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AN A POSTERIORI ERROR ANALYSIS OF
ADAPTIVE FINITE ELEMENT METHODS

FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS
WITH CONTROL CONSTRAINTS

M. HINTERMÜLLER, R.H.W. HOPPE, Y. ILIASH, AND M. KIEWEG

Abstract. We present an a posteriori error analysis of adaptive
finite element approximations of distributed control problems for
second order elliptic boundary value problems under bound con-
straints on the control. The error analysis is based on a residual-
type a posteriori error estimator that consists of edge and element
residuals. Since we do not assume any regularity of the data of the
problem, the error analysis further invokes data oscillations. We
prove reliability and efficiency of the error estimator and provide
a bulk criterion for mesh refinement that also takes into account
data oscillations and is realized by a greedy algorithm. A detailed
documentation of numerical results for selected test problems il-
lustrates the convergence of the adaptive finite element method.

Keywords: a posteriori error analysis, distributed optimal control problems,
control constraints, adaptive finite element methods, residual-type a posteriori error
estimators, data oscillations

AMS/MOS Classification: 65N30, 65N50; 49K20, 65K10

1. Introduction

Adaptive finite element methods have been widely and successfully used
for the efficient numerical solution of boundary and initial-boundary
value problems for partial differential equations and systems thereof
(cf., e.g., the monographs [1, 3, 4, 14, 26, 27] and the references therein).

Several error concepts have been developed over the past two decades
including residual-type estimators [2, 3, 27] that rely on the appropriate
evaluation of the residual in a dual norm, hierarchical type estimators
[5, 18, 19] where the error equation is solved locally using higher order
elements, error estimators that are based on local averaging [9, 28], the
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so-called goal oriented dual weighted approach [4, 14] where informa-
tion about the error is extracted from the solution of the dual problem,
and functional type error majorants [26] that provide guaranteed sharp
upper bounds for the error.

As far as the a posteriori error analysis of adaptive finite element
schemes for optimal control problems is concerned, there is not much
work available. The unconstrained case has been addressed in [4, 6],
whereas residual-type a posteriori error estimators in the control con-
strained case have been derived and analyzed in [20, 22, 23]. In contrast
to the approach used in [20, 22, 23], the error analysis in this paper
pertains to the error in the state, the adjoint state, the control, and
the adjoint control and incorporates oscillations in terms of the data
of the problem. The data oscillations may significantly contribute to
the error and thus have to be considered in the adaptive refinement
process. The paper is organized as follows:
In section 2, as a model problem we consider a distributed optimal con-
trol problem for a two-dimensional, second order elliptic PDE with a
quadratic objective functional and unilateral constraints on the control
variable. The optimality conditions are stated in terms of the state,
the adjoint state, the control, and the Lagrangian multiplier for the
control which will be referred to as the adjoint control.
In section 3, the control problem is discretized with respect to a shape
regular simplicial triangulation of the computational domain using con-
tinuous, piecewise linear finite elements for the state and the adjoint
state and elementwise constant approximations of the control and the
adjoint control.
The residual-type a posteriori error estimator for the global discretiza-
tion errors in the state, the adjoint state, the control, and the adjoint
control consists of edge and element residuals. In contrast to [20], we
include the error in the adjoint control. Moreover, we do not assume
any regularity of the data. Consequently, the a posteriori error analysis
also has to take into account data oscillations. Both the a posteriori
error estimator and the data oscillations are presented in section 4.
In section 5, we prove reliability of the error estimator, i.e., up to data
oscillations, it provides an upper bound for the global discretization
errors. Section 6 is devoted to the efficiency of the estimator. Here, it
is shown that, modulo data oscillations, the error estimator also gives
rise to a lower bound for the discretization errors.
In section 7, we address the issue of adaptive mesh refinement on the
basis of the local components of the error estimator and the data os-
cillations. This is done by means of a bulk criterion where edges and
elements of the triangulation are selected for refinement in such a way
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that the sum of the associated error terms/data oscillations exceeds
the total sum by a certain margin. The bulk criterion is realized by a
greedy algorithm.
Finally, section 8 contains a detailed documentation of numerical re-
sults for selected test examples in terms of the convergence history
of the adaptive finite element method including visualizations of the
adaptively generated simplicial triangulations.

2. The distributed elliptic control problem

We consider the following optimal control problem for a linear second
order elliptic boundary value problem with constrained distributed con-
trols

minimize J(y, u) :=
1

2
‖y − yd‖2

0,Ω +
α

2
‖u− ud‖2

0,Ω(2.1a)

over (y, u) ∈ H1
0 (Ω)× L2(Ω),

subject to −∆ y = f + u ,(2.1b)

u ∈ K := {v ∈ L2(Ω) | v ≤ ψ a.e. in Ω} .(2.1c)

Here, Ω ⊂ lR2 is a bounded, polygonal domain with boundary Γ := ∂Ω.
Moreover, we suppose that

(2.2) ud, yd ∈ L2(Ω) , f ∈ L2(Ω) , ψ ∈ L∞(Ω) , α ∈ lR+ .

It is well-known that under the assumption (2.2) the distributed op-
timal control problem (2.1a)-(2.1c) admits a unique solution (y, u) ∈
H1

0 (Ω)×L2(Ω) (cf., e.g., [15, 21, 22]) which is characterized by the exis-
tence of a co-state (adjoint state) p ∈ H1

0 (Ω) and a Lagrange multiplier
for the inequality constraint (adjoint control) σ ∈ L2(Ω) such that

a(y, v) = (f + u, v)0,Ω , v ∈ H1
0 (Ω) ,(2.3a)

a(p, v) = − (y − yd, v)0,Ω , v ∈ H1
0 (Ω) ,(2.3b)

u = ud +
1

α
(p− σ) ,(2.3c)

σ ∈ ∂IK(u) .(2.3d)

Here, a(·, ·) stands for the bilinear form

a(w, z) :=

∫

Ω

∇w · ∇z dx , w, z ∈ H1
0 (Ω) ,

and ∂IK : L2(Ω) → 2L2(Ω) denotes the subdifferential of the indicator
function IK of the constraint set K (cf., e.g., [17]).
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We note that (2.3d) can be equivalently written as the variational in-
equality

(2.4) (σ, u− v)0,Ω ≥ 0 , v ∈ K ,

and the complementarity problem

σ ∈ L2
+(Ω) , ψ − u ∈ L2

+(Ω) ,(2.5)

(σ, ψ − u)0,Ω = 0 ,

where (·, ·)0,Ω stands for the L2-inner product and L2
+(Ω) refers to the

nonnegative cone in L2(Ω).
We define the active control set A(u) as the maximal open set A ⊂
Ω such that u(x) = ψ(x) f.a.a. x ∈ A and the inactive control set
I(u) according to I(u) :=

