simplifies input replication, output comparison, and enables thread restart recovery.

5. Double execution and thread restart recovery can be used for the localisation and
the diagnosis of permanent and intermittent faulty PEs by the FDU.

6. The integration of double execution and thread restart recovery in the data-flow
execution model supports the flexible deactivation of permanent faulty PEs. The
asynchronous redundant thread execution can also exploit uneven numbers of PEs.

70

6
Optimistic Double Execution and
Global Checkpointing

This chapter presents in Section 6.1 Optimistic Double Execution (ODE), a speculative
variant of double execution, which can increase the parallelism of double execution. Since
ODE can not recover from errors by the thread restart recovery mechanism proposed in
Chapter 5, Section 6.2 proposes a data-flow based global checkpoint mechanism. Finally,
Section 6.3 gives a summary on the fault-tolerance mechanisms of this chapter.

6.1 Optimistic Double Execution

This section gives an overview of ODE. First, we describe how ODE can increase the
parallelism of double execution of data-flow threads. Second, we present the execution
behaviour of ODE. Third, we discuss input replication and output comparison for ODE
and present a mechanism for the input replication of the OWM sections.

6.1.1 Increasing Parallelism by Optimistic Thread Commit

The parallelism of double execution is restricted by the parallelism of the data-flow
application, since redundant threads must always be compared before the commit of the
trailing thread and before subsequent threads can be started. As a consequence, the
scalability of double execution is limited by the parallelism of the data-flow application
and can not be significantly higher than the execution on a non-fault tolerant system
with half of the cores.

To overcome this restriction of double execution, ODE speculates that the redundant
thread execution is always correct and allows forward progress by committing the leading
thread before the trailing thread has finished execution or is even started. This enables
to optimistically start subsequent threads before the trailing thread has verified the
execution and therefore increases the parallelism. Optimistic double execution enables a
complete decoupling of the leading and the trailing threads, since the system can make

71

6 Optimistic Double Execution and Global Checkpointing



  







 







 




(a) Dynamic data-flow graph of
double execution.

PE 1

PE 2

PE 3

PE 4

Leading Thread

Trailing Thread

T0

T'0

'

PE 1

PE 2

PE 3

PE 4

Time

Optimistic Double Execution

Double Execution
T1

T'1

T2

T'2

T3

T'3

T4

T'4

T5

T'5

tODE tDE

T0

T'0

'

T1

T2

T3

T'1

T'2

T'3

T4

T'4

T5

T'5

(b) Thread execution of double execution and optimistic double execution.

Figure 6.1: Example for increasing parallelism by the optimistic thread commit of ODE.

forward progress without waiting for the signature comparison by the trailing threads
and can defer the verification by the trailing threads to a later point in time.

As mentioned before, the optimistic commit of the leading thread can increase the
parallelism, since the parallelism of double execution is restricted by the dependencies
between the data-flow threads. However, in case of ODE, the data dependencies between
the threads restrict only the execution of the leading threads, but not the execution
of the trailing threads, because the trailing threads’ dependencies have already been
resolved when the threads were duplicated.

Example. Figure 6.1 shows by example the increasing parallelism in case of ODE. The
dynamic data-flow graph of double execution, depicted in Figure 6.1(a), is executed by
double execution and ODE on a system with 4 PEs in Figure 6.1(b). In the example
execution for double execution in Figure 6.1(b) it can be seen that the data dependencies
restrict that the application can fully utilise the system, since T4 and T ′

4 can only be

72

6.1 Optimistic Double Execution

started when T1...T3 and T ′
1...T

′
3 have finished execution. By contrast, ODE fully utilises

the system to finish the threads T1...T3. Since ODE commits threads before the trailing
thread has verified the computation, T4 and T ′

4 become ready for execution sooner and
can run in parallel to the trailing threads T ′

2 and T ′
3. It can be further seen that the

trailing threads T ′
2, T

′
3, and T ′

4 can be executed in parallel, which increases the parallelism
of the execution of the trailing threads and reduces the execution time of the data-flow
application, since tODE < tDE. ♦

6.1.2 Run time Behaviour of Optimistic Double Execution

The run time behaviour of ODE can be divided into the following stages:

1 Thread start: Similar to double execution, the leading and trailing thread are
started when a PE becomes available.

2 Thread execution: When the threads are executed, the leading thread’s PE
buffers all twrite/ twritep/tdecrease instructions in the write buffer and the OWM
buffer. Simultaneously, the core probe creates the CRC-32 signature, similar to double
execution. The core probe of the trailing thread’s core creates also the signature of its
output.

3 Thread end: When the leading thread has finished execution, indicated by
tdestroy, the PE’s core probe sends the CRC-32 signature to the FDU. Afterwards,
the leading thread immediately commits without waiting for the trailing thread and the
synchronisation counts of the succeeding threads are decremented instantaneous. The
TSU can then immediately start new threads, when their synchronisation counts has
reached zero.

4 Output comparison: The FDU waits for the signatures of both the leading and
the trailing threads and compares them.

5 Thread commit or recovery: In case of matching signatures, the TSU can
continue execution. When a fault is detected, the FDU triggers the global recovery
mechanism described in 6.2.

By contrast to double execution, ODE always schedules the trailing threads with
lower priority than the leading threads, because only the leading threads can commit its
(unverified) results and guarantee global progress of the system.

6.1.3 Input Replication

Similar to double execution, the input data must be replicated for the leading and trailing
threads. Since the TF of a data-flow thread is immutable and can not be modified
after the synchronisation count has reached zero, explicit duplication of the TF is not
necessary, even when the leading thread commits.

In case of double execution, stores to the OWM region do not require explicit input
replication, because concurrent OWM stores to the same memory location are prevented
by data dependencies in the data-flow graph. This means that parallel executable
data-flow threads can not write the same OWM addresses, while writes to the OWM
region of redundant threads are isolated from each others in the OWM buffer. However,
ODE allows the leading thread to write (unverified and possible erroneous) output to the

73

6 Optimistic Double Execution and Global Checkpointing

Time

Leading

Trailing

TSU PE 1 PE 2 FDU

start

start

send sig. 1

ack

commit

1

2

3

4
5

send sig. 2
commit

comp.

Figure 6.2: Execution stages of ODE.

OWM region. Furthermore, overwritten values in the OWM may be later required by the
trailing thread. This can lead to input incoherence between trailing and leading threads.
To prevent input incoherence for OWM reads of redundant threads, the accessed parts
of the OWM must be replicated before they can be changed by the leading thread’s
commit. Therefore, the OWM section accessed by a thread must be copied before the
leading thread can commit. To restrict the size of the copied section to a minimum,
an additional instruction is used (owm mem), which is executed at the beginning of the
thread to inform the TSU about the start address and the size of the OWM section.
The owm mem instruction can be added by the compiler or the programmer and must be
executed in both redundant threads. The TSU then initiates a replication of this section
in the OWM region to prevent input incoherence between the trailing and the leading
threads.

The management of the mapping between the original OWM section and the copied
section is managed by the TSU by an OWM mapping table, depicted in Figure 6.3. The
mapping table stores the ID of the trailing thread, the pointer to the original section,
the pointer to the copied section, and the length of the section.

When the owm mem is executed the first time, the TSU searches in the OWM mapping
table, whether an entry for the trailing thread ID exists. If this is not the case, the TSU
creates a copy of the section specified by the owm mem instruction using a DMA transfer
and allocates a new entry in the OWM mapping table. When the trailing thread calls the
same owm mem instruction, the TSU searches again in the OWM mapping table for the

74

6.1 Optimistic Double Execution



Figure 6.3: OWM mapping table and pointers to the original and the copied OWM
sections.

entry of the corresponding thread. The corresponding entry of the OWM mapping table
is then forwarded to the core probe. The core probe takes now care for the mapping and
prevents the PE from writing to the original OWM region.

The core probe monitors all OWM read addresses of a PE and translates them to the
appropriate physical addresses of the leading or trailing thread. As a consequence, the
leading and trailing threads have different physical OWM addresses in the system. This
prevents the leading thread from serving as a prefetcher for the trailing thread, since
redundant threads read OWM input from different physical addresses.

Reducing the OWM Copy Overhead The copying of the trailing thread’s shared
memory section can induce execution overhead, since the OWM section specified in the
owm mem instruction must be copied before the leading thread can commit. To prevent
stalling of the trailing thread’s start, the OWM region is started immediately when the
redundant threads become ready for execution and are moved to the RQ.

6.1.4 Output Comparison

Output comparison for optimistic double execution is similar to double execution, which
means that writes the OWM region, twrites, twriteps, tdecrease instructions, and
tschedules must be incorporated in the CRC-32 signature. For the write accesses to
the OWM region, the original OWM addresses must be used for the trailing thread’s
signature.

75

6 Optimistic Double Execution and Global Checkpointing

6.2 Data-flow based Global Checkpointing

The optimistic thread commit of ODE before result verification allows that erroneous
results have already been committed to the main memory and the TSU and may be
consumed by subsequent threads before optimistic double execution can detect an error.
This means that possible errors can no longer be isolated within the PEs and the restart
of threads can not be used for recovery. As a consequence, in case of ODE, the TFs and
the OWM region may contain errors and must be recovered, when an error is detected.
Since errors can be at any address in the memory after detection by ODE, the recovery
mechanism must recover the complete main memory and the TSU state. This section
proposes a data-flow based global checkpointing mechanism, which supports a global
rollback of the system, including the state of the TSU and the main memory. The
proposed checkpointing mechanism exploits the data-flow execution model to reduce the
checkpoint creation overhead.

6.2.1 Establishing a Checkpoint

Figure 6.4 shows the required steps to establish a global checkpoint with ODE:

1 To establish a global checkpoint, the FDU must ensure that the checkpoint is
safe, i.e. error free. This means that all committed, but still unverified threads
must be checked until the new checkpoint can be established. A new checkpoint
can be only established, when all committed leading threads have been compared
with their trailing thread counterparts. The TSU scheduler changes the scheduling
policy when a checkpoint creation is triggered, prioritising the outstanding trailing
threads over the leading threads. The checkpoint interval can be therefore not
exactly determined, since it depends on the number of unverified leading threads
in the RQ.

2 After all outstanding trailing threads have committed and their results have been
compared, a checkpoint can be established. The state of the system at this point is
called the recovery point [Sorin, 2009], which is recovered in the case of a rollback.
To create the checkpoint, the TSU determines the start and end addresses of
the current frame memory region and the OWM region in the main memory.
Furthermore, the TSU creates a backup of its current context, including all internal
tables and stores it in the main memory, too. The global state of the system consists
of the TSU state, the thread frames and the OWM region, which is accessible by
all threads.

3 After the checkpoint has been established, all subsequent twrite/twriteps going
to the checkpoint’s memory region will be logged. This means the TSU maintains
a log of all changes to the TFs within the checkpoint’s memory region. Newly
allocated TFs must not be recovered and are created outside of the checkpoint’s
log region. Similar to the TF, a log over the complete OWM region is established,
too.

4 When ODE detects a fault, the TSU recovers to the recovery point by restoring
the frame memory log, the OWM log, and the stored TSU context.

76

6.2 Data-flow based Global Checkpointing

Compared to prior global checkpoint mechanisms for shared-memory multi-cores,
like [Prvulovic et al., 2002; Sorin et al., 2002], data-flow based global checkpointing only
needs to keep a log of the frame memory and OWM regions, instead of maintaining a
log of the complete main memory. Furthermore, a global checkpoint in a shared memory
von Neumann architecture must always incorporate the architectural context of all cores
in the system [Pradhan, 1996, pp. 160 ff.]. Additionally, data-flow based checkpointing
does not explicitly checkpoint the state of the cache coherence protocol or flush the
caches in order to establish a new checkpoint.

PE 1

Establish CheckpointExecute Execute

Finish Outstanding Trailing Threads

Continue Execution

PE 2

PE 3

PE 4

Trigger Checkpoint Continue Execution
Checkpoint Created

Leading Thread

Trailing Thread

Current Checkpoint

Next Checkpoint

1

2 3

4
Recovery Point

Store TSU

Figure 6.4: Optimistic double execution with reduced waiting time.

6.2.2 Logging of Memory Accesses

After a checkpoint has been established, the system must record all changes to the logged
memory regions. Since the TSU state has been copied on checkpoint creation, only the
accesses to the frame memory and OWM region must be logged. We propose optimistic
logging for the thread frame and the OWM region. Optimistic means that old values are
copied to a separate log region before the value can be written to memory. Since the
globally visible state is only changed when a thread commits, for ODE only results of
the leading thread must be logged.

6.2.3 Checkpointing Overhead

The checkpoint overhead, i.e. the additional time required to establish a new checkpoint,
is influenced by two factors.

First, the system must finish all currently unverified threads. This may result in
lower utilisation of the system, however, the effect can be reduced by overlapping the
checkpoint creation with the data-flow execution of the next checkpoint interval, as
described in Section 6.2.4. Second, the TSU must be stopped until the TSU context
is stored in the main memory. However, this affects only threads, which execute a
T*-instruction at the moment the TSU context is written to the main memory.

77

6 Optimistic Double Execution and Global Checkpointing

After a checkpoint has been established, all writes to the checkpoints’s memory region
must be logged, which means that data must only be logged, when the leading thread
commits,

6.2.4 Overlapping of Checkpoint Verification and Data-Flow Execution

A new checkpoint can only be established when all unverified threads have been compared.
However, this may lead to reduced utilisation of the system. Fortunately, data-flow
threads of the next checkpoint interval can be started and executed even when the
checkpoint creation is not yet finished. Starting new trailing threads is allowed when
a PE becomes available, but no outstanding trailing threads of this checkpoint can be
scheduled. Then the TSU starts a leading thread of the next checkpoint interval (see
Continue Execution in Figure 6.4). The functional semantic of the data-flow execution
supports this, since all side effects of the newly started threads are only visible in the
system, when the thread is committed. This means that the started leading thread of
the next checkpoint interval can not commit until the checkpoint is established. After
the new checkpoint has been established, the waiting threads of the next checkpoint can
be committed. This overlapping of checkpoint verification and data-flow execution of
the next checkpoint interval reduces the checkpointing overhead, since idle times in case
of checkpoint creation is exploited for useful data-flow thread execution.

6.2.5 Fault Diagnosis and Adaption for Optimistic Double Execution and
Global Checkpointing

A global rollback of the system has disadvantages for the fault diagnosis mechanism
described in Chapter 5, since on recovery, the faulty threads can not be re-executed,
when they no longer exist in the system after a rollback. Therefore, before a global
checkpoint is restored, the system tries to localise the faulty PE by triggering a thread
restart. However, the leading thread can not be restarted, since the OWM section of
the leading thread may have already been changed by the commit of leading thread.
Therefore, only the trailing thread is restarted on a different PE. After the trailing thread
has finished, the FDU uses majority voting to identify the PE of the faulty execution.
Afterwards, the system can be recovered.

