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Abstract

This paper investigates natural, left-, right-, and total-covering test surmise re-
lations on a set of tests partitioning the domain of a knowledge structure. The
properties of reflexivity, transitivity, and antisymmetry are examined. In particular,
it is shown that the property of antisymmetry is satisfied for the left-, right-, and
total-covering test surmise relations when the underlying knowledge structure is
discriminative and the domain is finite. This paper also investigates natural, I-, r-,
and c-type test knowledge structures. The concepts of a test surmise relation and
test knowledge structure respectively generalize the concepts of a surmise relation
and knowledge structure in knowledge space theory. The main thrust of this paper
is an examination of characterizations of these models. Unlike at the level of items,
at the level of tests, the test surmise relations and test knowledge structures may
not necessarily be (uniquely) derived from each other. (a) Each can be characterized
by the underlying surmise relation and knowledge structure, (b) the test surmise
relations can be characterized by the test knowledge structures, and (c) the test
knowledge structures can, at least under some condition, be characterized by the
test surmise relations.
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1 Introduction
1.1 Motivation

1 This work belongs to the field of knowledge space theory (KST) which
was introduced by Doignon and Falmagne (1985, 1999). We recapitulate some
of the relevant basic concepts of KST in Section 2. In this theory, a body
of information (e.g., high school mathematics) is represented by a set @) of
(dichotomous) items giving a representative coverage of the information body.
On the set @, two types of models are considered, knowledge structures and
surmise relations. Knowledge structures and surmise relations are defined as
families of subsets of () containing at least the empty set () and @, respectively,
as reflexive and transitive binary relations on (). These models have been
successfully utilized, for instance, for the adaptive assessment and training of
knowledge (e.g., Doignon & Falmagne, 1999).

Often it is desirable to partition a body of information into special sub-bodies:

1. In curriculum development (e.g., Albert & Hockemeyer, 1999), for instance
in high school mathematics, the entire body of information (represented by

I Further motivation for the research reported in this paper can be found in Sub-
sections 7.2 and 7.3.



@) can be partitioned into such sub-bodies (represented by subsets of @)) as
algebra, analysis, and geometry. An analysis of a student’s knowledge at the
level of subsets of items (tests) is useful because there are natural breaks
in an academic subject, in particular in high school mathematics, around
which curricula can be arranged. Work is also being done in the development
of efficient tutoring systems that improve curriculum efficiency (e.g., Albert
& Hockemeyer, 1999), to which the present study might be applied as well.

2. In the case of the well-established computer educational tutorial system
ALEKS 2 | the study of tests is motivated by the following factors: (a) instruc-
tors moving through standard, entrenched curricula are looking to have their
students work on ‘units’ or ‘modules’ of course material, and the software
has to be able to accommodate this; (b) any ‘global’ assessment on the en-
tire domain must take into account the performance on these modules; and
(c) the underlying surmise relation (at the level of individual items) may
be too small in cardinality—there may be too few inferences possible—to
allow for a global assessment of appropriate length, so assessments must be
‘pieced together.’

All of this is to say that the problem of dividing a curriculum, that is, the
study of tests, even at the level of a high school course such as geometry
(and not the entire high school curriculum), is a real one, and in particular,
it is one that requires an eventual consideration of probabilistic, as well as
combinatorial, properties.

1.2 Brief conceptual overview of the paper

This paper considers combinatorial, not probabilistic, properties; see Section
7 for a discussion of further extensions and modifications of the present ap-
proach, and a concluding resume. We investigate some possible relationships
among ‘tests’ of items in a knowledge structure, with a test being an element
of a partition of the domain of the knowledge structure.

Surmise relations among tests, based on the underlying surmise relation among
items, are examined. In particular, relations defined as follows are discussed:
For two tests A and B,

(B, A) is in the relation if and only if (iff) there is some b € B that is a
prerequisite for some a € A;
(B, A) is in the relation iff each a € A has some prerequisite b € B;
(B, A) is in the relation iff each b € B is a prerequisite for some a € A;
(B, A) is in the relation iff each a € A has some prerequisite b € B and each
S

b € B is a prerequisite for some a € A.

2 Assessment and LEarning in Knowledge Spaces: http://www.aleks.com/.



Given a partition made up of tests for a knowledge structure, one can obtain
a ‘test knowledge structure’ via intersections of the tests with the original
states in the underlying knowledge structure. We investigate different types
of test knowledge structures, which differ according to whether the student is
required to know some or all of the items in the intersection, to be assigned a
certain state.

The main thrust of this paper is an examination of characterizations of the test
surmise relations and test knowledge structures. Unlike at the level of items
(cf. Birkhoft’s, 1937, Theorem 8), at the level of tests, the test surmise rela-
tions and test knowledge structures may not necessarily be (uniquely) derived
from each other, let alone be set in a one-to-one correspondence. However, (a)
each can be characterized by the underlying surmise relation and knowledge
structure at the level of items, (b) the test surmise relations can (not nec-
essarily uniquely) be characterized by the test knowledge structures, and (c)
the test knowledge structures can at least ‘partly’ (under some condition) be
characterized by the test surmise relations.

This paper extends the work by Brandt, Albert, and Hockemeyer (2003). The
examined test surmise relations and test knowledge structures respectively
generalize the common surmise relation and knowledge structure models at
the level of items in KST.

1.8 Structure of the paper

Basic concepts of KST are reviewed (Section 2). The natural, left-, right-, and
total-covering test surmise relations are discussed (Section 3). The properties
of reflexivity, transitivity, and antisymmetry are investigated; in particular, it
is shown that the property of antisymmetry is satisfied for the left-, right-, and
total-covering test surmise relations in the case of an underlying discriminative
knowledge structure on a finite domain. The natural, 1-, r-, and c-type test
knowledge structures are discussed (Section 4). Characterizations of the test
surmise relations are obtained (Section 5). The test surmise relations can
(not necessarily uniquely) be characterized by the test knowledge structures.
Characterizations of the test knowledge structures are obtained (Section 6).
Contrary to the test surmise relations, the test knowledge structures may
not necessarily be characterized by the test surmise relations. However, a
sufficient condition is proposed under which some characterizations of the
test knowledge structures via the test surmise relations do hold. This paper
ends with a discussion containing a summary, some suggestions for further
extensions and modifications, and a concluding resume (Section 7).



2 Basic concepts of knowledge space theory

In 1985, Jean-Paul Doignon and Jean-Claude Falmagne introduced knowledge
space theory (KST; Doignon & Falmagne, 1985). Most of KST is presented
in the monograph ‘Knowledge Spaces’ by Doignon and Falmagne (1999); see
also Doignon and Falmagne (1987), Falmagne (1989), and Falmagne, Kop-
pen, Villano, Doignon, and Johannesen (1990). For application examples, see
in particular Albert and Lukas (1999). This section briefly reviews some of
the relevant basic concepts of KST; for details, refer to the afore mentioned
references.

2.1 Knowledge structures and spaces

A general concept is that of a knowledge structure.

Definition 1 A knowledge structure is a pair (Q,K), with Q@ a non-empty,
finite set, and K a family of subsets of Q containing at least ) and Q. The set
Q@ is called the domain of the knowledge structure. The elements q € Q) and
K € K are referred to as items and knowledge states, respectively. One also
says that IC is a knowledge structure on ().

The general definition of a knowledge structure allows for infinite item sets as
well. Throughout this paper, however, Q is assumed to be finite.

Knowledge spaces are special knowledge structures.

Definition 2 A knowledge structure (Q,K) is called a knowledge space iff K
is closed under union, that is, for all F C IC, UF € K. A knowledge space
(Q, K) is called quasi ordinal iff K is closed under intersection, that is, for all

FCK, NFek.

2.2 Discriminativity

Next the concept of a notion is defined.

Definition 3 Let (), K) be a knowledge structure. For any q € Q, let IC; ==
{K € K:q€ K} denote the set of all knowledge states containing q. The set
¢ ={re@: K, =K,}, which consists of all items that are contained in
exactly the same knowledge states as item q, is called a notion.