⋃
ε>0 Bε, where Bε is the maximal open set

B ⊂ Ω such that u(x) ≤ ψ(x) − ε for almost all x ∈ B. Then, the
complementarity conditions (2.5) can be equivalently stated as:

σ(x) ≥ 0 f.a.a. x ∈ Ω ,(2.6a)

σ(x) = 0 f.a.a. x ∈ I(u) ,(2.6b)

σ(x) = α (ud(x)− ψ(x)) + p(x) f.a.a. x ∈ A(u) .(2.6c)

3. Finite element approximation

We assume that Th(Ω) is a shape-regular simplicial triangulation of
Ω. We refer to Nh(D) and Eh(D) , D ⊆ Ω, as the sets of vertices and
edges of Th(Ω) in D ⊆ Ω. We denote by hT the diameter of an element
T ∈ Th(Ω) and by hE the length of an edge E ∈ Eh(D). Further, we
denote by gT the integral mean of g ∈ L2(Ω) on T ∈ Th(Ω), i.e.,

gT = |T |−1

∫

T

g dx .

The distributed optimal control problem (2.1a)-(2.1c) is discretized by
continuous piecewise linear finite elements with respect to the triangu-
lation Th(Ω). In particular, we refer to

Vh := { vh ∈ C0(Ω) | vh|T ∈ P1(T ) , T ∈ Th(Ω) } ,

as the finite element space spanned by the canonical nodal basis func-
tions ϕa

h , a ∈ Nh(Ω), associated with the nodal points in Ω. Moreover,
we denote by

Wh := { wh ∈ L2(Ω) | wh|T ∈ P0(T ) , T ∈ Th(Ω) }
the linear space of elementwise constant functions on Ω. We refer to
yh ∈ Vh and uh ∈ Wh as finite element approximations of the state y
and the control u, respectively. We approximate the upper obstacle ψ
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by ψh ∈ Wh with ψh|T := ψT , T ∈ Th(Ω).
The finite element approximation of the distributed optimal control
problem (2.1a)-(2.1c) reads as follows:

minimize Jh(yh, uh) :=
1

2
‖yh − yd‖2

0,Ω +
α

2
‖uh − ud‖2

0,Ω ,(3.1a)

over (yh, uh) ∈ Vh ×Wh ,(3.1b)

subject to a(yh, vh) = (f + uh, vh)0,Ω , vh ∈ Vh ,(3.1c)

uh ∈ Kh := {wh ∈ Wh | wh|T ≤ ψT , T ∈ Th(Ω)} .(3.1d)

As in the continuous regime, the necessary and sufficient optimality
conditions for (3.1a)-(3.1d) involve the existence of an adjoint state
ph ∈ Vh and an adjoint control σh ∈ Wh such that

a(yh, vh) = (f + uh, vh)0,Ω , vh ∈ Vh ,(3.2a)

a(ph, vh) = − (yh − yd, vh)0,Ω , vh ∈ Vh ,(3.2b)

uh = ud
h +

1

α
(Mhph − σh) ,(3.2c)

σh ∈ ∂IKh
(uh) ,(3.2d)

where ud
h ∈ Wh with ud

h|T := ud
T , T ∈ Th(Ω), and Mh : Vh → Wh is the

operator given by

(3.3) (Mhvh)T := (vh)T = |T |−1

∫

T

vh(x) dx , T ∈ Th(Ω) .

Again, (3.2d) can be stated as the complementarity problem

σh ≥ 0 , ψh − uh ≥ 0 ,(3.4)

(σh, ψh − uh)0,Ω = 0 .

We define A(uh) and I(uh) as the discrete active and inactive control
sets according to

A(uh) :=
⋃

{ T ∈ Th(Ω) | uh|T = ψh|T } ,(3.5a)

I(uh) :=
⋃

{ T ∈ Th(Ω) | uh|T < ψh|T } .(3.5b)

The complementarity conditions (3.4) readily imply

σh|T ≥ 0 , T ∈ Th(Ω) ,(3.6a)

σh|T = 0 , T ∈ I(uh) ,(3.6b)

σh|T = α (ud
h − ψh)|T + (Mhph)|T , T ∈ A(uh) .(3.6c)
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We note that the discrete state and co-state yh, ph ∈ Vh may also
be considered as finite element approximations of the coupled elliptic
system: Given uh ∈ Wh, find y(uh), p(uh) ∈ H1

0 (Ω) such that

a(y(uh), v) = (f + uh, v)0,Ω , v ∈ H1
0 (Ω) ,(3.7a)

a(p(uh), v) = − (y(uh)− yd, v)0,Ω , v ∈ H1
0 (Ω) .(3.7b)

Obviously, we have

|y(uh)− y|1,Ω ≤ c(Ω) ‖u− uh‖0,Ω ,(3.8a)

|p(uh)− p|1,Ω ≤ c(Ω) ‖y − y(uh)‖0,Ω ,(3.8b)

where c(Ω) > 0 is the constant in the Poincaré-Friedrichs inequality

(3.9) ‖v‖0,Ω ≤ c(Ω) |v|1,Ω , v ∈ H1
0 (Ω) .

Moreover, choosing v = p(uh)−p in (3.7a) and v = y(uh)−y in (3.7b),
we find

(3.10) (p− p(uh), u− uh)0,Ω = − ‖y − y(uh)‖2
0,Ω ≤ 0 .

4. The residual type error estimator

The residual type error estimator consists of easily computable ele-
ment and edge residuals with respect to the finite element approxima-
tions yh ∈ Vh and ph ∈ Vh of the state y ∈ H1

0 (Ω) and the co-state
p ∈ H1

0 (Ω) as well as of data oscillations.
In particular, we define

ηy :=
( ∑

T∈Th(Ω)

η2
y,T +

∑

E∈Eh(Ω)

η2
y,E

)1/2

,(4.1a)

ηp :=
( ∑

T∈Th(Ω)

2∑
i=1

(η
(i)
p,T )2 +

∑

E∈Eh(Ω)

η2
p,E

)1/2

.(4.1b)

Here, the element residuals ηy,T , η
(i)
p,T , 1 ≤ i ≤ 2, and the edge residuals

ηy,E, ηp,E are given by

ηy,T := hT ‖f + uh‖0,T , T ∈ Th(Ω) ,(4.2a)

η
(1)
p,T := hT ‖yd − yh‖0,T , T ∈ Th(Ω) ,(4.2b)

η
(2)
p,T := ‖Mhph − ph‖0,T , T ∈ Th(Ω) ,(4.2c)

ηy,E := h
1/2
E ‖νE · [∇yh]‖0,E , E ∈ Eh(Ω) ,(4.2d)

ηp,E := h
1/2
E ‖νE · [∇ph]‖0,E , E ∈ Eh(Ω) ,(4.2e)

where E = T1 ∩ T2, Tν ∈ Th(Ω), 1 ≤ ν ≤ 2, and νE is the exterior
unit normal vector on E directed towards T2, whereas [∇yh] and [∇ph]
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denote the jumps of ∇yh,∇ph across E.
The residual type error estimator η for the finite element approximation
of the distributed control problem (2.1a)-(2.1c) is then given by

(4.3) η :=
(
η2

y + η2
p

)1/2

.