6.3 Summary

This chapter proposed optimistic double execution, which can increase the parallelism of
double execution. Compared to double execution, ODE is able increase the parallelism,
since unverified threads are allowed to immediately commit and spawn succeeding threads.
Furthermore, result comparison can be deferred to a later point in time, increasing the
flexibility of the PE usage. Additionally, the comparison latency is moved from the
critical path, because the immediate commit of the leading thread completely eliminates
the PE blocking issue.

The immediate commit of the leading thread can increase the start slack between
the leading and the trailing threads, since the TSU scheduler prioritises leading threads

78

6.3 Summary

over trailing threads. As a consequence, the commit slack between the leading and the
trailing threads can be significantly higher compared to double execution.

The duplication of the accessed OWM sections and the OWM mapping mechanism
may induce additional overhead and bus traffic. Furthermore, the OWM mapping may
increase the cache occupancy and reduce the cache hit rate for OWM reads, because
OWM read accesses from leading and trailing threads are mapped to different physical
addresses.

Due to the speculative commit of unverified thread output, thread restart recovery
can not be used with optimistic double execution. Therefore, a data-flow based global
checkpointing mechanism was proposed. The global checkpointing mechanism uses the
data-flow execution principle to reduce the checkpoint creation overhead by overlapping
the checkpoint creation time with data-flow thread execution and the logging overhead,
by only logging changes to the OWM region and a part of the thread frame region.

79

7
Evaluation

This chapter presents evaluation results of the proposed data-flow based fault-tolerance
mechanisms. The section is structured as follows. Section 7.1 gives an overview of
the simulation methodology, including a description of the simulator framework, the
configuration of the simulator, and a characterisation of the data-flow benchmarks.
Section 7.2 presents evaluation results on double execution and thread restart recovery.
Section 7.3 presents results on optimistic double execution and data-flow based global
checkpointing. Finally, Section 7.4 summarises the evaluation results.

7.1 Simulation Methodology

7.1.1 Simulator Framework

We used the open source full-system multi-core simulator COTSon [Argollo et al., 2009]
for the evaluation of the proposed fault-tolerance mechanisms. The COTSon simulator
was extended in the Teraflux project [Portero et al., 2012] with support for T*-based
data-flow execution. For this evaluation, the proposed fault-tolerance mechanisms were
integrated into COTSon, which enabled us to simulate double execution, thread restart
recovery, optimistic double execution, and data-flow based global checkpointing.

The COTSon simulator is a functional-first simulator, which simulates a group of
instructions within a time quantum, calculates the timing for this quantum, and adjusts
the timing in the processor for the next simulation quantum. The length of the time
quantum can be adjusted to trade simulation accuracy against simulation speed. For all
simulations in this thesis, a fixed quantum length of 500 ns is used.

7.1.2 Baseline Machine Configuration

Table 7.1 depicts the overview of the baseline machine configuration for this evaluation.
The baseline machine models a contemporary x86 64 multi-core processor with 1, 2,
4, 8, 16, or 32 PEs. The timing of a PE is calculated by an enhanced version of the
timer1 provided by the COTSon framework. The timer1 was extended with timing
support for T*-instructions and also write and OWM buffer accesses. Each PE consists

81

7 Evaluation

of an out-of-order pipeline with 5 stages and a maximal fetch and commit width of 3
instructions per cycle. The pipeline has a reorder buffer for 192 instructions. The private
cache hierarchy of each processing element consists of separate 32kB L1 instruction- and
data caches, which are connected to the main memory by a memory bus with a bus
latency of 25 cycles. The memory bus uses the MOESI cache coherence protocol with
support for cache-to-cache transfers.

Table 7.1: Baseline system configuration.

Parameters Values

Pipeline Out-of-order, Pipeline length: 5,
Fetch width: 3, Commit width: 3

L1 I- and D-Cache (private per core) Size: 32kB, Line size: 64,
8-way set associative,
Hit Latency: 1 cycle, writeback

Cache Coherence Protocol MOESI
Memory Bus Latency (L1 to memory) 25 cycles
Memory Latency 100 cycles
Clock Rate 1 Ghz

Table 7.2 shows the additional latencies in the pipeline for the simulated T*-instructions.
For tdestroy and tschedule instructions, we assume a fixed latency of 40 cycles. tread
operations are simulated as normal load/store operations. We further assume that
writing to the write buffers (write buffer and OWM buffer) and generating a CRC-32
signature causes no additional latencies in the pipeline per twrite/twritep or OWM
store instruction. The same is assumed for tdecrease instructions. For already buffered
treads and reads from the OWM buffer, we assume a latency of 1 cycle, similar to a
cache hit in the L1 data cache.

Table 7.2: Additional static T*-instruction latencies.

Parameters Latency

tread (write buffer hit) 1 cycle
tschedule 40 cycles
tdestroy 40 cycles

7.1.3 Lockstep Machine Configurations

For the comparison of the execution overhead of double execution and optimistic double
execution, we simulate two additional tightly-coupled lockstep configurations, which are
based on the baseline machine configuration:

1. An ideal tightly-coupled lockstep machine (Lockstep), which executes all data-flow
threads in cycle-by-cycle lockstepping on a redundant PE. It is assumed that the
ideal lockstep machine can execute and compare instructions before instruction
commit with zero overhead, i.e. the architectural registers of the PEs represent

82

7.1 Simulation Methodology

an error-free execution state, which can be used for recovery of the PE. When
the lockstep machine detects an error, the pipeline is flushed and the execution is
restarted at the last committed instruction with no overhead. For the cycle-by-cycle
lockstep technique, we assume that synchronisation and comparison between the
redundant processing elements induces no additional costs. The Lockstep system
was simulated by executing the benchmarks on half of the cores without double
execution. Lockstep is used for comparison of the data-flow based redundant
execution mechanisms with an ideal fault-tolerant system.

2. A tightly-coupled lockstep machine (LockstepCheck), which implements a global
checkpointing mechanism on top of the ideal Lockstep system. LockstepCheck is
used to compare the data-flow based checkpointing proposed in Chapter 6.2 with
a conventional global checkpointing implementation. In LockstepCheck a global
checkpoint consists of the memory state and the architectural registers of all PEs.
A checkpoint is established as follows: The execution on all cores is stopped, the
architectural registers of the lockstepped PEs are compared, stored at a safe place,
and the caches are flushed [Prvulovic et al., 2002]. For simulation purpose, we
assume that comparing the register files, flushing the caches, and stopping the PEs
takes a fixed time. The checkpoint creation overhead is here on the critical path,
since all PEs must be stopped and the system can not make forward progress until
the checkpoint is established. Since the global system is stalled during checkpoint
creation, we model the overhead for checkpoint creation by adding a constant factor
for the creation of each checkpoint to the execution time of Lockstep. We assume a
fixed checkpoint creation overhead of 0.1 µs for all simulations of LockstepCheck.

7.1.4 Fault Injection

The fault detection behaviour under the presence of faults is evaluated by a high-level
fault injection mechanism, which simulates the occurrence of transient and permanent
faults at run time. The purpose of the fault injection simulation is not to investigate the
fault coverage of the proposed mechanisms, but to investigate the run time behaviour of
the fault detection and recovery mechanisms under the presence of faults.

Therefore, the implemented fault injection mechanism does not change the functional
execution of the simulator, but the signature generation on the processing elements to
flag the occurrence of faults at certain points in time. After the signature of a data-flow
thread has been manipulated on a PE, the system detects the fault by comparing the
signatures and activates one of the recovery mechanism, when required. In the following,
we will describe how transient and permanent faults are modelled in the simulator.

Permanent Faults Permanent faults can be simulated by completely deactivating the
faulty PEs and never executing threads on them. This enables us to evaluate whether
double execution is able to support graceful degradation, even when multiple PEs are
permanent faulty.

Transient Faults Transient faults are injected at a fixed time interval. After the time
interval elapsed, a PE is selected by a round-robin selection policy and the next thread’s
signature, which tries to commit on this PE, is manipulated.

83

7 Evaluation

Table 7.3: Benchmark overview.

Benchmark OWM Required OpenStream Required

Fibonacci no yes
Matmul no no
Sparse LU yes yes
Cholesky yes yes

7.1.5 Benchmarks

For the evaluation of the proposed techniques, the following benchmarks are used:

Fibonacci number (Fibonacci) calculates recursively the Fibonacci number. Two data-
flow threads are scheduled on each recursive step, until a cut-off condition is reached.
When the cut-off condition is reached, the rest is calculated sequentially. Fibonacci
does not require OWM sections. This means that in Fibonacci communication
between threads is implemented by tread and twrite/twritep instructions.

Cholesky Factorisation (Cholesky) computes the Cholesky factorisation of a matrix.
The algorithm works in-place on different blocks of the input matrix and uses the
OWM region for in-place updates.

Block-wise Matrix Multiplication (Matmul) is a standard block-wise matrix multiplic-
ation. The thread-level parallelism depends on the number of blocks per matrix.
Matmul was ported by hand from a shared memory implementation and does only
use the TFs and tread/twrite instructions for communication between threads.
Matmul does not require the OWM region.

Sparse LU Decomposition (Sparse) calculates the LU decomposition of a sparse matrix.
The algorithm works in-place using the OWM region.

Fibonacci, Cholesky, and Sparse LU were compiled with a variant of the Open-
Stream compiler1, which provides a configuration with support for the T*-instruction
set extensions [Li et al., 2012]. Table 7.3 gives an overview of the different benchmark
requirements.

Input Sets

Table 7.4 shows the input sets for the benchmarks, which differently utilise the simulated
system configurations.

• HighUtil provides high utilisation of the simulated system configurations. This
enabled us to investigate the behaviour of the fault-tolerance mechanisms for
applications with high parallelism.

• LowUtil provides lower utilisation of the simulated system configurations. The
LowUtil input set can not fully utilities all PEs for all system configurations, which
allows the exploitation of underutilised PEs for optimistic double execution.

1http://openstream.info/, Retrieved on September 30, 2016

84

http://openstream.info/

7.1 Simulation Methodology

Table 7.4: The input parameters of the HighUtil and LowUtil input sets.

Benchmark HighUtil Input Set

Fibonacci n: 36, cut-off: 20
Matmul Blocks: 12× 12, Block Size: 16× 16
Sparse LU Matrix Size: 512× 512, Block Size: 16× 16
Cholesky Matrix Size: 512× 512, Block Size: 16× 16

Benchmark LowUtil Input Set

Fibonacci n: 35, cut-off: 28
Matmul Blocks: 6× 6, Block Size: 16× 16
Sparse LU Matrix Size: 256× 256, Block Size: 16× 16
Cholesky Matrix Size: 256× 256, Block Size: 16× 16

Benchmark Characteristics

Table 7.5 shows the characteristics of the benchmarks for both the HighUtil and LowUtil
input sets. For the HighUtil input set, the benchmarks execute between 7,536 (Cholesky)
and 1,728 (Matmul) data-flow threads and for the LowUtil input set between 68 (Fibon-
acci) and 1,208 (Cholesky) threads. As mentioned before, Fibonacci and Matmul do
not require the OWM region. By contrast, Sparse LU and Cholesky make in-place
updates on their input matrices and require the OWM region. The table shows that both
benchmarks execute more read/write OWM accesses than twrite/tread instructions.
Matmul uses only tread/twrite instructions, while Fibonacci executes a relatively small
amount of T*-instructions compared to the other benchmarks.

Cholesky Fibonacci Matmul Sparse LU

2

4

8

16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Processing Elements

S
p
ee

d
u
p
 o

v
er

 1
 P

E
 s

y
st

em

Input Set HighUtil LowUtil

Figure 7.1: Speedup of the simulated benchmarks normalised to the execution time on a
system with 1 PE.

85

7 Evaluation

Table 7.5: Data-flow benchmark characteristics.

HighUtil

Fibonacci Matmul Sparse Cholesky

Thrds 5,168 1,728 4,005 7,536
tread 56,841 1,369,153 90,499 200,505
twrite 5,167 1,369,154 7,915 17,920
twriteP 41,336 0 69,789 150,928
tdecrease 25,835 0 57,235 133,248
OWM reads 0 0 27,013,515 35,432,235
OWM writes 0 0 9,052,526 11,699,867

LowUtil

Fibonacci Matmul Sparse Cholesky

Thrds 68 217 701 1,208
tread 741 175,753 12,772 27,645
twrite 67 175,754 1,083 2,432
twriteP 536 0 9,679 20,680
tdecrease 335 0 7435 17,600
OWM reads 0 0 3,108,481 4,507,306
OWM writes 0 0 1,047,125 1,530,061

Cholesky Fibonacci Matmul Sparse LU

0.50
0.75
1.00

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Processing Elements

U
til

isa
tio

n

Input Set HighUtil LowUtil

Figure 7.2: Utilisation of the systems with the HighUtil and LowUtil input sets.

Figure 7.1 presents the speedup of the non-redundant data-flow execution for the
HighUtil and the LowUtil input sets normalised to the execution time on a system
configuration with 1 PE. As expected, the HighUtil input set shows a higher scalability
than the LowUtil input set. Particularly configurations with more PEs (8 and 16 PE
systems) reveal that the scalability of the LowUtil input set significantly decreases with
more available PEs in the system. Sparse LU saturates at 16 PEs, which means that
the benchmark can effectively not exploit more than 16 PEs with this input set. The
decreasing scalability for the HighUtil input set in general stems from the reduced

86

7.2 Double Execution

sequential performance induced by the inherent overhead for parallel thread execution in
the baseline architecture.

Figure 7.2 shows the utilisation for both input sets. The utilisation of the system is the
average fraction of time at which the PEs execute data-flow threads. For the HighUtil
input set, we can see high utilisation for all benchmarks and system configurations
with up to 16 PEs. However, for Sparse LU and Cholesky, the utilisation decreases
significantly on the 16 PE systems. For the LowUtil input set, it can be seen that the
utilisation is significantly lower for all benchmarks. In particular, Sparse LU provides
only an utilisation of ≈ 50% for the 16 PE system.

7.2 Double Execution

This section presents results on the execution behaviour of double execution and thread
restart recovery. First, the fault-free execution overhead and scalability of double
execution compared to the ideal Lockstep system is presented. Second, the impact of the
comparison latency on the execution time of double execution is discussed. Third, the
average commit slack, which results from the asynchronous, decoupled redundant thread
execution, is shown. Finally, the behaviour of double execution and the thread restart
recovery mechanism with transient and permanent faults are discussed.

