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Zusammenfassung

Die folgende Dissertation befasst sich mit zwei Problemen aus dem Bereich
der linearen Optimierung. Der erste Teil der Arbeit behandelt das Transport-
problem, ein klassisches Problem der mathematischen Optimierung; eine aus-
fithrliche Definition der Problemstellung erfolgt im ersten Kapitel. Die ersten
bedeutsamen Anwendungen aus der Logistik entstanden in der ersten Halfte
des 20. Jahrhunderts und motivierten wichtige Forschungsbeitrdge zur line-
aren Optimierung und Netzwerkflusstheorie von Tolstoi, Kantorovich, Hitch-
cock, Koopmans, Dantzig, Ford und Fulkerson. Dazu kommt heute ein stark
ansteigendes Interesse aus Bereichen wie Fertigungsindustrie, Informatik, Bild-
verarbeitung, Datenanalyse und maschinellem Lernen. Die wahrscheinlich am
hiufigsten verwendete Losungsmethode fiir das Transportproblem ist der ur-
spriinglich von Dantzig (1951) entwickelte Transportsimplex. Das Hauptziel
dieser Arbeit wird es sein, Konzepte der Spaltengenerierung auf diesen Al-
gorithmus anzuwenden. Unsere Methode basiert auf einer aktuellen Verof-
fentlichung von Gottschlich und Schuhmacher (2014) und fiithrt Low-Level-
Anderungen in der Implementierung des Transportsimplex ein. Nach unserem
besten Wissen existiert dieser Ansatz in der Literatur bisher nicht. Wir bauen
auf einer effizienten Implementierung des Transportsimplex auf, um eine nu-
merisch wettbewerbsfihige Version des Spaltengenerierungsansatzes zu ent-
wickeln. Im Rahmen dessen betrachten wir auferdem heuristische Ansétze fiir
das Transportproblem, die verwendet werden, um Startlésungen zu berechnen
und einen signifikanten Einfluss auf die Gesamtlaufzeit des Algorithmus haben.
Als Nebenprodukt unserer Analyse vergleichen wir die Implementierung des
Transportsimplex mit dem allgemeineren Netzwerksimplex. Wéahrend wir in
theoretischen Untersuchungen sowohl symmetrische als auch asymmetrische
Transportprobleme betrachten, konzentriert sich die numerische Analyse auf

den symmetrischen Fall.

Im zweiten Teil der Arbeit entwickeln wir eine weitere, speziell zugeschnittene
Spaltengenerierung fiir ein lange bestehendes Problem aus der multivariaten
Statistik, das in Kapitel 6 beschrieben wird. Die Priifung einer Matrix auf Zuge-

horigkeit zur Familie der Bernoulli-Matrizen ist aufgrund der vielfdltigen An-
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wendungen der Bernoulli-Vektoren in Bereichen wie Informationstechnologie,
Finanzen, Medizin und Operations Research von hoher praktischer Relevanz.
Dieses Problem ist aufserdem eng verwandt mit der Priifung auf Zugehorigkeit
zum — im Bereich der mathematischen Optimierung besser bekannten — Korre-
lationspolytop und ist damit NP-vollstandig, vgl. Pitowsky (1991). Fiir unseren
Ansatz verwenden wir eine lineare Formulierung; der dabei auftretenden expo-
nentiellen Anzahl von primalen Variablen begegnen wir mit Spaltengenerierung
und einer einfachen, aber neuartigen Methode fiir die Losung der auftretenden

Teilprobleme.

Abschliefsend wollen wir darauf hinweisen, dass alle Algorithmen in MATLAB
realisiert sind und dass die Kapitel 3 und 6 auf den Veroffentlichungen von
Schwinn und Werner (2018) und Krause et al. (2018) basieren.
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Abstract

In the context of this dissertation we consider two mathematical optimiza-
tion problems. The first constitutes a classical problem of linear optimization,
called the transportation problem; a detailed introduction is given in the first
chapter. This problem motivated significant contributions in research on linear
optimization and network flow problems and plays an important role in praxis
to this day. Besides the logistic applications that motivated the work of Tolstoi,
Kantorovich, Hitchcock, Koopmans, Dantzig, Ford and Fulkerson in the first
half of the 20th century, the problem is now also attracting renewed interest
in areas such as manufacturing industry, computer science, image processing,
data analysis and machine learning. The main goal of this thesis is to apply
the concept of Column Generation to a popular solution method originally de-
vised by Dantzig (1951) called the Transportation Simplex. To the best of our
knowledge, this approach has not yet been taken into account in the literature.
Our method is based on a recent publication by Gottschlich and Schuhmacher
(2014) and introduces low-level changes in the implementation of the Trans-
portation Simplex. In order to develop a numerically competitive version of
the Column Generation approach, we need to build on an efficient implemen-
tation of this algorithm, which is described in Chapter 4. In this course, we
further consider heuristic approaches to the transportation problem in Chapter
3. These are used to determine initial solutions for the Transportation Sim-
plex and have significant impact on overall performance. As a by-product of
our analysis, we compare the Transportation Simplex with the more general
Network Simplex. While we consider symmetric as well as asymmetric trans-
portation problems in the theoretical part of this work, the numerical analysis

is focused on the symmetric case.

Second, we develop another specifically tailored Column Generation method
for a long-standing problem in the field of multivariate statistics in Chapter
6. Testing a given matrix for membership in the family of Bernoulli matrices
is of high practical relevance due to the manifold applications of Bernoulli
vectors in areas such as information technology, finance, medicine and opera-

tions research. The problem is known to be NP-complete, due to its relation



to membership testing on the well-known correlation polytope, cf. Pitowsky
(1991). For this purpose, we propose to solve a linear formulation of the prob-
lem by Column Generation and deal with the issue of exponentially many
primal variables by applying a straightforward, yet novel, solution of the aris-

ing subproblems.

As a final note, observe that all algorithms are realized in MATLAB and that
Chapters 3 and 6 are based on the publications of Schwinn and Werner (2018)
and Krause et al. (2018).
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1 The transportation problem

The transportation problem is one of the classical problems in mathematical
optimization (see e.g. Glover et al. (1974b) or Gass (1990)). It has an early his-
tory that can be traced back to the work of Monge (1781) who studied a civil
engineering problem of “cutting and filling”, posed by the French Academy
of Sciences, which constitutes the equivalent of the transportation problem
in continuous form. Several years later, it played a key role in the develop-
ment of linear programming in Kantorovich (1960)!, Hitchcock (1941) and
Koopmans (1949) as well as in the invention of the famous Simplex method,
cf. Dantzig (1963), and its specialization for minimum cost flow problems by
Dantzig (1951). While these initial contributions were mainly motivated by
problems in the field of logistics, its applications today extend to many areas,
including computer science, data analysis, finance, engineering, operations re-

search and linguistics.

For a more detailed account of the most important publications towards the
problem as well as recent applications we refer the reader to Section 1.6 and
1.7.

In the context of this thesis, we will consider the problem in its classical ver-
sion which is frequently associated with Hitchcock (1941). More precisely, this
implies that we will assume finite sets of origins and destinations and study
the linear formulation. Moreover, the respective problem will be uncapacitated
and dense without restricted (inadmissible) cells or bounds on the variables.
In particular, we will not impose a specific structure on the cost matrix of the

problem. This separates our work from the field of optimal transport and in

! This refers to the English translation of the original article, published 1939 in Russian.



1 The transportation problem

particular the Wasserstein distance or Earth Mover’s distance, see e.g. Rachev
and Riischendorf (1998), Villani (2009) and Rubner et al. (1997). However,
these problems will be part of our numerical evaluation and represented by
the DOTMARK benchmark of Schrieber et al. (2017), see Section 2.3.5.

We will give the mathematical formulation of the problem discussed in this
thesis in Section 1.2 and refer to this form as the (classical) transportation

problem throughout this work.

1.1 Motivation

Our primary incentive is to apply concepts based on Column Generation to
the Transportation Simplex. As our approach modifies the low-level implemen-
tation of the Transportation Simplex, a necessary prerequisite for this is an
efficient implementation of this algorithm in MATLAB — which is a secondary
goal of this work. The Transportation Simplex is arguably the best known al-
gorithm for solving transportation problems. Judging by both older and more
recent comparative studies (see e.g. Srinivasan and Thompson (1972), Glover
et al. (1974b) and Schrieber et al. (2017)), it yields attractive numerical results
and seems to be the algorithm of choice for adept practitioners (Gass (1990)).
In order to avoid ambiguities in the following and further support our moti-
vation, let us differentiate the terminology used with regard to the Simplex
method at this point: The standard Simplex method is devised for general lin-
ear programs, cf. Dantzig (1963); we will refer to this algorithm as LP Simplex
or LPS for short. For this algorithm, a specialization for general minimum cost
flow problems has been developed which is called the Network Simplex? (NS).
Since the transportation problem represents a special case of minimum cost
flow problems which in turn are linear problems, direct applications of both

the LPS and the NS to the transportation problem are possible; moreover,

20bserve that there exist variants of the Network Simplex for other network flow problems,
as for instance maximum flow or shortest paths. However, since we are interested in a
generalization of the transportation problem, we will always refer to the Network Simplex

for minimal cost flow problems in the context of this work.



1.1 Motivation

using the NS already yields good results. However, as the numerical studies of
Chapters 4 and 5 verify, an additional customization is still worthwhile. The

respective algorithm is consequently called Transportation Simplex or TPS3.

It is noteworthy that the first Network Simplex method of Dantzig (1951) was
originally developed for the transportation problem. In fact, this publication
was a starting point for further research on this topic, which led to numer-
ous Simplex codes in the middle of the 20th century, which were specifically
developed for the transportation problem and optimized for different hard-
ware compositions, cf. Charnes et al. (1975). However, after this initial phase,
the focus of research shifted; due to the wider range of applications, theoret-
ical and practical investigations focused on the LPS and the NS. As a result,
excellent implementations of these algorithms are easier to obtain these days,
which means that they are usually preferred to the TPS in today’s applications.
Another reason for this approach is that the corresponding algorithms work
sufficiently well in many cases, cf. Gass (1990), Kovacs (2015) and Schrieber
et al. (2017). Accordingly, recent algorithmic studies have been focused on the
more general minimum cost flow problem, e.g. Kovacs (2015), or were targeting
specific subclasses of the transportation problem, for example computing the
Wasserstein distance of images as in Gottschlich and Schuhmacher (2014) and
Schrieber et al. (2017).

All this contributes to our motivation to develop an efficient implementation
of the TPS in MATLAB in Chapter 4. Furthermore, we will evaluate this algo-
rithm on general problem instances in Section 4.5. For this purpose, we present
several problem classes, both artificially generated and derived from real-world
problems for the transportation problem in Chapter 2. In the course of this,
we extend a method proposed by Arthur and Frendewey (1994) for capacitive

minimum cost flow problems, by guaranteeing statistical properties for a class

3Note that due to its long existence and the many contributions published in course of
the last century, several names have been proposed for the TPS. Among many others
these include: the MODI (Modified Distribution) Method, the Stepping-Stone Method
or the Row-Column Sum Method. In the context of this thesis we choose the term
Transportation Simplex to emphasize the structural resemblance with the NS and thus
the LPS.
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of randomly generated problem instances. Moreover, we will quantify the ben-
efits of a specialized implementation of the TPS versus the general NS, which
will be represented by an efficient commercial solver. To this end, it is critical
to investigate heuristic approaches to the transportation problem, as they are

used to produce initial solutions in the TPS. This will be done in Chapter 3.

Finally, based on our analysis in Chapter 4 and the results of Gottschlich and
Schuhmacher (2014), we will try to accelerate the TPS by applying concepts
from column generation in Chapter 5. To the best of our knowledge this ap-
proach has not yet been considered. The result of this modification will then
again be numerically analyzed on the basis of the problem classes already

mentioned.

The rest of this chapter is organized as follows. In order to provide an intuitive
understanding of the problem under investigation, we will begin by describing
the commonly used economic interpretation. Thereupon follows the formal de-
scription of the problem and its properties as a linear program. With regard
to the subsequent chapters, this approach is then supplemented by an anal-
ysis within the framework of network flow problems and the study of some
properties of the problem parameters (C, a, b). Finally, a summary of the most
important historical developments is given and we conclude with an overview

of the current research.

1.2 The model

Let us introduce the problem which will be the subject of a major part of
this work. To begin with, we would like to make a non-formal approach to the
problem by stating the classic economic interpretation of the primal problem
formulation (for an interpretation of the dual problem, see e.g. Gottschlich and
Schuhmacher (2014)). The intention is to introduce the common terminology
and provide an intuitive understanding of the problem at hand and thereby the
concepts treated in the remainder of this work. The mathematical definition

will be given in the subsequent section where we additionally state some basic



1.2 The model

assumptions made in the context of this thesis.

1.2.1 Economical interpretation

The most commonly used interpretation for the transportation problem is as
follows: We consider the distribution of some homogeneous commodity that is
in stock at m production sites and in demand at n consumption facilities. To
improve the readability, we will refer to these in the following as origins and
destinations. In this constellation, each origin ¢ provides a supply a; > 0 of the
commodity while each destination j has a demand b; > 0 for the commodity.
Furthermore, we will assume that the problem is balanced, i.e. the total supply
equals the total demand. The task of distributing this commodity is entrusted
to a forwarding company. This company incurs costs for the transport of one
unit of the commodity from ¢ to 7 which are given by arbitrary cost coefficients
21+ In order to solve the
task assigned to it, the company devises a transportation plan (transportation

¢;; and collectively form the cost matriz C = (c; )

matrix) X = (z;;); 2, by determining the amount z;; > 0 of transported units
between origin ¢ and destination j. Such a plan is called feasible, if all supplies
a; are forwarded and all demands b; are saturated. The aim of the forwarder
is to find a feasible transportation plan with minimum costs which, by virtue

of the foregoing characterization, constitutes the transportation problem.

1.2.2 Mathematical definition

More formally, the problem can be stated as the following linear program:

. m n
min D07 > Gy

s.t. Z?:l Ti; = G4 Viel

Z?il Iij = bj V]E J
Tij > 0 V(Z,j)GIXJ

(TP)

where I := {1,...,m} represents the set of origins and J = {1,...,n} the

set of destinations, respectively. Since the constraints Z;L:1 xy; = a; fori €
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Figure 1.1: A forwarder transports a homogeneous commodity from m origins

to n destinations while minimizing his transportation costs.

impose restrictions on the rows of the transportation matrix X, we shall call
these the row constraints and accordingly » " x;; = b; for j € J the column
constraints of the problem. Together with the non-negativity constraints on the
x;; they define the feasible region S of the transportation problem. Further-
more, observe that according to the above definition a transportation problem
is uniquely defined by the triple (C,a,b). Thus, for reasons of simplicity, we
will hereinafter speak of the transportation problem (C, a,b) when considering
(TP) with parameters (C,a,b). Moreover, we will denote optimal solutions of
the problem by z*, the set of optimal solution by S* and the optimal value by
f*. If we want to highlight the fact that optimal solutions are achieved for a

certain input we will also use the notation

S(CL, b)a .’L’*(C, a, b)a S*(Cvaab) and f*(Ca CL,b)-



1.2 The model

Vectorized formulations
In order to obtain a vectorized formulation, we reshape C' and X to vectors

T
C:= (0117012, <y Cin, C21, - - 'Cmn)

-
X = ($117I12> <oy Lin, L1, - - 'xmn)

and set

= (a1,...,am)"

a =
b= (by,...,b,)"
which yields the equivalent formulation

min (¢, )

x€R77ln
Bx =
r > 0

where (a,b) := a'b denotes the corresponding scalar product. Here, the row

constraints are modeled by means of the row constraint matriz

A c Rrmxmn

consisting of m horizontally aligned blocks of size m x n, where the only non-
zeros of the i-th block, ¢ € I, are given by its ¢-th row, which constitutes a
vector of ones. In contrast to that, the column constraints are defined by the

column constraint matriz

B — . ' T ' c Rnxmn
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given in m horizontally aligned identity matrices of size n x n. Furthermore,
these matrices will sometimes be concatenated for notational purposes to form

the constraint matrix M and the right-hand side e

o))

which entails an additional equivalent formulation for (TP):

e

s.t. Mx

X

(TP]W)

Vv

Non-redundant formulation

In addition to the three equivalent formulations for the original problem stated
above, we introduce the non-redundant formulation of the transportation prob-
lem with regard to some theoretical statements made later in this thesis.
Hereby, we delete, w.l.o.g., the first row of the constraint matrix M in (TP )
to achieve full rank (see Section 1.3) and remove the corresponding entry in
e. Accordingly, we delete one column, i.e. set the appropriate dual variable to

zero for the dual non-redundant formulation.

Remarks on notation

Finally, a few words on notation styles for the transportation problem: The
notations (C, X) and (¢, x) are mathematically equivalent but have different
notation advantages depending on the context. Since most textbooks and pub-
lications seem to prefer the perspective of cost matrices and transportation
plans, i.e. (C, X), we will try to present the results in this perspective. How-
ever, we will switch notations whenever we feel that one allows more intuition

or shorter notation than the other.



1.2 The model
1.2.3 Preparatory assumptions and propositions

In the following, we will give some fundamental assumptions and definitions

concerning the (input) parameters (C, a,b) and prove related propositions:

Assumption 1
We assume C' € R™", a € RY), b € RY; and m > n.

This holds without loss of generality since the problem becomes infeasible
for a; < 0 or b; < 0 and one can always obtain equivalent problems of lower

dimension satisfying a > 0 and b > 0 by leaving out zero supplies and demands.

Furthermore, we note that the roles of the a and b in the problem are completely
interchangeable and therefore assume — in the interest of consistency — that
the vector a is always of higher or equal dimension than b. In particular, we
will assume m > n when stating worst-case complexities of algorithms. With
respect to this last assumption we divide the instances of the problem in the
following two classes: Instances of the transportation problem where m =~ n are
called symmetric and accordingly, all instances for which the opposite holds

are called asymmetric. More rigorously, we define:

Definition 1.2.1
Transportation problems are considered symmetric, when m = O(n) holds and

asymmetric in the opposite case.

Moreover, to ensure a feasible problem, we make a further assumption on the

vectors a and b:

Assumption 2

We assume that, the transportation problem is balanced, ie. Y " a; =

Z;’;l bj'

If the problem is not balanced, there exists well known reformulation tech-
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niques, see for example Gass (1969), which can be applied for the majority of

applications and ensure that Assumption 2 is satisfied.

Hence, we have collected all the necessary prerequisites for the following three

well known proposition, cf. Gass (1969):

Proposition 1.2.2
If Assumptions 1 and 2 hold, the feasible region of the transportation problem
is non-empty, i.e. S # ().

Proof. Setting
o a; - bj
l'ij :

T

kel
we immediately get x;; > 0 since due to Assumption 1 all the a;, and b; are

positive. Furthermore, it also holds

injzz Clz"bj —b Zielai :bj

iel icl > ker @ ’ > ker O

without any further requirements and

inj :Z Cbz"bj Zjerj = a;

s s D ket Wk D ker
since by Assumption 2 we have > ap = > b;. O
kel jeT

Proposition 1.2.3

The feasible region S of the transportation problem is closed and bounded.

Proof. Follows by quick inspection of the constraints of (TP). n

Combining these two propositions, we are able to guarantee optimal solutions

whenever Assumptions 1 and 2 are satisfied.

Proposition 1.2.4
If Assumptions 1 and 2 hold, the problem allows for an optimal solution, i.e.

S* £ .

10



1.3 Linear program

Proof. By Assumptions 1 and 2 we have that the feasible region is non-
empty due to Proposition 1.2.2. Furthermore, the feasible region is closed and
bounded by means of Proposition 1.2.3 and, since the linear objective function

is continuous, (TP) admits an optimal solution (Weierstrass’ Theorem). [

1.3 Linear program

In the following we will review the transportation problem in the context of
linear programming and introduce the standard terminology and properties.
It is well known that the constraint matrix M is of rank m+n — 1, cf. Dantzig
(1951) or Gass (1969). Hence, we will call aset B C {(i,j) | i € I,j € J} with
cardinality |B| = m +n — 1 a basis of the transportation problem whenever
the columns* M;,,; corresponding to the index tuples in B are linearly inde-
pendent. The associated basis matric Mp == (Mn+; | (i,7) € B) is obtained

by removing all columns from M that are not in B.

Accordingly, we call a solution x with Mx = e a basic solution with respect
to B, whenever x;; # 0 implies (7, j) is in B. Equivalently, these solutions are
uniquely defined by Mgz = e. Moreover, they are called feasible basic solu-
tions if x additionally satisfies > 0. We speak of degenerate basic solutions,

whenever z;; = 0 for a least one (4, j) in B.

1.3.1 The dual transportation problem

Dualizing (TP), we obtain the following linear program:
max (u,a) + (v,b)
YeRn (DP)
s.t. u; —|—Uj < Cij V(Z,j) el xJ
In accordance with the primal notation, we will denote the dual feasible set by
Y (¢), optimal dual solutions by (u*,v*) and the corresponding optimal value

by f* and, lastly, the set of optimal solutions by Y*(c, a, b).

4The numbering of the columns of the matrix is with respect to the definition of the vectors

z and c.

11



1 The transportation problem

In case of the dual problem the reader can verify by quick inspection that the
problem is always feasible and the dual region is closed but not bounded in
the general case. To show the existence of optimal solutions we rely on the

propositions made for the primal problem together with Assumptions 1 and 2.

Proposition 1.3.1

If Assumptions 1 and 2 hold, the dual problem admits an optimal solution.

Proof. By Proposition 1.2.4, we have that the primal problem admits an op-
timal solution in the case that Assumptions 1 and 2 are satisfied. Then we
have by strong linear duality (see below), that (DP) is feasible and admits an

optimal solution. O

Corollary 1.3.2
A direct implication of Proposition 1.3.1 is that (DP) is bounded whenever

Assumptions 1 and 2 are satisfied.

1.3.2 Linear duality and complementary slackness

Naturally, we have weak and strong linear duality, that is, for feasible primal

solutions = € S and feasible dual solutions (u,v) € Y it holds
(c,z) > (u,a) + (v,b) (1.1)
and optimal primal and dual solutions z* € S* and (u*,v*) € Y* satisfy
(c,a*) = (u*,a) + (v*,b). (1.2)

Furthermore, (TP) and (DP) additionally satisfy the linear complementary
slackness conditions. Hereby, we follow the common notation for minimum
cost flow problems and introduce the notion of reduced costs, cf. Ahuja et al.

(1993), to denote the dual feasibility of a given dual solution (u,v):

Cii = Ciy — Uy — Uy. (13)

12



1.4 Minimum cost flow problem

Thereby, feasible primal and dual solutions z € S and (u,v) € Y are optimal
if and only if it holds
Tij > 0= C%v =0

1.4
C%U>O:>l’,‘j:0 ( )

for all (4,j) € I x J.

1.4 Minimum cost flow problem

Several of the algorithms for the transportation problem permit a better in-
tuition and — in some cases — more efficient solution techniques, when the
transportation problem is viewed as a network flow problem on a bipartite
graph. Furthermore, a large portion of the literature towards the transporta-
tion problem is written from the perspective of network flows. Hence, we will
accept a bit of redundancy at this point and introduce the transportation prob-
lem as a special case of the (linear)® minimum cost flow problem. To this end,
we will apply several concepts of graph theory, where we assume the reader to
be familiar with basic terms and refer to Korte and Vygen (2007) for a detailed

introduction.

1.4.1 The transportation problem as a minimum cost

flow problem

In the context of graph theory and network flows, the transportation problem
constitutes an uncapacitated minimum cost flow problem on a complete bipar-
tite undirected graph. The underlying graph called the transportation graph
Gip = (Vip, Eyp) is depicted in Figure 1.2. Its vertex set Vi, := S U T is given
by the two disjoint sets S = {1,...,m} and T'= {1’,...,n’}. The correspond-

5The transportation problem is a special case of the minimum cost flow problem with linear
cost coefficients. To ensure a compact presentation, we will omit the prefix “linear” in
the further course of this work and refer to this general problem as the “minimum cost

flow problem”.
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1 The transportation problem

ing undirected edge® set Ey, == {ij | i € S,j € T} of the complete graph is

connecting each node of one of these sets to all nodes of the other set. The

Figure 1.2: The transportation graph G, with the sources S on the left side
and the sinks 7" on the right side. .

nodes ¢ € S represent sources with supply a; and the nodes j € T sinks with
demand b; respectively. Furthermore, we identify costs ¢;; and a flow x;; with

each edge j.

Observe, that we have adapted the previously used notation by labeling the
sinks, that is, the nodes in T', with an additional prime. This ensures that the
nodes in S and T are distinguishable and thus enables us to provide a mathe-
matically sound definition of the two disjoint sets S and T'. Furthermore, this
adaptation is particularly important with regard to the XTI representations
presented in Section 4.3.1. However, in the interest of readability, we will re-
frain from using the prime when indices are denoted by variables, that is, we
use j instead of j. Moreover, the prime is always omitted in the notation of

edges and flow or cost variables since here ambiguity is eliminated by the order

6In the context of this thesis, we will refer to undirected edges as edges and indicate them
by a bar, i.e. ij, whereas we will refer to directed edges as arcs and indicate those by an

arrow, i.e. ij.
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1.4 Minimum cost flow problem

of the two indices, i.e. the first index is always in S and the second one always
in 7. Thus, we write ij, x;; and ¢;; instead of 15, x5 and ¢ as well as e.g. 11,
211 and ¢y instead of 117, z11/ and ¢11. Analogously we will omit the prime in
the notation of dual variables, since e.g. u; clearly refers to 1 in S while v, is

uniquely associated with 1" in 7.

Now, the minimum cost flow problem is to determine non-negative flows z;;
at a minimum costs such that all supply of the sources is transported to the
sinks where all demands are satisfied. By virtue of the foregoing definitions,
this constitutes exactly the same linear problem as in (TP) with the exception
that the sets I and J are now represented by S and T, i.e.

min CiiZss
min > oy

ij€E
s.t. z T = Q; Vie S
jer ’ (1.5)
Z Tij = bj VJ e’rT
ies

Vij € Eyp.

3

<
Vv
(@]

In this context the row and column constraints are called flow preservation
constraints with respect to a; and b;. Since the only other restriction on the
flow variables is non-negativity and especially no upper bounds are imposed

on the x;;, the problem is called uncapacitated.

1.4.2 An equivalent representation of reduced costs

Observe that (1.5) can be equivalently modeled as a directed minimum cost
flow problem, where the demands are represented by negative values, i.e. —b,
and the direction of the arcs is modeled via representing the sinks by a —1 in

the incidence matrix. This leads to the problem formulation

min Z CijTij

rERM" TjeEtp
s.t. > Tii = a; VieS
jer ’ (1.6)
Z _xij = —bj V] c T
€S

zi; > 0 Vij € Ep.
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1 The transportation problem

Due to the bipartite structure of the transportation graph Gy,, the (1.5) and
(1.6) are clearly equivalent” for the transportation problem, however, the tran-
sition to directed graphs implies a different representation of the corresponding

dual constraints, i.e.

max (u,a) — (v, b)
Yekn (1.7)
s.t. U; — Vj S Cij VZ] S Etp-

Accordingly, the reduced costs for an arc ij, that is, the feasibility of a given
dual solution (u,v) with respect to the constraint of ij in (1.7), are given by

Uv
ij

Cii "= Cij — Uy + v (18)

This representation of the reduced costs offers some advantages with regard to
the update of dual variables in the Network Simplex, which will be discussed
in Section 4.3.3.

1.4.3 Basis representation in minimum cost flow problems

Before we continue, a few words on the further procedure. All statements
made in the remainder of this section, and in particular Theorem 1.4.2, can
be equivalently proven for general minimum cost flows on arbitrary connected
graphs. However, since the focus of this work is on the transportation problem,
we will present the following results explicitly for this problem. Besides, the
more general case is covered thoroughly in the literature, therefore we refer
the reader for example to Ahuja et al. (1993). A mathematical definition of

minimum cost flow problems is given below in Section 1.4.3.

The main advantage of formulating the (TP) as a network flow problem is
the characterization of bases as spanning trees on the bipartite graph Gy,. In
preparation of the main theorem of this section, we will review the following

definition:

“This can be easily verified by multiplying all flow preservations constraints with respect
to b by —1.
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1.4 Minimum cost flow problem

Definition 1.4.1
Let Gy, be the transportation graph. A spanning tree of Gy, is a mazimum
acyclic subset T C Ey,, that is, a set of edges connecting all nodes in Vy,, while

none of its subsets form a circle in Gy,.

110000
001100
000011

k101010)
010101

Figure 1.3: A spanning tree for a transportation graph with m = 3 sources and
n = 2 sinks and the corresponding constraint matrix M. Each entry
1 in the first three rows of M represents a source, while each entry
1 in the last 2 rows represents a sink. The columns corresponding
to the edges in the spanning tree are highlighted in blue. The edges
21 and 31 which are not contained in the tree correspond to the
black columns of M.

In the next step, we will take a closer look at the constraint matrix M and
revisit bases of the transportation problem. Observe that each non-zero entry
in the first m rows of M corresponds to a source node of the problem and
the equivalent statement applies to the last n rows of M and the sink nodes.
More precisely, each column M;,,; can be identified with an edge ij of Fj, and
vice versa. Thereby, the only non-zero entries of the column are two ones; the
first at position ¢ represents the source node and the second at position m + j

the respective sink node of the edge ij. Consequently, in the context of graph
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1 The transportation problem

theory, the matrix M is called the incidence matriz (or node-edge incidence

matric).

Clearly, we can formally relate index tuples, edges and columns, i.e

6: IxJ — By,
(i,) — ij
(1.9)
Y: Ey;, — {Columns of M}
i_j = My

where ¢ and 1 are bijective mappings. By definition, a basis of (TP) is an index
set B C I x J corresponding to a maximum linear independent set of columns
{M;n+; | (1,7) € B} of M. By means of the following theorem, bases also define
maximum acyclic edge sets, i.e. spanning trees, for the transportation graph
Gip.

Theorem 1.4.2
By mapping elements via the bisection (1.9) there exists a one-to-one corre-

spondence between bases of M and spanning trees of the transportation graph
Gip.

Proof. This is a standard result for the incidence matrix of a graph which can
be found for example in Ahuja et al. (1993). O

An equivalent property regarding a permutation triangulation of the basis

matrix was already stated in Dantzig (1963).

Theorem 1.4.3
Given a basis B of the non-redundant formulation of the transportation prob-
lem, the rows and columns of the basis matriz Mg can be rearranged to be upper

(or lower) triangular.

Proof. See for example Bradley et al. (1977). O
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1.4 Minimum cost flow problem

By means of these theorems, we will hereinafter call the corresponding span-

ning tree T of a given basis B the basis tree of B.

General minimum cost flow problems

For the sake of completeness and with regard to the analysis of the Network
Simplex in Chapter 4, let us also state the mathematical definition of general
minimum cost flow problems. Therefore we assume some arbitrary connected
directed® graph G = (V, E) with vertex set V and arc set E, where |V| =
n and ]E\ = m. In contrast to the undirected transportation graph, each
arc z} € E has an explicit direction from node ¢ to node j. By virtue of
this characterization, we define the sets of incoming and outgoing arcs I, =
{i e V]ike E}and Oy = {j € V | kj € E} at node k € V. As in
the transportation problem we denote the costs and current flow of each arc
23 cE by ¢;; and z;;. Furthermore, the excess e, describes the flow balance of
a node k € V. In case e, > 0, it will be referred to as a supply and whenever
er < 0 it represents a demand. Mathematically, the uncapacitated minimum

cost flow problem is given as follows:

min Z Cijl‘ij

veR GeE

st S ap— Sy —e,  VkeV (MCEF.)
JE€OK i€ly

5 >0 W} cE.
If in addition, upper bounds o;; > 0 on the flow are introduced, we obtain the

capacitated minimum cost flow problem:

min Z CijTij

zeR o=
ijelk

s.t. Z Tgj — Z T = €k Vk eV (MCFC)
j€OK i€},
OS‘IU Soij VZJEE

Note that we do not loose any generality by neglecting explicit lower bounds ;;

. ) . . . o , ;L
in the formulation, since in this case substituting x;; by T3 where Ty = Tij— li;

8This does not imply a loss of generality since undirected graphs can be transformed into

equivalent directed graphs, cf. Ahuja et al. (1993).
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1 The transportation problem

yields an equivalent problem where the flow is bounded from below by zero,
i.e. zj; > 0, cf. Ahuja et al. (1993).

Clearly, (MCF,), represents a special case of (MCF,.), whereby we assume
the upper bounds o;; are large enough to be omitted in the optimization.
Furthermore, (1.5), and thus also (TP), is a special case of (MCF,).

Reduced costs Lastly, observe that dual variables 7 for k& € V are often
called node potentials in this context, and, by means of dualizing the problems,
the reduced costs for (MCF,) and (MCF,) are given by cf; = c¢ij — m; + ;.

1.5 Properties related to the parameters (C,a,b)

After introducing basic assumptions on the input parameters (C,a,b) in Sec-
tion 1.2.3, we elaborate on different properties of the input and discuss conse-
quences in the following. These are essentially trivial observations collected for
the reader’s convenience. Therefore, in most cases, we omit the corresponding

proofs.

Auxiliary notation

Before we begin, a brief note on the notation used: For simplicity, we denote

by 1* the k-dimensional vector of ones, i.e.
1" cRFand Vie {1,...,k}:1F =1

and at times use this notation to write the sum over a vector by means of a

scalar product instead of using the full sum sign, e.g.