Moreover, we define the low order data oscillations

µh(u
d) :=

( ∑

T∈Th(Ω)

µT (ud)2
)1/2

,(4.4a)

µT (ud) := ‖ud − ud
h‖0,T ,

µh(ψ) :=
( ∑

T∈Th(Ω)

µT (ψ)2
)1/2

,(4.4b)

µT (ψ) := ‖ψ − ψh‖0,T ,

as well as the data oscillations

osch(y
d) :=

( ∑

T∈Th(Ω)

oscT (yd)2
)1/2

,(4.5a)

oscT (yd) := hT ‖yd − yd
h‖0,T ,

osch(f) :=
( ∑

T∈Th(Ω)

oscT (f)2
)1/2

,(4.5b)

oscT (f) := hT ‖f − fh‖0,T ,

where yd
h ∈ Wh and fh ∈ Wh with yd

h|T := yd
T , fh|T := fT , T ∈ Th(Ω).

Compared to the element residuals ηy,T , ηp,T and the edge residuals
ηy,E, ηp,E, the data oscillations osch(y

d), osch(f) are of the same order
for non smooth yd, f and of higher order for smooth yd, f , e.g., yd, f ∈
H1(Ω).

5. Reliability of the error estimator

Theorem 5.1. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of
(2.3a)-(2.3d) and (3.2a)-(3.2d), and let η and µh(u

d), µh(ψ) be the
residual error estimator and the data oscillations as given by (4.3)
and (4.4a),(4.4b), respectively. Then, there exist positive constants Λ
and C, depending on α, Ω and the shape regularity of the triangulation
Th(Ω), such that

|y − yh|1,Ω + |p− ph|1,Ω + ‖u− uh‖0,Ω +(5.1)

+ ‖σ − σh‖0,Ω ≤ Λη + C
(
µh(u

d) + µh(ψ)
)

.
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The idea of the proof of Theorem 5.1 is to show that the discretization
errors, making up the left-hand side in (5.1), can be bounded by the
discretization errors in the finite element approximations of y(uh) and
p(uh) by yh and ph and the data oscillation µh(u

d) and µh(ψ). An
upper bound for the latter discretization errors can be obtained as in
the case of the finite element approximations of standard second order
elliptic boundary value problems. As a first step in this direction, we
prove the following result.

Lemma 5.2. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of
(2.3a)-(2.3d) and (3.2a)-(3.2d), respectively, and let µh(u

d) be the data
oscillation according to (4.4a). Moreover, let y(uh) and p(uh) be the in-
termediate state and intermediate adjoint state as given by (3.7a),(3.7b).
Then, there exists a positive constant C depending only on α and Ω
such that

|y − yh|1,Ω + |p− ph|1,Ω + ‖u− uh‖0,Ω + ‖σ − σh‖0,Ω ≤(5.2)

≤ C
(|yh − y(uh)|1,Ω + |ph − p(uh)|1,Ω +

+(
∑

T∈Th(Ω)

(η
(2)
p,T )2)1/2 + µh(ψ) + µh(u

d)
)

.

Proof. Using (3.8a),(3.8b) and (3.9), we find

(5.3) |y − yh|1,Ω ≤ |yh − y(uh)|1,Ω + c(Ω)‖u− uh‖0,Ω ,

|p− ph|1,Ω ≤ |ph − p(uh)|1,Ω + c(Ω)‖y − yh‖0,Ω ≤(5.4)

≤ |ph − p(uh)|1,Ω + c(Ω)2|yh − y(uh)|1,Ω + c(Ω)3‖u− uh‖0,Ω ,

‖σ − σh‖2
0,Ω ≤(5.5)

≤ 2α2
(
‖u− uh‖0,Ω + µh(u

d)
)2

+ 2‖p−Mhph‖2
0,Ω ≤

≤ 4α2
(
‖u− uh‖2

0,Ω + µ2
h(u

d)
)

+ 4c(Ω)2|p− ph|21,Ω +

+4‖ph −Mhph‖2
0,Ω ≤ 4(α2 + 3c(Ω)8)‖u− uh‖2

0,Ω +

+12c(Ω)2|ph − p(uh)|21,Ω + 12c(Ω)6|yh − y(uh)|21,Ω +

+4‖ph −Mhph‖2
0,Ω + 4α2µ2

h(u
d) .



AFEM FOR DISTRIBUTED CONTROL PROBLEMS 9

Moreover, in view of (2.3c) and (3.2c), using Young’s inequality we get

α ‖u− uh‖2
0,Ω =(5.6)

= (σh − σ, u− uh)0,Ω + (p− ph, u− uh)0,Ω +

+(ph −Mhph, u− uh)0,Ω + α(ud − ud
h, u− uh)0,Ω ≤

≤ (σh − σ, u− uh)0,Ω + (p− ph, u− uh)0,Ω +

+
α

4
‖u− uh‖2

0,Ω +
2

α
‖ph −Mhph‖2

0,Ω + 2αµh(u
d) .

Observing (2.5) and (3.4), for the first term on the right-hand side in
(5.6) it follows that

(σh − σ, u− uh)0,Ω =

= (σh, u− ψ)0,Ω︸ ︷︷ ︸
≤ 0

+(σh − σ, ψ − ψh)0,Ω + (σh, ψh − uh)0,Ω︸ ︷︷ ︸
= 0

−

− (σ, u− ψ)0,Ω︸ ︷︷ ︸
= 0

− (σ, ψh − uh)0,Ω︸ ︷︷ ︸
≥0

≤ |(σh − σ, ψ − ψh)0,Ω| .

An application of Young’s inequality yields

(σh − σ, u− uh)0,Ω ≤(5.7)

≤ α

16(α2 + 3c(Ω)8)
‖σ − σh‖2

0,Ω + 4
α2 + 3c(Ω)8

α
µ2

h(ψ) .

On the other hand, in view of (3.10), for the second term on the right-
hand side in (5.6) we obtain

(p− ph, u− uh)0,Ω ≤ (p(uh)− ph, u− uh)0,Ω .

Using Young’s inequality once more, the right-hand side can be further
estimated according to

(5.8) (p(uh)− ph, u− uh)0,Ω ≤ α

4
‖u− uh‖2

0,Ω +
c(Ω)2

α
|p(uh)− ph|21,Ω .