7.2.1 Execution Overhead of Double Execution

Ideal Comparison

This subsection presents the execution overhead of double execution with an ideal,
zero-latency comparator.

Average Cholesky Fibonacci Matmul Sparse LU

0.8

0.9

1.0

1.1

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
Processing ElementsEx

ec
ut

io
n

tim
e

no
rm

al
ise

d
to

 L
oc

ks
te

p

Figure 7.3: Execution time of double execution normalised to the execution time of
Lockstep with the same number of PEs (HighUtil input set).

HighUtil Figure 7.3 shows the normalised execution time of double execution in relation
to the execution time of Lockstep. It can be seen that double execution shows only a

87

7 Evaluation

small difference compared to Lockstep. The average normalised execution time of double
execution over all executed benchmarks reveals that double execution is faster for smaller
system configurations (0.98 for the 2 PE system), while the execution time increases for
larger systems (1.029 for the 32 PE system).

The main reason for faster execution of double execution compared to Lockstep stems
from the decoupled execution of the leading and the trailing threads. Since the duplicated
threads operate on the same physical memory, they can serve as prefetchers for each
other. We found this effect for Matmul, Sparse LU, and Cholesky, where the average
thread execution time is faster compared to Lockstep.

Sparse LU, Matmul, and Cholesky operate on relatively large input data compared to
Fibonacci and are executed faster than Lockstep on the 2–4 PE system configurations.
Matmul, which uses only the TF for communication between the data-flow threads,
achieves a speedup over Lockstep for all simulated systems. We can see that the overhead
of double execution increases for systems with more PEs for all benchmarks. This effect
stems from the PE blocking time and the reduced parallelism due to the asynchronous
thread execution and commit. Since Fibonacci can not benefit from the cache due to its
small thread input data, its overhead increases for larger systems. For Sparse LU the
overhead mainly results from the decreasing utilisation of systems with more PEs.

Average Cholesky Fibonacci Matmul Sparse LU

0.8

0.9

1.0

1.1

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
Processing ElementsEx

ec
ut

io
n

tim
e

no
rm

al
ise

d
to

 L
oc

ks
te

p

Figure 7.4: Execution time of double execution normalised to the execution time of
Lockstep with the same number of PEs (LowUtil input set).

LowUtil Figure 7.4 depicts the normalised execution time of double execution for the
LowUtil input set. Since the parallelism of the benchmarks for the LowUtil input set is
smaller, the execution time of double execution increases compared to the HighUtil input
set. One reason for the increasing execution time is the lower commit slack between the
redundant threads. While leading threads are always started before trailing threads, it
may happen that trailing threads are executed faster and therefore finish before their
leading thread counterparts. In these cases, a trailing thread’s PE is blocked until the
leading thread has finished execution, too. This effect can be seen in larger systems
for Cholesky, Matmul, and Sparse LU. The parallelism of the benchmarks is not able
to utilise all PEs, which in turn reduces the start slack. Another reason is the reduced

88

7.2 Double Execution

parallelism of the LowUtil input set, because subsequent threads can only be started
when both redundant threads have finished execution. This effect has a strong impact on
the execution of the LowUtil input set, since the parallelism of this input set is already
low. We conclude that double execution can not benefit from underutilised PEs, in
particular, the overhead for double execution increases with reduced parallelism of the
benchmark. Another interesting effect can be seen for Sparse LU, where the overhead
decreases for the 32 PE configuration. We assume here that the very low utilisation of
the system (≈ 50%) allows resolving thread dependencies earlier, which increases the
system utilisation of double execution compared to Lockstep.

Non-Ideal Comparison

For the thread restart recovery, the trailing thread’s PE must buffer the computational
results until the comparison of the signatures of the redundant threads confirms the
absence of any error. This requires blocking the PE of the leading thread for the time of
the signature comparison. However, in Chapter 5 we proposed to exploit the commit slack
between the leading and the trailing threads to transfer the leading thread’s signature
to the core probe of the trailing thread’s PE. This can reduce the blocking time of the
PEs, when the commit slack between the redundant threads is high enough. Table 7.6
depicts the effective PE blocking time for the simulated comparison latencies of 100 ns
and 500 ns averaged over all configurations and benchmarks. For 100 ns most of the
latency can be masked by the commit slack. If the comparison latency is increased to
500 ns, the average core blocking time can be still significantly reduced by the proposed
technique.

The average PE blocking times for the 100 ns comparison latency are 6.6 ns (HighUtil
input set) and 7.1 ns (LowUtil input set). The PE blocking times for the 500 ns comparison
latency are 119.9 ns (HighUtil input set) and 120.1 ns (LowUtil input set). The LowUtil
input set shows that the blocking time increases with lower parallelism of the benchmarks.
This effect is caused by the lower commit slack, since the low parallelism of the LowUtil
benchmarks requires starting trailing and leading threads with a smaller start slack,
which at the end also leads to a smaller commit slack. Nevertheless, looking at all
benchmarks, we can see that the comparison latency can be significantly reduced by the
asynchronous redundant thread execution.

An alternative implementation to decrease the comparison latency would be the
implementation of double buffering, which would allow subsequent threads to be started
even when the signature comparison has not finished. However, double buffering would
require the duplication of the buffer and port sizes for the write buffer and the OWM
buffer, since the newly started thread’s twrites and OWM writes must be kept in a
second buffer of the same size.

Table 7.6: Effective PE blocking for comparison latencies of 100 ns and 500 ns.

Comparison Latency 100 ns 500 ns

HighUtil 6.6 ns 119.9 ns
LowUtil 7.1 ns 120.1 ns

89

7 Evaluation

0.8

0.9

1.0

1.1

2 4 8 16 32
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 L

oc
ks

te
p

Latency 100 500

(a) HighUtil input set

0.8

0.9

1.0

1.1

2 4 8 16 32
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 L

oc
ks

te
p

Latency 100 500

(b) LowUtil input set

Figure 7.5: Average execution time overhead for all benchmarks with comparison latencies
of 100 ns and 500 ns.

Figure 7.5 shows that the PE blocking has only a small impact on the execution time
of double execution. The average overhead for a comparison latency of 100 ns is not
measurable in the simulator for the HighUtil input set and is 0.01% for the 500 ns latency.
For the LowUtil input set, we found an overhead of 1.6% for a comparison latency of
100 ns and 2.4% for a comparison latency of 500 ns.

7.2.2 Scalability

Figure 7.6 compares the speedup of double execution with the speedup of the non-
redundant execution on half of the PEs. It can be seen that in the best case, the speedup
of double execution is equal to the speedup of the non-redundant execution. While double
execution scales with the available PEs in the systems, we can also seen that double
execution can not speedup the execution compared to the non-redundant execution of
Cholesky, Fibonacci, and Sparse LU. Only Matmul reveals a small speedup, because of
the cache effects and its equal execution speed of the threads.

The reason for the decreasing speedup of the other benchmarks stems from the fact
that subsequent threads can only be started, when the previous redundant threads have
finished execution and their signatures have been compared. This means that in the best
case, the parallelism of the threads is equal to the non-redundant execution on half of
the PEs. However, benchmarks with smaller parallelism reveal that the scalability of
double execution can be significantly reduced compared to the non-redundant execution.
This can be observed for both input sets. On average the speedup of the HighUtil input
set is 5.8 for non-redundant and 5.7 for double execution, while for the LowUtil input
set, the speed up further decreases for double execution. The speed up for the LowUtil
input set is 5.1 for the non-redundant execution and 4.9 for the redundant execution.

90

7.2 Double Execution

Cholesky Fibonacci Matmul Sparse LU

1
2
4

8

16

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
Processing Elements

Sp
ee

du
p

ov
er

 1
 P

E
sy

st
em

Execution Type Double Execution Non−Redundant Execution
(a) Scalability of non-redundant and double execution normalised to the non-redundant execution
on one PE (HighUtil input set).

Cholesky Fibonacci Matmul Sparse LU

1
2
4

8

16

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
Processing Elements

Sp
ee

du
p

ov
er

 1
 P

E
sy

st
em

Execution Type Double Execution Non−Redundant Execution
(b) Scalability non-redundant and double execution normalised to the non-redundant execution
on one PE (LowUtil input set).

Figure 7.6: Scalability of non-redundant data-flow execution and double execution

7.2.3 Commit Slack

In contrast to Lockstep, double execution executes redundant threads completely de-
coupled from each other. While this has advantages for the flexible resource usage and
the hardware implementation of double execution, it can also lead to asynchronous
execution of the redundant threads. The asynchronous execution can be used to mask
the comparison latency and exploit the leading thread as a prefetcher, however, it also
increases the error detection latency and reduces the parallelism of the application, since
subsequent data-flow threads can be only started and errors detected, when both threads
have finished execution. Although the TSU prioritises waiting trailing threads over
the leading threads to reduce the commit slack, we found that the decoupled thread
execution can lead to a significant commit slack.

91

7 Evaluation

Cholesky Fibonacci Matmul Sparse LU

0
2500
5000
7500

10000
12500

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
Processing ElementsA

ve
ra

ge
 C

om
m

it
Sl

ac
k

[n
s]

(a) Average commit slack of the HighUtil input set.

Cholesky Fibonacci Matmul Sparse LU

0

5000

10000

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
Processing ElementsA

ve
ra

ge
 C

om
m

it
Sl

ac
k

[n
s]

(b) Average commit slack of the LowUtil input set.

Figure 7.7: Commit slack of double execution.

Figure 7.7 shows the average commit slack of double execution for the HighUtil and
LowUtil input sets.

HighUtil The results of the HighUtil input set (Figure 7.7(a) show that Cholesky and
Sparse LU have a significant higher commit slack compared to Fibonacci and Matmul.
This indicates that the leading and trailing threads are executed at different speed in
Cholesky and Sparse LU, which is a result of the data sharing and the cache behaviour
of these benchmarks. For Cholesky and Sparse LU, the commit slack decreases with
higher parallelism of the system, which stems from the fact that in systems with more
available PEs, the probability that a PE becomes available for the execution of a trailing
thread is higher, which in turn leads to lower start and commit slacks. Matmul shows the
smallest commit slack of all benchmarks. Interestingly, Matmul’s commit slack remains
constant even on systems with more available PEs. This behaviour stems from the
thread characteristic of matmul, where all threads have a relative equal execution time.

LowUtil Figure 7.7(b) depicts the average commit slack of the LowUtil input set. For
Cholesky, Matmul, and Sparse LU the commit slack is lower compared to the HighUtil
execution. This is also an effect of the smaller start slack because of the lower parallelism
of the LowUtil input set. By contrast, Fibonacci shows a higher average commit slack.

92

7.2 Double Execution

The commit slack of Fibonacci is strongly run time depended, which is caused by
differing scheduling decisions of the TSU scheduler in the different system configurations.
For Matmul and Sparse LU, the evaluation reveals a decreasing commit slack for larger
system configuration, which is a consequence of the lower parallelism of the LowUtil
input set.

7.2.4 Graceful Degradation under Permanent Faults

In order to evaluate the ability of the proposed mechanisms to cope with permanent
faulty PEs, we simulated the baseline configuration with a certain number of deactivated
PEs, as described in Section 7.1.4.

HighUtil The Figures 7.8 (4 and 8 PE system) and 7.9 (16 and 32 PE system) show
the execution time of double execution normalised to the execution time on a non-
faulty system, when 0–8 PEs are permanently deactivated. The figures depict only
configurations, which are still functional and exclude configurations, which have no
functional PEs left. Compared to systems without deactivated PEs, we can see that the
systems’ performance gracefully degrades with the number of the deactivated PEs. In
particular, for system configurations with 16–32 PEs, double execution is flexible enough
to compensate even higher numbers of permanent faulty PEs.

LowUtil Figure 7.10 (4 and 8 PE system) and 7.11 (16 and 32 PE system) depict the
graceful degradation of double execution, when 0–8 PEs are permanently faulty for
the LowUtil input set. Compared to the HighUtil input set, the systems can better
compensate the deactivated PEs, since the benchmarks can not fully utilise all PEs, as
the evaluation of the scalability of double execution has shown before and therefore the
lost performance by the deactivated PEs has a smaller performance impact. In particular,
this effect can be seen for the 32 PE configuration executing Fibonacci and Sparse LU.
Due to the limited parallelism of both benchmarks, several PEs can be deactivated
without performance impact. In both cases, the underutilised PEs serve as flexible spare
PEs and can be used without significant performance impact.

Nevertheless, for both input sets the execution time of double execution gracefully
degrades even when multiple PEs of a system are deactivated. We conclude that double
execution can exploit all functional PEs of a system, even when some PEs are permanently
deactivated and can gracefully reduce the performance of the system, while being still
operational.

93

7 Evaluation

Cholesky

Fibonacci

Matmul

Sparse LU

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

4 8

4 8

4 8

4 8
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 fa

ul
t−

fre
e

ex
ec

ut
io

n

Faulty 0 1 2 3 4 5 6 7

Figure 7.8: Graceful degradation of double execution, when 0–7 PEs are permanently
faulty in the 4 and 8 PE systems (HighUtil).

94

7.2 Double Execution

Cholesky

Fibonacci

Matmul

Sparse LU

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

16 32

16 32

16 32

16 32
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 fa

ul
t−

fre
e

ex
ec

ut
io

n

Faulty 0 1 2 3 4 5 6 7 8

Figure 7.9: Graceful degradation of double execution, when 0–8 PEs are permanently
faulty in the 16 and 32 PE systems (HighUtil).

95

7 Evaluation

Cholesky

Fibonacci

Matmul

Sparse LU

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

4 8

4 8

4 8

4 8
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 fa

ul
t−

fre
e

ex
ec

ut
io

n

Faulty 0 1 2 3 4 5 6 7

Figure 7.10: Graceful degradation of double execution, when 0–7 PEs are permanently
faulty in the 4 and 8 PE systems (LowUtil).

96

7.2 Double Execution

Cholesky

Fibonacci

Matmul

Sparse LU

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

16 32

16 32

16 32

16 32
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 fa

ul
t−

fre
e

ex
ec

ut
io

n

Faulty 0 1 2 3 4 5 6 7 8

Figure 7.11: Graceful degradation of double execution, when 0–8 PEs are permanently
faulty in the 16 and 32 PE systems (LowUtil).

97

7 Evaluation

7.2.5 Execution Overhead under Transient Faults

Since thread restart recovery promises low-overhead recovery, we also evaluate the
execution overhead with transient faults. We inject faults at a fixed time interval of
105 ns. After a fixed amount of faults, the system stops the injection and proceeds
without faults. We investigate the impact of 5 and 10 faults on the simulated system
configurations.