%xi = (z,1™").
i=1

Furthermore, the notation w’ = w + 8 for two vectors w and w’ of equal

dimension d and a scalar $ € R implies that each component of w s increased

by (3, i.e.
Vie{l,...,d}: w, =w;+ B.
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1.5.1 Feasible solutions

To begin with, we state two simple observations on feasible solutions of the

problem.

Proposition 1.5.1
The sum over the components of any feasible solution x € S of a transportation
problem (c,a,b) is equal to the sum of the components of the supply a or the

demand b, i.e.

(x, 1™) = (a, 1) = (b, 1").

Proposition 1.5.2
Let X > 0 be a positive scalar. Then vectors x and T in R™*", a and a € RY,
and b and b € RY, satisfy

z € S(a,b) <= Ax € S(Aa,\b)
zeS(ab) and i € S(a,b) = z+ieSa+ab+b).

1.5.2 Invariant transformations

Let us advance to some simple propositions regarding invariant transforma-
tions of the input parameters of a given problem instance. In this context,
“invariant” indicates that the respective transformation does not affect the es-
sential structure of the optimal set, that is, optimal solutions and the optimal
value either remain unchanged or can be easily computed, e.g. by means of an

affine transformation, after solving the transformed problem:

Definition 1.5.3

A mapping (c,a,b) — (¢a, l;) of the input parameters of the transportation
problem s called an invariant transformation if the optimal solutions of the
original problem (c,a,b) are given by an affine transformation of the optimal

solutions of the transformed problem (¢, a, 5) and the same holds for the corre-
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1 The transportation problem

sponding optimal values, i.e. there exist scalars o € R and 8 € R such that
S*(¢,a,b) = o~ S*(¢,a,b) + f8

and scalars v € R and § € R such that
f*(c,a,b) =~ - f*(&,a,b) + 0.

In this case the transformed problem (¢, a, I;) 15 called equivalent to the problem
(c,a,b).

First, we consider transformations of the cost coefficients of a given problem.

Proposition 1.5.4
Let a > 0 and f € R be two scalars. Then a solution x € R™*™ is optimal for
the transportation problem (c,a,b) if and only if it is optimal for the problem

with transformed cost coefficients (ac+ B, a,b), i.e.
S*(¢c,a,b) = S*(ac+ B,a,b).

As stated in the next proposition, we obtain invariant transformations for the

supply and demand vectors as well:

Proposition 1.5.5

Let X > 0 be a positive scalar. Then a solution x € R™*" s optimal for
the transportation problem (c,a,b) if and only if A\x is optimal for the scaled
problem (¢, Aa, \b), i.e.

AS*(e,a,b) = S*(c, Aa, Ab).

Proof. Let A > 0 and Az* € S*(¢, Aa, Ab) which is equivalent to (A\z*, ¢) < (y,¢)

for all y € S(Aa, Ab). Moreover, since for each y there exists = such that x = ¥
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1.5 Properties related to the parameters (C,a,b)

we can substitute y by Ax and apply Proposition 1.5.2 to achieve

(Az*,c) < (y,0) Vy € S(Aa, Ab)
— (A\r*,¢) < (A\x,¢) VAz € S(Aa, \b)
— (A*,¢) < (Az,¢) Ve S(a,b)
— (z%,¢) < (z,¢) Vz € S(a,b)
which is equivalent to z* € S*(c, a, b). ]

Observe that Propositions 1.5.4 and 1.5.5 provide the useful option to consider
normalized problem instances by transforming arbitrary cost vectors ¢ € R™*"
and balanced supplies a > 0 and demands b > 0 to study equivalent problems
with e.g. cost coefficients in [0, 1] and (a,1™) = (b,1™) = 1. This technique is
for example applied in Schwinn and Werner (2018), where the parameters of
different problems classes are normalized to ensure a consistent evaluation of
the approximation quality of heuristics. The according transformation of the

cost coefficients is shown in the following corollary:

Corollary 1.5.6
Let ¢ € R™*™ be some cost vector. Then we obtain an invariant transformation
cr> ¢ € [0,1]™*™ of the cost coefficients by subsequently applying the following

operations:

1. Set¢c:=c— h := min{0 ' i b
et ¢ .= c— 8 where B = min{0, (i’glel}lxjcj}

2. Set ¢:=1.¢ where == max c;;.
@ (3,9)€IxJ

Proof. Observe, that after 1. we have ¢ > 0 and thus 2. yields 0 < ¢ <1. [

1.5.3 The transportation paradox and non-negative cost

coefficients

To supplement our investigations of the parameters (C, a, ), let us introduce a
very interesting and yet underrepresented (in teaching, applications and litera-

ture) phenomenon called the transportation paradox. To this end, we formulate
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a relaxation of the transportation problem in case of non-negative cost matrices
C > 0. More specifically, we relax the row and column constraints by allowing
the forwarder to optionally transport more than a; or b; from given origins
i or to given destinations j by replacing all equality constraints of (TP) by
inequality constraints:

min (¢, z)

reER™M™
S.t. Ax > (TP-)
Bx >
z > 0.

Accordingly, we adopt the notation for the original problem and add an addi-

tional subscript >, that is, we will use
(C,CL, b)Za SZ: S;» $*2 and f;

to refer to problem instances and feasible as well as optimal solutions of the

relaxation. The corresponding dual program is then given by:

max (u,a) + (v, b)

u€eR™
veR™
s.t. u+v; < ¢y Y(i,j) €elxJ (DP-)
u; > 0 Vi el

Here, we have adapted the notation of (DP) accordingly, i.e.

Y>, YZ and (u*,v7)s.

In contrast to (DP)?, this relaxation has the nice property that the dual feasible

region is bounded:

Proposition 1.5.7
For given input (C' > 0,a,b), the feasible region Y>(c) of (DPs) is non-empty

9The feasible region of (DP) is not bounded in the general case: Consider the counterex-
ample m=n=1,a=0b=1 and c € R! where optimal dual solutions are given by the

line u +v =-c.
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and compact. In particular, the dual variables are bounded by the following

inequalities:
<wu; < min ¢;; Viel
1<j<n
<wv; < min ¢; VjeE.J
0<wv; < nin ;g vVieJ
Proof. Follows directly from the definition of (DPs). O

Let us now discuss, how optimal solutions of (TP) and (TP-) are related.
Clearly, if there exists any negative cost coefficient ¢;; < 0, the problem (TP>)
is unbounded, since the inequality constraints allow arbitrary positive values of
x;; and thereby arbitrary negative objective values, since we have ¢;; - x;; < 0.
Thus, we assume C' > 0 for the remainder of Section 1.5.3. Intuitively, one
would assume that for given input data (C' > 0,a,b), optimal solutions of
(TP) will not be dominated by optimal solutions of the relaxation (TPs),
since the feasible region is extended only to solutions where the total amount of
transported units is higher and each additionally transported unit is associated
with non-negative transportation costs. However, the example in Figure 1.4
shows that this intuition is not met in the general case. To put it briefly, in
the situation of Figure 1.4 one can decrease the overall transportation costs
by increasing the total amount of transported units. This phenomenon has
been known to the optimization community for quite some time and is called
the transportation paradox or more-for-less paradox. Formally, it is defined as

follows:

Definition 1.5.8
The transportation paradox describes the situation where for fixed input data
(C,a,b), the optimal value of (TPs) is strictly better than the optimal value
of (TP), i.e.

f2(C,a,0) < f*(C,a,b).

This represents the main motivation to study the paradox from a practical
point of view, since it may enable practitioners to improve the optimal so-

lution of a problem instance by exceeding the required shipment quantities,
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Tij | i zij | ¢y

CLQZl b2:1 az =1 b2:1

Figure 1.4: On the left side an optimal solution of an instance of (TP) is de-

26

picted where 3 units are transported with total costs of 5. On the
right side an optimal solution of the relaxation (TPs) for the same
input data is presented where 4 units are transported with total

costs of 4. Thus the transportation paradox occurs.
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i.e. relaxing (some) constraints in the problem. While some publications (e.g.
Schrenk et al. (2011)) state that the paradox is due to Charnes and Klingman
(1971) and Szwarc (1971), it is hinted in Charnes and Klingman (1971) and
Deineko et al. (2003) that it had been known for example by A. Charnes and
W.W. Cooper for quite a while at this point and was independently used as
an exam problem by Alison Doig at the London School of Economics by 1959.

As we will see, the occurrence of the paradox, among other things, is linked
to the composition of the cost matrix C'. This connection is characterized in

Deineko et al. (2003), where the notion of immune cost matrices is introduced:

Definition 1.5.9
A cost matriz C' is defined as immune against the transportation paradox, if for
arbitrary supply and demands vectors a € RY, and b € RY, the transportation

paradox does not occur.

Their work is based on a structural property of C' which we will call immune

coeflicients.

Definition 1.5.10
A cost matriz C' € R™™ s said to have immune coefficients if and only if for
all 1 <i,r <m and for all 1 < j,5s <n wherei#r and j # s it holds

Cij < Cis + Crj.

The corresponding theorem yields a necessary and sufficient condition for the
immunity of a given problem (C, a, b) to the paradox, which is independent of

the row and supply vectors a and b.

Theorem 1.5.11
A cost matrix C > 0 is immune against the transportation paradox if and only

if C'" has immune coefficients.

Proof. See Theorem 4 in Deineko et al. (2003). O
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Interestingly, we can show that there is an invariant transformation for any

cost matrix C' such that the transformed matrix is immune:

Proposition 1.5.12
Let C' € [0,1]™*" be a cost matriz with coefficients in [0,1]. Then the trans-
formed matriz C, obtained by the invariant transformation

5 1
Cij = g(Cij + 1)

for all (i,7) € I x J, is immune against the transportation paradoz.

Proof. Clearly, the transformation defined above is invariant by means of
Proposition 1.5.4 and the transformed coefficients are greater or equal than
zero. Furthermore, let 7,7 and j,s be such that 1 <i,r <mand 1< j,s<n

where ¢ # r and j # s. By definition, we have that
Cij < Cis + Crj
is equivalent to

(Cis +1+¢j+1).

Wl =

1
g(Cij +1) <
Reducing this expression, we obtain
Cij‘l'l SCiS—FCTj—FQ,

which is obviously satisfied for C € [0,1)™*". Hence, C > 0 has immune

coefficients and is therefore immune to the transportation paradox by Theorem
1.5.11. O

Thereby, we can apply Propositions 1.5.4 to achieve [0, 1]-coefficients for arbi-
trary cost matrices and subsequently transform these by means of Proposition
1.5.12 to obtain equivalent problems, where the cost matrix is immune against

the transportation paradox.

Corollary 1.5.13
Let C € R™™ be a cost matriz. Then Corollary 1.5.6 and Proposition 1.5.12
provide an invariant transformation C' +— C' such that C is immune against

the transportation paradoz.
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In addition to considering immune coefficients one can characterize instances
(C,a,b), where the paradox arises via the dual problem, as was first done by
Szwarc (1971). For the following theorem, we consider the non-redundant form

(see Section 1.3) of the transportation problem.

Theorem 1.5.14
For a given transportation problem (C,a,b) the transportation paradox arises
if and only if in every optimal solution (u*,v*) € Y* of the dual non-redundant

formulation of the problem there exists a variable with negative value, i.e.
Jiel:u; <0V 3ge:v;<0.

Proof. See Theorem 1 in Szwarc (1971). O

Finally, collecting the results of this section, we want to stress that — apart
from its theoretical appeal — the transportation paradox gives a lot of desirable
opportunities in the field of applications. Thereby, Theorem 1.5.14 gives an in-
teresting option to practitioners who are willing to relax (some) constraints
of their transportation problem. To this end, several numerical approaches
have been proposed, see e.g. Szwarc (1971), Charnes and Klingman (1971),
Finke (1978) and Schrenk et al. (2011). A numerical study done by Finke
(1978) investigated randomly generated instances of the transportation prob-
lem and concluded that optimal solutions could be drastically improved by
post-optimal exploitation of paradoxical structures. Averaged over all problem
instances, optimal values could be improved by 18.6% when the amount of
transported units was increased by 20.5%. Furthermore, aside from improving
the optimal value, Theorem 1.5.11 gives the opportunity to design problem
instances admitting or preventing the paradox, if an application permits some
control over the input (C,a,b). Lastly, even if one has no control over the in-
put or the option to relax constraints, knowing whether (TP) and (TP) have
the same optimal value gives an interesting insight in the composition of the
problem instance one is trying to solve. For example, Proposition 1.5.7 yields
that the feasible region of (DP>) is bounded.
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1.5.4 Integer input data

In the following we state a series of properties holding for integer inputs.

Proposition 1.5.15
In case of integer supplies and demands a and b the transportation problem

admits an optimal integer solution.

Proof. This is a standard result for general minimum cost flow problems and
can be found for example in Ahuja et al. (1993). Hereby, the result is proved by
construction using a cycle-canceling approach. Other proof techniques involve
the unimodularity of the incidence matrix in minimum cost flow problems
together with Cramer’s rule (see e.g. Korte and Vygen (2007)) or triangular

rearrangement of the constraint matrix, cf. Gass (1969). O

Proposition 1.5.16
In case of integer coefficients C' the dual of the transportation problem admits

an optimal integer solution.

Proof. This standard result for general minimum cost flow problems can also
be found for example in Ahuja et al. (1993). Again, it is proved by construction
using the fact that the Network Simplex will compute integer dual multipliers

in every iteration whenever the costs are integral. O]

1.5.5 Sparsity

Sparsity generally implies that a large portion of the entries in the constraint
matrix of a problem assume zero values. For the transportation problem the
density, i.e. the ratio of non-zeros to zeros, of the constraint matrix M is given
by

2m+n) 2

mn(m+mn)  mn’
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which — for large enough values of m and n — will classify the problem as
sparse. This fact along with the special structure of the matrix is implicitly
exploited in the heuristics and the Transportation Simplex introduced later in
this thesis.

In contrast to the constraint matrix M, the density of the cost matrix C
is not determined by the problem dimensions but dependent on the specific
application, i.e. the input parameters. As stated in the introduction of this
chapter, we would like to point out that this thesis is concerned with dense
instances of the cost matrix, that is C' is not sparse in the general case. The

reason for this is twofold:

e Sparsity in the objective function (cost matrix) will — in the general case
— not eliminate the necessity to include these entries in the computation
because positive transport on routes corresponding to zero costs might
still affect the transport on routes with non-zero costs. Thus, exploitation
of sparsity goes hand in hand with demanding a specific structure of the

cost matrix and thereby reduce the generality of our analysis.

e If on the other hand, sparsity of the objective function relates to the
fact that only a small number of arcs is admissible (or to use another
terminology: a large portion of the arcs is restricted), a lot of the special
structure motivating the isolated study of the problem is lost. As pre-
sented in Section 1.4, the transportation problem constitutes a special
instance of the general minimum cost flow problem. In this context the
essential feature of the transportation problem is that one operates on
a complete bipartite graph. This imposes a special dependency structure
(see the constraint (or incidence) matrix M) separating the problem from
general instances. This structure justifies an isolated treatment and in
particular makes it worthwhile to develop specially tailored algorithms.
In case of a sparse problem it might be preferable to apply general min-
imum cost flow solvers optimized for sparse problems since — due to the
vast number of applications — algorithms of this area are generally more
developed and easier to acquire. However, there exist transportation al-

gorithms where the worst-case complexity depends on the number of
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arcs, e.g. Kleinschmidt and Schannath (1995), which will be discussed in

Chapter 2 and may present an efficient alternative.

1.5.6 Degeneracy

Finally, let us consider the case of degeneracy. As stated before, we call a
given basic solution x with corresponding basis B degenerate, whenever it
holds z;; = 0 for some (i, j) € B. Occurrence of such solutions is not only of
theoretical interest but a major practical concern since degenerate solutions
can negatively affect the performance of solution algorithms. For instance, in
the Simplex method, the phenomenon of cycling, that is an infinite repetitive
sequence of degenerate pivots!? may prevent algorithms from terminating after

a finite number of iterations.

This obstacle is already addressed in Dantzig (1951) and usually solved by
modifying the respective algorithms. For example, one can use the pivot rule
of Bland in the Simplex Algorithm (cf. Luenberger and Ye (2015)) or introduce
strongly feasible spanning trees in the Network Simplex (Ahuja et al. (1993)). A
necessary and sufficient criterion for the occurrence of degeneracy with respect

to the input vectors a and b is already provided by Dantzig (1951).

Theorem 1.5.17
A given transportation problem (C,a,b) admits degenerate solutions, if and

only if there exist non-empty subsets I' C I and J' C J such that

Zai:ij.

iel jeJ

Proof. See Dantzig (1951) for the original proof or Schwinn (2015) for a proof
using graph theory concepts. O]

In addition to the theorem, Dantzig (1951) states a concept to avoid "degen-

1A pivot in the Simplex Method is said to be degenerate whenever it changes the current
basis but not the current basic solution, see Section 4.3.5. In particular these steps do

not improve the current objective value.
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eracy” problems independent of the algorithm used to solve the problem. The
essential idea of this approach is to perturb the entries of a and b by small
values in the order of the last valid decimal place to avoid equal partial sums

of a; and bj.

1.6 History of the transportation problem

In the next section we give an overview of the historically most important
contributions to the transportation problem. Many of these publications have
had a direct impact on the development of mathematical optimization itself
and represent major contributions in sub-areas such as linear optimization,
network flows or non-smooth optimization. Furthermore, the importance of
the problem is also evident in the quantity of publications, especially in the
middle of the last century. Hence, to do justice to all relevant contributions
and interesting stories concerning the problem would go beyond the scope of
this section. We therefore point out that the following is only a brief account
of the most important developments and refer to e.g. Dantzig (1963), Charnes
et al. (1975), Gass (1990) and Schrijver (2002) for more historical background.

1.6.1 Exact solvers

The first formal treatment of the continuous formulation of the problem has
been published as early as the end of the 18th century by Gaspard Monge, who
studied the problem of transporting soil between two locations for the French
Academy of Sciences, see Monge (1781). However, according to the current
state of research, the first known publication in the context of combinatorial
optimization appeared almost 150 years later in 1930. At that time A. N. Tol-
stoi studied several solution approaches applied to a problem of transporting
goods in the railway network of the Soviet Union and was probably the first

to consider the now well known cycle criterion for optimality!!, cf. Schrijver

1 An optimum solution of a general minimum cost flow problem does not have any cycle of

negative costs in its residual graph.
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(2002). His work was followed by the well known publications of Kantorovich
(1960)'?, who stated and analyzed the continuous version, and the statement of
the problem formulation which is the subject of this thesis by Hitchcock (1941).
Around the same time the problem was independently studied by Koopmans

(1949) who, as Kantorovitch (1958), derived a cycle criterion for optimality.

Thereby, Hitchcock (1941) and Koopmans (1949) represent not only some of
the first publications on the subject of linear programming but introduce many
concepts that presaged the famous Simplex algorithm independently proposed
by G.B. Dantzig in the late 1940s (cf. Dantzig (1990)). The importance of the
transportation problem for research in the field of mathematical optimization
at this time becomes even clearer by the fact that Dantzig (1951) adapted his
method shortly thereafter for the transportation problem and thus initiated
the development of the Network Simplex. We will introduce a modern version
in Chapter 4 and refer to it as the Transportation Simplex or TPS in short.
It is probably the most used algorithm for solving the transportation problem

and will play a central role in this thesis.

After its original publication the TPS was reviewed and further developed in
several papers, among which are Dennis (1958), Glicksman et al. (1960) who in-
vestigated coding techniques or Srinivasan and Thompson (1973) who analyzed
different combinations of pivot updates and initialization methods. In partic-
ular, some major improvements which “contributed dramatically to improving
the efficiency of network algorithms”(Glover et al. (1979)) were made with
regard to base representation and pivot operations, see e.g. Glover and Kling-
man (1972), Glover et al. (1972), Srinivasan and Thompson (1972), Glover
et al. (1974b), Glover et al. (1979) and Bradley et al. (1977). The practical
importance of the algorithm can also be observed by the fact that Charnes
and Cooper (1954) made a pedagogical approach to illustrate the operations
of the Transportation Simplex to a broader audience, yielding the so called
Stepping Stone Method. Furthermore, the TPS was extended towards general
minimum cost flow problems, where it is called the Network Simplex. This

brought with it a much wider field of possible applications and thereby a lot of

12This refers to the English translation of the original article, published 1939 in Russian.
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further research. A good overview of the theoretical and practical results can
be found in Ahuja et al. (1993) and a recent computational study in Kovacs
(2015).

Since the problem constitutes a minimum cost flow problem on a bipartite
graph (cf. Section 1.4), several attempts to solve the problem using combina-
torial techniques were made. Thereby, the importance of the transportation
problem in the field of network flows is perhaps emphasized best by the fact
that it repeatedly has been the subject of the work of L.R. Ford and D.R.
Fulkerson (cf Ford and Fulkerson (1956), Ford and Fulkerson (1957a), Ford
and Fulkerson (1957b) and Ford and Fulkerson (1962)). In the course of this,
the problem was solved by computing maximal flows in networks (Ford and
Fulkerson (1957b)), the Out-of-Kilter Method (Ford and Fulkerson (1957a))
or adaption of the Hungarian Method by Munkres (1957) as well as Ford and
Fulkerson (1956).

Another interesting approach, which originated in a completely different area
of optimization, was made by N.Z. Shor in the 1960s (cf. Shor et al. (1985)'3),
who — for the first time — applied non-smooth optimization methods to solve

highly asymmetric instances of the transportation problem.

In practice, the problem was solved in the first half of the 20th century, mostly
by general linear programming algorithms (canonically the problem constitutes
an LP), combinatorial methods, as well as algorithms based on the Transporta-
tion Simplex. Amplified by the fact that computer systems were not as stan-
dardized as today and software could be accelerated significantly by optimizing
it for specific large-scale computers, a vast number of codes was available, see
Charnes et al. (1975). Based on computational results (e.g. Ford and Fulkerson
(1962)) that indicated superiority of combinatorial methods, the general opin-
ion (cf. Glover et al. (1974b)) at that time seemed to be that these methods
were generally most efficient with regard to the transportation problem. This
motivated the paper of Glover et al. (1974b), who aimed at providing a valid

comparative study and refuting several notions that had become “part of the

13The original work was published in Russian with the translated title: An application of

the method of gradient descent to the solution of the network transportation problem.
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folklore around the transportation problem”, concerning the efficiency of differ-
ent solution techniques. Together with Srinivasan and Thompson (1973) their
work “represents a landmark” (Gass (1990)) in the development and computa-
tional evaluation of computer-based transportation algorithms. It established
the Transportation Simplex (meanwhile significantly sped up by the use of
modern data structures for base representations) as state-of-the-art solver. An
excellent overview of the development of algorithms until the end of the 20th

century can be found in Gass (1990).

1.6.2 Heuristics

Apart from exact solvers, several heuristics have been proposed for the trans-
portation problem. Amongst these are such well known names as the North-
West Corner Rule (Dantzig (1951)), Vogel’s Approximation Method (Reinfeld
and Vogel (1958)) or Russel’s Method (Russell (1969)). The Interest for study-
ing these (primal) heuristics was twofold: While they were also employed to
directly tackle the problem, the focus of research shifted towards their poten-
tial to produce starting points for the Transportation Simplex in the second
half of the century. This was due to the significant acceleration and growing
success of exact solvers and was accompanied by a greater interest in various
Minimum Cost Allocation methods since these were reported to guarantee the
best combined computation time of the heuristic and a successively run exact
solver, cf. Srinivasan and Thompson (1973) and Glover et al. (1974b).

The most recent comparative studies constitute Gottschlich and Schuhmacher
(2014) and Schwinn and Werner (2018). The first one considers problem in-
stances derived from image science and compares the newly introduced Short-
list Method to other primal heuristics with respect to combined computation
time. In contrast to this, the latter analysis considers general problems, that
is various problem classes both derived from real world applications and arti-
ficially generated. Moreover, primal as well as dual heuristics are employed to
directly solve the problem and the primal-dual gap is used to obtain a certifi-

cate for the quality of solutions. Thereby, — and to the best of our knowledge
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— this paper provides the first comparative study of dual heuristics for the

transportation problem.

1.6.3 Different names of the problem

We would like to conclude this section with a few words towards the various
names of the problem. As a logical consequence of its long history, a multi-
tude of designations for the problem have been established over the course of
time. Apart from the (classical) transportation or distribution problem, these
included almost all combinations of the surnames of the authors who made
first contributions to the problem, which are in chronological order: G. Monge,
A. N. Tolstoi, L.. Kantorovich, F. L. Hitchcock, T. Koopmans and G. Dantzig
(see above). In the context of linear programming and especially in the western
world, it has been mostly referred to as the (classical) transportation problem
or the Hitchcock transportation problem. Only later, as the earlier works of
Kantorovich and Monge became known, the problem was also associated with

their names.

1.7 Recent research and applications

Today, applications of the transportation problem — and the more general
minimum cost flow problem — are widespread and continue to grow in scale. The
respective application fields include operations research, financial mathematics,

engineering, linguistics and computer science.

Historically, most problem instances originated in the area of operations re-
search. For instance Tolstoi (see Schrijver (2002)) applied his methods to the
Soviet railway network and Koopmans (1949) describes the problem of dis-
tributing empty cargo ships in overseas trade, see Figure 1.5. While problems
of this nature remain relevant today, a large portion of the recent research has

been driven by applications in the field of computer science.
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Figurn 1. Optimal Routes of Empty Shipping Corresponding to World Dry-
Cargo Flows in 1925,

The Figure shown with the representative port of each area

represents the net shipping surplus of that area in millions of
metric tons of dry-carge capacity,

Figure 1.5: An illustration of an application of the transportation problem in

overseas trade, taken from the paper of Koopmans (1949).

38



1.7 Recent research and applications

An important part of research originates in the field of imaging science and is
related to the Wasserstein distance, see e.g. Rachev and Riischendorf (1998)
and Villani (2009). In the field of computer science it is known as the Earth
Mover’s distance, due to the seminal work of Rubner et al. (1997). Here, time
critical computations in image processing motivated specifically tailored algo-
rithms and respective comparative studies (Schrieber et al. (2017)), where some
of these methods can also be applied to the general problem, e.g. the Shortlist
Method of Gottschlich and Schuhmacher (2014). Applications of these algo-
rithms include highly relevant tasks: e.g. visual object tracking, shape match-
ing, image retrieval and fingerprint recognition. For an extensive list of appli-
cations, see Gottschlich and Schuhmacher (2014).

Initiated by the work of Cuturi (2013), Wasserstein distances and the theory
of optimal transport have also taken their way into the machine learning com-
munity: Progress has been made in many areas, including among others the
work of Schmitz et al. (2017) and Carriére et al. (2017) in (semi-)supervised
learning, Arjovsky et al. (2017) for generative adversarial networks (GANs),
Staib et al. (2017) and Srivastava et al. (2015) in Bayesian inference, Mon-
tavon et al. (2016) on restricted Boltzmann Machines or Frogner et al. (2015)
for learning with Wasserstein objective functions. For an overview on recent

research and applications, see e.g. Kolouri et al. (2017).

In addition, problem instances which are potentially highly asymmetric — e.g.
the placement of VSLI chips (Brenner and Struzyna (2005)) — led to the devel-
opment of combinatorial algorithms exploiting the unbalanced structure of the
underlying bipartite graph by Kleinschmidt and Schannath (1995), Tokuyama
and Nakano (1995) as well as Brenner (2008).

Beyond that, research on the transportation problem benefits from the more
general field of network flow algorithms, since advancements in this area gen-
erally can be applied to the special case. Recent publications in this field, e.g.
Kovécs (2015), confirm the increasing competitiveness of modern solvers from
the combinatorial optimization field. Adaptations to the transportation prob-
lem include the work of Kleinschmidt and Schannath (1995) and Tokuyama
and Nakano (1995), which is based on the algorithm of Orlin (1988). Applica-
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tions in the area of network flows are extensive; exemplary lists can be found
for instance in Ahuja et al. (1993) or Kovacs (2015).

Furthermore, some special cases of the transportation problem induced their
own areas of research. Hereby, prominent cases include the assignment problem
(see e.g. Burkard and Cela (1999)) or problem instances admitting Monge
Sequences, see Hoffman (1963).

Lastly, another natural incentive for ongoing research is the occurrence of the
transportation problem as a subproblem in other optimization problems like
the traveling salesperson problem, the warehouse location problem or the frac-
tional knapsack problem with weights, cf. Glover et al. (1974b), Brenner (2008)
and Gottschlich and Schuhmacher (2014).
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In the subsequent Chapters 3, 4 and 5, we discuss two exact! solution methods
for the transportation problem. Part of our analysis will be the empirical eval-
uation of these methods in Sections 4.5 and 5.3. For this purpose, we present
our numerical test setup in this chapter, which is organized as follows: First,
we specify the IDE and programming language, the external software used
and the hardware specifications of our test system. To provide a first refer-
ence regarding the difficulty of the problem, this is followed by a discussion
of the theoretical worst-case complexities of combinatorial solution methods.
Finally, we introduce — in the main part of this chapter — several classes of test

problems in Section 2.3.

2.1 Software choice and hardware used

In accordance with the research goals formulated in Chapters 1 and 5, all
methods were implemented in MATLAB 2015B. Furthermore, we used the LP
interfaces provided for MATLAB by ILOG CPLEX 12.6.2 and GUROBI 7.02 to
represent external LP solvers. In particular we used the Network Simplex of
CPLEX as a reference point for our methods. This Network Simplex is imple-
mented in C/C++ which gives it an algorithm independent advantage over
our MATLAB implementation. All numerical evaluations were performed on a
standard personal computer (processor: Intel Core 15-4090, 3.30 GHz, RAM:
16GB).

'Tn Chapter 3, we consider heuristic approaches to the transportation problem which will

serve as subroutines in the exact solution methods of the subsequent chapters.
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2.2 Theoretical complexity analysis

With regard to the next chapters, we will further briefly review the available
theoretical worst-case complexities of exact algorithms for the transportation
problem. Our motivation is twofold: First, we provide a first criterion for the
difficulty of general problem instances and, secondly, we will rule out certain
heuristic approaches in Chapter 3 based on these complexities. To this end, we
will — to the best of our knowledge — collect methods with the best strongly
polynomial bounds in the following. It should be noted that all these algorithms

assume integer input data.

For symmetric instances where the number of supplies equals the number of de-
mands, i.e. m = n, the best available complexity is O(m?logm) which can for
example be obtained by directly applying the method of Orlin (1988) developed
for general minimum cost flow problems. In the asymmetric case, i.e. m > n,
this bound can be improved by shifting the complexity to the smaller set of
nodes in the transportation graph. This fact has been exploited in several algo-
rithms that provide efficient approaches for different ratios of ™ (see Brenner
(2008)). For instance, Kleinschmidt and Schannath (1995) achieve a running
time of O(mlogm(k + nlogn)) where k is the number of admissible arcs by
customizing the algorithm of Orlin (1988) to the transportation problem. As
mentioned in Section 1.5.5 this bound is particularly interesting in the pres-
ence of sparsity. In the context of this thesis, we assume k = m - n (cf. Section
1.2) and consequently obtain a complexity of O(m?nlogm) for the algorithm
of Kleinschmidt and Schannath (1995). For increasing values of ™, additional
methods improve this bound even further — e.g. Tokuyama and Nakano (1995)
achieve a worst-case running time of O(mn?log®m) and Brenner (2008) ob-
tains a complexity of O(mn2(log m+nlog n)) by repeatedly solving minimum
cost flow problems which only depend on the smaller side, i.e. scale with n. The
most extreme case constitute algorithms which are linear in m, but exponential

in n, see Brenner (2008).
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2.3 Test problems

Before advancing to a detailed introduction of the solution methods for the
transportation problem, we would like to introduce the test problems used to
practically evaluate the corresponding algorithms. Based on the assumptions
made in Chapter 1, we will begin by stating properties that apply to all test
instances generated in our numerical studies and elaborate on the way random
numbers are sampled. On this basis we then present three different classes of
transportation problems: To begin with, we will introduce two classes of ar-
tificially generated problem instances called UNIFORM and SOLGEN. The
first class represents the common approach for artificially generating problem
instances, cf. Srinivasan and Thompson (1973), Glover et al. (1974b), Ahrens
and Finke (1980) and Sandi (1986). In order to complement this choice we
further incorporate the SOLGEN class, as the optimal solutions of these prob-
lems tend to be of a less uniformly distributed structure, cf. Section 4.5, and
therefore pose a different challenge to solvers. In addition, a nice feature of
the SOLGEN class is that a corresponding optimal solution is implicitly con-
structed in the generation process of a given problem instance. Lastly, these two
artificial classes are supplemented with problem instances that originate from
modern applications represented by DOTMARK, a benchmark for transporta-
tion problems from Schrieber et al. (2017), which offers 10 different problem

classes derived from computational image comparison.

2.3.1 Assumptions on problem instances

A single instance of the transportation problem is represented by an input
triple (C,a,b). Naturally, these instances should be feasible, thus, based on

Assumptions 1 and 2 we will force

D =) b, (2.1a)

icl jed
a; >0 Viel, (2.1Db)
b >0 VjelJ (2.1¢)
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del:a;>0. (2.1d)
for all problem instances included in our setup.

One can see that Assumption 1 is relaxed for our practical investigations since
the DOTMARK instances include zero supplies and demands. Furthermore,
numerically, we will consider all values which are smaller than some threshold
€ = 10712 as zeros. While this theoretically implies zero supplies and demands
in the artificial problem classes as well, their occurrence in practice was negli-

gible for the problem dimensions considered in this thesis.