In other words, an item r € ) belongs to the notion ¢* (¢ € Q) iff every
knowledge state which contains ¢ also contains r, and vice versa. Stated dif-



ferently, whenever a person (latently) masters item ¢, she/he will also be able
to master item r, and vice versa. In testing the knowledge of an examinee,
only one of these two questions needs to be asked. Two items belonging to the
same notion are called equally informative.

This leads to the concept of discriminativity.

Definition 4 A knowledge structure with each of its notions a singleton is
called discriminative. A discriminative quasi ordinal knowledge space is called
an ordinal knowledge space.

The next lemma states that the notions of a knowledge structure form a
partition of the domain, and that any knowledge structure determines a cor-
responding discriminative knowledge structure.

Lemma 5 Let (Q,K) be a knowledge structure.

1. The set Q* of all notions is a partition of Q, that is, Q* is a family of
pairwise disjoint (and non-empty) subsets of Q@ with |JQ* = Q.

2. A discriminative knowledge structure can be derived from (Q, K) as follows.
Form the set Q* of all notions in (Q,KC) and define K* := {K* : K € K}
where K* := {q¢* : ¢ € K} (K € K). Then (Q*,K*) is a discriminative
knowledge structure, called the discriminative reduction of (Q,K). O

2.8  Surmise relations and Birkhoff’s theorem

Any knowledge structure determines a quasi order, its surmise relation.

Definition 6 Let (Q,K) be a knowledge structure. The relation S C @Q x Q
defined by rSq <= r € NK, (¢.7 € Q) is called the surmise relation of the
knowledge structure.

In other words, rSq iff r is an element of all knowledge states containing q.
Stated differently, each person mastering problem ¢ is also able to master
problem r (Figure 1). Item r is a prerequisite for item ¢, in the sense that the
mastery of r is a necessary condition for the mastery of ¢. Someone who is not
able to master item r is also not able to master item q.

[Figure 1]

The next lemma summarizes properties of the surmise relation associated with
a knowledge structure.

Lemma 7 Let (Q,K) be a knowledge structure. The surmise relation S as-



sociated with the knowledge structure is a quasi order, that is, a reflexive,
transitive binary relation on Q. If (Q, K) is discriminative, S is even a partial
order, that is, S also fulfills the property of antisymmetry.

Proof. For any two items ¢,r € @), it holds rSq <= K, D K,. O

Birkhoff’s (1937) theorem provides a linkage between quasi ordinal knowledge
spaces and surmise relations on an item set.

Theorem 8 (Birkhoff-Theorem) There ezists a one-to-one correspondence
between the family of all quasi ordinal knowledge spaces IC on a domain @, and
the family of all surmise relations S on Q. Such a correspondence is defined
through the two equivalences (p,q € Q, K C Q):

pSq <= [‘V’KGIC:{QEK:HDGKH,
Kek +— [V(qu):{quipeKH.

Under this correspondence ordinal knowledge spaces bijectively correspond to
partial orders.

Proof. See Doignon and Falmagne (1999, pp. 39-40, Theorem 1.49). O

3 Test surmise relations

In KST single items and surmise relations among them are considered. This
is generalized in this section which discusses test surmise relations, binary
relations among subsets, tests, of items. In fact, ‘test surmise relation’ is a
generic term which stands for four types of binary relations among tests, the
natural, left-) right-, and total-covering test surmise relations.

3.1 Tests

As mentioned in Subsection 1.1, it is often desirable to partition a body of
information (represented by a domain () into special sub-bodies. This can be
formalized by a partition T of the domain @, that is, 7 is a family of subsets
of @ such that (a) @ =UT, (b) T # 0 forall T € T, and (¢) TNT" = for
al T, 7 eT, T#T'.

Definition 9 Let (Q,K) be a knowledge structure and T a partition of Q.
The elements of T are called tests.



A notation that is used when defining test surmise relations:

Definition 10 Let (Q, K) be a knowledge structure, and let T be a set of tests
in@. Foranyq e Q and B € T, let B,:= BNNK, (K, ={K €K :qe K}).

3.2  Natural test surmise relations

The first type of binary relation among tests is the natural test surmise rela-
tion.

Definition 11 Let (Q,K) be a knowledge structure, and let T be a set of tests
in Q. The binary relation S CT x T on T defined by (A,B € T)

BSA:«= |JacA:B,#0

is called the natural test surmise relation (NTSR) associated with (Q,K) and
7.

NTSRs are interpreted as follows. From a person’s mastery of an appropriate
item in test A, one can surmise the mastery of a non-empty subset of items in
test B (Figure 2). Mastering these ‘test-B’ items is a prerequisite for mastering
this ‘test-A’ item. In other words, from a particular mastery on test A a
minimum mastery on test B can be surmised.

[Figure 2]

The next corollary is a consequence of Definitions 6 and 11, and it states that
the NTSR among tests can be characterized by (derived from) the underlying
surmise relation among items.

Corollary 12 Let (Q,K) be a knowledge structure and T a set of tests in
Q. Let S be the surmise relation (among items) associated with (Q,K). Let
S be the NTSR (among tests) associated with (Q,K) and T. Then, for any

ABET, itholds BS A<= [Fac A€ B:bSal. O
Next the properties of NTSRs are summarized.

Proposition 13 Natural test surmise relations are reflexive, but they are nei-
ther transitive nor antisymmetric in general.

Proof. Reflexivity: Let A € T. Since A # (), there is an element a € A. Then
a€ ANNK, =: A,. Thus A, # 0. This proves A S A (Figure 3).

[Figure 3]



Transitivity: Consider on Q := {a,b, ¢,d} the quasi order S C Q x Q,3

S = Ngxo U{(c,a),(d,b)}.
(According to Theorem 8, this quasi order uniquely corresponds to a knowl-
edge structure, in the sense of Definition 6.) Consider the partition 7 con-

sisting of the tests A := {a}, B := {b,c}, and C := {d}. For the NTSR
SCTxT,itholds CSBand BS A, butC‘?A(Flgureél)

[Figure 4]
Antisymmetry: Consider on @ := {a, b, ¢, d} the quasi order S C @ x Q,
S = Baxq U{(d,a), (b)),
Consider the family 7 of tests A := {a,b} and B := {c,d}. For the NTSR S,
it holds BS A and A S B, but A # B (Figure 5).
[Figure 5]
O

Hence natural test surmise relations are not necessarily quasi orders. In par-
ticular, they are not necessarily partial orders. In the following subsections,
however, we describe types of binary relations among tests which are quasi
orders, the left-, right-, and total-covering test surmise relations.

3.3 Left-covering test surmise relations

Definition 14 Let (Q,K) be a knowledge structure, and let T be a set of tests
in Q. The binary relation S; C 7T x T on T defined by (A,B € 7T)

BS A= |Vac A: B, #0

is called the left-covering test surmise relation (LTSR) associated with (Q, K)
and T .

LTSRs are interpreted as follows. From the mastery of any item in test A, one
can surmise the mastery of a non-empty subset of items in test B (Figure 6).
Mastering these ‘test-B’ items altogether is a prerequisite for mastering the

3 Let Agxg == {(z,y) € Q@ x Q : z =y} denote the diagonal in Q x Q.

10



entire test A. In other words, from any mastery on test A a minimum mastery
on test B can be surmised.

[Figure 6]

The next corollary is a consequence of Definitions 6 and 14, and it states that
the LTSR among tests can be characterized by (derived from) the underlying
surmise relation among items.

Corollary 15 Let (Q,K) be a knowledge structure and T a set of tests in
Q. Let S be the surmise relation associated with (Q,K). Let S; be the LTSR
associated with (Q, ) and T . Then, for any A, B € T, it holds B S§; A <=

Va € A3b€ B : bSal. O
Next the properties of LTSRs are summarized.

Proposition 16 Let (Q,K) be a knowledge structure, and let T be a set of

tests in Q. Let S and S; denote the NTSR and LTSR associated with (Q, K)
and T, respectively. It holds:

1. Sl - S,’
2. 8, is reflexive and transitive;
3. S, is not necessarily antisymmetric.

Proof. 1.Forany BS; A (A, B € T) and a € A, it holds B, # 0.