Using (5.7) and (5.8) in (5.6), we end up with

‖u− uh‖2
0,Ω ≤ 1

8(α2 + 3c(Ω)8)
‖σ − σh‖2

0,Ω +(5.9)

+ 2(
c(Ω)

α
)2 |ph − p(uh)|21,Ω +

4

α2
‖ph −Mhph‖2

0,Ω +

+ 4µ2
h(u

d) + 8
α2 + 3c(Ω)8

α2
µ2

h(ψ) .
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Hence, taking advantage of (5.9) in (5.5), we obtain

‖σ − σh‖2
0,Ω ≤ 8c(Ω)2

(
3 +

2(α2 + 3c(Ω)8)

α2

) |ph − p(uh)|21,Ω +(5.10)

+ 24c(Ω)6|yh − y(uh)|21,Ω + 8
(
1 + 4

α2 + 3c(Ω)8

α2

)‖ph −Mhph‖2
0,Ω

+ 8
(
5α2 + 12c(Ω)8

)
µ2

h(u
d) + 64

(α2 + 3c(Ω)8)2

α2
µ2

h(ψ) .

On the other hand, using (5.10) in (5.9) readily gives

‖u− uh‖2
0,Ω ≤ c(Ω)2

α2

5α2 + 6c(Ω)8

α2 + 3c(Ω)8
|ph − p(uh)|21,Ω +(5.11)

+
3c(Ω)6

α2 + 3c(Ω)8
|yh − y(uh)|21,Ω +

9α2 + 24c(Ω)8

α2 + 3c(Ω)8
µ2

h(u
d) +

+
( 4

α2
+

5α2 + 12c(Ω)8

α2(α2 + 3c(Ω)8)

)‖ph −Mhph‖2
0,Ω +

+ 16
α2 + 3c(Ω)8

α2
µ2

h(ψ) .

Combining (5.3),(5.4),(5.10) and (5.11), gives the assertion. ¤

Lemma 5.3. Let (yh, ph, uh, σh) be the solution of (3.2a)-(3.2d) and let
y(uh), p(uh) be the solutions of (3.7a),(3.7b), respectively. Further, let

ηy and η
(1)
p,T , ηp,E be the parts of the residual error estimator η as given by

(4.1a) and (4.2b),(4.2e). Then, there exist positive constants Cν , 4 ≤
ν ≤ 5, depending only on the shape regularity of the triangulation
Th(Ω), such that

|y(uh)− yh|21,Ω ≤ C4 η2
y ,(5.12a)

|p(uh)− ph|21,Ω ≤ C5

(
η2

y +
∑

T∈Th(Ω)

(η
(1)
p,T )2 +

∑

E∈Eh(Ω

η2
p,E

)
.(5.12b)

Proof. Using standard techniques based on Clément’s interpolation op-
erator (cf., e.g., [27]), for the discretization error |y(uh) − yh|1,Ω we
obtain

|y(uh)− yh|21,Ω ≤
≤ C

( ∑

T∈Th(Ω)

h2
T ‖f + uh‖2

0,T︸ ︷︷ ︸
= η2

y,T

+
∑

E∈Eh(Ω)

hE ‖νE · [∇yh]‖2
0,E︸ ︷︷ ︸

= η2
y,E

)
,

which is (5.12a).
Applying the same techniques to the discretization error |p(uh)−ph|1,Ω,
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we obtain

|p(uh)− ph|21,Ω ≤(5.13)

≤ C
( ∑

T∈Th(Ω)

h2
T ‖yd − y(uh)‖2

0,T +
∑

E∈Eh(Ω)

hE ‖νE · [∇ph]‖2
0,E︸ ︷︷ ︸

= η2
p,E

)
.

For the first term on the right-hand side in (5.13), taking advantage of
(5.12a) it follows that

∑

T∈Th(Ω)

h2
T ‖yd − y(uh)‖2

0,T ≤(5.14)

≤ 2
( ∑

T∈Th(Ω)

h2
T ‖yd − yh‖2

0,T︸ ︷︷ ︸
= (η

(1)
p,T )2

+
∑

T∈Th(Ω)

h2
T ‖y(uh)− yh‖2

0,T

)
≤

≤ 2
∑

T∈Th(Ω)

(η
(1)
T,p)

2 + 2 h2 c(Ω)2 |y(uh)− yh|21,Ω ≤

≤ 2
∑

T∈Th(Ω)

(η
(1)
p,T )2 + 2 h2 c(Ω)2 C2 η2

y .

Combining (5.13) and (5.14) results in (5.12b). ¤

6. Local efficiency of the error estimator

Theorem 6.1. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of
(2.3a)-(2.3d) and (3.2a)-(3.2d) and let η, µh(u

d), µh(ψ) and osch(y
d),

osch(f) be given by (4.3),(4.4a),(4.4b) and (4.5a), (4.5b), respectively.
Then, there exist positive constants λ and c depending only on Ω and
the shape regularity of Th(Ω) such that

(6.1) |y − yh|21,Ω + |p− ph|21,Ω + ‖u− uh‖2
0,Ω + ‖σ − σh‖2

0,Ω ≥

≥ λη2 − c
(
µ2

h(u
d) + osc2

h(y
d) + osc2

h(f)
)

.

The proof of Theorem 6.1 will be given by a series of lemmas.
We denote by λT

i , 1 ≤ i ≤ 3, the barycentric coordinates of T ∈ Th(Ω)
and refer to ϑT := 27

∏3
i=1 λT

i as the associated element bubble func-
tion. Likewise, λE

i , 1 ≤ i ≤ 2, stand for the barycentric coordinates of
E ∈ Eh(Ω) and ϑE := 4

∏2
i=1 λE

i denotes the associated edge bubble
function. We recall from [27] that there exist constants ci, 1 ≤ i ≤ 5,
depending only on the shape regularity of the triangulation Th(Ω) such
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that for ζT ∈ Pk(T ), k ∈ lN0, and ζE ∈ Pk(E), k ∈ lN0, there holds

‖ζT‖2
0,T ≤ c1 (ζT , ζT ϑT )0,T , T ∈ Th(Ω) ,(6.2a)

‖ζT ϑT‖0,T ≤ c2 ‖ζT‖0,T , T ∈ Th(Ω) ,(6.2b)

|ζT ϑT |1,T ≤ c3 h−1
T ‖ζT‖0,T , T ∈ Th(Ω) ,(6.2c)

‖ζE‖2
0,E ≤ c4 (ζE, ζEϑE)0,E , E ∈ Eh(Ω) ,(6.2d)

‖ζEϑE‖0,E ≤ c5 ‖ζE‖0,E , E ∈ Eh(Ω) .(6.2e)

For E ∈ Eh(T ) and ζE ∈ Pk(E), k ∈ lN0, we further refer to ζ̃E as the
extension of ζE to ωE := T1 ∪ T2, E = T1 ∩ T2, Tν ∈ Th(Ω), 1 ≤ ν ≤ 2,
in the sense that for fixed E ′

ν ∈ Eh(Tν) \ {E}, for x ∈ Tν we have

ζ̃E(x) := ζE(xE) where xE ∈ E is such that x − xE is parallel to E ′
ν .