The results for the HighUtil shown in Figure 7.12, depict that thread restart recovery
has a negligible effect on the execution time of double execution in case of transient
faults. This is not surprising, since in case of the HighUtil input set, the benchmarks
execute several thousand threads.

Cholesky Fibonacci

Matmul Sparse LU
0.90

0.95

1.00

1.05

1.10

0.90

0.95

1.00

1.05

1.10

2 4 8 16 32 2 4 8 16 32
Processing ElementsEx

ec
ut

io
n

tim
e

no
rm

al
ise

d
to

 fa
ul

t−
fre

e
do

ub
le

ex
ec

.

Transient Faults 5 10

Figure 7.12: Execution time of double execution normalised to double execution without
faults, when 5 and 10 faults occur (HighUtil).

By contrast, the evaluation of the LowUtil input set, depicted in Figure 7.13, shows a
measurable impact of the thread restart recovery, since for the LowUtil input set the
benchmark execute a significant smaller number of data-flow threads, which in turn
increases the relative execution time overhead for a thread restart. In particular, the
Fibonacci benchmark, which executes only 68 threads in case of the LowUtil input
set, suffers from a significant overhead, in particular when 10 threads are restarted.
Nevertheless, we conclude that thread restarts can be used for efficient recovery, even
under the occurrence of multiple faults.

98

7.3 Optimistic Double Execution

Cholesky Fibonacci

Matmul Sparse LU
0.9

1.0

1.1

1.2

1.3

0.9

1.0

1.1

1.2

1.3

2 4 8 16 32 2 4 8 16 32

Processing Elements

E
x
ec

u
ti
o
n
 t

im
e

n
o
rm

a
li
se

d
 t

o
 f
a
u
lt
−

fr
ee

 d
o
u
b
le

 e
x
ec

.

Transient Faults 5 10

1.41.3

~ ~

Figure 7.13: Execution time of double execution normalised to double execution without
faults, when 5 and 10 faults occur (LowUtil).

7.3 Optimistic Double Execution

This section presents evaluation results on optimistic double execution and data-flow
based global checkpointing. First, the execution overhead of optimistic double execution
without checkpointing is presented. Second, the execution overhead of optimistic double
execution with data-flow based global checkpointing with different checkpoint intervals
is shown. Third, the log sizes of data-flow based global checkpointing in relation to the
log sizes of the LockstepCheck system are discussed. Finally, the impact of permanent
and transient faults on the execution time of optimistic double execution and data-flow
based global checkpointing are presented.

The performance of double execution can be reduced with a higher comparison latency,
since the output comparison latency is on the critical path of double execution. By
contrast, optimistic double execution completely removes the comparison latency from
the critical path by immediately committing the leading thread. This instantaneous
commit decouples the thread commit from the signature comparison and does not
require PE blocking until signature comparison. Therefore, we do not discuss different
comparison latencies in this section.

Furthermore, to simplify the simulation, we assume that in case of optimistic double
execution, the DMA transfer for duplicated OWM sections is implemented over an
additional interconnect and causes no performance overhead.

99

7 Evaluation

7.3.1 Execution Overhead without Checkpoints

Average Cholesky Fibonacci

Matmul Sparse LU

0.7
0.8
0.9
1.0
1.1
1.2

0.7
0.8
0.9
1.0
1.1
1.2

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

2 4 8 16 32 2 4 8 16 32
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 L

oc
ks

te
p

System Double Execution Opt. Double Execution

Figure 7.14: Execution time of double execution and optimistic double execution norm-
alised to Lockstep (HighUtil)

HighUtil Figure 7.14 depicts the execution time of optimistic double execution normal-
ised to Lockstep. Compared to double execution, optimistic double execution introduces
additional overhead for applications, which transfer larger data blocks between threads
(Cholesky, Matmul, and Sparse LU). One reason for this behaviour is the reduced
prefetching effect compared to double execution. For optimistic double execution the
trailing and the leading threads have different physical OWM addresses, such that the
redundant threads can not serve as prefetchers for the OWM sections. Additionally, the
leading and the trailing threads are executed with a higher commit slack, since the TSU
prioritises leading over trailing threads to increase the parallelism (see Subsection 7.3.4).
While the Matmul benchmark does not use the OWM region, the asynchronous execution
of the redundant threads can reduce the temporal locality in the caches. Since the small
parallelism of Sparse LU can not exploit all PEs of the 32 PE system, optimistic double
execution can already benefit from the underutilised PEs to speed up the execution.

For Fibonacci, we can see a small speedup compared to double execution. While this is
already an effect of the increasing parallelism with optimistic double execution, the already
high parallelism of Fibonacci reduces the possibility to greater exploit underutilised PEs.
The results show that optimistic double execution can trade higher parallelism against
reduced single thread performance, since the temporal and spatial locality in the caches
decreases with the higher commit slack of optimistic double execution and the additional

100

7.3 Optimistic Double Execution

costs for the OWM address mapping. However, in case of the HighUtil input set,
which provides enough parallelism to utilise all system configurations, optimistic double
execution leads to increasing execution time. This overhead is evident for benchmarks,
which benefit from prefetching effects in double execution.

Average Cholesky Fibonacci

Matmul Sparse LU

0.7
0.8
0.9
1.0
1.1
1.2

0.7
0.8
0.9
1.0
1.1
1.2

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

2 4 8 16 32 2 4 8 16 32
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 L

oc
ks

te
p

System Double Execution Opt. Double Execution

Figure 7.15: Execution time of double execution and optimistic double execution norm-
alised to Lockstep (LowUtil)

LowUtil The LowUtil input set, depicted in Figure 7.15, shows the capability of
optimistic double execution to exploit underutilised resources to speed up the redundant
execution. Optimistic double execution exploits the effect that all thread dependencies
have already been resolved, when the redundant threads are moved to the RQ. This
means that all trailing threads can be executed in parallel, since their dependencies have
already been resolved and the inputs are available for execution. The evaluation of the
LowUtil input set reveals that all benchmarks can better utilise the available PEs. The
best speedup compared to Lockstep is seen for Fibonacci, which is ≈ 25% faster than
Lockstep and ≈ 28% faster than double execution. Another interesting effect can be seen
for Sparse LU. While the execution time of optimistic double execution for Sparse LU is
decreasing until 16 PEs, the execution times of optimistic double execution and double
execution for the 32 PE system are relatively equal. This effect results from the very
low parallelism of Sparse LU for the LowUtil input set, which means that the utilisation
of the system is low enough such that scheduling decisions for both double execution
variants are quite similar, leading to the same overhead. For the 32 PE system, the
LowUtil input set is executed ≈ 8% faster than Lockstep and ≈ 15% faster than double
execution on average.

101

7 Evaluation

7.3.2 Scalability

Figure 7.16(a) depicts the scalability of optimistic double execution for the HighUtil
input set. Optimistic double execution can increase the parallelism of double execution
and benefits from underutilised PEs. This is particular the case for the LowUtil input
set with its lower parallelism. Compared to the non-redundant execution on half of the
PEs, we can see that the scalability of optimistic double execution is relatively similar
to double execution. However, when the utilisation of the system decreases, which is
the case for the 32 PE system executing Sparse LU, the speedup of optimistic double
execution exceeds the non-redundant execution. This shows that optimistic double
execution can exploit underutilised PEs in the system to speed up redundant thread
execution.

Cholesky Fibonacci Matmul Sparse LU

1
2
4

8

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
Processing Elements

Sp
ee

du
p

ov
er

 1
 P

E
sy

st
em

Execution Type Non−Redundant Execution Opt. Double Execution
(a) Scalability of non-redundant and optimistic double execution in relation to the non-redundant
execution on one PE (HighUtil input set).

Cholesky Fibonacci Matmul Sparse LU

12
4

8

16

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
Processing Elements

Sp
ee

du
p

ov
er

 1
 P

E
sy

st
em

Execution Type Non−Redundant Execution Opt. Double Execution
(b) Scalability of non-redundant and optimistic double execution in relation to the non-redundant
execution on one PE (LowUtil input set).

Figure 7.16: Scalability of non-redundant execution and optimistic double execution.

102

7.3 Optimistic Double Execution

Figure 7.16(b) shows that this effect increases for the LowUtil input set with its
lower parallelism. Especially Cholesky, Fibonacci, and Matmul reveal an increasing
speedup, when the parallelism of the benchmarks can not utilise all PEs of the system.
Sparse LU achieves also a speedup compared to the non-redundant execution for system
configurations up to 16 PEs. However, for the 32 PE system the speedup saturates. As
explained before, this effect is a result of the very low utilisation of Sparse LU.

7.3.3 Execution Overhead with Checkpoints

Section 7.3.1 presented results of optimistic double execution without checkpointing.
However, optimistic double execution can not recover from errors without a checkpoint
mechanism. In this subsection, the evaluation results of optimistic double execution
with the data-flow based global checkpointing are presented. The results of optimistic
double execution with checkpointing are compared with LockstepCheck, which always
creates the same number of checkpoints as the data-flow based checkpointing mechanism.
As mentioned before, we assume a static overhead per checkpoint for LockstepCheck of
0.1 µs.

HighUtil Figure 7.17 shows the execution time overhead of optimistic double execution
with checkpoint intervals of 10 000 ns, 100 000 ns and 1 000 000 ns for the HighUtil input
set. At these intervals, the checkpoint creation is triggered. However, when a checkpoint
is triggered, all unverified, already committed leading threads must be checked for errors
before the new checkpoint can be established. When a checkpoint is triggered, the TSU
scheduler prioritises the currently waiting trailing threads to establish the checkpoint
as fast as possible. As a consequence, the checkpointing interval influences also the
commit slack between the leading and trailing threads (see Subsection 7.3.4). The
results show that checkpoint creation introduces only a small overhead compared to the
execution without checkpoints for the HighUtil input set and can be reduced with longer
checkpoint intervals, as seen for Sparse and Cholesky. Compared to LockstepCheck we
found that optimistic double execution has performance advantages for smaller checkpoint
intervals. Interestingly, Matmul is executed faster with checkpoint intervals of 10 000 ns
and 100 000 ns. This behaviour results from the reduced asynchronous execution between
the leading and the trailing threads.

LowUtil Figure 7.18 depicts the execution time of optimistic double execution for the
LowUtil input set. Compared to the HighUtil input set, checkpointing has a stronger
influence on the execution time. For Cholesky and Fibonacci the execution time of
optimistic double execution can be significantly increased by the checkpoint creation
overhead, eliminating the speedup of optimistic double execution. In case of Cholesky
and Fibonacci, the overhead is induced by the low parallelism of the benchmarks and
therefore underutilisation of the PEs, while waiting for new checkpoints to be established.
For all benchmarks, the overhead induced by the checkpoint creation is reduced with
longer checkpoint intervals. However, Cholesky, Matmul, and Sparse LU are still faster
than LockstepCheck for the 10 000 ns and 100 000 ns checkpoint intervals.

103

7 Evaluation

LockstepCheck Opt. Double Execution

0.8

1.0

1.2

0.8

1.0

1.2

0.8

1.0

1.2

0.8

1.0

1.2

Cholesky
Fibonacci

M
atm

ul
Sparse LU

2 4 8 16 32 2 4 8 16 32
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 L

oc
ks

te
p

System

LockstepCheck (10,000)
LockstepCheck (100,000)
LockstepCheck (1,000,000)
Opt. Double Execution (0)
Opt. Double Execution (10,000)
Opt. Double Execution (100,000)
Opt. Double Execution (1,000,000)

Figure 7.17: Execution time of LockstepCheck and optimistic double execution normalised
to Lockstep (HighUtil).

104

7.3 Optimistic Double Execution

LockstepCheck Opt. Double Execution

0.8

1.0

1.2

0.8

1.0

1.2

0.8

1.0

1.2

0.8

1.0

1.2

Cholesky
Fibonacci

M
atm

ul
Sparse LU

2 4 8 16 32 2 4 8 16 32
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 L

oc
ks

te
p

System

LockstepCheck (10,000)
LockstepCheck (100,000)
LockstepCheck (1,000,000)
Opt. Double Execution (0)
Opt. Double Execution (10,000)
Opt. Double Execution (100,000)
Opt. Double Execution (1,000,000)

Figure 7.18: Execution time of LockstepCheck and optimistic double execution normalised
to Lockstep (LowUtil).

105

7 Evaluation

7.3.4 Commit Slack

During optimistic double execution, the leading and trailing threads can be executed
completely decoupled from each other. However, this decoupling can lead to a high
commit slack between the leading and the trailing threads.

The Figures 7.19 and 7.20 depict the commit slack of optimistic double execution for the
checkpoint intervals of 10 000 ns, 100 000 ns, and 1 000 000 ns in case of the HighUtil and
the LowUtil input sets. As expected, the commit slack correlates with the checkpointing
interval for both input sets, since a new checkpoint can only be created, when all
outstanding trailing threads have been finished and compared. As a consequence, the
commit slack for shorter checkpoint intervals is obviously smaller. Similar to double
execution, the commit slacks decreases on systems with more PEs. However, for all
benchmarks and all simulated system configurations we can state that the commit slack
was orders of magnitude higher compared to double execution.

Opt. Double Execution (10,000)

Opt. Double Execution (100,000)

Opt. Double Execution (1,000,000)

0

50,000

100,000

0

50,000

100,000

150,000

0

250,000

500,000

750,000

1,000,000

2 4 8 16 32
Processing Elements

A
ve

ra
ge

 c
om

m
it

sla
ck

 [n
s]

Benchmark Cholesky Fibonacci Matmul Sparse LU

Figure 7.19: Commit slack of optimistic double execution (HighUtil).

106

7.3 Optimistic Double Execution

Opt. Double Execution (10,000)

Opt. Double Execution (100,000)

Opt. Double Execution (1,000,000)

10

1,000

100,000

10,000,000

10

1,000

100,000

10,000,000

10

1,000

100,000

10,000,000

2 4 8 16 32
Processing Elements

A
v
er

ag
e

co
m

m
it
 s

la
ck

 [
n
s]

Benchmark Cholesky Fibonacci Matmul Sparse LU

Figure 7.20: Commit slack of optimistic double execution (LowUtil).

107

7 Evaluation

7.3.5 Log Size of Global Checkpoints

Data-flow based checkpointing can reduce the necessary memory log size, since only
the thread frame region and the OWM region must be incorporated in the log. This
represents a significant advantage over non-data-flow checkpointing, like LockstepCheck,
which requires logging of all changes to the main memory. The Figures 7.21 and 7.22
depict the average log size of the data-flow based checkpointing normalised to the average
log size of LockstepCheck. It can be seen that data-flow based checkpointing reduces
the log size requirements for both input sets to only a small fraction compared to
LockstepCheck. We assume that the increasing normalised log size for larger systems
stems from the fact that the data-flow based logging does not use the caches, while
LockstepCheck creates only new log entries, when data is written back to the main
memory. However, the cache size and therefore the storage capabilities of the caches
increases with more PEs.