2. Reflexivity: Let A€ 7 and a € A. Thena € ANNK, =: A,, and A, # 0.
Transitivity: Let C S, B and B S; A (A,B,C € T). Let a € A. Since
B S, A, it holds ) # B, := BNNK,. Let b € B,. Since C' S; B, it holds
() # Cy := C NN Kp. This implies:

P#£CnNNKyCcCnNKa =

This is illustrated in Figure 7.

[Figure 7]

3. Let @ = {a,b}, K := {0,Q}, and T := {A = {a},B = {b}} Then
AS, Band BS; A, but A+ B. O

3.4 Right-covering test surmise relations

Right-covering test surmise relations are another type of binary relations
among tests which are quasi orders.

11



Definition 17 Let (Q,K) be a knowledge structure, and let T be a set of tests
in Q. The binary relation S, CT x T on T defined by (A,B € T)

BS, A= [U Ba:Bl

a€A

is called the right-covering test surmise relation (RTSR) associated with (Q, K)
and T .

RTSRs are interpreted as follows. From the mastery of the entire test A the
mastery of the entire test B can be surmised. The mastery of the entire test
B is a prerequisite for the mastery of the entire test A (Figure 8).

[Figure 8]

The next corollary is a consequence of Definitions 6 and 17, and it states that
the RTSR among tests can be characterized by (derived from) the underlying
surmise relation among items.

Corollary 18 Let (Q,K) be a knowledge structure and T a set of tests in
Q. Let S be the surmise relation associated with (Q,K). Let S, be the RTSR
associated with (Q,K) and T. Then, for any A,B € T, it holds B S, A <=

Vb€ BIa€ A:bSal. 0
Next the properties of RT'SRs are summarized.

Proposition 19 Let (Q,K) be a knowledge structure, and let T be a set of
tests in Q. Let S and S, denote the NTSR and RTSR associated with (Q,K)
and T, respectively. It holds:

1.8, CS;
2. S, is reflexive and transitive;
3. Sr 18 not necessarily antisymmetric.

Proof. 1.Let BS, A (A,B e T). Since Uyes B. = B and B # (), there exists
an element a € A with B, # 0.

2. Reflexivity: For any A € 7, it holds U,cs Aq = A.

Transitivity: Let C S, B and B S, A (A,B,C € T). Let ¢ € C. Since
Urer C» = C, there is an element b € B with ¢ € Cj. Since U,es B, = B,
there is an element a € A with b € B,. Hence K, C K, C K., and it follows
that ce CNNK. C CNNOK, =: C, (Figure 9).

[Figure 9]

12



3. Let Q = {a,b}, K := {0,Q), and T := {A — {a},B = {b}}. Then
AS, Band BS, A, but A+ B. O

3.5 Total-covering test surmise relations

The intersection of the LTSR and the RTSR is the total-covering test surmise
relation.

Definition 20 Let (Q,K) be a knowledge structure, and let T be a set of
tests in Q. Let S; and S, be the LTSR and RTSR associated with (Q, K) and
T, respectively. The binary relation St = Sl N Sr on T s called the total-
covering test surmise relation (TTSR) associated with (Q,K) and T .

TTSRs combine both the interpretations of LTSRs and RTSRs (Figure 10).
[Figure 10]

From Corollaries 15 and 18, it follows that the TTSR S; can be characterized
by (derived from) the underlying surmise relation S (A, B € 7T):

BS, A+ UvaeAabeB:bsa] and [VbeBaaeA:bsaH.

Moreover, Propositions 16 and 19 imply that (a) the TTSR is a subset of the
LTSR, RTSR, and NTSR, (b) the TTSR is reflexive and transitive, and (c)
the TTSR is not necessarily antisymmetric.

3.6 Investigating the property of antisymmetry for the test surmise relations

Lemma 7 states that the surmise relation associated with a discriminative
knowledge structure is a partial order, that is, it satisfies the property of
antisymmetry. In this subsection, we investigate this property for the intro-
duced test surmise relations. It is shown that discriminativity of the underlying
knowledge structure (item level) can imply the property of antisymmetry for
the associated left-, right-, and total-covering test surmise relations. This is
definitely true for the case of a finite domain. If the domain is not finite,
discriminativity of the underlying knowledge structure may not imply the
property of antisymmetry for the respective test surmise relations. Finally,
natural test surmise relations are not antisymmetric in general, even in the
case of a discriminative knowledge structure on a finite domain.

13



Proposition 21 Let (Q,K) be a discriminative knowledge structure in which
Q@ is a non-empty and finite set, and let T be a set of tests in Q). The asso-
ciated left-, right-, and total-covering test surmise relations S;, Sy, and Sy,
respectively, are partial orders on T .

Proof. Let S be the surmise relation of (@, K), which is a partial order on Q).
Let AS; Band BS; A (A, B € T). Assume that A # B. Since A and B are
tests, it holds A # 0, B# 0, and AN B = 0. Let a € A. Because A S; B and
B S, A, there is a sequence {(an,bn) }neny in A X B such that

a) ‘= a,
bl - Bal,
for any n > 2, a,, € A, ,and b, € B,,,.

Then a,415b,Sa, for all n € N (i.e., - - - SazShySaySb;Say). Since we assume
that A # B, it holds a,, # a, for alln,n’ € N, n # n’. (If there exists n,n’ € N,
n < n' with a,, = a,, then a,,Sb, _;Sa,. Because S is antisymmetric, it follows
by —1 = ay, and hence ANB # ().) This implies that @ is infinite, contradicting
|Q| < 00.? The arguments in case of S, are similar. Finally, the property of
antisymmetry obviously holds for S; (:= S; N S,). O

Finiteness of the underlying domain is essential.

Lemma 22 In Proposition 21, the condition |Q| < oo is essential. If Q) is an
infinite set, the statements of Proposition 21 do not hold in general.

Proof. Let @ := R be the set of real numbers. Let Q and R\ Q denote the sets
of rational and irrational numbers, respectively. Consider the tests A := Q and
B:=R\Qin Q (ie.,, T := {A, B}). Let < be the natural order relation on
@, which is a partial order. According to the Birkhoff-Theorem (Theorem 8),
< is the surmise relation associated with a discriminative knowledge structure
IC on Q. The NTSR, LTSR, RTSR, and TTSR associated with (@, ) and 7,
however, turn out to be the same, namely, the Cartesian product 7 x 7. O

NTSRs are not antisymmetric in general, even in the case of a discriminative
knowledge structure on a finite domain.

Lemma 23 Let (Q,K) be a discriminative knowledge structure in which @ is
a non-empty and finite set, and let T be a sel of tests in Q. The associated
natural test surmise relation S is not necessarily antisymmetric.

Proof. Consider on @ := {a, b, c} the partial order S C @ x @,

S = Ngxo U{(a,b),(a,c),(bc)}.

4 For a set X, let | X| stand for the cardinality of X.

14



According to the Birkhoff-Theorem (Theorem 8), S is the surmise relation
associated with a discriminative knowledge structure K on ). Let the tests be
A :={a,c} and B := {b} (ie., T := {A, B}). The NTSR S associated with
(Q,K) and 7 is the Cartesian product 7 x 7. O

4 Test knowledge structures

In the previous section we have extended the concept of a surmise relation
among individual items to that of a test surmise relation among special subsets
of items, the tests. There is a natural way of transferring the concept of a
knowledge structure at the level of items to that of a test knowledge structure.
(In the following note that ‘test knowledge structure’ is a generic term which
stands for the natural, l-type, r-type, and c-type test knowledge structures.)

4.1 Natural test knowledge structures

The natural test knowledge state of a person is defined as the |7 |-tuple of the
subsets of the tests the person is capable of mastering.

Definition 24 Let (Q, K) be a knowledge structure, and let T be a set of tests
i Q. The set

K:={K:=(T'NK)rer : K € K}

of all |T|-tuples K := (TNK)rer (K € K) is called the natural test knowledge
structure associated with (Q,KC) and T. The |T|-tuple K := (T N K)rer is
called the natural test knowledge state corresponding to K € K.

If K € K is the knowledge state of a person, T'N K for T' € T denotes the
subset of items in test 1" the person is capable of mastering. In other words,
the natural test knowledge state of a person contains information about which
items in each of the tests are mastered by the person.