Again, referring to [27], there exist positive constants ci, 6 ≤ i ≤ 7,
which only depend on the shape regularity of T ∈ Th(Ω) such that

‖ζ̃EϑE‖0,ωE
≤ c6 h

1/2
E ‖ζE‖0,E ,(6.3a)

|ζ̃EϑE|1,ωE
≤ c7 h

−1/2
E ‖ζE‖0,E .(6.3b)

Lemma 6.2. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of
(2.3a)-(2.3d) and (3.2a)-(3.2d) and let ηy,T , oscT (f) be given by (4.2a)
and (4.5b), respectively. Then, there exists a positive constant c de-
pending only on the shape regularity of Th(Ω) such that for T ∈ Th(Ω)

(6.4) η2
y,T ≤ c

(
|y − yh|21,T + h2

T ‖u− uh‖2
0,T + osc2

T (f)
)

.

Proof. We have

(6.5) η2
y,T = h2

T ‖f + uh‖2
0,T ≤ 2 h2

T ‖fh + uh‖2
0,T + 2 osc2

T (f) .

Setting zh := (fh+uh)|T ϑT , applying (6.2a) and observing that ∆yh|T =
0, Green’s formula and the fact that zh is an admissible test function
in (2.3a) imply

h2
T ‖fh + uh‖2

0,T ≤ c1 h2
T (fh + uh + ∆yh, zh)0,T =(6.6)

= c1 h2
T

(
− a(yh, zh) + (f + u, zh)0,T +

+ (fh − f, zh)0,T + (uh − u, zh)0,T

)
=

= c1 h2
T

(
a(y − yh, zh) + ((fh − f) + (uh − u), zh)0,T

)
≤

≤ c1

(
h2

T |y − yh|1,T |zh|1,T + (h2
T ‖u− uh‖0,T +

+ hT oscT (f)) ‖zh‖0,T

)
.
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Now, by (6.2b),(6.2c) and Young’s inequality, (6.6) gives rise to

h2
T ‖fh + uh‖2

0,T ≤ 2c2
1

(
c3|y − yh|21,T + c2

2(h
2
T‖u− uh‖2

0,T +(6.7)

+ osc2
T (f))

)
+

1

2
h2

T ‖fh + uh‖2
0,T .

Combining (6.5) and (6.7), readily gives the assertion. ¤

Lemma 6.3. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of

(2.3a)-(2.3d) and (3.2a)-(3.2d) and let η
(1)
p,T , oscT (yd) be given by (4.2b)

and (4.5a), respectively. Then, there exists a positive constant c de-
pending only on the shape regularity of Th(Ω) such that for T ∈ Th(Ω)

(6.8) (η
(1)
p,T )2 ≤ c

(
|p− ph|21,T + h2

T ‖y − yh‖2
0,T + osc2

T (yd)
)

.

Proof. The assertion (6.8) follows using the same arguments as in the
proof of the previous lemma. ¤

Lemma 6.4. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of

(2.3a)-(2.3d) and (3.2a)-(3.2d) and let η
(2)
p,T and µT (ud) be given by

(4.2c) and (4.4a), respectively. Then, for T ∈ Th(Ω) there holds

(6.9) η
(2)
p,T ≤ ‖p− ph‖0,T + ‖σ − σh‖0,T + α

(
‖u− uh‖0,T + µT (ud)

)
.

Proof. We have

‖Mhph − ph‖0,T ≤ ‖p− ph‖0,T + ‖Mhph − p‖0,T .

Observing (2.3c) and (3.2c), for the second term on the right-hand side
we find

‖Mhph − p‖0,T ≤ ‖σ − σh‖0,T + α
(
‖u− uh‖0,T + µT (ud)

)
,

which readily gives (6.9). ¤

Lemma 6.5. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of
(2.3a)-(2.3d) and (3.2a)-(3.2d) and let ηy,T and ηy,E be given by (4.2a)
and (4.2d), respectively. Then, there exists a positive constant c de-
pending only on the shape regularity of Th(Ω) such that for E ∈ Eh(Ω)

(6.10) η2
y,E ≤ c

(
|y − yh|21,ωE

+ h2
E ‖u− uh‖2

0,ωE
+

2∑
ν=1

η2
y,Tν

)
.

Proof. We set ζE := (νE · [∇yh])|E and zh := ζ̃EϑE. Then, using
(6.2d), applying Green’s formula, observing that zh is an admissible
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test function in (2.3a), and taking advantage of (6.3a),(6.3b), we find

η2
y,E = hE‖νE · [∇yh]‖2

0,E ≤ c4 hE (νE · [∇yh], ζEϑE)0,E =

= c4 hE

2∑
ν=1

(ν∂Tν · [∇yh], zh)0,∂Tν = c4 hE

(
a(yh − y, zh) +

+ (u− uh, zh)0,ωE
+ (f + uh, zh)0,ωE

)
≤

≤ c4 h
1/2
E ‖νE · [∇yh]‖0,E

(
c7 |y − yh|1,ωE

+

+ c6(hE ‖u− uh‖0,ωE
+ (

2∑
ν=1

η2
y,Tν

)1/2)
)

.

An application of Young’s inequality results in (6.10). ¤

Lemma 6.6. Let (y, p, u, σ) and (yh, ph, uh, σh) be the solutions of

(2.3a)-(2.3d) and (3.2a)-(3.2d) and let η
(1)
p,T and ηp,E be given by (4.2b)

and (4.2e), respectively. Then, there exists a positive constant c de-
pending only on the shape regularity of Th(Ω) such that for E ∈
Eh(T ) , T ∈ Th(Ω)

(6.11) η2
p,E ≤ c

(
|p− ph|21,ωE

+ h2
E ‖y − yh‖2

0,ωE
+

2∑
ν=1

(η
(1)
p,Tν

)2
)

.