The relaxation of Assumption 1 implies that the DOTMARK instances directly
qualify as test instances. However, ensuring (2.1a-d) becomes more challenging
while generating statistical sound values for a and b, which we will elaborate

on in Section 2.3.2.

2.3.2 Sampling random numbers

Historically, the majority of numerical research on the transportation problem
has been carried out on randomly generated problem instances, cf. Srinivasan
and Thompson (1973), Glover et al. (1974b), Ahrens and Finke (1980) and
Sandi (1986). The probability distribution most frequently used to sample the
parameters (C,a,b) was the uniform distribution. Interestingly, experiments
carried out by Ross et al. (1975), who compared different probability distribu-
tions for generating cost coefficients, indicated that the uniform distribution
generally produces the hardest instances. Concerning our test instances, this
motivated us to generate all cost coefficients by sampling from uniform dis-
tributions. In the following, we will denote the uniform distribution on the
interval [a, b] by U([a, b]).

Moreover, we would also like to ensure uniformly distributed supply and de-

mand vectors a and b. Here, for simplicity, we set

Zaizzbjzl (2.2)

iel jeJ

for our artificial instances. As noted by Ahrens and Finke (1980), statistically
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sound values of a and b should therefore be uniformly distributed on the stan-
dard (m —1)-simplex and the standard (n— 1)-simplex, respectively, to further
satisfy equations (2.1b-d). To accomplish this, we sample the supply and de-

mand vectors from a suitable Dirichlet distribution. Accordingly, the expected

m—1
m2(m+1)

well as * and n;(l;il) for b, cf. Balakrishnan and Nevzorov (2005). We proceed

with a detailed description of the three problem classes.

value and the variance of the components is given by % and for a as

2.3.3 UNIFORM

The first problem class represents the common approach for artificially gen-
erating problem instances for the transportation problem, cf. Srinivasan and
Thompson (1973), Glover et al. (1974b), Ahrens and Finke (1980) and Sandi
(1986). As explained in Section 2.3.2, we sample the supplies and demands a
and b from m-dimensional and n-dimensional Dirichlet distributions to ensure
uniformly distributed points on the respective standard simplices. Further-
more, we draw the cost coefficients ¢;; from the uniform distribution on [0, 1],
i.e. U([0,1]), since, as stated above, uniform distributed costs have been re-

ported to yield rather challenging problem instances.

2.3.4 SOLGEN

In addition to the UNIFORM class, we include a second problem generator,
called SOLGEN, with the advantageous property that a corresponding opti-
mal solution is implicitly created for each problem instance. Moreover, as can
be observed in Section 4.5, the optimal solutions of SOLGEN instances tend
to include variables with comparably high costs, which results in a problem
structure that is less exploitable by certain pivot rules and therefore nicely
complements our choice of problem classes. To construct these problems, we
use similar concepts as presented in Arthur and Frendewey (1994) for capac-
itive minimum cost flow problems, who report that their algorithm produces

problem instances of “comparable difficulty” to instances generated by NET-
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GEN (Klingman et al. (1974)), a commonly used minimum cost flow problem

generator.

The generation process follows a reverse methodology for the construction pro-
cess. Instead of sampling input triples (C,a,b) with guaranteed but unknown
optimal solution (or multiple optimal solutions), we start by generating an op-
timal solution, represented by a basis as well as the corresponding primal and
dual basic solutions. Subsequently, we choose (C, a, b) such that optimality con-
ditions for this solution are satisfied. Here, we improve the work of Arthur and
Frendewey (1994) by ensuring a uniformly distributed topological structure of
the corresponding optimal solution. To achieve this, we will employ random
walks on the transportation graph G/, to obtain uniformly distributed span-
ning trees. While we will illustrate our approach solely for the transportation
problem, it can easily be extended to general (capacitated) minimum cost flow
problems. We will add further statistical value and the possibility to replicate
experiments by stating the specific probability distributions for all randomly

generated values.

Now, let us present the algorithm for generating SOLGEN instances. To begin
with, we will take an isolated glance on the consecutive steps of the construc-
tion process and give the complete algorithm at the end of this section. To
supplement our explanations, we will illustrate the process for an exemplary

problem instance in Figures 2.1, 2.2 and 2.3.
In the first step of the algorithm a random basis B is created:
1. Generate uniform distributed basis B = {(i1,j1), - -, (imtn—-1s Jmt+n—1)}-

Hereby, one makes use of the one-to-one correspondence between bases and
spanning trees on bipartite graphs (the transportation graph) given in Theo-
rem 1.4.2. Taking advantage of this equivalence, Arthur and Frendewey (1994)
propose to compute bases B via randomly generating such spanning trees. To
this end, they propose a heuristic approach for which no statistical properties
are proven. Here, we add to their work by realizing uniformly distributed span-
ning trees (and thereby bases) via random walks on the transportation graph.

For a detailed description of how to obtain uniform distributed spanning trees
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by employing random walks on general graphs, see e.g. Broder (1989).

As a next (or possibly parallel) step, we sample the dual variables u and v
2. Set u; :==U([—0.5,0.5]) for all i = 1,...,m.
3. Set v; :=U([—0.5,0.5]) forall j =1,...,n.

where each component is sampled from the uniform distribution on [—0.5, 0.5].

These first three steps are collectively illustrated in Figure 2.1. Subsequently,

uy = —0.3 V1 = 0.4

Figure 2.1: Depicted are steps 1. to 3. of an exemplary construction process of
SOLGEN for m = 3 and n = 2. Initially a random spanning tree

is created and the dual variables are sampled.

we uniformly sample a point p = (p1, ..., Pmin_1)' on the (m+n—2)-simplex
by means of the Dirichlet distribution and iterate through all index tuples
(7,7) in I X J to generate the primal variables and the cost coefficients for the

problem:

4. Sample b= (pla s 7pm+n71>—r-
u(i) + v(j) for (i,j) € B

5. Set Ci; =
’ u(i) +v(j) +U([0,1])  otherwise
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2 Experimental setup

pr  for the k-th entry (iy,jx) in B
6. Set Xij =
0 otherwise

Hence, we sample cost coefficients such that the dual solution is feasible and
the reduced costs corresponding to the index tuples in B are zero, i.e. the
respective dual constraints are active. Dual degeneracy can be achieved by
setting ¢;; = wu; + v; for a specified number of non-basic dual constraints?.
Likewise, we set all non-basic primal variables to zero and sample non-negative
values for the basic variables. Moreover, we can also determine the degree of
degeneracy of the primal solution by setting specific basic variables to zero3. At
this point, we have ensured that the complementary slackness conditions (1.4)
are satisfied for z and (u,v). We illustrate a possible state of the exemplary

problem instance after these operations in Figure 2.2.

Finally, we compute the supplies a and demands b by summing over the basic
components of x and thereby guarantee primal feasibility of our solution and
in particular (2.1a), i.e. Y31% a; =7 by
7. a; = Z .’L‘Z’j.
i:(4,7)€B

8. bj = Z Lij-
j:(i,j)EB
Moreover, as we have Zzljlnflpk = 1 for the vector p created in Step 4, it
further holds (2.2), i.e. >, a; = > 7, b; = 1. Again, we present an example

in Figure 2.3.

In summary, we have constructed a problem instance (C, a,b) together with a
corresponding primal-dual optimal pair z and (u,v), since this solution is pri-
mal and dual feasible and satisfies complementary slackness conditions (1.4).
Furthermore, we have ensured Equations (2.1a-d) and in particular (2.2) for
our problem instance. Note that the entries of the cost matrix have been gener-
ated by summing three uniform distributions (i.e. an Irwin-Hall distribution),
consequently their standard deviation will be lower compared to uniformly

sampled cost coefficients.

2u(i) + v(j) + U([0,1]) = ¢;; for basic index-tuples occurs with probability zero.
3As in the dual case, pr, = 0 for some k occurs with probability zero.
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Co1 — 05, To1 = 0

C31 — 11, T31 = 0

2.3 Test problems

Figure 2.2: Depicted are steps 4. to 6. of an exemplary construction process of
SOLGEN for m = 3 and n = 2. Thereby, the positive primal vari-

ables are drawn for the edges of the basis tree while all other primal

variables are set to zero. Accordingly, the cost coefficients are set

such that complementary conditions hold and the dual solution is

feasible.

49



2 Experimental setup

Co1 = 05, To1 = 0

C31 — ]_]_, T3] = 0

Figure 2.3: Depicted are steps 7. to 8. of an exemplary construction process
of SOLGEN for m = 3 and n = 2. In the final steps, the supplies
and demands are determined by summing over the basic primal

variables.
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2.3 Test problems

We conclude with the complete algorithm for generating SOLGEN instances:

Algorithm 1 Generating SOLGEN instances

1. Generate uniform distributed basis B = {(i1,71),- -+, (im+n—1, Jmtn—1)}-
2. Set u; == U([—0.5,0.5]) for all i = 1,...,m.
3. Set v; :=U([—0.5,0.5]) forall j =1,...,n.

4. Sample p = (p1, ..., Pmin-1) -

u(i) +v(j) for (i,j) € B
5. Set Cij "=

u(i) +v(j) +U([0,1]) otherwise

pr  for the k-th entry (iy,ji) in B
6. Set Tij =

0 otherwise

2.3.5 DOTMARK

This benchmark introduced in Schrieber et al. (2017) provides a collection of
10 different classes of black-and-white images. Each class contains 10 images
which are given in different resolutions ranging from 32x32 to 512x512. As an
example, we illustrate image classes 7 to 10 in Figure 2.4; for a detailed descrip-
tion we refer the reader to the website of the authors*, where the benchmark is
publicly accessible. Note that the first 6 image classes are, in fact, artificially
generated. However, as the corresponding transportation problems still have
specific cost matrices induced by the Wasserstein distance, they still represent
a complementary problem class to the SOLGEN and UNIFORM classes.

“http:/ /www.stochastik.math.uni-goettingen.de
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2 Experimental setup

On the basis of these image classes, Schrieber et al. (2017) evaluate the com-
putation of the Wasserstein distance between two images P and P’ of equal
resolution which amounts to the solution of a symmetric, discrete® transporta-

tion problem. We will include these problems into our evaluation and show how

Figure 2.4: A depiction of DOTMARK classes 7 to 10 in resolution 128 x128
taken from Schrieber et al. (2017).

the respective transportation problems are constructed: To this end, without
loss of generality, each pixel in P represents an origin and each pixel in P’
a destination in the transportation model where the corresponding supplies
and demands are given by their gray values ranging from 0 to 255. Hence, we
have non-negative integer values a; € N and b; € Nfor all i € / and j € J.
Furthermore, Schrieber et al. (2017) guarantee feasible problems (in our case
explicitly Equation (2.1a)) by ensuring that the sum over all gray values are
the same for any two images of the same resolution of a class. Since this sum
is always positive, all DOTMARK instances satisfy (2.1a-d). To obtain a vec-
torized form of a and b, we sort the pixels of each image in, without loss of
generality, column-wise order. Finally, we obtain the costs ¢;; € N of trans-
porting one unit of the gray value between given origins ¢ and destinations j

by computing the squared euclidean distance of the respective pixel positions,

5All supplies, demands and costs assume integer values.
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2.3 Test problems

i.e.

where p° € N2 and p/ € N? denote the pixel position of ¢ in P and j in P’
This results in a very specific structure of the cost matrix C' which nicely
supplements our artificially constructed problems. For instance, by design, all
entries on the diagonal of C' will be zero, since the distance between two pixels
at the same position is always zero. Furthermore, observe that the DOTMARK

instances may come with zero supplies and demands.

Asymmetric problem instances

So far, we have reviewed the construction process applied by Schrieber et al.
(2017) to generate symmetric transportation problems from two images of the
same resolution. In order to obtain an additional class of asymmetric trans-
portation problem, we adapt their methodology for images of different reso-
lution. Observe that this demands rescaling the of the supplies or demands,
which accordingly are no longer integer in the general case, as well as a modi-

fication of the underlying cost function.

Assume without loss of generality that the image P has a higher® resolution
d x d than the image P’ with resolution d’ x d’. Then, the supplies and demands
are generated as in the symmetric case, with the exception that b is scaled to

b, ie.

to ensure (2.1a).
Furthermore, in order to keep the calculation of the cost matrix C' € N¢**(@)?

consistent with the symmetric case, we group the pixels in P. Therefore, let

6By demanding that the resolution of P is always higher or equal to the resolution of P’,

we satisfy m > n which is part of Assumption 1
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0= % € N and sets Ay be given as
Vee{l,....,d} : Ay ={(k—=1)0+1,...,k0}.

Furthermore, a pixel at position p = (p;,p2) in the finer image P is said to

have coarse position (k,[), whenever
p1 € Ak and JORS Al

for some k and [ in {1,...,d}. Then, we set the pixel position of all pixels
¢ in P to their coarse position, when computing the costs ¢;;, j € J. This
ensures the consistency of the asymmetric costs and implies in particular that
the optimal value of the transportation problem is zero, if it is generated from

the same image in different resolutions.

20k —1) + 1 2k k k

20— 1) +1 200 —1)+1 I !
_

2k — 1) + 1 2k k k

21 21 I 1

Figure 2.5: An example for determining coarse pixel positions when the ratio
between the two resolutions is 6 = 2. The pixels are clustered into
groups of four and the corresponding pixel positions are mapped

to the coarse position.

Problem sizes

We generated symmetric transportation problems for all pairs of two different”

images of a given class, which results in a total of (120) = 45 transportation

"Clearly, transportation problems could be generated by comparing identical images as
well. However, to ensure comparability to Schrieber et al. (2017), we only compared

different images.
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2.3 Test problems

problems per class when the resolutions are fixed. In terms of symmetric prob-
lems, we evaluated images of resolution 32x32, i.e. m = n = 1024 and 64 x64,
i.,e. m =n = 4096 for all algorithms. Furthermore, we solved instances for res-
olution 128x128,i.e. m = n = 16384 only with our TPS implementation since
the reference solver was not able solve these problem on our system instances
due to memory limitations. Our test system (cf. Section 2.1) was not able to
generate symmetric problem instances corresponding to resolutions 256x256
or higher. Since the main focus of our numerical analysis is on symmetric prob-

lems, we restricted our analysis to all pairs of two different images of a given

10
2

stances of the dimensions m = 4096 and n = 1024. All numerical evaluations

class in resolutions 64x64 against 32x32 to create ( ) = 45 asymmetric in-

are conducted in Section 4.5.
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3 Heuristics for the

transportation problem

Before we advance to the investigation of the Transportation Simplex let us
include a short treatise of heuristic solution methods for the transportation
problem. A heuristic constitutes an algorithmic approach that obtains a fea-
sible solution for a given problem which is not guaranteed to be optimal. In
case of the transportation problem, the possible application of such methods is
twofold: Naturally, they can be applied to obtain approximate solutions to the
problem in comparatively short time. The most popular application, however,
is within the Transportation Simplex where the heuristics are applied to obtain
an initial basic solution in the course of Phase I of the algorithm (see Section
4.3.2).

The first application is considered in the publication Schwinn and Werner
(2018) of the author. This study inspects the simultaneous utilization of pri-
mal and dual heuristics to obtain quality certificates for the corresponding
solutions based on weak duality. To this end, and to the best of our knowledge
for the first time, several simple dual heuristics are applied. The correspond-
ing numerical analysis demonstrated that in this way the optimal value for the
SOLGEN instances can be approximated to a few percentage points, but no
satisfactory results can be achieved for the UNIFORM and DOTMARK prob-
lems. However, since the inherent computing time of the heuristics is at most
10 % of the time of an exact solver, one could decide in certain applications
after evaluating a primal and dual heuristics whether an exact solver is used.
This approach is particularly suitable for the Transportation Simplex, since in

any case a primal heuristic is used to compute the initial solution. Lastly, this
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study shows (again) that the performance of the heuristics depends strongly

on the selected class of transportation problems.

In the course of this work we will investigate heuristics with regard to the
second application, that is, we will analyze their contribution in an efficient
implementation of the Transportation Simplex in MATLAB presented in Chap-
ter 4. As indicated in Section 1.6, a broad spectrum of heuristics has been
developed for these purposes which offer a wide range of feasible (basis) solu-
tions with the natural compromise between cpu time and quality, i.e. the prox-
imity to an optimal solution. In particular, we will examine different starting
heuristics in combination with new types of pivot rules in Chapter 4. Since
the performance of pivot rules is generally dependent on the employed start-
ing heuristic, cf. Srinivasan and Thompson (1973) or Glover et al. (1974b), we
try to represent all relevant heuristics proposed for the problem. In order to
ensure clarity in this process, we have preselected heuristics according to the

following criteria:

e Considering the development of exact solvers and Network Simplex meth-
ods in particular, several proposed heuristics are no longer of practical
relevance. Hence, we excluded any candidate where the execution of the
heuristics takes a disproportionately long time compared to the time it
takes to produce exact solutions. With respect to Section 2.2 this ap-
plies in particular to any method whose theoretical cpu time was worse
than O(m?log(m)). Heuristics excluded by this criterion included meth-
ods such as Russell’s method, Russell (1969), Houthakker’s method of
mutually preferred streams, Houthakker (1955), and Vogel’s approxima-
tion method, Reinfeld and Vogel (1958), as well as some more recent

adaptations of it.

e In the event that several heuristics employed similar concepts we decided
to use one representative of these heuristics that produces the best re-
sults in terms of cpu time and solution quality. Among thereby excluded
methods were the Two Smallest in a Row Method, and the (Alternating)
Row Column Rule, cf. Srinivasan and Thompson (1973), which are repre-
sented by the Row Minimum Rule and the Modified Row Minimum Rule
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3 Heuristics for the transportation problem

and their column counterparts, cf. Srinivasan and Thompson (1973), as

well as the Tree Minimum Rule.

e In accordance with Gottschlich and Schuhmacher (2014) and Schwinn
and Werner (2018) we include the Matrix Minimum Rule, the Modified
Russel’s Method, Gottschlich and Schuhmacher (2014), and the Large
Amount Least Cost Rule proposed by Lee' which are accelerated by iter-
ating through the sorted lists of the cost coefficients instead of inspecting

a gradually decreasing matrix.

e Finally, we restrict ourselves to primal basic heuristics, that is, heuris-
tics which produce primal feasible basic solutions for (TP) and therefore

qualify as starting procedures for the Transportation Simplex.

All methods presented in the following implement iterative approaches. They
determine in each step a new element (i, 7) of the basis along with the cor-
responding values of the variables x;; until a primal feasible basic solutions
for the transportation problem is obtained. Their respective approaches can
be subdivided into three basic classes: The first class, which we will denote
as elimination heuristics, consists of heuristics inspecting in each step a cell,
row or column of the cost matrix to identify a (several) new basis element(s)
(i, 7). Subsequently, the determination of the value(s) of x;; eliminates a row or
column from further consideration and thereby reduces the effort to compute
the remaining basis variables. The second class is represented by greedy heuris-
tics which inspect tuples (7, j) according to the (modified) cost coefficients ¢;;,
sorted in ascending order. For each element (i,7) considered the maximum
possible flow is assigned to the corresponding variable z;;. In the degenerate
case, this method is supplemented by an additional subroutine which is run
after the greedy algorithm and adds basis variables with zero flow until a basis
is obtained. The third and last class is represented by a single heuristic called
dual-to-primal rule which constitutes a combination of a dual heuristic and

a primal heuristic which minimize the complementary slackness with feasible

I This method was developed as part of a Master’s thesis submitted at the Graduate School
of Business at the University of California in 1968 see, e.g. Srinivasan and Thompson

(1973). Unfortunately, the author was not able to gain access to the original work.
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3.1 Elimination heuristics

dual solution in order to obtain a primal basic solution.

3.1 Elimination heuristics

The following well known elimination heuristics (cf. Srinivasan and Thomp-
son (1972), Glover et al. (1974b), Gottschlich and Schuhmacher (2014) and
Schwinn and Werner (2018)) will be incorporated in our study.

e The North-West Corner Rule (NWCR), see Dantzig (1951).

e The Row Minimum Rule (RMR) and the Column Minimum Rule (CMR),
see Srinivasan and Thompson (1972) and Glover et al. (1974b).

e The Modified Row Minimum Rule (MRMR) and the Modified Col-
umn Minimum Rule (MCMR), see Srinivasan and Thompson (1972) and
Glover et al. (1974b).

While the NWCR is known to produce inefficient starting solutions in com-
parison with the other heuristics, it constitutes a suitable choice to measure
the impact of the starting heuristics in general, cf. Section 4.5. Furthermore,
our choice of classical heuristics is supplemented by an additional elimination
rule stated in Schwinn and Werner (2018) which is motivated by the basis
representation in the Transportation Simplex and will be presented in Section
3.1.

Tree Minimum Rule

As mentioned before our incentive in studying heuristics is to obtain “good”
initial solutions for the Transportation Simplex. The key to the efficiency of
this algorithm is a very intricate basis representation, which is called the XTT
method and described in Section 4.3.1. Since this representation requires the
identification of a depth-first traversal of the basis tree corresponding to the
current basis (Section 1.4), it is separately obtained for the initial solution
after it was computed by one of the heuristics presented in this chapter. This

motivated a further heuristic called the Tree Minimum Rule (TMR) proposed
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3 Heuristics for the transportation problem

in Schwinn and Werner (2018), which considers the basis elements in a depth-
search sequence with respect to the basis tree and thereby allows to integrate
the computation of the basis representation into the execution of the heuristic.
Moreover, minimum cost allocation rules, that is, the (MRMR), (MCMR) and
the greedy methods were found to produce the best solutions with respect
to the total running time of the Transportation Simplex on general problem
instances (cf. Srinivasan and Thompson (1972), Glover et al. (1979) and Gass
(1990)). Thus, the TMR was designed to mimic their selection procedure, i.e.
it identifies basis elements by choosing minimum entries in rows and columns

of the cost matrix.

Tree Minimum Rule (TMR) In the initial step of the TMR the tuple (i, j),
corresponding to the minimum entry ¢;; of the cost matrix, is selected. After-
wards the maximal possible flow min{a;, b;} is assigned to x;; and a and b are

updated accordingly, i.e.
1. x;; = min{a;, b},
2. a; = a; — Ty,
3. bj == b; — x;.

Now, assume w.l.o.g. that a; < b;; this implies that the row ¢ is excluded from
further consideration since the available supply is already used. In the next
step, the algorithm selects the minimum element c;;, k # ¢ in the column j and
likewise assigns maximum possible flow and updates a and b. In the contrary
case, 1.e. a; > b;?, the algorithm subsequently considers the elements c;z, k # j
of the row 7. In this fashion, the algorithm alternately selects minimum entries
of a row or column of the cost matrix until the corresponding supply or demand
is exhausted. After m + n — 1 assignments have been made, a feasible basic
solution is established. In the worst case the rule selects m elements of a

single row in the solution process which implies inspecting » ;" k elements

2In the event that a; = b;, the row i is still considered in the next step where a zero flow
is assigned. This procedure ensures that a basic solution is computed in the degenerate

case.

60



3.1 Elimination heuristics

and results in a theoretical complexity of O(m?). Additionally, we illustrate in
Figure 3.1 that, as intended, the basis entries are considered in a depth-search

sequence with respect to the basis tree.

Lastly, let us give some implementation details: It is common practice to accel-
erate the algorithm by maintaining lists of not yet exhausted supplies and de-
mands, cf. Srinivasan and Thompson (1973), Glover et al. (1974b) and Schwinn
and Werner (2018).

1 2
C=13 4
2 3
! 3
a= |2 bz()
1
1

Figure 3.1: Consider the transportation problem depicted above with given
input parameters C, a and b for dimensions m = 3 and n = 2. Indi-
cated by the orange arrows is the order in which the TMR selects
its basis elements, starting with the tuple (1, 1). Observe that the
orange arrows define a depth-first traversal of the corresponding

basis tree starting in the root node 1.
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3 Heuristics for the transportation problem

3.2 Greedy heuristics

From the class of greedy heuristics we choose the following three methods, cf.
Schwinn and Werner (2018).

e The Matrix Minimum Rule (MMR), see e.g. Srinivasan and Thompson
(1972) and Glover et al. (1974b).

e The Modified Russel’s Rule (MRUR) by Gottschlich and Schuhmacher
(2014).

e The Large Amount Least Cost (LALC) by Lee?.

3.3 The Dual-To-Primal Rule

As described in Schwinn and Werner (2018), we will also employ a heuristic
that includes information from a feasible dual solution in the computation of
a primal basic solution by means of the Matrix Minimum Rule. The idea is

to initially employ a dual heuristic to obtain a feasible dual solution (u,v)
uv\m,n
i )iget
to approximate the complementary slackness conditions (1.4) by minimizing

and subsequently apply the MMR to the reduced cost matrix C*¥ := (¢

> ic1 g1 Tijciy. On the base of the numerical results of Schwinn and Werner
(2018), we will choose the Pull Push Method (PPM) proposed in the same
publication for generating the dual solution. The corresponding method, i.e.
the application of the MMR to a dual solution obtained by the PPM, will be
called Dual-To-Primal Rule or D2PR for short.

3See footnote 1.
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3.4 Theoretical complexities
3.4 Theoretical complexities

Finally, table 3.1 gives an overview of the included heuristics with the corre-

sponding theoretical worst-case complexities.

Heuristics Abbreviation = Complexity
North-West Corner Rule NWCR O(m)

Row Minimum Rules RMR, MRMR O(mn)
Column Minimum Rules CMR, MCMR  O(m?)

Tree Minimum Rule TMR O(m?)
Matrix Minimum Rule MMR O(mnlogm)
Modified Russel’s Rule MRUR O(mnlogm)
Large Amount Least Cost Rule LALC O(mlogm)
Dual-To-Primal Rule D2PR O(mnlogm)

Table 3.1: Overview of the worst-case complexities of all presented heuristics,
cf. Schwinn and Werner (2018). Note that in the D2PR the com-
plexity of the PPM is dominated by the MMR.

3.5 Implementation in Matlab

To conclude the chapter, a few notes on the implementation of the heuristics
in MATLAB: To this end, note that MATLAB uses column-major memory, that
is, in a multidimensional array, the entries of the left-most index are stored
directly one after the other and can therefore be processed faster than the
entries of the remaining indices. In particular, we observed a faster iteration
over columns of a symmetrical matrix than over rows. Hence, as evidenced by
our numerical studies, the Row Minimum Rules RMR and MRMR are most
effectively implemented as their column equivalents on the transposed problem,
i.e. on (CT,b,a) instead of (C,a,b). However, we would like to point out that
this procedure is implicitly handled in the implementation and therefore the

assumption m > n still applies.
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3 Heuristics for the transportation problem

Moreover, although all methods were implemented to the best of our knowl-
edge, for the Large Amount Least Cost Method we only achieve a complexity
of O(m?logm) instead of O(mlogm). The reason for this efficiency loss is due
to the lack of pointers in MATLAB, which impedes a proper efficient imple-

mentation of priority lists as for instance Fibonacci Heaps.

64
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In this chapter we introduce the TPS, which is the basis for our algorithmic
investigations of the transportation problem. It is structured as follows: We
precede our explanations by reviewing the essential operations of the Simplex
algorithm for general linear programs (LPS). Thereafter, we present a compre-
hensive description of our implementation of the TPS in Section 4.3. Since the
differences between TPS and NS are very subtle, we finally point out how the
individual components of the TPS would be adapted for the development of a
general NS in Section 4.4.

4.1 Standard Simplex for linear programming
(LPS)

Let us briefly recall the basic concept of the LPS. This is done for the sole
purpose of introducing the structure of the algorithm which is inherited by the
NS as well as the TPS. Accordingly, we refrain from a detailed technical intro-
duction and only provide a short treatise of the main algorithmic components.

For a comprehensive presentation we refer the reader to Luenberger and Ye
(2015).

Let us further assume that a general linear program (LP) is given. Then, the
execution of the Simplex algorithm is divided into two main phases: First, an
initialization procedure called Phase I is executed to obtain a feasible basic
solution for the LP or determine the infeasibility of the problem. Subsequently,
in the event that a basic solution could be found, Phase IT of the algorithm

is invoked to gradually improve this solution until optimality is reached or
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4 The Transportation Simplex

unboundedness of (LP) is observed.

Generally, the observation of infeasibility after Phase I or unboundedness of
the problem after Phase II, are both possible outcomes. Note, however, that
these cases are excluded when considering (TP), since due to the assumptions
made in Chapter 1, we assume feasible and bounded problem instances. Thus,
as the sole incentive in studying Simplex algorithms is in solving (TP), we will

henceforth restrict our explanations to the feasible and bounded case.

4.1.1 Phase |

The initialization process of LPS consists in finding a basis B as well as a primal
feasible basic solution x and a not necessarily feasible dual solution (u, v) such
that the reduced costs ¢j corresponding to basic index tuples (7,j) € B are
zero. Since by definition, all non-basic primal variables of a basic solution
are zero, this implies that the complementary slackness conditions (1.4) for
x and (u,v) are satisfied. Thereby (u,v) along with ¢** allow to determine a
beneficial modification of the current primal solution x, as described in Phase
IT. In this context (u, v) are often called dual multipliers (cf. Luenberger and Ye
(2015)); hence, in the remainder of this work, we will also refer to (u,v) as the
corresponding dual multipliers of the primal solution x to emphasize the fact
that (u,v) was obtained as described above. Apart from that we will naturally
refer to (u,v) as the dual (basic) solution and to (z,u,v) as the primal-dual
(basic) solution. Observe that throughout the algorithm, i.e. Phase I as well as
Phase II, x is guaranteed to be a primal feasible basic solution whereas (u,v)

is a not necessarily feasible dual basic solution.

In general, the initial solution is computed by solving an auxiliary problem
with Phase II of the algorithm. This problem is constructed such that an
initial solution is known and every optimal solution yields an initial feasible

solution for the original problem.
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4.1.2 Phase Il

Afterwards, the algorithm starts an iterative execution of so-called pivot steps
in Phase II. In each individual pivot step, initially reduced costs of the primal-
dual pair (z,u, v) are evaluated by means of a pivot rule. Whenever all reduced
costs are non-negative, the dual multipliers (u,v) are a feasible dual solution
and since the complementary slackness conditions are satisfied by construction,
this implies that an optimal solution was found. In the contrary case, a non-

basic element, called the entering element' (i., j.) with negative reduced costs

uv
lesJe

candidates, the selection of the element depends on the implementation of

< 0 is selected to enter the basis B. In case there exist multiple eligible

the specific pivot rule. This specific implementation is a key component of
the algorithm and will therefore be separately considered in Section 4.3.4.
Subsequently, the leaving element (i, ;) is identified and replaced by (i, i)
in the basis B and the corresponding primal-dual pair (x,u,v) is updated
accordingly. More precisely, the new primal feasible basic solution is computed
such that

Mpr=e and z;; >0= (i,5) € B

which in particular implies z;, ;, > 0 and z;,;, = 0 and the dual multipliers
(u,v) are adapted such that the complementary slackness conditions (1.4) are
again satisfied. Written in a more compact form, the consecutive operations of

a pivot step are given in Algorithm 2.

The existence of an optimal basic solution for feasible and bounded problems
is guaranteed by the fundamental theorem of linear programming. Assuming
a careful implementation?, the algorithm will compute such a solution in finite

time and in particular avoid the phenomenon of cycling, see Section 1.5.6 and

'In the literature the terms entering variable and leaving variable are more widely used,
but in the course of the TPS (i, j) will be understood as the edge (i, j) and in particular
we consider entering and leaving edges. To make this transition clearer, we use the terms

entering element and leaving element in the LPS.
2For the LPS, finiteness can be guaranteed for example by employing the pivot rule of

Bland. In case of the TPS, we introduce the concept of strongly feasible spanning trees
in Section 4.3.5.
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Algorithm 2 Pivot step in the Simplex

uv
(]
(x,u,v) by means of a pivot rule resulting in one of the two following

1. Compute reduced costs ¢*¥ of the current primal-dual basic solution

alternatives:

i) Selection of an entering element (i, j.) with ¢V, < 0.

les]e
ii) Observation of optimality, i.e. ¢ff > 0 for all i € [ and j € J and
thereby termination of the algorithm.

2. Determine the leaving element (i, 5;).

3. Update the basis B, the primal feasible basic solution x and the corre-

sponding dual multipliers (u,v).

e.g. Luenberger and Ye (2015).

4.2 Transition to minimum cost flow problems

Since general minimum cost flow problems define a specific class of linear
programs, we could tackle these problems directly using the LPS. However, this
approach completely ignores the underlying network structure of the problems
and will not be competitive to specialized combinatorial solvers (cf. Ahuja
et al. (1993)).

The crucial part of the Simplex is the execution of the pivot steps in Phase
IT. In the LPS, all components of a pivot step are carried out as linear algebra
operations involving the basis matrix Mpg. In particular, the computation of the
primal and dual variables generally includes the solution of linear equations.
Although decomposition techniques and intricate update rules for the basis
matrix Mp (or its inverse) have accelerated the process, it still remains the most
expensive part of the update. For more details, we again refer to Luenberger
and Ye (2015).

The major structural advantage of general minimum cost flow problems con-
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stitutes the one-to-one correspondence between bases and spanning trees. By
means of Theorem 1.4.2% one can replace the representation of the basis matrix
by the corresponding basis tree and perform the bulk of the pivot step oper-
ations directly on the underlying graph. If the relevant information is stored
in adequate data structures, this allows a substantial acceleration of the iter-

ations.

Furthermore, observe that this transition from matrix representation to span-
ning trees has no effect on the basic sequence of Phase II given in Algorithm 2
but only affects the realization of its components, i.e. the pivot operations de-

scribed in Algorithm 2, which are carried out as graph-theoretical operations.