The next corollary is a consequence of Definition 24 and Theorem 8, and
it states that the natural test knowledge structure can be characterized by
(derived from) the underlying surmise relation among items.

Corollary 25 Let (Q,K) be a quasi ordinal knowledge space and T a set of
tests in Q. Let S be the surmise relation associated with (Q,K). Let K be the
natural test knowledge structure associated with (Q,K) and T . Then, for any
|7 |-tuple F := (Fr)per of subsets Fr CT (T € T ), it holds
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FE/C<Z>E|GCQ:{[V(p,q)GS:[qeGﬁpEG”
and [VTeT;TmGZFT}}.

O

Next we introduce the concept of a (quasi ordinal) natural test knowledge
space. For doing so, first we have to define the union and intersection of such
|7 |-tuples, coordinate-wise, as the union and intersection of sets.

Definition 26 Let (Q,K) be a knowledge structure and T a set of tests in Q.
Let K be the natural test knowledge structure associated with (Q,K) and T .
For any K := (TN K)rer and K' := (TN K')rer (K, K' € K), we define®

KUK'":= (T (K UK"))
KAK':= (T (K NK"))

TeT’

TeT '

More generally, let F := {K:=(TNK)per : K €I} (I CK) be a family in
IC. The union and intersection of F are respectively defined by

UF = (TNUkerK) .
NF = (T NNkezK) e

Natural test knowledge spaces are special natural test knowledge structures.

Definition 27 A natural test knowledge structure K is called a natural test
knowledge space iff K is closed under U-union, that is, for all F C K, UF € K.
A natural test knowledge space K is called quasi ordinal iff K is closed under
A-intersection, that is, for all F C K, NF € K.

The next corollary is a consequence of the previous definitions.

Corollary 28 Let K be a natural test knowledge structure associated with a
knowledge structure (Q,K) and a set T of tests in Q. Then, K is a natural
test knowledge space iff K is a knowledge space; K is a quasi ordinal natural
test knowledge space iff IC is a quasi ordinal knowledge space.

Proof. For any family F := {K := (TN K)rer : K € T} (Z C K), it holds

® Do not mistake ‘U-- -’ for the disjoint union of sets.

16



U]—"EIC<:>UK€IKEIC,
QFGK@)HKE;[KGIC.

Ezample 1. We consider on Q := {a, as, by, b} the knowledge structure

/C = {@, {CLQ}, {bg}, {CLQ, bg}, {bl, bg}, {CLQ, bl, bg}, {(11, as, bg}, Q},

and the set 7 := {A = {ay,a3}, B :={by, b2}} of tests in ). The natural test

knowledge structure K associated with (Q,K) and T is reported in Table 1.
[Table 1]

The natural test knowledge structure K is a quasi ordinal natural test knowl-
edge space since K is a quasi ordinal knowledge space. O

4.2 l-type test knowledge structures

Sometimes it may only be important to know whether a person is capable
of mastering anything of a test. For instance, imagine a test which contains
exactly the different ways a problem can be solved. If we just want to know
whether a person is capable of mastering the problem, it is only important to
know whether this person is capable of mastering at least one of the ways.

This leads to the concept of a [-type test knowledge structure.

Definition 29 Let (Q,K) be a knowledge structure, and let T be a set of tests
in Q. Forany K e K and T € T, let

1 : |TNnK|>1

ar(K;l) := ]
0 : |[TNK|=0

The set

IQ = {Kl = (CLT(K; l))TeT K e ]C}

of all |T|-tuples K, := (ap(K;1))rer (K € K) is called the I-type test knowl-
edge structure associated with (Q,K) and T . The |T |-tuple K, := (ar(K;1))rer
1s called the I-type test knowledge state corresponding to K € IC.

17



If K € K is the knowledge state of a person, her/his l-type test knowledge
state K; := (ap(K;1))rer contains information about in which of the tests
T € T this person is capable of mastering anything (ar(K;l) = 1) or nothing
(ar (K1) = 0).

The next corollary is a consequence of Definition 29 and Theorem 8, and it
states that the I-type test knowledge structure can be characterized by (derived
from) the underlying surmise relation among items.

Corollary 30 Let (Q,K) be a quasi ordinal knowledge space and T a set of
tests in Q. Let S be the surmise relation associated with (Q,K). Let K; be the
I-type test knowledge structure associated with (Q,K) and T. Then, for any
|7 |-tuple F := (Fr)rer of zeros and ones Fr € {0,1} (T' € T ), it holds

FEIQ(z)HGCQ:{[V(p,q)ES:[QEG:pGG]} and

O

Ezample 2. Let Q, K, and 7 be defined as in Example 1. The associated
l-type test knowledge structure K; is reported in Table 2.
[Table 2]

4.8  r-type test knowledge structures

Sometimes it may only be important to know whether a person is capable of
mastering everything of a test. For instance, imagine a test in which each item
assesses a different skill, and assume that all the skills assessed by the test
are necessary and sufficient for solving a problem. If we just want to know
whether a person is capable of mastering the problem, it is only important to
know whether this person is capable of mastering all items of the test.

This leads to the concept of a r-type test knowledge structure.

Definition 31 Let (Q, K) be a knowledge structure, and let T be a set of tests
in Q. Forany K €e K andT € T, let

1 . |TNK|=|T|

ar(K;r) = :
0 : |[TNK|<|T|
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fCT = {KT = (ap(K;r))rer - K € /C}

of all | T|-tuples K, := (ar(K;7))rer (K € K) is called the r-type test knowl-
edge structure associated with (Q,KC) and T . The |T |-tuple K, := (ar(K;7))rer
is called the r-type test knowledge state corresponding to K € K.

If K € K is the knowledge state of a person, her/his r-type test knowledge
state K, := (ap(K;7))rer contains information about in which of the tests
T € T this person is capable of mastering everything (ar(K;r) = 1) or not
(ar(K;r) =0).

The next corollary is a consequence of Definition 31 and Theorem 8, and
it states that the r-type test knowledge structure can be characterized by
(derived from) the underlying surmise relation among items.

Corollary 32 Let (Q,K) be a quasi ordinal knowledge space and T a set of
tests in Q. Let S be the surmise relation associated with (Q,K). Let K, be the
r-type test knowledge structure associated with (Q,KC) and T. Then, for any
|7 |-tuple F := (Fr)rer of zeros and ones Fr € {0,1} (T' € T ), it holds

FEICT<:>EIGCQ:{[V(p,q)GS:[qeGjpEG” and

VT eT: ([Fr=0=TNG#T]and [FT:1:>TmG:T])}}.

Ezample 5. Let Q, K, and 7 be defined as in Example 1. The associated
r-type test knowledge structure K, is reported in Table 3.
[Table 3]

4.4 c-type test knowledge structures

In traditional and modern psychological test theories such as the Guttman
(1944) scalogram technique, the Rasch (1960) model, and Mokken’s (1971)
monotone homogeneity model, an examinee is ‘characterized’ by the number of
items she/he has solved in each of the sub-tests of an upper-test. This is called
the test profile of the examinee, and has a straightforward mathematization
in the context of test knowledge structures.
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This leads to the concept of a c-type test knowledge structure.

Definition 33 Let (Q,K) be a knowledge structure, and let T be a set of tests
in Q. Forany K € K and T € T, let ar(K;c) := [T N K|. The set

Ko = { K = (ar(K;0))rer - K € K}

of all |T|-tuples K, := (ar(K;¢))rer (K € K) is called the c-type test knowl-
edge structure associated with (Q,K) and T . The |T |-tuple K. := (ar(K;c))rer
is called the c-type test knowledge state corresponding to K € K.

If K € K is the knowledge state of a person, her/his c-type test knowledge
state contains information about how many items in each of the tests this
person is capable of mastering.

The next corollary is a consequence of Definition 33 and Theorem 8, and
it states that the c-type test knowledge structure can be characterized by
(derived from) the underlying surmise relation among items.

Corollary 34 Let (Q,K) be a quasi ordinal knowledge space and T a set of
tests in Q. Let S be the surmise relation associated with (Q,K). Let K. be
the c-type test knowledge structure associated with (Q,KC) and T. Then, for
any |7 |-tuple ¥ := (Fr)rer of non-negative integers Fr € {0,1,2,...,|T|}
(I' € T), it holds

Fe/@:»ﬂGcQ;{[V(p,q)esz[qea:peeﬂ

and [VTefz\TmG|:FT}}.