Cholesky Fibonacci Matmul Sparse LU

0.00

0.05

0.10

0.15

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
Processing Elements

A
vg

. L
og

 si
ze

 n
or

m
al

ise
d

to
 L

oc
ks

te
pC

he
ck

Figure 7.21: Average log size per checkpoint normalised to the log size of LockstepCheck
(HighUtil).

Cholesky Fibonacci Matmul Sparse LU

0.00

0.05

0.10

0.15

0.20

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
Processing Elements

A
vg

. L
og

 si
ze

 n
or

m
al

ise
d

to
 L

oc
ks

te
pC

he
ck

Figure 7.22: Average log size per checkpoint normalised to the log size of LockstepCheck
(LowUtil).

108

7.3 Optimistic Double Execution

7.3.6 Graceful Degradation under Permanent Faults

The Figures 7.23, 7.24, 7.25, and 7.26 depict the impact of permanent faults on the
execution time of optimistic double execution for the HighUtil and LowUtil input sets.
The simulation uses a checkpoint interval of 10 000 ns. Similar to double execution,
optimistic double execution can compensate permanent broken PEs and gracefully adapt
its performance in case of permanent faulty PEs for all simulated system configurations.

Cholesky

Fibonacci

Matmul

Sparse LU

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

4 8

4 8

4 8

4 8
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 fa

ul
t−

fre
e

ex
ec

ut
io

n

Faulty 0 1 2 3 4 5 6 7

Figure 7.23: Graceful degradation of optimistic double execution, when 0–7 PEs are
permanent faulty in the 4 and 8 PE systems (HighUtil).

109

7 Evaluation

Cholesky

Fibonacci

Matmul

Sparse LU

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

16 32

16 32

16 32

16 32
Processing Elements

Ex
ec

ut
io

n
tim

e
no

rm
al

ise
d

to
 fa

ul
t−

fre
e

ex
ec

ut
io

n

Faulty 0 1 2 3 4 5 6 7 8

Figure 7.24: Graceful degradation of optimistic double execution, when 0–8 PEs are
permanent faulty in the 8 to 16 PE systems (HighUtil).

110

7.3 Optimistic Double Execution

Cholesky

Fibonacci

Matmul

Sparse LU

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

4 8

4 8

4 8

4 8
Processing Elements

E
x
ec

u
ti
o
n
 t

im
e

n
o
rm

a
li
se

d
 t

o
 f
a
u
lt
−

fr
ee

 e
x
ec

u
ti
o
n

Faulty 0 1 2 3 4 5 6 7

Figure 7.25: Graceful degradation of optimistic double execution, when 0–7 PEs are
permanent faulty in the 4 and 8 PE systems (LowUtil).

111

7 Evaluation

Cholesky

Fibonacci

Matmul

Sparse LU

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

16 32

16 32

16 32

16 32
Processing Elements

E
x
ec

u
ti
o
n
 t

im
e

n
o
rm

a
li
se

d
 t

o
 f
a
u
lt
−

fr
ee

 e
x
ec

u
ti
o
n

Faulty 0 1 2 3 4 5 6 7 8

Figure 7.26: Graceful degradation of optimistic double execution, when 0–8 PEs are
permanent faulty in the 16 and 32 PE systems (LowUtil).

112

7.3 Optimistic Double Execution

7.3.7 Execution under Transient Faults

Similar to double execution, we also evaluate the performance impact of transient
faults on optimistic double execution with global checkpointing. For all simulations, a
checkpoint interval of 10 000 ns is used. Errors are injected at a fixed time interval of 105

ns. We compare the execution time of optimistic double execution with 5 and 10 faults.
We also depict the overhead of the thread restart recovery in case of double execution,
which suffered from the same number of faults. The execution time is normalised to
the execution time of double execution without faults for all simulated configurations
in this subsection. The Figures 7.27 (HighUtil) and 7.28 (LowUtil) show that global
checkpointing has, as expected, a higher impact on the execution time than thread
restart recovery. Additionally, it can be seen that in case of the LowUtil input set, the
overhead of global recovery increases for Matmul and Fibonacci for systems with 16 and
32 PEs.

Double Exec. Opt. Double Exec.

0.9

1.0

1.1

0.9

1.0

1.1

0.9

1.0

1.1

0.9

1.0

1.1

Cholesky
Fibonacci

M
atm

ul
Sparse LU

2 4 8 16 32 2 4 8 16 32
Processing ElementsEx

ec
ut

io
n

tim
e

no
rm

al
ise

d
to

 fa
ul

t−
fre

e
do

ub
le

ex
ec

ut
io

n

Transient Faults
(Double Exec.) 10
(Double Exec.) 5

(Opt. Double Exec.) 10
(Opt. Double Exec.) 5

Figure 7.27: Execution time of double execution and optimistic double execution when 5
and 10 transient faults occur (HighUtil)

113

7 Evaluation

Double Exec. Opt. Double Exec.

1.00
1.25
1.50
1.75
2.00

1.00
1.25
1.50
1.75
2.00

1.00
1.25
1.50
1.75
2.00

1.00
1.25
1.50
1.75
2.00

C
h
olesk

y
F
ib

on
acci

M
atm

u
l

S
p
arse L

U

2 4 8 16 32 2 4 8 16 32
Processing Elements

E
x
ec

u
ti
on

 t
im

e
n
or

m
al

is
ed

 t
o

fa
u
lt
−

fr
ee

 d
ou

b
le

 e
x
ec

u
ti
on

Transient Faults
(Double Exec.) 10

(Double Exec.) 5

(Opt. Double Exec.) 10

(Opt. Double Exec.) 5

~ ~~~~

~

2.5 3.9 2.5 3.56.4

2.0

Figure 7.28: Execution time of double execution and optimistic double execution when 5
and 10 transient faults occur (LowUtil).

114

7.4 Summary

7.4 Summary

This section presented evaluation results of double execution, thread restart recovery,
optimistic double execution, and data-flow based global checkpointing. The proposed
mechanisms were integrated in the COTSon multi-core simulator and evaluated with
four data-flow benchmarks.

Compared with an ideal lockstep machine, double execution induces only a small
overhead for systems with 16–32 PEs and is faster for the 2–8 PE systems. The impact of
the comparison latency on double execution can be significantly reduced by the commit
slack of the redundant threads, such that even a high comparison latency of 500 ns shows
only a small execution time overhead. Furthermore, the evaluation results confirmed
that double execution can not efficiently exploit underutilised PEs to speed up the
redundant execution. While this does not lead to a significant overhead for the HighUtil
benchmarks, the LowUtil input set suffers from a significant overhead compared to the
ideal lockstep system. It was also shown that double execution can induce a significant
commit slack, leading to a high error detection latency in the worst case. Nevertheless,
the evaluation also reveals that the commit slack can be decreased for larger systems
with more available PEs. The evaluation of the system behaviour under permanent faults
confirms that double execution systems are able to gracefully adapt their performance,
even when an uneven number of PEs is permanently broken. Furthermore, the evaluation
of double execution and thread restart recovery under transient faults reveals that thread
restart recovery has only a small impact on the execution time of double execution, even
when up to 10 transient faults occur.

The evaluation of optimistic double execution without global checkpoint creation
showed that the OWM replication and asynchronous execution of the redundant threads
can lead to overhead. In particular for the HighUtil input set, where optimistic double
execution can not exploit underutilised PEs to speed up the redundant execution, we
found a significant overhead compared to double execution. However, for the LowUtil
input, the execution of optimistic double execution achieves a significant speedup. This
performance advantage stems from the higher parallelism of the optimistic double
execution. It was further shown that optimistic double execution improves the scalability
of the redundant thread execution and is able to speed up the execution over the
non-redundant execution by exploiting underutilised PEs. This finding is of particular
interest for future parallel systems which may host more PEs than the simulated system
configurations used in thesis. However, the simulation of optimistic double execution
with global checkpointing also showed that the checkpoint creation overhead reduces
the execution time advantages for some benchmarks. Furthermore, the commit slack
of optimistic double execution is significant higher compared to double execution and
strongly influenced by the checkpoint interval, since all unverified data-flow threads must
be compared before a new checkpoint can be established. Compared to the ideal lockstep
machine with conventional checkpointing, we still found execution time advantages
of optimistic double execution and data-flow based checkpointing for relatively short
checkpoint intervals. Additionally, the memory log size can be significantly reduced by
the data-flow based global checkpointing mechanism, since not all memory accesses must
be incorporated in the log during a checkpoint. Similar to double execution, optimistic
double execution is also able to gracefully adjust its performance, when multiple PEs

115

7 Evaluation

are permanently faulty. However, under the occurrence of transient faults, the overhead
of the global recovery mechanism is significantly higher compared to the thread restart
recovery.

116

8
Summary and Future Work

This chapter summarises the results of this thesis and presents ideas on future work on
data-flow based fault-tolerant execution.

8.1 Summary

This thesis presented fault-detection, recovery, and diagnosis techniques for a coarse-
grained, threaded data-flow execution model to support scalable fault-tolerance in a
multi-core architecture. Double execution, the loosely-coupled redundant execution of
data-flow threads was integrated in the baseline data-flow execution model and data-
flow specific solutions for input replication, output comparison, and redundant thread
management were described in detail.

Based on double execution, a thread restart mechanism was proposed, which requires
that redundant data-flow threads can only commit, when their results have been compared.
Double execution and thread restart recovery were used to implement a fault diagnosis
mechanism to localise and identify permanent faulty processing elements in the system.
The fault detection unit keeps track of detected PE errors and is able to localise faulty
PEs by majority voting. In case of a permanent or intermittent fault, double execution
and thread restart recovery support the shutdown of multiple PEs and are able to
gracefully reduce the performance of the system, even when multiple PEs must be
deactivated.

It was further shown that the data-flow execution principle, leveraged by double
execution and thread restart recovery, has several advantages for the implementation
of redundant execution, since result comparison is only necessary for data which is
consumed by subsequent data-flow threads. Additionally, redundant data-flow threads
can be executed completely decoupled from each other, which allows to re-use the
data-flow thread scheduler to manage the redundant thread execution. Finally, input
replication, output comparison, and the synchronisation between redundant threads is
simplified by the data-flow execution principle.

To increase the parallelism of the redundant thread execution, an optimistic variant of
double execution was presented, which speculatively allows succeeding data-flow threads

117

8 Summary and Future Work

to be started before the result comparison has verified the correctness of the thread
execution. This allows the leading thread to make forward progress, while the data
dependencies between the trailing threads have already been resolved by the leading
threads. However, the speculative thread commit requires a mechanism to guarantee
input replication for OWM regions. The proposed solution for input replication of the
OWM memory uses DMA transfers to copy the OWM sections of the leading thread
before the OWM region is required by the trailing thread.

Since optimistic double execution allows committing unverified and potentially erro-
neous results, the thread restart mechanism can not be used for recovery with optimistic
double execution. Therefore, a data-flow based global recovery mechanism was proposed.
In case of global checkpointing, the data-flow execution principle reduces the checkpoint
creation effort, since the valid execution state of the system is only stored in the main
memory and the TSU, while the execution contexts of the PEs can be considered as
unsafe, recoverable state. This reduces the checkpointing costs, since for checkpoint
creation, only the TSU state and a log, incorporating the thread frame and the OWM
region, are required. Compared to checkpointing solutions for shared memory multi-cores,
like [Sorin et al., 2002; Prvulovic et al., 2002], this can reduce the checkpointing com-
plexity, since no architectural contexts of the PEs, the cache states, and the coherence
protocol must be checkpointed or recovered.

Finally, the evaluation results of the proposed fault-tolerance mechanism showed that
double execution has only a small overhead compared to an ideal lockstep system, while
the execution is even faster for some system configurations and benchmarks. Particularly,
benchmarks, which take advantages of the shared TF and OWM region between the
redundant threads achieve a speedup compared to the ideal lockstep execution. Double
execution has very low overhead when transient faults occur and is able to gracefully
adapt its execution speed, when multiple PEs are deactivated due to permanent faults.
However, double execution shows also limited scalability compared to the non-redundant
execution, which reduces the exploitation of underutilised PEs. Compared to double
execution, optimistic double execution shows a significant overhead for applications with
high parallelism, but can speed up the execution of benchmarks, which are not able to
fully utilise all PEs. The global checkpointing required for optimistic double execution
leads to additional overhead for the periodic checkpoint creation and exposes increasing
execution time when transient faults occur. Nevertheless, compared to a conventional
checkpointing scheme for a shared memory multi-core, optimistic double execution and
data-flow based checkpointing show still reasonable overhead, in particular, for shorter
checkpoint intervals.

Finally, we conclude that the data-flow based fault-tolerance mechanisms presented
in this thesis support the integration of flexible and scalable redundant execution and
checkpointing mechanisms in a parallel architecture. In particular, the loosely-coupled
execution of data-flow threads does not require strict cycle-by-cycle synchronisation and
therefore allows the use of complex out-of-order cores and shared resources between
the redundant execution units. Furthermore, the redundant threads can be executed
decoupled from each other, improving the flexible resource sharing in a multi-core
architecture. We think that the advantages of the data-flow execution principle for the
construction of redundant execution and checkpointing mechanisms can help to solve
reliability issues in future massively parallel architectures.

118

8.2 Future Work

8.2 Future Work

This section discusses possible future research ideas and applications of the data-flow
based fault tolerance mechanisms presented in this thesis.

Although fault-tolerance mechanism are state-of-the-art for safety-critical systems,
most commercial fault-tolerant techniques in the embedded domain focus on lockstep
execution of sequential applications [Infineon Technologies AG, 2015; STMicroelectronics,
2014]. However, future advanced embedded applications, like advanced driver assistance
systems (ADAS) or autonomous driving, require high computational performance. While
this performance can be usually satisfied by parallel applications and embedded multi-
core systems, the systems must also give safety guarantees, such that hardware faults do
not lead to a catastrophic behaviour of the system. This means that the fault detection
and recovery mechanisms proposed in this thesis may also be used for the implementation
of high-performance safety-critical systems. However, functional safety does not only
demand fault-tolerant execution, but also predictable timing behaviour of the embedded
systems, which would require a worst case execution time (WCET) and schedulability
analysis of double execution and thread restart recovery.