4.3 Implementation of the Transportation
Simplex (TPS)

In the following we state the implementation of the TPS. Before we begin, let
us give a brief outline of this section. The main algorithmic components of the
TPS and the NS are the same; apart from the realization of Phase I and the
choice of pivot rules, the differences are very subtle. Moreover, the literature
already provides excellent descriptions of the NS and its implementation, see
e.g. Ahuja et al. (1993) or Kovacs (2015). Thereby, starting with Section 4.3.1,
we directly introduce and illustrate the TPS for the transportation problem
and cover the differences to the NS later in Section 4.4. Additionally, to main-
tain a clear presentation in the process, we omit classical proofs of correctness
for the executed operations. This is in particular with regard to the fact that
the according statements constitute special cases of their equivalents for the

NS and thus are proven implicitly for example in Ahuja et al. (1993).

Naturally, we will hereinafter equivalently use LP terminology and the network

3Since the focus is on transportation problems, this theorem and the according definitions
were explicitly given and illustrated for (TP). However, as indicated in Section 1.4, the
equivalent statements hold for (MCF,) and (MCF,) and are stated for example in Ahuja
et al. (1993).
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terminology introduced in Section 1.4. To this end, the reader may in particular
review the definition of the transportation graph Gy,. Lastly, we would like to
explicitly emphasize that all further explanations are based on the equivalent
formulation of the dual problem (1.7) introduced in Section 1.4.2. In particular,
we adopt the representation of reduced costs given in (1.8), that is we assume

uv

Cij = Cij —u; + Uj.

for the remainder of Chapter 4. The motivation for this choice is given in
Section 4.3.3.

we begin our description of the TPS by introducing the basic representation
in Section 4.3.1, since it constitutes the crucial component of the method.
Subsequently, we cover Phase I and Phase II of the algorithm and proceed with
a discussion of promising pivot rules. Finally, we discuss a measure to prevent
cycling and reduce the number of degenerated pivot steps and summarize the
TPS in Algorithm 3.

4.3.1 Basis representation

As stated above, Theorem 1.4.2 allows to represent the basis matrix My by
the basis tree Tz in the TPS. Thereby, the storage scheme along with the
update procedures of Tz and the corresponding primal and dual solutions
x and (u,v) represent the major advantage in comparison to the LPS. To
this end, researchers have proposed several concepts, cf. Glover and Klingman
(1972), Glover et al. (1972), Srinivasan and Thompson (1972), Glover et al.
(1974b), Glover et al. (1979) and Bradley et al. (1977) or Ahuja et al. (1993)
for an overview. Recent computational investigations done by Kovacs (2015)
for the NS reported a substantially superior performance of the XTT (eXtended
Threaded Index) labeling method suggested by Glover et al. (1979) over the
more commonly used ATI (Augmented Threaded Index) method (Glover et al.
(1972) and Glover et al. (1974c)) for basic representation. These observations
can be directly applied to the TPS, as the representation of the basis tree and

all operations performed on it, i.e. pivot operations 2 and 3, are equivalent in
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the TPS and the NS, see Section 4.4. we therefore follow their recommendation

and implement the XTI method, which will be explained in more detail below.

XTI representation

Before we present the components of the XTI technique, let us give some
preparatory definitions and notation. In addition, let us point out that all
following definitions will be with respect to the transportation graph Gy, =
(V;fpaEtp)'

The commonly used methods for spanning tree representation are based on
rooted trees (cf. Glover et al. (1979) and Ahuja et al. (1993)). Thus, a desig-
nated root node q € V,, for the spanning tree is chosen. Furthermore, in our
explanations, we assume that ¢ is the uppermost node in a graphical represen-
tation of the tree with the remaining m + n — 1 nodes and m +n — 1 edges
hanging below. On the basis of the above characterization, we introduce the
auxiliary definition of subtrees; thus, we denote by T(w) C V,, the subtree
rooted in w € V,. Naturally, a node w’ € V}, is included in T'(w) if and only if
w lies in the direct path between w’ and the root node ¢ which in particular
implies w € T(w). Consequently, this definition is dependent on the choice of

the root node. An example is illustrated in Figure 4.1.
Now let us present the components of the XTI basis representation:

e The topology of the basis tree Tz is stored by means of a predecessor
function p : Vi, — Vi, U {0} where p(w) = w’ indicates that w' is the
second node (after w itself) on the direct path from w to the root node
q. Accordingly, w' is also called the parent node of w. Since, by the above

definition, the root node ¢ has no predecessor, one sets p(q) := 0.

e The primal solution x is represented by a function x : V,, — R} where

x(w) denotes the flow from w to p(w). In case of the root node, one sets
x(q) = 0.

e The dual solution (u,v) is given by a function y : V4, — R where y(w)

denotes the value of the dual variable corresponding to the node w, i.e.
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4 The Transportation Simplex

Figure 4.1: Consider a spanning tree for a transportation graph Gy, with 4 ori-
gins and destinations each, i.e. m = n = 4. For simplicity, assume
that the node 1 was defined as the root node. Then the subtree
T(3), rooted in 3, consists of the nodes 3,3',4 and 4’. The subtree
T(1’) only contains the node 1’ itself.
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Uy if w € S and v, if w € T respectively.

e The thread function s : V,, — V;, defines a depth-first traversal*

(4. s(a). *(@). ... 8™ (q))

starting in the root node ¢ and cycling back to the root after all nodes
of the graph have been visited by setting s"*" := ¢. This function repre-
sents a key component of the basis representation as it allows to rapidly
determine other XTI components, see e.g. Section 4.3.3. More intuitively,
it defines a sequence where — given that the spanning tree is drawn ac-
cordingly — each node of the transportation graph is traversed exactly
once in a left to right, top to bottom order starting from the root node

and, after each node has been visited, returns to the root node.

e With regard to the tread function, we follow the recommendation of
Glover et al. (1979) and Kovacs (2015) and additionally store the reverse
thread function r : V;, — V to further accelerate the updating process of
the other XTI functions. This represents the inverse of s and accordingly
is characterized by s(r(w)) = w. Its explicit storage eliminates additional

calculations in the update process, see. Glover et al. (1979).

e The function t : V;, = {1, ..., m+n} denotes for each w € V}, the num-
ber of nodes in the subtree T(v) of Ts. As explained later, it constitutes

the main innovation of the XTI method.

e Furthermore, the function f : V;,, = V;, maps each w € V on the last node
in T(w) with respect to the thread function s, that is, f(w) represents

the node in T(w) with the rightmost position in the tuple
(4 s(a), $*(a), -, 8" (a)).

e In addition to the functions above, the root node g of Tz is stored since

the basis tree may be rerooted during the update operations

Note that the common domain of all XTI functions, except the root node, is
the set of nodes V4, := S U T. Thereby, as indicated by Glover et al. (1979)

*We set s?(w) == s(s(w)), s3(w) := s(s(s(w))), etc.
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and Kovacs (2015), these functions can be efficiently implemented by means of
7 arrays of length (m + n), where the first m elements store the values of the
nodes in S and the last n elements the values of the nodes in 7', respectively.
This array representation is illustrated for example in Table 4.1. Additionally,
an illustration of the X'TT functions containing topology information, i.e. p, s,
r, t and f, is given in Figure 4.2 and a full realization of the XTT functions for

the basic solution presented in Figure 4.4 is given in Table 4.1.

XTI update

Let us elaborate on the realization of the XTI update operations. The purpose
of the XTT method is to enable a quick transition from one basic solution to
the next. A key factor for its good performance is the observation, already
made for the ATT method by Glover et al. (1972), that the majority of the
update operations performed in a pivot step can be restricted to the smaller
of two disjoint subtrees of the basis tree. To quickly determine this subtree,
Srinivasan and Thompson (1972) proposed to expand the ATI data structure
by the function t, which lists the number of nodes in a subtree. However, the
performance gain achieved by the fast identification of the smaller subtree were
largely canceled out by the updating concept which was provided for the new

function t itself.

The essential innovation of the XTT method of Glover et al. (1979) is a rela-
belling scheme that allows t to be updated efficiently. In order to guarantee
a seamless integration of the update of the other ATI functions, that is y, p,
s and r, the additional index f is introduced. Moreover, Glover et al. (1979)
showed that f allows to further streamline the update of the ATI information.
Their computational results indicated that these improvements make the XTI
method approximately twice as fast as the ATI method. However, while its
efficiency in practice is confirmed by Glover and Klingman (1982) as well as
Kovécs (2015), none of the mentioned publications provide theoretical com-

plexities of the method.
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Figure 4.2: Consider the spanning tree introduced in Figure 4.1. A possible
depth-first traversal s, starting in the root node 1, is indicated
by the orange arrows. Accordingly a backward traversal of these
arrows defines the reverse thread r. In addition, for each node w €
{1,2,3,4,1',2', 3,4’} the predecessor p(w), the number of nodes
t(w) in its subtree T(w) and the last node f in its subtree T(w)

with respect to s are given.
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Procedure In the following, we describe the essential operations of the XTI
update procedure. The functions representing topological information, that is

p, s, r, t, f and the root node q, are updated in the following consecutive steps:
(1) Computation of the entering and leaving edges (variables).

(2) Identification of two disjoint subtrees by eliminating the leaving edge

from the basis tree.
(3) Rerooting the smaller subtree in the node incident to the entering edge.
(4) Joining the two subtrees by the entering edge.

Each step is accompanied by the corresponding adaptation of the XTI rep-
resentation. Observe that Step (4) changes the root of the basis tree, when
the former root was contained in the smaller subtree. An illustration of the
transformation of the basis tree during the update is given in Figure 4.3. The
adaption of the primal variables is incorporated in steps (1) and (3). Concern-
ing the update of the dual multipliers, we implement Procedure 4. as presented
in Glover et al. (1979), that is, we update the dual variables of the smaller
subtree independently after steps (1) to (4) have been carried out. The ex-
act execution of the update of the primal and dual solution are given in the
description of Phase II of the TPS in Section 4.3.3.

In order to take full advantage of the network interpretation of the pivot step,
the X'TT update is highly optimized. This includes in particular the exploita-
tion of cancellation effects between steps (1) to (4) and, whenever possible,
the merging of operations. This makes the description extensive and quite
technical, especially with regard to the topological information which includes
possible rerooting of subtrees. Since this would be beyond the scope of this
chapter, we will hereinafter focus on the update of the primal and dual solu-
tion and refer to Glover et al. (1979) for the technical details concerning the

update of the topology of the basis tree, i.e. p, s, t, f and r.
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Figure 4.3: The update steps (1) to (4) of the XTI method are displayed for
a basis tree T of the transportation graph with dimensions m = 3
and n = 2. In Step (1), the dashed entering edge 21 and the leaving
edge 12, crossed by short red lines, are indicated. In Step (2) the
resulting two disjoint subtrees 7 \ T(2') and T(2') are depicted.
The smaller tree 7 \ T(2') is then rerooted in node 2 incident to
the entering edge in Step (3). Finally the two trees are joined by
the entering edge in Step (4) to form the new basis tree which
accordingly has the root 2.
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4.3.2 Phase |

The aim of Phase I is to find an initial primal feasible basic solution z and the

corresponding dual multipliers (u,v).

Initial computation of the primal solution

In case of the TPS, the primal solution can be determined very elegantly by
applying one of the primal basic heuristics presented in Chapter 3. This of-
fers a wide range of basic solutions, which can be evaluated by two decisive
criteria: the inherent cpu time of the heuristic and the number of pivots the
Simplex subsequently requires to improve this solution to optimality. Addition-
ally, former research indicated dependencies in the performance of heuristics
and pivot rules, cf. Srinivasan and Thompson (1973) or Glover et al. (1974b).
Accordingly, we initially combine all the heuristics presented in Chapter 3 with
the proposed pivot rules in Section 4.3.4 in our numerical investigations. An

exemplary initial basic solution is given in Figure 4.4.

Initial computation of the dual multipliers and the XTI representation

In addition, Phase I of the TPS also includes the calculation of the corre-
sponding dual multipliers, which is carried out with the initialization of the
other components of the XTI method due to our choice regarding the basis
representation. The XTI initialization induces additional computational effort,
especially with respect to the topology information p, s, r, t and f. However,
this disadvantage is negligible in comparison with the faster execution of the

pivot steps.

Naturally, the XTI representation is computed in a separate step after the
primal solution is determined by a basic heuristic. Most importantly, this en-
tails the computation of a depth-first traversal of the basis tree 75 in order to
determine the topology information p, s r, t and f. The necessary calculations
are described in detail in Glover et al. (1979); with regard to Section 4.3.5,

observe that their method always yields a strongly feasible spanning tree, cf.
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Ahuja et al. (1993).

When the above operations were executed, the dual multipliers (u,v) are de-
termined. Therefore, the value of the dual variable corresponding to the root
node ¢ is customarily set to zero. By means of the depth-first sequence de-
fined by s, the values of the remaining variables can then be determined by

traversing the basis tree in a cascading fashion and setting

Ui = Cip(i) T Up(i)
for each ¢ in S and

Uj = Up(j) — Cp(h)j
for all j in T, respectively. This ensures that the complementary slackness
conditions (1.4) for x and (u,v) will be satisfied and processing the nodes
in the order of a depth-first traversal guarantees that the dual variable of

the predecessor of a node has already been set when the node is visited. An

illustration of this process is given in Figure 4.5.

Integrated XTI heuristics

For certain heuristics, the computation of the XTI information can be fur-
ther streamlined. In the execution of the NWCR, the edges of the basis tree
are considered in the order of a depth-first search. Thereby, the computation
of the XTI information as well as the dual solution can be integrated into
the execution of the heuristic. However, since the NWCR, generally provides
very inefficient starting solutions, the TMR was proposed in Section 3.1. This
constitutes an attempt to provide a heuristic that defines an efficient initial
solution by means of a depth-first traversal. we highlight the two integrated
heuristics by using the notation NWCRXTI and TMRX'TT for the correspond-

ing implementations.

4.3.3 Phase Il

Provided the same initial solution and pivot rule are used, the TPS performs

the same pivot steps as the LPS in the course of Phase 1. The main difference
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lies in the realization of pivot operations 2 and 3 by means of the XTI rep-
resentation. In addition, the specific structure of the problem can be further

exploited by choosing a suitable pivot rule.

Assuming that a current basic solution = as well as the corresponding dual
multipliers (u,v) and an XTI representation of the basis tree Tz are given,
we now present the TPS equivalents of the three operations executed in the
pivot step of the LPS (cf. Algorithm 2). Thereby, we view the basis elements
(4,7) as edges ij in the transportation graph Gy, and adapt the nomenclature

accordingly. Hence, the three pivot operations constitute:
1. Determining the entering edge.
2. Determining the leaving edge.
3. Updating the basis.

we support our explanations by an exemplary pivot step of the TPS in Figures
4.4 to 4.8 and show the corresponding XTI representations in Tables 4.1 and
4.2.

Nodes | p | x y |s|r
00| 0 |1I'|&
2 210210532
3 27101102 3|2
4 310104 |43

1101]-01]2 |1
1103]-02]2]|71V

3 310101 |4

4 10.1]-0.1

—lw|lo| =&~ ]oo|e
W

Table 4.1: An XTI representation for the basic solution presented in Figure
4.4; the root node 1 is indicated by a square.
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Figure 4.4: We continue the example considered in Figures 4.1 and 4.2, that is,

we choose a basis B such that the previously introduced spanning

tree represents the basis tree Tz and add costs C' as well as sup-

plies a and demands b for a transportation problem of dimension

m = n = 4. For these input parameters, a potential initial primal

basic solution z is depicted. Furthermore, the corresponding dual

multipliers (u,v) are given.
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Figure 4.5: Observe that the dual variables in Figure 4.4 have been assigned
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values that satisfy complementary slackness, i.e. , the reduced costs
on the basic edges satisfy i = cij—uitv; = 0. If uq is initially set
to zero, this leads to uniquely defined values for the remaining dual
variables. Furthermore, these are easily computable by traversing
the tree via s, ie. 1 > 1/ 2 20 5 2 53 3 3 5 4 5 4.
This ensures that each node is only visited once and whenever a
node is considered, the dual variable of its predecessor is already
computed. The resulting reduced costs for the non-basic edges are
shown on the right side. Moreover, note that the matrices X and
C" indeed satisfy complementary slackness. In this situation, the
optimal solution is not yet achieved and the edge 23 is the only
candidate for an entering edge, since all other reduced costs are

non-negative.
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Pivot operation 1: Determining the entering edge

Asin the LPS, the selection of an entering edge or the alternative determination
of optimality is carried out by employing a pivot rule, that is the computation
of the reduced costs for a subset® of all edges. Since there are many suitable
rules available, we will analyze this step individually in Section 4.3.4 where we
consider several realizations that take into account the specific structure of the

problem.

Pivot operation 2: Determining the leaving edge

This operation can be efficiently executed by traversing a cycle in the enlarged
basis tree Tz and comparing the flow on the visited edges. More precisely,
this cycle, called the basis equivalent path, results from adding the entering
edge i.j., obtained in pivot operation 1, to 7z as shown in Figure 4.6. It
can be efficiently identified by retracing the respective direct paths from i,

and j. to the root by means of the predecessor function p until the initial

intersection node is found. Furthermore, the flow value of the new edge i.j.
can be computed simultaneously. Thereby, one considers all backward edges in
the cycle, i.e. all edges ij for which the first visited node is j, if one assumes
an orientation of the edge i.j. from its origin to its destination and traverses
the cycle in the according direction. In order to maintain primal feasibility,
an edge i;5; with minimum flow z;;, is selected from these edges via p and x.
Whenever an edge vp(v) (w.l.o.g. v is in S and p(v) is in T) is crossed via p,
its flow value is easily accessible since x(v) stores exactly Zyp(). The update

operations in pivot operation 3 will cause this edge to leave the basis tree.

Pivot operation 3: Updating the basis

Finally, the update of the basis is achieved by sending flow through the basis
equivalent path (cycle) established in pivot operation 2 and modifying the

remaining XTI functions accordingly.

5In the optimal case the subset will be equal to the complete set.
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Figure 4.6: With the addition of the edge 23 to the basis tree Tz, a cycle,
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that is the basis equivalent path, can be identified. This is done
via the predecessor function p by retracing the paths from 2 and
3’ to the root until the first intersection is found, i.e. 2 > 2’ and
3 2% 3 B 2 since in this case the first intersection node is 2.
While retracing the paths, the minimum flow on a backward edge
is determined. In the figure, the backward edges are 22 and 33 and
the minimum flow is hence x33 = 0.1. Pushing 0.1 units of flow
through the cycle will cause the edge 33 to leave the basis while
23 enters it. Thereby, we have obtained a new primal feasible basic

solution.
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Thus, the primal basic solution is adjusted by sending x;,; units of flow in
the appropriate direction through the basis equivalent path (see Figure 3)
caused by the entering edge. This is achieved by the functions p and x and
will cause 7;7; to leave and i.j. to enter the basis. Furthermore, a modification
of x implies that the dual variables in y also need to be adjusted to restore
the complementary slackness conditions (1.4) for the primal-dual pair x and

(u,v) which is covered in detail the subsequent paragraph.

In line with the primal-dual solution, the functions representing topological
information, that is p, s, r, t and f, are updated to represent the new basis
tree. The essential steps of this update were given in Section 4.3.1. As already
mentioned, a detailed description would be beyond the scope of this thesis,

which is why we refer to the original publication of Glover et al. (1979).

The result of the exemplary pivot step, that is the updated basic solution, is
illustrated in Figure 4.8 and Table 4.2.

Update of dual variables Finally, let us elaborate on the update of the dual
variables. As mentioned before, a key observation in the update of the XTI
representation is that most of the update operations for all functions can be
restricted to the smaller of two subtrees of the basis which are determined by
the function t. In particular, only the dual variables of this subtree need to be

updated while the remaining dual variables remain unchanged.

In every pivot step variables (u,v) are chosen such that the complementary
slackness condition is satisfied. This is achieved by ensuring that the reduced

costs on basic edges are set to zero, i.e.
Vij € Tp:cyf = cyj—ui+v; =0.

Dropping the leaving and the entering edge from the basis tree identifies two
disjoint subtrees, see Figure 4.7. In the following we denote the larger subtree,
i.e. the subtree that contains more nodes, by 7; and its counterpart by 75

where ties are split arbitrarily.

Let us assume that all dual variables of 7; remain unchanged in the update

process and p represents the not yet updated predecessor function of the basis.
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Thus, the reduced costs on the edges of 7; are zero by virtue of the previous
pivot step. However, in this case, adding the entering edge i.j. demands a

modification of the dual variables in 7.

In order to analyze this modification, we first assume that the first node i,
of the entering edge is in 7; and the second node j. is in 75. Consequently,
keeping u;, unchanged, we have to set v, to ¢;j — u;, to achieve ¢ = 0.
Since the former value of v;, was set to cp(;.);. — Up(;.) this implies that v;, has

to be increased by
0 = U, — Cigg. — Up(je) + Cp(jo)je-

In the opposite case, where j. is contained in 77, this would require that wuy;,)

must be increased by
5, = Ciegge + Uje - Ciep(iE) - Up(’ie)'

In both cases, the remaining variables of 75 can be updated by traversing 7T
via the updated thread function s and increasing each variable in turn by ¢

(or ¢’). This constitutes an advantage of the reduced cost formulation

uv

Cij = Cij — U; + Uj

where the increase of one dual variable of an edge is canceled out by increasing

the other edge. In case of the representation

commonly used for (TP), each node would be either increased or decreased by
0 depending on its predecessor, which would entail an additionally inquiry for
each node of 73. An example for the update process of the dual variables can

be found in Figure 4.7.

4.3.4 Pivot rules

The choice of the pivot rule is a very important factor in the design of a Simplex

Method. Its task is to find a non-basic element (edge) with negative reduced
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up =0 v = —0.1

ug =04 = 0.7

Figure 4.7: Eliminating the leaving edge 33 from the basis tree results in two
disjoint subtrees that will be joined by the entering edge 23 to form
the new basis tree. In this example, the tree T(3') (with respect to
the predecessor function p) is the smaller subtree. Since the dual
variables in V'\ T(3’) remain unchanged, joining 2 and 3 implies an
increase in vs to set the reduced costs to zero, i.e. c§5 —ugs+vsz = 0.
By the definition of the reduced costs, it suffices to increase the
remaining dual variables of the subtree by the same amount, i.e.
0.3, since the reduced costs of the corresponding edges have been
zero in previous pivot. Afterwards, the complementary slackness

conditions are satisfied for the complete new basis tree.
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Figure 4.8: Finally, we depict the updated basic solution. In this case, the
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root node is still 1 since it was not part of the updated subtree.
Moreover, the updated reduced costs for the non-basic edges are
all non-negative which implies that an optimal solution has been
attained. Furthermore, we observe dual degeneracy with respect to
the edges 41 and 42, i.e. ¢f = ¢ = 0. The corresponding XTI
representation for this solution is given in Table 4.2. Note that the
root node of Tz is still given by 1 since it was contained in the

larger subtree during the update, cf. Section 4.3.1.
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Nodes | p | x y |s|r|t]|f

0] 0] 0 17|34
27101105 3|24 |4
27102102 141113
3101107 |43 ]2 |4
17010121 |11
1103]-02 21213
2101104 (423 |4
4101102 3|4 |14

B O N = W

Table 4.2: The updated XTI representation for the new basic solution given in

Figure 4.8; the root node 1 is indicated by a square.

costs. This constitutes a classical trade-off situation, as the cpu time per pivot
step increases with the number of inspected elements but lower reduced costs
of the entering element in a single pivot generally imply that fewer pivot steps
are required overall, since the objective function is decreased by a larger margin
in each iteration. Thus, two decisive variables for the quality of a pivot rule
can be identified: the total number of pivot steps performed in Phase II and
the number of elements for which the reduced costs are computed in a single
pivot step. Observe that in the optimal case, every pivot rule has to consider
all elements (the complete set Ey,) in order to verify that all reduced costs are

non-negative.

Apart from possible deviations with regard to the data structures used to store
variables and parameters, the pivot rules can be implemented in the same way
for the LPS, NS and TPS. The only concession to the transportation problem
is to choose specific pivot rules whose selection better exploits the problem

structure. In the remainder of this section, we present a selection of such rules.

The evaluation of different pivot rules for the transportation problem has
been the subject of extensive numerical investigations (see e.g. Srinivasan and
Thompson (1973) and Glover et al. (1974b)). Since our focus of research is

to gain insights in the potential of column generation in the context of piv-
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oting in the TPS, we refrain from the reimplementation of all hitherto tested
rules. Instead we focus on a selection of rules listed below which seemed most
promising based on the results of Srinivasan and Thompson (1973), Glover
et al. (1974b), Gottschlich and Schuhmacher (2014) and Kovéacs (2015). We
will later introduce additional pivot rules in the context of column generation

for the transportation problem in Chapter 5.

Hereafter we assume that a primal solution z and the corresponding dual
multipliers (u,v) satisfying the complementary slackness conditions (1.4) are

given.

Modified Row Most Negative (RMN) With regard to the results of Srini-
vasan and Thompson (1973), Glover et al. (1974b) and Gottschlich and Schuh-
macher (2014), this seems to be the most promising classical rule for the TPS

if there is no specific structure in the problem instances.

This rule cyclically evaluates reduced costs ¢ = ¢;; — u; + v; with respect
to the cost matrix C' and is commonly implemented as follows: In each pivot
step, the process starts with the first row not considered in the previous one.
For a row ¢, one computes the reduced costs ¢j;” corresponding to all non-basis
elements (7, j) ¢ B. Among these candidates, the most negative is chosen, or in
the event that all reduced costs are non-negative, one proceeds by inspecting
the subsequent row. The next row of a given row ¢ is thereby the row ¢ + 1 or

1 in case that i = m.

Based on our numerical analysis, we make a slight modification of the rule
compared to the publications mentioned above: Instead of starting the inspec-
tion with the row ¢ + 1, following the row ¢ which was last considered in the
previous step, we begin by investigating the row ¢ again. This results in a reduc-
tion of the total cpu time of the TPS by approximately 10%, which is possibly
explained as follows: A disadvantage of RMN is that at most one element of
a considered row is added to the basis and a row is only inspected again after
the rule has traversed the complete matrix again. Therefore, especially near
the optimum, it makes sense to check if more eligible candidates remain in a

row after the addition of one element before continuing with the next row.
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Modified Column Most Negative (CMN) This rule constitutes the
column-equivalent of the RMN rule, that is one executes the RMN rule on
CT.

Row Block Search (RBLK) This rule proposed by Grigoriadis (1986)
achieved the best results in the computational investigations of Kovacs (2015)
for the NS on general minimum cost flow problems. Starting with the first edge
not considered in the previous iteration, this method also inspects sequences

of edges ij and selects the one with the most negative reduced costs iy

In
contrast to the RMN and CMN, however, a sequence is not limited to a row
or column, but results from the cyclic row-wise traversing of py; elements of
the cost matrix C. In the case that all reduced costs of a sequence are non-
negative, the rule continues traversing C' until either a negative element was
found, at which point it directly stops its investigations, or all elements have

been inspected, i.e. optimality is verified.

Regarding the parameter pppk, our investigations supported the recommen-
dation in Kovacs (2015) to set ppryx == |v/mn] in order to achieve the max-
imum efficiency. This also renders the investigation of two classical rules ob-
solete, namely the matriz most negative rule and the first negative rule, see
Gottschlich and Schuhmacher (2014), since they represent special cases of the
RBLK rule for pprix == mn and pprx = 1. Moreover, for pprix == |v/mn],
the rule is equivalent to the RMN in the symmetric case and will therefore

exclusively be evaluated for asymmetric problem instances.

Column Block Search (CBLK) Analogously, we implement the column-
equivalent of the RBLK rule where the matrix C' is traversed column-wise. If
in the following, we refer to the RBLK and the CBLK as the Block Search

rules.

Row Shortlist (RSL) A new and (on certain problem classes) very successful
type of pivot rule is introduced in the context of a TPS variant by Gottschlich
and Schuhmacher (2014) called the Shortlist Method.

91



4 The Transportation Simplex

Its key innovation is to first solve a reduced problem on a subset of the edges.
Therefore, Phase IT is divided into two sub-phases; in the initial sub-phase, the
algorithm limits the possible entering edges to a subset of candidates who are
more likely to be in an optimal solution, thus reducing the calculation effort
of the pivot steps. Only when an optimal solution for this reduced problem is

found, the pivot rule considers the whole set of edges E,,,.

To this end, for each row ¢ in the cost matrix C, a shortlist L; C J is created.
More precisely, the row i of C' is sorted in ascending order and the column
indices of the best lg; candidates (the ls; edges with the smallest costs) are
stored in the corresponding shortlist L;. In the first sub-phase, only these
shortlists L;, 7 € I, are considered in the selection of entering edges in pivot

operation 1.

Moreover, as lgy is chosen to be significantly smaller than n (see below),
Gottschlich and Schuhmacher (2014) additionally introduce a specific selec-
tion process for the entering edge in the first sub-phase, henceforth referred
to as Shortlist selection: Therefore, in each pivot step, the shortlists are con-
secutively traversed until either kg edges with negative reduced costs have
been found or pg, percent of all shortlists have been searched. As in the previ-
ously described rules, the element with the most negative reduced costs of the
inspected sequence is chosen. If no negative element was found the search con-
tinues until the first negative element was found or all shortlists were searched.
In the next iteration, one starts with shortlist not considered in the previous
step. In the case that all checked edges have non-negative reduced costs, the
problem is optimally solved with respect to the shortlists but not necessarily
with respect to all edges (variables), since the computed dual multipliers might
lead to negative reduced costs for edges not contained in the shortlists. There-
fore, a second pivot rule is applied in the following sub-phase, which takes
all edges into account and thus leads to an optimal solution of the complete
(original) problem. Clearly, the choice of the parameter set Iy, ksy, and pgy, is
critical for the performance of the rule. We obtained good results for the val-

ues proposed in Gottschlich and Schuhmacher (2014) as “a first step to good
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universal parameters”, i.e.

l min{15,n} for n < 200,
SL =

15+ |15 - logy(n/200) |  for n > 200,
kst = lst,
psr = 5%.

Lastly, with regard to the final pivot rule applied in the second sub-phase
of Phase II, we follow the recommendation of Gottschlich and Schuhmacher
(2014) and apply the RMN rule stated above.

Observe that Gottschlich and Schuhmacher (2014) introduce the RSL in the
context of a TPS implementation which additionally includes a specific heuris-
tic to compute starting solutions and is represented by the RMRS in our setup.
In order to combine it with different starting heuristics, we study the RSL in-
dependently of the Shortlist Method.

Column Shortlist (CSL) As in the two rules presented before, we imple-
mented a column-variant of the Shortlist pivot rule, maintaining shortlists L;
for the columns j € J, as well. Here we accordingly use the CMN as the global
pivot rule in the second sub-phase of Phase II. If in the following statements
refer to both the RSL and the CSL, we refer to the Shortlist Rules.

Implementation in Matlab We conclude with a note on the implementation
of the presented methods. As explained in the implementation of the heuristics
in Section 3.5, MATLAB uses column-major memory and therefore iterates
faster over the columns of a matrix than over its rows. Due to the large number
of pivot steps performed in the TPS, the impact of this is even more significant

in the pivot rules. Hence, as for the heuristics, the row variants of the pivot rules

6The differences in the heuristic of Gottschlich and Schuhmacher (2014) and RMR had no

practical implications in our numerical investigations.
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are most effectively implemented as their column equivalents on the transposed
problem, i.e. on (C'T,b,a) instead of (C,a,b).

Moreover, while the MATLAB code for RMN and CMN can be efficiently
vectorized”, we observed inferior performance of a vectorized variant of the
Block Search Rules. This is explained by the structure of the reduced costs
i = ¢ij — u; +v; which leads to a time-consuming replication of dual vectors
to compute the reduced costs for sequences (blocks) which are overlapping
several rows (or columns) of C. The time required for replication outweighs
the time gained by vectorization. Furthermore, since the cost coefficients are
inspected in ascending order and the order is therefore not consistent with
the dual variables, vectorization of the Shortlist Rules is not practicable. This
constitutes a MATLAB-specific advantage of the RMN and the CMN.

4.3.5 Cycling and degenerate basic solutions

Another important aspect in the implementation of the TPS is the phe-
nomenon of cycling caused by the existence of degenerated basic solutions
introduced in Section 1.5.6. In the context of the Simplex method, cycling
refers to an infinite, repetitive sequence of degenerate pivots, that is pivot
operations that replace a basis variable with zero flow and thereby change
the basis, but leave the corresponding basic solution and the current objective
value unchanged. In the worst case, this will prevent the algorithm from termi-
nating after a finite number of iterations. Moreover, the practical implications
of degenerate basic solutions go beyond the possibility of not terminating but

potentially reduce the efficiency of the method in general (see below).

As mentioned before, the differences in pivoting between the TPS and the
LPS are restricted to the execution of the pivot steps. Provided the initial
solution and the pivot rules used are the same, they will visit exactly the same
basic solutions in the course of Phase II. Consequently, the TPS inherits the
problems introduced above by design. For instance, it is stated in Ahuja et al.

(1993) that computational studies on the Network Simplex report that up to

"https://de.mathworks.com /help /matlab /matlab_ prog/vectorization.html
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90% of the pivot operations can be degenerate (not improving the current

solution) in "commonplace network problems.

However, this can be efficiently handled by enforcing the basis trees to be
strongly feasible via the leaving edge rule (Ahuja et al. (1993)). Thereby, in
the event that multiple edges qualify as a leaving edge, i.e. multiple backward
edges in the basis equivalent path achieve the minimum flow value, one selects
the edge which would last be encountered when traversing the created cycle in
the basis tree in the outlined direction. This approach ensures the finiteness of
the algorithm and in addition reduces the average computing time in general,
see Ahuja et al. (1993).