O

Ezample 4. Let @, K, and 7 be defined as in Example 1. The associated
c-type test knowledge structure . is reported in Table 4.
[Table 4]
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5 Characterizations of the test surmise relations

5.1 Characterizing the test surmise relations via the knowledge structure and
surmase relation

By definition, the natural, left-, right-, and total-covering test surmise relations
are characterized by the underlying knowledge structure at the level of items;
in respective order, see Definitions 11, 14, 17, and 20. We have further noted
that these test surmise relations can also be characterized by the underlying
surmise relation among items; in respective order, see Corollaries 12, 15, and
18, and Subsection 3.5.

The following example illustrates the non-uniqueness of the characterizations
of the test surmise relations via the knowledge structure and surmise relation.
That is, different knowledge structures and different surmise relations can
lead to the same test surmise relations, under the characterization formulas
described in the afore mentioned definitions and corollaries.

Ezample 5. Let Q = {a1,a2,b} and T := {A = {ay,a2}, B = {b}} Consider
on @ the two (different) quasi orders Sy and Ss,

S11=DoxqU{(a1,0)},
Sg = AQXQ U {((Ig, b)}

According to the Birkhoff-Theorem (Theorem 8), S; and Sy are the surmise
relations associated with two (different) knowledge structures K; and Cy on
@, respectively. The test surmise relations associated with (@, ;) (in the
following indexed by 1) and (@, Ks) (in the following indexed by 2) and 7 are
given by

{
RTSR; = RTSR, = {(4,
TTSR, =TTSR, = {(4, 4), (B, B)}.
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5.2 Characterizing the test surmise relations via the test knowledge structures

Next we discuss characterizations of the natural, left-, right-, and total-covering
test surmise relations via the natural, I-type, r-type, and c-type test knowledge
structures. In the sequel we will use the following notation: For a knowledge
structure (Q, ), a set 7 of tests in @, and for any T' € 7 and K € K, let
Tk =TNK.

Characterizing the natural test surmise relations

The characterization of the natural test surmise relation via the natural test
knowledge structure becomes especially informative in the case of a quasi
ordinal natural test knowledge space. This is the content of the second part
of the next proposition.

Proposition 35 Let (Q,K) be a knowledge structure, and let T be a set of
tests in Q. Let S and IC denote the natural test surmise relation and natural
test knowledge structure associated with (Q,KC) and T, respectively. It holds:

1. Forany A,B €T,

BS A+

HaeAHberK:(TK)TeTEIC:[aeAK:H)eBKH.

2. IffC is a quasi ordinal natural test knowledge space, then, for any A, B € T,
BS A e [VK:(TK)TeTEIC withBK:®:AK7éA].

Proof. 1. For any a € A and b € B, it holds:

VK = (Ti)rer €K : [a € Ax => b € B
«—=VKeK:|ae K—=beK]
= be()K..
2. Let K :={K € K: BNK =0} and K" := K\ K. Because K is a quasi

ordinal knowledge space (Corollary 28) and BN UK’ = 0, it holds UK’ € K.
It also holds:

VK = (Tx)rer € K with B = 0: Ag # A
VK eK :ANK # A.
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‘=" Let K € K'. Since B S A, there exist some elements a € A and b € B
such that b € K for any K € K,. Since BN K = 0, it holds K & K,. Thus
ad K, and ANK # A.

‘«—:" Because UK’ € K' and AN K # A for any K € K', there is an element
a€ A\UK' Thus K, C K". Because K is a quasi ordinal knowledge space,
NK. € K, C K". Therefore BNNOK, # 0. O

Example 6. Let Q, IC, and 7 be defined as in Example 1. The associated
natural test knowledge structure K is a quasi ordinal natural test knowledge
space. According to the second part of Proposition 35, the associated natural
test surmise relation S can be derived from K as descrlbed in Tables 5 and 6,
which respectively report that BS A and A $ B (i.e., not A S B).

[Table 5]

[Table 6]

O

The next corollary is a consequence of Proposition 35, and it states that,
in the case of an underlying quasi ordinal knowledge space, the natural test
surmise relation can be characterized by (derived from) the associated c-type
test knowledge structure.

Corollary 36 Let (Q,K) be a quasi ordinal knowledge space, and let T be a
set of tests in Q. Let S and K. denote the natural test surmise relation and c-

type test knowledge structure associated with (Q, ) and T, respectively. Then,
for any A,B €T,

B A VK. = (ar(K:c))rer € K. [an(K;e) = 0= ax(K:c) < |A|H.

O

Characterizing the left-covering test surmise relations

Proposition 37 Let (Q,K) be a knowledge structure, and let T be a set of
tests in Q. Let S;, IKC, and K; denote the left-covering test surmise relation,

natural test knowledge structure, and [-type test knowledge structure associated
with (Q,KC) and T, respectively. It holds:

1. Forany A,B €T,

BS; A < VaeAHberK:(TK)TeTEIC:[aeAK:H)eBKH.
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2. IfK is a quasi ordinal natural test knowledge space, then, for any A, B € T,
B S A<= |VK; = (ap(K;1))rer € Ky with ap(K;1) =0: as(K;1) = 0.

Proof. 1. See the proof of the first part of Proposition 35.
2.Let K':={K € K: BNK =0} and K" := K\ K'. Tt holds:

VK, = (ap(K;1))rer € Ky with ap(K;1) =0:a(K;1) =0
= VK cK :ANnK =0.

‘— Let K € K'. Since B S, A, there exists, for any a € A, an element
b = b(a) € B such that b € K for any K € K,. Since BN K = @, it holds
K¢gK,foranyaec A Thus a € K forany a € A, and ANK = 0.

‘«—:" Because AN K = () for any K € K, it holds K, C K" for any a € A.
Then (K, € K, C K" for any a € A, and BN N, # () for any a € A. O

Example 7. We continue with Example 2. According to the second part of
Proposition 37, the associated left-covering test surmise relation S; can be
derived from K as described in Tables 7 and 8, which respectively report that
B & Aand A g B.

[Table 7]

[Table 8]

O

The next corollary is a consequence of Proposition 37, and it states that, in
the case of an underlying quasi ordinal knowledge space, the left-covering test
surmise relation can be characterized by (derived from) the associated natural
test knowledge structure and c-type test knowledge structure.

Corollary 38 Let (Q,K) be a quasi ordinal knowledge space, and let T be
a set of tests in Q. Let S;, K, and K. denote the left-covering test surmise
relation, natural test knowledge structure, and c-type test knowledge structure
associated with (Q, ) and T, respectively. Then, for any A, B € T, the fol-
lowing statements are equivalent:

1. BS[ A,’
2. VKI(TK)TETGICZ [BK:@:>AK:®};

3. VK. = (ar(K;c))rer € K : [ap(K;¢) = 0 = aa(K;c) = 0].
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Characterizing the right-covering test surmise relations

Proposition 39 Let (Q,K) be a knowledge structure, and let T be a set of
tests in QQ. Let S, IC, and K, denote the right-covering test surmise relation,

natural test knowledge structure, and r-type test knowledge structure associated
with (Q,KC) and T, respectively. It holds:

1. Forany A,B €T,

BSTA<:>[VbeBHaeAvK:(TK)T€T€K:[aeAK:H)eBKH.

2. IfK is a quasi ordinal natural test knowledge space, then, for any A, B € T,
BS, A+ [VKT = (ar(K;7))rer € Ky with ax(K;7r) =1:ap(K;r) = 1}

Proof. 1. See the proof of the first part of Proposition 35.
2. It holds:

VK, = (ar(K;7))rer € K, with as(K;r)y=1:ap(K;r)=1
VK eK:[ANK=A= BnK =8|

‘= Let K € K with ANK = A. Let b € B. Since B S, A, there exists
an element a € A such that b € K for any K € IC,. Since K e K., it holds
be BNK.

