
“oldenburg” — 2009/2/18 — 23:21 — page 281 — #1

6/2 (2008), 281–288

On an analogy between spreadsheets

and dynamic geometry environments

Reinhard Oldenburg

Abstract. There is a strong analogy between the fundamental way of operation of spread-
sheet programs (SP) and dynamics geometry environments (DGE). We explain this
analogy, demonstrate it in examples and consider didactical consequences.

Key words and phrases: dynamic geometry, spreadsheet, functional thinking.

ZDM Subject Classification: N80, U70.

1. Introduction

Spreadsheets and DGEs are the two software categories most often used in

secondary mathematics education. Interestingly, the history of these two kinds

of software is completely different. Spreadsheets were invented in the end of

the 1970s on computers without graphical user interface (GUI) and the intended

applications were in commercial and, to a lesser extend, scientific fields. The

application of this software in schools had never been in the focus of software

developers. The case of DGEs is quite opposite: These programs have been

developed explicitly as teaching and learning tools and they evolved hand in

hand with GUI progress. It is a remarkable fact that up to date the markets for

educational geometry programs and professional computer aided design software

are completely separated.

Nevertheless, our analysis will show that at a fundamental level SPs and

DGE share a common computational model, namely the model of functional

programming. Hence both kinds of software support a similar functional mode

Copyright c© 2008 by University of Debrecen

“oldenburg” — 2009/2/18 — 23:21 — page 282 — #2

282 Reinhard Oldenburg

of thinking and share a common approach to computer based problem solving.

Furthermore, both kinds of programs are rather weak in supporting relational

thinking and both kinds provoke similar student errors.

2. The analogy between DGEs and spreadsheets

The central concept that links the two program categories is the concept of

function as found in functional programming languages. That is, a function is

a computable map from one computer representable set to another. Given an

input, it calculates a unique output.

Spreadsheets

Gieding [1] explained in detail that setting up a spreadsheet amounts to

composing a functional program. The functions are specified by formulas in the

cells. Thus a formula like = A1 + B1 in cell C1 sets up a function which takes

its input values from cells A1, A2, and puts the result in C1. In more common

mathematical language this may be written as C1 = f(A1, B1), where f is the

addition function. Function composition is realized by taking this output as the

input of another function: The formula = A1∗C1 in D1 may be represented

as a function D1 = g (A1, C1) which, when unfolded is the composition D1 =

g (A1, f (A1, B1)). Deciding alternatives is done using the spreadsheet function

‘if’ and recursion can be realized by “hand” by filling out a formula down a

spreadsheet column.

As the user sets up the spreadsheet, each cell he uses gets one of the following

three roles:

• Input cells: The cells where the user enters arbitrary data.

• Intermediate cells: Such cells carry information over to other calculations but

are not interesting in them selves.

• Output cells: Here the user reads of the result of the calculation.

The latter two classes of cells update their values when one of the cells of the first

class is changed by the user. Values can only be inserted into cells of the first

class without destroying the functional program.

In the process of composing a spreadsheet the user has set up a topologically

sorted directed graph on the set of all cells as vertices. A direct arc goes from one

“oldenburg” — 2009/2/18 — 23:21 — page 283 — #3

On an analogy between spreadsheets and dynamic geometry environments 283

cell u to a cell v iff u is used as an input in v’s formula. Many SPs offer the option

to show this graph as means to understand dependencies in the spreadsheet.

The functional program specified in that way is carried out every time the

user changes a value in an input cell. Then the spreadsheet program calculates

recursively all dependent cells.

Dynamic geometry

When we look at DGEs we see geometric objects instead of numbers, but

internally these objects are stored analytically by their coordinates. Even more

important, the geometric objects themselves stand in functional relationships sim-

ilar to the one described above. Just as in SPs all objects fall into one of three

classes:

• Input objects: These are the basic objects that can be dragged with the

mouse.

• Intermediate objects: These objects are used in a geometric construction, but

are not important to the user, therefore they may be hidden.

• Output objects: These are the objects that the user wants to see.

The latter two classes of objects update their values when one of the objects of

the first class is changed by the user. The user can drag only objects of the first

class.

Just as the formulas in a spreadsheet define a directed graph so does the

construction in an DGE. There is a defined direction of the flow of information.

If a new point M is constructed as the midpoint of A and B, then the position

of M is calculated as a function M = f(A, B). The flow of information is from

the input A, B to the output M .