4.3.6 Final algorithm

Having presented all components of the method, we summarize the TPS in
Algorithm 3. Furthermore, we introduce a simple preprocessing technique that
is run before Phase I and II are executed and specify the memory requirements

of the algorithm.

Preprocessing

The preprocessing routine of Algorithm 3 operates as follows: In order to avoid
unnecessary computations, we eliminate all origins ¢ with supply a; < 10712
as well as destinations j with demand b; < 107' and accordingly adapt the
variables z and costs ¢ of a given problem instance. The result is an equivalent

problem of lower dimension.

In practice, the according reduction in dimension is negligible for the artificial
problem classes. Recall that for the UNTFORM instances, the expected values

m—1
m2(m+1)

respectively, cf. Section 2.3.2, and the interval of dimensions

as well as the variance of the components of a and b is given by % and

n—1
n?(n+1)

considered in our numerical analysis was m,n € [10% 16 - 103]. In the case

or + and
n

of SOLGEN instances, the generation process of a and b is slightly modified,

see Section 2.3.4. However, in practice we observed the same behavior, i.e.
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Algorithm 3 The Transportation Simplex (TPS)

Preprocessing
1. Delete zero entries in a and b and adapt z and ¢ accordingly.
Phase 1

2. Determine a primal feasible basic solution x by means of a primal basic
heuristic of Chapter 3.

3. Compute the XTI information including corresponding dual multipliers
(u,v).
Phase II
4. Compute reduced costs ¢’ by means of a pivot rule of Section 4.3.4
resulting in one of the two following alternatives:
a) Selection of a non-basic entering edge i.j. with ;o < 0.
b) Observation of optimality, i.e. ¢if > 0 for all ij € Ey, and thereby

the termination of the algorithm.

5. Determine the leaving edge 7;5; and the new basic solution by sending

flow through the basis equivalent path.

6. Update the X'TT representation and go to 4.

the role of preprocessing in solving is negligible. In contrast, preprocessing
plays a decisive role for the subclasses “Shapes” and “Microscopylmages” of
DOTMARK where the total number of supplies and demands is reduced by
up to 30%.

Memory requirement

Finally, we state the memory requirement of the algorithm. For this purpose,

recall that the size of the input parameters C, a and b is in O(mn). Apart from
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this, the only information which needs to be stored is the XTI representation,
which is in O(m + n), cf. Section 4.3.1. Hence, the matrix C' dominates the

total memory requirement which amounts to O(mn).

4.4 Differences to the Network Simplex (NS)

After the TPS has been introduced in Section 4.3, we discuss the differences
between the TPS and the NS for general minimum cost flow problems (MCF,,)
and (MCF,.) in this section. Observe that a modern implementation of the
NS is very well covered in the literature, see e.g. Ahuja et al. (1993) and
Kovécs (2015). Therefore, we refrain from a comprehensive introduction of the
general NS and will only give a comparative presentation of the algorithm with
respect to the TPS. In particular, we point out which elements of the NS are

implemented differently.

441 Phase |

One of the main differences of the TPS and the NS constitutes the determina-
tion of the initial primal solution. The heuristics of Chapter 3 are specifically
designed for the bipartite structure of the transportation problem (TP). While
some of them can be generalized to (MCF,) and (MCF.), see e.g. Glover et al.
(1974a), it is more common to artificially extend the underlying network such
that an initial basic solution is known. Thereby, an artificial root node with
arcs of infinitely high costs and sufficient capacities to all other nodes is intro-
duced, cf. Bradley et al. (1977), Ahrens and Finke (1980) and Kovacs (2015).
The NS then continues with Phase II and solves the extended problem. If; in
the bounded case, all artificial arcs are removed in this process, an optimal
solution for the original problem is obtained; otherwise the original problem is
infeasible. Furthermore, observe that the artificial arcs will not be included in

a negative cost cycle in the unbounded case, see Section 4.4.2.

In case of the TPS, the approach above is probably best represented by the
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NWCR since the computational effort (each node is examined exactly once)
is identical and in both cases a solution is determined whose distance from
the optimal solution (in pivot steps) is unknown. A minor disadvantage of the
artificial edges, however, is that at least these must be removed from the basis

before the optimum (for feasible problems) can be achieved.

Additionally, Ahuja et al. (1993) mention the possibility to obtain an initial
solution by solving a maximum flow problem. However, this approach seems

to be less common in practice, cf. Kovéacs (2015).

Compute XTI information and the corresponding dual solution

After the primal solution is determined, the XTI information as well as the
corresponding dual multipliers are obtained as in the TPS, i.e. by identify-
ing a depth-first traversal of the basis tree and subsequently determining the

remaining parameters of the XTI representation.

4.4.2 Phase Il

The differences in Phase II are more subtle. Thereby, we first consider unca-

pacitated minimum cost flow problems, i.e. (MCF,), for comparison.

The uncapacitated case

Assume a uncapacitated problem (MCF,) is given for the graph G = (V E), cf.
Section 1.4.3. we describe how Phase II of the TPS generalizes to the NS in this
case in the following: Firstly, recall that we have adopted the representation
(1.8) of reduced costs for (TP) in the context of the TPS which ensures that
dual variables are computed as in general minimum cost flow problems. Thus,
we implicitly solve the problem formulation (1.6) of (TP) and, as described in
Section 1.4, the only difference between (1.6) and (MCF,,) lies in the underlying
graph for which a minimum cost flow is established. Furthermore, as indicated

by the proof of Theorem 1.4.2, the one-to-one correspondence between bases
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of the incidence matrix and spanning trees generalizes to general minimum
cost flow problems, see e.g. Ahuja et al. (1993). Observe further that in case of
the XTI representation and its update, no restrictions on the underlying graph
were made and, in particular, it was not required that the graph is bipartite.
Thereby the representation of the basis in (MCF,,) is exactly the same as for
(TP), i.e. a spanning tree (stored by the XTI method) and the corresponding
primal and dual solution. Moreover, since all operations performed on the basis
tree, i.e. pivot operations 2 and 3, are restricted to the basis tree itself and the
entering edge, these are carried out almost in the same way. The only difference
is that the direction of edges in the TPS is implicitly given by the order of
the incident nodes, while this direction has to be explicitly stored for general

networks.

Thereby, the only significant adjustment in the implementation of Phase II
for the NS is in pivot operation 1 (Algorithm 2). Here a pivot rule exploiting
the special structure of the respective underlying graph should be chosen. In
Section 4.3.4 we present such rules for the transportation problem, whereby
with the Block Search Rules we also apply a rule originally introduced for

general minimum cost flow problems in Grigoriadis (1986).

Moreover, as indicated above, a general difference lies in the storage of the
topology of the underlying graph. Since the bipartite graph of the transporta-
tion graph is complete, all the relevant information is given by the matrix C
as well as the supplies a and demands b. In contrast, one has to store, which
nodes are connected by arcs along with the direction of these arcs for general

uncapacitated minimum cost flow problems.

Lastly, Phase II yields another possible outcome, since the (MCF,,) is not guar-
anteed to be unbounded in our setup. Thereby, a minimum cost flow problem
is unbounded if and only if it contains a directed cycle where the sum of the arc
costs is negative (Ahuja et al. (1993)). Since there is no capacity on the arcs,
unlimited amount of flow can be sent through the cycle to achieve arbitrary

small objective function values.
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The capacitated case

The additional introduction of capacities on the arcs entails further modifica-
tions in Phase IT of the NS. To this end, assume a capacitated problem (MCF,)
is given for the graph G = (V, E), cf. Section 1.4.3. First of all, the differences
described for the uncapacitated case apply for this case as well. Furthermore,
this naturally implies that along with the costs ¢;;, the capacities o;; of the arcs
must be stored. It also implies a slight extension of the basis representation to
account for arcs in which the flow is saturated, i.e. x;; = 0;;. Therefore, basic
solutions correspond to a triple of sets (7, Z,0) with T U Z U O = E where
it holds
0< z < 05 <= ijeT

r; = 0 <= ijez,

T, = oy <= ij€O.
and T is a spanning tree of the underlying graph.

The elements of T are basic arcs while the elements in O and Z are non-
basic arcs. Thus, the existence of non-basic arcs with positive flow in O yields
that arcs with positive reduced costs are potential candidates to improve the
current basic solutions when their flow is reduced as they enter the basis. This
slightly alters the selection process of pivot operation 1 and the transition
from one primal solution to the next in pivot operation 2. For a thorough and
comprehensive explanation of the Network Simplex and XTI operations for
(MCF,), see e.g. Ahuja et al. (1993) and Glover et al. (1979).

4.5 Numerical analysis

In the following we want to numerically evaluate the TPS. To this end, the
method was implemented as described above with the only variable compo-
nents being the starting heuristics and the pivot rules. In order to keep our
description of the results concise, we refer to the respective TPS implementa-
tions by the heuristics and pivot rule used, e.g. we denote the TPS with the
NWCRXTI heuristics and the RMN pivot rule as NWCRXTI/RMN.
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In doing so, we pursue two main objectives: The primary objective of this
chapter is to identify the best implementation of the TPS. For this purpose,
we analyze different combinations of heuristics and pivot rules an test them
on the problem classes introduced in Section 2.3. The most promising com-
binations will then serve as a reference point for the pivot rules proposed in
Chapter 5 which introduce concepts of Column Generation to the TPS. As
former studies recommend to test pivot rules and heuristics together, cf. Srini-
vasan and Thompson (1973) and Glover et al. (1974b), we will incorporate all
heuristics of Chapter 3 in combination with the pivot rules of Section 4.3.4 in
our analysis. In case of the NWCR and the TMR, we only include the inte-
grated variants, i.e. NWCRXTI and TMRXTI, as they proved to be slightly

faster.

As a secondary objective, we want to quantify the overall advantage of a Net-
work Simplex implementation specifically tailored to the transportation prob-
lem (the TPS), over the general NS and will therefore include the Network
Simplex of [LoGc CPLEX 12.6.2, henceforth referred to as CPLX, in our anal-
ysis. This represents a highly efficient implementation of the NS and further —
as a widely used commercial solver — increases the comparability of our results
to other studies. Since this method was clearly superior to all other CPLEX and
GUROBI LP-solvers in our numerical investigations on the transportation prob-
lem, we refrain from presenting the results of further commercial LP-solvers.
This decision is also based on the fact that similar observations were made in
Schrieber et al. (2017). In the course of determining the benefit of a specialized
NS implementation for transportation problems, we also examine the NWCR
starting heuristic, which is well known to deliver poor results. However, as
described in Section 4.4.1, it provides a good reference for the benefit of using

a starting heuristic in Phase I.

We begin our analysis with basic tests on symmetrical and asymmetrical prob-
lem instances to identify the best combinations of heuristics and pivot rules

for further investigations.
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4.5.1 Basic symmetric evaluation

First, we will perform initial tests on symmetric instances of the problem that
include all heuristics given in Chapter 3 and all pivot rules described in Section
4.3.4, except the Block Search Rules, which are equivalent to the Modified

Row/Column Rules on symmetric instances and are therefore omitted.

Accordingly, 10% instances of dimension m = n = 1024 of the artificial prob-
lem classes SOLGEN and UNIFORM were solved. In addition, we created all
problem instances of the DOTMARK class for the fixed resolution 32x32,
which constitutes 450 additional transportation problems of the same size
m = n = 1024, see Section 2.3.5. Consequently, each solved instance of a
transportation problem (TP) included 2 - 1024 ~ 2 - 10® nodes (constraints)
and 10242 ~ 10° edges (variables).

We averaged the results of each TPS combination and CPLX over all solved
problems of a given class. The respective cpu time is presented in Figure 4.9
as well as Tables 4.3, 4.5 and 4.7. Furthermore, we documented the number
of pivot steps performed and, if relevant, the percentage of pivot steps which
were executed by the Shortlist Rules in Tables 4.4, 4.6 and 4.8.
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Figure 4.9: A boxplot of the cpu time for the symmetric instances of dimen-
sion m = n = 1024 of the best TPS combinations and CPLX on
all problem classes is shown. It is observed that while the degree
of difficulty is rather constant for the artificial classes, whereby the
UNIFORM instances require on average more cpu time than the
SOLGEN instances, the cpu time for the DOTMARK classes is
subject to a higher variance. Moreover, whereas the TPS solvers
are clearly superior on average, the CPLX is more robust and sub-
ject to less variance in cpu time.

Due to the large number of problem classes and algorithms, MAT-

LAB’S compact style is used for boxplots.
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SOLGEN || RMN CMN RSL CSL
NWCRXTI 0.79 0.78 0.76 0.75
TMRXTI 0.58 0.58 0.58 0.98
RMR 0.65 0.62 0.64 0.63
CMR 0.63 0.64 0.64 0.63
MRMR 0.55 0.53 0.54 0.54
MCMR 053 054 054 0.53
MMR 0.61 0.61 0.62 0.61
MRUR 0.44 0.43 0.45 0.45
LALC 077 0.77 077 0.76
D2PR 0.50 049 0.52 0.51

Table 4.3: Average cpu time on 103 symmetric SOLGEN instances of dimension
m = n = 1024, for all combinations of starting heuristics (rows) and
pivot rules (columns). For CPLX we documented an average running
time of 1.65 seconds which is about four times slower than the best
TPS combination MRUR/CMN with 0.43 seconds. In particular,
dominance of the MRUR is observed which combines well with all
pivot rules and halves the cpu time compared to the slowest heuris-
tics. In contrast, the involved pivot rules perform at a surprisingly

similar level.
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SOLGEN RMN CMN RSL CSL
NWCRXTI Pivot steps / 10® | 17.86 17.86 16.58 16.59
SL steps in % - - 27 27
TMRXTI Pivot steps 12.25 12.25 11.72 11.72
SL steps - - 17 17
RMR Pivot steps 13.04 12.81 12.48 12.28
SL steps - - 15 28
CMR Pivot steps 12.81 13.05 12.26 12.46
SL steps - - 28 15
MRMR Pivot steps 10.51 10.29 9.82 9.85
SL steps - - 28 28
MCMR Pivot steps 10.29 10.51 9.83 9.80
SL steps - - 28 28
MMR Pivot steps 9.58 9.58 9.33 9.31
SL steps - - 18 18
MRUR Pivot steps 537 536 5.02 5.03
SL steps - - 30 29
LALC Pivot steps 11.78 11.78 11.01 11.01
SL steps - - 30 30
D2PR Pivot steps 5.73 574 541 542
SL steps - - 29 29

Table 4.4: Evaluation of the pivot steps, averaged over 10° samples of dimen-
sion m = n = 1024 of the SOLGEN class, for all combinations
of starting heuristics (rows) and pivot rules (columns). The total
number of pivot steps is given in thousands where the percentage
of steps performed by the Shortlist Rules is shown below. In accor-
dance with computation time, the MRUR and D2PR significantly
reduce the number of required pivot steps of the TPS compared to
the other heuristics. Interestingly, the Shortlist Rules do not sig-
nificantly reduce the number of pivot steps and only account for a

maximum share of 30% of the total pivots.
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UNIFORM | RMN CMN RSL CSL
NWCRXTI 200 199 1.17 1.16
TMRXTI 097 097 0.61 0.61
RMR 1.02 096 0.63 0.61
CMR 097 1.01 0.62 0.62
MRMR 091 090 0.58 0.57
MCMR 0.90 0.89 0.58 0.57
MMR 099 098 0.67 0.66
MRUR 1.00  1.00 0.68 0.67
LALC 091 090 0.67 0.67
D2PR 098 097 0.68 0.68

Table 4.5: Average cpu time on 10% symmetric UNIFORM instances of dimen-
sion m = n = 1024, for all combinations of starting heuristics (rows)
and pivot rules (columns). The average cpu time of CPLX for the
same problem instances amounted to 1.84 seconds. Whereas the
heuristics (except the NWCRXTTI) perform approximately on the
same level, the Shortlist Rules clearly dominate the other pivot
rules and achieve the best cpu time with 0.57 to 0.58 seconds in
combination with the MCMR and the MRMR.

106



4.5 Numerical analysis

UNIFORM RMN CMN RSL CSL
NWCRXTI Pivot steps / 10% || 46.94 46.90 22.62 22.61
SL steps in % - - 100 100
TMRXTI Pivot steps 19.79 19.80 9.24 9.23
SL steps - - 100 100
RMR Pivot steps 20.42 19.10 9.12 8.84
SL steps - - 100 100
CMR Pivot steps 19.12 20.44 885 9.15
SL steps - - 100 100
MRMR Pivot steps 17.66 17.67 8.06 8.05
SL steps - - 100 100
MCMR Pivot steps 17.60 17.63 8.03 8.03
SL steps - - 100 100
MMR Pivot steps 17.33 1731 7.87 7.87
SL steps - - 100 100
MRUR Pivot steps 1742 1741  7.92 7.92
SL steps - - 100 100
LALC Pivot steps 13.35 13.35 6.07 6.08
SL steps - - 100 100
D2PR Pivot steps 16.04 16.05 7.23 7.23
SL steps - - 100 100

Table 4.6: Evaluation of the pivot steps, averaged over 10% samples of dimen-
sion m = n = 1024 of the UNIFORM class, for all combinations
of starting heuristics (rows) and pivot rules (columns). The total
number of pivot steps is given in thousands where the percentage
of steps performed by the Shortlist Rules is shown below. In line
with computation time, the number of pivot steps is generally sig-
nificantly higher than for SOLGEN instances. In particular, it is
observed that all Shortlist pivots always amount to 100% of the to-
tal pivots, that is, the solution on the shortlists was already optimal

in all cases.
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DOTMARK || RMN CMN RSL CSL
NWCRXTI 1.74  1.77 1.40 1.45
TMRXTI 1.62 1.71 129 1.36
RMR 266 1.89 1.82 1.51
CMR 1.87 280 148 1.87
MRMR .30 1.30 1.07 1.11
MCMR 1.22 1.29 1.06 1.08
MMR 172 1.82 138 1.44
MRUR 1.16 1.14 0.99 0.98
LALC 1.35 145 1.15 1.19
D2PR 1.67 1.72 1.40 1.43

Table 4.7: Evaluation of the cpu time, averaged over 450 instances with dimen-
sion m = n = 1024 of the DOTMARK class, for all combinations
of starting heuristics (rows) and pivot rules (columns). The average
cpu time of CPLX for the same problem instances amounted to 1.56
seconds. The best TPS combination is given by the MRUR and the
RSL/CSL with a total cpu time of 0.99 and 0.98 seconds. Generally,
the MRUR and the Shortlist Rules deliver the best results for this

problem class.
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DOTMARK RMN CMN RSL CSL
NWCRXTI Pivot steps / 10 || 34.43 34.89 25.89 27.05
SL steps in % - - 95 54
TMRXTI Pivot steps 29.35 31.76 23.22 24.99
SL steps - - 59 58
RMR Pivot steps 51.86 36.16 33.79 27.47
SL steps - - 54 56
CMR Pivot steps 35.71 55.22 26.90 35.62
SL steps - - 58 55
MRMR Pivot steps 23.41 24.22 1851 19.80
SL steps - - 62 62
MCMR Pivot steps 22.25 23.45 1837 19.19
SL steps - - 63 62
MMR Pivot steps 29.06 31.64 22.47 24.27
SL steps - - 59 58
MRUR Pivot steps 18.36  18.44 14.07 14.24
SL steps - - 55 95
LALC Pivot steps 22.11 24.13 17.16 18.32
SL steps - - 63 62
D2PR Pivot steps 28.40 29.19 22.09 23.35
SL steps - - 56 95

Table 4.8: Evaluation of the pivot steps, averaged over 450 instances of dimen-
sion m = n = 1024 of the DOTMARK class, for all combinations
of starting heuristics (rows) and pivot rules (columns). The total
number of pivot steps is given in thousands where the percentage of
steps performed by the Shortlist Rules is shown below. Generally, it
required the highest number of pivot steps ranging from 14000 for
MRUR with the Shortlist Rules to 55000 for CMR/CMN. Moreover,
the percentage of pivot steps performed by Shortlist Rules is higher
compared to the SOLGEN instances and amounts to 54% — 63%.

109



4 The Transportation Simplex

Results

Before we specifically review the performance of the methods on each of the

three problem classes, we give our general observations, which, for reasons of

clarity, we divide into major and minor observations:

Major observations

1. While we observed that the results depend on the problem classes and
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that no universally best TPS combination could be determined, the
heuristics MRUR, MRMR and MCMR were competitive on all prob-
lem classes. Since we explicitly preselected efficient methods in Section
4.3.4, all pivot rules performed at a high level, as expected. However, a

significant reduction of cpu time could be observed when applying the
Shortlist Rules for the UNIFORM and DOTMARK instances.

Moreover, the TPS compared favorably to CPLX in this first evaluation.
The total cpu time of the best combinations was between 3 to 4 times
faster on the artificial problem classes and 1.5 times faster on the DOT-
MARK instances. As an illustration, we show the average cpu time of
MRUR/CSL compared to CPLX below:

Times in s H SOLGEN UNIFORM DOTMARK
MRUR,/CSL 0.45 0.67 0.98
CPLX 1.65 1.84 1.56

Conversely, CPLX proved to be significantly more robust and contained
less variance in the solution time, see Figure 4.9. In the further course
of our numerical analysis we examine how this comparison develops in
higher dimensions. Lastly, a very interesting observation was that DOT-
MARK problems constitute the easiest problem class for CPLX, while
they were the hardest to solve for TPS methods. Since we do not know
the details of the CPLX implementation, we cannot explain this observa-
tion entirely. However, one reason is certainly the robustness of CPLX,
whereas the average time of the TPS methods suffers from some outliers,
see 4.9.
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3. In terms of total cpu time, the DOTMARK instances are subject to
the largest variance and contain the most difficult as well as the easiest
problems. The artificially constructed problems are more homogeneous
in degree of difficulty, whereby the UNIFORM instances (on average)
are somewhat more difficult to solve than the SOLGEN instances. We
illustrate this in the boxplot of Figure 4.9.

4. We included the NWCRXTI method in our study to measure the general
impact of starting heuristics, in particular in comparison to the applica-
tion of the general NS to the transportation problem, see Section 4.4.1.
Comparing the best runtime of a pivot rule combined with all starting
heuristics and the runtime of this pivot rule with the NWCRXTI, the
cpu time was reduced by 25% to 50% in all cases. This constitutes a first
argument to apply the TPS instead of the NS when solving transporta-
tion problems and a possible explanation for the promising performance
compared to CPLX.

5. While RMN and CMN showed satisfactory results, the Shortlist Rules
proved particularly promising. As expected, they achieved the best re-
sults with the classes UNIFORM and DOTMARK, as they were specif-
ically developed for the cost structure of these problems. The first sub-
phase of the Shortlist Rule, see Section 4.3.4, is restricted to a subset
of the variables (the shortlists), which requires fewer pivot steps to op-
timally solve this reduced problem. Accordingly, by design, the Short-
list Rule excels whenever an optimal solution is already included in the
shortlists. More precisely, if the shortlists contain all variables that as-
sume non-zero values in an optimal solution (e.g. all basic variables of an
optimal basic solution), the shortlist solution is also optimal for the full
set of variables. In this case, the dimension of the problem is effectively
reduced for the complete solution process, which significantly reduces the
number of necessary pivot steps. Furthermore, beyond this extreme case,
it is reasonable to assume that the effectiveness of the Shortlist Rules
generally increases when the percentage of pivot steps executed on the

shortlists is large. This means that a larger part of the solution process is
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performed on a reduced problem that can be solved in fewer pivot steps,
which will also cause the number of total pivot steps to be smaller. The
closer® the solution on the shortlists is to an optimal solution, the fewer

pivot steps are required on the full set of variables.

In particular, the uniformly distributed costs of the UNIFORM class
generate such a structure, since an optimal solution is included in the
shortlists for every problem instances, see Tables 4.5 and 4.6. Naturally,
this structure is also likely for the DOTMARK instances, where the
origins ¢ and destinations j are represented by pixels in two images and
the respective costs ¢;; are given by the squared euclidean distance of
the 2-dimensional pixel positions. This implies that, for each pixel, the
adjacent and close pixels in the other image yield promising variables of
low costs. As a result, the Shortlist pivots account for a high percentage
between 54% and 63% of the total pivots in Table 4.8. The least share of
Shortlist pivots, i.e. up to 30%, is observed for the SOLGEN instances,
which suggests that the optimal solutions generated tend to contain a
larger share of variables with comparably high costs and, hence, these
variables are excluded from the shortlists. This observation constitutes
the essential motivation for the pivot rules introduced in the context of

Column Generation in Chapter 5.

. Apart from the obvious fact that faster heuristics combine favorably

with the Shortlist Rules for all instances where the Shortlist Rule (al-
most) optimally solves the problem, we did not determine any significant
dependencies between applied heuristics and pivot rules. This contrast
to the earlier studies of Srinivasan and Thompson (1973) and Glover
et al. (1974b) is likely explained by the preselection (and thus the small

number) of efficient pivot rules.

In particular, we did not observe a significant interrelation between row
and column variants of successively applied heuristics and pivot rules

in general. The only exception is given by the RMN and CMN on the

8Here the term close is used in the sense that only a few pivot steps are needed to convert

this solution into an optimal one.
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DOTMARK classes. Here, combining the row and column variants of
the heuristic and the pivot rules yields much better results than using
two rows or column variants in one algorithm, as discussed in the de-
tailed review for the DOTMARK instances below. In addition, this phe-
nomenon can be observed to a minimal extent for RMN, CMN, MRMR
and MCMR. However, this interrelation is not part of the central re-
search questions of this thesis. Furthermore, the RMN and CMN in gen-
eral achieve poor results and the impact for the MRMR and MCMR is
negligible. Hence, we will not discuss this phenomenon for symmetric

problems in the further course of this thesis.

Minor observations

1. The heuristics MRUR and D2PR apply a similar approach where the
primal solution is found by minimizing the complementary slackness to
a given dual solution. While the according dual solution in the D2PR is
feasible, the dual solution in the MRUR  is chosen to mimic the multipli-
ers in the Simplex and is in general not feasible. This this similarity is
reflected in the cpu time on the artificial problem instances. However, on
the DOTMARK instances the MRUR interestingly performs significantly
better than the D2PR.

2. A note on LALC: As mentioned in Section 3.5, this method could not be
implemented optimally in MATLAB. The pivot steps documented in Ta-
bles 4.12 and 4.14 show that the corresponding starting solutions require
the fewest pivot steps in order to be converted into an optimal solution
for the UNIFORM class and also to achieve low numbers of pivot steps
for the DOTMARK class. Therefore, this method is a suitable candidate

for further investigations in the context of other programming languages.

3. Integrating the XTI initialization in the TMRXTI heuristic results in
approximately a 5% reduction of the cpu time. However, this effect is
canceled out by the selection of basis variables in the TMRXTI, which
proved to be ineffective compared to the best performing heuristics. Ac-

cordingly, the method only performs competitive in some cases, which
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leads us to not investigate this approach any further.

4. Due to the column-major memory design of MATLAB, we implemented
row variants of the heuristics and pivot rules by executing their column
equivalents on the transposed problem, as described in Sections 3.5 and
4.3.4. This is reflected in a minimal increase in the cpu time of the row
variants, which is based on the transposition of C' and the swapping of

a and b.

SOLGEN Let us discuss the results on the SOLGEN instances in detail: The
best overall time, i.e. 0.43 seconds, was achieved by the MRUR/CMN combi-
nation. This is about four times as fast as the average time of CPLX which
amounted 1.65 seconds and was undercut by all combinations of pivot rules
and heuristics where the worst combination was given by the NWCRXTI/RMN
with 0.79 seconds.

Surprisingly, the total cpu time is almost independent of the pivot rules used,
with the largest difference being 0.04 seconds between NWCR/RMN and
NWCR/CSL. In particular, we did not observe a significant dependence in
the starting heuristics and the pivot rules for the SOLGEN instances. In con-
trast to that, we observe a rather surprising dominance of the MRUR rule
compared to the remaining heuristics with almost constant total cpu time of
0.43 to 0.45 seconds for all pivot rules. The second best time by the D2PR,
ranges from 0.49 seconds to (.52 seconds and is followed by the MRMR and
MCMR with cpu time between 0.53 and 0.55 seconds and the TMRXTI with
0.58 seconds.

The average number of pivot steps ranges from approximately 5000 to 18000. In
accordance with the cpu time, the MRUR realizes the smallest number of pivot
steps. Interestingly, the application of the Shortlist Rules did not significantly
reduce the total number of pivots steps, despite the fact that they account for
up to 30% of all pivots. Moreover, this share of pivot steps for the Shortlist

Rules was significantly smaller compared to the other problem classes.
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UNIFORM As expected, the UNIFORM instances proved to be somewhat
more difficult than the SOLGEN instances. Excluding the NWCRXTI, all
starting heuristics performed approximately on the same level with total cpu
time ranging between 0.57 and 1.02 seconds. The best overall time is achieved
by a combination of MRMR and MCMR with the Shortlist Rules and amounts
to 0.57 or 0.58 seconds. The average time of CPLX, 1.84 seconds, exceeded this
by factor 3 and was at least 80% higher than for all TPS combinations that
did not contain the NWCRXTI. The number of pivot steps also increased
compared to the SOLGEN instances. Here, the NWCRXTI represents again
the extreme case with up to 45000 steps, whereas all other heuristics achieve

numbers approximately in the range 6000 to 20000.

In particular, we observe a rather dominant performance of the Shortlist Rules,
which achieved the best results for all starting heuristics and was almost twice
as fast as the concurrent pivot rules. This fact can be easily explained by Table
4.6, where it is observed that in fact all instances were solved optimally by the
Shortlist Rules, i.e. an optimal solution was already contained in the shortlists.

Accordingly, the number of necessary pivot steps is approximately halved.

Consequently, in comparison to the SOLGEN instances, we observe the con-
trary situation, i.e. the results are (somewhat) independent of the selected
heuristics but strongly affected by the pivot rule used. Thus, the combination
of heuristics and pivot rules is a minor factor for the UNIFORM class: As the
problem is quickly solved by the Shortlist Rules, the inherent cpu time of the
heuristics plays a more important role and, hence, faster heuristics generally
produce the better overall results. For instance the LALC method is among
the best heuristics with respect to the RMN and CMN rules but yields some of
the worst results (with the exception of the NWCRXTI) when it is combined
with the Shortlist Rules.

DOTMARK Finally, we evaluate the results on the DOTMARK instances:
Generally, this class required the highest average cpu time and number of pivot
steps as it includes the most difficult problem instances. Here, the best TPS
combination is again given by the MRUR/CSL with an averaged cpu time of
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0.98 seconds, which is 50% faster than the 1.56 seconds of CPLX. Moreover, as
for the SOLGEN instances, the MRUR generally dominates the other starting
heuristics with cpu time between 0.98 and 1.16 seconds. Comparably good
results are only achieved by the MRMR and MCMR with cpu time ranging
from 1.06 to 1.30 seconds. Interestingly, and in contrast to the observations
on the SOLGEN instances, the D2PR performs significantly worse than the
MRUR although they apply very similar concepts, see minor observation 1.

Surprisingly, the worst combinations do not include the NWCR method but are
represented by RMR/RMN and CMR/CMN. Generally, we observe that ap-
plying a row (column) pivot rule after RMR (CMR) delivers worse results than
combining row and column methods. Since the RMR/CMN and CMR/RMN
perform significantly better (but still worse than the NWCR heuristics), this
is the only case for all problem classes in which the examination of columns or
rows has a significant influence on performance for symmetric problems. More
interestingly, this observation is not matched for the MRMR and MCMR which
perform approximately on the same level for the row and column variants of
the pivot rules. Hence, this phenomenon is due to the RMN (CMN) distribut-
ing all the supply (demand) of one origin (destination) before considering the

next one.

This class required the highest number of pivot steps, i.e. 14000 when combin-
ing the MRUR with Shortlist Rules and 55000 for CMR/CMN. Moreover, the
percentage of pivot steps performed by Shortlist Rules is higher compared to
the SOLGEN instances and amounts to 54% — 63%.

4.5.2 Basic asymmetric evaluation

To complete our basic evaluation, we perform tests on asymmetric instances
of the transportation problem. For this purpose, we include the Block Search
rules RBLK and CBLK, as they were introduced exclusively for these problems
(see Section 4.3.4), in addition to the heuristics and pivot rules already applied

in the symmetric case.

For DOTMARK, we created asymmetric problems of dimension m = 4096
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and n = 1024, generated by comparing images of size 64x64 and 32x32,
which implies approx. 5 - 10® nodes (constraints) and approx. 4 - 105 edges
(variables) in (TP). As in the symmetric case, we generated all 45 instances
for each of the 10 DOTMARK classes for these resolutions. As the rest of
this thesis will focus on the symmetric case, we try to keep the asymmetric
evaluation concise. Hence, in order to keep the asymmetric evaluation clear,
we go to a higher degree of asymmetry for the investigation of the artificial
problem classes. So we generate 1000 problems instances of size m = 4096 and
n = 64, i.e. m = n?, for SOLGEN and UNIFORM, which accordingly results
in approx. 4 - 103 nodes (constraints) and approx. 2.610° edges (variables) in
(TP). We averaged the results each TPS combination and CPLX over all solved
problems of a given class. As in the symmetric case, we documented the cpu
time in Tables 4.9, 4.11, 4.13 and Figure 4.10 as well as the pivot steps in
Tables 4.10, 4.12 and 4.14.