‘—2 Under the assumption that B &, A, there exists an element b € B such
that b & NIC, for any a € A. Using K := UK’ where K’ := {NK, :a € A},
then it holds K € K, b ¢ K, and ANK = A. 0

Ezxample 8. We continue with Example 3. According to the second part of
Proposition 39, the associated right-covering test surmise relation S, can be
derived from K, as described in Tables 9 and 10, which respectively report
that B §, A and A $, B.

[Table 9]

[Table 10]

O

The next corollary is a consequence of Proposition 39, and it states that, in
the case of an underlying quasi ordinal knowledge space, the right-covering
test surmise relation can be characterized by (derived from) the associated
natural test knowledge structure and c-type test knowledge structure.

Corollary 40 Let (Q,K) be a quasi ordinal knowledge space, and let T be a
set of tests in Q). Let S,, IC, and K. denote the right-covering test surmise

25



relation, natural test knowledge structure, and c-type test knowledge structure
associated with (Q,K) and T, respectively. Then, for any A, B € T, the fol-
lowing statements are equivalent:

1. BS, A;
2. VK: (TK>T€T S ]C [AK = A— By :B},
3. VK. = (ar(K;c))rer € K : [aa(K;c) = |A| = ap(K; ) = |B]].

Characterizing the total-covering test surmise relations

Let (@, K) be a knowledge structure and 7 a set of tests in (). Because the
total-covering test surmise relation S, associated with (Q,K) and 7 is the
intersection of the associated left- and right-covering test surmise relations S
and S, a number of characterizations of St can be obtained by combining the
previously described characterizations of S; and S,.

For instance, if K is a quasi ordinal knowledge space, B S; A if, and only if,

VE = (Ti)rer € K : HBKZQ):MK:@} and [AK:A:BK:BH.

This is a characterization of the total-covering test surmise relation via the
quasi ordinal natural test knowledge space. Of course, ‘mixed’ combinations of
the characterizations of the left- and right-covering test surmise relations are
possible as well. For instance, if K is a quasi ordinal knowledge space, B S; A
if, and only if,

VK = (ar(K;1))rer € Ky + [ap(K;1) =0 => as(K;1) = 0]

and

VK. = (ar(K;c))rer € Kot [aa(K;e) = |A] = ap(K;0) = |B].

This is a characterization of the total-covering test surmise relation via the
- and c-type test knowledge structures associated with an underlying quasi
ordinal knowledge space.
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5.8 Non-uniqueness of the characterizations of the test surmise relations

The next two examples illustrate that the characterizations of the test surmise
relations via the test knowledge structures discussed in Subsection 5.2 are not
unique in general.

Ezample 9. Let Q = {ay,a2,b} and T := {A = {ay,a2}, B := {b}} Consider
on () the quasi orders S; and Sy,

S1:=0gxq U {(a1,b),(as,b)},
Sg = AQXQ U {((Ig, al), (CLQ, b), ((11, b)}

They are the surmise relations associated with the quasi ordinal knowledge
spaces, in respective order,

K1 ={0,{ar}, {as}, {ar, b}, {az, b}, Q},
Ko = {(7), {as}, {al,@}’Q}-
The natural, l-type, r-type, and c-type test knowledge structures associated

with (Q, ;1) (in the following indexed by 1) and (@, /3) (in the following
indexed by 2) and 7 are, in respective order,

K1={0,0), {a:},0), ({a2},0), ({a1},{8}), ({aa}, {b}), (A, B) },
K2 ={(0,0), ({a2},0), (4,0), (A, B)},

Ku={(0,0),(1,0), (1, 1)},

Kz = {(0,0), (1,0, (1, 1)},

K1 ={(0,0),(0,1),(1,1)},

Ko ={(0,0),(1,0), (1, 1)},

Kie={(0,0),(1,0), (1, 1), (2, 1) ,

Ka2e={(0,0),(1,0),(2,0),(2, 1)}.

The natural, left-, right-, and total-covering test surmise relations associated
with (Q, K1) and (Q, K») and T are all identical, equal to { (A, A), (B, B), (A, B) };
that is,

S1 =382 = 8o ={(A,A),(B,B),(A,B)} (for 0 € {1,2}, pe {l,r,1}).
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Now one can make the following observations: 6

Natural test surmise relation. According to Proposition 35 and Corollary 36,
the natural test surmise relations S; and 82 are characterized by ICl, Kie
and IC2, IC2C, respectively. However, S, = 82, and K, #* ICy and K, #* Kse.

Left-covering test surmise relation. According to Proposition 37 and Corol-
lary 38, the left- covering test surmise relations Sll and Sgl are character-
ized by ICl, ICll, lClc and ICQ, ngl, ICQC, respectlvely However, Sll 821, and
Ky =+ Ky and K, =+ Kse. But K1, = Kagp; that the characterization of the
left-covering test surmise relation via the l-type test knowledge structure
may not be unique as well, will be seen below in Example 10.

Right-covering test surmise relation. According to Proposition 39 and Corol-
lary 40, the rlght -covering test surmise relations S 1 and Sgr are character-
ized by ICI, ICM, IClc and ICQ, ICQT, ICQC, respectively. However, Slr = S2r,
and /Cl # ’C27 /C1r # IC2T7 and ]Clc # IC2C

Total-covering test surmise relation. It is obvious that the characterizations of
the total-covering test surmise relations S 1+ and Sgt via the test knowledge
structures, derived as combinations of the characterizations of the left- and
right-covering test surmise relations S 115 So and Slr, Sgr, respectively, are
not unique. For instance, S, := Sy = Sy can be characterized by both Ky
and Ko, K1 # Ko, through: For any C,D € 7, D S, C if, and only if,

VK = (Ti)rer € K : HDK:@:CKZQ)} and [CKZC:DK:DH

O

The characterization of the left-covering test surmise relation via the l-type
test knowledge structure may not be unique as well.

Ezample 10. Let Q := {a,b,c1,c9,d} and T := {A = {a}, B := {b},C :=
{c1,¢2}, D = {d}} Consider on @) the quasi orders S; and S5,

Sy = AQ><Q U {(CL, b)? (CL, Cl)v (dv 02)}7
Sy i= Aaxg U {(a,b), (d, )},

Let Ky and Ky denote the corresponding quasi ordinal knowledge spaces. The
left-covering test surmise relations Sy; and So; respectively associated with

6 The fact that the test surmise relations may not be uniquely characterized by the
underlying knowledge structures and surmise relations has been already discussed
in Subsection 5.1.
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(@, K1) and (@, K2) and 7 are identical,

Sll = S2l: {(A> A), (B,B), (Cv C)a (DaD)’ (A> B)}

The l-type test knowledge structures fCll and ngl respectively associated with
(Q, K1) and (@, K2) and 7, however, are different. For instance, the 4-tuple
F := (0,0,1,0) belongs to Ky, but does not belong to Ky;. This is because
{c1} € Ko, and it holds:

Ko > {a1},

= (aa({ar}; 1), as({ar}; D), ac({er}; 1), ap({ei};0))
= (0,0,1,0).

Under the assumption that F € Ky, there exists a knowledge state K € Iy
such that ANK =0, BNK =0, DNK =0, and C N K # (). Then K # (),
and because 7 is a partition of @), it holds K C C'. This, however, contradicts
the fact that any knowledge state in K containing an element of C' must
necessarily contain a € A or d € D (or both the elements). a

6 Characterizations of the test knowledge structures

6.1 Characterizing the test knowledge structures via the knowledge structure
and surmise relation

By definition, the natural, I-, -, and c-type test knowledge structures are
characterized by the underlying knowledge structure at the level of items; in
respective order, see Definitions 24, 29, 31, and 33. According to Theorem 8,
these test knowledge structures can also be characterized by the underlying
surmise relation among items, associated with a quasi ordinal knowledge space;
in respective order, see Corollaries 25, 30, 32, and 34.