The functional program thus encoded in the construction is executed each

time the user moves one of the basic objects.

“oldenburg” — 2009/2/18 — 23:21 — page 284 — #4

284 Reinhard Oldenburg

Table 1: Analogy between SP and DGE

SP DGE

strong analogies concerning software functionality

Cells containing numbers entered by the
user

basic objects

Cells containing formulas dependent (i.e. constructed) objects

change the number in a cell drag a basic object

recalculation of dependent cells accord-
ing the functional relationship

recalculation of dependent objects ac-
cording the functional relationship

slider slider

if Boolean points

strong analogies concerning software restrictions

unable to specify output values (note
that the solver tool of Excel does this)

unable to drag dependent object

unable to handle recursive cell reference unable to identify a constructed point
and a basic point

vague analogies

automatic formula insertion macros

missing analogies

missing: way to store the values of a cell
while another cell varies

locus

display dependency graph as path to
precursor

missing: illustration of the dependency
graph

missing: restrictions among several in-
put cells

points on object

random numbers missing: “random walk” of basic objects

broken analogies

- segments of fixed length

Example: Circumcenter of a triangle

A typical task for a DGE is to construct the circumcenter of a triangle. It is

the intersection of the orthogonal bisectors of the triangle’s sides. As explained,

doing such a construction in a DGE is equivalent to setting up a functional pro-

gram and, of course, the same functional program can be defined in a spreadsheet.

“oldenburg” — 2009/2/18 — 23:21 — page 285 — #5

On an analogy between spreadsheets and dynamic geometry environments 285

To keep things in this example as simple as possible, we use real x and y coor-

dinates for points and the parameterization y = mx + b for lines, although this

excludes vertical lines.

Figure 1. A spreadsheet calculation the circumcenter

The program is organized as follows: Input data are the x- and y-coordinates

of the points A, B, C defining the triangle. These coordinates are contained in

cells B2 : C4. The x and y coordinates of C can be altered by sliders. Of course

one could add sliders for the coordinates of A and B as well. The midpoint of A

and B, MAB, as well as the other midpoints are calculated easily.

Next, we determine the coefficients m and b of the three lines through AB,

BC, and AC respectively. From this, the coordinates of the orthogonal bisectors

are calculated and finally the point of intersection is found. All these points are

displayed in a diagram. Moving the slider shows how the circumcenter moves in

functional response.

Of course, the functional program can as well be carried out in any program-

ming language. Here we use the computer algebra system MuPAD:
Midpoint of two points:

“oldenburg” — 2009/2/18 — 23:21 — page 286 — #6

286 Reinhard Oldenburg

Figure 2. The formulas in the spreadsheet of Fig. 1

MP:=(P,Q)−>[(P[1]+Q[1]) / 2 , (P[2]+Q[2]) / 2]

Line through two points. The result is a list of slope and y-axes-intersection:
g2P:=(P,Q)−>[(Q[2]−P[2]) / (Q[1]−P[1]) ,P[2]−P[1] ∗ (Q[2]−P[2]) / (Q[1]−P [1])]

Orthogonal line through point P to line g:
OL:=(g ,P)−>[−1/g [1] ,P[2]−P[1]∗(−1/ g [1])]

Point of intersection of two lines:

LLIS :=(g , h)−>[(h[2]−g [2]) / (g [1]−h [1]) , g [1] ∗ (h[2]− g [2]) / (g [1]−h [1])+ g [2]]

Circumcenter:

U:=LLIS (OL(g2P(A,B) ,MP(A,B)) ,OL(g2P(B,C) ,MP(B,C)))

Insert sample values and display:
AA:= [1 , 2] :BB:= [5 , 3] :CC:= [2 , 8] : f l o a t (eva l (subs (U,A=AA,B=BB,C=CC)))
p l o t (p l o t : : Po intLi s t2d ([AA,BB, [cx , 8] ,
LLIS (OL(g2P(AA,BB) ,MP(AA,BB)) ,OL(g2P(BB, [cx , 8]) ,MP(BB, [cx , 8])))] ,
cx =1 . 5 . . 4 . 5) , S ca l i ng=Constrained)

In the resulting graphical representation one can even use a slider to move

point C. To move another point defining the triangle one has to modify the plot

command but not the construction.