Results

Let us summarize the results on the asymmetric problem instances. As ex-
pected, the cpu time is generally higher for the DOTMARK instances, as
these problems involve more constraints and variables. Interestingly, while the
cpu time of the TPS combinations for the UNIFORM instances was, as in the
symmetric case, generally higher than for SOLGEN instances, the correspond-
ing cpu time of CPLX was almost identical, see Figure 4.10. Furthermore, in
general, we find that column variants of heuristics and pivot rules are more
efficient than their row counterparts. This holds for the artificial instances
with higher degree of asymmetry as well as for the DOTMARK instances and
is clearly explained by the fact that the column variants consider larger se-
quences of variables in the pivot step (size is a function of m) than the row
variants (size is a function of n). As in the symmetric case, the MRUR and
MCMR as well as the CSL delivered the best overall results. Surprisingly, the
TMRXTI/CSL achieved the best cpu time for the UNIFORM instances.

While the TPS was competitive to CPLX, this comparison was significantly

worse than in the symmetrical case, see Figure 4.10. In particular the Block
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Search rules could not achieve good results and only performed reasonably
well on the SOLGEN instances. Moreover, a comparison with an unvectorized
implementation of CMN indicates that this is only to a very small extent caused
by the implementation in MATLAB, but is mainly due to the inherent concept of
the rule. Regarding the Shortlist Rules, their good performance in comparison
to RMN and CMN is somewhat surprising, as they were specifically introduced
for symmetric problems in Gottschlich and Schuhmacher (2014). Accordingly,
we assume that the selection of parameters lgy, kg;, and pg;, has potential for
improvement, since these have been optimized exclusively for the symmetrical
case, see Gottschlich and Schuhmacher (2014).

However, to reduce the scope of this analysis, we will hereinafter refrain from a
more thorough analysis of asymmetric problems and suitable implementations
of the TPS in this case. This is in particular due to the fact that the pivot

rules in Chapter 5 will be proposed solely for symmetric problems.

4.5.3 Consequences

On the basis of these initial observations, we draw the following consequences

before we continue with more extensive investigations:

1. Since the Block Search rules did not yield satisfactory results and we
refrain from an extensive optimization of the Shortlist parameters for
different degrees of asymmetry, we restrict the further analysis to sym-
metric problem instances. Consequently, as they were introduced specif-
ically for the asymmetric case, we also omit the Block Search rules in

further investigations.

2. As they are slightly faster, we restrict our investigations to the column
variants of heuristics and pivot rules — see Section 3.5, 4.3.4 and minor

observation 4 for symmetric problems.

3. Lastly, on the basis of our results, we select the heuristics MRUR and
MCMR as well as the pivot rules CMN and CSL for further study.
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Figure 4.10: A boxplot of the cpu time for the asymmetric instances of di-
mension m = 4096 and n = 64 for the SOLGEN as well as the
UNIFORM instances and m = 4096 and n = 1024 for the DOT-
MARK instances. As expected, the cpu time is generally higher for
the DOTMARK instances, as they involve more constraints and
variables. Moreover, the TPS solvers perform worse here than on
the symmetric instances and are comparable to CPLX in average

computing time, but are significantly less robust.
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Table 4.9: The cpu time, averaged over 103 instances of the SOLGEN class

with dimension m = n? = 4096 and n = 64, for all combinations
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SOLGEN || RMN CMN RBLK CBLK RSL CSL
NWCRXTI 2.06 0.78 1.76 097 1.63 0.63
TMRXTI 1.15  0.53 1.10 0.62 1.00 0.52
RMR 1.55  0.61 1.33 0.7 1.33 0.55
CMR 1.26  0.64 1.20 0.74 1.09 0.62
MRMR 1.53  0.61 1.32 0.74 132 0.55
MCMR 0.38 0.23 0.34 028 035 0.24
MMR 0.88 0.46 0.84 0.53 0.82 0.45
MRUR 0.29 0.20 0.25 0.24 0.27 0.20
LALC 1.25 1.08 1.23 1.13 1.23 1.08
D2PR 034 0.24 0.29 0.28 032 0.23

of starting heuristics (rows) and pivot rules (columns). The average
cpu time of CPLX for the same problem instances amounted to 0.49
seconds. The MRUR is again clearly dominant while the CMN and

CSL perform at a similar level.
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SOLGEN RMN CMN RBLK CBLK RSL CSL
NWCRXTI Pivot steps / 10® || 26.65 10.26  27.73  14.64 23.19 8.84
SL steps in % - - - - 47 36
TMRXTI Pivot steps 15.72  6.40  15.93 8.22 14.18 6.39
SL steps - - - - 41 2
RMR Pivot steps 1798 6.34  18.80 9.17 16.03 5.90
SL steps - - - - 41 35
CMR Pivot steps 15.83  6.45 16.10 8.21 13.94 6.46
SL steps - - - - 47 3
MRMR Pivot steps 17.78  6.27 18.43 8.98 15.92 5.82
SL steps - - - - 42 35
MCMR Pivot steps 1.94  0.95 241 1.21  1.80 0.96
SL steps - - - - 51 17
MMR Pivot steps 9.69 394 10.32 512 9.32 3.95
SL steps - - - - 35 7
MRUR Pivot steps 0.63 0.43 0.76 0.54  0.57 041
SL steps - - - - 52 31
LALC Pivot steps 2.80 1.31 3.44 1.68 2.66 1.33
SL steps - - - - 54 14
D2PR Pivot steps 1.07  0.74 1.32 0.90 098 0.70
SL steps - - - - 49 31
Table 4.10: Evaluation of the pivot steps, averaged over 10 samples of dimen-

sion m = n? = 4096 and n = 64 of the SOLGEN class, for all com-
binations of starting heuristics (rows) and pivot rules (columns).
The total number of pivot steps is given in thousands, whereas the
percentage of steps performed by the Shortlist Rules is shown be-
low. In accordance with cpu time, the MRUR method significantly
reduces the number of required pivot steps of the TPS compared
with the other heuristics. Interestingly, the Shortlist Rules do not
significantly reduce the number of pivot steps and only account for

a maximum share of 30% of the total pivots.
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UNIFORM || RMN CMN RBLK CBLK RSL CSL
NWCRXTI 891 1.34 2.37 2.08 199 1.12
TMRXTI 1.58  0.70 0.84 1.06 0.65 0.66
RMR 3.30  0.73 1.26 1.13 085 0.71
CMR 1.67  0.80 0.94 1.17 0.7 0.77
MRMR 3.09 0.72 1.17 1.11  0.82 0.70
MCMR 1.51  0.72 0.86 1.05 0.68 0.72
MMR 1.51  0.73 0.87 1.06 0.69 0.73
MRUR 1.51  0.73 0.87 1.06 0.69 0.72
LALC 1.39  1.14 1.23 1.26  1.15 1.15
D2PR .73 0.75 0.91 1.10 0.72 0.74

Table 4.11: The cpu time, averaged over 10% instances of the UNIFORM class

122

with dimension m = n? = 4096 and n = 64, for all combinations
of starting heuristics (rows) and pivot rules (columns). As for the
SOLGEN instances, the average cpu time of CPLX for the same

problem instances amounted to 0.49 seconds.
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UNIFORM RMN CMN RBLK CBLK RSL CSL
NWCRXTIT  Pivot steps / 103 || 147.92 18.41  38.35  33.59 34.18 16.04
SL steps in % - - - - 100 24
TMRXTI Pivot steps 23.72 861 1231 1531 9.32 8.48
SL steps - - - - 100 17
RMR Pivot steps 49.02 802 17.88 1527 11.37 8.02
SL steps - - - - 100 18
CMR Pivot steps 23.72 857 1233 1526 9.31 8.50
SL steps - - - - 100 17
MRMR Pivot steps 45.76  7.84 16.38 14.92 10.89 7.92
SL steps - - - - 100 18
MCMR Pivot steps 20.79 747 11.04 1339 811 7.81
SL steps - - - - 100 20
MMR Pivot steps 20.77  7.45 11.03 13.38 810 7.79
SL steps - - - - 100 20
MRUR Pivot steps 20.73 7.45 11.03 13.37 810 7.71
SL steps - - - - 100 21
LALC Pivot steps 5.15  2.17 3.71 3.67 201 234
SL steps - - - - 100 16
D2PR Pivot steps 23.90 7.57  11.42  13.75 835 7.7
SL steps - - - - 100 18

Table 4.12: Evaluation of the pivot steps, averaged over 10° samples of di-
mension m = n? = 4096 and n = 64 of the UNIFORM class,
for all combinations of starting heuristics (rows) and pivot rules
(columns). The total number of pivot steps is given in thousands
where the percentage of steps performed by the Shortlist Rules is
shown below. In line with cpu time, the number of pivot steps is
generally significantly higher than for SOLGEN instances. In par-
ticular, it is observed that all pivots are Shortlist pivots, that is,

the solution on the shortlists was already optimal in all cases.
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4 The Transportation Simplex

Table 4.13: The cpu time, averaged over 10° instances of the DOTMARK class

with dimension m = 4096 and n = 1024, for all combinations of
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DOTMARK | RMN CMN RBLK CBLK RSL CSL
NWCRXTI 12.43 956  14.23 1241 9.30 8.58
TMRXTI 1224 931 1496 1279 9.99 8.18
RMR 20.19 1093 2380 17.06 14.50 10.05
CMR 13.58 1745 1746 2321 11.44 1391
MRMR 1262 782 1644 12772 9.03 6.86
MCMR 930 7.02 1148 11.11 7.52 6.37
MMR 12.68 9.80 15.19 13.21 10.12  8.58
MRUR 7.84 7.08 12.79 1226 6.63 6.16
LALC 10.27 745 1245 11.53 8.02 6.83
D2PR 1290 9.88 15.02 13.10 10.56 8.84

starting heuristics (rows) and pivot rules (columns). The average

cpu time of CPLX for the same problem instances amounted to

8.12 seconds.
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DOTMARK RMN CMN RBLK CBLK RSL CSL
NWCRXTI Pivot steps / 10 || 128.87  72.72  51.54  47.05 81.71  66.06
SL steps in % - - - - 56 39
TMRXTI Pivot steps 110.56  65.74  46.66  39.72 84.82  63.83
SL steps - - - - 59 47
RMR Pivot steps 201.76  80.v8  79.34  49.63 130.08 77.95
SL steps - - - - 59 44
CMR Pivot steps 131.79 135.27  56.10 63.43  99.47 111.62
SL steps - - - - 59 39
MRMR Pivot steps 115.14 53.98 4894 37.39 7579 51.79
SL steps - - - - 59 48
MCMR Pivot steps 82.26 46.53 37.29 33.57 60.68 47.49
SL steps - - - - 63 52
MMR Pivot steps 109.85  65.73 4542  38.37 81.78  62.62
SL steps - - - - 59 47
MRUR Pivot steps 63.79 47.05 39.73  32.08 47.10 41.97
SL steps - - - - 55 39
LALC Pivot steps 81.98 43.34 36.63 31.65 55.95 43.48
SL steps - - - - 63 o1
D2PR Pivot steps 115.20  66.26  45.22  38.73 85.23 63.51
SL steps - - - - 56 42

Table 4.14: Evaluation of the pivot steps, averaged over 10 samples of dimen-
sion m = 4096 and n = 1024 of the DOTMARK class, for all com-
binations of starting heuristics (rows) and pivot rules (columns).
The total number of pivot steps is given in thousands, whereas
the percentage of steps performed by the Shortlist Rules is shown

below.
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4 The Transportation Simplex

4.5.4 Asymptotic symmetric evaluation

Let us analyze the asymptotic behavior of the best TPS combinations com-
pared to CPLX on symmetric problem instances. As explained in Section 2.3.5,
we restrict the DOTMARK evaluations to a maximal resolution of 64x64,
ie. m = n = 4096, for CPLEX and 128128, i.e. m = n = 16384 for the
TPS. Symmetric problems for resolutions 256256 could not be solved on our
test system due to memory limitations, see Section 2.1. Hence, there are only
three problem sizes available for the DOTMARK classes; we will present the
results for the two higher resolutions in the following section. The complexity
analysis will be limited to the artificial classes where more data points can be
generated. Here, we have solved instances of SOLGEN and UNIFORM up to

a dimension of m =n < 1.5 - 10%.

Results for DOTMARK

We begin by presenting the results for the DOTMARK classes in Figures
4.11 and 4.12. While the TPS (MRUR/CSL) was superior in all DOTMARK
classes in our basic evaluation (see Section 4.5.1) for resolution 32x32 and
m = n = 1024, CPLX is faster on 6 out of 10 classes for the increased dimension
m = n = 4096. The variance of the CPLX is again much lower than with TPS,
its average computation time is close to 50 seconds or less. In contrast, the
average cpu time of the TPS varies between 5 and 150 seconds, where LogGRF
was the class with the highest complexity. If the individual dotmark classes
are sorted according to their solution time with the TPS, we obtain the same

results as for the basic evaluations.

These results are consistent with Schrieber et al. (2017) and reiterate the ad-
vantages of using specific start heuristics in the TPS implementation by the
following argument: The exact implementation of CPLX is not publicly avail-
able. However, it is known that there is no special implementation for trans-
portation problems and it can be assumed that the pivot steps are implemented
very efficiently. The latter assumption is supported by the high memory load
(see Section 4.5.4). Thus, the good results of the TPS for m = n = 1024 are
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4.5 Numerical analysis

most likely explained by the benefit of the starting heuristic. This advantage
is outweighed by the efficient implementation of pivot steps as the number of

pivot steps increases.

Lastly, the low memory requirements of the TPS enables us to report the cpu
time for m = n = 16384 in Figure 4.12 — the largest instances solved for
this thesis. The average computation time increased to range from 10 seconds
to 600 seconds. We observe the same order of complexity for the individual

classes; LogGRF is again the most difficult class.

Results for artificial problem classes

For a complexity analysis of our algorithms compared to CPLX, we solved 100
instances of the SOLGEN and UNIFORM class for dimensions m < 6 - 106.
The averaged cpu time is displayed in Table 4.15 and Figure 4.13.

Assuming a relation ¢ = k- m® between the cpu time ¢ and the number of
supplies m, we estimated the following parameter values by linear regression:
In case of SOLGEN, the exponents « were either 2.16 or 2.17 for all TPS
variants, while we obtained o = 2.3 for CPLX. On the UNIFORM class we
observed a larger interval for the TPS exponents ranging from 2.29 to 2.36 —
the best variant being MRUR/CSL. All TPS variants were again able to beat
CPLX which achieved a = 2.56 — see Table 4.16 for a comprehensive display

of the results for both classes.

Largest solved instances and memory requirements For our large-scale
analysis, we restrict our investigations to the SOLGEN instances, since these
could be solved fastest on average. Moreover, we could not solve symmetric
instances with CPLX, where m was significantly larger than 6-10® due to mem-
ory limitations®. Therefore, we only present the cpu time of the MRUR,/CSL!?
for dimension 10> < m < 1.5-10* in Figure 4.14. Thereby, we obtained an
even better regression exponent of a = 2.13 for MRUR/CSL for SOLGEN.

9This is with respect to the hardware specifications given in Section 2.1.
10The results of the other TPS combinations presented in Figure 4.13 were comparable.
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Figure 4.11: A boxplot of the cpu time for the symmetric instances of dimen-
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sion m = n = 4096 of TPS and CPLX on all DOTMARK classes
is shown. It is observed that while the degree of difficulty is rather
constant for CPLX, the average cpu time of TPS is subject to a
higher variance. Moreover, CPLX is now clearly superior to the
TPS in terms of cpu time. The order of the complexity of the
individual classes for TPS is comparable to Figure 4.9 and in ac-
cordance with Schrieber et al. (2017).
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Figure 4.12: A boxplot of the cpu time for the symmetric instances of dimen-
sion m = n = 16384 on all DOTMARK classes is shown. Due
to memory limitations, only TPS cpu time is reported for this
problem dimension. The order of the complexity of the individual

classes is again comparable to Figure 4.11.
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SOLGEN
m / 103 01 05 1 2 3 1 5 6
CPLX 0.0l 0.25 125 594 15.14 30.86 49.80 76.74

MCMR-CMN | 0.01 0.13 048 232 497 987 19.70 27.45
MCMR-CSL || 0.01 0.12 047 236 505 988 19.15 26.67
MRUR-CMN | 0.01 0.10 0.38 1.82 4.07 7.82 15.03 21.04
MRUR-CSL 0.01 0.10 0.39 1.93 4.28 817 15.23 21.01

UNIFORM
m / 103 0.1 0.5 1 2 3 4 5 6
CPLX 0.01 0.28 149 826 24.10 53.61 94.92 158.84

MCMR-CMN | 0.01 0.20 0.76 4.49 10.19 20.97 4543 64.36
MCMR-CSL || 0.01 0.11 0.51 3.18 7.23 13.15 24.47 34.52
MRUR-CMN | 0.01 0.22 086 4.88 11.10 22,59 48.04 67.97
MRUR-CSL 0.01 0.14 061 3.58 821 1490 27.18 38.40

Table 4.15: Given is the averaged cpu time in seconds on 100 symmetric
(i.e. m = n) problem instances of the best TPS combinations
compared to CPLX of the classes SOLGEN (top) and UNIFORM
(bottom). The number of supplies and demands m and n are given
in thousands. A log-log plot is provided in Figure 4.13. The corre-

sponding regression parameters are given in Table 4.16.
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Figure 4.13: Displayed is a log-log plot corresponding to the cpu time of Table
4.15 for the classes SOLGEN (top) and UNIFORM (bottom).
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Empirical Complexity | CPLX MCMR MCMR MRUR MRUR
CMN CSL.  CMN CSL

SOLGEN « 2.30 2.16 2.17 2.16 2.17
k- 106 0.15 0.17 0.15 0.14 0.13

UNIFORM « 2.56 2.36 2.33 2.33 2.29
k- 108 0.03 0.07 0.06 0.10 0.09

Table 4.16: Assuming a relation t = k - m® between the cpu time ¢ in seconds
and the problem size m = n, we depict the parameters k£ and a.
Omitting all values m < 100, these parameters were obtained by a
linear regression on log(t) = a - log(m) + log(k). All p-values were
less than 0.3 - 1075,

With regard to memory requirements, we therefore come to the following find-
ings: As shown before, the largest DOTMARK (and overall) class solved was of
dimension m = 1.6384 - 10* where the most difficult class LogGRF was solved
in 600 seconds on average. In terms of the product!! m - n, this is seven times
larger than the largest instance (m = 6 - 10%) solved by CPLX.

SOLGEN
m / 10° 1 234 5 6 8 10 12 15
MRUR-CSL H 039 2 4 8 15 21 35 58 81 123

Table 4.17: Displayed is the averaged cpu time in seconds of MRUR /CSL on
symmetric (i.e. m = n) problem instances of the SOLGEN class. To
obtain the according values, we solved 100 instances for m < 6-103
and 10 instances for m > 6 - 103. The number of supplies m and

demands n are given in thousands.

1The memory requirement is dominated by the cost matrix C' € R™*™ and is therefore

O(mn), as shown in Section 4.3.
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Figure 4.14: Displayed is a log-log plot for the cpu time of Table 4.17. The
corresponding regression parameters o = 2.13 and k = 1.7 - 1077

were obtained as described in Table 4.16.
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4.6 Conclusion

In summary, we have clearly succeeded in developing an efficient implemen-
tation of the TPS in MATLAB. Regarding the starting heuristics and pivot
rules evaluated in the context of this implementation, the MRUR, MRMR and
MCMR represent a universally good choice and in combination with CMN,
RMN or especially the Shortlist rules provide the best results for the covered
problem classes. In a detailed analysis of various problem classes, the cpu time
of the TPS was competitive to a commercial Network Simplex of CPLEX im-
plemented in C/C+-+. This solver is referred to as CPLX in the context of
this dissertation. Furthermore, these results were achieved with a significantly
lower memory load compared to the commercial software. The largest instances
solved by the TPS were seven times larger than those of CPLX in terms of
the cost matrix. Thus we have created a suitable basis for our investigations

in the following chapter.

In the asymmetric case, we only performed basic tests where the performance
of the TPS was still comparable to CPLX on medium-sized problem instances.
A detailed analysis of the asymmetric case was beyond the scope of this work

and will be left to further research.

On medium-sized symmetric problem instances of dimension m,n ~ 103, our
solver was superior for all problem classes, where the cpu time of CPLX ranged
from 150% to 400% of the time spend by the TPS. The scaling properties of the
algorithm were studied exclusively for the symmetric case. A regression anal-
ysis was performed on the artificial problems: Assuming a relation t = k - m®
between the cpu time ¢ and the symmetric problem size m = n, we obtained
exponents « in the interval [2.13,2.17] for the TPS compared to 2.3 for CPLX
for the SOLGEN class. Similarly, the regression analysis yielded exponents in
the interval [2.29, 2.36] for the TPS and 2.56 for CPLX on the UNIFORM in-
stances. Interestingly, these results undercut the general theoretical complexity
of Section 2.2. Here, the best complexity of a strictly polynomial algorithm was
O(m?logm). The results for artificial problems, however, are in some contrast

to the results for the non-artificial classes. While the TPS was superior on
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medium-sized DOTMARK problems, it was slower than CPLX on 6 out of 10
non-artificial classes for dimension m,n ~ 4-103. On the other hand, the TPS
was able to solve instances of size m,n ~ 1.5-10* while CPLX could only solve

instances where m,n < 6 - 10 due to memory limitations.

While we do not have access to implementation details for CPLX, it can be
assumed that Phase II of the algorithm, i.e. the execution of the pivot steps,
is implemented very efficiently. Accordingly, we conclude that the advantages
in computation time of the TPS are indeed caused by the problem-specific
modifications, that is, the starting heuristics in Phase I and the pivot rule.
These advantages are clearly dependent on the type of transportation problem
and are outweighed by the more efficient implementation of pivot steps in
CPLX as the number of pivot steps grows. Hence, assuming a trade-off between
computing time and memory requirements, the comparison may be even more
in favor of the TPS if the same implementation of the pivot steps is used. A
clear advantage of the commercial solver CPLX is that it has proven to be
much more robust on the DOTMARK instances. One reason for the higher
variance in cpu time of the TPS is certainly that the special pivot rules and
start heuristics of the TPS considerably reduce the computing time on average,
but depend strongly on the special structure of individual instances and are
therefore more prone to outliers. Since CPLX methods for preprocessing and
solving general network flow problems have been developed, it seems reasonable
to assume that they make less use of specific structures in transport problems,

which aligns the total cpu time across different problems.

We further investigated the influence of the starting heuristics by a comparison
for medium-sized problems, which was performed to quantify the benefit of us-
ing specialized starting heuristics instead of a common Phase I of the Network
Simplex. The observed difference between the best and worst start heuristics

was between 25% and 50% of the total computation time.
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4.7 Outlook

We close this chapter by listing open questions for further research: While our
MATLAB-implementation indicates algorithmic advantages of our approach,
these advantages could be better quantified by implementing the algorithm in
a low-level programming language, instead of interfacing CPLEX into MATLAB.
Furthermore, as discussed in minor observation 2, the LALC may constitute
an effective starting heuristic when implemented in a different programming

language.

As briefly mentioned, while the TPS was competitive for symmetric problem
instances, our shot analysis of the asymmetric case was less promising. Whether
this phenomenon is due to the specific implementation of the algorithm or the
inherent structure of the problem remains open. Moreover, with regard to
asymmetric problem instances, our attempt to provide an efficient pivot rule
by the Block Search method has failed.

Additionally, to reduce the scope of this chapter and increase the comparabil-
ity of our results, we refrained from optimizing the parameters of the Shortlist
approach for general problem instances and instead used the configuration
proposed by Schrieber et al. (2017) for transportation problems created for
computational image comparison. A re-optimization of these parameters for
general transportation problems may lead to further improvement of the aver-

age computation time.

Lastly, we would like to point out another solution approach, which we have
investigated in our numerical studies but not included in this doctoral thesis.
Motivated by the work of Shor et al. (1985), we observed promising results of
bundle-methods applied to a non-smooth objective function which is derived

from the following dual reformulation:

max O(\) = min (c,x)y — (N, Bx — b)
st. Ar = a
z > 0.

The inner problem (constrained minimization) can be solved analytically to
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obtain an unconstrained convex minimization problem with piecewise linear
objective function —O(\). Taken into account the recent development of non-
smooth optimization methods with the potential exploitation of parallel com-
putation, this approach could be a valuable alternative for high degrees of
asymmetry, i.e. m > n. In fact, we observed promising results using a basic,

non-optimized implementation of a bundle method in MATLAB.
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Transportation Simplex

In the following chapter we present a new pivot rule for the TPS, which rep-
resents a Column Generation approach to the transportation problem. Our
method builds upon the Shortlist Rule of Gottschlich and Schuhmacher (2014),
see Section 4.3.4, and the TPS implementation presented in Chapter 4. As we
will explain in Section 5.2.1, this method is developed specifically for symmet-
ric problems, since it benefits from the large ratio of the number of variables
versus constraints of these problems. Accordingly, our numerical analysis will
be limited to the symmetric case. Nevertheless, the method is also applicable

in the asymmetric case.

The initial motivation for this approach stems from our numerical studies in
Section 4.5 and was already indicated in major observation 5 of Section 4.5.1.
In summary, the Shortlist pivot rules excelled on the UNIFORM and DOT-
MARK classes and produced comparable results to the other pivot rules on
the SOLGEN instances. Considering the basic symmetric evaluation in Sec-
tion 4.5.1, this observation is easily explained by the percentage of pivot steps
performed on the shortlists. On average these are 100% for the UNIFORM
instances, 54% to 63% for the DOTMARK instances and up to 30% for the
SOLGEN instances, see Tables 4.4, 4.6 and 4.8. If this share is large, the
dimension of the problem is effectively reduced for the majority of the solu-
tion process. As observed in Section 4.5.1, the number of total pivot steps
correspondingly becomes significantly smaller. In the extreme case of the UNI-
FORM class, the total number of pivots is halved, which is clearly reflected in

total cpu time. Thus, while the Shortlist Rule is generally successful, it could
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possibly be improved for DOTMARK and SOLGEN instances.

Clearly, a straightforward approach to achieve this would be to readjust the
parameters of the Shortlist Rule, e.g. increase the length lg; of the shortlists.
However, this would limit the transferability of our results to further problem
classes, as these parameters depend on the problem instances studied. Instead,
we strive for a method that dynamically adapts to given problem instances. In
addition, using the same parameters ensures the comparability to the results
of Gottschlich and Schuhmacher (2014) and Schrieber et al. (2017).

Therefore, we want to investigate an approach that is less dependent on the
parameters of the original Shortlist Rule and, even more importantly, ensures
that the performance on the UNTFORM class is at least as good as that of
the original version. With DOTMARK and especially SOLGEN instances, a
large portion of the pivot steps have to be executed on the full set of variables
before the optimal solution is reached. This implies that optimal solutions of
these instances tend to contain variables with comparably high costs, which
are accordingly excluded from the shortlists. To improve the performance of
the Shortlist Rule for such problems while maintaining the excellent results for
the UNIFORM instances, we propose dynamic extension of the shortlists. As
we will see in Section 5.2.1, this approach represents a very natural extension
of the implementation of the TPS proposed in Section 4.3. To the best of
our knowledge, it has not yet been applied to the transportation problem and

evaluated numerically.

5.1 Enhancement of the Shortlist Rule

In the following we describe an enhancement of the Shortlist Rule presented in
Section 4.3.4. As for the original method, we only give the detailed description
for the row variant without loss of generality. We begin by introducing an
extension procedure for shortlists in Section 5.1.1 and state the new pivot
rules in Section 5.1.2. Before we proceed, some nomenclature and notation:
Hereinafter the term Shortlist Rules includes the RSL and CSL as well as all
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possible extensions of these rules or, in other words, any method that operates
on a shortlist before it ultimately invokes a pivot rule on the full set of variables.
If we want to refer explicitly to the RSL and CSL, we use the term original
Shortlist Rules. Moreover, as the length of the shortlists will not be constant
anymore, we hereinafter denote the current length of the shortlist L; C J,

corresponding to the i-th row of C, by [; < n.

The basic idea of the approach is to (repeatedly) increase the size [; of the
shortlists whenever an optimal solution for the shortlists has been obtained.
Furthermore, before such an extension is executed, we verify whether the cur-
rent solution is optimal on the full set of variables. This implies in particular
that in the event that an optimal solution is already included in the initial
shortlists, the enhanced approach is equivalent to the RSL and therefore main-

tains the excellent performance of this rule for such problems.

Furthermore, we need criteria for the selection of the elements to be added.
Clearly, a straightforward approach is to select further variables with low costs.
However, in terms of costs, the best variables are already included in the initial
selection of the shortlists. Therefore, we propose to further select variables
based on the feasibility of the current dual multipliers, i.e. the reduced costs.
In this way, variables can be added that have high costs but still assume

positive values in an optimal solution.

5.1.1 Extension procedure

All methods have in common that first the original Shortlist Rule is executed,
i.e. an optimal solution is determined on the shortlists of initial lengths [; =
lsr, for all i. As we describe the extension procedures in detail, we assume
that such a primal-dual optimal solution (z,u,v) was determined for a given
transportation problem (C, a, b). The extension procedure is then divided into

three successive steps:

Optimality check: Initially, the complete reduced cost matrix C*¥ with re-

spect to the optimal dual solution is computed. In the event that no candidates
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with negative reduced costs are found, i.e. C*¥ > 0, the solution is also opti-
mal for the full set of variables and the TPS stops. In the contrary case, the
candidate (i, j.) with the most negative reduced costs, i.e.
(ic, je) = argmin ¢jy’,
(i,§)€IxJ
is selected as the entering variable and j. is added to the corresponding shortlist
L;,. As mentioned above, this ensures the equivalence to RSL, in case an
optimal solution was already included in the initial shortlists L;. Furthermore,
this approach provides an entry variable with maximum negative reduced costs

in the contrary case.

In the non-optimal case, the shortlists are further extended by means of the

following two procedures:

Extension procedure 1: For the first procedure, we naturally extend the
methodology of the Shortlist pivot rule: For each shortlist L;, we add the Ac
elements 7 € J with the lowest corresponding costs in the row ¢ of C' which
are not yet included in the shortlist. More precisely, for all ¢ € I, assume o; to
be a bijective mapping
o {l,...,n} = J
kg
such that it holds c¢;jo,(1) < Cigy2) < -+ < Cigy(n) Where, if necessary, ties are

split arbitrarily. Then, for all i € I, we add the first Ac elements in

(0;1(1), . ,Ji_l(n))

which are not yet contained in L;. In the case that less than Ac elements are
eligible, we add the maximum possible number. However, for our choice of

parameters, see Section 5.3, this was only the case for small n < 200.

Extension procedure 2: To complement the selection of variables with low
cost, we introduce a method based on the reduced costs. Here, we proceed as
follows: For each ¢ € I, we consider the elements of the i-th row of the reduced

cost matrix C" in the order of the bijective mapping o; introduced above and
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add the first Auv negative elements. Accordingly, we successively compute the

elements of the vector
uv uv
(Ciai(1)7 e ’Ciai(n))

until either Auv elements c%’i(k) = Cigy(k) — Wi+ Vo, (k) < 0,k € J, were found or
the vector was completely generated. In the event that less than Auwv negative
elements were found, we add the maximum possible number. Hereby, observe
that for all i € I, (u,v) is feasible with respect to all j € L; and, hence, it
holds ¢ > 0 for these elements. Consequently, Cimiry < 0 implies o;(k) ¢ L;,

which ensures that elements are not added to the shortlists more than once.

A clear advantage of this method is that it uses the information (in the form
of dual variables) obtained in the initial solution process and is not exclusively
based on low cost. The hope is to integrate variables into the shortlists that
have comparatively high costs but are still included in optimal solutions and

thereby complement the initial composition of the shortlists.

Finally, we would like to point out that we have investigated two variants of
this procedure. First, we considered the elements in the natural order, i.e. for
a given row ¢, we successively computed the elements of the i-th row of C*".
Second, we tried sorting this row in ascending order, i.e. adding the elements
with the most negative reduced costs. However, somewhat surprisingly, the

first approach provided the better numerical results.

5.1.2 Enhanced Shortlist Rules

By virtue of the previous explanations, we finally state the new pivot rules. As

before, we restrict the detailed description to the row variant of the rule:

Enhanced Row Shortlist Rule (ERSL) Until an initial solution on the

shortlists has been found, the rule is equivalent to the RSL. In particular,
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it uses the same parameter configuration, i.e.

l min{15,n} for n < 200,
SL =

15+ |15 - logy(n/200)|  for n > 200,
kSL = lSL7
bsrL = 5%7

and initially [; := lgy, for all ¢ € I. In addition, the parameter egy, is introduced,
which specifies the maximum number of extensions to the shortlists, as well
as the parameters Ac and Awuwv, which limit the number of elements that are

added per shortlist in one extension.

Whenever an optimal solution (z, u, v) was computed for the shortlists, and less
than eg; extensions have been performed, the extension procedure described
in Section 5.1.1 is applied. In the opposite case, the rule is stopped and —
analogous to the original Shortlist Rules — a second pivot rule is invoked over

the full set of variables to ultimately solve the problem.

Lastly, observe that the Shortlist Rules and in particular the Enhanced Short-
list Rules do not significantly increase the memory utilization of the TPS.
Although additional storage space is required for the corresponding lists, this
is at most the order of magnitude of the cost matrix (which dominates the

memory load) and on average significantly smaller.

Enhanced Column Shortlist Rule (ECSL) As in the case of the pivot rules
of Section 4.3.4, we have also implemented the corresponding column variant
of the Enhanced Shortlist Rule.