The development of high-availability lockstep server systems requires expensive spe-
cial-purpose processors with complex adaptions to the microarchitecture. This makes the
development and the fabrication of high-availability server systems expensive. Therefore,
some fault-tolerant systems rely on cheaper software solutions, like virtual machines [VM-
ware, inc., 2009], to implement redundant execution for high-availability systems on
general-purpose multi-cores, however, software based fault-tolerance solutions may induce
high execution time overhead, limit the fault coverage, and complicate the software
development. By contrast, a data-flow based general purpose processor, which imple-
ments the fault-tolerance mechanisms described in this thesis, can support parallel,
high-performance execution, while the fault-tolerant execution could be activated on
demand. This would enable the construction of high-performance systems for both the
general-purpose and high-availability domain, while the purpose of the system could be
dynamically selected by the customer.

119

Bibliography

[Ahmed et al., 1990] R. Ahmed, R. Frazier and P. Marinos. ‘Cache-aided rollback error
recovery (CARER) algorithm for shared-memory multiprocessor systems’.
In: Proceedings of the 20th International Symposium on Fault-Tolerant
Computing Systems (FTCS). 1990, pages 82–88. doi: 10.1109/FTCS.1990.
89338.

[Aggarwal et al., 2007] N. Aggarwal, P. Ranganathan, N. P. Jouppi and J. E. Smith.
‘Configurable isolation: building high availability systems with commodity
multi-core processors’. In: Proceedings of the 34th International Symposium
on Computer Architecture (ISCA). 2007, pages 470–481. isbn: 978-1-59593-
706-3. doi: 10.1145/1250662.1250720.

[Agarwal et al., 2011] R. Agarwal, P. Garg and J. Torrellas. ‘Rebound: Scalable Check-
pointing for Coherent Shared Memory’. In: Proceedings of the 38th Interna-
tional Symposium on Computer Architecture (ISCA). 2011, pages 153–164.
isbn: 978-1-4503-0472-6. doi: 10.1145/2000064.2000083.

[Arvind et al., 1988] Arvind and R. A. Iannucci. ‘Two fundamental issues in multipro-
cessing’. In: Parallel Computing in Science and Engineering. Volume 295.
1988, pages 61–88. isbn: 978-3-540-18923-7. doi: 10.1007/3-540-18923-
8_15.

[Agrawal et al., 1993] V. Agrawal, C. Kime and K. Saluja. ‘A tutorial on built-in self-
test. Part 1: Principles’. In: IEEE Design Test of Computers 10.1 (1993),
pages 73–82. doi: 10.1109/54.199807.

[Avizienis et al., 1986] A. Avizienis and J.-C. Laprie. ‘Dependable computing: From
concepts to design diversity’. In: Proceedings of the IEEE 74.5 (1986),
pages 629–638. doi: 10.1109/PROC.1986.13527.

[Alves et al., 2014] T. Alves, S. Kundu, L. Marzulo and F. Franca. ‘Online error de-
tection and recovery in dataflow execution’. In: Proceedings of the 20th
International On-Line Testing Symposium (IOLTS). 2014, pages 9–104. doi:
10.1109/IOLTS.2014.6873679.

[AMD, 2013] AMD. AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, Publication No. 24593, Rev. 3.23. 2013.

[K. Arvind et al., 1990] K. Arvind and R. S. Nikhil. ‘Executing a Program on the MIT
Tagged-Token Dataflow Architecture’. In: IEEE Transactions on Computers
39.3 (1990), pages 300–318. doi: 10.1109/12.48862.

[Arandi et al., 2011] S. Arandi, C. Kyriacou, G. Michael, G. Mathaios, N. Masrujeh,
P. Trancoso and P. Evripidou. D6.2 - Advanced TERAFLUX Architecture.
Deliverable. 2011. url: http://www.teraflux.eu/sites/teraflux.eu/
files/TERAFLUX-D62-v6.pdf (visited on 30/09/2016).

121

http://dx.doi.org/10.1109/FTCS.1990.89338
http://dx.doi.org/10.1109/FTCS.1990.89338
http://dx.doi.org/10.1145/1250662.1250720
http://dx.doi.org/10.1145/2000064.2000083
http://dx.doi.org/10.1007/3-540-18923-8_15
http://dx.doi.org/10.1007/3-540-18923-8_15
http://dx.doi.org/10.1109/54.199807
http://dx.doi.org/10.1109/PROC.1986.13527
http://dx.doi.org/10.1109/IOLTS.2014.6873679
http://dx.doi.org/10.1109/12.48862
http://www.teraflux.eu/sites/teraflux.eu/files/TERAFLUX-D62-v6.pdf
http://www.teraflux.eu/sites/teraflux.eu/files/TERAFLUX-D62-v6.pdf

Bibliography

[Argollo et al., 2009] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero and D. Ortega.
‘COTSon: infrastructure for full system simulation’. In: ACM SIGOPS
Operating Systems Review 43.1 (2009), pages 52–61. doi: http://doi.acm.
org/10.1145/1496909.1496921.

[Austin, 1999] T. Austin. ‘DIVA: a reliable substrate for deep submicron microarchi-
tecture design’. In: Proceedings of the 32th International Symposium on
Microarchitecture (MICRO). 1999, pages 196–207. doi: 10.1109/MICRO.
1999.809458.

[Avizienis et al., 2004] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. ‘Basic
Concepts and Taxonomy of Dependable and Secure Computing’. In: IEEE
Transactions on Dependable and Secure Computing 1.1 (2004), pages 11–33.
doi: 10.1109/TDSC.2004.2.

[Bernick et al., 2005] D. Bernick, B. Bruckert, P. Vigna, D. Garcia, R. Jardine, J. Klecka
and J. Smullen. ‘NonStop® Advanced Architecture’. In: Proceedings of the
International Conference on Dependable Systems and Networks (DSN). 2005,
pages 12–21. doi: 10.1109/DSN.2005.70.

[Borkar, 2005] S. Borkar. ‘Designing Reliable Systems from Unreliable Components:
the Challenges of Transistor Variability and Degradation’. In: IEEE Micro
25.6 (2005), pages 10–16. doi: 10.1109/MM.2005.110.

[Bower et al., 2005] F. Bower, D. Sorin and S. Ozev. ‘A mechanism for online diagnosis
of hard faults in microprocessors’. In: Proceedings of the 38th International
Symposium on Microarchitecture (MICRO). 2005, pages 12–22. doi: 10.
1109/MICRO.2005.8.

[Constantinescu, 2003] C. Constantinescu. ‘Trends and challenges in VLSI circuit reli-
ability’. In: IEEE Micro 23.4 (2003), pages 14–19. doi: 10.1109/MM.2003.
1225959.

[Cummings, 2009] D. Cummings. Dataflow-Based Rollback Recovery in Distributed
and Multi-Core Systems: A Novel Software Approach for Building Highly
Reliable Distributed and Multi-Core Systems. VDM Verlag, 2009. isbn:
978-3639210194.

[Dell, 1997] T. J. Dell. ‘A white paper on the benefits of chipkill-correct ECC for PC
server main memory’. In: IBM Microelectronics Division (1997), pages 1–23.

[Dennis et al., 1975] J. B. Dennis and D. P. Misunas. ‘A preliminary architecture
for a basic data-flow processor’. In: Proceedings of the 2nd International
Symposium on Computer Architecture (ISCA). 1975, pages 126–132. doi:
10.1145/642089.642111.

[Etsion et al., 2010] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E.
Ayguade, J. Labarta and M. Valero. ‘Task Superscalar: An Out-of-Order
Task Pipeline’. In: Proceedings of the 43th International Conference on
Microarchitecture (MICRO). 2010, pages 89–100. doi: 10.1109/MICRO.
2010.13.

122

http://dx.doi.org/http://doi.acm.org/10.1145/1496909.1496921
http://dx.doi.org/http://doi.acm.org/10.1145/1496909.1496921
http://dx.doi.org/10.1109/MICRO.1999.809458
http://dx.doi.org/10.1109/MICRO.1999.809458
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/DSN.2005.70
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/MICRO.2005.8
http://dx.doi.org/10.1109/MICRO.2005.8
http://dx.doi.org/10.1109/MM.2003.1225959
http://dx.doi.org/10.1109/MM.2003.1225959
http://dx.doi.org/10.1145/642089.642111
http://dx.doi.org/10.1109/MICRO.2010.13
http://dx.doi.org/10.1109/MICRO.2010.13

Bibliography

[Fu et al., 2014] J. Fu, Q. Yang, R. Poss, C. Jesshope and C. Zhang. ‘A fault detection
mechanism in a Data-flow scheduled Multithreaded processor’. In: Design,
Automation and Test in Europe Conference and Exhibition (DATE). 2014,
pages 1–4. doi: 10.7873/DATE.2014.076.

[Garbade, 2014] A. Garbade. ‘Fehlerlokalisierung in prozessorinternen Kommunikation-
snetzen für Vielkern-Prozessoren’. PhD thesis. 2014. url: http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:384-opus4-27434

(visited on 30/09/2016).

[Gautier et al., 2007] T. Gautier, X. Besseron and L. Pigeon. ‘KAAPI: A thread schedul-
ing runtime system for data flow computations on cluster of multi-processors’.
In: Proceedings of the International Workshop on Parallel Symbolic Com-
putation (PASCO). 2007, pages 15–23. isbn: 978-1-59593-741-4. doi: 10.
1145/1278177.1278182.

[Giorgi et al., 2014a] R. Giorgi and P. Faraboschi. In: International Symposium on
Computer Architecture and High Performance Computing Workshop (SBAC-
PADW). 2014, pages 60–65. doi: 10.1109/SBAC-PADW.2014.30.

[Giorgi et al., 2014b] R. Giorgi, R. M., F. Bodin, A. Cohen, P. Evripidou, P. Faraboschi,
B. Fechner, G. R., A. Garbade, R. Gayatri, S. Girbal, D. Goodman, B.
Khan, S. Koliäı, J. Landwehr, N. Minh, F. Li, M. Lujàn, A. Mendelson, L.
Morin, N. Navarro, T. Patejko, A. Pop, P. Trancoso, T. Ungerer, I. Watson,
S. Weis, S. Zuckerman and M. Valero. ‘TERAFLUX: Harnessing dataflow
in next generation teradevices’. In: Microprocessors and Microsystems 38.8
(2014), pages 976–990. doi: 10.1016/j.micpro.2014.04.001.

[Giorgi, 2012] R. Giorgi. ‘TERAFLUX: exploiting dataflow parallelism in teradevices’.
In: Proceedings of the 9th Conference on Computing Frontiers (CF). 2012,
pages 303–304. isbn: 978-1-4503-1215-8. doi: 10.1145/2212908.2212959.

[Gurd et al., 1985] J. R. Gurd, C. C. Kirkham and I. Watson. ‘The Manchester Proto-
type Dataflow Computer’. In: Communications of the ACM 28.1 (1985),
pages 34–52. doi: 10.1145/2465.2468.

[Gold et al., 2006] B. T. Gold, J. C. Smolens, B. Falsafi, J. C. Hoe and 177958. ‘The
Granularity of Soft-Error Containment in Shared-Memory Multiprocessors’.
In: Proceedings of the Workshop on System Effects of Logic Soft Errors
(SELSE). 2006. url: http://infoscience.epfl.ch/record/135947
(visited on 30/09/2016).

[Gomaa et al., 2003] M. Gomaa, C. Scarbrough, T. Vijaykumar and I. Pomeranz.
‘Transient-fault recovery for chip multiprocessors’. In: Proceedings of the
30th International Symposium on Computer Architecture (ISCA). 2003,
pages 98–109. doi: 10.1109/ISCA.2003.1206992.

[Giorgi et al., 2007] R. Giorgi, Z. Popovic and N. Puzovic. ‘DTA-C: A Decoupled
Multi-Threaded Architecture for CMP Systems’. In: Proceedings of the 19th
International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). 2007, pages 263–270. isbn: 978-0-7695-3014-7.
doi: 10.1109/SBAC-PAD.2007.27.

123

http://dx.doi.org/10.7873/DATE.2014.076
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:384-opus4-27434
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:384-opus4-27434
http://dx.doi.org/10.1145/1278177.1278182
http://dx.doi.org/10.1145/1278177.1278182
http://dx.doi.org/10.1109/SBAC-PADW.2014.30
http://dx.doi.org/10.1016/j.micpro.2014.04.001
http://dx.doi.org/10.1145/2212908.2212959
http://dx.doi.org/10.1145/2465.2468
http://infoscience.epfl.ch/record/135947
http://dx.doi.org/10.1109/ISCA.2003.1206992
http://dx.doi.org/10.1109/SBAC-PAD.2007.27

Bibliography

[Gaudiot et al., 1985] J.-L. Gaudiot and C. Raghavendra. ‘Fault-Tolerance and Data-
Flow Systems.’ In: Proceedings of the International Conference on Distrib-
uted Computing Systems (ICDCS). 1985, pages 16–23.

[G. Gupta et al., 2011] G. Gupta and G. S. Sohi. ‘Dataflow execution of sequential
imperative programs on multicore architectures’. In: Proceedings of the 44th
International Symposium on Microarchitecture (MICRO). 2011, pages 59–70.
isbn: 978-1-4503-1053-6. doi: 10.1145/2155620.2155628.

[S. Gupta et al., 2008] S. Gupta, S. Feng, A. Ansari, J. Blome and S. Mahlke. ‘The
StageNet Fabric for Constructing Resilient Multicore Systems’. In: Proceed-
ings of the 41st International Symposium on Microarchitecture (MICRO).
2008, pages 141–151. isbn: 978-1-4244-2836-6. doi: 10.1109/MICRO.2008.
4771786.

[Hammond et al., 2004] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis and K. Olukotun.
‘Transactional Memory Coherence and Consistency’. In: Proceedings of the
31st International Symposium on Computer Architecture (ISCA). 2004,
pages 102–113. isbn: 0-7695-2143-6. doi: 10.1145/1028176.1006711.

[Hammarlund et al., 2014] P. Hammarlund, A. Martinez, A. Bajwa, D. Hill, E. Hallnor,
H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. Osborne, R.
Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty,
S. Jourdan, S. Gunther, T. Piazza and T. Burton. ‘Haswell: The Fourth-
Generation Intel Core Processor’. In: IEEE Micro 34.2 (2014), pages 6–20.
doi: 10.1109/MM.2014.10.

[Haring et al., 2012] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield,
K. Sugavanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski,
A. Gara, G.-T. Chiu, P. Boyle, N. Chist and C. Kim. ‘The IBM Blue
Gene/Q Compute Chip’. In: IEEE Micro 32.2 (2012), pages 48–60. doi:
10.1109/MM.2011.108.