The characterizations of the natural test knowledge structure via the knowl-
edge structure and surmise relation (of a quasi ordinal knowledge space) are
unique. (It is obvious that different knowledge structures and different surmise
relations always lead to different natural test knowledge structures, under the
characterization formulas described in Definition 24 and Corollary 25, respec-
tively. This is because the tests form a partition of the domain, and Theorem 8
establishes a one-to-one correspondence.) For the I-, r-; and c-type test knowl-
edge structures, however, the characterizations via the knowledge structure
and surmise relation are not unique in general, as illustrated by the following
example.
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Ezample 11. Let Q := {a1,a2,b} and T = {A = {a1, a2}, B = {b}}
Consider on () the quasi orders S; and S5,

S1:=Agxq U {(a1,b)},
Sy 1= AQ><Q U {(a27 b)}

They are the surmise relations associated with the quasi ordinal knowledge
spaces, in respective order,

Ki= {@, {fh}, {(12}, {(11, Clz}a {(117 b}, Q}7
Ko = {@, {fh}, {(12}, {(11, Clz}a {(127 b}, Q}

The I-, r-, and c-type test knowledge structures associated with (@, k) (in
the following indexed by 1) and (@, Ks) (in the following indexed by 2) and
T are, in respective order,

K =Ko = {(0,0),(1,0
Iclr :]C2r = {(070)7 (170)7 (Oa
]Clc:]C2c = {(070>7 (170)’ (1

~—
—~
—_
—_
~—

—

6.2 Characterizing the test knowledge structures via the test surmise relations

Contrary to the test surmise relations, which can be characterized by the test
knowledge structures, the test knowledge structures are not necessarily infer-
able from the test surmise relations. A condition, however, can be proposed,
under which the test knowledge structures can be derived from the test surmise
relations.

The next corollary is a consequence of Propositions 35, 37, and 39. It ad-
dresses the condition for the natural test knowledge structure, in the case of
an underlying general knowledge structure.

Corollary 41 Let (Q,K) be a knowledge structure, and let T be a set of tests
in Q. Let K, S, Si, Sy, and S; denote the natural test knowledge structure,
natural test surmise relation, left-covering test surmise relation, right-covering
test surmise relation, and total-covering test surmise relation associated with
(Q,K) and T, respectively. Let K*, K*', K*", and K*' be defined as follows:
For any |T|-tuple ¥ := (Fr)rer of subsets Fr CT (T € T),

30



FeK' '« |V(B,A)ecSJacAIeB: [aeFA:beFBH,

Fe K"« |V(B,A) €S Vac AT eB: {GEFAibGFBH’

F K" = |V(B,A) €S, Vb€ BIa€ A: [ac Fa=be Fy|,

FGK*’t:@{{V(B,A)eStVaeAElbeB: [aeFAzﬂ)eFB}

and V(B,A)eStVbeBElaeA: [aeFA:>beFBH}.

Then it holds: K is a subset of K*, KoL K= and K*'. In general, K is a
proper subset of these sets. If K=K K=K K= IC*’", or K = K**,
then K can be characterized by (derived fmm) S, Sl, S,, or S; using the afore
mentioned characterization formulas, respectively.

Proof. Let K = (Tx)rer € K (K € K) and B S A (A, B € T). According
to Proposition 35, there exist some elements ¢ € A and b € B such that
a € Ak implies b € Bg. Similarly, one can see that K c K+t (Proposition 37),
K c K* (Proposition 39), and hence K C K**. To show that K is a proper

subset of these sets, let @ := {a, by, b2}, T := {A ={a},B := {bl,bg}}, and
K = {0, {02}, {a, b}, {01, b2}, Q}. Then

Si={(4,4),(B,B),(B,A)},
Si={(4,4),(B,B)},
{(

(2)7 Q))a (97 {b2}>7 (Av {b2})7 (Q)a B)? (A7 B)}

S
S,
K

The 2-tuple F := (), {b:}) belongs to any of the sets K*, K9 Ko, and K,
but it does not belong to K. O

The next corollary is a consequence of Proposition 35 and Corollaries 38 and
40. It addresses the condition for the natural test knowledge structure, in the
case of an underlying quasi ordinal knowledge space.

Corollary 42 Let (Q,K) be a quasi ordinal knowledge space, and let T be
a set of tests in Q. Let K, S, S;, Sy, and S; denote the natural test knowl-
edge structure, natural test surmise relation, left-covering test surmise relation,
right-covering test surmise relation, and total-covering test surmise relation
associated with (Q,K) and T, respectively. Let K*, K*', K*", and K** be de-
fined as follows: For any |T |-tuple F := (Fr)rer of subsets Fr CT (T € T),
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FeK e [V(B,A) €8 [Fy =0 — Fa £ 4|
F e K9 -V(B,A) ES{Z {FB:@:>FA:®H7

F e K :«= |V(B,A) €8, : [FA:A:>FB:BH,

F e K" _V(B,A) €S, : {[FB:®:>FA:®}

and [FA:A:FBZB}}].

Then it holds: K is a subset of K£*, K, K5, and K*t. In general, K is a
proper subset of these sets. If K=K K=K K= IC*T, or K = K**,
then K can be characterized by (derived from) S, Sl, S,, or S, using the afore
mentioned characterization formulas, respectively. O

In the same manner as has been done for the natural test knowledge structure,
one can obtain some characterizations of the I-, r-, and c-type test knowledge
structures via the test surmise relations as well. For instance, if (Q,K) is
a quasi ordinal knowledge space, 7 a set of tests in Q, and S the natural
test surmise relation associated with (@, ) and 7', the associated c-type test
knowledge structure K. is a subset of the set defined by (for any |7 |-tuple
F := (Fr)rer of non-negative integers Fr € {0,1,2,...,|T|} (T € 7))

FeK— {V(B,A) €S: [F=0=Fy < \A|H.

This follows from Corollary 36. In particular, if K, = ij, the c-type test
knowledge structure K, can be characterized by (derived from) the natural test
surmise relation S using this characterization formula. Or, if S, denotes the
right-covering test surmise relation associated with (@, ) and 7, the c-type
test knowledge structure K, is a subset of the set defined by (for any |7 |-tuple
F := (Fr)rer of non-negative integers Fr € {0,1,2,...,|T|} (T' € T))

F ek = |V(B,A) €8, : [Fa=|Al = Fy = |B|H.

This follows from Corollary 40. In particular, if K. = IC:”“, the c-type test
knowledge structure K. can be characterized by (derived from) the right-
covering test surmise relation S, using this characterization formula.

In this way, a number of at least ‘constraint’ characterizations of the natural,
-, r-, and c-type test knowledge structures via the natural, left-, right-, and
total-covering test surmise relations are obtained, by appropriately modifying
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and combining the previously described ‘unconstraint’ characterizations of the
test surmise relations.

7 Discussion

7.1  Summary

This paper has examined some possible relationships among ‘tests’ of items
in a knowledge structure, with a test being an element of a partition of the
domain of the knowledge structure. The study of tests has been motivated
by ‘curriculum development’ and ‘computer-based adaptive assessment and
training’ (Section 1). Test surmise relations (Section 3) and test knowledge
structures (Section 4), based on the underlying surmise relation and knowledge
structure at the level of individual items (Section 2), have been investigated.
In particular, it has been shown that (a) discriminativity of the underlying
knowledge structure on a finite domain implies the property of antisymmetry
for the left-, right-, and total-covering test surmise relations, (b) if the domain
is not finite, this does not hold in general, and (c) the natural test surmise rela-
tions may not necessarily be antisymmetric, even in the case of a discriminative
knowledge structure on a finite domain. As the main thrust of this paper, a
number of characterizations of the test surmise relations (Section 5) and test
knowledge structures (Section 6) have been proposed. Unlike at the level of
items (cf. Birkhoff’s Theorem 8), at the level of tests, the test surmise rela-
tions and test knowledge structures may not necessarily be derived from each
other, let alone be set in a one-to-one correspondence. However, (a) each can
be characterized by the underlying surmise relation and knowledge structure,
(b) the test surmise relations can (not necessarily uniquely) be characterized
by the test knowledge structures, and (c) the test knowledge structures can
at least ‘partly’ (under some sufficient condition) be characterized by the test
surmise relations.

7.2 Further extensions and modifications

The present approach is purely deterministic. This paper has solely considered
combinatorial properties. In future research, probabilistic extensions of the test
surmise relations and test knowledge structures and corresponding statistical
inference methodologies could be investigated. Such an endeavor constitutes a
difficult task, but is indispensable for applications of these models to real data,
and may even help to provide feasible new statistical inference methodologies
for the common surmise relation and knowledge structure models (at the level
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of items) in KST. (The latter models are special cases of the presented models.)
This, in fact, is an important recent research topic in KST; for instance, see
Stefanutti (2006) and Unlii (2006, 2007) who introduce item response theory
(e.g., Boomsma, Van Duijn, Snijders, 2001; Fischer & Molenaar, 1995; Van
der Linden & Hambleton, 1997) modeling techniques in KST.