5.2 Column Generation

In the following section, we illustrate that the TPS implemented with the
Shortlist Rules (in particular the ERSL or ECSL) uses concepts similar to Col-
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umn Generation. To this end, we briefly discuss a generic Column Generation

approach and then illustrate the adaptation to the transportation problem.

5.2.1 Generic Column Generation for linear programs in

standard form

Consider a generic Column Generation method, as described in more detail
in Section 6.2. Naturally, this approach can be equivalently applied to linear

programs in standard form, i.e. a primal problem

v(K) = xg}{l\%l chxk
keK
S.t. demk = b (PK)
keK

z, > 0 Vke K
with b € R? and dj, € R? for all £ € K and the corresponding dual problem

K)= T
v(K)= max by

st. (dp,y) < o VkeK (Dk)
y < 0.

For the readers convenience, we summarize the Column Generation approach
for the standard form in the following: To avoid solving (Px) for the com-
plete set K, one solves restricted problems (Pg,) for a finite sequence of
subsets Ko € K; € ... € K C K. For these restricted problems one ap-
plies an LP solver providing a primal-dual optimal pair such that the primal
and dual solution satisfy complementary slackness conditions (1.4). The most
common variant is the Simplex. For each computed optimal solution of a re-
stricted problem (Pk,), one either verifies that it is already optimal for (Pg)
or adds additional variables to K; to get K;,; and proceeds with the next
restricted problem(Py,,,). More precisely, assuming xj is an optimal solu-
tion of (Pk,) and Yk, the corresponding optimal dual solution, one computes
hi == (g, ¥i,) — ¢ for all kin K. If h = (hy,... hg) " <0, yj, is feasible

for (Dg) which implies that xj, and yJ, are optimal for (Px) and (Dy), see
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5.2 Column Generation

Section 1.3. In the other case, all £ with hy > 0 qualify as entering indices
for K1 and (xj,,¥%,) is used as a starting point for the problem (P, ).

Observe that it necessary to choose Ky such that (Pk,) is feasible.

5.2.2 Application to the Transportation Simplex

Generally, the Column Generation approach is applied when the number of
variables |K| is much larger than the number of constraints p, e.g. |K| is
exponential in p. In case of the transportation problem, we have p = m +n
and |K| = m-n, i.e. |K|= (p/2)? for m = n. For asymmetric problems the ratio
between variables and constraints becomes even smaller up to the point where
p > | K| for extreme degrees of asymmetry. This led us to propose our approach
solely for the symmetric case and make one adjustment in comparison to the
generic Column Generation. Instead of computing a single entering variable
via a subproblem in each iteration, we explicitly consider all dual constraints
and allow |K;. 1\ K;| > 1. Hence, compared to the generic method, we perform

few! but expensive extensions which add multiple variables per iteration.

Including this adjustment, the TPS follows exactly the approach described
above when the set of potential entering variables in the pivot rule is restricted.
Adding an index k to the restricted problem generally requires the generation
of the corresponding column dj, which means that the column is added to the
representation of the constraint matrix used by the LP solver. As discussed in
Section 4.3, the TPS uses the inherent graph structure of the transportation
problem to perform efficient pivot steps. Thus, the constraint matrix is never
explicitly generated, but the columns are handled as edges in a graph. The
only stored information besides costs, supplies and demands is which edges,
i.e. index tuples?, are in the current basis and new edges are introduced via

the pivot rule. Thus, if the selection of the pivot rule is limited to a subset of

'Tn the extreme case, only one extension.
?Recall that the indices of the variables z;; in the transportation problem are given by

tuples (4, j) which also define edges in the transportation graph Gy, see Section 1.4.
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5 Column Generation in the Transportation Simplex

index tuples, the problem is solved? for the corresponding subset of variables®.

This approach is realized in the Shortlist Rules by restricting the solution
process to the shortlists. In the extreme case of the original Shortlist Rules,
a two-step Column Generation is performed, in which the initial quantity K
defined by the shortlists is directly extended to K = I x J after an optimal
solution on the shortlists has been found. For the Enhanced Shortlist Rules we
perform eg;, + 1 Column Generation steps where the sets K;, [ = 0,...,esr,

are gradually increased by means of the extension procedure of Section 5.1.1.

5.3 Numerical analysis

To evaluate the performance of the Enhanced Shortlist Rules we solved a
series of test problems. As explained in Sections 4.5.3 and 5.2.1, we limit our
investigation to symmetric problems, i.e. m = n and the column variant ECSL.
Furthermore, since the MRUR was the best heuristic for the incorporated

problem classes, we only evaluate the performance of MRUR /ECSL.

The enhanced rules are equivalent to the original Shortlist Rules for the UNI-
FORM instances, since an optimal solution is already included in the initial
shortlists (cf. major observation 5 in Section 4.5.1) and no extension of the lists
is necessary. Therefore, we only evaluated SOLGEN and DOTMARK instances
and refer to the results of Section 4.5 for the UNIFORM class.

Our analysis is again divided into two parts. First, we examine a larger pa-
rameter set for problems of the dimension m = 322 = 1024. Then, based on
the results of this first experiment, we limit the possible parameter configura-
tions when we investigate larger problems of dimension m = 64% = 4096 and
m = 1282 = 16384°.

3We assume that the subset of variables defines a feasible problem.
4We assume that the index tuples of the initial basis computed in Phase I are included in

this subset. Otherwise we consider without loss of generality the union of these sets.
5The selection of problem dimensions is based on the available DOTMARK problems.
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5.3 Numerical analysis

5.3.1 Basic analysis

In our first experiment we solve 1000 instances of the SOLGEN class as well as
all 450 instances of DOTMARK for m = 1024, i.e. resolution 32x32 in case of
the DOTMARK problems. We tested the following parameter configurations:

Ac € {O,ZSTL,ZSL},
Auwv € {0, ZSTL,ZSL},
es; € {1,2,3}

The results are presented in Tables 5.1, 5.2, 5.3, and 5.4. In order to evaluate
the enhanced rule, the upper left corner of each tables represents the results of

the original Shortlist Rule presented in the prior chapter, see Section 4.3.4.s

The enhanced rules perform well on the DOTMARK instances, where it
improves the average computation time of the hitherto best combination
MRUR/CSL by more than 11%. This was achieved by the parameter configu-
ration Ac = 0, Auv = lg;, and eg;, = 1. Both extension procedures succeeded
in decreasing the total number of pivot steps by increasing the percentage of
pivot steps on the shortlists. However, setting Ac > 0 had only a small influ-
ence on the total number of pivots, so that this advantage was nullified by the
cpu time required for the extensions. On the other hand, increasing the param-
eter Auv let to significantly smaller total cpu time on DOTMARK instances,
see Tables 5.1, 5.2 and 5.3. In order to be able to make a more detailed state-
ment about the performance on the individual DOTMARK classes, we further
add Table 5.4. Here it can be observed that the extended approach reduces
the cpu time for all classes except WhiteNoise and GRFrough and achieves

comparable results on these two classes.

As mentioned before, executing the extensions introduces a small computa-
tional overhead to the approach. This overhead also explains the fact that the
best cpu time is achieved for Ac = 0 and Auv = 1, although the combination

Ac =1 and Auv = 1 achieves the smallest number of pivot steps.

In contrast, the enhanced rules failed to decrease the cpu time of the
MRUR/CSL on the SOLGEN instances. The reason for this can be observed in

147



5 Column Generation in the Transportation Simplex

Table 5.2, where we documented the pivot steps. In particular, increasing Auv
resulted in a significantly larger share of shortlists pivots as well as a significant
reduction of the total pivots on the DOTMARK instances. In comparison, the
increase of Ac and Awuwv only slightly raised the percentage of pivots on the
shortlists and even increased the total number of pivots for the SOLGEN class.
This implies that even with our extension methods, we fail to include critical
variables. As a result, optimization on the shortlists progresses even slower
toward the optimal solution than the pivot rule on the entire set of variables.
Lastly, observe that an investigation of eg; > 3 did not produce better results
for both problem classes, as is already indicated by the fact that the cpu time
for eg, = 1 is the best in all cases. Likewise, our numerical investigations have
shown that the results can not be improved by setting Ac and Auwv greater

than lSL-

5.3.2 Large problems

Since the results of the ECSL on larger SOLGEN problems were identical to
the first experiment, i.e. delivered inferior results with regard to cpu time, we
exclude this class from further analysis. Furthermore, based on the results of
the first experiment, we fix the number of extension steps to eg;, = 1, that is,

we restrict the parameter configurations to

Ac € {O,ZSTL,ZSL},
Auv € {0, ZSTL,ZSLL
€sp, = 17

for m = 4096. We present the results over all 450 DOTMARK instances in
Tables 5.5 and 5.6. It is observed that the extended approach is even more
effective for this larger dimension; it beats the original Shortlist Rule on all
subclasses and reduces the average computation time by 50%. Moreover, it

closes the gap to CPLX as can be observed in Figure 5.1.

Finally, to reduce the computational burden, we fix Ac = 0 and eg;, = 1, for
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esr, =1
esp = 2
€sr, — 3
Table 5.1:

5.3 Numerical analysis

SOLGEN DOTMARK
Ac\Auv 0 05 1 Ac\Auv 0 05 1
01]0.43 0.47 0.47 01097 0.87 0.86
0.5] 045 047 048 0.5|1.01 088 0.87
1] 045 048 048 1]11.01 090 0.89
Ac\Auv 0 05 1 Ac\Auv 0 05 1
01]0.43 0.51 0.53 01097 0.89 0.89
0.5 047 0.52 0.54 0.5 (106 093 0.93
1] 049 0.53 0.55 1]1.08 097 097
Ac\Auv 0 05 1 Ac\Auv 0 05 1
01]0.43 0.57 0.59 01097 0.92 0.92
0.5 051 0.59 0.61 05113 098 0.97
10| 0.53 0.61 0.63 1118 1.03 1.01
Average cpu time (seconds) for dimension m = 1024 of

MRUR/ECSL on 1000 symmetric SOLGEN instances (left) and all
450 symmetric DOTMARK instances (right). Each row of tables
represents one value of eg;, € {1,2,3}. Regarding the small tables,
the values of Ac (rows) and Auv (columns) are given as multiples
of lsr. Accordingly, the upper left cell of each table represents the
result, when no extension is executed, i.e. the result of the origi-
nal MRUR/CSL which was investigated in the prior Chapter, see
Section 4.3.4. While the enhanced approach fails for the SOLGEN
instances, we observe that they are superior to the original Short-
list Rules on the DOTMARK instances, when the extension method
based on the dual variables, i.e. Auv > 0 is used. In contrast, the

total cpu time increases if we set a Ac > 0.
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5 Column Generation in the Transportation Simplex

SOLGEN
Ac\Auw 0 0.5 1
1 0 5.09 34% 5.20 49% 5.22 56%
(& fr—
st 0.5 511 38% 5.20 52% 5.23 58%
1 512 42%  5.20 54% 5.22 60%
Ac\Auv 0 0.5 1
5 0 5.09 34% 5.32 63% 5.34 T4%
e g
St 0.5 | 512 42% 5.31 68% 5.35 77%
1 5.16 48% 5.30 72% 5.34 80%
Ac\Auw 0 0.5 1
3 0 5.09 33% 5.41 73% 5.45 8%
e =
st 0.5 5.14 44% 5.43 79% 5.45 89%
1 5.18 52% 5.39 83% 5.41 91%

Table 5.2: We present the pivot steps corresponding to the cpu time in Table
5.1 for the SOLGEN class. In each cell, the total number of pivots
steps is given in thousands together with the percentage of pivot
steps performed on the shortlists. While all extension procedures
succeed in increasing the percentage of pivot steps on the shortlists,
the number of overall pivots is also slightly higher for all parameter

configurations. Thus, the extension approach failed for the SOLGEN

stances.
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5.3 Numerical analysis

DOTMARK
Ac\Auv 0 0.5 1
) 0 14.24 54% 10.66 83% 10.21 86%
e =
st 0.5 | 1355 66% 10.39 87%  9.90 90%
1 12.79 73% 10.15 90%  9.70 92%
Ac\Auv 0 0.5 1
, 0 1424 54%  9.97 96% 9.73 98%
6 =
St 05 | 13.16 74% 9.84 97% 9.59 99%
1 12.12 84%  9.71 98% 9.47 99%
Ac\Auv 0 0.5 1
; 0 14.24 54% 9.94 99% 9.75 100%
6 =
st 0.5 |12.93 80% 9.82 99% 9.60 100%
1 11.81 90% 9.69 100% 9.48 100%

Table 5.3: We present the pivot steps corresponding to the cpu time in Ta-

ble 5.1 for the DOTMARK class. In each cell, the total number of
pivots steps is given in thousands together with the percentage of
pivot steps performed on the shortlists. All extension procedures
succeed in increasing the percentage of pivot steps on the shortlists
and decrease the total number of pivot steps. However, increasing
the parameter Ac has only a mild effect on the total number of
pivot steps. Thereby, the advantage gained by reducing the pivot
steps is outweighed by the overhead in cpu time for executing the
extensions. In contrast for Auv > 0, the percentage of pivot steps
on the shortlists increases enough to significantly reduce the total

number of pivot steps and thereby speed up the method.
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5 Column Generation in the Transportation Simplex

Auw 0 0.5 1
WhiteNoise 0.55 0.56 0.56
GRFrough 0.58 0.59 0.59
GRFmoderate 0.91 0.85 0.86
GRFsmooth 1.28 1.11 1.12
LogGRF 1.67 1.45 1.40
LogitGRF 1.32 1.12 1.10
CauchyDensity 1.37 1.22 1.19
Shapes 0.43 0.36 0.32
ClassicImages 0.85 0.81 0.81
Microscopylmages | 0.89 0.71 0.70

Table 5.4: We differentiate the cpu time of Table 5.1 for the DOTMARK
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classes and m = 1024: The parameter Auv is given analogously to
the tables above as a multiple of lg;, while Ac =0 and eg;, = 1 are
fixed, that is, the first column represents the results of MRUR /CSL.
It is observed that the enhanced approach of the Shortlist Rule
MRUR/ECSL reduces the computation for all but the first two
classes, where it still provides comparable results to the original
approach MRUR /CSL.



5.3 Numerical analysis

Ac\Auv 0 0.5 1
0| 70.40 39.90 35.23

0.5 |67.22 40.37 35.80
1]64.13 41.44 37.08

cpu time

Ac\Auv 0 0.5 1
0 | 210.00 35% 100.47 86% 85.73 94%
0.5 | 183.81 53% 96.37 89%  83.41 96%
1116451 62% 93.89 91% 82.16 96%

pivot steps

Table 5.5: Average cpu time in seconds (top) and pivot steps (bottom) of
MRUR/ECSL on all 450 symmetric DOTMARK instances of di-
mension m = 4096. The parameters Ac and Awuv are chosen as in
the previous tables, while eg;, = 1 is fixed. Again, the upper left
cell of each table represents the results of MRUR/CSL. For this di-
mension, the ECSL is even more efficient than for m = 1024, see
Table 5.1. We observe that the cpu time of the original Shortlist
Rules can be approximately halved when the enhanced approach
is applied. Analogously, we observe that the extension introduces a
computational overhead, which is why Ac =1 and Auv =1 led to
the smallest number of pivots but a slightly higher cpu time than
Ac =0 and Auv = 1.
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Auw 0 0.5 1
WhiteNoise 15.28 15.22  15.17
GRFrough 17.38 1717 17.18
GRFmoderate 71.69 4487 43.41
GRFsmooth 120.42  80.69  70.77
LogGRF 160.96 119.86 104.84
LogitGRF 109.43  70.99  61.50
CauchyDensity 100.71 72,93  65.82
Shapes 34.77 277714 25.00
ClassicImages 63.89  43.36  39.90
Microscopylmages | 11.31 8.36 7.87

Table 5.6: Depicted is the cpu time of Table 5.5 for the individual DOTMARK
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classes when m = 4096: As before, the parameter Auwv is given as a
multiple of lg;, while Ac = 0 and eg;, = 1 are fixed, that is, the first
column represents the results of MRUR/CSL. Here, the enhanced
approach of the Shortlist Rule (MRUR/ECSL) reduces the cpu time

of all classes.
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cpu time for DOTMARK instances of dimension m = 4096. Here,
we observe that the ECSL clearly improves the CSL approach.
While the TPS is slower than CPLX on 6 out of 10 classes when
the original shortlist approach is used, this number reduces to 3 out
of 10 when the results on class LogitGRF are considered a draw.
This leaves the three classes GRFsmooth, LogGRF and Cauchy-
Density, where the enhanced approach is still slower than CPLX
regarding the total cpu time. This difference in the average cpu
time, however, is caused by only a few instances where the TPS
takes really long. These outliers also account for the large variance
in cpu time. Accordingly, the enhanced approach is faster than

CPLX on most of the instances in these three classes as well.
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5 Column Generation in the Transportation Simplex

our largest problem dimension m = 16384:

Ac = 0,
Auwv € {0, l%,lSL},
€sr, — 1.

We present the results in Tables 5.7 and 5.8 as well as Figure 5.2. Here, CPLX is
excluded from our investigation due to memory limitations. Again, we observe
that the ESCL approach clearly improves upon the Shortlist Rule. Further-
more, the results indicate that the cpu time could be improved even further

by setting Auv > lgy, or eg, > 1.

Auv 0 0.5 1

cpu time
2586 2038 1855

Auv 0 0.5 1

pivot steps
4196 22% 2981 39% 2581 44%

Table 5.7: Average cpu time in seconds (top) and pivot steps (bottom) of
MRUR/ECSL on all 450 symmetric DOTMARK instances of di-
mension m = 16384. The parameters Ac and eg;, = 1 are fixed. Note
that the left cell of each table represents the results of MRUR /CSL.
Again, the ECSL clearly improves upon the original Shortlist Rule,
although the effect is not as large as for m = 4096. The reason for
this can be observed in the percentages of pivot steps performed on
the shortlists which is 44% at the most. This is a clear indicator,

that either Auv or egy, should be increased for higher dimensions.

5.4 Conclusion and outlook

Using the inherent graph operations of the algorithm, we profitably introduced
concepts from Column Generation to the Transportation Simplex. While our
approach, based on the Shortlist Rule of Gottschlich and Schuhmacher (2014),

156
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Auw 0 05 1
WhiteNoise 224 229 230
GRFrough 636 443 444
GRFmoderate 2665 1768 1605
GRFsmooth 4563 3572 3112
LogGRF 5362 4743 4411
LogitGRF 4186 3302 2983
CauchyDensity 3119 2553 2352
Shapes 1716 1453 1350
ClassicImages 2511 1603 1436
Microscopylmages | 883 719 633

Table 5.8: Depicted is the cpu time of Table 5.7 for the individual DOTMARK
classes when m = 16384: As before, the parameter Auw is given as a
multiple of lg;, while Ac = 0 and eg;, = 1 are fixed, that is, the first
column represents the results of MRUR/CSL. As for m = 4096, the
enhanced approach of the Shortlist Rule (MRUR/ECSL) reduces

the cpu time of all classes.
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Figure 5.2: Finally, we show a comparison of MRUR/CSL and MRUR /ECSL
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cpu time for DOTMARK instances of dimension m = 16384. CPLX
is excluded, since it could not solve problems of this dimension due
to memory reasons. Again, we observe that the ECSL clearly im-
proves the CSL approach. In comparison to Figure 5.1, we observe

less variance and fewer outliers.



5.4 Conclusion and outlook

failed to improve the cpu time on artificial problem instances, we observed
promising results on DOTMARK, a class of transportation problems that is
solved regularly in applications, see e.g. Gottschlich and Schuhmacher (2014)
and Schrieber et al. (2017). Here, we reduced the average cpu time by 10%
to 50% for the symmetric problem sizes m = n = 1024, m = n = 4096 and
m = n = 16384. Thereby, the algorithm compares favorably to a commercial
Network Simplex of CPLEX (CPLX). While both algorithms provide compa-
rable results with regard to cpu time, the TPS achieves these results with

significantly less memory load, see Section 4.5.4.

There are various possible approaches for further improvements: In terms of
SOLGEN, we clearly failed to include enough relevant variables into the short-
lists to make our method efficient. This is somewhat surprising, since the SOL-
GEN instances are generally easy to solve, see. e.g. Section 4.5 and Schwinn
and Werner (2018). While it is reasonable to assume that the variance in the
costs of the variables in the corresponding optimal solutions is higher than, for
example, with the UNIFORM instances, a mathematically rigorous explana-

tion of this fact remains an open question.

Another interesting point for further research is the high variance of the Col-
umn Generation approach and the TPS in general on the DOTMARK in-
stances. Initial assumptions towards possible explanations have been made,
but a thorough analysis remains to be done. In particular, it would be inter-
esting to investigate which instances produce outliers and whether this can be

traced back to certain structures in the corresponding transportation problems.

Another approach that should be pursued in the future is the selection of
shortlists on the basis of minimum reduced costs instead of minimum actual
costs. Especially if one takes into account the good performance of the MRUR
heuristic, which implements a similar strategy, on SOLGEN instances, see
Sections 3.1 and 4.5.

Apart from these considerations, we have observed shorter cpu time for the
SOLGEN instances when the internal pivot rule of the Shortlist Rule was
replaced by RMN or CMN, which indicates that altering the selection process
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within the Shortlist iterations may be beneficial.

Finally, to reduce the scope of our analysis we refrained from changing the
parameter configuration of the original Shortlist Rule. As these were opti-
mized for a fixed length lg; of the shortlists, and specific problem classes of
the transportation problem, this may yield further improvement. Regarding
the parameters of the enhanced approach, other configurations (e.g. esy, > 1,
Ac > 0, Auv > lg) could perform better on very large problems, when the
overhead of the extensions is canceled out by the reduction of pivot steps. This

is indicated in particular by the results in Table 5.7.
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6 Membership testing on the
Bernoulli polytope

In the final chapter of this thesis, we apply the Column Generation approach
to a problem originating in multivariate statistics. The resulting algorithm was
developed within the scope of Krause et al. (2018); accordingly, the following
results are based on this work and in particular Sections 6.2, 6.3.1, 6.3.2,
6.3.6, 6.3.7 and 6.5 are taken from Krause et al. (2018), with minor changes.
Furthermore, we adopt the numerical results in Section 6.4 with some changes

in the text and structure of the presentation in Section 6.4.2.

The corresponding research question is as follows: For a given matrix B € R4*¢
decide (numerically) whether it is a Bernoulli matriz which — as shown in
Proposition 6.1.1 — is equivalent to testing if B is a member of the Bernoulli
polytope. The interest in this problem extends across several communities rang-
ing from probability and operations research to applications in various disci-
plines; see Krause et al. (2018) for a detailed review of the corresponding
publications. In short, the motivation for this work is probably best illustrated
by two statements made in the context of probabilistic investigations. The first
is found in Embrechts et al. (2016) which end with the statement:

“Concerning future research, an interesting open question is how one can (the-
oretically or numerically) determine whether a given arbitrary nonnegative,
square matriz s a tail-dependence or Bernoulli-compatible matriz. To the best

of our knowledge there are no corresponding algorithms available.”

Furthermore, with regard to the exponential increase of the parameters in d,
it is mentioned in Qaqish (2003) that
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6 Membership testing on the Bernoulli polytope

“However, specifying or computing p becomes impractical for n greater than
about 15.71

These two statements are theoretically supported by results that originate
in the field of operations research where the Bernoulli polytope is known
as the correlation polytope. In this community, the polytope was introduced
by Pitowsky (1991) who also proved that the membership problem is NP-
complete. Moreover, Krause et al. (2018) consider an observation that can
be traced back to Deza and Laurent (1997) implying that any polynomial
algorithm for the membership problem on the Bernoulli polytope would in-
duce a polynomial algorithm for the binary quadratic problem (BQP) which is
known to be NP-hard, see, e.g., Padberg (1989). Hence, it cannot be expected
that there is any method that solves the problem for large d (i.e. d > 40, cf.
Kochenberger et al. (2014)) in reasonable time on a standard personal com-
puter. However, exploiting the connection to binary quadratic programming in
the reverse direction, we aim to develop a method that solves at least medium
sized instances (i.e. 20 < d < 40) within a few minutes of cpu time. More
precisely, both in order to reduce the memory requirement and cpu time for
d > 20, we propose a Column Generation approach where BQPs are solved as

subproblems to introduce new variables to the problem.

The rest of this chapter is structured as follows: In the first section, we intro-
duce the problem mathematically and provide an equivalent formulation as a
membership problem on the Bernoulli polytope. Furthermore, this problem, in
turn, yields a straightforward reformulation as a linear program which consti-
tutes the central problem of this chapter. To solve this LP, we review a generic
Column Generation method in Section 6.2, which is then customized to our
application in Section 6.3. This includes a proof that the inherent subproblem
can be solved as a BQP as well as the introduction of a novel dual bound
for Column Generation. Moreover, we exploit specific necessary and sufficient
conditions for Bernoulli matrices in order to compute a suitable Slater point
and include additional stopping criteria in our algorithm. Finally, we illustrate

our method in Section 6.3.7 before we conclude with the numerical results.

LOur parameter d corresponds to the parameter n in Qagish (2003).
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6.1 Problem formulation
6.1 Problem formulation

More precisely, we consider the following research question: For a given sym-
metric matrix B € R%? decide if there exists a d-dimensional random vec-
tor X on some probability space (€2, .A,P) such that each component Xj,
1 =1,...,d is Bernoulli-distributed and such that

B =Ep[XX"]. (B)

In this case, B is called Bernoulli-compatible (or Bernoulli matriz in short),

otherwise B is called Bernoulli-incompatible.

Following the ideas of Theorem 2.2 in Embrechts et al. (2016), or Fiebig et al.
(2017), this problem can naturally be reformulated as a membership problem,

since it clearly holds

Ep[XX']= )  PX=p|pp'

pE{O,l}d
on each probability space (2, A, P).
Proposition 6.1.1

A matriz B € R¥™? is Bernoulli-compatible if and only if B € B, where By
denotes the Bernoulli polytope

By := conv ({ppT |p € {0, 1}d}) )

6.1.1 Preparatory definitions

With regard to the formulation of the optimization problem in the next section,
let us introduce some additional preparatory definitions. We denote by p(7)
the natural bijection between all integers from 0 to 2¢ — 1 and all {0, 1}-vectors

of dimension d, i.e.

p:{0,...,2¢ -1} = {0,1}%,
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6 Membership testing on the Bernoulli polytope

defined as the inverse of the function
i: {0,1}¢ > {0,...,2¢—1}

d

p o= >pi 27,
7j=1

mapping {0, 1}-vectors bijectively onto the integers {0, ...,2%—1}, see Section

6.3.7 for an illustration.

Furthermore, we denote the rank-one matrices which are defined by the dyadic
product of these vectors by B, := p(i)p(i) " for all i in {0,...,2%—1} to obtain

an (ordered) representation of the vertices of the Bernoulli polytope.

6.1.2 Membership testing by linear programming

By virtue of the aforementioned definitions, it immediately follows from Propo-
sition 6.1.1 that testing B € B, is equivalent to solving the following optimiza-

tion problem:

2d_1
vp(B) == min ||| Y a;B; - B[« (6.1)
aEA2d =0
where [||A]||c denotes the matrix max-norm of the matrix A, A,, == {\ €

R7 |AT1™ = 1} and as in the previous chapters 1™ := (1,...,1)". This ap-
proach follows the main idea of Lee (1993) and can also be found in Embrechts
et al. (2016); the intention is to find the convex combination of the vertices B;
of the Bernoulli polytope which is as close as possible to the given matrix B

in matrix max-norm.

Moreover, problem (6.1) can easily be reformulated as a linear program:

a€A,yq
a€eR
201
st. B< Y aBi+aFE (PB)
i=0
291
Z CLZ‘Bz‘ —aF < B,
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6.1 Problem formulation

where £/ = ld(ld)T. As part of our numerical approach, we also consider the
dual problem to (PB):

vd(B) == Jmax (B,Z-Y)+ ~

Y,Z>0 (DB)

v €R
st. (B, Z—-Y)+v<0 i=0,...,29-1
(E,Z+Y)=1

where S; denotes the Hilbert space of all real symmetric d x d matrices
with scalar product (G, H) := trace(G"H) and its corresponding Frobenius
norm. The interpretation of the dual problem is as follows: Whenever we have
vp(B) = vd(B) > 0, the optimal solution of the dual program (DB) represents
a hyperplane, in the form of a matrix G = Z — Y, separating the matrix B
from the Bernoulli polytope. In the case that vp(B) = vd(B) = 0 no such

hyperplane exists. More precisely, the following theorem holds:

Theorem 6.1.2 (Membership testing by linear programming)
The following statements hold for any matriz B € Sq with B € [0, 1]7*%:

1. Problems (PB) and (DB) are both feasible and it holds 0 < vd(B) <
vp(B) < 0.5.

2. Problems (PB) and (DB) possess a primal optimal solution (a*,a*) and
a dual optimal solution (Y*, Z*,~*), respectively, and strong duality holds
for (PB) and (DB), i.e. vp(B) = ||| 3" ai Bi— Bll|o« = (B, 2= Y")+
v* = vd(B).

3. Be By < vp(B) =0 <= vd(B) =0.

4. vd(B) >0 <= the dual optimal solution G* = Z*—Y™* strictly separates
B from the Bernoulli polytope.

Proof. See Krause et al. (2018). O

Observe that the two conditions B € S; and B € [0, 1]%*¢ are obviously neces-

sary for any matrix B to be Bernoulli-compatible, cf. Proposition 6.3.2, hence,
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6 Membership testing on the Bernoulli polytope

we can restrict ourselves to such matrices in the above theorem.

Remark 6.1.3 (Early termination criterion for (DB))

An important implication of Theorem 6.1.2.(4) is that any dual feasible point
with strictly positive objective value already provides a certificate that the ma-
triz B 1s not Bernoulli-compatible. In particular, the dual program does not

need to be solved to optimality for testing purposes in this case.

Remark 6.1.4 (Extension complexity of the correlation polytope)

Let us point out that the primal problem (PB) has 2% variables and, accordingly,
the dual problem (DB) has the same number of constraints. Furthermore, it is
theoretically established that (DB) cannot be reformulated with significantly less
constraints. For instance Kaibel and Weltge (2015) demonstrated in a easily

accessible way that there is no formulation with less than O(1.5%) constraints.

6.1.3 Sparse solutions and efficient simulation of

Bernoulli vectors

In solving (PB) via successively applying the Simplex algorithm, we also pro-
vide a sparse representation of B which in particular yields an efficient simu-
lation approach for the corresponding multivariate distribution. For B € By,
we know that there is at least one representation of B which needs at most
d(d+1)/2+ 1 vertices due to the well-known Theorem of Carathéodory. Fur-
thermore, with regard to our numerical approach, we know the Simplex method
will compute a basic optimal solution a for (PB), which — by straightforward
application of the fundamental theorem of linear programming — implies that
at most d(d+1) of the a; will be strictly positive. Moreover, a thorough inspec-
tion of the symmetric structure of the problem yields that indeed a maximum
of d(d +1)/2 + 1, i.e. the same number as in Carathéodory’s Theorem, en-
tries will be non-zeros. The according results are summarized in the following

corollary:
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6.1 Problem formulation

Corollary 6.1.5 (Sparse representation)
Let B € B;. Then it holds:

. . 2d_1 . .
1. There exists a sparse representation B =) .~ a;B; with [{i|a; > 0}| <
d* + d.

2. Algorithm 4 applied to (PB) always yields a sparse representation.

Proof. The first statement follows from the Theorem of Carathéodory. The
second statement follows from the fact that Column Generation builds upon
repeated calls of the Simplex algorithm, which is well known to compute basic

solutions, and the fundamental theorem of linear programming. [

Remark 6.1.6 (Efficient simulation of Bernoulli vectors)
In particular, Corollary 6.1.5 yields an efficient simulation algorithm for the
corresponding multivariate distribution by applying a standard mizture model

to the sparse representation, see Krause et al. (2018).

6.1.4 A first numerical approach

Since LPs are often considered to be the most easy-to-solve optimization prob-
lems, the straightforward approach is to apply standard LP-solvers to solve
problems (PB) and (DB). Accordingly, we applied IBM’s ILoG CPLEX for
various LP-formulations of (PB) and (DB), see Section 6.4.2, and illustrate
the cpu time and typical?> memory usage in Figure 6.1. For small dimensions,
i.e. d < 17, we were able to solve all instances within a second. However, due to
memory limitations, we were not able to solve any problem instance for d > 20.

To address these difficulties, we propose a Column Generation approach.

2Tt is very difficult to exactly measure the average memory usage of an algorithm at any
given time, thus we present approximated (slightly overestimated for small dimensions)

values at this point.
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6 Membership testing on the Bernoulli polytope

I Memory

14 | —— Cplex

approx. memory usage in GB
average time in s

Figure 6.1: Typical memory usage and cpu time of CPLEX, averaged over all

problem classes. For d = 20 the maximum available memory of 16
GB is reached.

6.2 Generic Column Generation

In the following, let us recall the generic Column Generation method for linear
programs in canonical form; see for example Liibbecke (2010) for a detailed
presentation. For this purpose, we consider a linear optimization problem (P;)

in the following form, called the master problem:

v(J):= min chxj

TzeR™
jed

s.t. Zdjxj < b (PJ)
jeJ

with J = {1,...,n}, d; € R™ for j € J and b € R™, where n is much larger
than m. The corresponding dual® problem (D) is given by

_ T
v(J) = max b'y

s.t. d;-ry
y

¢ Vijed (D)

<
< 0.