[Hunt et al., 1987] D. B. Hunt and P. N. Marinos. ‘A general purpose cache-aided
rollback error recovery (CARER) technique’. In: Proceedings of the 17th
International Symposium on Fault-Tolerant Computing Systems (FTCS).
1987, pages 170–175.

[Hum et al., 1995] H. H. J. Hum, O. Maquelin, K. B. Theobald, X. Tian, X. Tang,
G. R. Gao, P. Cupryk, N. Elmasri, L. J. Hendren, A. Jimenez, S. Krishnan,
A. Marquez, S. Merali, S. S. Nemawarkar, P. Panangaden, X. Xue and
Y. Zhu. ‘A design study of the EARTH multiprocessor’. In: Proceedings
of the IFIP WG10.3 Working Conference on Parallel Architectures and
Compilation Techniques. 1995, pages 59–68. isbn: 0-89791-745-6.

[Infineon Technologies AG, 2015] Infineon Technologies AG. Infineon Aurix - 32-bit
Microcontrollers for Automotiv and Industrial Applications. 2015. url: http:
//www.infineon.com/dgdl/Infineon-Tricore+Family+BR_2015-BC-

v01_00-EN.pdf?fileId=db3a30431f848401011fc664882a7648 (visited
on 30/09/2016).

124

http://dx.doi.org/10.1145/2155620.2155628
http://dx.doi.org/10.1109/MICRO.2008.4771786
http://dx.doi.org/10.1109/MICRO.2008.4771786
http://dx.doi.org/10.1145/1028176.1006711
http://dx.doi.org/10.1109/MM.2014.10
http://dx.doi.org/10.1109/MM.2011.108
http://www.infineon.com/dgdl/Infineon-Tricore+Family+BR_2015-BC-v01_00-EN.pdf?fileId=db3a30431f848401011fc664882a7648
http://www.infineon.com/dgdl/Infineon-Tricore+Family+BR_2015-BC-v01_00-EN.pdf?fileId=db3a30431f848401011fc664882a7648
http://www.infineon.com/dgdl/Infineon-Tricore+Family+BR_2015-BC-v01_00-EN.pdf?fileId=db3a30431f848401011fc664882a7648

Bibliography

[ITRS, 2013] ITRS. International Technology Roadmap for Semiconductors. Website.
Retrieved August 14, 2015 from http://www.itrs.net. 2013.

[Iyer et al., 2005] R. Iyer, N. Nakka, Z. Kalbarczyk and S. Mitra. ‘Recent advances
and new avenues in hardware-level reliability support’. In: IEEE Micro 25.6
(2005), pages 18–29. doi: 10.1109/MM.2005.119.

[Jafar et al., 2005] S. Jafar, T. Gautier, A. Krings and J.-l. Roch. ‘A Checkpoint/Recov-
ery Model for Heterogeneous Dataflow Computations Using Work-Stealing’.
In: Proceedings of the 11th International Euro-Par Conference on Parallel
Processing. Volume 3648. 2005, pages 675–684. doi: 10.1007/11549468_74.

[Janssens et al., 1994] B. Janssens and W. Fuchs. ‘The performance of cache-based error
recovery in multiprocessors’. In: IEEE Transactions on Parallel and Dis-
tributed Systems 5.10 (1994), pages 1033–1043. doi: 10.1109/71.313120.

[Kavi et al., 2001] K. Kavi, R. Giorgi and J. Arul. ‘Scheduled dataflow: execution
paradigm, architecture, and performance evaluation’. In: IEEE Transactions
on Computers 50.8 (2001), pages 834–846. doi: 10.1109/12.947003.

[Koren et al., 2007] I. Koren and C. M. Krishna. Fault-Tolerant Systems. Morgan
Kaufmann Publishers Inc., 2007. isbn: 978-0120885251.

[Kranitis et al., 2005] N. Kranitis, A. Paschalis, D. Gizopoulos and G. Xenoulis.
‘Software-based self-testing of embedded processors’. In: IEEE Transactions
on Computers 54.4 (2005), pages 461–475. doi: 10.1109/TC.2005.68.

[Lehtonen et al., 2005] T. Lehtonen, J. Plosila, J. Isoaho et al. On fault tolerance tech-
niques towards nanoscale circuits and systems. Turku Centre for Computer
Science, 2005. isbn: 952-12-1596-8.

[LaFrieda et al., 2007] C. LaFrieda, E. Ipek, J. Martinez and R. Manohar. ‘Utilizing
Dynamically Coupled Cores to Form a Resilient Chip Multiprocessor’. In:
Proceedings of the 37th International Conference on Dependable Systems
and Networks (DSN). 2007, pages 317–326. doi: 10.1109/DSN.2007.100.

[Li et al., 2012] F. Li, A. Pop and A. Cohen. ‘Automatic Extraction of Coarse-Grained
Data-Flow Threads from Imperative Programs’. In: Micro, IEEE 32.4
(2012), pages 19–31. doi: 10.1109/MM.2012.49.

[Mukherjee et al., 2002] S. Mukherjee, M. Kontz and S. Reinhardt. ‘Detailed design
and evaluation of redundant multi-threading alternatives’. In: Proceedings
of the 29th International Symposium on Computer Architecture (ISCA).
2002, pages 99–110. doi: 10.1109/ISCA.2002.1003566.

[Mendelson et al., 2000] A. Mendelson and N. Suri. ‘Designing high-performance and
reliable superscalar architectures-the out of order reliable superscalar (O3RS)
approach’. In: Proceedings of the International Conference on Dependable
Systems and Networks (DSN). 2000, pages 473–481. doi: 10.1109/ICDSN.
2000.857578.

125

http://dx.doi.org/10.1109/MM.2005.119
http://dx.doi.org/10.1007/11549468_74
http://dx.doi.org/10.1109/71.313120
http://dx.doi.org/10.1109/12.947003
http://dx.doi.org/10.1109/TC.2005.68
http://dx.doi.org/10.1109/DSN.2007.100
http://dx.doi.org/10.1109/MM.2012.49
http://dx.doi.org/10.1109/ISCA.2002.1003566
http://dx.doi.org/10.1109/ICDSN.2000.857578
http://dx.doi.org/10.1109/ICDSN.2000.857578

Bibliography

[Mukherjee et al., 2003] S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt and T.
Austin. ‘A systematic methodology to compute the architectural vulner-
ability factors for a high-performance microprocessor’. In: Proceedings of
the 36th International Symposium on Microarchitecture (MICRO). IEEE
Computer Society. 2003, pages 29–40. doi: 10.1145/859526.859529.

[Mukherjee, 2008] S. Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann
Publishers Inc., 2008. isbn: 978-0123695291.

[Najjar et al., 1990] W. Najjar and J.-L. Gaudiot. ‘A data-driven execution paradigm
for distributed fault-tolerance’. In: Proceedings of the 4th ACM SIGOPS
European Workshop. 1990, pages 1–6. doi: 10.1145/504136.504166.

[Nguyen-tuong et al., 1996] A. Nguyen-tuong, A. S. Grimshaw and M. Hyett. ‘Ex-
ploiting Data-Flow for Fault-Tolerance in a Wide-Area Parallel System’. In:
Proceedings of the 15th International Symposium on Reliable and Distributed
Systems (RELDIS). 1996, pages 2–11. doi: 10.1109/RELDIS.1996.559687.

[Portero et al., 2012] A. Portero, A. Scionti, Z. Yu, P. Faraboschi, C. Concatto, L. Carro,
A. Garbade, S. Weis, T. Ungerer and R. Giorgi. ‘Simulating the Future
kilo-x86-64 core Processors and their Infrastructure’. In: Proceedings of the
45th Annual Simulation Symposium. 2012, 9:1–9:7. isbn: 978-1-61839-784-3.

[Pradhan, 1996] D. K. Pradhan. Fault-tolerant Computer System Design. Edited by
D. K. Pradhan. Prentice-Hall, Inc., 1996. isbn: 0-13-057887-8.

[Prvulovic et al., 2002] M. Prvulovic, Z. Zhang and J. Torrellas. ‘ReVive: cost-effective
architectural support for rollback recovery in shared-memory multipro-
cessors’. In: Proceedings of the 29th International Symposium on Computer
Architecture (ISCA). 2002, pages 111–122. doi: 10.1109/ISCA.2002.
1003567.

[Rashid et al., 2008] M. Rashid and M. Huang. ‘Supporting highly-decoupled thread-
level redundancy for parallel programs’. In: Proceedings of the 14th Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
2008, pages 393–404. doi: 10.1109/HPCA.2008.4658655.

[Ray et al., 2001] J. Ray, J. Hoe and B. Falsafi. ‘Dual Use of Superscalar Datapath
for Transient-Fault Detection and Recovery’. In: Proceedings of the 34th
International Symposium on Microarchitecture (MICRO). 2001, pages 214–
224. isbn: 0-7695-1369-7.

[Reinhardt et al., 2000] S. K. Reinhardt and S. Mukherjee. ‘Transient Fault Detection
via Simultaneous Multithreading’. In: Proceedings of the 27th International
Symposium on Computer Architecture (ISCA). 2000, pages 25–36. doi:
10.1145/339647.339652.

[Rotenberg, 1999] E. Rotenberg. ‘AR-SMT: a microarchitectural approach to fault
tolerance in microprocessors’. In: Proceedings of the 29th International
Symposium on Fault-Tolerant Computing. 1999, pages 84–91. doi: 10.1109/
FTCS.1999.781037.

[Robic et al., 2000] B. Robic, J. Silc and T. Ungerer. ‘Beyond dataflow’. In: Journal
of Computing and Information Technology 8.2 (2000), pages 89–102. doi:
10.2498/cit.2000.02.01.

126

http://dx.doi.org/10.1145/859526.859529
http://dx.doi.org/10.1145/504136.504166
http://dx.doi.org/10.1109/RELDIS.1996.559687
http://dx.doi.org/10.1109/ISCA.2002.1003567
http://dx.doi.org/10.1109/ISCA.2002.1003567
http://dx.doi.org/10.1109/HPCA.2008.4658655
http://dx.doi.org/10.1145/339647.339652
http://dx.doi.org/10.1109/FTCS.1999.781037
http://dx.doi.org/10.1109/FTCS.1999.781037
http://dx.doi.org/10.2498/cit.2000.02.01

Bibliography

[Sánchez et al., 2009] D. Sánchez, J. Aragón and J. Garcıa. ‘Extending SRT for parallel
applications in tiled-CMP architectures’. In: Proceedings of the International
Symposium on Parallel Distributed Processing (IPDPS). 2009, pages 1–8.
doi: 10.1109/IPDPS.2009.5160902.

[Sánchez et al., 2010] D. Sánchez, J. Aragón and J. Garcıa. ‘A log-based redundant
architecture for reliable parallel computation’. In: Proceedings of the In-
ternational Conference on High Performance Computing (HiPC). 2010,
pages 1–10. doi: 10.1109/HIPC.2010.5713183.

[Stavrou et al., 2005] K. Stavrou, P. Evripidou and P. Trancoso. ‘DDM-CMP: Data-
Driven Multithreading on a Chip Multiprocessor’. In: Embedded Com-
puter Systems: Architectures, Modeling, and Simulation. Volume 3553. 2005,
pages 364–373. isbn: 978-3-540-26969-4. doi: 10.1007/11512622_39.

[Shivakumar et al., 2002] P. Shivakumar, M. Kistler, S. Keckler, D. Burger and L.
Alvisi. ‘Modeling the effect of technology trends on the soft error rate
of combinational logic’. In: Proceedings of the International Conference
on Dependable Systems and Networks (DSN). 2002, pages 389–398. doi:
10.1109/DSN.2002.1028924.

[Slegel et al., 1999] T. Slegel, I. Averill R.M., M. Check, B. Giamei, B. Krumm, C.
Krygowski, W. Li, J. Liptay, J. Macdougall, T. McPherson, J. Navarro, E.
Schwarz, K. Shum and C. Webb. ‘IBM’s S/390 G5 microprocessor design’.
In: IEEE Micro 19.2 (1999), pages 12–23. doi: 10.1109/40.755464.

[Smolens et al., 2004] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe and A. G.
Nowatzyk. ‘Fingerprinting: bounding soft-error detection latency and band-
width’. In: Proceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
2004, pages 224–234. isbn: 1-58113-804-0. doi: 10.1145/1024393.1024420.

[Smolens et al., 2005] J. C. Smolens, J. Kim, J. Hoe and B. Falsafi. ‘Understanding the
performance of concurrent error detecting superscalar microarchitectures’.
In: Proceedings of the 5th International Symposium on Signal Processing
and Information Technology (ISSPIT). 2005, pages 13–18. doi: 10.1109/
ISSPIT.2005.1577062.

[Smolens et al., 2006] J. C. Smolens, B. T. Gold, B. Falsafi and J. C. Hoe. ‘Reunion:
Complexity-Effective Multicore Redundancy’. In: Proceedings of the 39th
International Symposium on Microarchitecture (MICRO). 2006, pages 223–
234. isbn: 0-7695-2732-9. doi: 10.1109/MICRO.2006.42.

[Sorin et al., 2002] D. J. Sorin, M. M. K. Martin, M. D. Hill and D. A. W. J. ‘SafetyNet:
Improving the Availability of Shared Memory Multiprocessors with Global
Checkpoint/Recovery’. In: Proceedings of the 29th International Symposium
on Computer Architecture (ISCA). 2002, pages 123–134. doi: 10.1109/
ISCA.2002.1003568.

[Sorin, 2009] D. J. Sorin. Fault Tolerant Computer Architecture. Morgan and Claypool
Publishers, 2009. isbn: 978-1598299533.

127

http://dx.doi.org/10.1109/IPDPS.2009.5160902
http://dx.doi.org/10.1109/HIPC.2010.5713183
http://dx.doi.org/10.1007/11512622_39
http://dx.doi.org/10.1109/DSN.2002.1028924
http://dx.doi.org/10.1109/40.755464
http://dx.doi.org/10.1145/1024393.1024420
http://dx.doi.org/10.1109/ISSPIT.2005.1577062
http://dx.doi.org/10.1109/ISSPIT.2005.1577062
http://dx.doi.org/10.1109/MICRO.2006.42
http://dx.doi.org/10.1109/ISCA.2002.1003568
http://dx.doi.org/10.1109/ISCA.2002.1003568

Bibliography

[Sundaramoorthy et al., 2000] K. Sundaramoorthy, Z. Purser and E. Rotenberg. ‘Slip-
stream processors: improving both performance and fault tolerance’. In:
Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 2000, pages 257–
268. doi: 10.1145/378993.379247.