Broken analogy

The analogy explained so far is, as noted in Table 1, not perfect. There

are some DGEs that offer the possibility to construct segments of a fixed length.

Such constructions break the analogy because they establish a relation, not just a

function between the coordinates of the end points. Typically, the software then

runs in several situations where such objects are difficult to handle und most

DGEs do not support them at all.

“oldenburg” — 2009/2/18 — 23:21 — page 287 — #7

On an analogy between spreadsheets and dynamic geometry environments 287

The analogy of a segment of fixed length in a SP would consist of four cells

for the coordinates of the two endpoints where the user can enter numbers in any

of the fields but nevertheless entering a number would change the other numbers.

Such a behavior is difficult to implement (but take a look at the program

TKSolver, www.uts.com).

3. Didactical consequences

DGEs and SPs are powerful tools because they are domain specific realiza-

tions of the idea of functional programming. From a didactical perspective this

means that both tools can be used to support the development of functional

thinking because they offer examples for and applications of this idea [3].

The fact that both software categories are build on the same principles can

be used by establishing in classroom a language that stresses this. One should

thus speak about dependent and independent variables resp. objects in both

environments. Moreover, problem solutions can in both cases be expressed in

verbal form, either as a construction description in the case of DGE or as a

calculation description in the case of SP.

When working in with of these software environments the students have to

design problem solutions that take into account the directed nature of the flow

of information in such systems. To support this, one may use informal graphical

planning to sketch the order of calculations resp. constructions. An important

step is to refine such sequences until each calculation can be done by elementary

calculations or constructions.

When the teacher supplies a spreadsheet or a construction as an electronic

worksheet to allow students to explore phenomena they (the students) will op-

erate in the same mode: They study the variation of output objects depending

functionally on certain input values. This is quite similar to certain physical ex-

periments, thus the didactics of science education should be consulted to gain

insight in the learning process in such cases.

Naturally, the analogy also carries over to student errors. When using DGEs

students often fail to come up with proper constructions. They produce a figure

which visually seems to have the required property but does not preserve it when

dragging. The same behavior has been observed when students compose spread-

sheets: E.g. some students calculate certain results in their heads and insert the

results rather than the formulas into the cells.

In DGEs students sometimes don’t understand that they can’t bind a con-

structed point to a line or a circle [2]. The analog situation with SPs is that

“oldenburg” — 2009/2/18 — 23:21 — page 288 — #8

288 R. Oldenburg : On an analogy between spreadsheets and dynamic geometry environments

students insert a value into cell that should be calculated by a formula. This does

not provoke an error message but it damages the functional program. In both

cases the error can be detected because the resulting construction/calculation

does not behave properly under variation of the input data.

The common functional basis has some disadvantages: Relational thinking

is not supported by these tools. It is not possible to constrain a construction by

a constraint. E.g. in a DGEs you can’t add a posteriori the condition that two

lines should be orthogonal if this has not been arranged from the beginning, and

in a SP it is not possible to prescribe certain equations or inequalities between

cell values. This restricts the value of the tool for exploration. A partial solution

is the solver tool available as a plug-in in SP Excel. For geometry systems a

complete redesign is necessary to overcome the functional approach [4].

This last remark hints at the possibility that this analogy may inspire software

developers. The table above shows that not all good ideas from one world have

been carried over to the other world yet.

Beyond the functional framework the question arises, whether relational

thinking is supported well enough by current technology based learning envi-

ronments.

References

[1] M. Gieding, Programming by example – Überlegungen zu Grundlagen einer Didaktik

der Tabellenkalkulation, Mathematica Didactica, 2003, 42–72.

[2] R. Hölzl, “Die konstruierten Punkte noch binden!” – Schülervorstellungen von der

Cabri-Geometrie, in: H. Krautschitsch und W. Metzler: Anschauliche und Experi-

mentelle Mathematik II. Wien: hpt., 1994.

[3] K. Krüger, Erziehung zum funktionalen Denken, Berlin, 2000.

[4] R. Oldenburg, Bidirektionale Verknüpfung von Computeralgebra und dynamischer
Geometrie, Vol. 26, Journal für Mathematikdidaktik, 2005, 249–273.

REINHARD OLDENBURG

GOETHE UNIVERSITY FRANKFURT

SENCKENBEGANLAGE 9

60325 FRANKFURT

GERMANY

E-mail: oldenbur@math.uni-frankfurt.de

(Received September, 2007)