3Tn this section, we assume that the primal master problem is feasible and bounded. Hence,
by strong duality, the same holds for the dual problem, and both optimal values coincide.
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6.2 Generic Column Generation

As Figure 6.1 shows directly solving the master problem becomes intractable
beyond n ~ 10° because the large number of variables causes memory issues.

Therefore, one must resort to iteratively solving restricted master problems

(Pp) fork=1,... K:

U([k> ‘= 1min ZC]'LU]'

TER”™ 4
JEIk

S.t. Zdjl’j S b (Plk)

Jely

The sets I, C J, usually called inner sets, represent subsets of indices (i.e.
primal variables) which are used for the optimization — the remaining variables
are simply set to 0 and thus excluded from the optimization. Starting from an
initial inner set Iy, variables (columns) are then added (generated) to improve
the current optimal solution when advancing from I to Ix,;. Thus, in the
course of the algorithm, a finite sequence of (small) subsets o C I; € ... C
I C J is considered. Due to the fundamental theorem of linear programming,
there always exists an optimal basic solution for P; and, by construction, an
optimal solution for the master problem is obtained in the restricted problem
as soon as an optimal basis for the master problem is included in a set I;. The
number of elements in such a basis is m, which is assumed to be much smaller
than n. Hence, in practice, I will hopefully be substantially smaller than J
for the majority of problem instances. For our application this is indeed the
case, as Figure 6.2 shows, the average number of Column Generation steps
grows only moderately with the dimension d and does not exceed 700 in all

our examples for d < 30.

6.2.1 The subproblem

In each iteration, the variable to be added is determined by solving a subprob-
lem. To this end, denote by xj an optimal solution of (Pr,) and by y7, the
corresponding optimal dual solution. Since xj is feasible for (Py), xj, is an

optimal solution for the master problem if and only if y7, is feasible for (D).
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700

600 [

500 [

400 [

300 [

200 [

100

average number of iterations

Figure 6.2: Average number of iterations of the pure Column Generation
method, averaged over 100 instances of problem classes 1 to 4,
see Section 6.4. It can be observed that the number of Column

Generation steps only increases mildly with the dimension d.

The dual feasibility of y7 can be determined by means of the subproblem

b, = max h;(y,), (SPx)

where for some (not necessarily feasible) point y, the violation of the j-th dual
constraint is given by

hi(y) =y 'd; —¢;.
By construction, h; < 0 implies yj to be dual feasible and thus provides
optimality of the current solution x7, . In the case of h; > 0 one sets [, :=
I, U{j], }, that is, one adds the corresponding maximizing column j7, in (SPy)
and sets k := k+ 1. Repeating this process, an optimal solution for the master

problem is found after a finite number of steps.

6.2.2 Algorithm

Altogether, we obtain Algorithm 4 for the generic Column Generation:
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6.2 Generic Column Generation

Algorithm 4 Generic Column Generation

1.

2.

3.

4.

Choose an initial subset Iy C J such that the restricted master problem
is feasible and bounded and set k := 0.

Solve the restricted master problem (P, ) to obtain xj together with

dual multipliers y7, .

Solve the subproblem (S F) to obtain A7, and a corresponding maximizer
1,
If by < 0: xj,_solves (Py), stop.

Else, set Iy := [, U{j} }, k:=k -+ 1 and go to 2.

Remark 6.2.1

Let us emphasize a few important aspects of Algorithm 4:

(i)

(i)

(iv)

For finite J, if (Py,) is feasible and bounded, the algorithm inherits the
finiteness and correctness properties of linear programming, cf. Liibbecke
(2010). This means, for some K < n, the iterate x7 _ has to be an optimal
solution for (Py). Note that in the extreme case this may lead to I = J.
In practice, as can be depicted from Figure 6.2, the average number of

iterations only increases rather mildly with the dimension d.

By construction, any two restricted optimal solutions xj, and xj with
k < 1 satisfy chjk > CT“’Z? i.e. the optimal values of the restricted

problems converge from above to the optimal value of the master problem.

It is critical to the overall efficiency of the Column Generation approach
that both the restricted LP as well as the subproblem of determining the
most violating constraint can be solved efficiently. In most successful ap-
plications of Column Generation, the problem structure of the subproblem
can be exploited to avoid solving by full enumeration. For more details
on the efficient solution of the subproblem in the present context let us
refer to Section 6.3.1.
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6 Membership testing on the Bernoulli polytope

6.3 Column Generation in (PB)

On the basis of Algorithm 4, we develop a Column Generation method specifi-
cally tailored to the membership problem on the Bernoulli polytope in its linear
formulation (PB). To this end, we start by considering the corresponding sub-
problem and introduce a novel dual bound by means of shifting infeasible dual
iterates towards a Slater point. Furthermore, based on necessary and sufficient
conditions for Bernoulli matrices, we present two methods for computing ini-
tial sets Iy and incorporate specific stopping criteria in our approach. Finally,

we summarize our numerical approach in Algorithms 5 and 6.

6.3.1 Efficient solution of (SF)

As mentioned above, an efficient implementation of the Column Generation is
obtained if subproblem (S Py) is solved efficiently. To avoid the full enumeration
of all constraints, let us now exploit the specific structure of (DB): Given a
dual variable y = (Y, Z,~) its maximum dual violation can be computed as
follows:

max hy(y) =max v+(B;,Z-Y)

=7 + max PU)pG), Z-Y)

=v + ma Z-Y
¥ pe{Of}dp( )P

The index of the corresponding maximizer p* can be immediately computed
via (6.1.1). Therefore, finding the most violating constraint and computing the
maximum violation boils down to solving the binary quadratic program

max p' Gp, (SP-BQP)

pe{0,1}4

with G = Z —Y . For this problem, it is well-known that it is NP-hard, as long
as no special structure in G can be assumed, see, e.g., Padberg (1989), which is
the case in the present situation. Until today, exact solution methods seem to

be limited to a few hundred variables at most, see, for instance, Kochenberger
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6.3 Column Generation in (PB)

et al. (2014). In our implementation, we have solved (SP-BQP) of dimension
d < 40 by CPLEX, which led to reasonable cpu time and was much more

efficient than full enumeration, see Figure 6.3.

Full enumeration
.......... SP-BQP
104+ | = = — Restricted master problem

average time in s

Figure 6.3: Comparison of average cpu time for one full enumeration, the so-
lution of one binary quadratic subproblem, and the solution of one
restricted master problem. The average is taken over all problem
instances. It can be observed that full enumeration is much slower
than solving the BQP subproblem. Further, the restricted master
problem and the BQP subproblem have roughly the same compu-

tational workload.
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6 Membership testing on the Bernoulli polytope

Furthermore, one observes that the time spent for solving the restricted mas-
ter problem roughly equals the time needed for finding the most violating
constraint. This indicates that Algorithm 4 can only be improved in terms of
cpu time, if both the LPs and the binary quadratic subproblems can be solved

much faster.

6.3.2 Dual bound

As mentioned in Remark 6.1.3, Algorithm 4 can be terminated early in case
a separating hyperplane is found. By linear duality we know that any feasible
solution to (D) provides a lower bound to the optimal value of (P;). Unfortu-
nately, the dual solution y7, provided at step k is — in general, and excluding
the optimal case — infeasible for (D). Therefore, we consider an additional
dual bound based on a Slater point of the dual problem in the gist of Daum
and Werner (2011).

Proposition 6.3.1

Let y be infeasible for (Dj). Further, let y, be a Slater point for (D),
i.e. h*(y,) < 0. Then there exists some i €]0,1[ such that y= py+ (1 — p)y,
is a Slater point, i.e. h*(y) < 0, for all 0 < p < ji. A suitable choice for [i is
given by

_ —h*(y,)
" ey —he(y,)

This implies that we can shift any infeasible iterate y; along the line towards
the Slater point y, to a feasible iterate y, . Whenever y; has a dual function
value strictly greater than zero, it constitutes a separating hyperplane in the
sense of Remark 6.1.3. As we will see in the following, this additional dual
bound allows for a much earlier termination of the Column Generation and

thus decreases cpu time for Bernoulli-incompatible matrices significantly.

174



6.3 Column Generation in (PB)

*

feasible region / ylk
Y1,

Ys

Figure 6.4: By means of a Slater point y,, shrink iterate y7, to a dual feasi-
ble iterate y; to obtain a lower bound for the optimal objective

function value.

6.3.3 Necessary and sufficient conditions

The essential part of our numerical approach is based on the explicit solution
of the LPs (PB) and (DB) by Algorithm 4. However, considerable time savings
can be achieved if easy-to-verify necessary and sufficient criteria for Bernoulli
compatibility of a matrix B are checked beforehand. Moreover, Propositions
6.3.3 and 6.3.4 will play a central role in the construction of suitable starting
points and efficient dual solutions for stopping criteria. In the following, we
introduce a selection* of necessary and sufficient criteria which are used in
the course our numerical approach; for a more complete list as well as some
novel results on bounding probabilities and scaling properties for Bernoulli-

compatible matrices, we again refer the reader to Krause et al. (2018).

We start by collecting several easy-to-verify necessary conditions of Bernoulli-

compatible matrices:

Proposition 6.3.2 (Necessary conditions)
Let B € R¥4, Then each of the following conditions is necessary for B to be

Bernoulli-compatible.
1. Bes
2. B € [0,1]9x.

“The majority of the corresponding criteria are found in Embrechts et al. (2016), Fiebig
et al. (2017), and Deza et al. (1993); Deza and Laurent (1997).
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6 Membership testing on the Bernoulli polytope

3. B is positive semidefinite.

4. B satisfies the Fréchet—Hoeffding bounds, i.e.
maX(O, Bu‘ + Bjj - 1) S Bij S mln(B”, Bjj)-

Proof. See, for example, (Embrechts et al., 2016, Proposition 2.1) or Fiebig
et al. (2017). O

In addition, we present a novel, but easily verifiable, necessary condition for the
Bernoulli compatibility of a B matrix. With regard to our numerical approach,
a dual formulation of this necessary condition will be of particular interest, as
it provides an efficient way to compute suitable Slater points for shifting dual

iterates as described in Proposition 6.3.1.

For this purpose, observe that for all k € {0,...,d} and i € {0,...,2%} we

have
trace(B;) = k

e =k = T

(6.2)

Then grouping binary vectors via (6.2) yields the following straightforward
necessary condition: Whenever B € R%*? is Bernoulli-compatible, i.e.
241

Jda € Aga : B = Z a;B;,
i=0

we have

d
trace(B) = > by-k
b c Ad+1 . k;O
(E,B) = > b k%
k=0

The same methodology can be applied to construct dual solutions with very

simple (low-dimensional) structure, i.e.
Y=oyl +ByvE and Z=ayl+ 3,F,

where [ is the identity matrix, which reduces the number of constraints of
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(DB) to O(d):

min (az — ay ) trace(B) + (67 — By )(B, E) + v

ay,By,az,8z,7ER

st. By >0, f(z2>0,
ay + By >0, az+87>0, (DBy)
d(ay + By + az + B2) + (d* — d)(By + Bz) = 1,
k(az —ay) +k*(Bz — By) +7<0, k=0,...,d

These findings are summarized in the following proposition:

Proposition 6.3.3 (Necessary condition via dual approximation)
Let B € R¥™4 satisfy all necessary conditions from Proposition 6.3.2. Then it
holds:

(1) Any feasible solution (ay, oz, By, Bz,7) of (DB)) yields a feasible solu-
tion (Y, Z,~) for (DB) with Y = ayI + By E and Z = azI + Bz.

(11) A strictly positive optimal value of (DB;) implies that B is not Bernoulli-

compatible.
Proof. See Krause et al. (2018). O

This allows us to efficiently obtain feasible solutions to (DB). Moreover, as
shown in our numerical investigations, slightly shifting these solutions yields
effective Slater points for finding Bernoulli-incompatible matrices in practical
settings via Proposition 6.3.1. Hence, we incorporate this methodology in our

numerical approach in Section 6.3.4.

We conclude with a necessary and sufficient condition, which is used in the

construction of starting points as shown in Section 6.3.3.
Proposition 6.3.4 (Necessary and sufficient conditions)
Let B € R4, Then B is Bernoulli-compatible <= each principal sub-matriz

of B is Bernoulli-compatible.

Proof. See Krause et al. (2018). O
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6 Membership testing on the Bernoulli polytope

Initial solutions

In order to find Iy such that the restricted master problem is feasible and the
corresponding optimal solution z7 has a reasonable small objective value, we
apply two different methodologies motivated by our numerical analysis. To
foster easy solution of the initial restricted master problem in the Column
Generation method, we keep the size of the two corresponding sets I C J
and [;,q C J in the order of O(d?). The final set Ij is then given by the union
Iy == Iy U Ling.

Block heuristic The first method, called the block heuristic, yields the set
Ik, and is independent of the inspected matrix B € R%*? as it employs a
straightforward selection of binary vectors where all entries equal to 1 occur

in blocks, i.e.

. . lfori<i<u
Ly ={j | N <i<u<d:p(j); = u{0}.
0 otherwise

Observe that therefore I, # 0, which guarantees the feasibility of the re-

stricted master problem. An illustration for d = 4 is given in Section 6.3.7.

Inductive heuristic The second method, called the inductive heuristic, con-
structs a set [;,4 by an iterative approach based on Proposition 6.3.4. In the
case that d > 14, we solve (PB) for A", the first principal sub-matrix of
dimension k := 14 of B. For this dimension, the primal LP can be solved
very efficiently. If the corresponding solution implies that A* is not Bernoulli-
compatible, the same holds for B due to Proposition 6.3.4 and we stop our
investigations, i.e. we implicitly test a necessary condition. In the opposite
case, this “local” solution is extended to construct a feasible starting point for
the original LP: Initially, since A* is Bernoulli-compatible, the positive coeffi-
cients in the optimal solution yield a convex representation

2k_1

Ak e Z )\JB‘I;, )\ e A/\Qd7
§=0
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where the B? € R¥*k define the vertices of the Bernoulli polytope for dimension
d = k, see Corollary 6.1.5. Thus, we collect the indices of all vertices with
strictly positive coefficients in the auxiliary set S*:= {0 < j <2471 | \; > 0}

and compute [;,4 by the following iterative process:
1. If k = d stop; otherwise set I;,q := 0.
2. For each j € S*: Add j and j + 2F to I;ng.
3. For I;ng = {j1, ..., 4i1}; check whether I;,4 yields a convex representation

l
of AF*1, i.e. check if 3A € A, such that AF1 = Y- \BE,
=1

a) In the positive case, set S+ = {j; € ;g | \s >0} , k:==k+1 and
goto 1.

b) In the negative case, stop.

A few explanations: Observe that adding j and j + 2* in Step 2 is equivalent

to adding the indices of two extended vectors of p; since
Jj=i ((Pj> O)T) and j+ 28 =i ((pj7 1)T)
by means of the inverse i of the natural bijection of binary vectors and integers

given in Section 6.1. Moreover, we compute a minimal convex representation
in Step 3a), which ensures that |I;,q| € O(d?).

6.3.4 Stopping criteria

Finally, we extend the Column Generation by introducing specific stopping
criteria for our application on the basis of Theorem 6.1.2. On the one hand, as
we know that the optimal value of the primal problem is always non-negative,
we can stop the Column Generation as soon as an objective value of 0 is
obtained, in other words: v(I;) = 0 for some iteration k implies that xj_solves

(Py). In this case the given matrix B is Bernoulli-compatible.

Moreover, we introduce a further stopping criterion which provides a negative

certificate. On the basis of Proposition 6.3.3 we compute a Slater point ys which
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is used to obtain feasible dual iterates y; via Proposition 6.3.1. Whenever we
haveb 'y 1, > 0, for some iteration £, this implies B is not Bernoulli-compatible
by Remark 6.1.3.

6.3.5 Algorithms

We summarize our Column Generation approach in Algorithms 5 and 6. In
order to thoroughly evaluate the performance of the pure Column Generation
approach, we incorporate Algorithm 5 in our numeric investigations, where we
keep the extensions not related to Column Generation to a minimum. For this
purpose, the only adjustments compared to the generic Column Generation in
Algorithm 4 are the solution of the subproblem as a (BQP) and the cpu of
the initial set Iy by the block heuristic of Section 6.3.3. Observe that Iy, # ()

Algorithm 5 Pure Column Generation for the Bernoulli-Problem

1. Compute the initial set Iy = I, and set k := 0.

2. Solve the restricted master problem (F,) to obtain xj, together with

dual multipliers y7, .

3. Solve the subproblem (SPpQP) to obtain h}, and a corresponding max-
imizer jj .
4. If hy < 0: x3, solves (Py), stop.

Else, set Iy := [, U{j} }, k:=k -+ 1 and go to 2.

in Step 1 of the algorithm ensures that (Pp,) is feasible.

In contrast, we include all problem-specific extensions presented above in Al-
gorithm 6. More precisely, in comparison to the basic Column Generation
approach of Algorithm 5, we test the necessary conditions of Proposition 6.3.2
before invoking the Column Generation. Furthermore, we modified Step 2 by
applying both the block and the inductive heuristic introduced in Section 6.3.3

to compute a more sophisticated initial set I incorporating information of the
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matrix B. In addition, we use Proposition 6.3.3 (and a slight subsequent shift)
to obtain a Slater point for (DB). This in turn is beneficial for determining
separating hyperplanes for Bernoulli-incompatible matrices in Step 4, see Sec-
tion 6.3.2, which is followed by the newly introduced stopping criteria in Steps
5 to 6 providing possible early certificates for Bernoulli-(in)compatible ma-

trices as shown in Section 6.3.4. Observe that Step 2 implicitly includes the

Algorithm 6 Enhanced Column Generation for the Bernoulli-Problem

1. Check the necessary conditions of Propositions 6.3.2.

2. Compute the initial set Iy = Iy U I;,q and a Slater point y, and set
k.= 0.

3. Solve the restricted master problem (P, ) to obtain xj together with

dual multipliers y7, .
4. Shift y7 toyy,.
5. If v(Ix) = 0, B is Bernoulli-compatible, stop.
6. If bTylk > (0, B is not Bernoulli-compatible stop.

7. Solve the subproblem (SPpQPFy) to obtain h}, and a corresponding max-
imizer j .
8. If by, < 0: x3, solves (Pj), stop.

Else, set Iy := [, U{j} }, k:=k+ 1 and go to 3.

verification of the necessary conditions given by Propositions 6.3.4 and 6.3.3.
Moreover, if an optimal solution is already contained in I, i.e. we have a posi-

tive certificate for Bernoulli-compatibility after Step 2, we stop the algorithm.
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6.3.6 Implementation details

Finally, we list some implementation details of the Column Generation ap-

proach.

Hardware and software choice

As in the former chapters of this thesis, all tests were performed on a standard
personal computer (processor: Intel Core 15-4090, 3.30 GHz, RAM: 16GB). The
implementation of the Column Generation method was carried out in MATLAB
2015B and we have used IBM’s ILoG CPLEX 12.6.2 for MATLAB to solve the
arising LPs and BQPs. All MATLAB codes are available by email request to
the author.

Cycling of Column Generation

One typical numerical issue in Column Generation is that due to numerical
problems, some dual constraint corresponding to an index i of the inner set I
might become slightly infeasible in some iteration. Especially in the proximity
of the optimal solution, this can lead to the repeated introduction of this index
1 to the inner set and thus cycling. Using the feasibility-tolerance parameter
of CPLEX, we avoided this difficulty by forcing the LP solver to produce a

“feasible enough” solution in each iteration.

Computational accuracy

In the context of our numerical investigations a sufficiently accurate relative
accuracy was given by classifying a matrix B as Bernoulli-compatible whenever
vp(B) < 107%. However, in the case that trace(B) is rather small, an accuracy

of 107% might not be adequate and we propose to test the rescaled matrix

1
trace(B)

discussed in Krause et al. (2018).

B instead of B, which is equivalent according to the scaling properties
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6.3 Column Generation in (PB)

Numerical solution of (SP-BQP)

We have both solved (SP-BQP) directly, using the MIQP solver of CPLEX, as
well as the linearization of (BQP) (cf. Padberg (1989)) via the MILP solver of
CPLEX. Since both approaches produced very similar results, we have chosen

the MIQP solver for the subsequent numerical studies.

One result of our numerical tests was that, instead of solving (SP-BQP) ex-
actly, it is more efficient to reasonably approximate the solution and only
compute exact solutions if no more violated constraints can be found. The
approximation was controlled by modifying the MIP tolerances of the CPLEX
solver. This observation is supported by recent literature on BQPs, see for

example Kochenberger et al. (2014).

6.3.7 lllustration of the Column Generation

In this section, we illustrate the essential components of the Column Gener-
ation algorithm (Algorithm 4). To begin with, let us illustrate the (ordered)
representation of the 2¢ — 1 vertices of the Bernoulli polytope introduced in

Section 6.1.1. Recall that the j-th vertex is represented by

Bj :p<j)p(j)T7 j:OJ72d_17

where the binary vectors p(j) are given by the natural bijection p of Section
6.1.1, i.e.

0 1

1 1

p(O) = 7p(1) = 7p(2) =10 ) 7p(2d - 1) = |1
0 0 0 1

Furthermore, we associate each matrix B; with some non-negative variable a;.
These variables serve — if a representation is found — as weights in the convex

representation of the Bernoulli matrix B.
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6 Membership testing on the Bernoulli polytope

Initialization: The Column Generation starts by solving the restricted mas-
ter problem on some subset of variables Iy := I U I;,4. As the inductive
heuristic is only applied for d > 14 it is not suitable for illustrations on paper,
hence, we have Iy = I in the following. Taking the case d = 4 as an example,

the variables with indices
Iy =4{0,1,2,4,8,3,6,12,7,14,15}

are selected in the block heuristic. These variables correspond to the following
set of binary vectors (the logic behind is the selection of “blocks of ones” with

increasing size)

o O O O
o O O =
O O = O
o = O O
= O O O
S O = =
o R R O
— = O O
O = =
e =)
= »—~u>—~ —

Iteration: In each iteration step k, a new variable is introduced to the inner
set [, and the problem is solved again. Based on the initial set I above, in
Table 6.1, the first variable to enter the inner set has index 9 and corresponds

to the binary vector

_ o O =

This process is explicitly depicted for four problem instances in Tables 6.1, 6.2,
6.3, and 6.4. The state of all variables throughout the iterations of the Column

Generation is given.

Examples: In the remainder of this section, we illustrate the Column Gener-
ation on four problem instances. First, we present two examples from problem
class 1 (see Section 6.4) with d = 4 and 2¢ — 1 = 15 variables, where the

parameters are chosen such that only the first matrix is Bernoulli-compatible.
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6.3 Column Generation in (PB)

Second, we illustrate the Column Generation on two examples also considered
in Embrechts et al. (2016) who investigated the following research question:
For which § € [0, 1] is the matrix

0 B

0 B

[a(8) = :
0 0 1 p

61

a matrix of pairwise (either lower or upper) tail-dependence coefficients? This
is equivalent to checking whether I';(3)/d is Bernoulli-compatible, cf. Krause
et al. (2018). Thus, we incorporate two examples in our illustration where we
keep d = 4: In Tables 6.3 and 6.4 we set § = % and = %, respectively. As
expected, the former matrix turns out to be Bernoulli-compatible (note that
the final v in Table 6.3 is zero), while the latter is not. Interestingly, for 5 = %

the matrix is still positive semi-definite.

We further observe that for all problem classes the primal solution does not
change for two (or more) successive iterations. In such a case, adding the index
corresponding to the maximally violated dual constraint has no effect on the
primal solution. It does, however, add one more dual constraint to the inner
problem and thereby different dual multipliers are generated from the primal

solution.

In the i-th row and j-th column of the first 2¢ — 1 = 15 columns, the value
of a; of the vertex B; of the Bernoulli polytope in the i-th iteration is given.
Here, empty cells indicate that the corresponding variable is not yet added to
the restricted master problem. Non-empty cells contain the value of the cor-
responding variable in the optimal solution of the restricted problem at the
current iteration. Furthermore, the last two columns show the respective ob-

jective value v and the maximal violation of a dual constraint in each iteration.
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6 Membership testing on the Bernoulli polytope

6.4 Numerical analysis

In this section, we report in detail the setup of our case study based on selected
test instances, before we discuss the main numerical findings. In summary, our
numerical analysis shows that the pure Column Generation method (Algorithm
5) is quite efficient up to d = 30. Furthermore, we can efficiently test for
Bernoulli-compatibility up to the dimension d = 40 using several problem-

specific enhancements in Algorithm 6.

6.4.1 Test problems

Unfortunately, for testing Bernoulli-compatibility, there is no common test
library available. Therefore, we have come up with five different families of test
problems for the numerical tests. The first two represent specifically selected
parametrized problem classes, whereas the last three are based on random
combinations of vertices of the Bernoulli polytope B;. All test cases satisfy
the necessary conditions from Proposition 6.3.2, besides a few exceptions for
d < 6, as well as a significant number of instances in class 1 which violate the
Fréchet-Hoeffding bounds, see Figures 6.5 and 6.9.

Problem class 1: The matrices B of the first class are given by
B = (n—n*x)I + k’E,

for some 0 < n <1 and 0 < k < 1, where I denotes the identity matrix.
Instances of this problem class can be either Bernoulli-compatible or not, de-

pending on the parameters, see Figure 6.5.

Problem class 2: Matrices B of the second class are given by

Bn':L, 1=1,....,d,
p+q
1
ptagp+tq+1
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6.4 Numerical analysis

0.1 02 03 04 05 06 07 08
K

(d) d =12

Figure 6.5: Bernoulli-compatibility of matrices in problem class 1, depending
on 1 and k for d = 3,6,9 and 12. Black areas indicate Bernoulli-
compatible matrices; gray areas indicate Bernoulli-incompatible in-
stances that violate the Fréchet-Hoeffding bounds and white areas
indicate Bernoulli-incompatible matrices that satisfy the Fréchet—
Hoeffding bounds.
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6 Membership testing on the Bernoulli polytope

for some 0 < p < 1 and 0 < ¢ < 1. Instances of this problem class are
always Bernoulli-compatible: Draw (Ui, ..., U,;) from a copula that is defined
as the convex combination of 1/(p + ¢ + 1) times the comonotonicity copula
and (p + ¢q)/(p + ¢ + 1) times the independence copula. Further, let X; :=
1u,<p/(p+q) for @ = 1,...,d. It is then easily verified (by conditioning) that
EX,X;] = 20l for i £ j. Moreover, E[X2] = - by the uniform

(1+p+q)(p+a) pt+q
margins property of a copula.

Problem class 3: The third class constitutes randomly generated matrices

k=1

The number of terms n is uniformly distributed in the interval [d?, d*] and
the vertices B;, are uniformly distributed over all vertices of B,. Finally, the
non-zero coefficients \; ,..., \; of the convex combination are uniformly dis-
tributed on the standard (n)-simplex, i.e. sampled from a Dirichlet distribu-
tion. As a convex combination of extremal points of By, B is always Bernoulli-

compatible.

Problem class 4: Based on class 3, the matrices B of problem class 4 are
given by
1
B:=A+ —B;
RO

where the matrix A is generated as in problem class 3. One specific index j
with A; > 0 is randomly chosen and increased by 0.1. In practice, this usually

leads to Bernoulli-incompatible matrices for d > 14.

Problem class 5: Finally, we also consider a problem class which is supposed

to produce “hard” problem instances, by setting

1
B = A+EBJ

Now, the matrix B is derived in a similar fashion as in class 4, however, the

shift decreases with increasing dimension. This is supposed to produce both
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6.4 Numerical analysis

Bernoulli-compatible and Bernoulli-incompatible matrices which are close to

the Bernoulli polytope’s boundary®.

In Figure 6.6, we have illustrated the distance of randomly generated instances

from problem classes 4 and 5.

class 4
015 T T T T T T T T
01} 4
~
A8 oost -' 1
2 il
G 0 Il [ 1 \HIIu.uII”H“““Iul" ||||| ||| Il Il
o 0 1 2 3 4 5 6 7 8 9
S ><10'3
= class 5
0 0.15 T T T T T T T T
o
7
o B =
= 0
0.05 4
0 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
><10'3

Figure 6.6: Distribution of the distance vp(B) to the Bernoulli polytope for
matrices B from problem classes 4 and 5 in the case of d = 14.
Instances of class 4 are clustered around 5 - 10~2 which is signifi-
cantly larger than our threshold for Bernoulli-compatible matrices
of 107%, see also Section 6.3.6. For class 5, vp(B) is significantly
lower for most instances, whereof approximately ten percent sat-
isfy vp(B) < 1075.

It can be observed that class 4 usually only contains Bernoulli-incompatible
matrices, whereas the situation for class 5 is mixed, with on average much

smaller distance than for class 4.

5This assumption is supported by our numerical findings in this section.
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6 Membership testing on the Bernoulli polytope

6.4.2 Results

In this section, we analyze the performance of the Column Generation method
in two steps. In order to evaluate the efficiency of the pure Column Genera-
tion approach, we first compare Algorithm 5 of Section 6.3.5 to standard LP
solvers. In a second step, we analyze the added value of our problem-specific
extensions which are not directly linked to Column Generation in Algorithm 6.
As mentioned before, any problem formulation of (PB) and (DB) can be solved
directly by an arbitrary LP solver. Therefore, we tested different combinations
of problem formulations and LP solvers of CPLEX. As expected, we found that
— if one is just interested in any solution — the most efficient approach was to
solve the feasibility problem of (PB) with the primal Simplex of CPLEX. None
of the direct solvers could solve the problem for d > 20 due to memory issues.

Therefore, direct methods are omitted for d > 20 in the following.

Let us start with the Column Generation approach in its pure form represented
by Algorithm 5. The corresponding results are presented in Figure 6.7 where
it is observed that the pure Column Generation is able to solve instances up to
d = 30, whereas all direct approaches fail to solve instances where d > 20. The
cpu time can be further significantly reduced when we include the problem-
specific extensions of Algorithm 6. The performance of this enhanced method
is illustrated in Figure 6.8. For problem class 4, we observe that for d > 10
only Bernoulli-incompatible instances are produced and all these instances
can be solved via dual approximation (see Figure 6.9). Again, very similar
results as for the pure Column Generation method can be observed. For d >
15, the enhanced Column Generation method starts to outperform the direct
solvers, as for a significant number of instances, the solution of large LPs can
be avoided. This is also the main reason why the enhanced method is clearly
faster than the pure Column Generation method as shown in Figure 6.8. This
is further illustrated in Figure 6.9 in terms of statistical information on how

problem instances were solved. The following categories are represented:

e “Necessary conditions” implies that one of the necessary conditions of

Proposition 6.3.2 is not satisfied.
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Figure 6.7: In each subplot, the averaged cpu time is illustrated for the pure

Column Generation method. The average is taken over 100 in-

stances for each d. The computation was aborted, whenever the

time limit of 30 minutes was reached. This was the case for all

instances of class 5 when d > 25.

193



6 Membership testing on the Bernoulli polytope
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Figure 6.8: In each subplot, the averaged cpu time is illustrated for the en-
hanced Column Generation method. The results were obtained as
described in Figure 6.7, i.e. averaged over 100 instances for each d

with a time limit of 30 minutes.
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6.5 Conclusion and outlook

e “Dual approximation” implies that a separating hyperplane was found,

i.e. the stopping criterion in Step 6 of Algorithm 6 was satisfied.

e “Jy optimal” indicates that the inner set Iy := Iy U [;,4 yields an optimal

solution.

e “Column generation” implies that a positive certificate was found by

running the Column Generation.

e “Time limit” implies that the time limit of 30 minutes for the Column

Generation was reached.

Figure 6.9 shows that most problem instances can be successfully solved by
primal or dual heuristics as long as d is small to medium sized. In the case of
large d and Bernoulli-compatible matrices all problem instances are ultimately
solved by Column Generation, whereas most Bernoulli-incompatible matrices

could be identified via dual approximation.

6.5 Conclusion and outlook

The main objective of this exposition was to present an approach to test
whether a matrix B € R%™? is a Bernoulli-compatible matriz or not. Tech-
nically, we aim at finding a mixture model representation by solving a linear
program, as pioneered by Lee (1993). To deal with the problem of exponen-
tially many variables in the primal LP, we proposed to solve larger LPs with
a Column Generation method. For an efficient implementation of the Column
Generation method, it was crucial to replace the full enumeration for identify-
ing the most violating constraint. Due to the specific structure of the problem,
this can be achieved by solving a binary quadratic program. Although the
membership testing problem is known to be NP-complete, we observe very
promising performance of such a pure Column Generation method up to di-
mension d = 30 on a variety of test problems. To improve the performance
of the pure Column Generation method, we have enhanced the method by a
novel dual bound for early termination, which has shown to be quite effective.

In addition, primal and dual heuristics, which can be efficiently tested before
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Figure 6.9: In each subplot, the average percentage shares of different solution
types are illustrated for the enhanced Column Generation method.

The average is taken over 100 instances for each d.
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6.5 Conclusion and outlook

applying Column Generation, further significantly increase the effectiveness of

our approach.

For practical applications, an important byproduct of the derived mixture
model representation is the possibility to exploit it for the simulation of
Bernoulli vectors. The fact that a solution with at most O(d?) vertices is

identified by our approach makes this especially convenient.

Lastly, a few words on further research: As the computation for the arising L.Ps
and BQPs are roughly the same, a significant speed up of the iterations will
only be achieved if both problems can be solved faster. However, in order to
reduce the number of iterations performed, a possible enhancement could be
given by replacing the binary quadratic program in certain (early) iterations
with heuristic approaches that add more than one variable to the restricted
master problem. As for our method to produce feasible dual iterates via shifting
towards a Slater point, it would be interesting to see if this approach can be

transferred to other problems where suitable Slater points are available.
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