[Srinivasan et al., 2004] J. Srinivasan, S. Adve, P. Bose and J. Rivers. ‘The impact of
technology scaling on lifetime reliability’. In: Proceedings of the International
Conference on Dependable Systems and Networks (DSN). 2004, pages 177–
186. doi: 10.1109/DSN.2004.1311888.

[Siewiorek et al., 1998] D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems
(3rd Ed.): Design and Evaluation. A. K. Peters, Ltd., 1998. isbn: 1-56881-
092-X.

[STMicroelectronics, 2014] STMicroelectronics. SPC56EL60x, SPC56EL54x, SPC564-
L60x, SPC564L54x - 32-bit Power Architecture® microcontroller for auto-
motive SIL3/ASILD chassis and safety applications. datasheet DocID15457
Rev 12. 2014. url: http://www.st.com/st-web-ui/static/active/en/
resource/technical/document/datasheet/DM00070691.pdf (visited on
30/09/2016).

[Tullsen et al., 1995] D. Tullsen, S. Eggers and H. Levy. ‘Simultaneous multithreading:
Maximizing on-chip parallelism’. In: Proceedings of 22nd International
Symposium on Computer Architecture (ISCA). 1995, pages 392–403.

[Timor et al., 2010] A. Timor, A. Mendelson, Y. Birk and N. Suri. ‘Using Underutilized
CPU Resources to Enhance Its Reliability’. In: IEEE Transactions on
Dependable and Secure Computing 7.1 (2010), pages 94–109. doi: 10.1109/
TDSC.2008.31.

[VMware, inc., 2009] VMware, inc. VMware vSphere™ 4 Faul Tolerance: Architecture
and Performance. White Paper Revision: 20090811. 2009. url: https:
/ / www . vmware . com / content / dam / digitalmarketing / vmware / en /

pdf / techpaper / perf - vsphere - fault _ tolerance . pdf (visited on
30/09/2016).

[Vijaykumar et al., 2002] T. Vijaykumar, I. Pomeranz and K. Cheng. ‘Transient-fault
recovery using simultaneous multithreading’. In: Proceedings of the 29th
International Symposium on Computer Architecture (ISCA). 2002, pages 87–
98. doi: 10.1109/ISCA.2002.1003565.

[Weis et al., 2011a] S. Weis, A. Garbade, J. Wolf, B. Fechner, A. Mendelson, R. Giorgi
and T. Ungerer. ‘A Fault Detection and Recovery Architecture for a
Teradevice Dataflow System’. In: First Workshop on Data-Flow Execu-
tion Models for Extreme Scale Computing (DFM). 2011, pages 38–44. doi:
10.1109/DFM.2011.9.

[Weis et al., 2011b] S. Weis, A. Garbade, S. Schlingmann and T. Ungerer. ‘Towards
Fault Detection Units as an Autonomous Fault Detection Approach for
Future Many-Cores’. In: ARCS 2011 Workshop Proceedings. 2011, pages 20–
23. isbn: 978-3-8007-3333-0.

128

http://dx.doi.org/10.1145/378993.379247
http://dx.doi.org/10.1109/DSN.2004.1311888
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00070691.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00070691.pdf
http://dx.doi.org/10.1109/TDSC.2008.31
http://dx.doi.org/10.1109/TDSC.2008.31
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/perf-vsphere-fault_tolerance.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/perf-vsphere-fault_tolerance.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/perf-vsphere-fault_tolerance.pdf
http://dx.doi.org/10.1109/ISCA.2002.1003565
http://dx.doi.org/10.1109/DFM.2011.9

Bibliography

[Weis et al., 2016] S. Weis, A. Garbade, B. Fechner, A. Mendelson, R. Giorgi and
T. Ungerer. ‘Architectural Support for Fault Tolerance in a Teradevice
Dataflow System’. In: International Journal of Parallel Programming 44.2
(2016), pages 208–232. doi: 10.1007/s10766-014-0312-y.

[Wu et al., 1990] K. L. Wu, W. K. Fuchs and J. H. Patel. ‘Error Recovery in Shared
Memory Multiprocessors Using Private Caches’. In: IEEE Transactions on
Parallel and Distributed Systems 1.2 (1990), pages 231–240. doi: 10.1109/
71.80134.

[Wittenbrink et al., 2011] C. Wittenbrink, E. Kilgariff and A. Prabhu. ‘Fermi GF100
GPU Architecture’. In: IEEE Micro 31.2 (2011), pages 50–59. doi: 10.
1109/MM.2011.24.

[Yazdanpanah et al., 2013] F. Yazdanpanah, C. Alvarez-Martinez, D. Jimenez-Gonzalez
and Y. Etsion. ‘Hybrid Dataflow/Von-Neumann Architectures’. In: IEEE
Transactions on Parallel and Distributed Systems 25.6 (2013), pages 1489–
1509. doi: 10.1109/TPDS.2013.125.

[Yeh, 1996] Y. Yeh. ‘Triple-triple redundant 777 primary flight computer’. In: Proceed-
ings of the Aerospace Applications Conference. Volume 1. 1996, pages 293–
307. doi: 10.1109/AERO.1996.495891.

[Yalcin et al., 2013] G. Yalcin, O. S. Unsal and A. Cristal. ‘Fault Tolerance for Multi-
Threaded Applications by Leveraging Hardware Transactional Memory’. In:
Proceedings of the International Conference on Computing Frontiers. 2013,
4:1–4:9. doi: 10.1145/2482767.2482773.

[Zuckerman et al., 2011] S. Zuckerman, J. Suetterlein, R. Knauerhase and G. R. Gao.
‘Using a ”codelet” program execution model for exascale machines: position
paper’. In: Proceedings of the 1st International Workshop on Adaptive Self-
Tuning Computing Systems for the Exaflop Era. 2011, pages 64–69. isbn: 978-
1-4503-0708-6. doi: http://doi.acm.org/10.1145/2000417.2000424.

129

http://dx.doi.org/10.1007/s10766-014-0312-y
http://dx.doi.org/10.1109/71.80134
http://dx.doi.org/10.1109/71.80134
http://dx.doi.org/10.1109/MM.2011.24
http://dx.doi.org/10.1109/MM.2011.24
http://dx.doi.org/10.1109/TPDS.2013.125
http://dx.doi.org/10.1109/AERO.1996.495891
http://dx.doi.org/10.1145/2482767.2482773
http://dx.doi.org/http://doi.acm.org/10.1145/2000417.2000424

List of Figures

2.1 An abstract DMR structure. 23

2.2 Sphere of Replication for the abstract DMR system. 25

4.1 High-level system organisation of the baseline system (subset of a Tera-
flux node). 47

4.2 Example usage of the T*-instruction set. 48

4.3 Continuation and memory organisation of a data-flow thread (based on
[Arandi et al., 2011, p. 18]). 50

5.1 Dynamic dependency graph of a regular data-flow execution (left) and
double execution (right). 54

5.2 Extended fault-tolerant hardware organisation. 56

5.3 Execution stages of double execution. 58

5.4 Sphere of replication for double execution. 60

5.5 Consistent input replication for redundant tschedule instructions. . . . 61

5.6 Asynchronous execution of redundant threads. 64

5.7 Redundant continuations and memory organisation of double execution. 66

5.8 ID table for redundant tschedule. 67

5.9 Fault diagnosis using double execution. 69

6.1 Example for increasing parallelism by the optimistic thread commit of ODE. 72

6.2 Execution stages of ODE. 74

6.3 OWM mapping table and pointers to the original and the copied OWM
sections. 75

6.4 Optimistic double execution with reduced waiting time. 77

7.1 Speedup of the simulated benchmarks normalised to the execution time
on a system with 1 PE. 85

7.2 Utilisation of the systems with the HighUtil and LowUtil input sets. . . 86

7.3 Execution time of double execution normalised to the execution time of
Lockstep with the same number of PEs (HighUtil input set). 87

7.4 Execution time of double execution normalised to the execution time of
Lockstep with the same number of PEs (LowUtil input set). 88

7.5 Average execution time overhead for all benchmarks with comparison
latencies of 100 ns and 500 ns. 90

7.6 Scalability of non-redundant data-flow execution and double execution . 91

7.7 Commit slack of double execution. 92

7.8 Graceful degradation of double execution, when 0–7 PEs are permanently
faulty in the 4 and 8 PE systems (HighUtil). 94

131

List of Figures

7.9 Graceful degradation of double execution, when 0–8 PEs are permanently
faulty in the 16 and 32 PE systems (HighUtil). 95

7.10 Graceful degradation of double execution, when 0–7 PEs are permanently
faulty in the 4 and 8 PE systems (LowUtil). 96

7.11 Graceful degradation of double execution, when 0–8 PEs are permanently
faulty in the 16 and 32 PE systems (LowUtil). 97

7.12 Execution time of double execution normalised to double execution without
faults, when 5 and 10 faults occur (HighUtil). 98

7.13 Execution time of double execution normalised to double execution without
faults, when 5 and 10 faults occur (LowUtil). 99

7.14 Execution time of double execution and optimistic double execution
normalised to Lockstep (HighUtil) . 100

7.15 Execution time of double execution and optimistic double execution
normalised to Lockstep (LowUtil) . 101

7.16 Scalability of non-redundant execution and optimistic double execution. 102
7.17 Execution time of LockstepCheck and optimistic double execution norm-

alised to Lockstep (HighUtil). 104
7.18 Execution time of LockstepCheck and optimistic double execution norm-

alised to Lockstep (LowUtil). 105
7.19 Commit slack of optimistic double execution (HighUtil). 106
7.20 Commit slack of optimistic double execution (LowUtil). 107
7.21 Average log size per checkpoint normalised to the log size of LockstepCheck

(HighUtil). 108
7.22 Average log size per checkpoint normalised to the log size of LockstepCheck

(LowUtil). 108
7.23 Graceful degradation of optimistic double execution, when 0–7 PEs are

permanent faulty in the 4 and 8 PE systems (HighUtil). 109
7.24 Graceful degradation of optimistic double execution, when 0–8 PEs are

permanent faulty in the 8 to 16 PE systems (HighUtil). 110
7.25 Graceful degradation of optimistic double execution, when 0–7 PEs are

permanent faulty in the 4 and 8 PE systems (LowUtil). 111
7.26 Graceful degradation of optimistic double execution, when 0–8 PEs are

permanent faulty in the 16 and 32 PE systems (LowUtil). 112
7.27 Execution time of double execution and optimistic double execution when

5 and 10 transient faults occur (HighUtil) 113
7.28 Execution time of double execution and optimistic double execution when

5 and 10 transient faults occur (LowUtil). 114

132

List of Tables

7.1 Baseline system configuration. 82
7.2 Additional static T*-instruction latencies. 82
7.3 Benchmark overview. 84
7.4 The input parameters of the HighUtil and LowUtil input sets. 85
7.5 Data-flow benchmark characteristics. 86
7.6 Effective PE blocking for comparison latencies of 100 ns and 500 ns. . . 89

133

List of Algorithms

5.1 Replication of a thread ID for a redundant tschedule instruction. . . . 62

135

	List of Abbreviations
	Introduction
	Main Contributions
	Structure
	Publications

	Background
	Faults in Computer Systems
	Manifestation of Faults
	Duration and Sources of Faults
	Increasing Fault Rates in Future Systems

	Fault-Tolerant Computer Systems
	Information Redundancy
	Spatial Redundancy
	Temporal Redundancy

	Redundant Execution
	Tightly-Coupled Redundant Execution
	Loosely-Coupled Redundant Execution

	Recovery
	Terminology
	BER in Shared-Memory Processors
	Relation between Fault Detection and Checkpointing
	Fault Diagnosis and Adaption for Permanent/Intermittent Faults

	Combining Fault Tolerance and Data-flow Execution
	The Data-flow Execution Principle
	Hybrid Data-flow/Von Neumann Execution
	Combining Fault Tolerance and Data-flow Execution

	Summary

	Related Work
	Redundant Execution Mechanisms
	Lockstep Redundancy
	Microarchitectural Redundancy
	Thread-Level Redundancy in SMT Architectures
	Thread-Level Redundancy in Multi-Core Architectures

	Backward Error Recovery in Shared-Memory Multi-Cores
	Fault-Tolerant Data-Flow Execution
	Tolerating Permanent Faults
	Deactivation and Reconfiguration of Cores
	Deactivation and Reconfiguration of Microarchitectural Components

	Summary

	Baseline Execution Model and Architecture
	A Coarse-Grained Data-Flow Execution Model
	Baseline Hardware Architecture
	Architectural Support for Data-Flow Execution
	The T*-Instruction Set Extension
	Thread Scheduling Unit

	Physical Memory Organisation
	Summary

	Fault-Tolerant Data-Flow Execution
	Overview of the Data-Flow Based Fault-Tolerance Mechanisms
	Fault-Tolerant Coarse-Grained Data-Flow Execution
	Faults Covered by the Data-flow Based Fault-Tolerance Mechanisms

	Extended Fault-Tolerant Hardware Architecture
	Double Execution of Data-Flow Threads
	Double Execution Overview
	Sphere of Replication of Double Execution
	Input Replication
	Synchronisation and Output Comparison
	Asynchronous Thread Execution
	Influence of Double Execution on the Execution Time

	Restart of Data-Flow Threads
	Speculative Thread Creation

	Data-Flow Runtime Enhancements
	Extended Continuation for Double Execution
	ID Table

	Fault Diagnosis and Periodic Tests
	Fault Diagnosis
	Periodic Testing

	Summary

	Optimistic Double Execution and Global Checkpointing
	Optimistic Double Execution
	Increasing Parallelism by Optimistic Thread Commit
	Run time Behaviour of Optimistic Double Execution
	Input Replication
	Output Comparison

	Data-flow based Global Checkpointing
	Establishing a Checkpoint
	Logging of Memory Accesses
	Checkpointing Overhead
	Overlapping of Checkpoint Verification and Data-Flow Execution
	Fault Diagnosis and Adaption for Optimistic Double Execution and Global Checkpointing

	Summary

	Evaluation
	Simulation Methodology
	Simulator Framework
	Baseline Machine Configuration
	Lockstep Machine Configurations
	Fault Injection
	Benchmarks

	Double Execution
	Execution Overhead of Double Execution
	Scalability
	Commit Slack
	Graceful Degradation under Permanent Faults
	Execution Overhead under Transient Faults

	Optimistic Double Execution
	Execution Overhead without Checkpoints
	Scalability
	Execution Overhead with Checkpoints
	Commit Slack
	Log Size of Global Checkpoints
	Graceful Degradation under Permanent Faults
	Execution under Transient Faults

	Summary

	Summary and Future Work
	Summary
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