The present framework based on tests covers the basic KST models as special
instances. Important directions for further research could consider translating
even more advanced KST topics into this generalized framework. For instance,
the surmise system model is a generalization of the surmise relation model
(e.g., Doignon & Falmagne, 1999). Unlike the surmise relation model which
postulates exactly one mastery strategy for each problem, the surmise system
model more realistically allows for different strategies to master a problem. In
this spirit, the concept of a test surmise relation might be generalized to the
concept of a test surmise system.

The introduction of skills into the theory of knowledge spaces (Doignon, 1994;
Diintsch & Gediga, 1995; Korossy, 1997) represents another interesting topic.
A competence—performance approach distinguishes between performance as
the ‘empirically observable’ solution behavior on a set of selected problems in
a particular domain of knowledge, and competence (skills, ability) as the un-
observable theoretical entities explaining the solution behavior (performance).
An approach based on skills allows for domain-specific qualitative theories to
be utilized for performance and competence modeling (qualitative derivation
of surmise relation and knowledge structure models). One could try to extend
the theory of test knowledge spaces to cover a competence—performance ap-
proach, for instance, by introducing ‘tests’ of skills, as a partition of a set of
skills, and linking the ‘competence tests’ with the ‘performance tests’ in such
a manner that some ‘test interpretation and test representation functions’
evolve (cf. Korossy, 1997). Such a framework should ideally have as special
instances the skills based models proposed in the afore mentioned references.

An interesting equivalent reformulation of surmise relations and knowledge
structures and test surmise relations and test knowledge structures is by
Boolean matrices (Brandt et al., 2003; cf. also Kim & Roush, 1984). The
Boolean matrix representation of a surmise relation S on a set ) of items is
by a |@Q| x |@| relational matrix, with entries 1 or 0 depending on whether a
pair of items belongs or does not belong to S, respectively. Partitioning the
rows and columns of this matrix into tests establishes Boolean matrix repre-
sentations for the test surmise relations. A knowledge structure K on () can
be represented by a || x |Q| Boolean matrix, with entries 1 or 0 depending on
whether a knowledge state contains or does not contain an item, respectively.
Partitioning the columns of this matrix into tests establishes Boolean matrix
representations for the test knowledge structures. The characterizations of the
test surmise relations and test knowledge structures presented in set-theoretic
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and order-theoretic formulations in this paper, could be translated into and
investigated within the equivalent formulation by Boolean matrices. This may
not only provide other characterizations (in particular, characterizations of the
test knowledge structures via the test surmise relations), but also new insights
into the studies of (test) knowledge spaces and Boolean matrices. The refor-
mulation of KST and any of its generalizations (e.g., based on skills and/or
tests) by (Boolean) matrices, per se constitutes an interesting direction for
future research.

7.8 Concluding resume

Though the present approach has the limitation that it does not consider any
data analytical, let alone statistical inference method for the derivation and
application of test surmise relations and test knowledge structures to simulated
or empirical data, we hope to have achieved, however, a number of important
characterizations of those models that can definitely help in developing such
methods in subsequent work. Having, for instance, data analytically derived
one model type (e.g., a test knowledge structure), a characterization formula
can be used to derive another model type (e.g., a test surmise relation). With
the formulation based on tests, a straightforward interesting generalization of
KST is obtained, within which, again by straightforward arguments, useful
characterizations of the core models can be derived. That mathematical ‘sim-
plicity’ comes with a broad range of possible applications of this formulation.
The applicability of the tests based models is not only restricted to curricu-
lum development and assessment and training. Interpretations and applica-
tions may also be possible in structuring hyper-texts and the organization of
companies, and in principle, any field utilizing some types of prerequisite rela-
tionships among ‘items’ (e.g., medical diagnosis, failure analysis for a complex
system such as a nuclear power plant, and pattern recognition). Discussing
such superficially quite different fields when applying the present approach to
empirical data in future work, could be a valuable contribution not only in
education and psychology but also in just those fields.
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Figure captions

Figure 1. The mastery of problem ¢ implies that of problem r.
Figure 2. Test B is in NTSR-relation to test A (B S A).
Figure 3. Reflexivity of NTSRs: Test A is in NTSR-relation to itself (A S A).

Figure 4. Transitivity of NTSRs: Test C' is in NTSR-relation to test B and
test B is in NTSR-relation to test A, but test C' is not in NTSR-relation to
test A (CS Band BS A, but C g A).

Figure 5. Antisymmetry of NTSRs: Test B is in NTSR-relation to test A and
test A is in NTSR-relation to test B, but test A is not equal to test B (BS A
and A S B, but A # B). In this figure, read a1 := a, ay := b, by := ¢, and
bg =d.

Figure 6. Test B is in LTSR-relation to test A and test D is in LTSR-relation
totest C (BS; Aand D S, C).

Figure 7. Transitivity of LTSRs: Test C' is in LTSR-relation to test B and
test B is in LTSR-relation to test A, and this implies that test C'is in LTSR~
relation to test A (C'S; B and B §; A implies C' S; A).

Figure 8. Test B is in RTSR-relation to test A and test D is in RTSR-relation
totest C (BS, Aand D S, C).

Figure 9. Transitivity of RT'SRs: Test C' is in RT'SR-relation to test B and
test B is in RTSR-relation to test A, and this implies that test C' is in RTSR~
relation to test A (C'S, B and B S, A implies C' S, A).

Figure 10. Test B is in TTSR-relation to test A and test D is in TTSR~
relation to test C' (B Sy A and D S; C).
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Fig. 8.
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Fig. 10.
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Tables

Table 1

Natural test knowledge states
Kek ANK BNK KekK
0 0 0 0,0)
{az} a2} 0 ({a2},0)
{b2} 0 {b2}  (0,{b2})
{ag, b2} {as}  {b2}  ({a},{b2})
B 0 B (0, B)
{az,b1,02} {a2} B ({a2}, B)
{a1,a2,b2} A {2} (A, {b2})
Q A B (4, B)
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Table 2
l-type test knowledge states

Kek ANK BNK

0 0 0
{as} {as} 0
{2} 0 {02}
{az, b2} {as}  {b2}

B 0 B
{ag,b1,b2} {az} B
{ai,a2,b2} A {b2}
Q A B
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Table 3
r-type test knowledge states

Keck ANK BNK K,ek,
0 0 0 (0,0)
{az} {as} 0 (0,0)
{2} 0 {02} (0,0)
{az, b2} {az}  {b2}  (0,0)
B 1] B (0,1)
{ag,b1,b2} {az} B (0,1)
{a1,a2,b} A {02} (1,0)
Q A B (1,1)

o1



Table 4
c-type test knowledge states

Keck ANK BNK K.eK.
0 0 0 (0,0)
{az} {as} 0 (1,0)
{b2} 0 {02}  (0,1)
{az, b2} {az} {2}  (1,1)
B 0 B (0,2)
{ag,b1,b2} {az} B (1,2)
{a1,a2,b} A {oo} (2,1
Q A B (2,2)
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Table 5

BS A
KeK Br=0 Ax+#A
(0,0 Yes Yes
({az},0) Yes Yes

23



Table 6

ASB
KeK Ax=0 Bg#B
(0,0 Yes Yes
(0,{b2})  Yes Yes
0,B) Yes No

o4



Table 7

B A
K ek, ap(K;1)=0 aa(K;l)=0
(0,0) Yes Yes
(1,0) Yes No
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Table 8

A$ B
K€K, aa(K;))=0 ap(K;l)=0
(0,0) Yes Yes
(0,1) Yes No

o6



Table 9

Bg, A
K, ek, as(K;r)=1 ap(K;r)=1
(1,0) Yes No
(1,1) Yes Yes
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Table 10

A8, B
K, eK, ag(K;r)=1 aa(K;r)=1
0,1) Yes No
(1,1) Yes Yes

o8