Proof. The assertion (6.11) can be verified along the same lines of proof
as in Lemma 6.5. ¤

7. The adaptive refinement process

The refinement of the triangulation Th(Ω) is based on a bulk criterion
that has been previously used in the convergence analysis of adaptive
finite element for nodal finite element methods [8, 13, 25] and for non-
conforming, mixed and edge element methods [10, 11, 12]. Here, we
adopt the bulk criterion for the finite element approximation of the dis-
tributed optimal control problem under consideration: Given the uni-
versal constants Θi, 1 ≤ i ≤ 4 with 0 < Θi < 1, the outcome is a set of
edges ME ⊂ Eh(Ω) and sets of elements Mη,T ,Mµ,T ,Mosc,T ⊂ Eh(Ω)
such that

(7.1) Θ1

∑

E∈Eh(Ω)

(η2
y,E + η2

p,E) ≤
∑

E∈ME

(η2
y,E + η2

p,E) ,
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Θ2

( ∑

T∈Th(Ω)

(η2
y,T + (η

(1)
p,T )2 + (η

(2)
p,T )2)

)
≤(7.2)

≤
∑

T∈Mη,T

(η2
y,T + (η

(1)
p,T )2 + (η

(2)
p,T )2) ,

(7.3) Θ3

( ∑

T∈Th(Ω)

µ2
T (ud)+

∑
T∈Auh

µ2
T (ψ)

)
≤

∑

T∈Mµ,T

(µ2
T (ud)+µ2

T (ψ)) ,

Θ4

( ∑

T∈Th(Ω)

osc2
T (yd) + osc2

T (f))
)
≤(7.4)

≤
∑

T∈Mosc,T

(osc2
T (yd) + osc2

T (f)).

We set
MT := Mη,T ∪Mµ,T ∪Mosc,T

and refine an element T ∈ Th(Ω) regularly (i.e., subdividing it into four
congruent subtriangles by joining the midpoints of the edges), if

• T ∈MT or
• at least two edges E ∈ Eh(T ) belong to ME.

Denoting by NT := {T ′ ∈ Th(Ω)|T ′ ∩ T 6= ∅} the set of all neighboring
triangles of T ∈ Th(Ω), we define the set

Fh(uh) := ∂A(uh) ∪ ∂I(uh) ,

where

∂A(uh) :=
⋃

{T ⊂ A(uh) | NT ∩ I(uh) 6= ∅} ,

∂I(uh) :=
⋃

{T ⊂ I(uh) | NT ∩ A(uh) 6= ∅} .

The set Fh(uh) represents a neighborhood of the discrete free boundary
between the discrete active and inactive sets A(uh) and I(uh). In order
to guarantee a sufficient resolution of the continuous free boundary, at
each refinement step, the elements T ∈ Fh(uh) are refined regularly.
Further irregular refinements by bisection are only performed in order
to guarantee that the refined triangulation is geometrically conforming.
The bulk criterion (7.1)-(7.4) is realized by the following greedy algo-
rithm:

Algorithm (Bulk Criterion):

Step 1. Initialization
Set

ME
0 := ∅ , MT,η

0 := Fh(uh) and k = 0 .
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Step 2. Iteration loop:

Step 2a. Check edge residuals
If

Θ1

∑

E∈Eh(Ω)

(η2
y,E + η2

p,E) ≤
∑

E∈ME

(η2
y,E + η2

p,E) ,

go to Step 2b, else select some

F ∈ Eh(Ω) \ME
k

such that

ηE,F = max
G∈Eh(Ω)\ME

k

(
ηy,G, ηp,G

)

and set
ME

k+1 := ME
k ∪ {F} , k := k + 1 .

Step 2b. Check element residuals
Set

MT,η
k :=

⋃
{T ∈ Th(Ω) | card

(
Eh(T ) ∩ME

k

)
≥ 2} .

If

Θ2

( ∑

T∈Th(Ω)

(η2
y,T + (η

(1)
p,T )2 + (η

(2)
p,T )2)

)
≤

≤
∑

T∈Mη,T

(η2
y,T + (η

(1)
p,T )2 + (η

(2)
p,T )2) ,

go to Step 2.c, else select some

ηT,S := max
T∈Th(Ω)\Mη,T

k

(
ηy,T , η

(1)
p,T , η

(2)
p,T

)

and set
Mη,T

k+1 := Mη,T
k ∪ {S} , k := k + 1 .

Step 2c. Check low order data residuals
Set

Mµ,T
k := Mη,T

k .

If

Θ3

( ∑

T∈Th(Ω)

µ2
T (ud) +

∑
T∈Auh

µ2
T (ψ)

)
≤

∑

T∈Mµ,T

(µ2
T (ud) + µ2

T (ψ)) ,

go to Step 2.d, else select some

ηT,S := max( max
T∈Th(Ω)\Mµ,T

k

µT (ud), max
T∈A(uh)\Mµ,T

k

µT (ψ))
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and set
MT,µ

k+1 := MT,µ
k ∪ {S} , k := k + 1 .

Step 2d. Check remaining data residuals
Set

Mosc,T
k := Mµ,T

k .

If

Θ4

( ∑

T∈Th(Ω)

osc2
T (yd) + osc2

T (f))
)
≤

≤
∑

T∈Mosc,T

(osc2
T (yd) + osc2

T (f)) ,

go to Step 3, else select some

ηT,S := max
T∈Th(Ω)\Mosc,T

k

(
oscT (yd), oscT (f)

)

and set
Mosc,T

k+1 := Mosc,T
k ∪ {S} , k := k + 1 .

Step 3. Final output
Output the set of marked edges and elements

ME := ME
k , MT := Mosc,T

k .

8. Numerical Results

We provide a documentation of numerical results illustrating the per-
formance of the adaptive finite element approximation for two represen-
tative distributed optimal control problems that have been considered
in [7] in the framework of primal-dual active set strategies as itera-
tive solvers for such kind of control problems. In particular, the sec-
ond example considers a variable obstacle and exhibits a lack of strict
complementarity. It thus features particular cases that have not been
included in the numerical examples presented in [20]. Moreover, the
numerical results clearly demonstrate that, at least at the beginning
of the refinement process, the data oscillations have to be taken into
account.

Example 1: Constant Obstacle
The data in the optimal distributed control problem (2.1a)-(2.1c) are
chosen as follows:

Ω := (0, 1)2 , yd := sin(2πx1) sin(2πx2)
exp(2x1)

6
,

ud := 0 , α := 0.01 , ψ := 0 , f := 0 .
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Figures 1 and 2 show a visualization of the optimal state, the optimal
adjoint state, the optimal control, and the optimal adjoint control,
respectively.

Figure 1. Example 1: Visualization of the optimal
state y (left) and the optimal adjoint state p (right)

Figure 2. Example 1: Visualization of the optimal con-
trol u (left) and the optimal adjoint control σ (right)

The initial simplicial triangulation Th0 was chosen according to a sub-
division of Ω by joining the four vertices resulting in one interior nodal
point and four congruent triangles. Since the obstacle ψ is zero, we
have ψh = 0 as well. Moreover, since also ud = 0 and f = 0, for the
data oscillations we have µh(u

d) = 0 and osch(f) = osch(ψ) = 0.

Figure 3 displays the adaptively generated triangulations after six (left)
and eight (right) refinement steps with Θi = 0.6, 1 ≤ i ≤ 4, in the bulk
criterion. The two areas at the upper left and the bottom right corner
represent the discrete inactive set I(uh), whereas the simply-connected
region in between is the discrete active set A(uh). The continuous free
boundary between the continuous active and inactive sets is indicated
by the black curves. We see that the continuous free boundary is ac-
curately resolved by the adaptive refinement process. Moreover, there
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Figure 3. Example 1: Adaptively generated grid after
6 (left) and 8 (right) refinement steps, Θi = 0.6

are local areas of pronounced refinement within the discrete active and
inactive sets. It should be emphasized that we are working with only
one grid for all variables (state, adjoint state, control, and adjoint con-
trol). Hence, the grid reflects regions of substantial change in all these
variables (cf. Figure 1 and Figure 2).

Table 1. Example 1: Convergence history of the adap-
tive FEM, Part I: Total discretization error and dis-
cretization errors in the state, adjoint state, control, and
adjoint control

l Ndof ‖|z− zH|‖ |y − yH|1 |p− pH|1 ‖u− uH‖0 ‖σ − σH‖0
1 13 2.27e-01 1.92e-02 1.48e-02 1.91e-01 2.11e-03
2 41 1.24e-01 1.34e-02 1.36e-02 9.59e-02 1.06e-03
3 126 6.19e-02 6.83e-03 7.86e-03 4.67e-02 5.48e-04
4 374 3.57e-02 3.93e-03 4.89e-03 2.65e-02 3.67e-04
5 968 2.50e-02 2.63e-03 3.34e-03 1.88e-02 2.50e-04
6 2553 1.77e-02 1.92e-03 2.33e-03 1.33e-02 1.57e-04
7 5396 1.25e-02 1.31e-03 1.67e-03 9.39e-03 1.17e-04
8 12318 8.71e-03 9.34e-04 1.17e-03 6.53e-03 7.58e-05
9 26887 6.17e-03 6.52e-04 8.38e-04 4.62e-03 5.66e-05

More detailed information is given in Table 1 - Table 4. In particular,
Table 1 displays the error reduction in the total error

‖|z− zH |‖ := (|y− yh|21,Ω + |p− ph|21,Ω + ‖u− uh‖2
0,Ω + ‖σ− σh‖2

0,Ω)1/2
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Table 2. Example 1: Convergence history of the adap-
tive FEM, Part II: Components of the error estimator
and data oscillations

l Ndof ηy ηp osch(yd)

1 13 7.73e-02 1.56e-01 1.12e-01
2 41 5.79e-02 8.29e-02 2.58e-02
3 126 3.72e-02 4.63e-02 8.06e-03
4 374 2.26e-02 2.92e-02 3.79e-03
5 968 1.53e-02 1.98e-02 1.86e-03
6 2553 1.11e-02 1.35e-02 8.74e-04
7 5396 7.51e-03 9.38e-03 4.39e-04
8 12318 5.35e-03 6.61e-03 2.24e-04
9 26887 3.68e-03 4.77e-03 1.13e-04

Table 3. Example 1: Convergence history of the adap-
tive FEM, Part III: Average values of the local estimators

l Ndof ηy,T ηy,E η
(1)
p,T η

(2)
p,T ηp,E

1 13 9.72e-03 6.07e-03 3.27e-02 5.33e-04 1.17e-02
2 41 3.15e-03 2.15e-03 7.16e-03 1.31e-04 3.04e-03
3 126 1.07e-03 8.33e-04 2.01e-03 3.89e-05 1.10e-03
4 374 3.69e-04 2.95e-04 6.58e-04 1.33e-05 3.86e-04
5 968 1.44e-04 1.19e-04 2.52e-04 5.22e-06 1.59e-04
6 2553 6.12e-05 5.42e-05 1.06e-04 2.21e-06 7.30e-05
7 5396 2.71e-05 2.55e-05 4.70e-05 9.82e-07 3.45e-05
8 12318 1.21e-05 1.22e-05 2.09e-05 4.36e-07 1.68e-05
9 26887 5.61e-06 5.92e-06 9.65e-06 2.02e-07 8.21e-06

Table 4. Example 1: Convergence history of the adap-
tive FEM, Part IV: Average values of the data oscilla-
tions, bulk criterion

l Ndof osc(yd) Mfb,T Mη,E Mη,T Mosc,T

1 13 2.53e-02 68.8 35.0 31.2 37.5
2 41 2.83e-03 42.2 13.6 15.6 25.0
3 126 4.47e-04 25.9 16.7 16.5 20.1
4 374 9.47e-05 16.3 16.8 14.4 6.1
5 968 2.53e-05 12.0 14.8 11.5 5.1
6 2553 7.18e-06 9.9 12.9 12.2 3.3
7 5396 2.28e-06 8.6 12.5 13.5 3.8
8 12318 6.90e-07 7.5 11.7 11.8 1.5
9 26887 2.31e-07 7.5 10.8 13.6 2.1

and the errors in the state, the adjoint state, the control, and the ad-
joint control, respectively. On the other hand, the actual components
of the residual type a posteriori error estimator are given in Table 2,
whereas Table 3 contains the average values of the local element and
edge contributions of the error estimator. Finally, Table 4 lists the
average values of the local data oscillation oscT (yd), T ∈ Th(Ω) and the
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percentages of elements and edges that have been marked for refinement
according to the bulk criterion. Here, Mfb,T ,Mη,T and Mosc,T stand for
the level l elements marked for refinement due to the resolution of the
free boundary, the element residuals, and the data oscillations, respec-
tively, whereas Mη,E refers to the edges marked for refinement with
regard to the edge residuals. On the coarsest grid, the sum of the per-
centages exceeds 100 %, since an element T ∈ Th(Ω) may satisfy more
than one criterion in the adaptive refinement process. The refinement
is initially dominated by the resolution of the free boundary, whereas
at a later stage edge and element residuals dominate.

The second example features a variable obstacle and is such that no
strict complementarity holds at the optimal solution.

Example 2: Variable Obstacle
The data in (2.1a)-(2.1c) have been chosen as follows:

Ω := (0, 1)2 , yd := 0 , ud := û + α−1 (σ̂ + ∆−2û) ,

ψ :=

{
(x1 − 0.5)8 , (x1, x2) ∈ Ω1

(x1 − 0.5)2 , otherwise
, α := 0.1 , f := 0 .

Here, û and σ̂ are given by

û :=

{
ψ(x1, x2) , (x1, x2) ∈ Ω1 ∪ Ω2

−1.01 ψ(x1, x2) , otherwise
,

σ̂ :=

{
2.25 (x1 − 0.75) · 10−4 , (x1, x2) ∈ Ω2

0 , otherwise

with Ω1 and Ω2 specified as follows

Ω1 := {(x1, x2) ∈ Ω | ((x1 − 0.5)2 + (x2 − 0.5)2)1/2 ≤ 0.15} ,

Ω2 := {(x1, x2) ∈ Ω | x1 ≥ 0.75} .

Figure 4. Example 2: Visualization of the optimal
state y (left) and the optimal adjoint state p (right))
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Figure 5. Example 2: Visualization of the optimal con-
trol u (left) and the optimal adjoint control σ (right))

Figures 4 and 5 display the optimal state y, the optimal adjoint state
p, the optimal control u = û, and the optimal adjoint control σ = σ̂,
respectively.

The initial simplicial triangulation Th0 has been chosen as in Example
1, whereas the parameters Θi in the bulk criterion have been specified
according to Θi = 0.7, 1 ≤ i ≤ 4. Figure 6 shows the adaptively
generated triangulations after six (left) and eight (right) refinement
steps. As in Example 1, we see that the continuous free boundary
F := {(x1, x2) ∈ Ω | x1 = 0.75} and the boundary layer at the left
vertical boundary of the computational domain (cf. Figure 4) are well
resolved by the adaptive solution process.

Figure 6. Example 2: Adaptively generated grid after
6 (left) and 8 (right) refinement steps, Θi = 0.7

Figure 7 displays the benefit of adaptive versus uniform refinement.
In particular, the total discretization error in the state, adjoint state,
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Figure 7. Example 2: Adaptive versus uniform refine-
ment, Θi = 0.6 (left) and Θi = 0.7 (right)

Table 5. Example 2: Convergence history of the adap-
tive FEM, Part I: Total discretization error and dis-
cretization errors in the state, adjoint state, control, and
adjoint control

l Ndof ‖|z− zH|‖ |y − yH|1 |p− pH|1 ‖u− uH‖0 ‖σ − σH‖0
1 13 5.36e-02 6.85e-03 1.04e-04 4.66e-02 8.86e-06
2 41 3.12e-02 3.83e-03 5.99e-05 2.74e-02 4.63e-06
3 102 2.10e-02 2.39e-03 4.10e-05 1.85e-02 2.29e-06
4 291 1.41e-02 1.58e-03 2.94e-05 1.24e-02 1.39e-06
5 873 9.31e-03 9.73e-04 1.93e-05 8.32e-03 8.41e-07
6 2325 6.33e-03 6.17e-04 1.22e-05 5.70e-03 5.60e-07
7 5816 4.38e-03 4.02e-04 7.62e-06 3.97e-03 3.76e-07
8 14524 3.03e-03 2.66e-04 5.26e-06 2.76e-03 2.42e-07
9 38364 1.97e-03 1.71e-04 3.42e-06 1.80e-03 1.54e-07

Table 6. Example 2: Convergence history of the adap-
tive FEM, Part II: Components of the error estimator
and data oscillations

l Ndof ηy ηp µh(ud) µh(ψ)

1 13 5.45e-02 5.76e-04 4.77e-02 3.93e-02
2 41 2.99e-02 3.30e-04 2.64e-02 2.06e-02
3 102 1.72e-02 2.71e-04 1.83e-02 1.34e-02
4 291 1.01e-02 1.80e-04 1.21e-02 8.62e-03
5 873 6.10e-03 1.21e-04 8.33e-03 5.49e-03
6 2325 3.93e-03 7.50e-05 5.74e-03 3.73e-03
7 5816 2.54e-03 4.84e-05 4.22e-03 2.34e-03
8 14524 1.65e-03 3.23e-05 3.08e-03 1.55e-03
9 38364 1.07e-03 2.17e-05 2.34e-03 1.02e-03

control, and adjoint control is shown as a function of the total number
of degrees of freedom.
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Table 7. Example 2: Convergence history of the adap-
tive FEM, Part III: Average values of the local estimators

l Ndof ηy,T ηy,E η
(1)
p,T η

(2)
p,T ηp,E

1 13 1.01e-02 2.50e-03 1.22e-04 2.19e-06 4.21e-05
2 41 2.52e-03 8.10e-04 3.05e-05 6.38e-07 1.43e-05
3 102 9.61e-04 3.46e-04 1.17e-05 2.69e-07 5.94e-06
4 291 3.24e-04 1.33e-04 3.95e-06 9.53e-08 2.13e-06
5 873 1.06e-04 4.73e-05 1.27e-06 3.14e-08 7.42e-07
6 2325 3.94e-05 1.94e-05 4.70e-07 1.19e-08 3.02e-07
7 5816 1.57e-05 8.19e-06 1.87e-07 4.75e-09 1.28e-07
8 14524 6.35e-06 3.55e-06 7.55e-08 1.94e-09 5.37e-08
9 38364 2.42e-06 1.44e-06 2.88e-08 7.45e-10 2.20e-08

Table 8. Example 2: Convergence history of the adap-
tive FEM, Part IV: Average values of the data oscilla-
tions, bulk criterion

l µT(ud) µT(ψ) Mfb,T Mη,E Mη,T Mµ,T

1 1.04e-02 8.88e-03 37.5 25.0 25.0 43.8
2 2.70e-03 2.26e-03 18.8 9.1 21.9 34.4
3 1.09e-03 8.86e-04 14.0 12.8 31.4 23.3
4 3.83e-04 3.10e-04 9.1 14.0 35.7 16.7
5 1.29e-04 1.03e-04 5.8 14.6 32.5 9.6
6 4.98e-05 3.97e-05 4.3 12.8 28.7 7.4
7 2.04e-05 1.61e-05 3.4 13.6 29.1 3.4
8 8.33e-06 6.51e-06 2.7 16.1 32.0 1.5
9 3.26e-06 2.51e-06 2.0 14.6 28.6 0.9

Table 5 - Table 8 contain the same information as Table 1 - Table 4
for Example 1. Since in Example 2, the obstacle ψ is not constant, the
data oscillation µh(ψ) has been considered. As far as the selection step
MARK is concerned, we again observe a pronounced refinement for
the resolution of the free boundary at the beginning of the refinement
process, whereas edge and element residuals dominate at a later stage.

Acknowledgments. The first two authors acknowledge the support
by the NSF under Grant No. DMS-0411403. The fourth author ex-
presses his thanks for support by the Bavarian Government within the
elite curriculum TOPMATH.

References

[1] M. Ainsworth and J.T. Oden (2000). A Posteriori Error Estimation in Finite
Element Analysis. Wiley, Chichester.

[2] I. Babuska and W. Rheinboldt (1978). Error estimates for adaptive finite ele-
ment computations. SIAM J. Numer. Anal. 15, 736–754.



AFEM FOR DISTRIBUTED CONTROL PROBLEMS 25

[3] I. Babuska and T. Strouboulis (2001). The Finite Element Method and its
Reliability. Clarendon Press, Oxford.

[4] W. Bangerth and R. Rannacher (2003). Adaptive Finite Element Methods
for Differential Equations. Lectures in Mathematics. ETH-Zürich. Birkhäuser,
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